technische universitat

1Y

e,

¥

Master's Thesis

Automated Generation of Evaluation Tasks
for Machine Learning Models

Fabian Dillkotter
September 2022

Supervisors:
Prof. Dr. Katharina Morik
M. Sc. Sascha Miicke

TU Dortmund University
Faculty of Computer Science
Chair VIII Artificial Intelligence

https://www-ai.cs.uni-dortmund.de

Contents

Introduction

1.1 Goal e
1.2 Related Works e
1.3 Structure of this Worko
Background

2.1 SVM Models
2.2 Decision Trees e
2.3 Confusion Matrix e

Conceptual Framework for Test Generation
3.1 Workflow of the Framework,
3.2 Evaluation Tasks
3.3 Database
3.4 Assembly of Evaluations o
3.5 Result Management L L
Implemented Framework
41 MongoDB
4.2 MLfow
4.2.1 Elements of MLflow
4.2.2 Application in this Work
4.3 Task Generation
4.3.1 Input Processingo
4.3.2 Assignment of Possible Tasks 0.
4.3.3 Compilation of Task Packets
4.4 Evaluation Tasks
4.4.1 File Structure
442 Program Structure

10

13
14
15
15
16
17

i

5 Implemented Tasks

5.1 Confusion Matrix Evaluation
5.2 SVM Robustness Evaluation

5.2.1
5.2.2

5.3 Theoretical Bounds for SVMs

5.3.1
5.3.2
5.3.3
5.4 Energy
54.1
5.4.2
5.4.3

Evaluation

6.1 Test Criteria
6.2 Experiment Composition
6.3 Experiment 1: SVC on MNIST

6.3.1
6.3.2
6.3.3

6.4 Experiment 2: SVR on California Housing

6.4.1

6.5 Experiment 3: Linear SVC on lonosphere

6.5.1
6.5.2
6.5.3
6.5.4

6.6 Experiment 4: Decision Tree on Iris

6.6.1
6.6.2

6.7 Assessment of the Implementations
Achieved Goals
Software Quality

6.7.1

6.7.2
Discussion
7.1 Results
7.2 Future

Description of the Tool

Implemented Software

Theoretic Background
Implementation of the Calculations
Generation of a Report
Consumption Measurement
Description of the Tool
Integration asa Task

Outputs and Interpretation

Confusion Matrix Evaluation

Robustness Evaluation

Energy Consumption Evaluation

Energy Consumption Evaluation

Confusion Matrix Evaluation

Robustness Evaluation

Energy Consumption Evaluation

Bounds Report Evaluation

Confusion Matrix Evaluation

Energy Consumption Evaluation

Work

Table of Figures

CONTENTS

CONTENTS 1l

Bibliography 79
A Outputs of the Evaluations 91
A1l RBF SVCon MNIST e 91
A.2 RBF SVR on California Housing 99
A.3 Linear SVC on Ionosphere Dataset 100

A4 Decision Tree on Iris 105

v

CONTENTS

Chapter 1

Introduction

In the past years, Machine Learning (ML) has become omnipresent in both scientific and
industrial applications. Due to this development, people of different backgrounds are pre-
sented with the task of evaluating ML models. Scientists, developers and managing em-
ployees have an interest in testing models for metrics like accuracy, robustness or energy
consumption [99].

Possible situations where such an evaluation is needed include the assessment of models
other researchers have developed in a scientific environment. When researchers are pre-
sented with foreign ML models, execution of independent tests can help to acquire an
unbiased rating. Other scenarios are the comparison of models during development and
the evaluation of a model during the decision making whether a model shall be deployed.
These different groups all desire a fast method for evaluating ML models, however the con-
ventional workflow is currently not optimized. The process for testing aspects of a model
is complex and includes multiple challenges.

The first challenge in evaluating ML models is finding tests that are applicable to the model
type, dataset and specific model in question. The resulting tests may not be directly exe-
cutable and require implementation in order to work on the supplied model. Afterwards,
the tests have to be executed manually and individually. Only after combining the outputs
of different tests with multiple parameter variations, the user can acquire a meaningful
assessment.

This process requires expert knowledge of the used tools and methods and is neither time
nor resource efficient. The users desire a simple tool for the evaluation of diverse models

in regards to multiple metrics.

1.1 Goal

The main goal of this work is the development of a framework that enables an automated

evaluation of ML models. The aim however is not a fully developed universally applica-

2 CHAPTER 1. INTRODUCTION

ble framework, but rather a baseline on which future additions and improvements can be
made. In order to allow a meaningful determination of features, the limitations of the
implementation have to be declared from the beginning.

The framework must allow users to input ML models, datasets and additional information
about the desired evaluations. Furthermore, the framework must contain a database for
storage of evaluation techniques and specific details of their execution. These two sources
of information have to be combined by the framework to result in the generation of tests
from the database that fit the inputs of the user. These tests must then be independently
runnable to analyse different metrics. The outputs of this framework are then stored in a
central hub so they could then be used to construct a rating of the model, for example a
Care Label [72].

As discussed before, the development of a complete framework with full functionality for
all possible models is not feasible in a single work. Due to this reason, formulating some
limitations is unavoidable. The first strong element of this is the restriction to Support
Vector Machine (SVM) models. While a Decision Tree based ML model is used as a com-
parison, this is not the focus of this work. Another limitation is the amount of supported
evaluation techniques, which is not exhaustive, as the starting set of evaluations can be
expanded upon in the future.

The goal of this work is centered around the structure of an evaluation framework for
ML models and not the specific implementation of tests. Therefore the elements of the
framework must be detailed and explained.

As a fully implemented framework for evaluating all possible models in a variety of aspects
is beyond the scope of this work, the focus is rather on the development of a baseline for
future expansion. Therefore the structure of the framework and the conceptualization of
a workflow is the focus of this thesis, and the main research question is:

What elements are needed for an automated generation of Evaluation Tasks for ML mod-

els?

1.2 Related Works

As the evaluation of ML models constitutes a highly relevant research topic, multiple works
with a focus on automated execution exist. Automating evaluation of software in general
is an established research area. Even the automated evaluation of high level features like
the usability of user interfaces have already been explored over 20 years ago [48]. In the
context of ML models, the evaluation of models takes a special role, as it is closely con-
nected to the tuning of hyperparameters.

Prior work has been done to automate the process of hyperparameter tuning for example
with the Waikato Environment for Knowledge Analysis (WEKA) [44]. While an automated

hyperparameter tuning is only possible with automated evaluation, the focus in software

1.3. STRUCTURE OF THIS WORK 3

like WEKA is not on providing a comprehensive evaluation and rather on testing fast mea-
sures (like accuracy) for comparing different configurations. Furthermore, this evaluation
is not applicable to models trained using other frameworks.

Some tools have been developed that offer support of models trained using multiple train-
ing frameworks [64, 75, 83]. The frameworks that allow a fully automated testing are
however all limited in some way.

The CleverHans library [75] is restrained to evaluating robustness using adversarial ex-
amples. Similarly, the Foolbox library [83] is also focused only on evaluating robustness.
Other works include the SHapley Additive exPlanations (SHAP) framework for the iden-
tification of the relevant features for predictions [64].

The software developed in these works falls short of the goals formulated in this thesis, as
only a limited set of evaluation metrics aimed at a specific aspect of the models can be
evaluated. In contrast, this thesis aims to create a framework capable of assigning evalua-
tion methods of arbitrary variety to given models.

One part of an automated processing of ML models is the development of a unified model
format. The framework ONNX! offers a format for ML models designed specifically to
facilitate the connection and interoperability of different tools and frameworks. This de-
velopment is needed because popular existing frameworks often only support exporting and
importing models as JavaScript Object Notation (JSON) [29] or using the python object
serialization pickle [76].

The development of a framework that allows the management of all parts of the model
lifecycle has been approached with the software MLflow [98]. This product along with the
subsequent improvements of Chen et al. |28] can be useful with any desired framework
and will therefore be used in this work (see chapter 4.2).

The evaluation of ML models is closely connected to the research topic of Explainable
Artificial Intelligence (XAI) [85]. ML methods are evaluated for different aspects like ac-
countability [8], responsibility [33] or robustness [92] with the goal of a more transparent
learning process and more explainable decisions.

The combination of different metrics to produce an easily interpretable rating has also
been explored, for example with the Care Label concept [72]. This concept produces cer-
tifications for ML models according to a set of aspects. The framework developed in this

work could be used to evaluate the measures needed for such a certification.

1.3 Structure of this Work

First of all, the ML techniques SVM and Decision Tree are introduced with some mathe-
matical background in chapter 2. This is done to provide a basis to apply the framework

to.

"https://onnx.ai

4 CHAPTER 1. INTRODUCTION

In the following chapter, the concept of a framework that enables an automated evalua-
tion of ML models is introduced. The workflow of a framework like this is described and
the necessary database technology discussed. The basic elements of such a framework are
defined.

Chapter 4 then shows the structure and workings of the developed framework in detail.
This topic is split into sections about the set up database, the usage of the framework
MLflow?, the process of generating tasks and the conceptualized structure for Evaluation
Tasks that are added to the framework.

After the workings of the framework are introduced, the implemented Evaluation Tasks are
then presented in chapter 5. These are described individually to give an overview on how
evaluation metrics can be added to the framework. For each task, the different measures
and tools are introduced and the specifics of their implementation are explained.

In chapter 6, an evaluation of the implementations is given. The goals are evaluated using
different models that are trained for various tasks. Furthermore, the chapter refers back
to the goals from section 1.1 and highlights in what ways they are achieved.

Lastly, chapter 7 gives a summary of the results and an outlook on future modifications

and additions.

*https://www.mlflow.org/

Chapter 2
Background

The basic types of models that the framework is applied to are explained in the following
sections. After giving an overview of the basic principles behind SVM models, Decision
Trees are introduced in a short section. As the created Evaluation Tasks are geared towards
SVMs and the Decision Tree models are only a comparative choice, Decision Tree models
are only described briefly.

After this, an introduction to confusion matrices as a statistical analysis is given. This

section defines and describes mathematical background needed for later parts of this work.

2.1 SVM Models

The amount of different ML techniques is increasing at a rapid pace [73]. Due to this
development, the evaluation of these differing models cannot be performed with the same
algorithms. Methods like Artificial Neural Networks, Decision Trees or SVMs have to be
evaluated using separate methods [99]. As such, the selection of a single ML method is
needed to evaluate and develop the framework as a first start. The ML methods that are
used as the exemplary cases in this work are SVMs.

The concept of separating examples using a hyperplane was used early on in mathematical
research [38]. The use of SVMs as a machine learning implementation of this concept was
then developed and popularized in the 1990s [14].

SVMs are chosen to be the starting point due to the mathematical and statistical theory
they are built upon. The following explanation of the workings of basic maximum margin
SVMs is based closely on the work from Boser, Guyon and Vapnik [14], which introduced
non-linear classification using the kernel trick.

The training task for the maximum margin algorithm (for binary classification) is to find
a function which classifies examples in the form of feature vectors x of dimension n into

classes A and B. The training dataset therefore has the form:

(wlay1)7 (Z’Q, yQ)’ ceey (wn?yn)

5

6 CHAPTER 2. BACKGROUND

It consists of n examples x; with labels y;, where the following labelling is used:

B 1 if x; € A
(A BT, z; € B.

During the training, the parameters of a function D(x) are then optimized to acquire
predictions of the form:

x€A if D(x)>0

x € B otherwise
The decision function with the to be adjusted parameters ag, training patterns xj and

bias b then takes this form in dual space:
D(z) = ZakK(xk,x) +b
k=1

The function K takes a special role, as it represents a predefined kernel. These kernels can
take many different forms, like linear kernels [54], polynomial kernels [3], kernels based on
Radial Basis Functions (RBF) [91] or kernels using sigmoid functions [60]. The choice of
kernel significantly affects the behaviour of the SVM [77]. The kernel functions transform
the data from the input space into a higher dimensional feature space. This enables a
linear separation in the feature space using a hyperplane, even if a linear separation is
not possible in the input space. The “kernel trick” was first introduced in 1964 |2] and
avoids the problem of learning a nonlinear function by the ML method. As proposed by

Aronszajn [5], valid kernels can be written as:
K(z,a') =) gi(x)gi(a")

In this formula, based on Mercer’s theorem [68], g is any function in the Hilbert space. In
the basic case, the construction of a maximum margin hyperplane is the next step towards
computing the decision function. This hyperplane is defined solely by its support vectors,
which are the examples on the margin boundaries. In case an SVM is constructed that
separates the classes without misclassifications, the hyperplane is called hard margin.

