A Fast Dual Algorithm for Kernel Logistic
Regression

S. S. Keerthi*! K. Duan* S. K. Shevadef and A. N. Poo*

July 4, 2002

Abstract

This paper gives a new iterative algorithm for kernel logistic re-
gression. It is based on the solution of the dual problem using ideas
similar to those of the SMO algorithm for Support Vector Machines.
Asymptotic convergence of the algorithm is proved. Computational
experiments show that the algorithm is robust and fast. The algorith-
mic ideas can also be used to give a fast dual algorithm for solving
the optimization problem arising in the inner loop of Gaussian Process
classifiers.

Keywords: Classification, Logistic Regression, Kernel Methods, SMO
Algorithm.

*Control Division, Dept. of Mechanical Engineering, National University of Singapore,
Singapore-117 576

fCorresponding author : E-mail: mpessk@guppy.mpe.nus.edu.sg; Fax: +65 67791459

1Genome Institute of Singapore, National University of Singapore, Singapore - 117 528

1 Introduction

Kernel logistic regression (kLOGREG) (Jaakkola and Haussler, 1999; Roth,
2001; Wahba, 1997; Zhu and Hastie, 2001), like Support Vector Machines
(SVMs) (Vapnik, 1995) is a powerful discriminative method. It also has a di-
rect probabilistic interpretation in-built in its model that makes it suited for
Bayesian design. In this paper we develop a fast algorithm for kLOGREG
which is very much in the spirit of the popular SMO algorithm (Platt, 1998;
Keerthi, Shevade, Bhattacharyya, and Murthy, 2001) for SVMs. The algo-
rithm does not do any matrix operations involving the kernel matrix and
hence is ideal for use with large scale problems. It is also extremely easy to
implement.

In this paper we focus on the two category classification problem. The
multi-category problem will be addressed in a future paper. Throughout we
will use x to denote the input vector of the classification problem and z to
denote the feature space vector which is related to = by the transformation,
z = @(x). As in all kernel designs, we do not assume ¢ to be known;
all computations will be done using only the kernel function, K(z,#) =
() - ¢(Z), where “” denotes inner product in the z space. Let {(z;,v;)}
denote the training set, where z; is the i-th input pattern and y; is the
corresponding target value; y; = 1 means x; is in class 1 and y; = —1 means
x; is in class 2. Let z; = ¢(z;). Kernel-based classification methods solve
the following optimization problem:

. 1
min B = [l +C Y g(~yiw - 5 —b) (1)

where C' is a regularization parameter that is tuned using techniques such
as cross validation. For kLOGREG, g is given by:

g(€) = log(1 +¢) (1.2)

It is the negative log-likelihood function associated with the probabilistic

model 1
Problyle) = I =awmn (1.3)

Using the fact that w can be written as

w = Zaiyizi (1.4)
%

the problem (1.1) becomes a finite-dimensional convex programming prob-
lem:

min E = %Z Z aiajf{(mi,mj) +C Zg({z) (1.5)
i g i

where K (z;,2;) = yiy; K (zi, z;) and & = y;b— > ;K (zi, ;). Roth (2001)
and Zhu and Hastie (2001) solve (1.5) using Newton iterations that require
the inversion of K at each iteration. When the number of training examples
is even as large as a few thousands, such methods can become very expensive.
An alternative is to solve (1.5) using gradient based techniques. But such
methods cannot exploit certain structures present in the problem at hand.
In this paper we employ the dual formulation of the form developed by
Jaakkola and Haussler (1999). This leads to the replacement of (1.5) by
an alternate convex programming problem! with a structure that is very
similar to the dual arising in SVMs. This allows us to easily adapt the SMO
algorithm for SVMs (Platt, 1998; Keerthi et al., 2001), which optimizes only
two «;’s at each iteration (and therefore extremely easy to implement) and
is known to scale efficiently to large scale problems.

The optimization problem in (1.1) (with b omitted) also occurs in the
inner loop of Gaussian Process (GP) classifiers. Williams and Barber (1998)
mention that computational methods used to speed up the quadratic program-
ming problem for SVMs may also be useful for the GP classifier problems.
Our algorithm precisely achieves that objective.

