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Zusammenfassung

In diesem Aufsatz wird die Anwendung einer neuen Klasse von Lern-
verfahren, namlich die der induktiven logischen Programmierung (ILP),
auf Probleme der Navigation mobiler Roboter dargestellt. Aus klassifizier-
ten Daten von Trainingsfahrten eines mobilen Roboters werden in einer
Folge von Lernldufen ausfithrbare Begriffsdefinitionen gelernt. Diese ope-
rationalen Begriffe verbinden Objekterkennung Handlungen (Bewegun-
gen) des Roboters.

In this paper, the application of inductive logic programming to na-
vigation of a mobile robot is described. A series of learning passes uses
classified data from training missions of the mobile robot in order to learn
operational concepts. Operational concepts characterize objects and ac-
tions such that the robot is capable of recognizing the object and acting
appropriately.

1 Lernende Roboter

In diesem Aufsatz wird die Anwendung einer neuen Klasse von Lernver-
fahren, ndmlich die der induktiven logischen Programmierung (ILP), auf
Probleme der Navigation mobiler Roboter dargestellt. Diese Kombination
von Lernmethode und Anwendungsfeld wird zunachst iiberraschen, war
es doch bisher iiblich, zur Verbesserung der Leistung von Robotern nume-
rische Lernverfahren (neuronale Netze, Verstirkungslernen) einzusetzen.
Die so erzielten Erfolge sollen auch nicht geschmalert werden. Es gibt aber
einige Griinde, die dafiir sprechen, auch noch andere, neue Verfahren zu
versuchen:

e Fir Benutzer von Robotern sind die auf niedriger konzeptueller
Ebene angesiedelten Reprasentationen schwer zu verstehen. Die
Kommunikation gerade mit mobilen Service-Robotern erfordert eine
dem Menschen angepafite Benutzer— Schnittstelle.

o Wenn ein Weltmodell in Form einer Karte vorliegt, kénnen graphi-
sche Benutzerschnittstellen mit direkter Manipulation gut eingesetzt
werden. Die Erstellung solcher Karten ist aber aufwendig und fihrt



zu langen Einrichtungszeiten, wenn ein Roboter in neuer Umgebung
eingesetzt werden soll.

o Numerische Reprasentationen sind iibergenau. Abweichungen miissen
mit Verfahren wie etwa der Fuzzy Logic behandelt werden. Fiir die
Objekterkennung sollte aber nur die Struktur von Merkmalen eine
Rolle spielen, nicht jedoch der exakte Zahlenwert.

o Numerische Lernverfahren kénnen Hintergrundwissen nur auf sehr
indirekte Weise einbeziehen. So mufi bei neuronalen Netzen etwa
durch geschickte Wahl der Topologie, beim Verstarkungslernen durch
geschickte Wahl der Verstarkungsfunktion implizit Hintergrundwis-
sen beriicksichtigt werden.

Wiahrend einerseits (numerische) Verfahren fiir das Erlernen von Refle-
xen und andererseits (logikbasierte) Verfahren fiir das Erlernen von ab-
strakten Begriffen zur Verfiigung stehen, ist die Verbindung der Ebenen
noch zu wenig untersucht. Wir wollten den Zusammenhang zwischen der
Ebene der Reflexe und der begrifflichen Ebene untersuchen, so dafi Be-
griffe anhand konkreter Erfahrung (Wahrnehmung und Handlung in der
natiirlichen Umwelt) erworben und dort angewandt werden. Es geht um
die Frage, wie Begriffe in der Umwelt verankert sind (Stichwort: sym-
bol grounding). Um uns diesem Thema anzunihern, haben wir konkrete
Fragen bearbeitet *:

o Ist es moglich, iber die Ebene der Reflexe hinauszugehen und eine
Hierarchie von immer abstrakteren Verhaltensweisen eines mobi-
len Roboters zu entwickeln, wobei jede Verhaltensweise sowohl die
Wahrnehmungs- wie auch die Handlungsseite beriicksichtigt?

o Konnen wissensbasierte Verfahren eingesetzt werden und dennoch
die Realzeitanforderungen erfiillt werden?

e Sind Lernverfahren, die eine eingeschrankte Pradikatenlogik verwen-
den, in der Robotik iiberhaupt einsetzbar?