In contrast to this, a soft margin SVM introduces slack variables & which take a value
greater than 1 if the training example x; is on the wrong side of the analysed hyperplane.
This concept is outlined following the definitions of Joachims [53|. The optimization prob-

lem for linear soft margin SVMs then takes the following form in primal space:

2.1.1 Optimization Problem (Linear soft margin SVM (primal)).

=

n
minimize : V(w,b,§) = %w W+ CZ &
i=1

subject to: VP, yi[W- @ +b>1-¢;
VR >0

2.2. DECISION TREES 7

Here the vector w is the weight vector and C' is a parameter used to influence the trade
off between training errors and model complexity. A low value for C puts a higher priority
on a low model complexity whereas a high value lowers the amount of training errors.

In dual space the optimization problem is:

2.1.2 Optimization Problem (Linear soft margin SVM (dual)).

n n n
o - 1 Lo
minimize : W(d&) = — E o +§ E E iy (TG -)
i=1 i=1 j=1

n
subject to : Z a;y; =0
i=1
Vieli.n]: 0<a; <C

Apart from the variable C' bounding the values of «; this optimization problem is identical
to that of the hard margin SVM in dual space. Now the meaning of the «; Lagrange
multipliers becomes obvious; the set of support vectors consists of the training examples
x; for which the corresponding «; > 0.

The development of soft margin SVMs was motivated by the desire to accept a number
of misclassifications in order to achieve a larger margin size [31]. A new regularization
parameter C'is introduced to control the trade-off between the number of misclassifications
and the size of the margin. The resulting optimization problem for computing the support
vectors can be solved as a quadratic programming process. Other methods for calculating
the SVM classifier have been explored, like coordinated descent [47], sub-gradient descent
[87] or cutting-plane [54] techniques. As the exact inner workings of these algorithms are
not relevant for this work, they will not be discussed in more detail.

Additionally to the described usage of support vectors for classification, the idea can also
be applied to other learning tasks. Support Vector Clustering is an unsupervised learning
algorithm where similar elements are grouped into classes that are not predetermined [9].
Another development is the Support Vector Regression (SVR), where the numeric label
value is estimated using the features. This method has advantages on problems with high

dimensional inputs [34].

2.2 Decision Trees

Decision Tree models can take different forms. In this thesis, the models known as Classifi-
cation And Regression Trees (CART), first introduced by Breiman et al. [16], are chosen as
the base type. This results in binary splits for every inner node of the tree. Furthermore,
only classification trees will be discussed, because they are the selected ML model for a
comparison to SVM model evaluation outputs.

As with SVM based classification, the problem definition stays the same. A training sam-

ple with n examples consisting of the feature vectors x1, ..., x, and class variables y1, ..., yn

8 CHAPTER 2. BACKGROUND

petal length <= 2.45

False

petal width <= 1.75
y

petal length <= 4.85 petal length <= 4.95

True False

class = setosa

True False

[sepal width <= 3.1 } class = virginica [petal width <= 1.65] [petal width <= 1.55]

True False False True False, True

class = virginica class = versicolor class = virginica class = versicolor [sepal length <= 6.95 } class = virginica

True False

class = versicolor class = virginica

Figure 2.1: Example of a Decision Tree based on the Iris dataset

with values 1,...,k is used to find a prediction model. The goal is to find a model that
predicts values of y for new = values, thereby partitioning the X space into k disjoint sets
A1, ..., Aj such that y = z if the example x is in class A, with z € {1, ..., k} [62].

The starting set and subsequently generated subsets are partitioned recursively using con-
ditions on the values of the features of X. For singular trees with a concise length and
comprehensible split decisions, Decision Trees can be human readable. An example for a
simple Decision Tree based on the Iris dataset [38] is depicted in figure 2.1.

During training, an optimal interval for features is computed which minimizes the sum of
the impurities of the two child nodes. The separating value is chosen from the values of
this feature. In the case of nominal features, CART normally only allows for the selection
of a single value for the variable, however some implementations support splits based on
a subset of the set of values the feature can have. This process is recursively repeated on
the child nodes. The learning algorithm stops when a stopping criterion is reached (e.g. a
maximum tree depth). All elements present in a leaf node are then classified as the most
common class in this node during training.

An important difference between Decision Tree implementations is the choice of the im-
purity function. While other implementations use splitting criteria like the information
gain (C4.5 algorithm [81]) or elaborate processes based on significance tests and x? tests
(GUIDE algorithm [61]), the CART algorithm used in this work is based on the Gini index
for impurity.

The Gini impurity for a node ¢ in the case of equal misclassification costs for all classes is

defined as:
> 2

k .
Gini(g)=1-_ (”T(Lj(qg)

J=0

2.2. DECISION TREES 9

In this formula k is the number of distinct classes, n(j |) represents the number of examples
of class j in ¢ and n(q) describes the total number of examples in ¢q. To analyse the impurity

after a specific split, the weighted average can be calculated:

Gini(q)spit = T;((qu)) Gini(qr) + nrf?;)

The choice of feature for the split is then straightforward. All possible splits are evaluated

Gini(qr)

and the split with the lowest Gini(q)spiie impurity is selected [16].

After the creation of a Decision Tree T using the criteria above, the complexity is reduced.
To limit the size and complexity (usually measured in the number of leaf nodes |T)),
the cost-complexity Rg(T") measure is introduced. Given a complexity parameter 5 > 0

denoting the penalty for each additional leaf node, the cost-complexity is defined as:
Rs(T) = R(T) + BT

A necessary part of the calculation is the cost of a Decision Tree T, denoted as R(T). The

cost of a Decision Tree is in turn calculated using the sum of the costs of the leaf nodes:
R(T) =) R(q)
qef

Using the set of priors 7; and the number of examples with class j in the training set n;,

the cost of a node can be calculated:

n{Jiq
pla)= > m ‘A)
— n;
J=1 ‘
r(q) = 1—max; i n(i‘fl'q)
7 plg)

The measure p(q) is also called the resubstitution estimate of the probability that any case
falls into the node ¢. The resubstitution estimate of the probability of misclassification,
given that a case falls into node ¢ is given as r(q).

The priors can be manually adjusted but are often chosen from the class prevalence in the
training data as m; = 2. If chosen like this, the terms [r; %ﬂm] in the above formulas
can be simplified to [W]

Using the cost-complexity Rpetq(1"), subtrees are iteratively removed and replaced by a
leaf node. This produces a series of Decision Trees, of which the optimal tree is chosen
using cross-validation. The specific pruning and selection process exceeds the scope of
this thesis, as Decision Trees are only a type of model used for comparison. The detailed
pruning process can be explored in the original work [16].

Decision Trees can be used to construct more complex models. A common technique are
Random Forests, which are based on the training of a set of uncorrelated Decision Trees

relying on bootstrap aggregation and a randomized way of optimizing nodes [15].

10

CHAPTER 2. BACKGROUND

True Class
Positive Negative
Positive True Positives False Positives
(TP) (FP)
Hypothesized
Class
. False Negatives True Negatives
Negative (FN) (TN)
Column Totals P N

Figure 2.2: Structure of a confusion matrix for the binary case

2.3 Confusion Matrix

A confusion matrix shows the relation between the real class memberships and the classifi-

cations of the model [36]. While the matrix itself can be used to analyse the model, many

further metrics are also based on the six measures that are evaluated for each class Cj:

1.

Real Positive (FP;): The total number of cases in the dataset that are members of C;

. Real Negative (V;): The total number of cases in the dataset that are members of a

class other than C;

. True Positive (T'P;): The amount of cases that are correctly identified as members

of Cl

False Positive (F'P;): The amount of cases that are incorrectly identified as members
of Cz

True Negative (T'N;): The number of cases that are correctly identified as not being

members of class C;

. False Negative (F'N;): The number of cases that are incorrectly identified as not

being members of class C;

In the case of binary classification, the index can be omitted, as a 2x2 matrix can express

all the information about both classes (only needing a prior assignment of the two classes

2.3. CONFUSION MATRIX 11

as positive and negative). The layout of a confusion matrix for the binary classification
case is shown in figure 2.2.

For a multi class model, the matrix is made up by one column and one row per class.
The definitions of the base measures are however consistent irrespective of the number of
classes.

As the total values may sometimes be misleading, the evaluated measures are often con-
verted into ratios like the True Positive Ratio TPR; = TPIj . or further metrics like the
T%i%\[L. A list of measures derived from the base values of a confusion

matrix is given below (indices omitted for better clarity):

Accuracy Acc =

TP+TN
TP+TN+FP+FN

e Accuracy: Acc =
e Sensitivity/Recall/True Positive Rate/Hit Rate: TPR = £
e Specificity/True Negative Rate: TNR = ¥

e Fallout/Alarm Rate/False Positive Rate: FPR=1—-TNR

e Miss Rate/False Negative Rate: FNR=1—TPR

e Precision/Positive Predictive Value: PPV = %
e Inverse Precision/Negative Predictive Value: NPV = %

o False Discovery Rate: FDR=1—- PPV
e False Omission Rate: FOR=1—- NPV

e Positive Likelihood: LR+ = (ZEE-

o Negative Likelihood: LR— = 1P
e Diagnostic Odds Ratio: DOR = %

e Youden’s Index/Bookmaker Informedness: BM =TPR+TNR —1

e Matthew’s Correlation Coefficient: MCC = LPXTN_FPXEN
\/(TP+FP)(TP+FN)(TN+FP)(TN+FN)
o Fi-score: | = %

e Markedness: MK = PPV + NPV —1

e Balanced Classification Rate/Balanced Accuracy: BA = w

. _ TP
e Jaccard/Thread Score: Jaccard = TPTFPIFN

12 CHAPTER 2. BACKGROUND

Many of the metrics have been proven to be vulnerable to class imbalances, for example
PPV and NPV |90]. Therefore, an evaluation of the class prevalence PJFLN is used to
complement the interpretation of those metrics. Other measures are invariant to such
imbalances, for example TPR and FPR [39]. Whether a metric is sensitive to class

imbalance depends mostly on the columns of the confusion matrix used to calculate it [36].

Chapter 3

Conceptual Framework for Test

(zeneration

In this chapter, a concept of a framework that allows an automated generation of tests for
ML models is outlined. The basic workflow which a functional framework for the evaluation
of ML models must provide is explained in the next section. Afterwards, the concept of
Evaluation Tasks is introduced. As the storage of data and information makes up a big
part of this work, further background is given on database technologies and their benefits
for this application. Lastly, a draft of the evaluation assembly and result management is

given.

Input Interface Test Generation Test Execution and Output

¢ y \—l .

f Mn_} L i Set of Evaluation Tasks —’, e

e . 0 el
User Test Database

Labeled Workers

Submission Data

Model
Dataset
meta.json

Processing of Inputs

Compilation and Output l
A ’ "1 Querying using Properties of Evaluation Tasks L

Input API

4

\ 4

Result Database

Figure 3.1: Full workflow of using the framework to evaluate a model

13

14 CHAPTER 3. CONCEPTUAL FRAMEWORK FOR TEST GENERATION

3.1 Workflow of the Framework

The workflow of the developed framework follows the visualization in figure 3.1. The focus
of this thesis is on the process of test generation shown in the center of the flow chart.

In order to acquire executable evaluation software packets, the implemented methods of
evaluation contained in the database (Evaluation Tasks) have to be applicable to different
models. As not every evaluation technique can be applied to every model, the Evaluation
Tasks have to be matched to the specific inputs given by the user. These inputs are mainly
information about the model and the used dataset. The combination of the available
information results in a set of constraints which reduce the number of applicable Evaluation
Tasks.