The paper is organized as follows. In section 2 we develop the dual
of (1.1). Optimality conditions for the dual are derived in section 3. The
ideas here form the basis for the SMO algorithm for kLOGREG developed
in section 4. In this section we also prove that the algorithm is asymptot-
ically convergent. Some practical aspects of the algorithm are discussed in
section 5. Computational experiments comparing the SMO algorithm for
kLOGREG with the quasi-Newton BFGS method are reported in section 6.

! Although both, the dual problem and (1.5), involve ;’s as the variables and lead to
the same solutions, their structures are markedly different.

2 Dual formulation

To derive the dual of (1.1), we use ideas very close to those given by Cauwen-
berghs (2001). The optimization problem (1.1) can be rewritten as:

min = _]’ + € Y g(¢) (2.1a)

subject to: & = —yi(w-2z; —b) Vi (2.1b)
The Lagrangian for this problem is:

L=l + 03 g(6) + 3 aul-& ~vilw - 5 — b

The KKT optimality conditions are given by:

Vol =w— Z o; iz =0 (2.2a)
OL
- ; oy =0 (2.20)
oL ., .. o N
a_fz' =Cg'(&) —ai =0 Vi (2:2¢)

Note that w and &; can be expressed as functions of the o;’s using (2.2a)

and (2.2c):
Qg

w(e) =Y oz, &ilow) =g C) (2.3)
i
Let § = Z. Since §; can be expressed in terms of a;, consider the function

G(9) = o6& — g(&) (2.4)

Note that this function forms a part of L. Differentiating G with respect to
0 and using (2.2c), we get

dG _jd&i o e B
Therefore, G can be obtained using
G'(6) = ¢'71(9) (2-6)

It is easy to verify, by checking the non-negativity of second order derivatives,
that, if g is a convex function then G is also a convex function. For the case
of logistic regression g is given by (1.2) and we have:

9" (u) = log(u/(1 - u)),

G(8) = dlogd + (1 — §)log(1l — 9),
0 noey 1
1—_5), G"(6) = 50 =3) (2.7)
Let us now apply Wolfe duality theory to (2.1). The Wolfe dual corre-
sponds to the maximization of L subject to (2.2a)-(2.2¢), with w, b, &’s and
a;’s as variables. Using (2.2b), (2.3) and (2.4) we can simplify the Wolfe
dual as

G'(0) = log(

. 1 Q;
min f(a) = g lu(@)]? + 0 3 G(%)
subject to Z a;y; =0 (2.8)

This is a convex programming problem. Once the «;’s are obtained by
solving (2.8), the primal variables, w and &;’s can be determined using (2.3).
The determination of b will be addressed in the next section.

3 Optimality Conditions for Dual

To derive proper stopping conditions for algorithms which solve the dual
and also determine the threshold parameter b, it is important to write down
the optimality conditions for the dual. The Lagrangian for (2.8) is:

-1 ;
L=l +C36(5) - B aw: (3.1)
Define

F=w(e) 2z =Y ajyk(zi,z;)
J

and H; =F; + in'(%) (3.2)
The KKT conditions for the dual problem are:
oL :
e, ~ Hi— By =0 Vi (3.3)
(67}

Define:
byp = max H; i_up = argmax H; (3.4a)
7 (]

biow = min H; i_low = arg min H; (3.4b)
? ?
Then optimality conditions will hold at a given « iff
biow = bup (3.5)

Remark 1. In the above discussion, note that F;, H;, byp, i-up, biow and
i_low are all functions of . The functional dependancies have not been put
down to avoid notational clutter. These functions are appropriately defined
on the interior of some set A in the « space; for instance, in the case of g
given by (1.2), (2.7) demands that

A={a:0<a; <C Vi} (3.6)

Using (3.3), (3.2), (2.5), (2.3) and (2.1b), it is easy to see the close rela-
tionship between the threshold parameter b in the primal problem and the
multiplier, 8. In particular, at optimality, 8 and b are identical. Therefore,
in the rest of the paper 8 and b will denote one and the same quantity.

