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Motivation

e Model = Global Model + Local Model(s) + Noise
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Motivation

e Model = Global Model + Local Model(s) + Noise
@ SVM can find both the global and the local models

o Conflicting criteria: training error and model complexity
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Motivation

Model = Global Model + Local Model(s) + Noise
SVM can find both the global and the local models
Conflicting criteria: training error and model complexity

Users have to specify a weighting factor C for a trade-off

Local models: those for higher weights on training error

Solution

Embed multi-objective evolutionary algorithms instead of the
quadratic programming approach into SVM.

(i)
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Desired Result

@ The result of multi-objective optimization is not a single
solution but a set of solutions (Pareto set)

@ These solutions correspond to the optimal solutions for all
possible weightings for both criteria

Figure: The Pareto-optimal solutions for two competing criteria
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The Primal SVM Problem

Primal SVM Problem

The basic form of the primal SVM optimization problem is the
following:

N -
minimize §HW||2 - C;ﬁ;
=
subject to Vi : y; ((w,x;) + b) > 1 —¢&;

and Vi: & > 0.

i

Ingo Mierswa Al Unit University of Dortmund Finding all Local Models in Parallel: Multi-Objective SVM



Outline Introduction Multi-Objective Learning Results
ooe 0000000 0000000000

The Primal SVM Problem

Primal SVM Problem

The basic form of the primal SVM optimization problem is the
following:

N -
minimize §HW||2 - C;ff
=
subject to Vi : y; ((w,x;) + b) > 1 —¢&;

and Vi: & > 0.

Conclusion

Weighting Factor

parts of the optimization criterion.

The parameter C is a user defined weight for the both conflicting ;
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Multiple Conflicting Objectives

@ EA inside SVM allows for a straightforward application of
multi-objective selection schemes
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Multiple Conflicting Objectives

@ EA inside SVM allows for a straightforward application of
multi-objective selection schemes

@ We divide the criteria of the primal SVM optimization
problem into two optimization targets while the weighting
factor C can be omitted

(i)
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Multiple Conflicting Objectives

@ EA inside SVM allows for a straightforward application of
multi-objective selection schemes

@ We divide the criteria of the primal SVM optimization
problem into two optimization targets while the weighting
factor C can be omitted

Goal

Transform both objectives into their dual form in order to allow the
efficient optimization of the problems including the usage of kernel

functions.
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Multiple Conflicting Objectives
Primal Objective 1
T 2
minimize §||W||
subject to Vi : y; ((w,x;) + b) > 1 —¢;
and Vi : & >0

Primal Objective 2

minimize Zf,
i=1

subject to Vi : y; ((w,x;) + b) > 1 —¢; b

and Vi: & > 0.
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Objective 1: Maximizing the Margin

@ Introduce positive Lagrange multipliers « for the first set of
inequality constraints and multipliers § for the second set of
inequality constraints:

O _ 1o N~ . ~ o
Lp” = 5liwll —_Z;Ow(y/(<w,x/>+b)+£/—1)—;@6
@ Set the derivatives to 0:

aL(l)
ow (ng’aﬁ_w Z}/IQXI—O

oL
b (Wa b7£7aaﬁ) = Zai}/i = 07

(1)
8Lpl (w,b,&,0,0) = —aj — i =0 ?‘

23
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Plugging the Derivatives into the Primal

@ Plugging the derivatives into the primal objective function Lf,l)

delivers
1 n n n
1
)= 3= 3 e (S )+ 3
i=1 j=1 i=1
n 1 n n
= Z aj— 5 Z Z Qiayiyj (Xi, Xj)
i=1 i=1 j=1

@ The Wolfe dual must be maximized leading to the first
objective of the multi-objective SVM

@ Result is very similar to the dual SVM problem stated above
but without the upper bound C for the «; O@‘
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The First Objective of the MO-SVM

First Objective

The first SVM objective (maximize margin) is defined as:

maximize E a,—fE E yiyjoeiojk (i, ;)

i=1 j=1
subjecttoa,-EOfor alli=1,...,n

n
and Za,-y,— =0
i=1

ety

Ingo Mierswa Al Unit University of Dortmund Finding all Local Models in Parallel: Multi-Objective SVM



Outline Introduction Multi-Objective Learning Results Conclusion
000 000@000 0000000000

Objective 2: Minimize Training Errors

@ We again add positive Lagrange multipliers o and :

Zfl Za/ }// WX/ ‘|‘b +§1_1 Zﬁl&l

@ Setting the derlvatlves to 0 leads to slightly different
)

conditions on the derivatives of L§,2 :

