Hauptnavigation

mierswa_72_dpi_140x185.png Email: mierswa At Symbol ls8.cs.uni-dortmund.de
Telefon:  
Telefax: 0231/755-5105
Raumnummer:  

Zur Person

Ingo Mierswa studierte von Ende 1998 bis Anfang 2004 Informatik an der Universität Dortmund. Von 2000 bis 2004 war er am Lehrstuhl für künstliche Intelligenz als studentische Hilfskraft im Rahmen des Sonderforschungsbereichs 531 beschäftigt, in dem er die Entwicklung der maschinellen Lernumgebung YALE begann. Seit April 2004 ist er als wissenschaftlicher Mitarbeiter tätig im Bereich multikriterieller Optimierung numerischer Lernverfahren und Vorverarbeitung. Er arbeitet heute im Teilprojekt A4 des Sonderforschungsbereichs 475.

Projekte

Forschungsthemen

Publikationen

Schramm/Mierswa/2009a Schramm, Alexander and Mierswa, Ingo and Kaderali, Lars and Morik, Katharina and Eggert, Angelika and Schulte, Johannes H.. Reanalysis of neuroblastoma expression profiling data using improved methodology and extended follow-up increases validity of outcome prediction. In Cancer Letters, Vol. 282, No. 1, Seiten 56--62, 2009.
Mierswa/Morik/2008a Mierswa, Ingo and Morik, Katharina. About the Non-Convex Optimization Problem Induced by Non-positive Semidefinite Kernel Learning. In Advances in Data Analysis and Classification, Vol. 2, No. 3, Seiten 241--258, 2008.
Mierswa/etal/2008b Mierswa, Ingo and Morik, Katharina and Wurst, Michael. Collaborative Use of Features in a Distributed System for the Organization of Music Collections. In Shen and Shephard and Cui and Liu (editors), Intelligent Music Information Systems: Tools and Methodologies, Seiten 147--176, Igi Global Publishing, 2008.
Mierswa/etal/2008a Mierswa, Ingo and Morik, Katharina and Wurst, Michael. Handling Local Patterns in Collaborative Structuring. In Masseglia, Florent and Poncelet, Pascal and Teisseire, Maguelonne (editors), Successes and New Directions in Data Mining, Seiten 167 -- 186, IGI Global, 2008.
Mierswa/2008a Mierswa, Ingo. Non-Convex and Multi-Objective Optimization in Data Mining. Fachbereich Informatik, Technische Universität Dortmund, 2008.
Mierswa/etal/2007b Mierswa, Ingo and Morik, Katharina and Wurst, Michael. Collaborative Use of Features in a Distributed System for the Organization of Music Collections. In Shen, Shepherd, Cui, and Liu (editors), Intelligent Music Information Systems: Tools and Methodologies, Seiten 147 - 175, Information Science Reference, 2007.
Mierswa/2007a Mierswa, Ingo. Controlling Overfitting with Multi-Objective Support Vector Machines. In Proc. of the Genetic and Evolutionary Computation Conference (GECCO 2007; best paper award), 2007.
Mierswa/2007b Mierswa, Ingo. Finding all Local Models in Parallel: Multi-Objective SVM. 2007.
Bockermann/etal/2007a Bockermann, Christian and Mierswa, Ingo and Morik, Katharina. On the Automated Creation of Understandable Positive Security Models for Web Applications. In 2nd International Workshop on Web and Pervasive Security, Seiten 554--559, 2007.
Klinkenberg/etal/2007a Klinkenberg, Ralf and Mierswa, Ingo and Hinneburg, Alexander and Posch, Stefan and Neumann, Steffen (editors). Proc. of LWA 2007 - Lernen - Wissensentdeckung - Adaptivität. Martin Luther University, Halle-Wittenberg, Germany, 2007.
Mierswa/2007c Mierswa, Ingo. Regularization through Multi-Objective Optimization. In Klinkenberg, Ralf and Mierswa, Ingo and Hinneburg, Alexander and Posch, Stefan and Neumann, Steffen (editors), Proc. of LWA 2007 - Lernen - Wissensentdeckung - Adaptivität, 2007.
Mierswa/etal/2006a Mierswa, Ingo and Wurst, Michael and Klinkenberg, Ralf and Scholz, Martin and Euler, Timm. YALE: Rapid Prototyping for Complex Data Mining Tasks. In ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2006), Seiten 935--940, ACM, New York, USA, ACM Press, 2006. Arrow Symbol
Mierswa/2006a Mierswa, Ingo. Evolutionary Learning with Kernels: A Generic Solution for Large Margin Problems. In Proc. of the Genetic and Evolutionary Computation Conference (GECCO 2006), 2006.
