

Finding all Local Models in Parallel: Multi-Objective SVM

Ingo Mierswa
AI Unit
University of Dortmund

Dagstuhl Seminar 2007

Outline

1 Introduction

- Motivation – Finding Local Models with SVM

2 Multi-Objective Support Vector Machines

- Objective 1: Maximizing the Margin
 - Objective 2: Minimizing the Number of Training Errors

3 Results

- Results
 - Walking on the Pareto Front: From Global to Local Models

4 Conclusion

Motivation

- Model = Global Model + Local Model(s) + Noise
- SVM can find both the global and the local models
- Conflicting criteria: training error and model complexity
- Users have to specify a weighting factor C for a trade-off
- Local models: those for higher weights on training error

Solution

Embed **multi-objective evolutionary algorithms** instead of the quadratic programming approach into SVM.

Motivation

- Model = Global Model + Local Model(s) + Noise
- SVM can find both the global and the local models
- Conflicting criteria: training error and model complexity
- Users have to specify a weighting factor C for a trade-off
- Local models: those for higher weights on training error

Solution

Embed **multi-objective evolutionary algorithms** instead of the quadratic programming approach into SVM.

Motivation

- Model = Global Model + Local Model(s) + Noise
- SVM can find both the global and the local models
- Conflicting criteria: training error and model complexity
- Users have to specify a weighting factor C for a trade-off
- Local models: those for higher weights on training error

Solution

Embed **multi-objective evolutionary algorithms** instead of the quadratic programming approach into SVM.

Motivation

- Model = Global Model + Local Model(s) + Noise
- SVM can find both the global and the local models
- Conflicting criteria: training error and model complexity
- Users have to specify a weighting factor C for a trade-off
- Local models: those for higher weights on training error

Solution

Embed **multi-objective evolutionary algorithms** instead of the quadratic programming approach into SVM.

Motivation

- Model = Global Model + Local Model(s) + Noise
 - SVM can find both the global and the local models
 - Conflicting criteria: training error and model complexity
 - Users have to specify a weighting factor C for a trade-off
 - Local models: those for higher weights on training error

Motivation

- Model = Global Model + Local Model(s) + Noise
- SVM can find both the global and the local models
- Conflicting criteria: training error and model complexity
- Users have to specify a weighting factor C for a trade-off
- Local models: those for higher weights on training error

Solution

Embed **multi-objective evolutionary algorithms** instead of the quadratic programming approach into SVM.

Desired Result

- The result of multi-objective optimization is not a single solution but a set of solutions (**Pareto set**)
- These solutions correspond to the optimal solutions for **all possible weightings** for both criteria

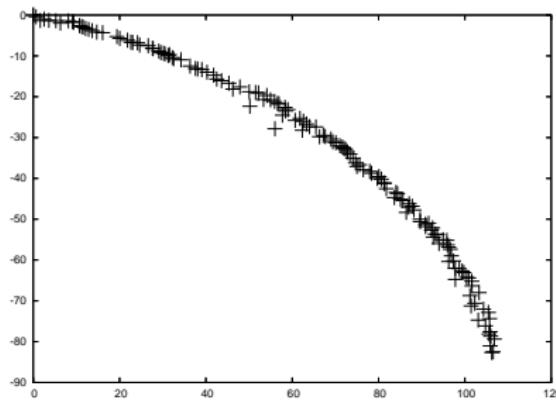


Figure: The Pareto-optimal solutions for two competing criteria

The Primal SVM Problem

Primal SVM Problem

The basic form of the primal SVM optimization problem is the following:

$$\text{minimize } \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i$$

subject to $\forall i : y_i (\langle w, x_i \rangle + b) \geq 1 - \xi_i$

and $\forall i : \xi_i \geq 0$.

The Primal SVM Problem

Primal SVM Problem

The basic form of the primal SVM optimization problem is the following:

$$\text{minimize} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i$$

$$\text{subject to } \forall i : y_i (\langle w, x_i \rangle + b) \geq 1 - \xi_i$$

$$\text{and } \forall i : \xi_i \geq 0.$$

Weighting Factor

The parameter C is a user defined weight for the both conflicting parts of the optimization criterion.