The constraints are used to query the database of Evaluation Tasks, which results in the
set of available tasks that can be carried out on the given inputs. The Evaluation Tasks are
software packets which can be executed individually to assess different aspects of the model.
Each task comes with requirements that have to be satisfied to enable their execution.
The Evaluation Tasks fetched from the database are combined with the inputs from the
user to result in a set of independent pieces, which can evaluate different metrics and
aspects of the model and dataset.

Running these tasks results in the evaluation of the model and dataset according to different
metrics. The executed tasks deposit their results at a central result storage using an
Application Programming Interface (API).

The user can use the obtained values to gain knowledge about the model and dataset.
All the acquired information can then be combined and interpreted to result in an overall
assessment like a Care Label [72].

In addition to the framework itself, some evaluation techniques need to be implemented
to show the insertion process into the framework and for an evaluation of the framework
itself. Some of the tests must be based on existing software to prove that an integration
of established and proven tools is possible.

All in all, a concise summary of the elements that are to be developed in this work is the

enumeration below:
1. Development of a framework for Evaluation Tasks

a) Creation of a database for evaluation software

b

(c
(d

(
(b) Conceptualization of standardized formats and processes

Assignment of stored evaluation software to given inputs

)
)
)
) Generation of individually executable Evaluation Task packets dependent on

the given collection of software

(e) Provision of a central platform for uploading, downloading and viewing evalu-

ated outputs

3.2. EVALUATION TASKS 15

2. Creation of an initial set of Evaluation tasks

(a) Exemplary implementation of standalone evaluation software

(b) Integration of existing evaluation tools

3.2 Evaluation Tasks

The Evaluation Tasks are the programs for evaluation of ML models that are integrated
into the framework. These tasks can be focused on a single aspect or multiple combined
tests. The different Evaluation Tasks can evaluate completely unrelated metrics, for ex-
ample evaluations focused on robustness [23] or energy efficiency [59].

Another possible output is a certification of a model. This certification can be focused on
different facets. The compliance with theoretical bounds [53] could be checked, or existing
certifications, for example focused on robustness [19, 100] could be evaluated.

The setup of the Evaluation Tasks should follow a standard structure to give an identical
method for execution, input transfer and output storage. To this end, a uniform entrypoint
must be specified, however differing programs and files may be included into tasks beyond
this starting point for the execution.

The Evaluation Tasks must come with specified requirements for their applicability. These
may contain specific model properties, data structures or attributes of the executing sys-
tem. This data is needed because evaluation algorithms are always geared towards specific
models, ML task or data. On top of this, some evaluations are based on the execution on
a specific type of Central Processing Unit (CPU) [30]. The introduction of other hardware
for ML processes must also be specified, as some specially developed hardware offers unique
programming and optimization opportunities [65].

Additionally, the tasks need to contain information for the configuration of the runtime
environment. This information could be stored in a file in text-like format or by speci-
fying the construction of the execution environment, for example using an environment

managing system or containerization [97].

3.3 Database

In order to store information about Evaluation Tasks and the corresponding executable
files, a database is needed. This database must provide the option to filter the contained
data according to queries.

The prevailing database technologies can be divided into relational and non-relational
databases. Relational databases consist of tables where columns signify the different data
categories and rows correspond to unique elements of data. The majority of relational

databases today use Structured Query Language (SQL) for interaction with the data [67].

16 CHAPTER 3. CONCEPTUAL FRAMEWORK FOR TEST GENERATION

Non-relational databases are more diverse, offering options like key-value-databases (e.g.
Redis?), graph databases (e.g. Titan!), wide-column databases (e.g. Hypertable®) and
document databases (e.g. MongoDB®). These non-relational databases offer different ad-
vantages for various use-cases and are in general more flexible and open to distribution on
local and remote servers [32].

Due to the high flexibility and the ability to store all related data in a single document
without the need to do join-operations, a document database is chosen for this project.
MongoDB in particular is chosen because the performance benefit in query duration com-
pared to relational databases is already proven [37].

Furthermore MongoDB allows changes to the database schema at any time. This is a
benefit for this work, as the goal is an easily expandable framework. Future changes to the
data model are therefore facilitated by using MongoDB.

This database must provide the ability to filter the contained evaluation techniques ac-
cording to a given set of constraints. To this end, requirements for the execution of the
tests need to be stored alongside the actual tests.

To match the constraints to the contents in the database, the framework must be able to
construct queries in a modular way that allows different input values to be included. The
database in this work has to process these queries to result in the desired set of outputs.
A solution to this problem is the storage of different values in sets. If for example the
database contains an entry with the attribute "task” : ["regression”,” classification”|
and the constraints dictate that only entries that are compatible with classification tasks
may be returned, then the examination whether the entry of the database fits this criterion
becomes the simple check [Is "classification” € "task”?|, with the answer deciding on

whether this entry should be returned for the query.

3.4 Assembly of Evaluations

For the assembly of the complete and suitable set of evaluations, the inputs of the user
need to be processed. The submitted model, dataset and metadata have to be collected
and processed. This processing must extract the properties needed to construct a set of
constraints. These constraints are then the information needed to acquire the applicable
Evaluation Tasks.

Some type of software is needed to interact with the database to construct the executable
Evaluation Tasks. For this capability, an interface to the database is needed. This interface
must be able to query the database with the constraints of the model and download all

returned evaluations.

*https://redis.io
‘http://titan.thinkaurelius.com
*https://hypertable.org
Shttps://mongodb.org

3.5. RESULT MANAGEMENT 17

The assembly software then has to construct the individual Evaluation Tasks to be ready
to be executed. This entails the passing of inputs to the individual deployed tasks. The
outputs of this part of the framework then is a set of individual Evaluation Tasks that are

independently executable and completed with the needed inputs to run them.

3.5 Result Management

The execution of evaluations can yield different results. The tests can output sets of
metrics, data files or documents depending on the focus of the evaluation. All of these
outputs must be combined at a single point to acquire an overview of the results.

A central storage for evaluation results is not only beneficial to the handling of the tests for
the user, but also provides the opportunity to allow an interaction with the results using
other programs. As such, an API for easy access to the results is desired.

Users may want to store the results on a network server, especially if the execution of
evaluations is distributed on multiple systems. The location of the result storage must
therefore be customizable by the user. As a direct modification of the Evaluation Tasks by
the user before execution is not intended, the information about the result storage must
be input to the generation framework, which must pass the information to the individual
Evaluation Tasks.

The optimal result management system not only provides an API for the access to the
results for other software but also offers some type of interface for the user to view and
compare results. This platform must be able to handle all types of result outputs, including

documents for generated reports or certifications.

18 CHAPTER 3. CONCEPTUAL FRAMEWORK FOR TEST GENERATION

Chapter 4
Implemented Framework

The main software product of this work is the implemented framework. As per the goals
formulated in chapter 1.1, the implemented framework must allow for an Expandable Gen-
eration of Evaluation Tasks, and is therefore referred to as ExGETa framework.

The first element of the created framework is the database where information about all
implemented Evaluation Tasks and the software to execute these tasks is stored. This data
storage is implemented using MongoDB.

The second part of the framework is the result storage. This element is implemented based
on MLflow, so the section 4.2 describes the structure and use of MLflow.

The engine which matches the inputs to the tasks in the database and compiles inde-
pendent packages for the execution is an integral part of the ExGETa framework. The
implementation is shown in section 4.3.

Lastly, a structure for managing the evaluations and their outputs must be provided. These

parts are explained in the following sections.

4.1 MongoDB

As explained in chapter 3.3, MongoDB is used as the database technology to store the
code and information about available Evaluation Tasks. In order to allow an easy use of
the framework on different machines, the database is set up as a cloud service hosted on
the MongoDB Atlas” platform. This facilitates the setup of the database, offers an easier
modification of infrastructure resources and eases the management of access control [84].
The framework only needs a single database with two collections. The collection fs. chunks
is needed for storing the software of the Evaluation Tasks in a compressed ZIP container.
The other collection (fs.files) stores metainformation about the tasks and which con-
straints need to be satisfied by the model and dataset for execution. This schema follows
the specification of GridFS [80].

"https://atlas.mongodb.com

19

20 CHAPTER 4. IMPLEMENTED FRAMEWORK

MongoDB works with JSON objects on the surface, which are transformed into Binary
JSON (BSON) documents in the background by a binary-encoded serialization to store
pairs of key (of type String) and value (any type including Arrays or documents).

As the size of BSON objects is limited to 4 MB in MongoDB applications, the specifica-
tion GridFS is used for storing files exceeding this limit. GridFS specifies the use of a files
collection to store metadata including the corresponding IDs of the chunk collection. The
chunk collection stores the real data, where one or more chunks amount to the actual data

to be stored [42]. The fields of both collections are explained in the following overview:

fs.chunks

e chunks._id

— 12-byte BSON
— Unique ObjectID of the chunk

e chunks.files_id

— 12-byte BSON

— Unique ObjectID of parent document in the fs.files collection
e chunks.n

— 32-bit Integer
— Sequence number of the chunk

— Automatically generated starting at 0
e chunks.data

— BSON document (binary)
— The encoded payload of this chunk

— Combined payloads of all connected chunks produce the stored file

fs.files

e files._id

— 12-byte BSON
— Unique ObjectID of the document

e files.length

— 64-bit Integer

— Size of the complete document in bytes

4.1. MONGODB 21

o files.chunkSize
— 32-bit Integer
— Size of each individual chunk in bytes (except for the last chunk)

e files.uploadDate

— Date (internally 64-bit Integer)

— Date of the first storage of the document
e files.metadata

— Any datatype possible
— Optional field
— In our framework used to store constraints of the Evaluation Tagk for modeltype,

method of execution and dataset limitations

The most important modification of the GridFS specification is the use of the files.metadata
field to store the constraints of the Evaluation Tasks to enable filtering the documents by

this property. The schema for these constraints is introduced now.
e "version": String

— Version of the Evaluation Task in a yet unspecified format

— Example: "0.1.1"
e "method": Array

— ML algorithms that can be evaluated
— Example: ["SVM", "DecisionTree"|

o "task": Array

— ML tasks that can be evaluated with this technique

— Example: |"classification", "regression"|

e 'classes": Array

— Amount of classes for a classification problem
— Ounly exists for Evaluation Tasks with capabilities of testing classification models

— Example: ["2", "multi"|

22 CHAPTER 4. IMPLEMENTED FRAMEWORK

e "module": Array

— The list of toolkits the models can be built from to be applicable

— Example: |"sklearn.SVC", "sklearn.NuSVC"|

e "loader module": Array

— Supported storage formats for models

— Example: ["sklearn.pickle", "sklearn.joblib"|
e "os": Array

— Operating systems this Evaluation Task supports

— Example: |"windows"|
e "hardware": Array

— Hardware this Evaluation Task is optimized for

— Example: ["cpu"|
e "data_format": Array

— Possible data storage formats this Evaluation Task supports

— Example: ["CSV"|

This list of properties for Evaluation Tasks in the database is not exhaustive, as the
database schema may be extended for future additions. MongoDB allows a quick ex-
pansion of the database with examples using a different schema.

This metadata shows a baseline that enables a first filtering of evaluation procedures de-
pending on their constraints. The type of query used to acquire a set of applicable Evalu-

ation Tasks for given inputs is shown in chapter 4.3.2.

4.2 MLflow

A powerful tool to facilitate the management of the machine learning lifecycle is called
MLflow®. This tool provides different components for the implementation of ML methods
[98]. As MLflow is used as a baseline for the interoperability of this work, the individual
elements are discussed in the following subsection. Afterwards, the uses of the components

for this work are outlined.

*https://www.mlflow.org/

4.2. MLFLOW 23

4.2.1 Elements of MLflow

MLflow can be used as a complete package for managing machine learning procedures
but an individual usage of the separate parts is also possible. Therefore, the different

components are explained individually in the following segments.

MLflow Projects

The first component is MLflow Projects. This is a set of conventions for unifying the
execution of ML code. A MLflow Project has a name, an entry point (optionally even
multiple entry points) and the execution environment for the entry points. This enables
the ability to execute projects from the command line, the Python API and to chain
multiple projects together to create a workflow.

