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Zusammenfassung

In diesem Aufsatz wird die Anwendung einer neuen Klasse von Lern-
verfahren, n�amlich die der induktiven logischen Programmierung (ILP),
auf Probleme der Navigation mobiler Roboter dargestellt. Aus klassi�zier-
ten Daten von Trainingsfahrten eines mobilen Roboters werden in einer
Folge von Lernl�aufen ausf�uhrbare Begri�sde�nitionen gelernt. Diese ope-
rationalen Begri�e verbinden Objekterkennung Handlungen (Bewegun-
gen) des Roboters.

In this paper, the application of inductive logic programming to na-
vigation of a mobile robot is described. A series of learning passes uses
classi�ed data from training missions of the mobile robot in order to learn
operational concepts. Operational concepts characterize objects and ac-
tions such that the robot is capable of recognizing the object and acting
appropriately.

1 Lernende Roboter

In diesem Aufsatz wird die Anwendung einer neuen Klasse von Lernver-
fahren, n�amlich die der induktiven logischen Programmierung (ILP), auf
Probleme der Navigation mobiler Roboter dargestellt. Diese Kombination
von Lernmethode und Anwendungsfeld wird zun�achst �uberraschen, war
es doch bisher �ublich, zur Verbesserung der Leistung von Robotern nume-
rische Lernverfahren (neuronale Netze, Verst�arkungslernen) einzusetzen.
Die so erzielten Erfolge sollen auch nicht geschm�alert werden. Es gibt aber
einige Gr�unde, die daf�ur sprechen, auch noch andere, neue Verfahren zu
versuchen:

� F�ur Benutzer von Robotern sind die auf niedriger konzeptueller
Ebene angesiedelten Repr�asentationen schwer zu verstehen. Die
Kommunikation gerade mit mobilen Service-Robotern erfordert eine
dem Menschen angepa�te Benutzer{ Schnittstelle.

� Wenn ein Weltmodell in Form einer Karte vorliegt, k�onnen graphi-
sche Benutzerschnittstellen mit direkter Manipulation gut eingesetzt
werden. Die Erstellung solcher Karten ist aber aufwendig und f�uhrt
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zu langen Einrichtungszeiten, wenn ein Roboter in neuer Umgebung
eingesetzt werden soll.

� Numerische Repr�asentationen sind �ubergenau. Abweichungen m�ussen
mit Verfahren wie etwa der Fuzzy Logic behandelt werden. F�ur die
Objekterkennung sollte aber nur die Struktur von Merkmalen eine
Rolle spielen, nicht jedoch der exakte Zahlenwert.

� Numerische Lernverfahren k�onnen Hintergrundwissen nur auf sehr
indirekte Weise einbeziehen. So mu� bei neuronalen Netzen etwa
durch geschickte Wahl der Topologie, beim Verst�arkungslernen durch
geschickte Wahl der Verst�arkungsfunktion implizit Hintergrundwis-
sen ber�ucksichtigt werden.

W�ahrend einerseits (numerische) Verfahren f�ur das Erlernen von Re
e-
xen und andererseits (logikbasierte) Verfahren f�ur das Erlernen von ab-
strakten Begri�en zur Verf�ugung stehen, ist die Verbindung der Ebenen
noch zu wenig untersucht. Wir wollten den Zusammenhang zwischen der
Ebene der Re
exe und der begri�ichen Ebene untersuchen, so da� Be-
gri�e anhand konkreter Erfahrung (Wahrnehmung und Handlung in der
nat�urlichen Umwelt) erworben und dort angewandt werden. Es geht um
die Frage, wie Begri�e in der Umwelt verankert sind (Stichwort: sym-

bol grounding). Um uns diesem Thema anzun�ahern, haben wir konkrete
Fragen bearbeitet 1:

� Ist es m�oglich, �uber die Ebene der Re
exe hinauszugehen und eine
Hierarchie von immer abstrakteren Verhaltensweisen eines mobi-
len Roboters zu entwickeln, wobei jede Verhaltensweise sowohl die
Wahrnehmungs- wie auch die Handlungsseite ber�ucksichtigt?

