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ABSTRACT

Metadata-driven tools store control information in reposi-
tories that are outside of programs and applications. At
runtime, this control information (i.e., metadata) is read,
interpreted and dynamically bound into software execution.
If new requirements arise, metadata may be changed with-
out affecting the programs sharing it and without requiring
re-compilation of these programs. Repositories store meta-
data according to a metadata structure, called a metamodel.
M* is the metamodel used by Mining Mart, a system for sup-
porting data preprocessing for data mining. The aim of this
paper is twofold. First, we introduce M* (the MetaModel
of Mining Mart) and present some ideas underlying the de-
sign and implementation. Second, we discuss on the basis of
M* issues related to metadata-driven software: advantages
of building and using such software, its weaknesses and the
role it plays for metadata management, especially within
data warehousing environments.

1. INTRODUCTION

In information systems area, metadata (data about data) is
a general notion that captures all kind of information neces-
sary to support the management, query, consistent use and
understanding of data. In particular, metadata may be any
information related to schema definitions and configuration
specifications, physical storage, and access rights, but also
end-user-specific documentation, business concepts, termi-
nology, and details about user reports. The easy access and
the sharing of metadata may be crucial for facilitating the
building, administration, and use of information systems,
especially when considering complex environments with het-
erogeneus data sources and applications, like data warehouse
environments. Metadata have to be captured, stored and
consistently managed in order to be uniformly accessible by
users and software components. However, the metadata ex-
traction and capture may be a costly activity since metadata
may exist everywhere, not only in data dictionaries and cer-
tain tool repositories but also hidden in scripts, programs,
user manuals, and paper documents. In this context, the

Jorg-Uwe Kietz
Swiss Life
IT Research & Development
CH-8022 Zurich, Switzerland

Uwe.Kietz@swisslife.ch

Regina Zucker
Swiss Life
IT Research & Development
CH-8022 Zurich, Switzerland

Regina.Zuecker@swisslife.ch

I \ [

I Sources ! ! Data

} } } Warehouse
P —

_— |

Uoaasauree | |

[ ———

|

omasouee | | DWH

\ \

\

\

|

e
|

Metadata Management

\
| —
=—
| = | E
| source ETL DWH s BI Tools [
: 1 P
} Metadata }
| \
‘ \

Figure 1: A data warehousing environment

use of metadata-driven software for achieving certain tasks
may enforce, as a side-effect, the metadata capture.

Considering the data warehouse environment in Figure 1,
various metadata-driven tools and components are used, for
example for loading the data warehouse, for OLAP anal-
ysis and for data mining. The architecture of these tools
enforces to automatically store some of their metadata in
“open” repositories (i.e., with access interfaces). The repos-
itories available may be integrated and metadata manage-
ment may be consistently and uniformly performed across
the entire environment. In this case, the costly step of meta-
data capture and extraction may be optimized since meta-
data is available “for free” in these repositories.

The use of metadata-driven software is additionally benefi-
cial for enhancing reusability and flexibility of the system.
The reason is that system behavior may be simply changed
by updating the control information in the repository such
that programs and applications sharing the repository (i.e.,
the clients) are not affected when software behavior has to
be adapted to new requirements.

Repositories store metadata according to a metadata struc-
ture, called a metamodel. This paper introduces M* which
is the metamodel used by Mining Mart, a system for sup-
porting data preprocessing for data mining. Data mining
algorithms and tools have specific input requirements which



inherently demand preparation of data before their use (e.g.,
construction of new features derived from existing ones, data
segmentation, sampling and cleansing). Mining Mart pro-
poses a case-based reasoning approach that enables both
automatization of preprocessing and reusability of defined
preprocessing cases for data mining applications. For ful-
filling the purposes of Mining Mart, the special structure
of the metamodel plays a crucial role. We address general
aspects of M* only and give a brief overview of its classes
and corresponding associations. For a detailed description
of the Mining Mart system and metamodel see [5, 12, 16].