Multiple Conflicting Objectives

- EA inside SVM allows for a straightforward application of multi-objective selection schemes
- We divide the criteria of the primal SVM optimization problem into two optimization targets while the weighting factor C can be omitted

Goal

Transform both objectives into their **dual form** in order to allow the efficient optimization of the problems including the usage of kernel functions.

Multiple Conflicting Objectives

- EA inside SVM allows for a straightforward application of **multi-objective selection schemes**
 - We divide the criteria of the primal SVM optimization problem into two optimization targets while the weighting factor C can be omitted

Multiple Conflicting Objectives

- EA inside SVM allows for a straightforward application of **multi-objective selection schemes**
 - We divide the criteria of the primal SVM optimization problem into two optimization targets while the weighting factor C can be omitted

Goal

Transform both objectives into their **dual form** in order to allow the efficient optimization of the problems including the usage of kernel functions.

Multiple Conflicting Objectives

Primal Objective 1

$$\text{minimize } \frac{1}{2} ||w||^2$$

subject to $\forall i : y_i (\langle w, x_i \rangle + b) \geq 1 - \xi_i$

and $\forall i : \xi_i \geq 0$

Primal Objective 2

$$\text{minimize} \sum_{i=1}^n \xi_i$$

subject to $\forall i : y_i (\langle w, x_i \rangle + b) \geq 1 - \xi_i$

and $\forall i : \xi_i \geq 0$.

Objective 1: Maximizing the Margin

- Introduce positive Lagrange multipliers α for the first set of inequality constraints and multipliers β for the second set of inequality constraints:

$$L_p^{(1)} = \frac{1}{2} \|w\|^2 - \sum_{i=1}^n \alpha_i (y_i (\langle w, x_i \rangle + b) + \xi_i - 1) - \sum_{i=1}^n \beta_i \xi_i$$

- Set the **derivatives** to 0:

$$\frac{\partial L_p^{(1)}}{\partial w}(w, b, \xi, \alpha, \beta) = w - \sum_{i=1}^n y_i \alpha_i x_i = 0,$$

$$\frac{\partial L_p^{(1)}}{\partial b}(w, b, \xi, \alpha, \beta) = \sum_{i=1}^n \alpha_i y_i = 0,$$

$$\frac{\partial L_p^{(1)}}{\partial \xi_i}(w, b, \xi, \alpha, \beta) = -\alpha_i - \beta_i = 0$$

Plugging the Derivatives into the Primal

- Plugging the derivatives into the primal objective function $L_p^{(1)}$ delivers

$$\begin{aligned}
 L_p^{(1)} &= \frac{1}{2} \|w\|^2 - \sum_{i=1}^n -\alpha_i y_i \left\langle \sum_{j=1}^n \alpha_j y_j x_j, x_i \right\rangle + \sum_{i=1}^n \alpha_i \\
 &= \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle
 \end{aligned}$$

- The Wolfe dual must be maximized leading to the first objective of the multi-objective SVM
- Result is very similar to the dual SVM problem stated above but without the upper bound C for the α_i

The First Objective of the MO-SVM

First Objective

The **first SVM objective (maximize margin)** is defined as:

$$\text{maximize} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n y_i y_j \alpha_i \alpha_j k(x_i, x_j)$$

subject to $\alpha_i \geq 0$ for all $i = 1, \dots, n$

$$\text{and} \sum_{i=1}^n \alpha_i y_i = 0$$

Objective 2: Minimize Training Errors

- We again add positive Lagrange multipliers α and β :

$$L_p^{(2)} = \sum_{i=1}^n \xi_i - \sum_{i=1}^n \alpha_i ((y_i \langle w, x_i \rangle + b) + \xi_i - 1) - \sum_{i=1}^n \beta_i \xi_i$$

