Hauptnavigation

Verteiltes Data Mining

Verteilte Verarbeitung spielt aus mehreren Gründen eine wichtige Rolle für die Wissensentdeckung. Erstens benötigen viele Daten Mining Aufgaben sehr viele Resourcen bezüglich Rechenzeit und Speicherplatz. Um Systeme skalierbar zu machen ist es häufig wichtig die Arbeitslast auf verschiedene Rechner zu verteilen. Zweitens sind Daten häufig inherent verteilt. Solche Daten zentral zu analysieren ist sehr ineffizient und birgt Sicherheitsrisiken. Das Forschungsfeld des verteilten Data Mining beschäftigt sich mit der Frage, wie Data Mining denzentral angewendet werden kann.

Software

RapidMiner Distributed Data Mining Plugin

Personen

Bockermann, Christian
Boiar, Daniel
Kuhlmann, Helen
Liebig, Thomas
Sachweh, Timon
Schowe, Benjamin
Stolpe, Marco
Wurst, Michael

Abgeschlossene Diplomarbeiten

Publikationen

Bhaduri/Stolpe/2013a Bhaduri, Kanishka and Stolpe, Marco. Distributed Data Mining in Sensor Networks. In Aggarwal, Charu C. (editors), Managing and Mining Sensor Data, Berlin, Heidelberg, Springer, 2013. Arrow Symbol
Stolpe/etal/2011a Stolpe, Marco and Morik, Katharina and Konrad, Benedikt and Lieber, Daniel and Deuse, Jochen. Challenges for Data Mining on Sensor Data of Interlinked Processes. In Proceedings of the Next Generation Data Mining Summit (NGDM) 2011, 2011. Arrow Symbol
Morik/etal/2009a May, Michael and Berendt, Bettina and Cornuejols, Antoine and Gama, Joao and Giannotti, Fosca and Hotho, Andreas and Malerba, Donato and Menesalvas, Ernestina and Morik, Katharina and Pedersen, Rasmus and Saitta, Lorenza and Saygin, Yucel and Schuster, Assaf and Vanhoof, Koen. Research Challenges in Ubiquitous Knowledge Discovery. In Kargupta and Han and Yu and Motwani and Kumar (editors), Next Generation of Data Mining, Seiten 131--151, CRC Press, 2009.
Mierswa/etal/2008a Mierswa, Ingo and Morik, Katharina and Wurst, Michael. Handling Local Patterns in Collaborative Structuring. In Masseglia, Florent and Poncelet, Pascal and Teisseire, Maguelonne (editors), Successes and New Directions in Data Mining, Seiten 167 -- 186, IGI Global, 2008.
Mierswa/etal/2008b Mierswa, Ingo and Morik, Katharina and Wurst, Michael. Collaborative Use of Features in a Distributed System for the Organization of Music Collections. In Shen and Shephard and Cui and Liu (editors), Intelligent Music Information Systems: Tools and Methodologies, Seiten 147--176, Igi Global Publishing, 2008.
Wurst/2008a Michael Wurst. Distributed Collaborative Structuring -- A Data Mining Approach to Information Management in Loosely Coupled Domains. Fachbereich Informatik, Technische Universität Dortmund, 2008.
Flasch/etal/2007a Flasch, Oliver and Kaspari, Andreas and Morik, Katharina and Wurst, Michael. Nemoz - A Distributed Framework for Collaborative Media Organization. In Proceedings of the Third International Workshop on Distributed Frameworks for Multimedia Applications, 2007.
Flasch/etal/2007b Flasch, Oliver and Kaspari, Andreas and Morik, Katharina and Wurst, Michael. Aspect-Based Tagging for Collaborative Media Organization. In Berendt, Bettina and Hotho, Andreas and Mladenic, Dunja and Semeraro, Giovanni (editors), From Web to Social Web: Discovering and Deploying User and Content Profiles, Vol. 4737, Seiten 122-141, Springer, 2007. Arrow Symbol
Mierswa/etal/2007b Mierswa, Ingo and Morik, Katharina and Wurst, Michael. Collaborative Use of Features in a Distributed System for the Organization of Music Collections. In Shen, Shepherd, Cui, and Liu (editors), Intelligent Music Information Systems: Tools and Methodologies, Seiten 147 - 175, Information Science Reference, 2007.
Wurst/2007b Wurst, Michael. Multi-Agent Learning by Distributed Feature Extraction. In Daniel Kudenko and Ann Nowe and Zahia Guessoum and Karl Tuyls (editors), Adaptive Agents and Multi-Agent Systems III, Seiten 239 --, Springer, 2007.
Wurst/Morik/2007a Wurst, Michael and Morik, Katharina. Distributed Feature Extraction in a P2P Setting - A Case Study. In Future Generation Computer Systems, Special Issue on Data Mining, Vol. 23, No. 1, Seiten 69 -- 75, Amsterdam, The Netherlands, Elsevier Science Publishers B. V., 2007. Arrow Symbol
Mierswa/etal/2006a Mierswa, Ingo and Wurst, Michael and Klinkenberg, Ralf and Scholz, Martin and Euler, Timm. YALE: Rapid Prototyping for Complex Data Mining Tasks. In ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2006), Seiten 935--940, ACM, New York, USA, ACM Press, 2006. Arrow Symbol
Wurst/etal/2006a Wurst, Michael and Morik, Katharina and Mierswa, Ingo. Localized Alternative Cluster Ensembles for Collaborative Structuring. In Johannes Fürnkranz and Tobias Scheffer and Myra Spiliopoulou (editors), Proceedings of the European Conference on Machine Learning, Seiten 485--496, Berlin, Springer, 2006.
Wurst/Morik/2006b Wurst, Michael and Morik, Katharina. Multi-Agent Learning By Feature Sharing. In Proceedings of the 6th European Symposium on Adaptive Learning Agents and MAS, 2006.
Wurst/Scholz/2006a Wurst, Michael and Scholz, Martin. Distributed Subgroup Discovery. In Johannes Furnkranz, Tobias Scheffer, Myra Spiliopoulou (editors), Proceedings of the 10th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD-06), Vol. 4213, Seiten 421--433, Berlin, Germany, Springer, 2006.
Mierswa/Wurst/2005a Mierswa, Ingo and Wurst, Michael. Efficient Case Based Feature Construction for Heterogeneous Learning Tasks. No. CI-194/05, Collaborative Research Center 531, University of Dortmund, 2005.
Mierswa/Wurst/2005b Mierswa, Ingo and Wurst, Michael. Efficient Feature Construction by Meta Learning -- Guiding the Search in Meta Hypothesis Space. In Proc. of the International Conference on Machine Learning, Workshop on Meta Learning, 2005.
Mierswa/Wurst/2005c Mierswa, Ingo and Wurst, Michael. Efficient Case Based Feature Construction for Heterogeneous Learning Tasks. In Alipio Jorge and Luis Torgo and Pavel Brazdil and Rui Camacho and Joao Gama (editors), Proceedings of the European Conference on Machine Learning (ECML 2005), Seiten 641--648, Berlin, Springer, 2005.
Scholz/2005d Scholz, Martin. On the Tractability of Rule Discovery from Distributed Data. In Han, J. and Wah, B.W. and Raghavan, V. and Wu, X. and Rastogi, R. (editors), Proceedings of the 5th IEEE International Conference on Data Mining (ICDM '05), Seiten 761--764, Houston, Texas, USA, IEEE Computer Society, 2005.
Wurst/2001a Wurst, Michael. Application of Machine Learning Methods in a Multi-Agent System. Gerstner Laboratory, Czech Technical University, 2001.