GRDT: Enhancing Model-Based Learning for Its Application
in Robot Navigation

Volker Klingspor

Universitat Dortmund
Lehrstuhl Informatik VIII
D-44221 Dortmund
volker@ls8.informatik.uni-dortmund.de

Abstract

One central point of machine learning in general and inductive logic programming
in special 1s the search space of the algorithms, defined by the control structure of
the algorithms and additional knowledge. Since the sensible search space differs from
domain to domain, a flexible way to describe this space is desired. To demonstrate
problems occuring while using existing algorithms, we introduce learning tasks in a
real world domain: concept learning for navigation of autonomous mobile robots. We
point out differences between three existing algorithms used within this framework
and their results. Since all of these algorithms have problems in solving the tasks, we
developed GRDT (grammar based rule discovery tool), an algorithm combining their
ideas and techniques. In GRDT a two level description language is used for describing
the hypothesis space. A grammar is used to define a set of second order rule schemata
and these schemata then define the hypothesis space itself.

1 Introduction

In contrast to most of the robot systems actually used, future systems must have more
user-friendly human-system interfaces, must be adaptable and portable to new, previously
unknown environments, and must be able to handle uncertain and unknown events (Dill-
mann, 1993). Presently, commands are most often given on the level of real coordinates
or at best by names of objects of which the positions the system knows. Flexible and
user-friendly systems demand for commands in terms of concepts. Then, the user is not
called to specify concrete objects like a specific door in the command. Instead, he can
tell the robot to perform an action with any instance of a concept, e.g., he can tell the
robot to go to the next a priori unknown door and enter the room. To execute this kind
of commands, the robot must be able to classify the objects it perceives with its sensors,
i.e., to assign them to concepts. Additionally, the system must be able to perform actions
with these objects like moving through the doorway of the door found. K. Morik and
A. Rieger (Morik and Rieger, 1993) have shown that this requires perceptual features and
action features to be integrated, and perceptual features to be action oriented and action
features to be perception oriented. They developed a representation for these operational
concepts based on first order language.

To simplify the adaptation and the transmission of systems to new environments and
new tasks, the rules to classify the perceptions should be learned by the system. In recent

\

—\=
N

/ Trace 24

-—

S

Figure 1: Room with traces

years, many algorithms for machine learning were developed, some of them able to learn
in restricted first order logic. Nevertheless, applying these algorithms to real systems like
autonomous mobile robots is a another challenging task.

In this paper, we will first shortly present the representation of the perceptions of a
mobile robot and a scenario used for learning, both developed by K. Morik and A. Rieger.
In Section 3, we will describe three different inductive logic programming (ILP) algorithms.
We will also describe the results we got from applying these learning algorithms to our
learning tasks. In Section 4, the new algorithm GRDT combining several ideas of these
algorithms is presented, able to solve the learning problems we introduced. The paper
ends with a short conclusion in Section 5.

2 Representation and Scenario

Suppose we have a robot moving through a known environment and measuring distances
to objects while moving, using ultrasonic sensors. In our experiments, we used data of
traces through a simple room (Figure 1)!. Figure 2 shows the measurements the robot
gets from a left side sensor of the robot, called sensor 5, while entering the room diagonally
through the doorway. This path is indicated as thicker line in Figure 1. The x-axis displays
the time points of the measurements, the y-axis shows the measured distances. In the first
part of the trace, the sensor gets no echo because the left hand side of the robot is empty.
Then, the robot senses two times the door frames and three times the side of the cupboard.
During the next three measurements, again the robot gets no echo, because the front side
of the cupboard does not reflect the sonar beam back to the robot. The last measurements
represent the wall.

!The data were prepared by the University of Karlsruhe.

sensed_distances

Distances

14 16 18 22 2§ d

Timepoints

Figure 2: Distances measured by sensor 5 in trace 24

To be able to apply the sensed distances to more than one object, it is necessary to
construct features from these measurements, i.e., we need a first step of abstraction. For
this task, a sequence of measurements of a single sensor is divided into intervals of linear
changes of measured distances. A symbol is attached to every interval dependent on the
gradient of its function. The resulting sequence of these basic features for the example is:?

no_measurement (trace24, Or, sensorb, 1, 14,).

decreasing (trace24, Or, sensorb, 14, 15, -22).
incr_peak (trace24, Or, sensorb, 15, 16, 47).
decreasing (trace24, Or, sensorb, 16, 18, -30).
no_measurement (trace24, Or, sensorb, 18, 22,).

decreasing (trace24, Or, sensorb, 22, 26, -30).