- Setting the **derivatives** to 0 leads to slightly different conditions on the derivatives of $L_P^{(2)}$:

$$\frac{\partial L_p^{(2)}}{\partial w}(w, b, \xi, \alpha, \beta) = - \sum_{i=1}^n y_i \alpha_i x_i = 0,$$

$$\frac{\partial L_p^{(2)}}{\partial b}(w, b, \xi, \alpha, \beta) = \sum_{i=1}^n \alpha_i y_i = 0,$$

$$\frac{\partial L_p^{(2)}}{\partial \xi_i}(w, b, \xi, \alpha, \beta) = 1 - \alpha_i - \beta_i = 0$$

Plugging the Derivatives into the Primal

- Plugging the derivatives into the $L_p^{(2)}$ cancels out most terms:

$$L_p^{(2)} = \sum_{i=1}^n \xi_i - \sum_{i=1}^n \alpha_i \xi_i + \sum_{i=1}^n \alpha_i - \sum_{i=1}^n \beta_i \xi_i$$

- Together with the third derivative we can replace the β_i by $1 - \alpha_i$ leading to

$$L_p^{(2)} = \sum_{i=1}^n \alpha_i \xi_i - \sum_{i=1}^n \alpha_i \xi_i + \sum_{i=1}^n \alpha_i$$

$$L_p^{(2)} = \sum_{i=1}^n \alpha_i$$

- **Maximizing** the Wolfe dual leads to the second objective of the multi-objective SVM

The Second Objective of the MO-SVM

Second Objective

The **second SVM objective (minimize error)** is defined as:

$$\text{maximize} \sum_{i=1}^n \alpha_i$$

subject to $\alpha_i \geq 0$ for all $i = 1, \dots, n$

$$\text{and} \sum_{i=1}^n \alpha_i y_i = 0$$

Used Objectives

Set of all Objectives

Maximize the terms

$$- \sum_{i=1}^n \sum_{j=1}^n y_i y_j \alpha_i \alpha_j k(x_i, x_j),$$

and $\sum_{i=1}^n \alpha_i$

subject to $\alpha_i \geq 0$ for all $i = 1, \dots, n$

The result will be a Pareto front showing all models which are optimal for all possible weightings between both criteria.

Data Sets

Data set	n	m	Source	σ	Default
Spiral	1000	2	Synthetical	1.000	50.00
Checkerboard	1000	2	Synthetical	1.000	50.00
Sonar	208	60	UCI	1.000	46.62
Diabetes	768	8	UCI	0.001	34.89
Lupus	87	3	StatLib	0.001	40.00
Crabs	200	7	StatLib	0.100	50.00

All experiments were performed with the machine learning environment **YALE**¹.

¹<http://yale.sf.net/>

Results

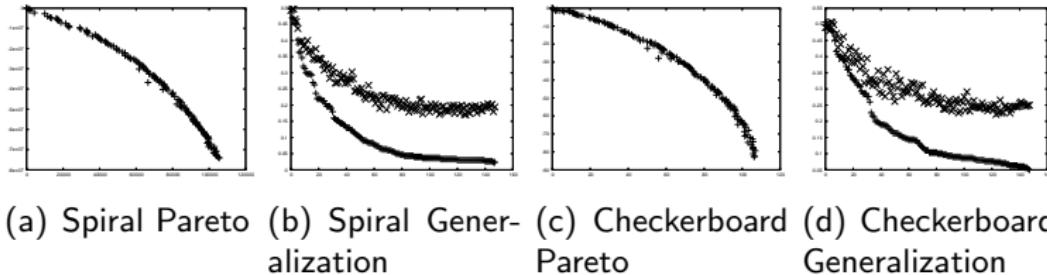
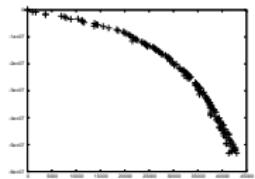
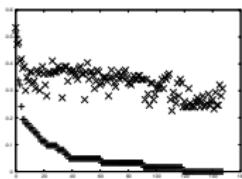
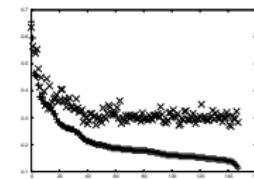
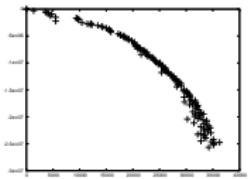


Figure: The results for all data sets. The left plot for each dataset shows the Pareto front delivered by the multi-objective SVM proposed in this paper (x: margin size, y: training error). The right plot shows the training (+) and testing (x) errors (on a hold-out set of 20%) for all individuals of the resulting Pareto fronts (x: margin size, y: generalization error).

