KDD-Cup 2004: Protein Homology Task

Winner’s Report: RKL Measure

Christophe Foussette
Al Unit
Dep. of Computer Science
University of Dortmund
44221 Dortmund, Germany

foussett@Is8.cs.uni-
dortmund.de

ABSTRACT

In this paper we describe the winning model for the perfor-

mance measure “lowest ranked homologous sequence” (RKL).

This was a subtask of the Protein Homology Prediction task
of the KDD Cup 2004. The goal was to predict protein ho-
mology for different performance metrics. The given data
was organized in blocks, each of which corresponds to a spe-
cific native sequence. The two metrics average precision
(APR) and RKL explicitly make use of this block structure.
Our solution consists of two parts. The first one is a global
classification SVM not aware of the block structure. The
second part is a k-NearestNeighbor scheme for block simi-
larity, used to train ranking SVMs on the fly. Furthermore,
we sketch our approach to optimize the root-mean-squared-
error and report some alternative solutions that turned out
to be suboptimal.

1. QUESTION

Two datasets were provided, one for training and another
for testing. The training set contained 145,751 and the test
set consisted of 139,658 examples. Each example could be
identified by an unique example id and was mainly made up
of 74 numerical feature values. These values described the
match between a native protein sequence and a sequence
that is tested for homology. Furthermore, every example
could be associated with this native protein sequence using
the so-called block id. Each block embodied about 1,000
examples. Both datasets did not contain any incomplete
information. The main goal was to predict which proteins
were homologous to a native sequence. For this purpose
the test set included a label which declared each example as
homologous or inhomologous.

Described here is the winning solution to minimize the aver-
age rank of the lowest ranked homologous sequence (RKL).
For the average prediction metric (APR) we submitted the
same predictions as for RKL, and were ranked fourth.
Both metrics have in common that they score rankings. This
means they do not depend on predicted values, but only on
the relative order of the matches within each block. Each
block is evaluated separately. The overall scores for RKL
and APR are computed by averaging.

SIGKDD Explorations.

Daniel Hakenjos
Al Unit
Dep. of Computer Science
University of Dortmund
44221 Dortmund, Germany

daniel.hakenjos@cs.uni-
dortmund.de

Martin Scholz
Al Unit
Dep. of Computer Science
University of Dortmund
44221 Dortmund, Germany

scholz@ls8.cs.uni-
dortmund.de

For each example of the test set a real-valued prediction
should be made, which can be thought of as a confidence
score or probability of examples to be homologous. For each
block these confidence-rated predictions induce an ordering.
The RKL-value per block is the lowest rank (highest num-
ber) of an homologous example in the ordered list of exam-
ples, so this measure basically punishes missed homologous
examples.

The average precision metric is based on the precision of dif-
ferent subsets. Starting with the empty set, in each iteration
the next remaining example most confidently predicted to
be homologous is added to the subset, until all examples are
covered. The precision is computed each time and averaged
to receive the average precision per block.

We submitted another model for the root-mean-squared-
error (RMS), also briefly described in this paper. This met-
ric measures the squared difference between a predicted value
in the interval [0, 1] and the true label from the set {0, 1}.

2. METHODOLOGY

We mainly used the SVM as the basic learning algorithm, a
classification SVM and a ranking SVM. They are described
in the next two subsections. The last subsection introduces
to the BlockNearestNeighbor method, a k-NearestNeighbor
approach considering the dissimilar behaviour of the blocks.

2.1 Classification SVM

In [2] predicting protein homology is mentioned as an ap-
plication for a classification SVM with RBF kernel'. This
led us to train a global SVM classifier using the RBF kernel
on the normalised data. Since we faced a ranking prob-
lem, we chose function values of the SVM as the predicted
ranking instead of the class assignment. During training
the SVM penalizes misclassified instances proportionally to
their distance to the separating hyperplane. This justifies
the assumption that examples far away from the separating
hyperplane are less frequently misclassified. The function
values are real numbers, directly implying an order on the
examples.