The arguments of these predicates are the trace number, the orientation of the sensor
relative to the world coordinates, the sensor number, the start and the end time point of
the sequence and a value equivalent to the gradient. For example, the last line represents
a sequence of decreasing measurements, measured by sensor 5 in trace 24 from the 22th
to the 26th time point.

For characterizing classes of objects, chaining of basic features allows different numbers
of measurements while perceiving one of the objects of a class, e.g., if the length of the
objects or the speed of the robot differs from case to case. The chain of time points
determines the need of a representation language higher than propositional logic, we have
chosen Horn logic.

Since we want to learn from classified examples, the user must classify the traces, e.g.:
“in trace 24, the robot moved diagonally through the doorway”. From this classification,
from information about the environment, and from the measurements, examples at differ-
ent representation levels are generated. The first level describes situations, in which a sin-
gle sensor sensed a particular constellation of edges. For example, the fact s_jump(trace24,
sensorb, 14, 18, diagonal) represents that sensor 5 sensed a jump in trace 24 from time

?Learning the meaning of basic features, i.e., how to compute them, is another learning task, that will
be solved by the University Dortmund within the project BLEARN-II.

point 14 to 18, i.e., two parallel walls got sensed in sequence, while the robot moved di-
agonally along this jump. In our example, these two walls are the door frame and the
side of the cupboard. At the next representation level, situations are gathered, in which
different sensors belonging to the same group of sensors out of several given groups sensed
the same single sensor features. E.g., the fact sg_jump (trace24, left_side, 14, 18, diagonal)
expresses that the left side sensors sensed a jump, while the robot moved diagonally along
the jump. At the highest representation level, we combine features of different sensor
groups, e.g., the left side and the right side sensors, to describe the perceptual part of
operational concepts.

Our aim is to use machine learning to find rules describing the concepts of each level
in terms of the next lower level. First, we need rules describing single sensor features by
patterns of basic features. Such a rule could be:

decreasing (Tr, Or, Se, Ty, To, 1) &
incr_peak (Tr, Or, Se, Ta, T3,) &
decreasing (Tr, Or, Se, T3, T4,)

— s_jump (Tr, Se, Ty, T4, diagonal).

The second kind of rules are sensor group feature descriptions. For these rules, we need
additional knowledge about the class membership of the sensors in the particular traces.
We try to learn rules combining single sensor features like in the following rule:

sjump (Tr, Sey, Ty, T, diagonal) &

sjump (Tr, Seq, T3, T4, diagonal) &

sclass (Tr, Sey, left_side) & sclass (Tr, Seq, left_side) &
dlsuce (Ty, T3) & dlsuce (T2, T4)

— sgjump (Tr, left_side, Ty, T4, diagonal).

The first two premises express that two sensors perceived a jump while the robot moved
diagonally along this jump. The next two premises guarantee that these two sensors belong
to the sensor class left_side. The last two premises relate the start and end time points to
be sure that the perceptions are chronologically close enough. These rules should classify
the perceptions of the robot while it moves in new and unknown environments enabling
the robot to interpret commands of the conceptual level and to execute actions according
to these commands. Also, it can monitor whether the actions are performed correctly,
because it can compare the measurements it got with the expected perceptions and it can
change the further planned actions, if it sensed unexpected values (Klingspor, 1994b).

In this paper, two learning task are used to describe the behavior of the learning
algorithms. In the first task, we try to learn descriptions for the single sensor feature s_jump
from positive examples. We calculated 2129 basic features about 9 different predicates
from 17472 measurements in 28 traces. In these traces, 206 times a sensor perceived a
jump. For the second task, we used the 206 occurrencies of s_jump to learn descriptions
for sensor group features. Because of the large number of sensor classes we defined, we
have 225 positive examples of the sensor group feature sg_jump.

3 Different ILP algorithms

Efficient machine learning in full first order logic is impossible because first order logic is
undecidable. Most first order logic learners operate on more or less restricted Horn logic.

The most frequent restriction used by these ILP-algorithms is to abstain from proper
functions. There are additional syntactical restrictions like learning linked clauses only,
i.e., clauses with all the arguments linked via the premises to the head arguments of the
clause. The restriction used determines the complexity of the learning task and possibly
the need of further semantical heuristics leading the search into areas of special interest
and pruning parts that seem to be uninteresting.