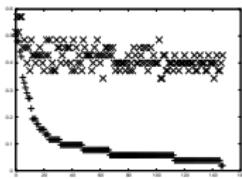
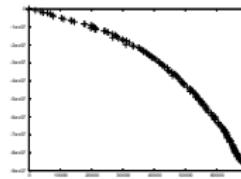
Results II



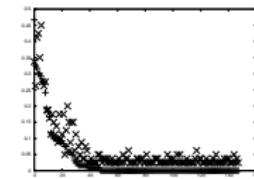
(a) Sonar Pareto

(b) Sonar General-
alization(c) Diabetes
Pareto(d) Diabetes
Generalization

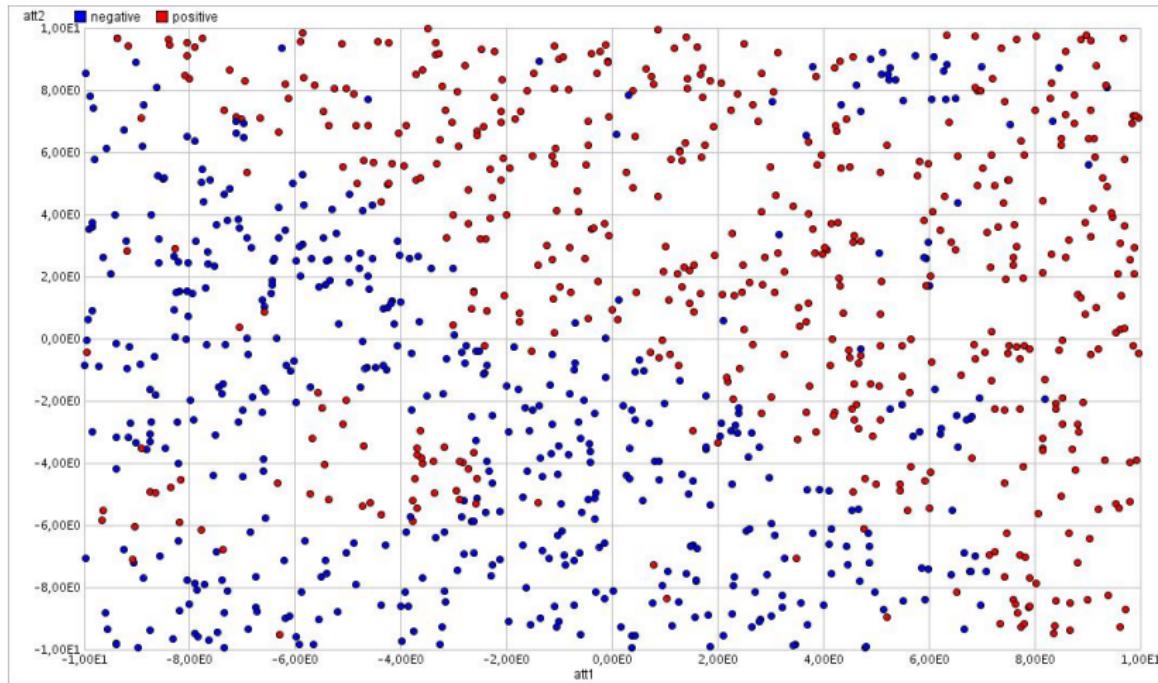
(e) Lupus Pareto

(f) Lupus Gener-
alization

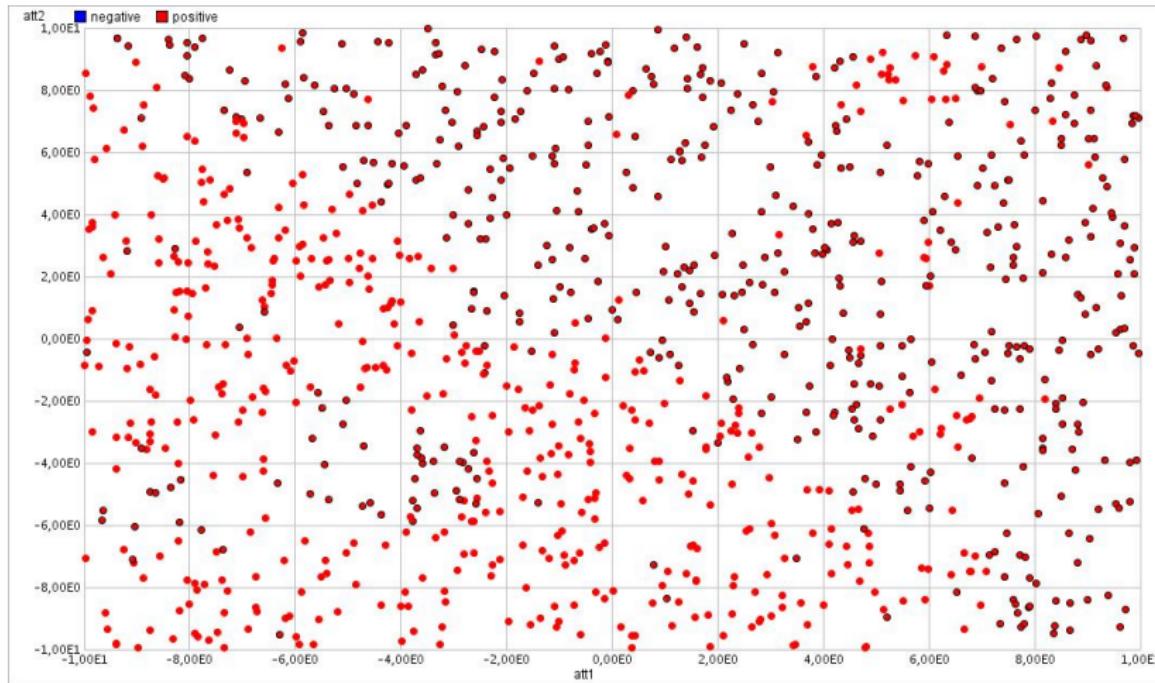
(g) Crabs Pareto