Metadata-driven software systems bring advantages both for
achieving their special aims “locally” and for supporting the
idea of metadata integration and management across enter-
prise. Starting with the example of Mining Mart, we discuss
aspects related to metadata integration and interoperability,
including the OMG efforts to the state of the art.

The remainder of this paper is organized as follows: the
next section introduces background information for under-
standing the purpose of Mining Mart system. Section 3
explains the notion of metadata and metadata-driven soft-
ware and presents the coarse architecture of Mining Mart
system. In Section 4 we present an overview of the meta-
model of the repository, M*, while Section 5 introduces some
of the classes of metamodel. Section 6 considers the meta-
data integration and the flexibility aspect of the metamodel
and Section 7 concludes the paper.

2. CONTEXT SETTING

Extracting information and knowledge from data is the pur-
pose of advanced technologies like data mining, data ware-
housing and information retrieval. Data mining aims at
detecting unknown patterns in data which are then used
for supporting business analysis and trend prediction. Even
though a significant amount of algorithms and tools is avail-
able on the market, data mining is a complex task. It needs
to be embedded in a comprehensive process, called knowl-
edge discovery in databases (KDD) [2]. Data has to be
first collected, selected, integrated, cleaned, and then pre-
processed in order to fullfil the input requirements of the
chosen data mining tool or algorithm. Preprocessing op-
erations include data transformations (e.g., data type con-
version), aggregation, scaling, discretization, segmentation,
sampling [5]. Practical experiences [10] have shown that
50-80% of the efforts for knowledge discovery are spent for
data preprocessing which is not only time-consuming but
also requires profound business, data mining and database
know-how.

In this context, the aim of the Mining Mart project! is to
provide a user-friendly environment for performing prepro-
cessing for data mining. To this end, a case-based reason-
ing framework has to be built [5]. The framework provides
a collection of cases and tools to design and adapt these
cases. A case consists of the description of a mining task
(e.g., selecting suitable addresses for a mailing action), the
data to be mined (i.e., the population), and a chain of pre-
processing operators to be applied to this population. Each

"http://www-ai.cs.uni-dortmund.de/FORSCHUNG/
PROJEKTE/MININGMART /index.eng.html

mining task involves a certain mining tool or algorithm with
special input requirements and thus the target of the pre-
processing chain is data prepared in accordance with these
requirements.

A defined case may be either directly executed or reused for
developing new ones: on the one hand, an end-user without
any data mining and database knowledge may retrieve one
of the prepared cases, make some simple adaption if required
(e.g., the selection of a different population) and initiate the
case execution. On the other hand, the highly skilled power-
user may use the framework for creating new cases. To this
end, he reuses building blocks (i.e., operators) or parts of
the chains available from the already defined cases. Fur-
thermore, the mining expert has the possibility to specify, if
necessary, new operators that do not currently exist.

SPSS Clementine Server® and Oracle Darwin® are two com-
mercial products for data preprocessing and data mining.
Like Mining Mart, their purpose is the automatization of the
KDD process. However, due to its special architecture, Min-
ing Mart additionally enforces flexibility and reusability of
software and allows the integration of additional tools that
(partly) generate the metadata required by preprocessing
operators. Other tool packages for data processing such as
those for data warehousing (e.g., Oracle Warehouse Builder)
are not suitable for preparing data for mining because they
do not support domain specific operators. These tools can
only perform general-purpose operators for data processing
such as filter, aggregation and join.

3. METADATA-DRIVEN SOFTWARE

The particularity of metadata-driven software is the cap-
ture of (some) control information in a repository, outside
of applications and programs. This control information de-
termines the behavior of applications and programs access-
ing the repository. Examples of control information are
static information (such as structure definitions, configu-
ration specifications) as well as some parts of application
logic: conditions (e.g., for dynamic SQL), methods, or pa-
rameters for stored procedures. At runtime, metadata is
read by a tool engine, is dynamically bound into the engine
software and the resulting application is then executed. In
other words, application semantics is simply distributed be-
tween the repository and the engine and is pieced together
at runtime only. Examples of metadata-driven software are
the new generation tool packages for data warehousing, e.g.,
for building the data warehouse (such as PowerCenter?, Ar-
dent®) or for using it (such as Cognos®, Business Objects”).