I will now present three ILP-algorithms. The first one learns linked Horn clause pro-
grams using a semantical heuristic useful in many domains. The other two algorithms use
different kinds of an explicit definition of the hypothesis space, so that it can be reduced.
In contrast to the first two algorithms, the third one performs a complete search in the
restricted hypothesis space.

3.1 FoIL

FOIL (Quinlan, 1990) is presently one of the most cited ILP-algorithms. It attracts at-
tention because of applicability and good results in various domains without the need of
additional knowledge, e.g., in form of syntactical structures as described in the next two
sections.

3.1.1 General description of FoIL

FOIL’s hypothesis space is linked Horn clause programs. To handle this huge space, parts
of it will be pruned semantically during learning by a heuristic. This heuristic leading
search through the hypothesis space to find a short path to a good hypothesis, is the
information gain, well-known from the propositional learner 1p3 (Quinlan, 1986).

FOIL’s algorithm can be described as follows:

— while positive examples are still uncovered by the previously learned rules

— while negative examples are still covered by the recent hypothesis

— build all specializations of the recent hypothesis by extending the clause by
a linked literal

— calculate the information gain for all these specializations

— choose the specialization with the best information gain for the next iter-
ation

The hypothesis space is searched depth-first, the choice of the next hypothesis only
depends on the heuristic. Clearly, using a heuristic, it is possible that interesting parts of
the hypothesis space are pruned erroneously. FOIL’s heuristic evaluates a hypothesis only
dependent on the newly added literal. This makes the system shortsighted, since it rejects
the addition of literals of which the positive effect is seen only after more literals have
been added. So FoOIL cannot learn all rules of its hypothesis space: it is an incomplete
algorithm.

3.1.2 Learning results in the doorway domain

We applied FOIL to our two learning tasks. In the first case, learning patterns of basic
features to describe single sensor features, FOIL learned a single rule:

no_measurement (Tr, . Se, Ti, T1, D&
stable (Tr, . Se, Ty, T2)&
incr_peak (Tr, . Se, Ta, T3,)&
something_happened (Tr, ., Se, T3, T,)&
straight_to (Tr, - Se;, T _T;,)

— s_jump (Tr, Se, Tl, T3, M)3

This rule might separate the positive examples from the negative examples?, but it
is an unsatisfying rule for our application for two reasons. First, with this rule, the
classification of s_jump not only depends on the measurements during the perception of
the jump, but also on the measurements before and after the jump (premises 1 and 4).
Second, the pattern of the specified sensor is combined with perceptions of an arbitrary
other sensor possibly directed to another orientation. This constellation is only given in
the environment we learn from, it cannot be expected in other environments.

FOIL was also applied to the second learning task: learning descriptions for sensor
group features. The result shows that exclusively using of information gain is insufficient
to lead the search. FOIL needs much time for learning, we cancelled the experiment after
26 hours with only 3 learned rules. Additionally, the learned rules cannot be used for our
task, because they relate a given situation with arbitrary sensors, traces and so on. The
longer the rules become, the more premises are added relating many uninteresting time
points of arbitrary sensor features.’®

Since FOIL, one of the best learning algorithms with heuristic search, is unable to learn
the intended concept descriptions, we need algorithms restricting the hypothesis space by
syntactical structures to lead the learning into areas of expected rules.

3.2 GRENDEL
3.2.1 General description of GRENDEL

GRENDEL (Cohen, 1991; Cohen, 1993) is a learning algorithm based on roIL. Represen-
tation language, search strategy, and hypothesis evaluation are identical. The important
difference is the way GRENDEL specializes hypotheses. This specialization can be deter-
mined by the user with a antecedent description grammar explicitly defining the hypothesis
space. This grammar is an extended context free grammar: instead of usual terminal and
nonterminal symbols, terminal and nonterminal literals are used. In each specialization
step, only those specializations will be generated and tested that can be derived by the
grammar in one step. Then, all these new hypotheses will be evaluated. GRENDEL uses
a heuristic similar to the information gain used by FoiL. In difference to FOIL’s heuristic
this one does not only depend on the part of the hypothesis generated up to now, i.e., on
the terminal literals of the hypothesis. Instead, GRENDEL builds all further grammatical
derivations of the hypothesis and calculates the information gain also based on the further
covered and uncovered examples. So GRENDEL is more foresighted than FOIL.

?Variables beginning with an underscore do not occur twice, they are anonymous.

*FOIL uses the closed world assumption, so examples not given are considered negative ones.