The API also allows starting multiple projects to execute them in parallel. This property
combined with the possible connection of projects to distributed storage systems (for input
and output) is helpful for working with ML on data with high volume, velocity and variety
(Big Data [66]).

MLflow Models

In order to achieve a workflow that is compatible with arbitrary ML models and techniques,
packaging ML models in a standardized way is an important step. Therefore, MLHow
Models can define flavours, which provide information about the correct interpretation of
the model using each specified deployment tool. Additionally, a conda environment file
provides information about the used packages or python version. Lastly the requirements

file contains the pip dependencies for the model.

MLfow Registry

The MLflow Registry is a centralized place to store and work on a model. This is useful
because it gives developers the opportunity to participate and work together on models.
APIs and a user interface are provided in order to integrate MLflow into other software or

use it as a standalone framework.

MLflow Tracking

MLflow Tracking introduces the concept of runs, which allow recording of information
about the execution of code. Each run provides an output, which can include metrics in
the case of evaluation code [28]. The runs can be provided using APIs for different use
cases (Python, R, Java, REST). The saved information regarding the conducted runs can

be queried using these APIs or the tracking user interface.

24 CHAPTER 4. IMPLEMENTED FRAMEWORK

This structure allows the inclusion of execution information from cloud infrastructure and

other network devices.

4.2.2 Application in this Work

The Evaluation Tasks that are generated by this framework need to be executable individ-
ually and the execution may be distributed on multiple systems. The tasks are therefore
designed as MLflow Projects. This enables the execution from the command line or the
API and makes parallelization possible.

The supported model formats have to be expandable as complete support for all possible
formats is not feasible in a single work. One obvious choice as an initial supported format
are MLflow Models. These can be created using various tools and contain a flavour specific
to the used tool. Furthermore, if a model was created using MLflow Tracking, the tracking
ID will be passed to the model, allowing access to data about the model creation at a later
stage in the evaluation process.

The model registry provided by MLfow also offers a possible starting point for the eval-
uation of models. Due to this, the storage for models is integrated into the framework as
well.

MLflow Tracking enables the recording of metrics during execution of code and is therefore
used to act as the central element for storing evaluation results. This storage is realized
as an SQL database running the collection for result storage.

The results can be viewed using the MLflow interface or the API. This makes it possible
to view and compare results directly or use the framework as part of a complete workflow
for ML models. In this context, the ExGETa framework could also be integrated into the
training process of models by using the evaluation outputs taken from the API as metrics

for optimization.

4.3 Task Generation

The generation of executable tasks is a three step process. First the inputs by the user have
to be read and analysed. Then the framework has to match the gained information about
the model and dataset with the available tasks in the database. If there are existing tasks in
the database, these have to be assembled into packets that can be executed independently.

The implementation of each of those steps is detailed in the following sections.

4.3.1 Input Processing

The framework expects three types of user input. As each type of input has to be well
defined for the framework to be user friendly and expandable in the future, the different

inputs model, dataset and metadata are explained in separate sections.

4.3. TASK GENERATION 25

All of the inputs are processed by the ExGETa framework to collect information used to
query the database of Evaluation Tasks. Later on the inputs are passed to each task so

they may be accessed and used if needed.

Model

The mandatory input is the model which is to be evaluated. The model file can have differ-
ent formats depending on the methods that were used to create the model. The framework
can work with any model in theory, however it is limited by the available tests in the
database. If no tests have been configured for the modeltype, no evaluation is possible.
In this work, the framework is configured for SVM models. Future additions are intended
for other models (see chapter 7.2). One supported library is scikit-learn® [78] if the models
have been encoded using pickle or joblib, which are python modules used for storing and
loading data [89]. Scikit-learn is chosen as a priority because it is an increasingly popular
package for ML applications and it offers capabilities of many ML methods [45].
Scikit-learn provides the classes SVC, NuSVC and LinearSVC for classification and SVR, NuSVR
and LinearSVR for regression tasks. Additionally a method for unsupervised outlier detec-
tion is implemented in the class OneClassSVM. The classes LinearSVC and LinearSVR use
liblinear [35] for efficient computation of SVMs with linear kernels. The other classes use
libsvm [26], an open source library based on the works on Sequential Minimal Optimization
(SMO) [55, 79] and the algorithms of the SVM!88 [50] implementation.

As the properties of the model are of interest for both the assignment and the execution

of tasks, the attributes and parameters for the different types are listed below:

e SVC and NuSVC

— Parameters: C (only SVC), nu (only NuSVC), kernel, degree, gamma, coef0,
shrinking, probability, tol, cache size, class weight, verbose, max iter, deci-
sion function shape, break ties, random state

— Attributes: class weight | classes , coef | dual coef | fit status , inter-
cept_,n_features in ,feature names in ,n_iter ,support ,support vectors
n_support , fit status_ (only NuSVC), probA | probB | shape fit

e SVR, NuSVR and OneClassSVM

— Parameters: C (only SVR and NuSVR), nu (only NuSVR and OneClassSVM),
kernel, degree, gamma, coef(, shrinking, tol, cache size, verbose, max iter,
epsilon (only SVR)

— Attributes: coef |, dual coef | fit status , intercept , n_features in , fea-
ture_names_in_,n_iter ,support ,support vectors ,n_support ,shape fit |
offset_ (only OneClassSVM)

“https://scikit-learn.org/

26 CHAPTER 4. IMPLEMENTED FRAMEWORK

e LinearSVC and LinearSVR

— Parameters: penalty (only LinearSVC), epsilon (only LinearSVR), loss, dual, C,
tol, class_weight (only LinearSVC), multi class (only LinearSVC), fit _intercept,

intercept scaling, verbose, max_iter, random state

— Attributes: classes_ (only LinearSVC), coef , intercept , n features in_,

feature _names in_, n_iter

The scikit-learn models can be saved to a file using pickle and joblib. These libraries offer
encoding and decoding of model files using multiple protocols. The functions for saving a
model are pickle.dump() and joblib.dump() while the reading a stored model is enabled
by the functions pickle.load() and joblib.load().

The framework is also set up to process MLflow models (see chapter 4.2.1) of different built-
in flavors. MLflow models can be created and processed with many common ML toolkits
like Keras'®, PyTorch!!, Spark MLIib'2, TensorFlow!?, ONNX!'" or XGBoost!® (using the
corresponding flavor) [41]. The wide range of toolkits that are supported by MLflow offers
the opportunity to quickly enable evaluation methods for them. Saving an MLflow model
results in a directory with the files of the model with some additional metadata. This
metadata is saved in the form of requirements.txt, conda.yaml and python_env.yaml
files listing all required software including the version in different formats and an MLmodel
YAML! file. As this file contains important information about the model, the contents

are explained using an example:

flavors:

python_function:
env: conda.yaml
loader_module: mlflow.sklearn
model_path: model.pkl
python_version: 3.9.7

sklearn:
code: null
pickled_model: model.pkl
serialization_format: cloudpickle
sklearn_version: 1.0.2

mlflow_version: 1.26.1

Ohttps://keras.io
Yhttps://pytorch.org
2https://spark.apache.org/mllib
Bhttps://www.tensorflow.org
"https://onnx.ai
Yhttps://xgboost.ai
Yhttps://yaml.org/

4.3. TASK GENERATION 27

model_uuid: be08d503576d40eebaaa911ad20c20e2
utc_time_created: 22022-07-04 15:08:49.593207°

The model in the above example can be used with all tools that provide support for one
of the flavors python_function or sklearn. Additional information is provided for each
flavor, in this case for example the path of the model. Additionally, the MLflow version
used for saving the model, a universally unique identifier of the model and the time of
creation are logged. In case the MLflow tracking API is used to record the run, a run_id
is added to the file to allow any software accessing this model to retrieve artifacts from the
linked run [28].

The MLmodel file format allows a simple compatibility with models of different origins
without the necessity to implement evaluations multiple times. Another example for an

open format is ONNX, which is focused on exchanging models of different ML tools.

Dataset

The dataset input entails challenges due to the diverse range of types of data. As the
framework has to be able to (theoretically) offer support for all data inputs, the interface
for passing datasets has to be highly open.

Datasets can for example take the form of in-memory storable files, files with a volume
exceeding the memory size or a data stream. The data itself can also take different struc-
tures, like time-series data or static tabular data. The ExGETa framework needs to be
compatible with a wide variety of data. Fortunately the main challenge in this area is to
correctly implement the Evaluation Tasks and store the requirements that the dataset has
to meet for every task. The framework itself can function agnostic of the data.

In order to specify the type of data supplied for the generation of tasks, the user can set the
corresponding parameters in the metainformation input (see next section). Furthermore
the user can determine the path to the data that the framework should use.

The processing of the data itself is left to the Evaluation Tasks, so these need to include
a step for the detection of the data structure. Depending on the metadata that is given
by the user, different methods and formats may be supported by Evaluation Tasks. The
usage of online data sources is also possible by passing the datasource to the metadata file.
This way of interacting with given datasets makes the framework highly compatible how-
ever it also brings drawbacks for the users. Users need to specify exactly how the given
data can be interpreted using the extra metadata. Furthermore changes to the dataset
may lead to necessary alterations of the metadata file, making the usage of the framework
more complex.

This trade-off can be tackled by using data formats with a high amount of compatibility

and built-in information about the interpretation of the data.

28 CHAPTER 4. IMPLEMENTED FRAMEWORK

Metadata

The metadata is passed to the framework using a JSON file. This file has to be created by
the user and is needed to correctly process the dataset and model. During the development
of the ExGETa framework, the necessity of detailed and correct metadata of the user has
become apparent.

Different model formats and model types need to be processed and evaluated using var-
ied techniques. Even models trained using the same toolkits can have different sets of
stored properties. An example for this are the scikit-learn algorithms sklearn.SVC and
sklearn.LinearSVC. While sklearn.SVC models store the indices of the support vectors,
the number of support vectors and the exact support vectors as attributes, none of these
exist in sklearn.LinearSVC models. Here the support vectors have to be computed from

the data by applying the decision function to the training dataset:

1 # given a sklearn.LinearSVC classification model linsvcmodel

based on the data X:

decision_outs = linsvcmodel.decision_function(X)
; sv_i = np.where(np.abs(decision_outs) <= 1 + le-15) [0]
support_vectors = X[sv_i]

Listing 4.1: Computation of the support vectors for a sklearn.LinearSVC model

The support vectors are calculated using the examples from the dataset that are within the
bounds of the margin. This process is needed because the sklearn.LinearSVC classifier
implementation is based on the liblinear library [35], while the sklearn.SVC implementa-
tion is based on the libsvm library [26].

Circumstances like this make extensive metadata regarding model and dataset necessary
for the framework to properly function. To limit the time and effort needed by the user,
the metadata is kept as simple as possible. This however leads to the situation that the
metadata format may have to be expanded in the future to make the processing of models
or datasets not considered in this work possible.