2.2 Ranking SVM

The performance measures APR and RKL depend on the
ordering of the samples. The ranking SVM [4] addresses di-

!The RBF kernel is defined as K(x,y) = e Ix=l?/2v*

Volume 6,Issue 2 - Page 128



rectly a ranking problem by learning - in the linear case -
a weight vector which ranks the samples best according to
Kendall’s 7, a common measure from statistics for the simi-
larity of two rankings. The ranking SVM performed well on
the given ranking problem but performance improved using
it as base learner in the BlockNearestNeighbor described in
the next section.

2.3 BlockNearestNeighbor

BlockNearestNeighbor is a straight-forward way to couple a
nearest neighbor approach with an arbitrary base learner.
The underlying assumption is, that blocks sharing com-
mon statistical properties are more likely to behave similarly
when it comes to prediction. As common in nearest neigh-
bor approaches the similarity between blocks is defined by
a distance function. The goal is to estimate the similarity
between blocks, so unlike k-NearestNeighbors the distance
function is not estimated over single examples, but over in-
formation describing blocks. In our experiments we used the
Euclidian distance over simple block-wise aggregates like the
median of specific attributes.

Given a previously unseen block only the £ most similar
blocks according to the distance function are used as a train-
ing set. The resulting model is used to predict the label of
the new block.

3. APPROACH

This section describes our approach for the APR and RKL
measure and for the RMS measure respectively. First the
preprocessing of data is explained. Then the final models are
specified followed by a section addressing the prevention of
overfitting. Finally we describe some alternative approaches
we evaluated.

3.1 Preprocessing

We discovered that normalization? of the attributes improved
performance according to cross-validation experiments. Fur-
ther enhancements were achieved by normalizing the at-
tributes within each block instead of global normalization.
Since we implemented a k-NearestNeighbor approach we need-
ed a distance measure between blocks. We used statistical
measures, actually mean, median, minimum and maximum,
for each attribute in a block. With 74 original attributes
this led to a 296 dimensional vector. Having 153 blocks in
the training set, we wanted to reduce the dimension of the
vector. We trained J48 decision tree classifiers [6] on each
block and counted the occurences of a specific attribute in
these trees. Then we selected those attributes occuring at
least in two different trees. With this method we reduced
the number of attributes to 46, hence the dimension of the
vector to 184. Our distance measure was the Euclidian dis-
tance between these 184 dimensional vectors representing a
block.

3.2 Model for RKL and APR

Our final model for the performance measures APR and
RKL is schematically shown in figure 1. Consider a previ-
ously unseen block b. On the normalized training data we
learned a global model, a classification SVM with RBF ker-
nel. This model can directly be applied to block b without
further training.

T—Tmin

€T =
norm Tmaxr ~Tmin

SIGKDD Explorations.

On the other hand the BlockNearestNeighbor approach se-
lects the set of blocks most similar to block b. A ranking
SVM is trained on this set. Afterwards the resulting model
is also applicable to block b.

Both models assign a real number to each example, thus
define an ordering over b. In order to combine them prop-
erly we normalized these two rankings. As a method for
combining, simply adding them did the trick, according to
cross-validation experiments.

Training data -
—
- for each block with J48 trees

i Select k-nearest neighbors

— BlockNearestNeighbor
Normalization | ——»
method

|Classiﬁcation SVM Normalize Predicted
and add ranking

with RBF kernel

Function

—»
values

Figure 1: Schematic representation of our approach.

3.3 The RMS model

Cross-validation experiments indicated, that it pays off to
train a separate model for the RMS metric. With less than
1% positives the data was highly skewed. The fine-tuned
SVM classifier for RKL and APR served as a good start-
ing point, just suffering from a low recall of about 60%. In
contrast, boosted decision trees showed a little bit higher
accuracy, a much higher recall of about 75%, but a signifi-
cantly lower RMS value.

An analysis of those cases in which boosting and SVM mod-
els disagreed encouraged to combine them by a simple dis-
junction. In the resulting ensemble an example is predicted
homologous, if at least one of these two models considers it
to be homologous.

The boosting algorithm used in our experiments was stan-
dard AdaBoost [7], the decision tree induction algorithm
was J48. The ensemble of the SVM classifier with boosted
trees was ranked 14th.