� K�onnen wissensbasierte Verfahren eingesetzt werden und dennoch
die Realzeitanforderungen erf�ullt werden?

� Sind Lernverfahren, die eine eingeschr�ankte Pr�adikatenlogik verwen-
den, in der Robotik �uberhaupt einsetzbar?

Stellen wir uns einen auf B�uroumgebungen spezialisierten mobilen Robo-
ter vor. Er soll etwa das folgende Kommando ausf�uhren k�onnen:

fahre durch die T�ur, dann links bis zum Schrank, stop.

Dazu sollen nicht { wie bisher �ublich { die genauen Koordinaten f�ur
W�ande, T�uren, Tische bekannt sein m�ussen. Der Begri� der T�ur soll
nicht als ein Durchgang bestimmter Breite und Tiefe an einer bestimm-
ten Stelle im Raum repr�asentiert sein, sondern als ein operationaler Be-
gri�, d.h. ein Konzept, das Handlung und Wahrnehmung integriert. Der
operationale Begri� der T�ur ist verankert in den Wahrnehmungs- und
Handlungsm�oglichkeiten des Roboters [Klingspor und Morik, 1995]. So
ist jeder Durchgang f�ur den Roboter eine T�ur, wenn er sich hindurchbe-
wegen kann. Ein Wahrnehmungsmuster signalisiert die M�oglichkeit, da�
an dem durch die Sensoren angemessenen Ort eine T�ur ist. Der Erfolg der
Handlung, sich durch die T�ur zu bewegen, veri�ziert, da� an der Stelle

1Die hier vorgestellten Verfahren wurden im Rahmen des ESPRIT Projektes BLearn II

entwickelt.
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eine T�ur war. Der operationale Begri� ist ausf�uhrbar bei T�uren beliebiger
Abmessungen in verschiedensten Umgebungen.

2 Induktive logische Programmierung

Lernverfahren f�ur relationales Wissen werden heute unter dem Begri� der
induktiven logischen Programmierung zusammengefa�t. Diese Lernver-
fahren sind obendrein in der Lage, Hintergrundwissen zu ber�ucksichtigen.
Ein einfaches Beispiel f�ur Sachverhalte, die Hintergrundwissen ben�otigen
und sich nicht ohne Relationen ausdr�ucken lassen, sind Verwandschafts-
beziehungen. Gegeben f�ur den Begri� Tochter:

die positiven Beispiele die negativen Beispiele
tochter(mary; ann) :tochter(tom;ann)
tochter(eve; tom) :tochter(eve;ann)

Ein Lernverfahren, das nur Attribut-Werte bearbeiten kann, kann gar
nicht aus diesen Beispielen lernen. Ein Lernverfahren, das eine einge-
schr�ankte Pr�adikatenlogik als Formalismus f�ur Hypothesen bearbeiten
kann, kann aus diesen Beispielen allein auch noch keine vern�unftige Re-
gelhaftigkeit �nden. Es fehlen Angaben. Wird nun als Hintergrundwissen
noch angegeben

elter(ann;mary) weiblich(ann) elter(ann; tom) weiblich(mary)
elter(tom;eve) weiblich(eve) elter(tom; ian)

so kann die Regel gelernt werden:

elter(Y;X); weibl(X) ! tochter(X;Y )

Die induktive logische Programmierung geht �uber die M�oglichkeiten
der klassischen Verfahren (Induktion von Entscheidungsb�aumen, neuro-
nale Netze, conceptual clustering) hinaus.

� W�ahrend die klassischen Verfahren nur Attribut-Werte verarbeiten
k�onnen, sind Verfahren der induktiven logischen Programmierung in
der Lage, Formeln einer eingeschr�ankten Pr�adikatenlogik als Hypo-
thesen auszugeben, zum Beispiel Prolog-Klauseln.