Stellen wir uns einen auf Biiroumgebungen spezialisierten mobilen Robo-
ter vor. Er soll etwa das folgende Kommando ausfiithren kénnen:

fahre durch die Tiir, dann links bis zum Schrank, stop.

Dazu sollen nicht — wie bisher iiblich — die genauen Koordinaten fiir
Winde, Tiiren, Tische bekannt sein miissen. Der Begriff der Tiir soll
nicht als ein Durchgang bestimmter Breite und Tiefe an einer bestimm-
ten Stelle im Raum reprisentiert sein, sondern als ein operationaler Be-
griff, d.h. ein Konzept, das Handlung und Wahrnehmung integriert. Der
operationale Begriff der Tiir ist verankert in den Wahrnehmungs- und
Handlungsmoglichkeiten des Roboters [Klingspor und Morik, 1995]. So
ist jeder Durchgang fiir den Roboter eine Tiir, wenn er sich hindurchbe-
wegen kann. Fin Wahrnehmungsmuster signalisiert die Moglichkeit, daf§
an dem durch die Sensoren angemessenen Ort eine Tiir ist. Der Erfolg der
Handlung, sich durch die Tir zu bewegen, verifiziert, dafl an der Stelle

1Die hier vorgestellten Verfahren wurden im Rahmen des ESPRIT Projektes BLearn II
entwickelt.



eine Tir war. Der operationale Begriff ist ausfithrbar bei Tiiren beliebiger
Abmessungen in verschiedensten Umgebungen.

2 Induktive logische Programmierung

Lernverfahren fiir relationales Wissen werden heute unter dem Begriff der
induktiven logischen Programmierung zusammengefafit. Diese Lernver-
fahren sind obendrein in der Lage, Hintergrundwissen zu beriicksichtigen.
Ein einfaches Beispiel fiir Sachverhalte, die Hintergrundwissen bendtigen
und sich nicht ohne Relationen ausdriicken lassen, sind Verwandschafts-
beziehungen. Gegeben fiir den Begnff Tochter:

die positiven Beispiele | die negativen Beispiele
tochter(mary, ann) —tochter(tom,ann)
tochter(eve, tom) —tochter(eve, ann)

Ein Lernverfahren, das nur Attribut-Werte bearbeiten kann, kann gar
nicht aus diesen Beispielen lernen. FEin Lernverfahren, das eine einge-
schrinkte Pridikatenlogik als Formalismus fiir Hypothesen bearbeiten
kann, kann aus diesen Beispielen allein auch noch keine verniinftige Re-
gelhaftigkeit finden. Es fehlen Angaben. Wird nun als Hintergrundwissen
noch angegeben

elter(tom, eve) wetblich(eve)  elter(tom,ian)

elter(ann, mary) weiblich(ann) elter(ann,tom) weiblich(mary)

so kann die Regel gelernt werden:

| elter(Y, X), wetbl(X) — tochter(X,Y) |

Die induktive logische Programmierung geht iiber die Méglichkeiten
der klassischen Verfahren (Induktion von Entscheidungsbiaumen, neuro-
nale Netze, conceptual clustering) hinaus.

e Wihrend die klassischen Verfahren nur Attribut-Werte verarbeiten
konnen, sind Verfahren der induktiven logischen Programmierung in
der Lage, Formeln einer eingeschrankten Pradikatenlogik als Hypo-
thesen auszugeben, zum Beispiel Prolog-Klauseln.

o Wihrend die klassischen Verfahren nur Beispiele als Eingabe neh-
men konnen, sind die Verfahren der induktiven logischen Program-
mierung in der Lage, Hintergrundwissen zu beriicksichtigen.