An experiment that finished shortly after submission dead-
line indicated that AdaBoost was not the optimal choice.
The BayesianBoosting algorithm works by directly estimat-
ing probabilities. One of its properties is to keep the priors
of class labels, when changing example weights during train-
ing. It is not yet published, but available as part of the free
learning environment YALE®. Compared to the correspond-
ing AdaBoost models, the models of this operator achieved
a significantly higher recall (close to 80%) while not losing
accuracy.

The upload facility of the KDD Cup website re-opened after
the contest. We were able to evaluate the alternative model,
a combination of an SVM classifier with BayesianBoosting
on top of J48 decision tree classifiers. This model would
have been ranked fourth.

®http://yale.cs.uni-dortmund.de

Volume 6,Issue 2 - Page 129



3.4 Prevention of overfitting

The classification SVM with RBF kernel has two parame-
ters which can be optimized. One parameter, called j in
SVM!9"t [3] is the factor by which false-negatives are pe-
nalized higher than false-positives during training. We ex-
pected this to be greater than 1, because positively labeled
instances were outnumbered by the negative instances. The
other optimizable parameter is 7, the bandwith of the RBF
kernel. We conducted tenfold cross-validation in order to
optimize these parameters. From these experiments we got
an estimation for the RKL measure of 44.34, using the clas-
sification SVM stand alone, and 37.13 when combining it
with the BlockNearestNeighbor method. The performance
on the test set was 45.62.

To estimate the predictive performance of BlockNearestNeigh-
bor we trained a model for each block of the training set.
Because we left out the block itself the result was a leave-
one-out estimate, where “one” relates to blocks rather than
examples. This estimate was used to optimize the parame-
ters, namely k, the number of neighbors to be selected for
training, and j, a parameter of the ranking SVM.

The estimate for the combination of the two models, how-
ever, was too optimistic. The estimated RKL value due to a
tenfold cross-validation was 19% lower than the final evalu-
ation on the validation set, for APR the value was 1.8% too
low.

3.5 Alternative approaches

Two promising approaches to tackle the problem that turned
out to be inferior to the solution finally selected are shortly
described in this subsection. We basically focussed on ways
to overcome the striking differences between blocks.

First of all we tried to perform clustering as a step of pre-
processing. The goal is to find a few disjoint sets of similar
blocks, each of which could then be assigned a model of its
own. Candidate clustering algorithms were k- NearestNeighbor
and Diez clustering[8]. The Diez clustering algorithm is an
agglomerative clustering algorithm using the performance
of SVMs as its joining criterion. It starts by selecting the
most trivial clusters. In our case each block forms a clus-
ter. On each cluster a separate SVM is trained. The pair
of most similar SVMs according to a fixed distance func-
tion? is the first candidate for being joined. If the estimated
performance of the SVM trained on the temporarily formed
cluster is better than the performance of the single models
before, the candidates are joined and become a new clus-
ter. Otherwise the next two similar candidates are tested.
The algorithm stops when no more canditates remain. Al-
though this approach exploits the similarity of blocks, just
like the winning solution, in our experiments it performed
worse than just training a ranking SVM on the original data
set.

The second approach adds blocks to the training set sequen-
tially. Starting with an initial set of a few blocks a first rank-
ing SVM model is trained. Then the model is applied to the
remaining blocks, to find the subset of blocks for which the
model is least appropriate. These blocks are added to the
training set of the next iteration. Another ranking SVM is
trained on this larger example set, and so on. The number
of iterations and the number of blocks to add are param-
eters that can be optimized empirically. The advantage of

“In [8] it is the cosine between the weight vectors.

SIGKDD Explorations.

this approach over the winning solution is that the output is
a single global model, rather than a lazy learner, postpon-
ing calculations to the time when a request for predictions
arises. Iteratively augmenting the training set yielded the
most accurate global model in our experiments. It is not
part of the submitted solution, because it was clearly out-
performed by the BlockNearestNeighbor approach.

4. CONCLUSION

In this paper we outlined our approaches to the protein ho-
mology task of KDD Cup 2004. The common goal of all
metrics associated to that tasks was to predict homology
of a protein sequence in terms of a real-valued confidence.
The focus of this paper is on our model for the two ranking
metrics, namely lowest ranked homologous sequence (RKL)
and average prediction (APR). For the RKL metric our sub-
mission was ranked first, for APR the same predictions were
ranked fourth.