We will say that an index pair (4, j) defines a violation at « if

H; # Hj (3.7)

Thus, optimality conditions will hold at « iff there does not exist any index
pair (i,7) that defines a violation.

Suppose (i, j) satisfies (3.7) at some «. Then it is possible to achieve a
decrease in f (while maintaining the equality constraint,) axyr = 0) by
adjusting o; and «; only. To see this, let us define the following:

&i(t) = qy —I—t/yi , &j(t) =aj — t/yj ,
dk(t) = ay Yk # 1,7, (38)
and
o(t) = f(a(?)) (3.9)
Then it is easy to verify that
¢'(t) = H; — H, (3.10)

where H; and H; are evaluated at &(t). Since, by (3.7), H; — H; # 0 at
t = 0, a decrease in ¢ is possible by choosing ¢ suitably away from 0.

Since, in numerical solution, it is usually not possible to achieve opti-
mality exactly, there is a need to define approximate optimality conditions.
The condition (3.5) can be replaced by

Blow > bup — 27 (3.11)

where 7 is a positive tolerance parameter. Once (3.11) is achieved, we can

take
_ blow + bup

b 2

(3.12)

for use with (1.3).

A useful alternative for stopping and choosing threshold is to employ the
duality gap, Dgap = FE + f. By Wolfe duality theory: Dgap is nonnegative;
and, Dgap = 0 iff optimality holds. Thus we can use the stopping criterion:

Dgap < ¢€|f| (3.13)

where € is a suitable positive tolerance. Dgap can be computed as follows.
Given «a, let w(a) be given by (2.3) and £(b) be obtained from (2.1b). Then

Dgap = B+ f = [w(@)]? + CL[G(ED) +g(&®)] (314

Also, b can be chosen to minimize Dgap. This is equivalent to minimizing
> 9(&i(b)), which can be numerically done using Newton-Raphson itera-
tions.

4 SMO Algorithm for kKLOGREG

In this section we give the SMO algorithm for kLOGREG, for which g is
given by (1.2). A basic step consists of starting with a point o and optimizing
only two variables o; and ¢ to form the new point aneyw. Consider (3.8)
and (3.9). Given (3.10), the natural choice is 7 = i_up and j = i_low so as
to make |¢'(0)| as large as possible. Using the notations of section 3, we can
write the optimization problem and the resulting solution as

t* = arg mtin d(t) and apeyw = a(t*) (4.1)

The SMO algorithm can now be described. Let int A and 0A respectively
denote the interior and boundary of A.
SMO Algorithm for kLOGREG.

1. Choose o € int A and set r = 0.

2. If o" satisfies (3.5), stop. If not, set & = ", choose i = i_up, j = i_low
and solve (4.1).

3. Let o' t! = apew, 7 := 7+ 1 and go back to step 2.

We now establish the convergence of the SMO algorithm described above.
The absence of ‘hard boundaries’ in the optimization makes the proof of
convergence much simpler than corresponding proofs for SMO algorithm for
SVMs. We first establish a useful result.

Lemma 1. The following hold.

1. An optimal solution of (2.8) cannot belong to JA.
2. {"} Cint A.
3. f(a") = f(ah) > Ella™! — a7 |?

Proof. 1. Let a € 0A, i.e., there exists an i such that o; € {0,C}.
Suppose a; = 0 and y; = 1. By (3.2) and (2.7), H; = —oo. If there exists
J satisfying 0 < «; < C, then, by (3.10), it is possible to decrease f by
locally increasing o; and changing «; in the —y; direction. If there exists j

satisfying a; = 0 and y; = —1, then H; — H; = —oo and so it is possible
to decrease f by locally increasing o; and ;. If there exists j satisfying
a;j = C and y; = 1, then H; — H; = —oo and so it is possible to decrease

f by locally increasing «; and decreasing «;. Thus, the only way for a to
be optimal is to have ap = 0 for all k£ with y, = 1, and ap = C for all k
with yp = —1. But such an a does not satisfy the constraint >, y;a; = 0.
A similar proof can be given for other cases of a € 0A.