(h) Crabs Gener-
alization

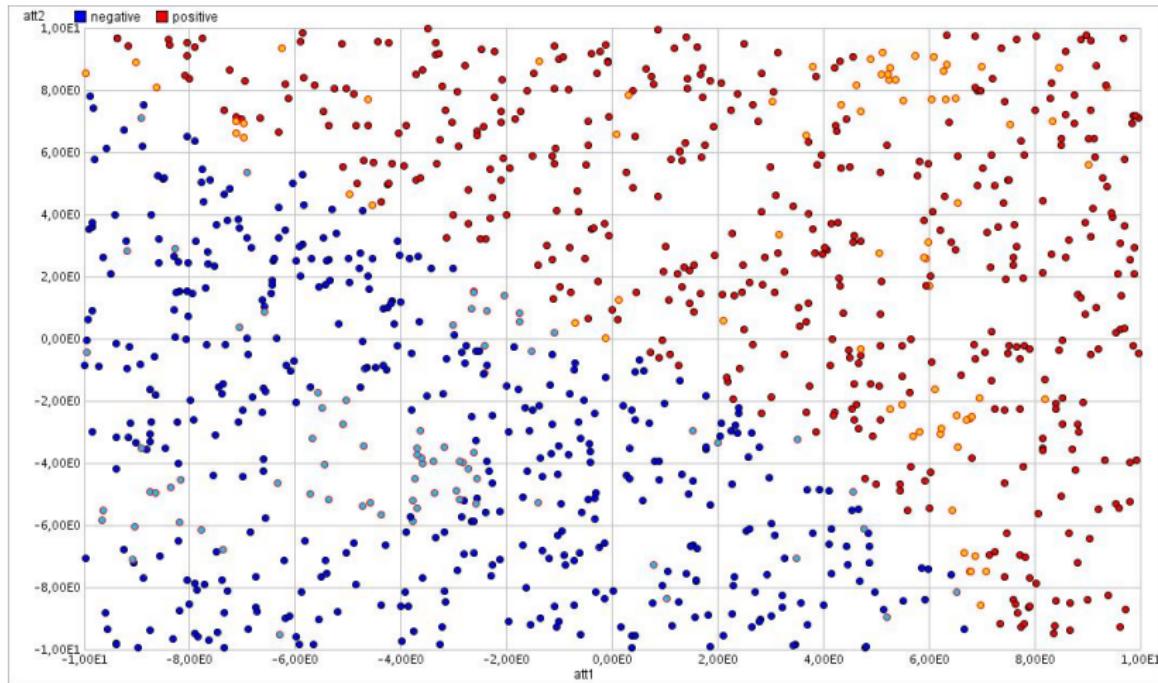
From Global to Local Models – Data



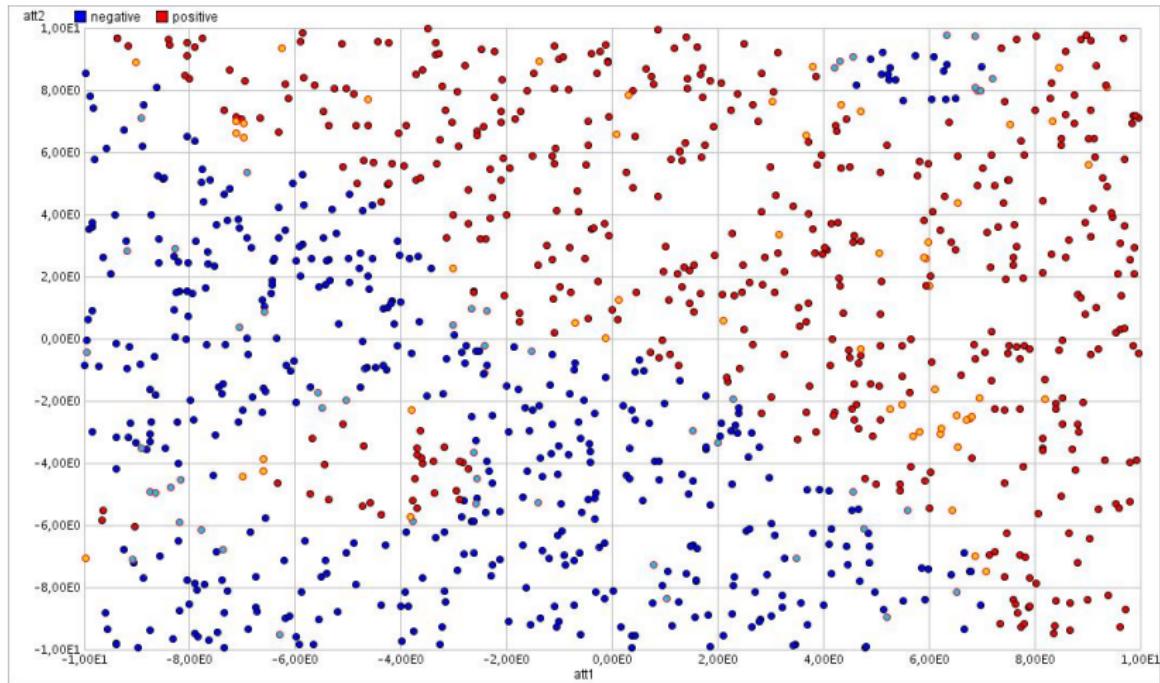
From Global to Local Models – Largest Margin