In the current form, the metadata JSON that is required to run the generation of Evalua-
tion Tasks is defined like this:

- {

"name": String,

"modelmeta": Object = {
"task": String,
"method": String,
"module": String,

"model_path": String,

4.3. TASK GENERATION 29

"loader_module": String

y,

"datasetmeta": Object = {
"data_path": String,
"data_format": String,
"labelloc": String,
"traintest_cutoff": Integer,
"n_labels": Integer,
"headerlines": Integer,
"data_separator": String,
"scaling": String,
"n_classes": Integer

T,

"mlflow_uri": String,

"mlflowexpid": String,

"os": String,

"hardware": String,

"outpath": String

Listing 4.2: Structure of the metadata input JSON

The part of the JSON dedicated to the model contains all the information needed to rec-
ognize, interpret and apply the given model. The specifics of the model have an enormous
impact on the applicability of Evaluation Tasks, so this Object in the JSON file has a high
priority. The values of this object are detailed below.

e "task'": String

— ML task that is solved by the model

— Examples: "classification", "regression", "clustering"
e "method": String

— Method or algorithm used to solve the ML task

— Examples: "SVM", "DecisionTree"
e "module": String

— Toolkit that was used to create the model

— Examples: "sklearn.SVC", "sklearn.NuSVR", "cv.ml.DTrees"

30 CHAPTER 4. IMPLEMENTED FRAMEWORK

e "model path": String

— Path to the model

— Passing the location of the model like this avoids the need to pass it as an

argument to the framework

— Example: "C://inputs/joblib_model.pkl"
e "loader module": String

— Storage and loading format of the model

— Examples: "sklearn.joblib", "sklearn.pickle"
In order to correctly interpret the dataset given by the user, the datasetmeta object
in the JSON includes information about the data structure. The exact assembly of the

information is dependent on the specific type of dataset used. A short description of the

elements of this object is given for a classification task in the following listing:
e "data path": String

— Path to the dataset

— Passing the location of the dataset like this avoids the need to pass it as an

argument to the framework

— Example: "C://inputs/dataset.csv"
e "data format": String

— Data storage format of the dataset

— Example: "CSV"
e "labelloc": String

— Specifies the position of the label among the features of each example

— Examples: "f", "I"
e "traintest cutoff": Integer

— Number of examples in the training dataset
— The test data is taken from the data after this positional value

— Examples: 200, 10000

4.3. TASK GENERATION 31

e "n_labels": Integer

— Number of labels that can be assigned to a single example

— Examples: 1, 8, 0 (for unlimited)
e "headerlines": Integer

— Number of lines in the file used for header data

— Examples: 0,1, 5
e ""data separator": String

— Character or string used to separate the features
_ Examples: o o
e "scaling": String
— Scaling methods to be used on the data
— Examples: "NONE", "0Inormalization"
e "'n_classes": Integer
— Number of distinct classes in the dataset
— Examples: 2, 5, 280

The two objects modelmeta and datasetmeta cover most of the input data needed in this
file. Some further general data is needed to specify information about the used system and
the connection to the MLflow result tracking platform.

The last important information needed from the user is the path where the resulting
Evaluation Tasks should be saved. The path may also lead to a place on a network

connected server. All of this additional data is defined as follows:
e "name": String

— Name for the evaluation run

— Examples: "MNISTsym", "CIFARdt"
e "mlflow uri": String

— The uniform resource identifier to the MLflow server

— Examples: "http://localhost:5000", "http://128.105.39.11:23457"

32 CHAPTER 4. IMPLEMENTED FRAMEWORK

e "mlflowexpid": String

— MLflow experiment ID if the outputs should be linked to a prior execution

— Examples: "17", "412"
e "os": String

— Operating system of the processing node

— Examples: "windows", "macos"
e "hardware": String

— Hardware provided for the execution of evaluations

— Example: "cpu"

e "outpath": String

— Path to the location where the Evaluation Tasks should be stored

— Examples: "C://inputs/", "\\Server2\Share\EvaluationTasks\"

4.3.2 Assignment of Possible Tasks

In the second step of the framework, the information of the given and processed inputs
is used to query the database for available tasks. As the GridFS database is split into
a collection for metadata and a collection for the chunks of the evaluation software (see
chapter 4.1), the first step is to discover which tasks are applicable using the metadata
collection.

This collection (fs.files) is queried with the information gathered in the first step of the
framework. This information is comprised of all data included in the input files, mostly

the metadata JSON. An example query may look like this:

files.find("$and":

["metadata.task": '"classification",
"metadata.method": "SVM",

"metadata.type": ‘'"sklearn.SVC",
"metadata.loader_module": '"sklearn.joblib",
"metadata.classes": "2",

"metadata.os": "windows",
"metadata.data_format": "CSV",
"metadata.hardware": '"cpu"l]

4.3. TASK GENERATION 33

Only those task IDs are returned by the database where the constraints of the task match
the properties of the inputs. This ensures the compatibility and the executability of the
evaluation method. In the above example, only Evaluation Tasks are returned that support
the assessment of binary (2 classes) classification models based on SVM algorithms. The
required compatibility with sklearn.SVC models saved using sklearn.joblib is ensured.
Furthermore the returned tasks need to be able to be executed on windows based systems
mainly using the cpu. Lastly the tasks need to be able to process tabular datasets in CSV
files.

The output of the query could be a set of Evaluation Tasks like this:

’_id’: ObjectId(’62e1fc926bda26c12b461630°)
’_id’: ObjectId(’62elfeebfbcd65ff61albbeb?)
’_id’: ObjectId(’62e26c522569c2e88253ef77°)

Every element of the produced set of entries represents a single Evaluation Task. The
chunks in the database contain the ZIP files of the tasks. The ZIP files of these tasks
are then retrieved using the IDs for the fs.chunk entries corresponding to the obtained
elements.

This procedure reduces the problem of identifying and assigning the correct set of tasks
for given inputs to a simple database query. This makes the procedure easy to understand
and enables possibilities for optimization in the future.

The data from this collection is then used in the next step to produce runnable task packets.

4.3.3 Compilation of Task Packets

The task packets need to be modular and independently executable. To facilitate a straight-
forward development and addition of new Evaluation Tasks for the framework, some re-
dundancy has to be accepted.

All task packets are therefore compiled using the decompressed Evaluation Task software
from the previous step, the given user inputs (mainly the model and dataset) and meta-
data generated in this step. The information stored in the metadata mainly consists of
the format of the model and dataset, the requirements needed for the execution and the
locations of the important files.

Most of this information is taken directly from the metadata input supplied by the user.
To this end, the contents of the input JSON are adopted for the metadata file provided to
all Evaluation Tasks.

Additional information can be extracted from the model and dataset during processing.
This information is then appended to the input JSON to facilitate the usage of the files
for the Evaluation Tasks.

The processing of models is outsourced to a separate file with methods for specific tools.

An example for such an extraction of information is given below.

14

34 CHAPTER 4. IMPLEMENTED FRAMEWORK

def process_LinearSVC(modelfile):

config["skparams"] = modelfile.get_params ()

if hasattr (modelfile, ’coef_’):
config["coef_"] = modelfile.coef_.tolist ()

if hasattr(modelfile, ’intercept_’):
config["intercept_"] = modelfile.intercept_.tolist ()

if hasattr (modelfile, ’classes_’):
config["classes_"] = modelfile.classes_.tolist ()

if hasattr (modelfile, ’n_features_in_’):
config["n_features_in_"] = modelfile.n_features_in_

if hasattr(modelfile, ’feature_names_in_"’):
config["feature_names_in_"] = modelfile.

feature_names_in_.tolist ()
if hasattr (modelfile, ’n_iter_’):

config["n_iter_"] = modelfile.n_iter_.item()

Listing 4.3: Extraction of information from a sklearn.LinearSVC model

This step makes all information that can be gathered using the built-in methods available
to following steps. The set of parameters and all attributes are extracted if they are
available.

The resulting JSON file is then copied to the directory of each Evaluation Task inside a
newly created /inputs/ subdirectory. Along with the metadata, the model and dataset
file are also passed to the same location.

The Evaluation Tasks are decompressed from their ZIP files and assembled in individual
folders in the specified directory from the metadata input. This process alongside the
insertion of input data for the Evaluation Tasks is executed for each element that is returned

from the task database:

for t in ts:
tpath = metafile["outpath"] + "/eval_tasks/task" + str(tn)
fzip = dbc.getTaskFileByID(t["_id"])
with zipfile.ZipFile(fzip, ’r’) as toextract:
toextract.extractall (path=(tpath))
os.mkdir (tpath + "/inputs/")
shutil.copy(modelfile, tpath + "/inputs/" + os.path.
basename (modelfile))
shutil.copy(’options.json’, tpath + "/inputs/options.
json")
shutil.copy(datafile, tpath + "/inputs/" + os.path.

basename (datafile))

10

4.4. EVALUATION TASKS 35

tn = tn + 1

print (str(tn) + " tasks have been generated!")

Listing 4.4: Assembly of executable Evaluation Tasks in the specified directory

4.4 Evaluation Tasks

As the goal of the framework is the evaluation of ML, models, the usefulness of the frame-
work depends heavily on the included Evaluation Tasks. A uniform structure is needed
to ensure an equal behaviour of the different Evaluation Tasks. This structure is defined
in the next section. Afterwards a suggested pattern for the implementation of Evaluation
Tasks is presented. Lastly the implemented evaluation techniques that form an exemplary

baseline for the framework are introduced.

4.4.1 File Structure

The Evaluation Tasks need to be executable on different systems without the need to
install the dependencies and requirements of all tasks. Only those packages are installed
that are needed for the execution of the specific tasks that are generated. This feature
is achieved through the use of the package manager conda!”. This software allows the
creation and management of execution environments to properly manage requirements of
different software packets.

A conda environment is stored along each Evaluation Task. This environment is specified
to contain all dependencies needed to run the task. Before execution of each task, the
conda environment is recreated and activated. After this step, the Evaluation Task must
be executable on any system (provided conda is installed on the system).

The other required file of every task is the evaluation_task.py file. This may contain all
of the code or only be a wrapper script for the evaluation software. In any case this file
must be the entryfile for starting the Evaluation Task. This loose restriction theoretically
allows the development and integration of Evaluation Tasks of any language or form, and
therefore makes the framework versatile for all types of additions.

Developers of Evaluation Tasks may additionally use a theoretically unlimited number of
other files if the execution of the task is dependent on it. As the Evaluation Tasks are
compressed into a ZIP container, the structure of the file of the Evaluation Tasks does not
have an impact on their storage in the database. The only limitation is that the usage of
a subdirectory named /inputs/ is prohibited because this is reserved for passing data to
the task during compilation (see chapter 4.3.3).

The structure of the evaluation_task.py file itself is not strongly defined, however a

suggested concept is presented in the following sectiomn.

"https://conda.io

36 CHAPTER 4. IMPLEMENTED FRAMEWORK

4.4.2 Program Structure

To ensure compatibility with automated execution, the __main__ function must not have
any parameters. This function calls an input_processing function designed to extract
the relevant information from the inputs in the /inputs/ subdirectory. If the processing
of multiple inputs, like model and dataset, is needed, another division into (in this case)
model_processing and dataset_processing functions may be used. An important design
decision at this point is the separation of input processing and the evaluation of the specific
metrics.

As MLflow is used for the management of the evaluated metrics, each task has to pass the
output measures to the MLflow tracking server. The tracking Unique Resource Identifier
(URI) is passed to each task using the metadata file. This URI must be used to establish
the connection, as a goal of the framework is to provide a central point where all evaluated
metrics can be fetched and viewed.

Each task creates a data structure (in python the data type is a dictionary) and gathers
all important metrics into this loggingdata variable. The metrics have to be saved as a
key-value pair with a numeric value. When the software has completed all evaluations, the
loggingdata is passed to the MLflow API as a collection of metrics for a specific MLflow

run.

Chapter 5
Implemented Tasks

In order to test the framework in regards to compatibility to different evaluations and open-
ness to additions, some Evaluation Tasks are developed and integrated into the framework.
These are described in more detail in the following sections, each detailed with a description

of the underlying metric and the practical implementation.

5.1 Confusion Matrix Evaluation

A standard procedure towards obtaining different metrics for classification tasks is the
analysis of the confusion matrix [93]. A general introduction of the mathematical back-
ground is given in chapter 2.3.

The metrics that are to be evaluated are all of the base values of the confusion matrix
and all of the derived measures introduced in chapter 2.3. This Evaluation Task therefore
represents a case of a statistical analysis of the model performance.

This chapter presents the implementation of the measures and the integration of results
into the result storage. To this end, the workflow of the Evaluation Task is described in
detail.

The evaluation of the metrics derived from the confusion matrix is implemented for MLflow
and scikit-learn models. The code structure follows the schema described in chapter 4.4.2
using a single evaluation_task.py file.

First the inputs are processed, starting with the metadata to access information that may
be used in the processing of the model or dataset. Then the model and dataset are pro-
cessed, where the specific type of model is detected. After this, the evaluation of metrics
begins, depending on the detected model.