®A more detailed description of the learned rules and the used hypothesis space restrictions can be
found in (Klingspor, 1994a).

3.2.2 Learning results in the doorway domain

We applied GRENDEL to our two learning tasks. We had to define grammars for both tasks.
For the first task, defining the grammar was easy, but the resulting grammar was large,
because for each predicate, a grammar rule deriving this predicate from a nonterminal
is needed. GRENDEL learned all patterns describing sensor features in short time. The
learned rules corresponds exactly to the expected rules described in Section 2.

In contrast to the good result of the first task, the result of learning sensor group feature
descriptions was unsatisfactory. First, it was very complicated to create a correct grammar.
Only lazy macros® enabled us to specify that some predicate names must be the same in
different steps of specialization. Second, GRENDEL needs much time for each hypothesis
test, because it calculates the information gain dependent on further derivations of the
grammar and the number of these derivations is very high. We cancelled the experiment
after a long time without having learned any rule. But the generated hypotheses look
promising.

GRENDEL’s grammars have two weaknesses. First, the predicate names itself occur in
the grammar. This results in large grammars, which must be changed whenever the set
of predicates of the knowledge base changes. The second problem concerns rules where
the same predicate multiple occurs in the premise. For a single predicate it is easy to
generate a grammar. The following rule, e.g., generates a sequence of chained predicates

p (i, tig1):"
nt (tl) ~ p (tl,tz), nt (tz)

But if more than one predicate exist, for which these sequences should be built, the
grammar becomes complex, because for each sequence an own grammar branch must be
generated:

it (t) ~ nty (t1):
0t (t) ~ nty (t1):

i (t1) ~ nt, (t).

ntq (tl) ~ p1 (tl,tz), ntq (tz)
nty (t1) ~ p2 (t1,t2), nta (t2).

nt, (tl)'\’* Pn (tl,tg), nt, (tz)

The grammar becomes even more complex, if each recursion is more complex. This prob-
lem can be weaken by using lazy macros, too. But the resulting grammars remains com-
plex. This problem could be solved, if it is possible to specify, that an actually occurring
predicate should also occur in a further recursion at a specific place.

SGRENDEL expands a lazy macro A ~» B where P by proving P and adding a grammar rule A ~+ Bo,
where o is the used substitution, for every possible proof (Cohen, 1993). Since only a finite set of context
free rules are added, the language remains context free.

"In all examples, variables are written upper case, objects and predicates lower case. Objects and
predicates are written sans serif, nonterminals slanted, and learnable variables used by RDT are written
bold face. To distinguish them from implication, arrows in grammar rules are written ~-.

BF (Tr, - Se, Tl, Tz, _)
— SF (Tr, Se, Ty, T2, Movement)

BF (Tr, - Se, Tl, Tz, _) &
BF (Tr, — Se, Tz, T3, _)
— SF (Tr, Se, Ty, T3, Movement)

BF (Tr, - Se, Tl, Tz, _) &
BF (Tr, - Se, Tz, T3, _) &

BF (Tr, - Se, T5, T6, _) &
BF (Tr, _, Se, Ts, T7,)
— SF (Tr, Se, Ty, Tz, Movement)

Figure 3: RDT’s rule schemata to learn single sensor feature descriptions

3.3 RDT

The last learning algorithm to be presented, RDT (Kietz and Wrobel, 1992), is based on
ideas of W. Emde (Emde, 1987). rDT differs significantly from the two previously described
algorithms. The representation formalism of MOBAL (Morik et al., 1993), into which rRDT
is integrated, is more powerful than FOIL’s and GRENDEL’s, because negated literals are
allowed to occur in the clauses. Additionally, RDT is able to distinguish positive, negative,
unknown, and contradictory examples.

3.3.1 General description of RpT

To restrict the hypothesis space, RDT uses second order rule schemata (also called rule
models) describing sets of learnable rules. Their predicate variables are successively instan-
tiated during learning. After each instantiation, RDT evaluates the new possibly partially
instantiated hypothesis. This evaluation is quite different from the way the other algo-
rithms evaluate the hypotheses. It counts the number of covered positive and negative
examples, the number of uncovered positive examples, the total number of examples, and
how many additional facts can be derived by this hypothesis. The user can build an arbi-
trarily complex expression using these items, and hence decide in which case a hypothesis
will be accepted.

In contrast to the algorithms previously described, RDT searches through the whole
hypothesis space. Only if no further specialization of a hypothesis leads to an acceptable
rule, this part of the hypothesis space will be pruned, since completeness is preserved in
this case. This case occurs, for example, if the number of covered positive examples of the
tested hypothesis is less than the number required to accept the hypothesis.