Mierswa/Wurst/2006a Mierswa, Ingo and Wurst, Michael. Information Preserving Multi-Objective Feature Selection for Unsupervised Learning. In Maarten Keijzer and Mike Cattolico and Dirk Arnold and Vladan Babovic and Christian Blum and Peter Bosman and Martin V. Butz and Carlos Coello Coello and Dipankar Dasgupta and Sevan G. Ficici and James Foster and Arturo Hernandez-Aguirre and Greg Hornby and Hod Lipson and Phil McMinn and Jason Moore and Guenther Raidl and Franz Rothlauf and Conor Ryan and Dirk Thierens (editors), GECCO '06: Proceedings of the 8th annual conference on Genetic and evolutionary computation, Seiten 1545--1552, New York, NY, USA, ACM Press, 2006.
Wurst/etal/2006a Wurst, Michael and Morik, Katharina and Mierswa, Ingo. Localized Alternative Cluster Ensembles for Collaborative Structuring. In Johannes Fürnkranz and Tobias Scheffer and Myra Spiliopoulou (editors), Proceedings of the European Conference on Machine Learning, Seiten 485--496, Berlin, Springer, 2006.
Mierswa/2006b Mierswa, Ingo. Making Indefinite Kernel Learning Practical. Collaborative Research Center 475, University of Dortmund, 2006.
Koepcke/Mierswa/2006a Kopcke, Hanna and Mierswa, Ingo. Optimizing Process Plant Layouts. In Proceedings of the 6th International Symposium on Tools and Methods of Competitive Engineering (TMCE 2006), 2006.
Mierswa/Wurst/2006b Mierswa, Ingo and Wurst, Michael. Sound Multi-Objective Feature Space Transformation for Clustering. In Proceedings of the Knowledge Discovery, Data Mining, and Machine Learning (KDML), Seiten 330--337, 2006.
Moerchen/etal/2006a Morchen, Fabian and Mierswa, Ingo and Ultsch, Alfred. Understandable models of music collections based on exhaustive feature generation with temporal statistics. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-06), 2006.
Homburg/etal/2005a Homburg, Helge and Mierswa,Ingo and Moller, Bulent and Morik, Katharina and Wurst, Michael. A Benchmark Dataset for Audio Classification and Clustering. In Joshua D. Reiss and Geraint A. Wiggins (editors), Proc. of the International Symposium on Music Information Retrieval 2005, Seiten 528--531, London, UK, Queen Mary University, 2005.
Mierswa/Morik/2005a Mierswa, Ingo and Morik, Katharina. Automatic Feature Extraction for Classifying Audio Data. In Machine Learning Journal, Vol. 58, Seiten 127--149, 2005.
Mierswa/Wurst/2005c Mierswa, Ingo and Wurst, Michael. Efficient Case Based Feature Construction for Heterogeneous Learning Tasks. In Alipio Jorge and Luis Torgo and Pavel Brazdil and Rui Camacho and Joao Gama (editors), Proceedings of the European Conference on Machine Learning (ECML 2005), Seiten 641--648, Berlin, Springer, 2005.
Mierswa/Wurst/2005a Mierswa, Ingo and Wurst, Michael. Efficient Case Based Feature Construction for Heterogeneous Learning Tasks. No. CI-194/05, Collaborative Research Center 531, University of Dortmund, 2005.
Mierswa/Wurst/2005b Mierswa, Ingo and Wurst, Michael. Efficient Feature Construction by Meta Learning -- Guiding the Search in Meta Hypothesis Space. In Proc. of the International Conference on Machine Learning, Workshop on Meta Learning, 2005.
Mierswa/Morik/2005c Mierswa, Ingo and Morik, Katharina. Evolutionäre Aufzucht von Methodenbäumen zur Merkmalsextraktion aus Audiodaten. In Informatik Spektrum, Themenheft Musik, Vol. 28, No. 5, Seiten 381--388, 2005.
Mierswa/2005a Mierswa, Ingo. Incorporating Fuzzy Knowledge into Fitness: Multiobjective Evolutionary 3D Design of Process Plants. In Proc. of the Genetic and Evolutionary Computation Conference GECCO 2005, 2005.
Mierswa/Morik/2005b Mierswa, Ingo and Morik, Katharina. Method trees: building blocks for self-organizable representations of value series: how to evolve representations for classifying audio data. In Proceedings of the Genetic and Evolutionary Computation Conference GECCO 2005, Workshop on Self-Organization In Representations For Evolutionary Algorithms: Building complexity from simplicity, Seiten 293--300, New York, NY, USA, ACM, 2005.