� W�ahrend die klassischen Verfahren nur Beispiele als Eingabe neh-
men k�onnen, sind die Verfahren der induktiven logischen Program-
mierung in der Lage, Hintergrundwissen zu ber�ucksichtigen.
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Die Schwierigkeit des Lernens h�angt von dem Formalismus f�ur die Hy-
pothesensprache ab. Gordon Plotkin [Plotkin, 1971] hat gezeigt, da� ohne
Hintergrundwissen in Pr�adikatenlogik gelernt werden kann. Allerdings ist
die Generalisierung von n Formeln der L�ange l im schlimmsten Fall ln lang.
Das Lernproblem mit Hypothesen in Form von Klauseln und Hintergrund-
wissen in Form von variablenfreien Fakten ist in exponentieller Zeit l�osbar.
Die Komplexit�at der Lernaufgabe mu� also eingeschr�ankt werden, wenn
wir wollen, da� das Lernverfahren auch bei vielen Beispielen in vertretba-
rer Zeit zum Ergebnis kommt. Die Forschung im Bereich der induktiven
logischen Programmierung besch�aftigt sich damit, wie die Pr�adikatenlogik
so eingeschr�ankt werden kann, da� sie immer noch das ausdr�ucken kann,
was wir lernen wollen, aber das Lernverfahren dennoch ein Ergebnis in
polynomiell beschr�ankter Zeit �ndet (siehe [Kietz und Dzeroski, 1994] f�ur
einen �Uberblick).

3 Lernen operationaler Begri�e

Im Rahmen des Projektes BLearn II (ESPRIT 7274) [Kaiser et al., 1995]
wurden nun aus den Sensormessungen und Bewegungsdaten w�ahrend eini-
ger Trainingsfahrten eines mobilen Roboters entlang und durch eine T�ur
operationale Begri�e gelernt. Dabei wird schrittweise von den numeri-
schen Werten der Sensor- und Bewegungsdaten abstrahiert.

Im ersten Schritt werden die Abstandsmessungen der 24 Ultraschall-
sensoren inkrementell in Zeitintervalle aufgeteilt, w�ahrend derer die Me�-
punkte bei gleicher Orientierung eines Sensors dieselbe Tendenz aufweisen
(steigend, fallend, gleichbleibend, pl�otzlich ansteigend, ...) Diese Umset-
zung von (numerischen) Signalen in Prolog-Fakten der Form

steigend(Fahrt, Orientierung, Sensor, Anfang, Ende) 2

abstrahiert von geringf�ugigen Abweichungen. Dennoch sind die Daten
auf dieser Abstraktionsebene noch sehr verrauscht.

Im zweiten Schritt werden auf immer abstrakterer Ebene Regeln ge-
lernt. Es wird also eine Folge von Lernl�aufen gestartet. Fakten, die die
Messungen aller Sensoren w�ahrend verschiedener Trainingsfahrten wieder-
geben, werden f�ur das Lernen klassi�ziert. Es wird angegeben, in welchem
Zeitintervall der Roboter an einem Objekt vorbei- oder durch eine T�ur
hindurchgefahren ist. Es werden nun anhand der klassi�zierten Daten
Regeln gelernt, die f�ur jeweils einen Sensor und darauf aufbauend dann
f�ur Sensorgruppen charakteristische Wahrnehmungsmuster bei einer ob-
jektbezogenen Bewegung ausdr�ucken. Diese Regeln stellen nur noch die
Beziehungen zwischen Zeitintervallen dar, nicht jedoch die konkrete Dauer
der Messung eines Musters. F�ur jedes Sensormuster werden verschiedene
Regeln gelernt, so da� unterschiedliche Situationen abgedeckt sind.

gleich(Fahrt, Orientierung, Sensor,T1, T2, Gradient1) &

2Das Pr�adikat gibt die Abstandsmessungen in einem Zeitintervall an. Die Argumente

geben die Fahrtnummer, die Orientierung des Sensors, den Sensor und das Zeitintervall mit