3.3.2 Learning results in the doorway domain

Since in RDT the structure of the expected rules can be specified and this structure is
well known in our domain, RDT learns good rules in both applications. But we need a

large number of rule schemata to solve the learning task. For the first task, we need one
schema for each expected pattern length (Figure 3). A second problem concerns the time
RDT needed. It orders the rule schemata by #-subsumption (Plotkin, 1970). This allows
pruning, if a hypothesis is already too special to be accepted. But the used schemata are
not comparable by #-subsumption, none of two schemata is more general than the other,
because of the chain of time points and there binding to the conclusion. Therefore, exactly
the same partial patterns were tested for each schema. Clearly, this behavior slows RDT
down. It needed about twenty hours to learn exactly the same rules as GRENDEL did.

In the second learning task, we have more complicated rule schemata. Nevertheless,
learning is fast, because the breadth of the hypothesis space, i.e., the number of instantiable
predicates, is small. Unfortunately, it is again necessary to enter rule schemata of different
length, thus increasing the effort of entering and changing schemata and decreasing the
clarity of the whole set of schemata.

4 GRDT: Learning with rule schemata defined by gram-
mars

Testing and comparing the different learning methods yields the following results:

e The information gain heuristic does not guide learning to the desired hypotheses.
Additional knowledge about the syntactical structure of the preferred rules is neces-
sary.

¢ Rule schemata and grammars can be used to describe these structures, but rule
schemata are unwieldy because of the static length of each schema. Grammars of
GRENDEL are unwieldy because of the predicate names to be fixed in the grammar
and the problem of demanding for the same predicate names in different iterations.

e The extended information gain heuristic of GRENDEL may be very costly.

e The choice of the confirmation criterion of RDT is much more flexible than the
pruning algorithms used by FOIL or GRENDEL.

Why not combining ideas of GRENDEL and RDT to get a more powerful learning al-
gorithm for our domain? The result is an algorithm using grammars to describe rule
schemata instead of defining rules immediately. These rule schemata will be created suc-
cessively during learning and will be used by an RDT-like algorithm instantiating the
predicate variables and testing the generated partial hypotheses.

4.1 Grammars defining sets of rule schemata

We will now introduce the use of grammars defining sets of rule schemata with a sequence
of examples. In our first example, rules should be learned where an object must have two
specific properties to derive the goal concept. For this task the following rule schema can
be used:

P (X) & Q (X) — Concl (X)
RDT tries to find predicate names for the predicate variables Q and P satisfying the

confirmation criterion. This rule schema can be described with a single context free
grammar rule:

Concl (X) ~ P (X), Q (X).

In the case that the object X is not classified to a fized number of concepts to derive
the conclusion, rule schemata of different length are necessary:

P, (X) — Concl (X)
P, (X) & Py (X) — Concl (X)
P, (X) & Py (X) & P35 (X) — Concl (X)

The maximal necessary length of the rule schemata must be known a priori to learn all
suggested rules. The following grammar defines an infinite set of rule schemata of the
previous structure:

Concl (X) ~ it (X).
it (X) ~ P (X).
it (X) ~ P (X), it (X).®

Both previously described learning tasks can also be easily described with GRENDEL’s
grammars. The only difference is that GRENDEL requires fixing the predicate names to be
used in the grammar. Instead of this, GRDT determines them in runtime during learning.

In the next learning task rules describing transitivity should be learned. Therefore, an
arbitrary predicate occurs multiple times as premise of the rule:

P (Xl, Xz) — Concl (Xl, Xz)
P (Xl, Xz) & P (Xz, X3) — Concl (Xl, X3)
P (Xl, Xz) & P (Xz, X3) & P (X3, X4) — Concl (Xl, X4)

These rules can be described by GRENDEL’s grammars only for a fixed set of predicate
names, for each one an own branch must be built. GRDT’s grammars allows the user to
use predicate variables as arguments of nonterminal literals. Then the predicate variables
of the different iterations which are normally different by definition are unified. The
following example shows a grammar defining the previously displayed rule schemata:

Concl (X;, X.) ~ it (P, X5, X.).
it (P, Xp, Xo) ~ P (X,, X.).
it (P, Xp, Xo) ~ P (X, X3), it (P, X3, X.).