Morik/etal/2005b Morik, Katharina and Schmidt-Traub, Henner and Hicking, Bernd and Köpcke, Hanna and Mierswa, Ingo. Optimierung von Aufstellungsentwurfen für Chemieanlagen. In Industriemanagement, Vol. 21, No. 3, Seiten 25--28, 2005.
Wurst/etal/2005a Wurst, Michael and Mierswa, Ingo and Morik, Katharina. Structuring Music Collections by Exploiting Peers' Processing. No. 43/05, Collaborative Research Center 475, University of Dortmund, 2005.
Mierswa/2004a Mierswa, Ingo. Automatisierte Merkmalsextraktion aus Audiodaten. Fachbereich Informatik, Universit\"at Dortmund, 2004.
Mierswa/2004c Mierswa, Ingo. Automatic Feature Extraction from Large Time Series. In Abecker, A. and Bickel, S. and Brefeld, U. and Drost, I. and Henze, N. and Herden, O. and Minor, M. and Scheffer, T. and Stojanovic, L. and Weibelzahl, S. (editors), Proc. of LWA 2004 - Lernen - Wissensentdeckung - Adaptivitat, 2004.
Mierswa/2004b Mierswa, Ingo. Automatic Feature Extraction from Large Time Series. In Weihs, C. and Gaul, W. (editors), Classification -- the Ubiquitous Challenge, Proc. of the 28. Annual Conference of the GfKl 2004, Seiten 600--607, Springer, 2004.
Mierswa/Morik/2004a Mierswa, Ingo and Morik, Katharina. Learning Feature Extraction for Learning from Audio Data. No. 55/04, Collaborative Research Center 475, University of Dortmund, 2004.
Mierswa/Geisbe/2004a Mierswa, Ingo and Geisbe, Thorsten. Multikriterielle evolutionare Aufstellungsoptimierung von Chemieanlagen unter Beachtung gewichteter Designregeln. Collaborative Research Center 531, University of Dortmund, Dortmund, Germany, 2004.
Mierswa/etal/2003a Mierswa, Ingo and Klinkenberg, Ralf and Fischer, Simon and Ritthoff, Oliver. A Flexible Platform for Knowledge Discovery Experiments: YALE -- Yet Another Learning Environment. In LLWA 03 - Tagungsband der GI-Workshop-Woche Lernen - Lehren - Wissen - Adaptivitat, 2003.
Mierswa/2003a Mierswa, Ingo. Beatles vs. Bach: Merkmalsextraktion im Phasenraum von Audiodaten. In LLWA 03 - Tagungsband der GI-Workshop-Woche Lernen - Lehren - Wissen - Adaptivitat, 2003.
Fischer/etal/2002a Fischer, Simon and Klinkenberg, Ralf and Mierswa, Ingo and Ritthoff, Oliver. \sc Yale: Yet Another Learning Environment -- Tutorial. No. CI-136/02, Collaborative Research Center 531, University of Dortmund, Dortmund, Germany, 2002.
Ritthoff/etal/2002b Ritthoff, Oliver and Klinkenberg, Ralf and Fischer, Simon and Mierswa, Ingo. A Hybrid Approach to Feature Selection and Generation Using an Evolutionary Algorithm. In Bullinaria, John A. (editors), Proceedings of the 2002 U.K. Workshop on Computational Intelligence (UKCI-02), Seiten 147--154, Birmingham, UK, University of Birmingham, 2002.
Ritthoff/etal/2002a Ritthoff, Oliver and Klinkenberg, Ralf and Fischer, Simon and Mierswa, Ingo. A Hybrid Approach to Feature Selection and Generation Using an Evolutionary Algorithm. No. CI-127/02, Collaborative Research Center 531, University of Dortmund, Dortmund, Germany, 2002.
Cesarz/etal/2002a Cesarz, Arthur and Giese, Oliver and Hebbel, Matthias and Hennings, Holger and Fischer, Simon and Malik, Mark and Matters, Patrick and Meier, Markus and Mierswa, Ingo and Neumann, Christian and Piepenstock, Denis and Rentmeister, Jens and Schley, Lars. Sony Legged League: Entwurf und Realisierung einer modularen hierarchischen Kontrollarchitektur fur fussballspielende AIBO Roboter. Fachbereich Informatik, Universitat Dortmund, 2002.
Ritthoff/etal/2001a Ritthoff, Oliver and Klinkenberg, Ralf and Fischer, Simon and Mierswa, Ingo and Felske, Sven. \sc Yale: Yet Another Machine Learning Environment. In Klinkenberg, Ralf and Ruping, Stefan and Fick, Andreas and Henze, Nicola and Herzog, Christian and Molitor, Ralf and Schroder, Olaf (editors), LLWA 01 -- Tagungsband der GI-Workshop-Woche Lernen -- Lehren -- Wissen -- Adaptivitat, No. 763, Seiten 84--92, Dortmund, Germany, 2001.

Software

Betreute Abschlussarbeiten

Mitgliedschaft

Auszeichnungen

Best Paper Award bei der GECCO 2007 für seine Arbeit Controlling Overfitting with Multi-Objective Support Vector Machines.