Die Schwierigkeit des Lernens hingt von dem Formalismus fiir die Hy-
pothesensprache ab. Gordon Plotkin [Plotkin, 1971] hat gezeigt, daff ohne
Hintergrundwissen in Pradikatenlogik gelernt werden kann. Allerdings ist
die Generalisierung von n Formeln der Lange ! im schlimmsten Fall ™ lang.
Das Lernproblem mit Hypothesen in Form von Klauseln und Hintergrund-
wissen in Form von variablenfreien Fakten ist in exponentieller Zeit 16sbar.
Die Komplexitiat der Lernaufgabe mufl also eingeschriankt werden, wenn
wir wollen, dafi das Lernverfahren auch bei vielen Beispielen in vertretba-
rer Zeit zum Ergebnis kommt. Die Forschung im Bereich der induktiven
logischen Programmierung beschaftigt sich damit, wie die Pradikatenlogik
so eingeschrankt werden kann, daf} sie immer noch das ausdriicken kann,
was wir lernen wollen, aber das Lernverfahren dennoch ein Ergebnis in
polynomiell beschriankter Zeit findet (siehe [Kietz und Dzeroski, 1994] fiir
einen Uberblick).

3 Lernen operationaler Begriffe

Im Rahmen des Projektes BLearn II (ESPRIT 7274) [Kaiser et al., 1995]
wurden nun aus den Sensormessungen und Bewegungsdaten wahrend eini-
ger Trainingsfahrten eines mobilen Roboters entlang und durch eine Thir
operationale Begriffe gelernt. Dabei wird schrittweise von den numeri-
schen Werten der Sensor- und Bewegungsdaten abstrahiert.

Im ersten Schritt werden die Abstandsmessungen der 24 Ultraschall-
sensoren inkrementell in Zeitintervalle aufgeteilt, wihrend derer die Mef3-
punkte bei gleicher Orientierung eines Sensors dieselbe Tendenz aufweisen
(steigend, fallend, gleichbleibend, plotzlich ansteigend, ...) Diese Umset-
zung von (numerischen) Signalen in Prolog-Fakten der Form

steigend(Fahrt, Orientierung, Sensor, Anfang, Ende) 2

abstrahiert von geringfiigigen Abweichungen. Dennoch sind die Daten
auf dieser Abstraktionsebene noch sehr verrauscht.

Im zweiten Schritt werden auf immer abstrakterer Ebene Regeln ge-
lernt. Es wird also eine Folge von Lernlaufen gestartet. Fakten, die die
Messungen aller Sensoren wahrend verschiedener Trainingsfahrten wieder-
geben, werden fiir das Lernen klassifiziert. Es wird angegeben, in welchem
Zeitintervall der Roboter an einem Objekt vorbel- oder durch eine Tiir
hindurchgefahren ist. Es werden nun anhand der klassifizierten Daten
Regeln gelernt, die fiir jeweils einen Sensor und darauf aufbauend dann
fiir Sensorgruppen charakteristische Wahrnehmungsmuster bei einer ob-
jektbezogenen Bewegung ausdriicken. Diese Regeln stellen nur noch die
Beziehungen zwischen Zeitintervallen dar, nicht jedoch die konkrete Dauer
der Messung eines Musters. Fiir jedes Sensormuster werden verschiedene
Regeln gelernt, so dafl unterschiedliche Situationen abgedeckt sind.

gleich(Fahrt, Orientierung, Sensor,T1, T2, Gradientl) &

?Das Pradikat gibt die Abstandsmessungen in einem Zeitintervall an. Die Argumente
geben die Fahrtnummer, die Orientierung des Sensors, den Sensor und das Zeitintervall mit
Anfangs- und Endzeitpunkt an.