2. Consider a typical step with @ = o, given by (3.8), (3.9) and (4.1).
Assuming o” € int A we will show that o"*! € int A. Let: T; = (a;,b;) be
the interval {t : 0 < &;(t) < C'}; Tj = (a;,b;) be the interval {t : 0 < &;(t) <
C}; and T =T; NTj. Since 0 € T, T is the non-empty interval T' = (a, b)
where a = max{a;,a;} and b = min{b;,b;}. Let p;(t) = G(&;(t)/C) and
pj(t) = G(&;(t)/C). Since p(t) > 0 and G’ is unbounded at 0 and C, it is
easy to check that pj(a;) = —oo and p(b;) = oo. Similarly, p}(a;) = —o0
and pl;(bj) = oo. These imply that ¢'(a) = —oco and ¢'(b) = oo. Thus,
t* € (a,b) and so &1 = ey € int A.

3. The second order truncated Taylor series expansion of ¢ around t* is
given by

#1) = 6(%) + 58" D)t — 1) (42)

8

where % lies in between ¢ and #* and is dependent on them. The second order
derivative of ¢ has the expression

#0) =n+ 0"y 4 gn @y, (4.)

where) = K(z;,z;) — 2K (2, z;) + K(z;,z;). Using the expression for G”
in (2.7) we can get the bound, ¢"(t) > (8/C). Employing this in (4.2) and
setting ¢ = 0 we get

fla") = ™) = ¢(0) — p(t")
4 *

E(t)
2

C

Y

Har-l—l o ar||2

This proves Lemma 1. B
Theorem 1. The following hold.

1. {a"} has a limit point.
2. Every limit point of {a"} is a solution of (2.8).

Proof. 1. Since {a"} C A, it is a bounded sequence and therefore it has
at least one limit point.

2. Since the algorithm decreases f at each step and f is bounded below,
{f(a")} is a convergent sequence. By part 3 of Lemma 1 we immediately
get that {o" ! — "} converges to 0.

Now let {ar(s)}szo denote a convergent subsequence and a denote the
limit point in A to which it converges. For any r > 0, let i(r) = i_up(a”)
and j(r) = illow(a"), the two indices chosen for optimization at the r-th
step. Since ¢'(t*) = 0 for t* given by (4.1), we get from (3.10) that

Hiy (™) — Hjy(2) =0 (4.4)

Since there are only a finite number of indices, there exists at least one pair
(41, 71) such that iy = i(r(s)) and j; = j(r(s)) for infinitely many s. Let us
restrict ourselves to only such a subsequence. To keep notations simple, let
us rename the subsequence and take that

i1 =i(r(s)) =iup(@™®) and

j1=7(r(s)) = idow(@™®) Vs>0

Since byp and bey are continuous functions of «, we also get

bup() = bow(®@) = limSAOO[bup(ar(s))_blow(ar(s))]
= limypo[Hy, (7)) — Hy, (00®)] (45)
= limy,00[P(s) + Q(s) + R(s)]

where

)

(s) = [Hz'l(a’" s)) Hi (o s)“)]

Q(s) = [Hy(a" &+ — Hj, (ar(Fh)] (4.6)
R(S) = [Hjl(S)+1) HJI(r(s))]
(

Since {a")t — a7 ()} converges to 0, lim,_, o P(s) = 0 and lim,_,o R(s) =
0. By (4.4), Q(s) =0 Vs. Thus (4.5) yields byp(@) — biow(@) = 0. By (3.5),
@ is a solution of (2.8). This completes the proof. m

5 Practical Aspects

In practice, we can use (3.11) instead of (3.5) in step 2 of the SMO algorithm.
When this is done, one expects the algorithm to converge to an approximate
solution satisfying (3.11) within a finite number of steps.

The univariate optimization problem (4.1) can be solved using Newton-
Raphson iterations:

7:H—l — tl _ [¢I'(tl)]_1¢l(tl) (5.1)
starting from ¢ = 0 and until a certain accuracy is reached. (To get guaran-
teed convergence, we can suitably combine Newton-Raphson iterations with
some bisection steps when necessary.) With the required accuracy (3.11) in
mind, we can terminate the iterations in (5.1) when we find a point # sat-
isfying a tighter accuracy criterion, say ¢'(#') < 0.17. While ¢'(#!) is given
by (3.10), ¢"(t') can be computed using the formula (4.3).