An early analysis of the data revealed, that statistical prop-
erties varied drastically from block to block. With less
than 1% of the data being homologous sequences the data
was highly skewed. Although under these conditions one
would prefer block-wise modeling, it was possible to fit a
global classifier surprisingly well. A classification SVM with
RBF kernel gave best results in our cross-validation experi-
ments. Still block-related modeling gave significantly better
results. The ranking SVM is directly tailored towards opti-
mization of ranking measures. Starting with a small subset
of blocks and adding new blocks for which predictions are
yet poor, iteratively, was a successful way to train accurate
block-related models. Our final model is still different, be-
cause it directly accounts for the statistical differences of
blocks by applying a k-NearestNeighbor algorithm at the
block level. To predict new blocks it is necessary to identify
the k most similar blocks. Only for these blocks a rank-
ing SVM is trained, which is then applied to the new block.
This method worked surprisingly well, keeping in mind the
simple similarity measure we used. The disadvantage of this
method compared to the iteratively trained ranking SVM is
that for each block to be classified a new model needs to be
trained on the fly.

For all metrics we made the experience that without combin-
ing models the results are not compatible. But combining
models seems easy since even simple approaches in this di-
rection gave a boost in accuracy. The final model for RKL
and APR is a result of simply adding the confidence values
of the global classification SVM and the more local BlockN-
earestNeighbor ranking SVM. Similarly, a simple disjunction
of the global SVM model and boosted decision trees was still
ranked 14th, after more careful selection of the boosting al-
gorithm even ranked 4th. Considering more sophisticated
methods of model combination would probably further in-
crease performace.

Finally we want to point out that in our experiments the
performance of different learners and parameter settings was
quite metric dependent. As a result performance could al-
most always be increased by optimizing parameters for each
metric separately. The main reason for us to still submit a
single model for RKL and APR was lack of time.

Volume 6,Issue 2 - Page 130



APPENDIX

A. ADDITIONAL AUTHORS

We participated at KDD Cup 2004 in the framework of a
”project group”, a course over two semesters for 12 gradu-
ate students. The course was organized by Prof. Katharina
Morik and Martin Scholz, AT Unit, Dep. of Computer Sci-
ence, University of Dortmund, Germany.

The full list of participating students and co-authors: Dirk
Dach, Holger Flick, Christophe Foussette, Marcel Gaspar,
Daniel Hakenjos, Felix Jungermann, Christian Kullmann,
Anna Litvina, Lars Michele, Siehyun Strobel, Marc Twiehaus,
and Nazif Veliu.

B. REFERENCES

[1] Richard A. Becker, John M. Chambers, and Allan R.
Wilks. The New S Language. Chapman & Hall, London,
1988.

[2] Cristianini, N. and Shawe-Taylor, J., An Introduction to
Support Vector Machines and other kernel-based learning
methods , Cambridge Press, 2000.

[3] T. Joachims, Making large-Scale SVM Learning Prac-
tical. Advances in Kernel Methods - Support Vector
Learning, B. Schoelkopf and C. Burges and A. Smola
(ed.), MIT-Press, 1999.

[4] T. Joachims, Optimizing Search Engines Using Click-
through Data, Proceedings of the ACM Conference on
Knowledge Discovery and Data Mining (KDD), ACM,
2002.

[5] Mierswa, Ingo and Klinkberg, Ralf and Fischer, Simon
and Ritthoff, Oliver. A Flezible Platform for Knowledge
Discovery FExperiments: YALE — Yet Another Learn-
ing Environment. In LLWA 03 - Tagungsband der GI-
Workshop-Woche Lernen - Lehren - Wissen - Adaptivi-
taet, 2003.

[6] Ian H. Witten and Eibe Frank, Data Mining: Practical
machine learning tools with Java implementations, Mor-
gan Kaufmann, San Francisco, 2000.

[7] Y. Freund and R. Schapire. A decision—theoretic general-
ization of on-line learning and an application to boosting,
Journal of Computer and System Sciences, 55(1): 119 —
139, 1997.

[8] J. Diez, J.J. del Coz, O. Luaces, and A. Bahamonde. A
Clustering Algorithm to Find Groups With Homogeneous
Preferences.

SIGKDD Explorations.

Volume 6,Issue 2 - Page 131