ploetz hoch(Fahrt, Orientierung, Sensor, T2, T3, Gradient2) &

gleich(Fahrt, Orientierung, Sensor,T3, T4, Gradient3)

— s_sprung(Fahrt, Sensor, T1, T4, parallel)

Auf der Ebene der Sensorgruppen wird nur das ausgedriickt, was die
Mehrheit der Sensoren einer Klasse gemessen haben ®. Dadurch ergibt
sich ein Filter, der die Daten bereinigt.

s_sprung (Fahrt, 81, T1, T2, parallel) &

sklasse(Fahrt, S1, TO, T7, rechts_seite) &

s_sprung (Fahrt, 52, T3, T4, parallel) &

sklasse(Fahrt, S2, TO, T7, rechts_seite) &

s_sprung (Fahrt, 83, T5, T6, parallel) &

sklasse(Fahrt, S3, TO, T7, rechts_seite) &

succ(T1, T3) & succ(T3, T5) & TO < T1 & T6 < T7

— sg_sprung(Fahrt, Tl, T6,rechts_seite, parallel)

Das Pradikat succ aus dem Hintergrundwissen gibt Nachfolger an,
etwa T1 + 1 = T3 oder T1 + 2 = T3. Auf der nidchsten Abstraktions-
ebene werden komplexe Wahrnehmungs- und Handlungsmuster gelernt:
4

sg-sprung(Fahrt,T1,T2,rechts seite,parallel) &

sg-sprung(Fahrt,T1,T2,1links seite,parallel)

— durch_tuer(Fahrt, T1, T2, parallel)

So wird ausgedriickt, dafi Sensoren auf der rechten und der linken Seite
gleichzeitig den Tiirrahmen anmessen, wenn der Roboter weitgehend ge-
rade durch die Tiir fihrt (parallel). Eine entsprechende Regel fiir zeit-
verschobene Wahrnehmungen auf den Seiten, also die schrige Durchfahrt,
wurde ebenfalls gelernt.

Dann werden Regeln der folgenden Art gelernt:

fahr(Fahrt, T1,T2, Tempo, BewegRichtung) &

wahrnehm (Fahrt,T1,T2,Wahrnehm, WahrnehmRichtung, Seite, parallel)

— parallel fahr(Fahrt, T1, T2, Tempo, BewegRichtung,

Wahrnehm, WahrnehmRichtung)

Die Regel notiert in kompakter Form, dafi wahrend eines Zeitinter-
valls (T1 - T2) eine kontinuierliche Bewegung und Wahrnehmung (z.B.
durch_tuer) erfolgt ist, so daB beides zusammengefafit werden kann. Die
Regeln auf dieser Abstraktionsebene sind bereits zu 78% korrekt.

Schliefilich werden operationale Begriffe gelernt:

steh(Fahrt, T1, T2, vor_tuer, WarnehmRichtung, schmal seite, VorW)
&

parallel fahr(Fahrt, T2, T3, Tempo, WarnehmRichtung, durch_tuer,
rechts links) &

steh(Fahrt, T3, T4, vor_tuer, hinten, schmal seite, durch_tuer)

— fahr_durch_tuer(Fahrt, T1, T4)

Durch die Unifikation von Wahrnehmungsrichtung vor der Handlung
(steh) und der Bewegungsrichtung bei der Handlung (parallel_fahr) ist

3Eine Klasse wird durch den Ort, dan dem sich der Sensor am Roboter findet, gebildet.
4Wir folgen der Prolog-Konvention und driicken Variable durch Grofbuchstaben, konstante
Werte durch Kleinbuchstaben aus.



das Geradeaus- Fahren ausgedriickt. Die aktuelle Wahrnehmungsrichtung
wird als vorn interpretiert. Die Wahrnehmung wahrend der Handlung ist
das Muster durch_tuer. °

Die Wahrnehmung nach der Handlung ist das Muster vor_tuer, dies-
mal jedoch von den hinteren Sensoren gemessen. Als hinten werden die
den Sensoren der ersten stand-Handlung gegeniiberliegenden Sensoren
betrachtet. Die kompakten Regeln fiir operationale Begriffe sind 100%
korrekt.