Metadata-driven software provides a framework consisting
of a repository structure and an engine which fits this struc-
ture. Users have to specify metadata instances (i.e., to fill
in the repository in accordance with this structure) in order
to achieve executable task-oriented applications.

http:/ /www.spss.com
3http://otn.oracle.com/products/datamining

“http:/ /www.informatica.com/
Shttp://www.ardentsoftware.com (acquired by Informix)
Shttp://www.cognos.com
"http://www.businessobjects.com
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Figure 2: Architecture of Mining Mart System

One of the main benefits expected (locally) from metadata-
driven software is reusability and flexzibility. On the one

hand, objects encapsulating control information are explicitely

stored in the repository (instead of being hidden in scripts
and programs) and may be reused in different contexts and
applications. On the other hand, the engines running on
top of the repository may be used for all metadata instances
fitting the given metadata structure. This results in im-
proved flexibility. The system may be extended and adapted
without difficulty since metadata instances may be easily
changed without affecting the clients (i.e., engines) sharing
it. Thus, maintenance is easier.

Nevertheless, the main advantage of using metadata-driven
software is when enterprise-wide metadata integration [11]
is considered. Metadata stored in various repositories (e.g.,
from various tools like those for building a data warehouse
respectively for using it) is integrated and linked with each
other such that it is consistenly and uniformly managed by
an enterprise-wide metadata management system. In this
way, links between metadata of various domains are estab-
lished and exploited and thus up-to-date system information
and documentation is available to all users and tools across
the enterprise (see Section 6.1).

Mining Mart follows a typical metadata-driven software ar-
chitecture, depicted in Figure 2. The core of the system
is the Repository which is implemented on top of a DBMS.
Case-specific information is stored in the repository, includ-
ing: the specification of the business problem to be solved
by the case, the specification of structures of the data to
be mined, the specification of processing operators to be
applied on the data with corresponding parameters, the de-
scription of the data mining tool for which the data has to
be prepared. At runtime, a metadata Compiler® reads these
metadata and uses them in order to generate code. When
executing this code, data is read from the data source (e.g.,
a data warehouse), is preprocessed and stored into the tar-
get system on which data mining will be applied later. The
Editor is used for manipulating metadata (insert, delete, up-
date) within the repository.

Note in Figure 2 that metadata may be produced and stored

8The implementation so far considers a code generator as
engine and not an interpreter as in the typical case presented
above in this section. However, the basic idea of the engine
remains the same.
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Figure 3: Coarse Description of the Metamodel (the
marked rectangle denotes the part of M* that con-
siders data representation)

into the repository by means of other components as well.
These components represent DM tools (data mining tools)
[5] which are used for determining operator parameters when
these cannot be manually specified. DM tools accompany
preprocessing operators and produce the metadata they re-
quire, i.e., the input parameters for them. A typical ex-
ample is the discretization operator. One of the input pa-
rameters is a discretization table which specifies for a given
attribute, value intervals and their corresponding discrete
values. During preprocessing, the discretization operator
checks whether an attribute value is in the range of given
intervals and substitutes it with the corresponding discrete
value of the input table. Since the manual specification of
an optimal discretization table is not always feasible, a DM
tool has to be used for discovering the best discretization
table by means of data analysis. Nevertheless, when opti-
mal parameter settings depend on data, their discovering
by means of DM tools is the prerequisite for automatic case
adaption and case reuse. For example, if discretization ta-
bles are automatically rendered by a tool, the same case
may be directly re-executed without designer intervention
for different populations.

The software components accessing the repository (Editor,
MD-Compiler, DM Tools) are “bound” to the given meta-
data structure which is conceptually described by a meta-
model. The next section introduces M*, the Mining Mart
metamodel.