Anfangs- und Endzeitpunkt an.
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ploetz hoch(Fahrt, Orientierung, Sensor, T2, T3, Gradient2) &

gleich(Fahrt, Orientierung, Sensor,T3, T4, Gradient3)

! s sprung(Fahrt, Sensor, T1, T4, parallel)

Auf der Ebene der Sensorgruppen wird nur das ausgedr�uckt, was die
Mehrheit der Sensoren einer Klasse gemessen haben 3. Dadurch ergibt
sich ein Filter, der die Daten bereinigt.

s sprung(Fahrt, S1, T1, T2, parallel) &

sklasse(Fahrt, S1, T0, T7, rechts seite) &

s sprung(Fahrt, S2, T3, T4, parallel) &

sklasse(Fahrt, S2, T0, T7, rechts seite) &

s sprung(Fahrt, S3, T5, T6, parallel) &

sklasse(Fahrt, S3, T0, T7, rechts seite) &

succ(T1, T3) & succ(T3, T5) & T0 � T1 & T6 � T7

! sg sprung(Fahrt, T1, T6,rechts seite, parallel)

Das Pr�adikat succ aus dem Hintergrundwissen gibt Nachfolger an,
etwa T1 + 1 = T3 oder T1 + 2 = T3. Auf der n�achsten Abstraktions-
ebene werden komplexe Wahrnehmungs- und Handlungsmuster gelernt:
4

sg sprung(Fahrt,T1,T2,rechts seite,parallel) &

sg sprung(Fahrt,T1,T2,links seite,parallel)

! durch tuer(Fahrt, T1, T2, parallel)

So wird ausgedr�uckt, da� Sensoren auf der rechten und der linken Seite
gleichzeitig den T�urrahmen anmessen, wenn der Roboter weitgehend ge-
rade durch die T�ur f�ahrt (parallel). Eine entsprechende Regel f�ur zeit-
verschobene Wahrnehmungen auf den Seiten, also die schr�age Durchfahrt,
wurde ebenfalls gelernt.

Dann werden Regeln der folgenden Art gelernt:
fahr(Fahrt, T1,T2, Tempo, BewegRichtung) &

wahrnehm (Fahrt,T1,T2,Wahrnehm, WahrnehmRichtung, Seite, parallel)

! parallel fahr(Fahrt, T1, T2, Tempo, BewegRichtung,

Wahrnehm, WahrnehmRichtung)

Die Regel notiert in kompakter Form, da� w�ahrend eines Zeitinter-
valls (T1 - T2) eine kontinuierliche Bewegung und Wahrnehmung (z.B.
durch tuer) erfolgt ist, so da� beides zusammengefa�t werden kann. Die
Regeln auf dieser Abstraktionsebene sind bereits zu 78% korrekt.

Schlie�lich werden operationale Begri�e gelernt:
steh(Fahrt, T1, T2, vor tuer, WarnehmRichtung, schmal seite, VorW)

&

parallel fahr(Fahrt, T2, T3, Tempo, WarnehmRichtung, durch tuer,

rechts links) &

steh(Fahrt, T3, T4, vor tuer, hinten, schmal seite, durch tuer)

! fahr durch tuer(Fahrt, T1, T4)

Durch die Uni�kation von Wahrnehmungsrichtung vor der Handlung
(steh) und der Bewegungsrichtung bei der Handlung (parallel fahr) ist

3Eine Klasse wird durch den Ort, dan dem sich der Sensor am Roboter �ndet, gebildet.
4Wir folgen der Prolog-Konventionund dr�ucken Variable durch Gro�buchstaben, konstante

Werte durch Kleinbuchstaben aus.
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das Geradeaus- Fahren ausgedr�uckt. Die aktuelle Wahrnehmungsrichtung
wird als vorn interpretiert. Die Wahrnehmung w�ahrend der Handlung ist
das Muster durch tuer. 5

Die Wahrnehmung nach der Handlung ist das Muster vor tuer, dies-
mal jedoch von den hinteren Sensoren gemessen. Als hinten werden die
den Sensoren der ersten stand-Handlung gegen�uberliegenden Sensoren
betrachtet. Die kompakten Regeln f�ur operationale Begri�e sind 100%
korrekt.