Die Folge von Lernldufen produziert eine Menge von Regeln. Zum Te-
sten werden dann neue, ebenfalls vom Benutzer klassifizierte Fahrtdaten
(Handlungs- und Wahrnehmungsdaten) eingegeben und in Fakten umge-
wandelt, aus denen dann per Vorwirtsinferenz abgeleitet wird, welches
Objekt in welcher Bewegung zu erkennen ist. In dieser Weise werden die
Korrektheitsangaben der vorigen Absatze hergeleitet. Wichtiger als die
Korrektheit ist jedoch, daff die gelernten Regeln in ganz unterschiedlichen
Umgebungen anwendbar sind. Was anhand Fahrten entlang oder durch
eine Tir gelernt wurde, ist dafiir geeignet, vollig unterschiedliche Tiiren
zu erkennen. Diese Flexibilitdt lohnt den Lernaufwand und auch eine
Nachbesserung per Hand.

Entgegen der gangigen Meinung, fiir Robotik miisse man numerische
Verfahren anwenden, ist die induktive logische Programmierung sehr wohl
dafiir geeignet, fiir Robotikanwendungen hdhere Konzepte zu lernen. An-
ders herum formuliert: mithilfe der induktiven logischen Programmierung
konnen Begriffe in der realen Welt verankert werden.

4 Anwenden operationaler Begriffe

Da das Lernen off-line erfolgt, kann es ruhig ohne enge Zeitvorgaben arbei-
ten. Die Verwendung des gelernten Wissens erfordert allerdings, dafi die
Realzeitanforderungen eingehalten werden. Deshalb werden die gelernten
Regeln in dreierlei Hinsicht optimiert:

o Die Regeln fir die Wahrnehmungsmuster eines Sensors werden in
Prafixbaume iberfihrt. Aktuelle Sensormessungen setzen oder ver-
schieben Marker in diesen Biaumen. Erreicht ein Marker ein Blatt,
so ist das betreffende Wahrnehmungsmuster erkannt [Rieger, 1996].

e Die Daten aller Sensoren werden parallel verarbeitet. Parallel wer-
den die numerischen Werte in Fakten umgewandelt und diese dann
mithilfe des Marker- Passings zu Wahrnehmungsmustern zusammen-
gefafit.

o Die Inferenz hoherer Begriffe wird ebenenweise durchgefithrt (von
Sensormustern zu Sensorgruppenmustern, von diesen zu komplexen
Wahrnehmungs- Handlungsmustern und schliefilich zu operationalen
Begriffen), so daff die jeweilige Inferenztiefe stets nur 1 ist.

5Eine Regel iiberfithrt den Begriff durch_tuer in ein Argument des Pradikats wahrnehm:
durch_tuer(Fahrt, T1, T2,WarnehmRichtung, Seite, Orientierung)
— wahrnehm(Fahrt,T1,T2,durch_tuer, WarnehmRichtung, Seite, Orientierung)