4. PARTICULARITIES OF M*

Before considering some of the classes of M* in the next sec-
tion, we now give a coarse description of the metamodel and
explain the reasons for its design. The whole metamodel is
depicted in Figure 5 but we consider first the overview of
Figure 3. M* can be logically divided into two main parts,
one managing information with regard to data modelling and
the other one regarding case modelling. Each part is again
subdivided in accordance with the abstraction level into con-
ceptual and mining specific representation on the one hand
and implementation representation on the other hand. The
four parts resulting from this partition are tightly coupled
to each other:

- Data modelling part comprises classes for describing



the relational data representation®, which corresponds
to the implementation level and the conceptual data
representation which essentially deals with the entity-
relationship model enhanced with data mining specific
aspects (e.g., special data types, including Time, Or-
dinal, Nominal) and ontology knowledge of the appli-
cation domain.

- Case modelling part describes preprocessing operators
and the required controlling structures. This submodel
is again divided into the mining-specific description of
the case semantics (including for example operators
like feature selection and discretization) and their im-
plementation, e.g., function, stored procedure or SQL-
query. We call the two metamodel parts conceptual
case representation and representation of the case im-
plementation respectively.

On the one hand, partitioning M* in data vs. case mod-
elling representation is necessary for ensuring reusability:
the already specified operators may be used within cases
which have parameter values represented in the data mod-
elling part. Cases may be reused for different data sets (i.e.,
populations), represented within the data modeling part.
On the other hand, distinguishing between the two abstrac-
tion levels (conceptual vs. implementation) is required for
enhancing

- user-friendliness: End-users may manipulate familiar
elements on the conceptual level in order to config-
ure cases for execution. Regarding technical users, the
two main categories are case designer and case adapter.
The case designer accesses and manipulates only the el-
ements of the upper, conceptual level during his work.
Thus, the implementation is transparent to him: he
deals with mining-specific elements and constructs and
has not to be aware of how they are implemented (e.g.,
which DBMS is used, how functions are implemented).
In contrast, the case adapter is responsible for build-
ing the connection between the two levels when the
structure of the database changes.

- reusability: The conceptual, abstract level may be (re)used

independently on the actual implementation of the
database or of the operators. A relational data model
has been chosen for the implementation level so far.
That means, the input and output data will be stored
in a relational database system (we considered Oracle).
However, for the same specification on the conceptual
level, also other data models may be used for logical
representation.

- transportability (which is a sort of reusability as well):
The idea is to be able to reuse (parts of) the cases not
only in the same company (e.g., Swiss Life) and the
same branch (life insurance), but in other branches as
well. To this end, the representation of ontologies [3, 4]
has to be considered within the conceptual data repre-
sentation part. A common ontology basis has to exist
which is specialized by domain-specific ontologies.

9We have chosen the relational model but other data models
may be taken as well.

The four parts of M* are linked to each other and con-
nections between metadata instances are often navigable in
both directions such that the required information may be
rapidly accessed. Note that the consideration of the case im-
plementation submodel (see the right lower part of Figure
3) is optional. Since this part represents detailed informa-
tion related to the implementation of operators and cases, it
is necessary only if a step-by-step tracing of data transfor-
mations is intended. This could be desired for supporting
understanding, debugging and maintenance of code. Other-
wise, if implementation information has to be stored with a
coarse granularity only, the two case levels, conceptual case
and implementation case representation are merged.

5. DESCRIPTION OF M*

M* combines ideas from two existing standards for meta-
data representation and exchange in the area of data ware-
housing (OIM and CWM) [13]. They are drastically simpli-
fied but extended with data mining and preprocessing ele-
ments to make the metamodel domain-specific. Since both
standards have the metamodel of UML'" as their core, M*
uses some UML classes as foundation as well. That means,
UML is not only used as (graphical) language for describing
M* in terms of class diagrams, but it is also used as core
metamodel which is extended within M*. In particular, the
classes of UML specialized in M* are Class, Attribute and
DataType (see Figure 5).

For space reasons, we only briefly present some of the classes
of M* while a more detailed presentation is available else-
where [12]. The specific impact and contribution of the Min-
ing Mart system as well as a use case for M* have been al-
ready introduced and extensively discussed in previous work
[6, 16]. In the following, we preserve the four part distinc-
tion (data/case modelling vs. conceptual/implementation
representation) and address classes of each part in turn.