For scikit-learn models, the built-in tools are used to facilitate the evaluation. The func-
tion sklearn.metrics.confusion_matrix(labels y, predictions p) quickly generates
a confusion matrix for binary and multiclass classification [18]. Afterwards, the base met-

rics are computed for each class:

37

10

11

38 CHAPTER 5. IMPLEMENTED TASKS

conf_matrix = np.array(sklearn.metrics.confusion_matrix(y_test

, predictions))

; loggingdata = dict ()

for i in range(len(conf_matrix)):

all = np.sum(conf_matrix)

posclass = np.sum(conf_matrix[:, i])
posreal = np.sum(conf_matrix[i, :])
negclass = all - posclass

negreal = all - posreal

tp = conf_matrix[i, 1]

fp = posclass - tp

tn = all + tp - posclass - posreal
fn = negclass - tn

Listing 5.1: Computation of the base metrics of the confusion matrix

Based on these base metrics, all of the derived metrics are computed and added to the set

of metrics with a key indicating the class they correspond to:

loggingdata = dict ()

for i in range(len(conf_matrix)):

tpr = tp/posreal
tnr = tn/negreal
pPpv = tp/posclass
npv = tn/negclass

fowlkes_markov_index = sqrt(ppv*tpr)

if tpr is not None: loggingdatal[’true_positive_rate_class_’
+ str(i)] = tpr
if tnr is not None: loggingdatal[’true_negative_rate_class_’
+ str(i)] = tor

if ppv is not None: loggingdatal’

positive_predictive_value_class_’ + str(i)] = ppv
if npv is not None: loggingdatal’
negative_predictive_value_class_’ + str(i)] = npv

if fowlkes_markov_index is not None:
loggingdata[’fowlkes_mallows_index_class_’ + str(i)] =
sqrt (ppv*tpr)

Listing 5.2: Excerpt of the evaluation of metrics derived from the confusion matrix values

5.2. SVM ROBUSTNESS EVALUATION 39

After all these metrics are collected for each class, the built-in metrics of scikit-learn are
added to the set of metrics:

> loggingdatal[’accuracy_score’] = sklearn.metrics.accuracy_score

(y, predictions)

loggingdata[’hamming_loss’] = sklearn.metrics.hamming_loss(y,
predictions)

loggingdata[’hinge_loss’] = sklearn.metrics.hinge_loss(y,

predictions)

; loggingdatal[’log_loss’] = sklearn.metrics.log_loss(y,

predictions)

- return loggingdata

Listing 5.3: Excerpt of the base metrics provided by scikit-learn

This collection of metrics then makes up the output of this task, which is passed to the
function for saving the metrics to the MLflow server. To demonstrate the Evaluation Task,
at some of the experiments using models that are trained on selected datasets to acquire

exemplary metrics, this task is included (see chapter 6.2).

5.2 SVM Robustness Evaluation

The accuracy of ML models has been shown to be negatively affected by perturbations
of the input data, like blurring in the case of image data [92]| or typing errors in the case
of text translation systems [7]. The defence against targeted construction of adversarial
examples has been proven to be an important research topic for safety relevant or privacy
sensitive systems, like voice recognition systems [22] or perception in autonomous driving
[21].

To evaluate the vulnerability of a model to changes of the input data, the robustness can
be evaluated. In the case of SVM models, the robustness is measured mostly by modifying
the inputs in small ways and analysing whether the model output changes. If such small
perturbations do not often result in a different model prediction, the model can be viewed
as robust.

An existing tool for the evaluation of robustness of SVM models is described in the next
section, followed by the specifications of how this tool is used to create an Evaluation Task

based on it.

40 CHAPTER 5. IMPLEMENTED TASKS

5.2.1 Description of the Tool

The developed framework can be applied to integrate existing evaluation methods. One of
these methods is the SVM Abstract Verifier (SAVer)!'® used to evaluate the robustness of
SVM models.

This tool, developed by Ranzato and Zanella [82], approximates the robustness using the
set of examples X and a perturbation function P. The region P’(x) is an overapproxi-
mation of the region P(z), which represents the perturbations of x. An abstract version
of the SVM model to be evaluated is then used to classify points in P’(z). These points
are not necessarily contained in P(X), but if all evaluated points of P’(z) are classified as
elements of the same class, this property also holds true for the subset P(X). Therefore
the model is declared robust on point x. If the model outputs more than one class for the
points, the model is not declared robust on point x. Note however, that this only computes
the provable robustness, as the real amount of points that are robust for all points in their
respective regions P(z) might be greater than the number given by SAVer due to the use
of the overapproximation P’(z).

The tool can be tuned by modifying the parameters for the abstraction and the perturba-
tion. At this point in time, the tool supports binary classification SVMs and One-vs-One
multiclass SVMs in a specified file format. This format is compatible with models trained
using scikit-learn and therefore no complicated conversion is needed to integrate the tool
into the framework.

SAVer outputs a detailed report on the given model, providing both example-specific infor-
mation (correct label, predicted label and set of predicted labels in the perturbation set)

and overall statistics. The metrics provided by the overall statistic are:

1. Correctness: The number of examples that are initially classified correctly by the

model is given as metric for the correctness of the model.

2. Robustness: The robustness (also called stability) of the model measures the total

amount of examples in the dataset evaluated as robust.

3. Conditional Robustness: This metric is sometimes only referred to as robustness.
The conditional robustness is the number of examples that are classified correctly

and proven as robust.

The mathematical and theoretical basis of the tool is beyond the scope of this work,
however the original paper [82] describes the specifics in detail along with an analysis of
the performance of SAVer. The outputs are shown for a dataset with size n, a perturbation

value of € and labels y(i) for example i:

8https://github.com/abstract-machine-learning/saver

5.2. SVM ROBUSTNESS EVALUATION 41
MODEL_PATH DATASET_PATH O € y(0) Ypred(0) B(0)

MODEL_PATH DATASET_PATH n—1 e y(n—1) Yprea(n —1) B(n—1)
[SUMMARY] Size Epsilon Avg. Time (ms) Correct Robust Cond. robust
[SUMMARY] n € t Necorr Nrob Ncondrob

Listing 5.4: Output metrics produced by SAVer

The robustness evaluation tool computes the predictions of the model ypcq(7) and the
superset of labels in the adversarial region B(i). Based on these calculations, the number of
correct classifications n¢q-, robust classifications n,.., and conditional robust classifications
Neondrob according to the definitions (see chapter 5.2.1) are derived.

The upside of this representation is an intuitive overview, however the focus on human
readability leads to a difficult integration into an ML pipeline. The tool does not provide
an API or data format for usage of the metrics at a later stage of the model evaluation or

during hyperparameter tuning.

5.2.2 Implemented Software

In contrast to the evaluation in chapter 5.1, creating an Evaluation Task based on the
SAVer tool entails the integration of external software. This software is packaged into the
file structure of the Evaluation Task and stored in the task database.

For the evaluation of robustness, SAVer requires the model to be in a special format [82].

This format follows the structure!?:

ovo
<feature space size>

<number of classes>

<kernel type and parameters>

<class 1><number of support vectors for class 1>

<class 2><number of support vectors for class 2>

<class N><number of support vectors for class N>
<alpha coefficients>
<support vector»

<biases>

In order to offer compatibility with common model formats, the model mapper?” imple-
mented by the creators of SAVer is used on the input model. The converted model is then
saved to allow access.

The L-infinity perturbation with a mutation factor of 1% is applied and the robustness

19taken directly from the documentation: https://github.com/abstract-machine-learning/saver
2Onttps://github.com/abstract-machine-learning/data-collection

42 CHAPTER 5. IMPLEMENTED TASKS

evaluated. To achieve this, the SAVer tool is executed with the converted model, dataset
and the chosen mutation parameters.

Executing the SAVer tool with the converted model and dataset yields an output which
contains a result analysis for each sample and an overall evaluation (see chapter 5.2.1).

This output is then parsed to extract the different metrics from the last line:

result = program.communicate () [0]

5 lastrow = (str(result, ’utf-8’).splitlines())[len(str(result,

utf-8’).splitlines()) - 1]

s siz = float(lastrow.split () [1])

i loggingdatal’epsilon’]
- loggingdatal[’avgtime ’]

float (lastrow.split () [2])
float(lastrow.split () [3])

ncorrect = float(lastrow.split () [4])
nrobust = float(lastrow.split () [5])
ncondrobust = float(lastrow.split () [6])

Listing 5.5: Parsing of the SAVer outputs

The values for the e parameter and the average analysis time are immediately stored in
the loggingdata as they are not needed for further calculations. The other metrics are
combined with the size of the dataset to acquire ratios for correctness, robustness and

conditional robustness:

1 loggingdatal[’ratiocorrect’] = ncorrect/siz

loggingdatal[’ratiorobust’] = nrobust/siz

s loggingdata[’ratiocondrobust’] = ncondrobust/siz

loggingdatal[’size’] = siz

5 loggingdatal[’ncorrect’] = ncorrect

s loggingdatal[’nrobust’] = nrobust

loggingdata[’nconditionalrobust’] = ncondrobust

Listing 5.6: Calculation of robustness ratios

All of the data that is computed and saved in the loggingdatal[] variable, is then stored
in the result database. This is implemented by logging the metrics to the MLflow tracking

server.

5.3 Theoretical Bounds for SVMs

Some ML models can be evaluated in regards to theoretical guarantees. SVMs in particular

are based on sound mathematical principles (see also chapter 2.1). As such, different

5.3. THEORETICAL BOUNDS FOR SVMS 43

properties of SVMs can be used to compute estimations and bounds for certain metrics
|49, 95]. The work of Joachims [53] on classification using SVM models is used as a basis
for possible evaluations.

In the following section, the mathematical theory is described. After this, the implemented
software evaluating the theoretical properties is presented. Lastly the process of combining
the outputs of this software with an interpretation is detailed as an example of generating

a different output than a set of metrics.

5.3.1 Theoretic Background

The bounds explored in this section are all taken from the works of Thorsten Joachims.
The main sources of this Evaluation Task are the works on generalization performance [51]
and text classification [53] in the context of SVMs. The set of estimators of performance
measures based on the E and @ (£« estimators) are described in more detail in the following
section.

The values «; of vector & describing the coefficients of the training examples are zero for
exactly those examples that are not support vectors. The values &; of E describe the loss
of each example z; in the training set. Considering a training set S with n elements and
the hypothesis ho, which learner £ returns, the o estimator for the error rate Errga(hg)
of a stable soft-margin SVMs is:

n d
ETT&a(hﬁ) = ;

withd = |{i: (pa; RA + &) > 1)}

In this formula, p is a parameter and R2A is an upper bound on ¢ < K(X', :L_"’) < c—i—RQA for
all Z, ! , some constant ¢ and a Mercer Kernel [68] K. The value p = 1 has been suggested
by Joachims [51] as a good choice for the parameter. This estimator of the error rate has
been shown to be output higher values than the true error rate on average [53].

Using the same inputs as above, the following values can be computed:

d_y = |{i:yi:1/\(paiRQA+§i) > 1)}
di— = W[ityi=—-1A(pa;R% +&) > 1)}
ne = |iiy=1)]

no = iy =1}

These values are helpful for estimating the Precision, Recall and F1, because they represent
the amount of positive examples where (po; RA +&;) > 1 is true (d_y), the amount of

negative examples where this condition holds (dy_) and the total amount of positive (n.)

44 CHAPTER 5. IMPLEMENTED TASKS

and negative (n_) examples in the training set S. The &« estimators of these metrics are

then calculated analogously to the corresponding metrics (see chapter 2.3):

. ny —d_y
Precg,(he) = A T d
n d7+
Recg,(he) = 1- .
2ny —2d_4

F17,(he) =

Just like the estimator of the error rate, the £« estimators if Precision, Recall and F1 have
been shown to produce lower values than the true measures on average [51].

The derivations, proofs and further information about these bounds exceed the scope of
this work, as the focus is on the development of an evaluation framework. The background
for these estimators has been provided by Joachims [53] and can be retraced in his work.
An addition to the estimators above is a bound on the expected test error. This bound was
given by Vapnik [96] and is based on the Vapnik-Chervonenkis dimension (VC dimension).
The VC dimension describes the maximum number of points that can be shattered by a
set of functions [20]. For a classifier (representing the set of functions) to shatter a point
configuration, the classifier must be able to find a division of the points that separate all
positive from all negative examples perfectly for every possible assignment of positive and
negative values.