Eine einfache deduktive Planungskomponente erstellt einen groben Hand-
lungsplan, fiir den die Basishandlungen des Roboters durch Riickwartsin-
ferenz ermittelt werden. Der Befehl fahre durch die Tir wird iiberfithrt
in die Sequenz finde eine Tir und fahre durch die Tir. Die Regeln fir
das Finden einer Tiir sind nicht gelernt. Sie verwenden aber gelernte Be-
griffe wie entlang tuer, entlang wand. Im wesentlichen wird eine Wand
gesucht, an ihr entlanggefahren bis eine Ecke oder eine Tiir erkannt wird.
In einer Ecke wird so gedreht, dafl der anstofienden Wand gefolgt werden
kann. Wird eine Tiir erkannt (entlang_tuer), so fihrt der Roboter zuriick
und dreht sich, bis er vor_tuer wahrnimmt und steht dann. Damit ist die
erste Handlung des hier als Beispiel dargestellten operationale Begriffs der
Fahrt durch die Tiir wahr. Die nichste Handlung wird gemaf der gelern-
ten Regeln fiir parallel fahr ausgefiihrt, bis die nun hinteren Sensoren
das Muster vor_tuer wahrnehmen. Dann hélt der Roboter an. Diese Pla-
nungskomponente ist noch simpel. Fiir unsere Machbarkeitsstudie war
sie jedoch ausreichend. Es ist jetzt gelungen, die gelernten Begriffe Fahrt
entlang einer Tir und Fahrt durch eine Tir von dem mobilen Roboter
ausfithren zu lassen [Klingspor et al., 1996].

Die eingangs gestellten Fragen kdénnen also positiv beantwortet wer-
den.

e Fine Verbindung von numerischen Sensor- und Bewegungsdaten bis
hin zu operationalen Begriffen konnte hergestellt werden. Dazu
wurde eine Signatur fiir eingeschrinkte Pradikatenlogik entwickelt,
die aufeinander aufbauende Abstraktionsebenen beschreibt. In die-
sem Artikel wurde ein Durchgang durch die Ebenen anhand des Be-
griffs Fahrt durch die Tir vorgestellt. Daran ist nachzuvollziehen,
wie Bewegungs- und Wahrnehmungsmerkmale integriert werden.

o Die Wissensbasis wird auf der unteren Abstraktionsebene durch Trans-
formation in Prafixbdume und Parallelisierung optimiert. Es wird
ausgenutzt, dafl die Zeit linear verlauft. FEine weitere, noch nicht
implementierte Optimierung betrifft die Planungskomponente, de-
ren Regeln durch den aus der logischen Programmierung bekannten
Operator unfolding effizienter gemacht werden kénnen.

e Grofie Teile der Wissensbasis wurden durch das Lernen im Para-
digma der induktiven logischen Programmierung erworben. Durch
die Einteilung in Ebenen, wobei die Verbindung zwischen den Ebe-
nen gelernt wurde, wird das Lernen auch aus grofien Datenmengen
moglich.

Nachdem nun die Machbarkeit unseres Ansatzes gezeigt ist, lohnt sich des-
sen Verbesserung und der systematische Vergleich mit anderen Ansitzen.

5 Ausblick

Eine Motivation fiir das Lernen von Begriffen im Rahmen der Robotik
stammt aus der kognitionswissenschaftlichen Diskussion um den Erwerb
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Abbildung 1: Ein situiertes System

und die Verankerung von Begriffen. Die Begriffe sollen nicht nur aus ein-
gegebenen und damit schon vorformulierten Beispielen gebildet werden,
sondern auf sinnlichen Erfahrungen beruhen. Eine moégliche Erweiterung
wire die Kopplung mit einer natiirlichsprachlichen Schnittstelle, die ja
hohere Begriffe ben6tigt. Insofern kann unser Ansatz als notwendige Vor-
arbeit zu einer Kopplung von Roboter und natiirlichsprachlichem System
betrachtet werden, bei der nicht alles begriffliche Wissen von den Syste-

mentwicklern eingegeben werden mufl.

Das Ziel solcher Arbeiten kann durch ein Schaubild illustriert werden.
Ein situiertes System verankert Lern- und Kommunikationsprozesse mit

der realen Welt. Dabei miissen Sensordaten und Handlungss

ystem nicht

unbedingt aus der Robotik stammen. Dieselbe Architektur ist giiltig fiir

software agents oder softbots. Hier ergibt sich ein reiches
beispielsweise fir die Informationssuche im Internet.

Arbeitsfeld
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