5.1 Conceptual Data Representation

Due to the significant role it plays for user-friendliness and
reusability, the conceptual layer is the most important part
for the data representation in M*. Tt is essentially Entity-
Relationship (ER) data representation enhanced with de-
scription logic (DL) [1] and ontology representation (3, 4],
extended with data mining specific features. The main two
classes are Concept and Relationship. A Concept expresses
a “thing” in the application domain while a Relationship
expresses the connection existing between two concepts. A
Concept (e.g., Customer, Partner) may have subconcepts
(e.g., Partner between 30-40 years or Mailed Person), that
means there are IsA relationships between Concepts (see
Figure 4). Application-specific Relationships exist as well
(e.g., Buys, Owns Insurance, Owns Insurance A); they are
binary Relationships such as in DL, e.g., Concept Customer
Buys Concept Product, Concept Partner is in Relationship
Owns Insurance with Concept Insurance Contract. Rela-
tionships may be bound to each other with IsA associations.

As shown in Figure 4, the three perspectives covered in the
conceptual data representation are:

Ohttp://www.omg.org/technology/documents/formal/
unified_modeling_language.htm
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e the ontology level contains general business ontologies;
is useful for reuse of cases in different companies; Mailed
Person IsA Partner which in turn IsA Customer, Taz-
priviledged Contract IsA Insurance Contract and In-
surance Contract IsA Product; IsA applies also for Re-
lationships. Customer and Product are included in the
basis ontology which should be common to many com-
panies.

e the database schema level represents the conceptual
schema of the database; this is mapped to the im-
plemented schema. In Figure 4 this level corresponds
to Partner, Insurance Contract and Owns Insurance
which have direct correspondents on the implementa-
tion level in terms of relational tables. So far, only
the relational model is considered on the implemen-
tation level in M* (see Section 5.2) but other data
models may be considered as well. Note that the ba-
sis ontology (Customer, Product, Buys) has no direct
correspondence on the implementation level.

e the mining data level describes data sets needed for
and produced during preprocessing for mining; it con-
tains also mining specific data types. In Figure 4 these
are the Mailed Persons, Taz-priviledged contracts, and
the Relationship Owns Insurance A. These are subcon-
cepts and subrelationships of the elements above and
are directly used for configuring or designing Mining
Mart cases. They correspond on the implementation
level to views or snapshots on tables.

The distinction between the three levels (ontology, database
and mining specific) is implicitly represented in the instances
of Concept and Relationship. The conceptual data repre-
sentation of the metamodel in Figure 5 contains only the
classes Concept and Relationship and the associations be-
tween them may be illustrated. There are two associations,
FromConcept and ToConcept, which link two Concepts with
a Relationship. For example, Concept Partner is in Rela-
tionship HasPartnerRole to the Concept Contract. That
means, Partner is associated by means of FromConcept to
HasPartnerRole and Contract is associated by means of To-
Concept to Relationship HasPartnerRole. For each instance
of FromConcept association an instance of ToConcept as-
sociation has to exist and conversely. RoleRestriction is a
special class related to the FromConcept and ToConcept as-
sociations. It expresses the constraints “all, atleast, atmost”

known from description logic for the number of data in-
stances for which a relationship is valid (for example, the
customer “Maier” can own at most 3 insurance contracts
and at least one).

Considering again Figure 5, another important class of the
conceptual representation is FeatureAttribute which contain
features of Concepts. It may be either a BaseAtiribute or
a MultiColumnFeature. A MultiColumnFeature consists of
a set of BaseAttributes. Note that a MultiColumnFeature
has no data type, only a BaseAttribute has one. As the
name reflects, a DomainDataType class represents the do-
main specific data type of BaseAttribute. In particular,
instances of DomainDataType are the data types relevant
for mining: Ordinal (values are ordered), Scalar (distance
between two values makes sense), Binary (has only two val-
ues, 0 and 1), Time, KeyAttribute, Spatial, etc. Generally,
note that constraints have to be implemented for these data
types. In particular, operators making sense for each of the
domain-specific data types have to be defined and process-
ing information for them is required. For example, “<” and
“<=" make sense for ordinal attributes only. In contrast,
“=" makes sense for binary and categorial attributes only.
Distance and operators such as +, - are applied to scalar
attributes. Logical operators are applicable to binary at-
tributes.