Since the function Hj plays an important role in the algorithm it is
better to maintain a cache for { Hy}. At the end of the k-th step involving
indices ¢ and j, we can use the update formula

Hi(o™) = Hp(a") +yilof ™ — of|K (zk, z:)
—H/][o/"+1 aJ]K(mk,a:j)
= Hi(a)+t*[K(kai)—K(kaj)]

V ki,

For k = 4,5, Hy(&(t)) is needed at various ¢ values in order to implement
(5.1) via (3.10). For these two special indices, we can use the following

(5.2)

10

update formula:

Hy(G(#1Y) = Hy(a(th)
i (@ (1) — & (1) K (wx, 1)
(@ (¢)+ (1) K (.) (5.3)
+yr [G’(%> G'(21))
for k=1,7

At each step, the solution of (4.1) via (5.1), (3.10), (5.3) and (4.3) is
very efficient and takes very little (constant time) effort. The updating of
Hj, by (5.2) after completion of the solution of (4.1) requires O(m) effort
where m is the number of training examples; it forms the main bulk of the
computational cost.

The solution of (4.1) can come across a certain ill-conditioned situation
which requires special handling. Let &(t) be as in (3.8). From (3.10) and
(3.2) we have

0 = ¢(t*)=H — H,
= Fi— F+y,G'(28) — g6 (%

&)
Suppose the size of F; — F} is in the order of 10°. (Such sizes are very much
possible when a large value is tried for C.) Therefore, for H; — H; = 0 to
occur, we require the size of G'(%) and/or G’(g'gﬁ) to be in the order
of 10°, which is possible only if at least one of &;(t*), C — &;(t*), &;(t*), or
C — @;(t*) is extremely small, i.e., with size e~ 19" In such a case, a reliable
determination of ¢* is messy and difficult. As we now explain, an accurate
determination of ¢* in this case is actually unnecessary. Suppose t*, the
solution of (4.1) is such that one of the variables, say &;(t*) is extremely
close to 0 or C'. Since pushing @;(t) to an accurate value close to 0 or C has
only to do with setting ;G (% ait)) precisely and it has little effect on F; or
F}, the accurate determlnatlon of t* is unimportant. However, having said
that, we should also note that, if we decide to avoid a precise determination
of t* then the value of H; becomes unreliable and so such indices have to be
treated specially when checking for optimality.

To handle the issue cleanly and reliably, we proceed as follows. Let
p be a small number, say 103x machine precision. Define I = (0,C) and
I = (uC,C—pC). If, during the solution of (4.1), we come across a situation?

This situation usually arises when the solution process of (4.1) necessarily pushes
either &;(t) or &;(t) to a value outside I, i.e., at a t corresponding to an end point of I,
descent in ¢ requires a movement out of I.

11

at which we know that for an index, say 4, we have o;(t*) € I\I, then we
terminate the solution of (4.1) and place &;(t) at the appropriate end point
of I (i.e., uC or C — pC). In that case, since H; is unreliable we need to
treat such indices specially. So we put such indices in a special group called
NBG (Near Boundary group). Other indices whose a values lie inside I will
be put in NG (Normal group).

Once an index gets into NBG it is best not to involve it in further
optimization. However, at the end of the optimization, a check on indices
in NBG has to be conducted to be sure that moving such indices back to
NG does not lead to an improvement in objective function. Thus a two loop
approach is needed for the SMO algorithm.®? Since H;, i € NBG are not
reliable, at any stage of the algorithm we always compute i_up, byp, i_-low
and biow using only indices from NG. The inner loop repeatedly operates
steps 2 and 3 of the SMO algorithm, using (3.11) instead of (3.5) so as to
obtain finite termination. When the inner loop satisfies (3.11), we go into
the outer loop where each index, 1 € NBG is checked for optimality. This
is done by attempting to solve (4.1) twice, once with j = i_low and then
again with j = i_up. If, in each of these solutions we find that no change
has occured (i.e., i € NBG and «; remains at the same end point of I),
then optimality holds as far as 7 is concerned. If, during the outer loop, «;
changes even for one %, then the inner loop is entered again after the outer
loop is completed. On the other hand, if none of the a; has changed in
the outer loop, then optimality holds for all ¢ and the SMO algorithm is
terminated.