8L(2) n
Sy (W bi &, ):—ZYiOéiXiZO,

b (W b,§, a Zal% =0,

o, (w,b,{,a,8)=1—a;— ;=0
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Plugging the Derivatives into the Primal

@ Plugging the derivatives into the L§,2)

=D G- i+ ai— > B
i=1 i=1 i=1 i=1

@ Together with the third derivative we can replace the 3; by
1 — «; leading to

L(2) Za & — Zaﬁ,—l—Za,

L) = Z ;
e Maximizing the Wolfe dual leads to the second objective of

the multi-objective SVM

cancels out most terms:
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The Second Objective of the MO-SVM

Second Objective
The second SVM objective (minimize error) is defined as:
n
maximize Zoz,-
i=1
subject to aj > 0 foralli=1,...,n

n
and Z ajyi =0
i=1

y
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Used Objectives

Set of all Objectives

Maximize the terms

n n
=D vivjaiazk (%, x5)

i=1 j=1

n
and Z o

i=1

subject to aj > 0 forall i=1,...,n

The result will be a Pareto front showing all models which are

optimal for all possible weightings between both criteria.
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Data Sets
Data set n m Source o Default
Spiral 1000 | 2 | Synthetical | 1.000 | 50.00
Checkerboard | 1000 | 2 | Synthetical | 1.000 | 50.00
Sonar 208 | 60 ucCl 1.000 | 46.62
Diabetes 768 | 8 ucCl 0.001 34.89
Lupus 87 3 StatLib 0.001 | 40.00
Crabs 200 | 7 StatLib 0.100 50.00

All experiments were performed with the machine learning
environment YALE 1.

'http://yale.sf.net/
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Results

(a) Spiral Pareto (b) Spiral Gener- (c) Checkerboard (d) Checkerboard
alization Pareto Generalization
Figure: The results for all data sets. The left plot for each dataset shows
the Pareto front delivered by the multi-objective SVM proposed in this
paper (x: margin size, y: training error). The right plot shows the training
(4) and testing (x) errors (on a hold-out set of 20%) for all individuals
of the resulting Pareto fronts (x: margin size, y: generalization error).
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From Global to Local Models — Data
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From Global to Local Models — Largest Margin
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From Global to Local Models — The Global Model

Outline
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From Global to Local Models
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From Global to Local Models — Best Generalization
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From Global to Local Models — Lowest Training Error
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Main Advantage of MO-SVM

@ The generalization ability plotted on the right sides clearly
shows the location where overfitting occurs
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Main Advantage of MO-SVM

@ The generalization ability plotted on the right sides clearly
shows the location where overfitting occurs

@ Please note that these plots could also be generated for usual
SVM by iteratively applying the learner for different parameter
settings but ...
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Main Advantage of MO-SVM

@ The generalization ability plotted on the right sides clearly
shows the location where overfitting occurs

@ Please note that these plots could also be generated for usual
SVM by iteratively applying the learner for different parameter
settings but ...

@ ...this will need one learning run for each possible value of C!

Ingo Mierswa Al Unit University of Dortmund Finding all Local Models in Parallel: Multi-Objective SVM



Outline Introduction Multi-Objective Learning Results Conclusion
000 0000000 0000000008

Main Advantage of MO-SVM

@ The generalization ability plotted on the right sides clearly
shows the location where overfitting occurs

@ Please note that these plots could also be generated for usual
SVM by iteratively applying the learner for different parameter
settings but ...

@ ...this will need one learning run for each possible value of C!

Full Knowledge in One Single Run!

The MO-SVM approach has the advantage that all models are
calculated in one single run which is far less time-consuming
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Conclusion

@ Trade-off between training error and model complexity is now
explicitly stated
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Conclusion

@ Trade-off between training error and model complexity is now
explicitly stated

@ The optimization problem of SVM is divided in two parts and
both parts are transformed into their dual form
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Conclusion

@ Trade-off between training error and model complexity is now
explicitly stated

@ The optimization problem of SVM is divided in two parts and
both parts are transformed into their dual form

@ The optional usage of a hold-out set is suggested in order to
guide the user for the final selection of a solution
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Conclusion

@ Trade-off between training error and model complexity is now
explicitly stated

@ The optimization problem of SVM is divided in two parts and
both parts are transformed into their dual form

@ The optional usage of a hold-out set is suggested in order to
guide the user for the final selection of a solution

@ All information from the most global to the most local models
is gathered in a single run!
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