4.2 The algorithm of GRDT

This section briefly describes the new algorithm GRDT. The algorithm starts with the goal
predicate as conclusion and generates the first hypothesis depending on the grammar. It
then searches the hypothesis space in depth-first order from general to special hypotheses.
Every iteration consists of three steps:

1. Specialization of the hypothesis
2. Test of the hypothesis
3. Evaluation of the test

#Predicate variables of two grammars rules are regarded to be different.

Specialization The specialization step consists of four alternatives:
e if the hypothesis contains an uninstantiated predicate variable,
try to find an admissible instantiation of this variable; (backtrackable)

e else if the hypothesis contains a nonterminal symbol,
try to expand the nonterminal; (backtrackable)

e else if the hypothesis contains a constant to be learned,
try to find an admissible value for this constant; (backtrackable)

e else
no further specialization is possible, start backtracking.

Hypothesis test The following items will be counted like RDT does:

e number of covered positive examples;

e number of faultily covered negative examples;

e number of uncovered positive examples;

e number of previously unknown facts that can be derived from the hypothesis;
e total number of examples.

If not all the predicate variables, constants to learn, and nonterminal symbols of the
hypothesis are instantiated, the hypothesis is called partial.

Evaluation of the test Depending on the hypothesis test and the parameter set, the
hypothesis will be evaluated. The following cases may appear:

e if the hypothesis is too special (i.e., the pruning criterion is satisfied)
stop specializing and start backtracking;

e else if the hypothesis is partial,
continue specialization;

e else if the hypothesis is accepted (i.e., the confirmation criterion is satisfied)
store the rule and start backtracking. Further specialization is not sensible because
all more special rules are subsumed by the learned one;

e else
the hypothesis is too general, but cannot be expanded; start backtracking.

4.3 Learning results

We tested GRDT with our two learning tasks. The used grammars are displayed in
Figures 4 and 5. First we will describe the way the grammar to learn single sensor features
(Fig. 4) will be expanded and the predicate variables instantiated. The algorithm starts
with the first grammar rule:

Concl (Tr, Se, Ty, Ta, M) ~ seq (Tr, Se, Ty, T2, M),
Since seq is a nonterminal, the first specialization is the expansion of seq, using the second
rule. This results in the rule schema:

BF (Tr, _, Se, Ty, Ty, -) — Conecl (Tr, Se, Ty, T, M).

Concl (Tr, Se, Ty, To, M)~ seq (Tr, Se, T, T, M).

seq (Tr, Se, T;, T2, M) ~ BF (Tr, _, Se, T;, Ta,).

seq (Tr, Se, T;, T2, M) ~ BF (Tr, _, Se, T;, T;,),
seq (Tr, Se, T;, T2, M).

Figure 4: A GRDT grammar to learn single sensor feature descriptions

Concl (Tr, SCI, Ty, T2, M) ~ sf_comb (Tr, SCI1, Ty, To, M).

sf_comb (Tr, SC1, Ty, T, M) ~ SF (Tr, Se, Ty, T2, M),

sclass (Tr, Se, SCI1),

sf_combl (SF, Tr, SC1, Ty, T2, M, Se).
sf_comb (Tr, SC1, Ty, T, M) ~ SF (Tr, Se, T1, T;, M),

sclass (Tr, Se, SCI1),

sf_comb?2 (SF, Diff, Tr, SC1, M, Ty, Tj).

sf_combl (SF, Tr, SCI, Ty, T2, M, Seyq) ~[]

sf_combl (SF, Tr, SCI, Ty, T2, M, Seyq) ~ SF (Tr, Se, Ty, T2, M),
sclass (Tr, Se, SCI1),
Seold < Se,
sf_combl (SF, Tr, SC1, Ty, T2, M, Se).

sf_comb2 (SF, Diff, Tr, SC1, M, T4, Tigst) ~ SF (Tr, Se, T1, Tigsr, M),
sclass (Tr, Se, SCI1),
Diff (Toa, T1).
sf_comb2 (SF, Diff, Tr, SC1, M, T4, Tias:) ~ SF (Tr, Se, Ty, T2, M),
sclass (Tr, Se, SCI1),
Diff (Toa, T1),
sf_comb2 (SF, Diff, Tr, SC1, M, Ty, Tigs1).

Figure 5: A GRDT grammar to learn sensor group feature descriptions

This rule schema contains the predicate variable BF, for which an acceptable instantiation
must be found. In our domain, this may be one of the basic features, e.g., increasing.