6 Numerical Experiments

First we empirically evaluate the computational cost of our SMO algorithm
for kLOGREG. Note that this algorithm solves the dual (2.8) and that
the corresponding primal formulation (2.1) is equivalent to the formulation
(1.5). To give a relative idea of the computational times associated with
the algorithm, we compare it with the BFGS algorithm (Liu and Nocedal,
1989) for solving (1.5). Since our algorithm solves the dual and the BFGS
algorithm solves the primal and they use different approximate stopping cri-
teria, comparison of their computational costs becomes difficult. To make
the comparison fair, we proceed as follows. First we solve the dual by our
SMO algorithm using (3.11) for stopping, and note the computing time re-

3This is somewhat similar to what is done in the SMO algorithm for SVMs.

12

Table 1: Properties of Datasets

Dataset Number of Number of Number of
Input Variables | Training Examples | Test Examples
Banana 2 400 4900
Splice 60 1000 2175
Waveform 21 400 4600
Tree 18 700 11692
Image 18 1300 1010

quired. The «, along with the value of b (see (3.12)) obtained by the SMO
algorithm are used to define a feasible (w,b) for the primal problem (1.1).
This (w,b) attains a certain (sub-optimal) value for the primal objective
function. The BFGS algorithm for solving (1.5) is then run until the above
value of the primal objective function is reached. The corresponding com-
puting time was used for comparison purposes.

The SMO algorithm for kLOGREG was implemented in C and executed
on the Sun Blade 100 workstation which uses 500 MHz UltraSPARC-IIe pro-
cessor and Solaris OS. For BFGS method, the freely available software at
the site http://www.ece.nwu.edu/ nocedal/lbfgs.html was used. The Gaus-

sian kernel K (z,Z) = exp(—%) was used. In all the experiments, 7 was
set to 1075. Five benchmark datasets were used: Banana, Image, Splice,
Waveform and Tree. The Tree dataset was originally used in (Bailey, Pettit,
Borochoff, Manry, and Jiang, 1993). Detailed information about the re-
maining datasets can be found in (Rétsch, 1999). Some details about these
datasets are given in Table 1.

Let us now explain how the a’s were initialized. For the SMO algorithm
it is necessary to have o; € (0,C) Vi. This is because G(«;/C) becomes
unbounded when o; = 0 or o; = C. Let my and ms denote, respectively,
the number of training examples in class 1 and class 2. The a’s were initial-
ized to m% and m% respectively for the examples in class 1 and class 2. This
initialization was used for both the SMO algorithm as well as the BFGS
algorithm. Unlike the SMO algorithm, the BFGS algorithm for (1.5) can
actually be initialized with any values for the a’s. However, it was observed
that there was no noticeable change in the CPU times for the BFGS algo-
rithm when the a’s were initialized to values other than those mentioned

13

Table 2: Computational costs for SMO and BFGS algorithms. Each unit
denotes CPU time (in seconds). “-” denotes the cases for which CPU times
were larger than 50000 seconds and hence training was abandoned.

Banana Splice ‘Waveform Tree Image
o2 =0.4297 o2 = 43.8856 o2 =15.2735 o2 =2.00 o2 =1.3776

log19 C SMO | BFGS SMO | BFGS SMO [BFGS SMO] BFGS SMO | BFGS

-4 0.6 23.0 18.0 1080.1 2.4 69.6 3.9 200.1 40.6 916.4

-3 0.6 15.2 16.7 588.2 2.1 42.4 3.4 153.4 41.2 520.2

-2 0.5 13.4 14.0 760.1 2.1 57.2 2.5 217.8 31.1 671.0

-1 0.3 55.4 10.2 2263.5 1.5 156.1 2.6 1138.6 25.5 3190.3

0 0.5 255.2 13.2 6081.2 2.9 478.8 4.0 5473.3 41.0 9220.7

1 1.2 963.1 22.1 28794.7 5.5 1881.1 7.2 43344.1 63.2 45528.3

2 4.0 3078.0 32.0 - 13.0 3510.0 20.7 - 99.0 -

3 41.6 - 40.0 - 20.5 5761.5 109.3 - 178.6

4 840.2 54.2 - 24.9 - 705.0 - 620.1

Table 3: Negative log-likelihood of the test set (NLL) and the fraction of
test set errors (TErr) for optimal Bayes classifier (Bayes), kLOGREG (KLR)
and SVM on the two dimensional artificial dataset.