The class Value is needed within arithmetic expressions and
conditions used in operators (which for example have pa-
rameters that are constants and these constants have to be
expressed as Values). Value is part of UserInput. This ag-
gregation is not additionally depicted in the figure since su-
perclasses of Value and UserInput (i.e., Attribute and Class)
are anyway linked by an aggregation.

5.2 Relational Data Representation

This submodel comprises classes for representing data struc-
tures that use the relational data model. The main classes
are: Column, ColumnSet (with its subclasses Table, View,
Snapshot) and Key. A ColumnSet consists of a list of Col-
umns. An instance of the class Column defines a set of values
in a result set, e.g., a view or a table. All values of the same
Column are of the same data type. A value from a Column
is the smallest unit of data that can be selected from a ta-
ble or view and the smallest unit of data to be updated.
The PrimaryKey and ForeignKey classes represent the cor-
responding notions known from the relational model. The
class Key is the superclass of PrimaryKey and ForeignKey
and is an abstract class.

Table, View, Snapshot represent the analogous data struc-
tures known from relational database management systems
(e.g., Oracle). Compared to their superclass ColumnSet,
these classes have additional attributes containing informa-
tion that caracterize them, e.g, the filtering condition (the
WHERE part of the SQL- query used for view definition)
or attributes for updating as howRefresh for Snapshots (i.e.,
either FAST or COMPLETE) and refreshInterval.

Preprocessing specific classes are those containing statistical
information necessary during data mining (ColumnStatistics
and ColumnSetStatistics). This information includes statis-
tics of the values for each Column (e.g., maximal and min-
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imal value, average) but also the distribution blocks neces-
sary for further preprocessing (if such information is avail-
able). Distribution blocks contain values grouped in accor-
dance with some criteria. Mining specific types play an im-
portant role when building distribution blocks: for nomi-
nal attributes, every value is counted and those with the
same weight are grouped. For ordinal attributes, values are
grouped according to certain intervals (e.g., 1000 intervals
of equal width).

Regarding the connections between the two levels, concep-
tual and implementation representation, following constraints
apply: each ColumnSet has a corresponding Concept or Re-
lationship but not each Concept or Relationship points to a
ColumnSet (e.g., the basis ontology has no correspondant
on the database side). There are ColumnSets which do not
point to any Concept but to a Relationship - this is the case
when the Relationship has the multiplicity m:n, then it will
be implemented as a separate Table) and 2 ForeignKeys. Re-
lationships with multiplicity 1:m or 1:1 will be implemented
as ForeignKeys. Each Column corresponds to a BaseAt-
tribute at the conceptual level.

5.3 Conceptual Case Representation

Classes in this submodel manage metadata for configuring
cases, preprocessing operators and metadata for connecting
these operators. A Case consists of a list of Steps and each
step embeds an Operator. Note that a case has to contain an
attribute documentation which describes by means of nat-
ural language what the case does. This documentation is
important for retrieving the appropriate case when it has to
be re-executed. Steps are part of cases and they make sense
only in connection with a case. Each Step has to be linked to
a set of predecessors and successors which are Steps as well.
In this way, parallelisation of operator execution is possible
because no fixed sequence is enforced, only dependency is
specified; the Operator may be executed only if its predeces-
sors have been executed. The output of a Step is needed as
the input to the next one. Instances of class Operator are
all the special preprocessing operators required for building

a case [5], including FeatureConstruction, FeatureSelection,
RowSelection, Segmentation. Each Operator instance points
to an EzecutionElement on the implementation level.

