Hauptnavigation

FotoDanielSmall.jpg Email: daniel.boiar At Symbol tu-dortmund.de
Telefon: 0231/755-8257
Telefax: 0231/755-5105
Raumnummer: OH12 R4.011

Forschungsthemen

Publikationen

Sachweh/etal/2022a Timon Sachweh and Daniel Boiar and Thomas Liebig. Distributed LSTM-Learning from Differentially Private Label Proportions. In Data Mining Workshops, 2022. ICDMW'22. IEEE International Conference on, Seiten (accepted), IEEE, 2022.
Boiar/etal/2022a Daniel Boiar and Nils Killich and Lukas Schulte and Victor Hernandez Moreno and Jochen Deuse and Thomas Liebig. Forecasting Algae Growth in Photo-Bioreactors using Attention LSTMs. In Proceedings of the Workshop on Artificial Intelligence for Engineering Applications 2022, Seiten (accepted), Springer, 2022.
Sachweh/etal/2021a Timon Sachweh and Daniel Boiar and Thomas Liebig. Differentially Private Learning from Label Proportions. In Proceedings of the ECML Workshop on Parallel, Distributed, and Federated Learning, Seiten accepted, 2021.
Boiar/2018a Boiar, Daniel. Realzeitliche Vorhersagen mit Hoeffding-Trees im Tunnelbau. TU Dortmund, 2018.