Method | NLL TErr
Bayes | 2532.5 | 0.0490
KLR | 2663.4 | 0.0502
SVM | 2703.5 | 0.0507

above, for example setting all a’s to zero.

Just for the purpose of comparing training times o was fixed at a specific
value which is optimal for the generalization performance of kLOGREG. The
CPU times for different datasets are given in Table 2 as functions of C'. From
this table it is clear that the SMO algorithm for kLOGREG is very much
faster than the BFGS algorithm. The difference is much higher for large
values of C.

To see how the cost of the SMO algorithm scales with data size, an ex-
periment was done on the UCI “Adult” dataset (Merz and Murphy, 1998) by
gradually increasing the training set size from 1605 to 22696 in eight steps
and observing the training time. A line was then fitted to the plot of the log
of the training time versus the log of the training set size. The slope of this
line is the empirical scaling exponent. The datasets of different sizes that are
used are available in http://www.research.microsoft.com/ jplatt/adult. zip.
The training was done with both, the linear kernel (C' = 0.05) and the

14

Gaussian kernel (C = 1.0 and 02 = 10). The SMO algorithm for kLO-
GREG scales well on this dataset, with the scaling exponent of 2.2 on both,
the linear kernel as well as the Gaussian kernel; thus computing time is
roughly proportional to m?? where m is the training set size.

Kernel logistic regression minimizes the negative log-likelihood function
associated with a probabilistic model along with the regularizer term. Thus
it naturally provides values for posterior class probabilities. To see how good
the designed probabilistic model is, we first compared it with the optimal
Bayes classifier on an artificial two-category classification problem. For this
purpose, the examples in the two classes were generated using Gaussian dis-
tributions with the following means and covariance matrices: pu; = (—2,0),
A; = Diag{1,2}, p2 = (2,0), Ay = Diag{2, 1}. The priors for the two classes
were taken to be equal. 400 training points were used. A test set of size
20000 was generated using the same distributions.

Five-fold cross validation was used to tune the hyperparameters involved
in the problem formulations (that is, C' and o) and the test set error was
obtained using the optimal hyperparameter values for each of the formula-
tions. The initial search for optimal hyperparameters was done on a 10 x 10
uniform coarse grid in the (log C,log o) space, followed by a fine search on
a 20 x 20 uniform grid in the (C, o) space placed around the optimal pair
found by the coarse search.

Table 3 gives the negative log-likelihood of the test set and the fraction
of test errors for the optimal Bayes classifier and the kLOGREG method.
This table also gives the corresponding values for SVM with posterior prob-
abilities assigned in a post-processing step (Platt, 1999). Clearly, both kLO-
GREG and SVM perform quite well.

To further study and compare the generalization capabilities of kLO-
GREG and SVM methods, we determined their performance on the five
benchmark datasets mentioned earlier. As in the artificial dataset, five fold
cross validation was used to tune the hyperparameters C' and o. The test set
results are given in Table 4. It is clear that the generalization capabilities
of both methods are comparable. This observation is consistent with that
made by Platt (1999).

7 Conclusion

In this paper we have given a new algorithm for kernel logistic regression,
proved its convergence and discussed implementation aspects. The algo-

15

Table 4: Generalization performance comparison of kLOGREG (KLR) and
SVM on the five benchmark datasets.