Operators have Parameters which are instances of Concepts,
Relationships, FeatureAttributes or Values (for layout rea-
sons, not all these semantics are represented in Figure 5).
Cases have as parameters, among others, the population
(i.e., the base concept) and the target attribute which need
to be specified at the conceptual level. The result of the
preprocessing chain is usually a (sub)concept (of the base
concept) and one or some FeatureAttributes on which the
actual data mining has to be finally performed. Parameter
instances may be also updated at runtime (in case they are
generated by DM-tools).

5.4 Representation of Case Implementation

The representation of case implementation contains informa-
tions needed for algorithms implementing the preprocessing
operators. It also contains the links to the data elements
which are the input and output for the EzecutionElements
implementing the operators. Recall that each operator in-
stance on the conceptual level corresponds to an instance
of an EzecutionElement. This submodel is necessary only
if a detailed tracing of data transformations is intended. In
particular, this submodel makes sense only if the aggrega-
tion between the TransformationGroup and Transformation
is used (see Figure 5); in this case, the Transformation-
Group corresponding to an Operator is broken in smaller
pieces of code (e.g. functions or stored procedures) and
each piece represents a Transformation. Each Transforma-
tion has as input and output a DataObject which is either
a ColumnSet, Column or a Value. Note that the considera-
tion of case implementation representation causes a prolifer-
ation of ColumnSets and Columns because information for
(temporary) Columns or ColumnSets produced by any small
Transformation has to be stored in the metadata reposi-
tory. This information may be useful for maintenance but
the developer has to be aware of what it means to collect
and store it. In contrast, if each Operator is realized by a



single, atomic EzecutionElement (be it a StoredProcedure,
Function or SQL-Query), the conceptual and implementa-
tion case levels may be merged; in this case, the Operator can
be extended with attributes which store implementation in-
formation such as functionToCall containing the invokation
of the function to be called.

6. DISCUSSION

We used the context of Mining Mart to present a typical
example of a metadata-driven tool and the corresponding
metamodel. In the following, we discuss some aspects re-
lated to metadata. First, the importance of metadata driven
tools to enterprise-wide management and integration is ad-
dressed. Then, we point out some of the aspects related to
the flexibility of metadata-driven software.

6.1 Metadata Management and Integration
Management of metadata has been identified already some
years ago as a significant problem of both research [14, 15]
and practice [6, 7] of data warehousing. Metadata is cap-
tured, generated and managed in order to be used in one of
two ways

e as consistent documentation about data stores, pro-
cesses and applications existing in an enterprise. It
is needed by users (i.e., end-users, system adminis-
trators, and application developers) to achieve their
tasks. That means, metadata is explicitly managed to
be available to human beeings.

e as control information for metadata-driven tools. Meta-
data are transparently stored in the repository belong-
ing to the tool and is thus implicitly managed for
achieving the certain purpose of the tool (like data
preprocessing in Mining Mart).

The separate management of metadata in various reposito-
ries with various aims (either for documentation purposes
or for special tool purposes) brings advantages only locally.
The maximal benefit is extracted from metadata if all repos-
itories with metadata are integrated. Integration ensures
consistency of metadata across the enterprise, promotes the
wide access to all metadata available and supports their ac-
tuality. Metadata elements are inherently connected to each
other allowing navigation, impact analysis (evaluation of
consequences of potential changes before they are executed)
and data tracking (reconstruction of the path followed by
the data during processing). For example, data tracking is
required in a data warehousing environment for figures in re-
ports generated on the basis of data warehouse. Answers to
questions like “which fields of which data sources have been
used for calculating these figures” can be given only in an in-
tegrated metadata management system where all metadata
(including those originating from extraction transformation,
loading, data warehouse and OLAP) are consistently and
uniformly managed and thus all links between related meta-
data elements are available as well.