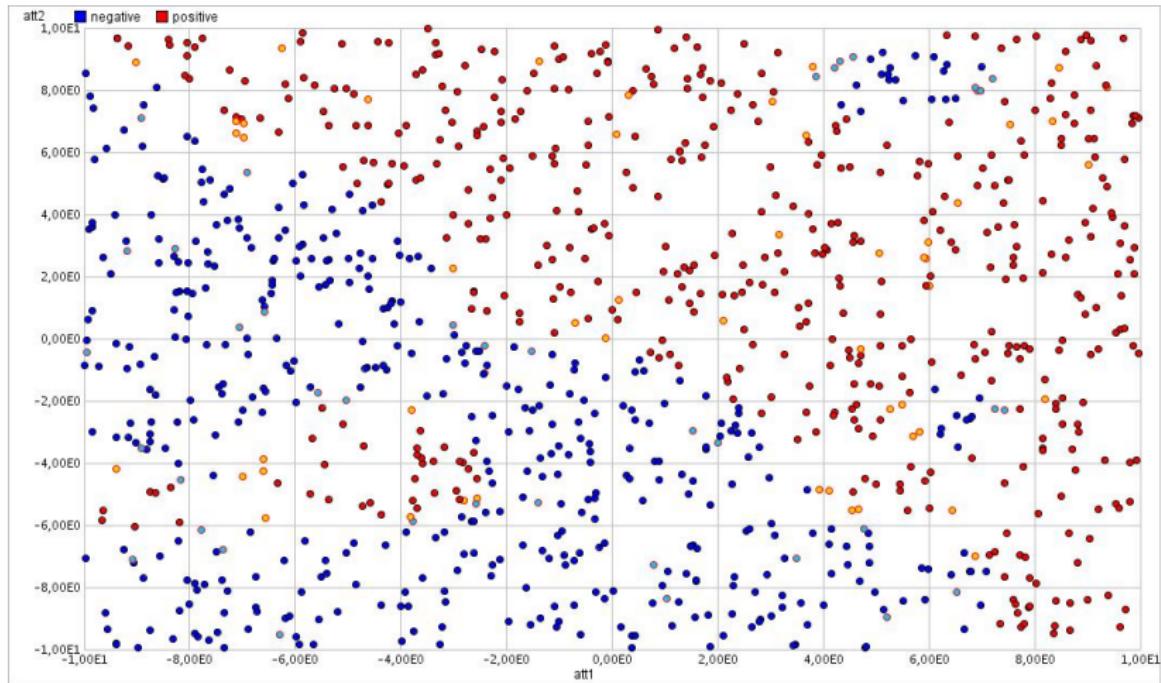
From Global to Local Models – The Global Model