Die Folge von Lernl�aufen produziert eine Menge von Regeln. Zum Te-
sten werden dann neue, ebenfalls vom Benutzer klassi�zierte Fahrtdaten
(Handlungs- und Wahrnehmungsdaten) eingegeben und in Fakten umge-
wandelt, aus denen dann per Vorw�artsinferenz abgeleitet wird, welches
Objekt in welcher Bewegung zu erkennen ist. In dieser Weise werden die
Korrektheitsangaben der vorigen Abs�atze hergeleitet. Wichtiger als die
Korrektheit ist jedoch, da� die gelernten Regeln in ganz unterschiedlichen
Umgebungen anwendbar sind. Was anhand Fahrten entlang oder durch
eine T�ur gelernt wurde, ist daf�ur geeignet, v�ollig unterschiedliche T�uren
zu erkennen. Diese Flexibilit�at lohnt den Lernaufwand und auch eine
Nachbesserung per Hand.

Entgegen der g�angigen Meinung, f�ur Robotik m�usse man numerische
Verfahren anwenden, ist die induktive logische Programmierung sehr wohl
daf�ur geeignet, f�ur Robotikanwendungen h�ohere Konzepte zu lernen. An-
ders herum formuliert: mithilfe der induktiven logischen Programmierung
k�onnen Begri�e in der realen Welt verankert werden.

4 Anwenden operationaler Begri�e

Da das Lernen o�-line erfolgt, kann es ruhig ohne enge Zeitvorgaben arbei-
ten. Die Verwendung des gelernten Wissens erfordert allerdings, da� die
Realzeitanforderungen eingehalten werden. Deshalb werden die gelernten
Regeln in dreierlei Hinsicht optimiert:

� Die Regeln f�ur die Wahrnehmungsmuster eines Sensors werden in
Pr�a�xb�aume �uberf�uhrt. Aktuelle Sensormessungen setzen oder ver-
schieben Marker in diesen B�aumen. Erreicht ein Marker ein Blatt,
so ist das betre�ende Wahrnehmungsmuster erkannt [Rieger, 1996].

� Die Daten aller Sensoren werden parallel verarbeitet. Parallel wer-
den die numerischen Werte in Fakten umgewandelt und diese dann
mithilfe des Marker- Passings zu Wahrnehmungsmustern zusammen-
gefa�t.

� Die Inferenz h�oherer Begri�e wird ebenenweise durchgef�uhrt (von
Sensormustern zu Sensorgruppenmustern, von diesen zu komplexen
Wahrnehmungs- Handlungsmustern und schlie�lich zu operationalen
Begri�en), so da� die jeweilige Inferenztiefe stets nur 1 ist.

5Eine Regel �uberf�uhrt den Begri� durch tuer in ein Argument des Pr�adikats wahrnehm:

durch tuer(Fahrt, T1, T2,WarnehmRichtung, Seite, Orientierung)

! wahrnehm(Fahrt,T1,T2,durch tuer, WarnehmRichtung, Seite, Orientierung)
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Eine einfache deduktive Planungskomponente erstellt einen groben Hand-
lungsplan, f�ur den die Basishandlungen des Roboters durch R�uckw�artsin-
ferenz ermittelt werden. Der Befehl fahre durch die T�ur wird �uberf�uhrt
in die Sequenz �nde eine T�ur und fahre durch die T�ur. Die Regeln f�ur
das Finden einer T�ur sind nicht gelernt. Sie verwenden aber gelernte Be-
gri�e wie entlang tuer, entlang wand. Im wesentlichen wird eine Wand
gesucht, an ihr entlanggefahren bis eine Ecke oder eine T�ur erkannt wird.
In einer Ecke wird so gedreht, da� der ansto�enden Wand gefolgt werden
kann. Wird eine T�ur erkannt (entlang tuer), so f�ahrt der Roboter zur�uck
und dreht sich, bis er vor tuer wahrnimmt und steht dann. Damit ist die
erste Handlung des hier als Beispiel dargestellten operationale Begri�s der
Fahrt durch die T�ur wahr. Die n�achste Handlung wird gem�a� der gelern-
ten Regeln f�ur parallel fahr ausgef�uhrt, bis die nun hinteren Sensoren
das Muster vor tuer wahrnehmen. Dann h�alt der Roboter an. Diese Pla-
nungskomponente ist noch simpel. F�ur unsere Machbarkeitsstudie war
sie jedoch ausreichend. Es ist jetzt gelungen, die gelernten Begri�e Fahrt