Metadata consistency and actuality across the enterprise
may be at least partially ensured if interoperability between
repositories is supported. In this way, information update
may follow automatically. For interoperability, bi-directional

tool-specific interfaces and a common interchange represen-
tation format has to be adopted and used when data is im-
ported or exported between repositories and/or tools. For
both, interoperability and integration, the main problem is
actually to agree on a common metamodel. In this case,
repositories to be integrated or to interoperate have to map
their metadata schema to this common metamodel. One
step in this direction has been made with the standard for
metadata representation and exchange recently proposed by
OMG, called Common Warehouse Metamodel (CWM) [8].

If from the beginning repositories (belonging to commercial
products or internal software) are designed with a schema
compliant with a standard metamodel, then both integra-
tion and interoperability are straightforward. The meta-
model of Mining Mart system is not entirely compliant with
CWM but it has common parts with it (in particular the
relational submodel and the transformation submodel of
CWM). Also the fact that M* is based on fundamental
classes of UML is a positive aspect for a potential integration
based on OMG standards. Because of its application specific
scope, M* contains specialized classes for data preprocessing
but the general classes which are relevant for interoperability
may be easily exchanged.

6.2 Flexibility Aspects

Adaptability and flexibility have ever been goals of software
development which are hard to achieve. The idea is to de-
sign a system that is able to easily adapt to new business
requirements and to easily extend (ideally at runtime) with
new functionality. There are various levels in achieving these
goals. The first level is to replace hard-coded logic with easy
configurable software components which fetch their param-
eters from a storage place where these parameters may be
edited at runtime. Metadata-driven tools satisfy these re-
quirements.

To a higher extent, flexibility and adaptability may be achieved
by means of active (or adaptive) object-models'* They sup-
port the extension of the system model at runtime. This
requires to persistently store the object model outside the
application (e.g, in a database system) and interpret it at
runtime only. In this way, the object model may be easily
changed (usually by means of special purpose user inter-
faces) and the changes immediately result in a modified be-
havior. In this context, the long term vision of the proposed
model-driven architecture [9] of OMG aims at developing
software capable of automatic discovery of properties of its
environment and adaption of that environment by various
means, including dynamic modification of its own behaviour.
However, these goals are not always easy to achieve. Sys-
tems become hard to understand and maintain and they
can have poor performance also due to the steady access to
a database to get the necessary information.

In order to support extensibility of the system, preprocessing-
specific operators are specified as instances of the general
class Operator in the Mining Mart repository. Operator in-
stances are the definition of preprocessing operators such
as FeatureSelection, FeatureConstruction. The individual
parameter values for each operator call are stored in the

"http:/ /www.joeyoder.com/Research/metadata



class Parameter. This solution allows the easy manipula-
tion (e.g., insert, update) of both operator definitions and
their case specific settings. The definition of constraints and
assertions applying to each of the operators, are “bound” to
every Operator instance separately (for example, constraints
on the data type of the input). Constraint checking is im-
plemented in stored procedures. Procedures are called, that
means, constraint checking is done before a parameter in-
stance has to be stored during case editing. Constraints
spanning over more than one operator (e.g., concerning the
order of execution) have to be hard-coded into the editor
respectively compiler and this brings inherently limitations
to the flexibility. Note that flexibility and user-friendliness
would be improved if a declarative language is used for spec-
ifying constraints, instead of “hiding” constraint checking in
stored procedures and SQL functions.

To summarize, in the actual stage of software development,
the consideration of improving flexibility through an ade-
quate constraint and assertion handling is still in its incip-
ient phase. On the other hand, the endeavor to maximal
flexibility raises problems for performance and, depending
on the purpose, the latter may be more important.

7. CONCLUSION

This paper presents a metamodel design for a metadata-
driven software package performing preprocessing for data
mining. Using metadata-driven software is particularly ben-

eficial if enterprise-wide management of metadata is planned.

In this way, metadata available in repositories may be eas-
ily used for integration and this is beneficial for consistency
of metadata, uniform and easy access to all information,
impact analysis and data tracking. Due to its special de-
sign, the metamodel of Mining Mart system fullfills the re-
quirements of automatization of data preprocessing, user-
friendliness and reusability. However, the problems of flex-
ibility and adaptability could be only partially solved with
the actual solution.
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