NLL TErr
Dataset KLR | SVM KLR | SVM

Banana | 1328.44 | 1378.39 | .1245 | .1247
Image 85.12 83.26 | .0178 | .0198
Splice 615.22 | 542.61 | .0952 | .0989

Waveform | 1162.93 | 1137.70 | .1041 | .1063
Tree 3547.15 | 3116.32 | .1129 | .1123

rithm solves the dual problem. It is very much faster than the BFGS algo-
rithm applied to the primal problem. The algorithm scales nicely to large
size problems. It is also robust in the sense that on many complex datasets
we have tried there was not even a single case of failure. Its generaliza-
tion performance is comparable to that of SVMs. The in-built probabilistic
model makes it suitable for use with Bayesian design. In fact, the algorith-
mic ideas given in this paper can be easily adapted for solving the opti-
mization problem arising in the inner loop of Gaussian Process classifiers.
This optimization problem is simpler to solve than (1.1) since b is absent,
thereby getting rid of the equality constraint in (2.8). (In Gaussian Process
classifiers, the effect of b can be taken care of by adding a constant to the
kernel function.) Thus we can give an algorithm for (2.8) which iteratively
optimizes one «; at a time.

kLOGREG does not enjoy the sparsity property associated with SVMs.
(Note that a; € int A and therefore a; > 0 for all i.) Recent research by
Zhu and Hastie (2001) has initiated useful ways of incorporating sparsity in
kLOGREG. Further work along these lines, together with fast algorithms
such as the one in this paper are expected to make kKLOGREG an attractive
tool for solving classification problems.

References

Bailey, R. R., Pettit, E. J., Borochoff, R. T., Manry, M. T., and Jiang,
X. (1993). Automatic recognition of USGS land use/cover categories

using statistical and neural network classifiers. In Proceedings of SPIE,
Vol. 1944.

16

Cauwenberghs, G. (2001). Kernel machine learning: a systems per-
spective. Tutorial presented at ISCAS 2001. Available at
http://bach.ece.jhu.edu/svm/iscas2001/iscas2001.pdf.

Jaakkola, T., and Haussler, D. (1999). Probabilistic kernel regression mod-
els. In Proceedings of the Seventh International Workshop on Artifi-
cial Intelligence and Statistics. Morgan Kaufmann, San Francisco. See
http://alpha-bits. ai.mit. edu/people /tommi/papers/probker.ps.gz.

Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., and Murthy, K. R. K.
(2001). Improvements to Platt’s SMO algorithm for SVM classifier
design. Neural Computation, 13(3), 637-649.

Liu, D. C., and Nocedal, J. (1989). On the limited memory method for large
scale optimization. Mathematical Programming B, 45, 503-528.

Merz, C. J., and Murphy, P. M. (1998). UCI repository of
machine learning databases. Department of Information and
Computer Science, University of California, Irvine, CA. See
http://www.ics.uci.edu/ “mlearn/MLRepository. html.

Platt, J. (1998). Sequential minimal optimization: A fast algorithm for train-
ing support vector machines. Tech. rep. MSR-TR-98-14, Microsoft
Research, Redmond.

Platt, J. (1999). Probabilistic outputs for support vector machines and com-
parisons to regularized likelihood methods. In Smola, A., Scholkopf,
B., and Schuurmans, D. (Eds.), Advances in Large Margin Classifiers.
MIT Press, Cambridge, MA.

Ritsch, G. (1999). Benchmark datasets. Available at
http://ida.first.gmd.de/ “raetsch/data/benchmarks. htm.

Roth, V. (2001). Probabilistic discriminative kernel classifiers for multi-
class problems. In Radig, B., and Florczyk, S. (Eds.), Pat-
tern Recognition-DAGM’01, pp. 246-253. Springer. Available at
http://www-dbv.informatik.uni-bonn.de/pdf/roth.dagm01.pdf.

Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer
Verlag, New York.

17

Wahba, G. (1997). Support vector machines, reproducing kernel hilbert
spaces and the randomized GACV. Tech. rep. 984, Department of
Statistics, University of Wisconsin, Madison.

Williams, C., and Barber, D. (1998). Bayesian classification with gaussian
processes. IEEE Transactions on PAMI, 20, 1342-1351.

Zhu, J., and Hastie, T. (2001). Kernel logistic regression and the import vec-
tor machine. In Advances in Neural Information Processing Systems
13. Available at http://www.stanford.edu/ jzhu/nips01.ps.

18