After this instantiation, the rule schema cannot be further specialized, because no
further nonterminal, no predicate variable and no constant to be learned exists. So the
algorithms starts backtracking using the third rule. Applying this rule results in the rule
schemas:

BF (Tr, _, Se, Ty, Ta, _) & seq (Tr, Se, To, T3, M) — Concl (Tr, Se, Ty, T., M).

Once again, GRDT tries to instantiate the predicate variable BF. If an acceptable predicate
could be found (increasing in our example), the hypothesis will be further specialized,
because the nonterminal seq can be expanded. The following two rule schemata will be
generated in the next steps:

increasing (Tr, _, Se, T1, T;,) &
BF (Tr, — Se, Tz, T3, _)
— Conecl (Tr, Se, Ty, T3, M).

increasing (Tr, _, Se, Ty, To,) &
BF (Tr, _, Se, T2, T,) &

seq (Tr, Se, T3, T., M)

— Conecl (Tr, Se, Ty, T., M).

This specialization step iterates until a hypothesis is found that is acceptable or too special.

For testing GRDT we used a confirmation criterion accepting a hypothesis if it covers
at least one positive example. RDT, GRDT and GRENDEL? learned exactly the same rules,
because RDT and GRDT always searches the complete hypothesis space and in our domain
GRENDEL is complete, too. Only the time they needed, displayed in Table 1, differs. FoIL
cannot be compared with the other algorithms. Because of its huge effort of memory, we
had to restrict the learning to only one of the 28 traces to get a result at all.

The grammar used for the second learning task (Fig. 5) must be explained, too. It
consists of two branches, sf_combl and sf_comb2, alternatively generated by the nonter-
minal sf.comb. SF and DIFF are predicate variables, which should be equal in each
iteration step. To reach this goal, they are passed to the next iteration as an argument
of a nonterminal literal. sclass is a fixed domain predicate which have not to be learned.
For the argument variables M and SCL constants must be learned. This grammar allows
to learn two kinds of rules. First, cases are covered where the different sensors of a class
sense the same feature at the same time, e.g.:

s_line (Tr, Sey, Ty, Ta, parallel) & sclass (Tr, Sey, front_right_corner) &
s_line (Tr, Seq, Ty, Ta, parallel) & sclass (Tr, Seq, front_right_corner) &
Se; < Ses

— sg_line (Tr, front_right_corner, Ty, To, parallel).

The second kind of rules covers cases, where the different sensors sense the features
with a fixed delay, e.g.

sjump (Tr, Sey, Ty, Tq, diagonal) & sclass (Tr, Seyp, left_side) &
sjump (Tr, Sea, T3, T4, diagonal) & sclass (Tr, Seq, left_side) &
sjump (Tr, Sea, Ts, Tg, diagonal) & sclass (Tr, Seg, left_side) &
d2succ (Tq, T3) & d2suce (T3, Ts) &

d2succ (Ta, T4) & d2suce (T4, Ts)

— sgjump (Tr, left_side, Ty, T, diagonal).

Again, we compared the learning results of the algorithms and again we used a confir-
mation criterion accepting hypotheses, if they cover one positive example for RDT. GREN-
DEL is applied without use of the noise handlings parts, also accepting hypothesis covering
one example. FOIL learned rules senseless for our domain and GRENDEL does not terminate
within two days. GRDT learned the same rules as RDT in one third of the time needed by
RDT. The time used by the algorithms for solving this task is also displayed in Table 1.

® GRENDEL was applied without use of its abilities to handle noise.

| | rexDEL | RDT | GrRDT || # Examples | # Facts |
s_line 35min | 8 h42 min | 1 h 42 min 718 2847
s_jump 24 min | 7 h 10 min | 1 h 37 min 206 2335
sg-line >2days |3h 9min | 1 h 13 min 267 3488
sgjump || > 2 days 30 min 9 min 225 2534
Table 1: Time used for learning
| FoIL | GRENDEL | RDT | GRDT
repr. function free | see FOIL function free | see RDT
formalism Horn logic Horn logic (neg.
literals allowed)
hypoth. space | linked clauses antecedent descr. | rule schemata grammars defin-
restrictions grammars ing rule schemata
search control top-down top-down top-down top-down
depth first depth first breadth first depth first
controlled by | contr. by gram- | contr. by rule | contr. by gram-
heuristic mar and heuristic | schemata, compl. | mar, complete
learning task 1 | insufficient result | good result, fast good result, slow | good result, fast,
simple grammar
learning task 2 | insufficient result | no result, com- | good result, fast, | good result, fast,
plex grammar large set of rule | grammar simpler
schemata than GRENDEL’s