In order to form the bound on the expected test error R(«), some definitions have to be
introduced. Given a classifier f(z, «) tasked with learning a mapping z; — y; of the vectors
x; € R" i =1,...,1 to the labels y; using the parameters «, let the loss function take the
form 3|y; — f(xi,@)|. The empirical mean error rate (on the training set) is then defined
by:

1 l
Remp(a) = Z Z ‘yz - f(xh Oé)|
i=1

Then for V' as the VC dimension and a chosen 7 with 0 < n < 1 the following bound holds
with probability 1 — 7 [20]:

R(0) < Remp(@) + \/ Vin(y) : 1) — in(})

Other bounds have been explored specifically for Bag-of-Words data for text classification
using TCat-Concepts [52], however these have not been implemented as an Evaluation
Task yet, as the model and data have to satisfy some specific requirements in order for
the bounds to be applicable. The implementation of an evaluation of these bounds does

however constitute a useful addition to the framework in the future.

5.3. THEORETICAL BOUNDS FOR SVMS 45

5.3.2 Implementation of the Calculations

In order to evaluate the measures described in chapter 5.3.1, a python application is im-
plemented. The general guidelines for the realization of Evaluation Tasks (see chapter 4.4)
are followed. The application does not rely on additional files or assets and consists only
of the python executable.

First the input data is split into training dataset and test dataset according to the infor-
mation given by the user. The training data is used to compute the misclassifications on
the training data by applying the model. This measure when divided by the number of
training examples yields the empirical error rate on the training data. Next the values for
calculating the £« estimators are calculated by iterating through all training examples and

their slack values:

for s in slack:
if (count < len(alphas)):
if (X_train[i] in clf.support_vectors_):
if(p * alphas[count] * R + & >= 1):
1):

if (y_train[i] =
dmp = dmp + 1

if (y_train[i] == 0):
dpm = dpm + 1
d =d+ 1

if (2 * alphas[count] * R + s >= 1):

x = x + 1
count = count + 1
else:
if(s >= 1):
x = x + 1
if (y_train[i] == 1):
dmp = dmp + 1
if (y_train[i] == 0):
dpm = dpm + 1
d =d + 1
else:
if(s >= 1):
x = x + 1
if(y_train[i] == 1):
dmp = dmp + 1
if(y_train[i] == 0):

dpm = dpm + 1

46 CHAPTER 5. IMPLEMENTED TASKS

d =4+ 1

1):
nplus = nplus + 1
-1):

nminus = nminus + 1

if(y_train[i] =

if (y_train[i] =

i=1+1

Listing 5.7: Calculation of required values for the computation of £« estimators

Of special interest during this computation is the distinction between examples that are
support vectors of the model and those that are not. This is important, because the formats
of common SVM model implementations like the ones in scikit-learn only save «; values
for support vectors, as a; = 0 if ¢ is not a support vector. For the computation of the
measures needed for £a estimators all examples need to be included.

After the values for d_, d4_, ny and n_ are calculated, the o estimators can be explored.

The program for the computation simply applies the formulas of chapter 5.3.1:

| estimator = d / n

estRec = 1 - (dmp/nplus)

; estPrec = (nplus - dmp)/(nplus - dmp + dpm)

estFone ((2*xnplus) - (2xdmp))/((2*nplus) - dmp + dpm)

5 nmax = max (nplus, nminus)

; # value for always predicting most common class:

maxvalpredictoracc = nmax/n

Listing 5.8: Calculation of the £ estimators
Lastly the bound on the expected test error is calculated using the VC dimension. In the

case of a linear SVM the VC dimension is simply the number of input features + 1 as was

mathematically proven [4]. Following the formula from chapter 5.3.1, the calculation is:

1 rabound = remp + sqrt((vcdim*(log((2*1)/vcdim)+1) - log(eta/4)

)/1)
Listing 5.9: Calculation of the bound on the expected test error
All of the evaluated bounds, the VC dimension and the £« estimators are then stored
alongside the evaluation metrics from the test data. This output data is logged to the

MLflow tracking server as metrics. Additionally a report is generated, which is detailed in

the following section.

5.3.3 Generation of a Report

Providing users with a simple and understandable report on the evaluated metrics and

bounds has great advantages in regards to the usability of the evaluation. To this end, a

5.3. THEORETICAL BOUNDS FOR SVMS 47

Portable Document Format (PDF) file is generated which contains the vital information
and a basic visualization.
The generation of a PDF file is enabled through the use of the PyFPDF?! library. The

construction of the file is simple:

pdf FPDF ()

3 # add a page

pdf .add_page ()

set style and size of headline font

pdf .set_font ("Arial", size = 20, style="B")

pdf.cell (200, 30, txt = "Bounds and Measures Report", 1ln = 1,
align = °C?)

set style and size of text font

pdf .set_font ("Arial", size = 15, style="")

> pdf.cell (200, 10, txt = "Vapnik Chervonenkis dimension: " +

str(vedim), 1n = 1)

13« o

Listing 5.10: Creation of a file using PyFPDF

In this way, all of the metrics calculated as detailed in chapter 5.3.2 are included in the
report and explained using a short preceding text. This is already an improvement to the
storage of raw values for users.

Additionally the significance of some values is illustrated by short texts. These are available
regarding the value of the test accuracy and error. A simple check, if the accuracy is higher
than one of a classifier which always predicts the most common class is implemented. If
this check fails, the model must be reviewed as it is most likely that the training was not
successful.

Furthermore, the bound on the expected test error (see chapter 5.3.1) is interpreted for
a value of n = 0.05. This means the bound is holding with a probability of 95%, so it is
highly advised to verify the model and dataset if the bound is invalid. The meaning of
these interpretations is highlighted by changing the text color depending on the status of

the evaluations:

1 if((1-score) > rabound):

pdf .set_text_color (194,8,8) # set textcolor to red

https://github. com/reingart/pyfpdf

48 CHAPTER 5. IMPLEMENTED TASKS

3 pdf .multi_cell (200, 10, txt = "Test Error exceeds bounds!
Probability for the bound holding is 95 percent.\nPlease
check the model and dataset!", align = ’C?)

1 else:

pdf .set_text_color (8,194,8) # set textcolor to green
6 pdf .multi_cell (200, 10, txt
bounds.\nProbability for the bound holding is 95 percent.",

"Test Error is within the

align = ’C’)

Listing 5.11: Addition of interpretations to the report file

For users interested in the background of these interpretations and the metrics evaluated
for the model, the references are supplied at the bottom of the report. These are the works
of Burges [20] and Joachims [53| on SVMs and their properties. The additions and output

of the model are straightforward:

1 # insert references for the Bounds

pdf .multi_cell (200, 10, "References: ")

5 pdf .set_font ("Arial", size = 8, style="")

pdf .multi_cell (200, 5, "Burges, Christopher J. C.: A Tutorial

N

on Support Vector Machines for Pattern Recognition. Data
Mining and Knowledge Discovery, 2(2):121-167, jun 1998.\n "
)

5 pdf .multi_cell (200, 5, "Joachims, Thorsten: Learning to

Classify Text Using Support Vector Machines: Methods,
Theory and Algorithms. Kluwer Academic Publishers, Norwell,
Massachusetts, USA, 2002.\n ")

¢ # save the pdf with name Boundsreport.pdf

7 pdf .output ("Boundsreport.pdf")

Listing 5.12: References in the bounds report for the calculations

As the location and name of the report are defined by the program, the created PDF file
containing the report is then added to the MLflow tracking server as an artifact. This
allows users to view or download the PDF file and have instant access to a prepared

interpretation of the metrics.

5.4 Energy Consumption Measurement

In recent years the measurement and limitation of the energy consumption of ML, methods
has become a focus of research [40]. Due to this development, a technique for measuring

energy consumption is chosen as one of the Evaluation Tasks initially implemented for the

5.4. ENERGY CONSUMPTION MEASUREMENT 49

ExGETa framework.

In the next section the software is presented upon which the Evaluation Task is built.
Afterwards the implementation of the Evaluation Task is detailed with the focus on how
the existing tool is integrated. Lastly, the interpretation of the metrics achieved from the

task are described and assessed.

5.4.1 Description of the Tool

A framework is chosen that allows sophisticated visualization of results to showcase the
capabilities of ExGETa. The CodeCarbon emissions tracker?? based on prior work from
Lacoste et al. [56] and Lottick et al. [63] offers this capability.

CodeCarbon is an advanced tool for analysing energy consumption as it takes several fac-
tors of the execution into account. The computing infrastructure, usage of components
and running time are combined to acquire measures for the power consumption. These
measurements are then combined with location data (if available) to evaluate an estimate
of the CO2 equivalent (COzeq) emissions caused by the computation [86].

The CodeCarbon tool supports various hardware resources. Data regarding the Graphics
Processing Unit (GPU) is gathered through the python bindings to the Nvidia manage-
ment library (pynvml). CPU data is collected using different techniques depending on the
operating system. For Linux systems, the Intel Running Average Power Limit (RAPL) en-
ergy sensors are a straightforward method of estimating power consumption for individual
processes [43]. The CodeCarbon tool uses the RAPL files that are generated automatically
to track the energy consumption.

For Windows and macOS systems with a CPU manufactured by Intel, the Intel Power
Gadget?® allows the tracking of power consumption. If this software based tracking is
not successful, CodeCarbon uses a dataset containing over 2000 processors stored in a
cpu_power.csv file as a fallback option.

To compute estimations of COzeq the location of execution is taken into account. Different
cloud service providers and their locations are assigned individual factors. The execution
on private hardware also results in different COqeq values depending on the location, as
for example the generation of one kWh of energy in France led to 58g COqy emissions in
2021. In the same year, the generation of one kWh of energy in Poland led to 736g CO4
emissions [71].

The CodeCarbon emission tracker outputs a . csv file with the following information about

the experiment:
e timestamp: Date and time of execution

e project name: Name of the current project

2https://codecarbon.io/

https://wuw.intel.com/content/www/us/en/developer/articles/tool/power-gadget .html

50 CHAPTER 5. IMPLEMENTED TASKS

e run_id: Generated unique identifier

e duration: Duration of execution in ms

e emissions: Evaluated COqeq emissions in kg

e energy consumed: The energy consumed by the executing hardware in kWh
e country name: Country of execution

e country iso_ code: 3-letter code of the country of execution according to
ISO 3166-1 alpha-3 [24]

e region: State or province of execution

e cloud provider: Name of the cloud provider (supported: Amazon Web Services,
Microsoft Azure, Google Cloud Platform)

e cloud region: Hosting region of the hardware of the cloud provider
e os: Operating system of the executing hardware

e python version: Version of Python used for execution

e cpu_count: Number of CPU cores

e cpu_model: Model of main CPU

e gpu_count: Number of GPU processors

e gpu_model: Model of main GPU

e longitude: Geographical coordinate of longitude

e latitude: Geographical coordinate of latitude

e on_cloud: Boolean (Y/N) whether the execution is based on a cloud platform

5.4.2 Integration as a Task

The integration of the CodeCarbon tool into the ExGETa framework is straightforward.
As CodeCarbon can be installed as a python package, the insertion of all requirements to
the conda file is enough to allow an access to the desired methods. The mandatory python
file evaluation_task.py can contain all of the code needed for evaluating a model with
CodeCarbon.

First the inputs are processed analogously to the procedure in the other implemented
Evaluation Tasks. The evaluation of energy consumption during training of the model can

then be achieved with the following code:

=

5.4. ENERGY CONSUMPTION MEASUREMENT ol

> tracker = EmissionsTracker (output_dir="./")

3 tracker.start ()

predictions = loaded.fit (X, y)

emissions = tracker.stop()

Listing 5.13: Computation of the power consumption and emissions using CodeCarbon

The emissions.csv file containing all results is then generated in the path of the Eval-
uation Task. The metrics contained in the file described in section 5.4.1 are then read
and stored as float values. The following snippet shows the storage of the outputs to the

MLflow server:

> with mlflow.start_run(run_name=’Codecarbon Efficiency

Evaluation?):
mlflow.log_metrics(tolog)

mlflow.log_artifact("emissions.csv")

Listing 5.14: Logging process of the CodeCarbon outputs

In contrast to tasks that only log the evaluated numeric metrics to MLflow (see section
5.1), this task shows the capability to log files of any format to MLflow. Figure 5.1 shows
the output of a run of the energy consumption Evaluation Task as stored in MLflow. The
reasoning on why this may be useful for this task is given in the next section.