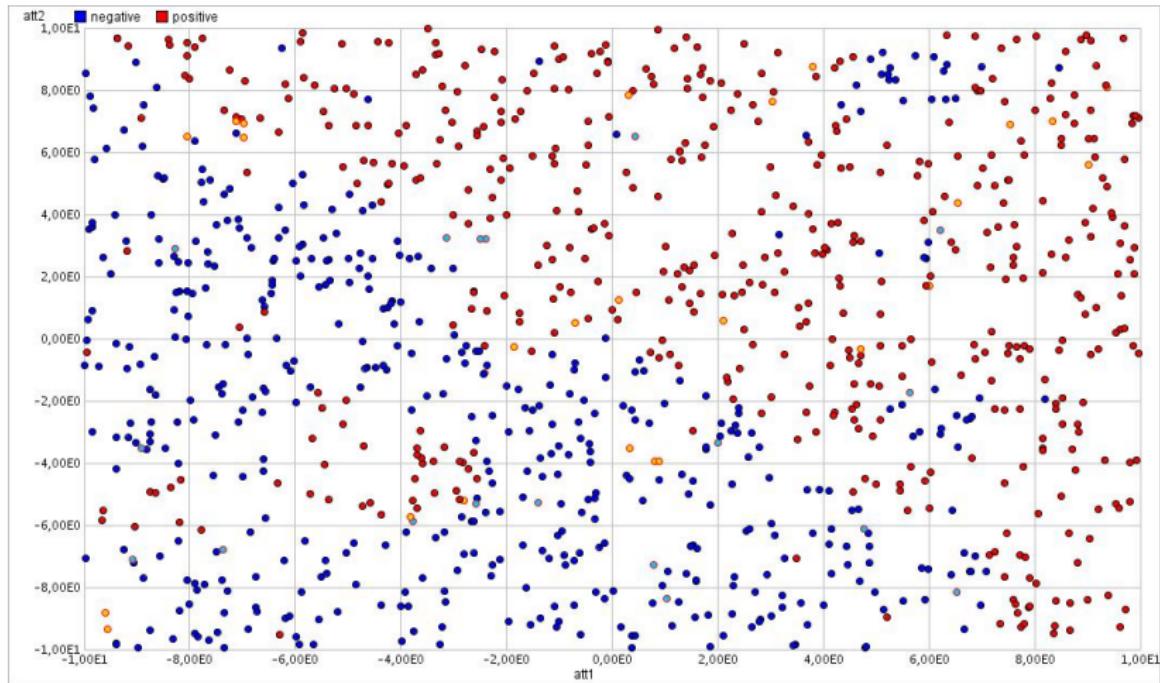
From Global to Local Models



From Global to Local Models – Best Generalization



From Global to Local Models – Lowest Training Error



Main Advantage of MO-SVM

- The generalization ability plotted on the right sides clearly shows the location where overfitting occurs
- Please note that these plots could also be generated for usual SVM by iteratively applying the learner for different parameter settings but ...
- ... this will need one learning run for each possible value of C!

Full Knowledge in One Single Run!

The MO-SVM approach has the advantage that all models are calculated in one single run which is far less time-consuming

Main Advantage of MO-SVM

- The generalization ability plotted on the right sides clearly shows the location where overfitting occurs
- Please note that these plots could also be generated for usual SVM by iteratively applying the learner for different parameter settings but ...
- ... this will need one learning run for each possible value of C!

Full Knowledge in One Single Run!

The MO-SVM approach has the advantage that all models are calculated in one single run which is far less time-consuming

Main Advantage of MO-SVM

- The generalization ability plotted on the right sides clearly shows the location where overfitting occurs
- Please note that these plots could also be generated for usual SVM by iteratively applying the learner for different parameter settings but ...
- ... this will need one learning run for each possible value of C!

Full Knowledge in One Single Run!

The MO-SVM approach has the advantage that all models are calculated in one single run which is far less time-consuming

Main Advantage of MO-SVM

- The generalization ability plotted on the right sides clearly shows the location where overfitting occurs
- Please note that these plots could also be generated for usual SVM by iteratively applying the learner for different parameter settings but ...
- ... this will need one learning run for each possible value of C!

Full Knowledge in One Single Run!

The MO-SVM approach has the advantage that all models are calculated in one single run which is far less time-consuming

Conclusion

- Trade-off between training error and model complexity is now explicitly stated
 - The optimization problem of SVM is divided in two parts and both parts are transformed into their dual form
 - The optional usage of a hold-out set is suggested in order to guide the user for the final selection of a solution
 - All information from the most global to the most local models is gathered in a single run!

Conclusion

- Trade-off between training error and model complexity is now explicitly stated
 - The optimization problem of SVM is divided in two parts and both parts are transformed into their dual form
 - The optional usage of a hold-out set is suggested in order to guide the user for the final selection of a solution
 - All information from the most global to the most local models is gathered in a single run!

Conclusion

- Trade-off between training error and model complexity is now explicitly stated
 - The optimization problem of SVM is divided in two parts and both parts are transformed into their dual form
 - The optional usage of a hold-out set is suggested in order to guide the user for the final selection of a solution
 - All information from the most global to the most local models is gathered in a single run!

Conclusion

- Trade-off between training error and model complexity is now explicitly stated
 - The optimization problem of SVM is divided in two parts and both parts are transformed into their dual form
 - The optional usage of a hold-out set is suggested in order to guide the user for the final selection of a solution
 - All information from the most global to the most local models is gathered in a single run!