Table 2: Comparison of the different learning algorithms

5 Conclusion

In this paper, we have presented a learning scenario in the domain of navigation of
autonomous mobile robots. We have compared the characteristics of three learning al-
gorithms, FOIL, GRENDEL and RDT (see also Table 2). Each of these algorithms lacks
some properties useful for our tasks. So we combined ideas of the algorithms and built
a new one, GRDT. We tested GRDT in our doorway domain and indicated that it is able
to learn efficiently in large domains, if the user can determine the syntactical structure of
the expected rules by a grammar. Thus, the algorithm can be applied to real domains like
learning descriptions for operational concepts.

The advantages of GRDT in contrast to GRENDEL are that the syntactical structure can
be defined more easily and the confirmation criterion be chosen more flexibly. Nevertheless,
there are problems left.

The specialization step, presented in Section 4.2, does not guarantee that the new hy-
pothesis is really more special than the one before. Having grammars defining derivations
without any specialization of the derived rules, the algorithm not necessarily terminates.
If it terminates, it fulfills a complete search through the hypothesis space defined by the
grammar. This behavior of GRDT is derived from the completeness of RDT.

Another problem concerns the way how to exclude multiple search of the same part of
the hypothesis space, if different derivations of the grammar yield the same hypotheses.

Acknowledgements

This work is partially funded by the European Community under the project B-Learn II
(P7274) and the Ministry for Sciences and Research of the German federal state Nordrhein-
Westfalen. [want to thank my advisor Katharina Morik for her ideas, suggestions and
critics, Joachim Hertzberg for reading drafts of the paper and all the colleagues at the
University of Dortmund, of the machine learning groups at GMD (St. Augustin) and the
University of Stuttgart (especially Birgit Tausend) for interesting discussions.

References

Cohen, W. W. (1991). Grammatically biased learning: Learning horn theories using an
explicit antecedent description language. Technical report, AT & T Bell Laboratories.
(submitted to ALJ).

Cohen, W. W. (1993). Rapid prototyping of ILP systems using explicit bias. Submitted
to the 1993 IJCAT workshop on ILP.

Dillmann, R. (1993). Entwicklungstendenzen und Anwendungen symbolischer Lernver-
fahren in der Robotik. In Herzog, O., Christaller, T., and Schiitt, D., editors, Grund-
lagen und Anwendungen der Kiinstlichen Intelligenz — 17. Fachtagung fir KI, Infor-
matik aktuell, pages 28-43, Berlin. Springer-Verlag.

Emde, W. (1987). Non-cumulative learning in METAXA.3. In Proceedings of 1JCAI-87,
pages 208-210, Los Altos, CA. Morgan Kaufman. An extended version appeared as
KIT-Report 56, Techn. Univ. Berlin.

Kietz, J.-U. and Wrobel, S. (1992). Controlling the complexity of learning in logic through
syntactic and task-oriented models. In Muggleton, S., editor, Inductive Logic Pro-
gramming, chapter 16, pages 335-360. Academic Press, London. Also available as
Arbeitspapiere der GMD No. 503, 1991.

Klingspor, V. (1994a). GRDT: Enhancing model-based learning for its application in
robot navigation. LS-8 Report No. 5, University of Dortmund, Lehrstuhl Informatik
VIII, D-44221 Dortmund.

Klingspor, V. (1994b). Reprasentation operationaler Begriffe. In Bergmann, R., Paulokat,
J., Schoeller, A.-M., and Wache, H., editors, Beitrdge zum 8. Workshop Planen und
Konfigurieren, pages 88-97, Kaiserslautern.

Morik, K. and Rieger, A. (1993). Learning action-oriented perceptual features for robot
navigation. In Giordana, A., editor, Workshop notes: Learning Robots of the ECML-
93. Also available as Research Report 3, Univ. Dortmund, Informatik VIII, D-44221

Dortmund.

Morik, K., Wrobel, S., Kietz, J.-U., and Emde, W. (1993). Knowledge Acquisition and
Machine Learning — Theory, Methods, and Applications. Academic Press, London.

Plotkin, G. D. (1970). A note on inductive generalisation. Machine Intelligence, 5:153-163.
Quinlan, R. (1986). Induction of decision trees. Machine Learning, 1(1):81-106.

Quinlan, R. (1990). Learning logical definitions from relations. Machine Learning, 5:239—
266.