entlang einer T�ur und Fahrt durch eine T�ur von dem mobilen Roboter
ausf�uhren zu lassen [Klingspor et al., 1996].

Die eingangs gestellten Fragen k�onnen also positiv beantwortet wer-
den.

� Eine Verbindung von numerischen Sensor- und Bewegungsdaten bis
hin zu operationalen Begri�en konnte hergestellt werden. Dazu
wurde eine Signatur f�ur eingeschr�ankte Pr�adikatenlogik entwickelt,
die aufeinander aufbauende Abstraktionsebenen beschreibt. In die-
sem Artikel wurde ein Durchgang durch die Ebenen anhand des Be-
gri�s Fahrt durch die T�ur vorgestellt. Daran ist nachzuvollziehen,
wie Bewegungs- und Wahrnehmungsmerkmale integriert werden.

� Die Wissensbasis wird auf der unteren Abstraktionsebene durch Trans-
formation in Pr�a�xb�aume und Parallelisierung optimiert. Es wird
ausgenutzt, da� die Zeit linear verl�auft. Eine weitere, noch nicht
implementierte Optimierung betri�t die Planungskomponente, de-
ren Regeln durch den aus der logischen Programmierung bekannten
Operator unfolding e�zienter gemacht werden k�onnen.

� Gro�e Teile der Wissensbasis wurden durch das Lernen im Para-
digma der induktiven logischen Programmierung erworben. Durch
die Einteilung in Ebenen, wobei die Verbindung zwischen den Ebe-
nen gelernt wurde, wird das Lernen auch aus gro�en Datenmengen
m�oglich.

Nachdem nun die Machbarkeit unseres Ansatzes gezeigt ist, lohnt sich des-
sen Verbesserung und der systematische Vergleich mit anderen Ans�atzen.

5 Ausblick

Eine Motivation f�ur das Lernen von Begri�en im Rahmen der Robotik
stammt aus der kognitionswissenschaftlichen Diskussion um den Erwerb
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PlanungskomponenteDatenbank

Benutzerschnittstelle mit Graphik

Sensorsystem

Lernen
relationales

generierung
Fall-

optimierung
Wissens-

Handlungssystem

Abbildung 1: Ein situiertes System

und die Verankerung von Begri�en. Die Begri�e sollen nicht nur aus ein-
gegebenen und damit schon vorformulierten Beispielen gebildet werden,
sondern auf sinnlichen Erfahrungen beruhen. Eine m�ogliche Erweiterung
w�are die Kopplung mit einer nat�urlichsprachlichen Schnittstelle, die ja
h�ohere Begri�e ben�otigt. Insofern kann unser Ansatz als notwendige Vor-
arbeit zu einer Kopplung von Roboter und nat�urlichsprachlichem System
betrachtet werden, bei der nicht alles begri�iche Wissen von den Syste-
mentwicklern eingegeben werden mu�.

Das Ziel solcher Arbeiten kann durch ein Schaubild illustriert werden.
Ein situiertes System verankert Lern- und Kommunikationsprozesse mit
der realen Welt. Dabei m�ussen Sensordaten und Handlungssystem nicht
unbedingt aus der Robotik stammen. Dieselbe Architektur ist g�ultig f�ur
software agents oder softbots. Hier ergibt sich ein reiches Arbeitsfeld
beispielsweise f�ur die Informationssuche im Internet.
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