The integration of this tool highlighted the challenge of this framework of being dependent
on the correct implementation of underlying tools. During the integration of the CodeCar-
bon tool, a bug in the code led to problems in the execution of evaluations.

In the core/cpu.py file, a hardcoded path is given for the Intel Power Gadget software. If
this software is not reachable at the exact path, the execution of the Intel software for mea-
suring energy consumption fails. The hardcoded path is C: /Program Files/Intel/Power
Gadget 3.5/PowerLog3.0.exe. As the version 3.5 is not the most recent release of the
software, the path for the version 3.6 has changed when using the standard installation.
The issue of using this hardcoded path has been known to the developers since at least
202124, however no permanent and future proof solution to this issue is implemented yet.
While the problem is easily fixed for the moment by changing the installation path of the
Intel software or the hardcoded path in the code of CodeCarbon to the correct one, the
problem highlights a challenge of the framework, as these types of modification should not
be required by the user

*https://github.com/mlco2/codecarbon/issues/109

52 CHAPTER 5. IMPLEMENTED TASKS

Experiments ~ Models GitHub Docs

2ult > Codecarbon Efficiency Evaluation

Codecarbon Efficiency Evaluation

Date: 2022-08-07 22:32:07 Source: L \evaluation_task.py Git Commit: 7d2dca15543bc0b757cd1cd67158647a6468a658
User: fdillkoe Duration: 6.5s Status: FINISHED

Lifecycle Stage: active
» Description Edit
» Parameters

¥ Metrics (11)

Name Value
cpu_count 122 4
cpu_energy k2 1631e-4
cpu_power 2 1.142
duration & 5185
emissions 1 1.750e-4
emissions_rate L 3374e-4
energy_consumed L 5813e-4
gpu_energy l& 0
gpu_power 12 0
ram_energy 4.181e-4
ram_power 2 2.928
> Tags
v Artifacts
Blemissionsicsy Full Path:file:///./mlruns/0/f7c9d2e8d0434868b787bfc75870563/a... (I 3
Size: 2.56KB -

timestamp, project_name, run_id,duration,emissions,emissions_rate,cpu_power, gpu_power, ram_power, cpu_energy, gpu_energy , ram_ener
2022-08-07721:16:07,EXGETa test, c8adabl6-db34-4fb2-b69a-cd754445edde, 39.446857213974, 1. 3225093947206949 -05, 0. 00033526356422¢
2022-08-07T721:17:07,EXGETa test,c8adabl6-db34-4fb2-b69a-cd754445edd1,39.446857213974,1.3225093947206949¢-05,0.00033526356422¢
2022-08-07721:18:07,EXGETa test, c8adabl6-db34-4fb2-b69a-cd754445edd2,39.446857213974,0.9322509394720696, 0. 3352635642294458, 1¢
2022-08-07722:19:07,EXGETa test,c8adabl6-db34-4fb2-b69a-cd754445edd3,939.44687213974,0.9322509394720696,0.3352635642294458, 1¢
2022-08-07722:20:07,EXGETa test, c8adabl6-db34-4fb2-b69a-cd754445edd4, 839. 44685213974, 0. 9322509394720696, 0. 3352635642294458, 1¢
2022-08-07T22:32:06, codecarbon, 776ce8d4-0ab6-4d4d-960d-3b4c6e87773b, 518. 5056309700012, 0. 00017496802673056626, 0. 0003374467243

Figure 5.1: MLflow visualization of the outputs of the energy consumption Evaluation Task

5.4. ENERGY CONSUMPTION MEASUREMENT 23

5.4.3 Outputs and Interpretation

As described in section 5.4.1, this task produces multiple metrics. All of the metrics are
stored as such to the MLflow tracking database. The MLflow API or the user interface can
then be used to access the results. Additionally to the storage as metrics, this Evaluation
Task also logs the resulting emissions.csv file as an artifact, to provide a possible use for
visualization.

The CodeCarbon package contains an implementation of a visualization method for emis-
sions tests. This visualization is implemented in the form of a webapplication using Dash?>.
This application called CarbonBoard allows the visualization of metrics of specific projects
or the overall energy consumption (if available). Based on the works of Lacoste et al.
[56] and Lottick et al. [63] the evaluated energy consumption and emissions are shown in
relation to equivalent measures like miles driven in a car, weekly household emissions or
television hours. Additionally global benchmarks about the equivalent emissions in differ-
ent countries and information about the power mix in other regions are given.

An example of such an application generated using data from a CodeCarbon Evaluation
Task is given in figures 5.2 and 5.3. This visualization technique offers an added value for
users that are not familiar with the interpretation of energy values and helps to put the

outputs into context.

https://plotly.com/dash/

o4 CHAPTER 5. IMPLEMENTED TASKS

Carbon Footprint

Measure Compute Emissions

Across All Projects
Net Power Consumption : 1.3 kWh Net Carbon Equivalent : 2.8 kg

Select a Project

ExGETa test X v

Infrastructure Hosted at north rhine-westphalia, Germany

Power Consumption Across All Experiments : 1.3 kWh Last Run Power Consumption : 0.4 kWh
Carbon Equivalent Across All Experiments : 2.8 kg Last Run Carbon Equivalent : 0.9 kg

Exemplary Equivalents

& = B

1.74 % 7 miles 1 days
of weekly driven of 32-inch
American LCD TV
household watched
emissions

Global Benchmarks

Emissions Equivalent

Energy Mix

Carbon Eq

Figure 5.2: Generated Dash application with outputs of the CodeCarbon energy consumption

Evaluation Task (part 1)

5.4. ENERGY CONSUMPTION MEASUREMENT

Emissions Timeline

0.8
o
<
€ 0.6
g
©
s
S
g o4
c
o
g
3
=
O 02
o
21:20 21:30 21:40 21:50 22:00
Aug 7, 2022
Timestamp
Emissions Detail
0.8
)
<
2
S 06
©
s
=l
&
c 0.4
s
g
3
s
o
0.2
0 0 1 2
index
References

« Energy Usage Reports: Environmental awareness as part of algorithmic accountabilit;

* Quantifying the Carbon Emissions of Machine Learning

295

Figure 5.3: Generated Dash application with outputs of the CodeCarbon energy consumption

Evaluation Task (part 2)

56

CHAPTER 5. IMPLEMENTED TASKS

Chapter 6

Evaluation

To evaluate the developed framework, different techniques are used. The criteria for the
evaluation of the framework are laid out in the next section, followed by a plan of exper-
iments aimed at specific properties. Afterwards the developed software is analysed on a

higher level of abstraction regarding achieved goals and overall quality.

6.1 Test Criteria

The framework is evaluated with a focus on specific aspects. In order to achieve a mean-
ingful assessment of the framework, an obvious aspect is which central elements of the
framework (see also chapter 3.1) are developed.

The status of these goals is analysed using empirical executions with selected models and
datasets (see chapter 6.2). The inputs are chosen to showcase the outputs of the framework
with different types of models and datasets.

Each of the experiments and their results are described in detail. Both the applicability of
Evaluation Tasks and the correct execution of the tests is looked at.

The developed software is then to be tested on the goals that are achieved and the overall
software quality. The empirical experiments can be used to evaluate the achieved goals.
To acquire a more theoretical evaluation of the developed software, the ISO/IEC 25010
|17| standard for evaluating the quality of software is used. This method of evaluation
consists of eight main measures containing subcharacteristics (see figure 6.1). Each of the
measures is evaluated based on the implementation and experimental results.

This standard process is chosen to provide a neutral basis for evaluation. Each of the
characteristics describes a different property. While the importance of the individual as-
pects varies depending on the software product, an evaluation of every aspect guarantees
a meaningful overview according to the formulated goals of the standard [17]. A report

loosely based on the standard is given in chapter 6.7.2.

57

o8

CHAPTER 6. EVALUATION

Quality of a System/Software Product

Functional Performance - -
o - Compatibilit Usabilit
Suitability Efficiency P y y
¢ Functional e Time- « Co-existence « Appropriateness
Completeness behaviour Recognizability
« Interoperability
« Functional * Resource « Learnability
Correctness Utilisation
« Operability
« Functional « Capacity
Appropriateness * User Error
Protection
« User Interface
Aesthetics
Accessibility
Reliability Security Maintainability Portability
« Maturity « Confidentiality « Modularity « Adaptability
« Availability « Integrity « Reusability « Installability
« Fault Tolerance « Non- « Analysability « Replaceability
repudiation
« Recoverability « Modifiability
« Accountability
« Testability

Figure 6.1: Software

Authenticity

Quality Model according to ISO/IEC 25010:2011

6.2. EXPERIMENT COMPOSITION 29

Name Task n c x| Reference

MNIST classification 784 10 70 000 LeCun et al. [57]
California Housing regression 8 - 20 640 Pace and Barry [74]
Ionosphere classification 34 2 351 Sigillito et al. [8§]
Iris classification 4 3 150 Fisher [38]

Table 6.1: Datasets chosen for the evaluation of the ExGETa framework

6.2 Experiment Composition

To examine the behaviour of the framework with a variety of inputs, a number of different
models and datasets are chosen. An overview of the datasets and their basic properties
model task, number of features (n), number of target classes (¢) and number of samples
(|x]) is given in table 6.1.

As a simple baseline, an extremely common dataset in ML publications is chosen. This
dataset is the Modified National Institute of Standards and Technology (MNIST) dataset
first used by LeCun et al. [57]. The dataset consists of 70 000 greyscale images of hand-
written digits. Fach image has a format of 28 pixels by 28 pixels and is assigned a digit as
label. The classification of the MNIST data has been studied extensively [6] with models
achieving error rates as low as 0.24% without any preprocessing or data augmentation [13].
Due to the popularity and widespread use as a benchmark for image processing systems,
the MNIST database is chosen as basic benchmark for the framework. A standard SVC
model is trained using scikit-learn and evaluated using the ExGETa framework (see section
6.3).

SVMs can be used for tasks other than classification, such as regression or clustering.
To evaluate the compatibility of the framework with different learning tasks, a regression
model trained using scikit-learn is chosen.

The dataset first chosen for training and testing of the regression model is the Boston
Housing dataset. Originally published in 1978 [46], the dataset is rather small with only
506 examples and 14 variables. Similarly to the MNIST dataset for classification, this
dataset has also been applied extensively to different regression methods and has become a
standard case among the available datasets to the extent that some ML frameworks include
it as examples (like Tensorflow Keras [70] or the R package mlbench [58]).

As this dataset has recently been highlighted as including ethically questionable beliefs, it
has been replaced in frameworks like scikit-learn?%, SHAP?” or CasualNex?®. The reason
for this is mainly the feature B, which encapsulates the belief of the authors that racial

self-segregation has a positive effect on the values of houses.

*Shttps://github.com/scikit-learn/scikit-learn/pull/18594
*"https://github.com/slundberg/shap/pull/2501
*®https://github.com/quantumblacklabs/causalnex/issues/91

60 CHAPTER 6. EVALUATION

Model Dataset Conf. Matrix Robustness FEnergy Cons. Bounds Rep.
SVC MNIST v v v

SVR California H. v

Linear SVC lonosphere v v v v

Dec. Tree Iris v v

Table 6.2: Applicability of the Evaluation Tasks to the trained models

A dataset with a similar premise is the California Housing dataset, introduced in 1997 by
Pace and Barry [74]. This dataset contains 20 640 examples with 8 numeric describing
features and a median house value as target. This dataset is used as a replacement for
the planned Boston Housing dataset. The training of the SVR model and the resulting
evaluations based on the California Housing dataset are detailed in section 6.4.

Binary classification allows some specific evaluation techniques, which is the reason why
an additional SVM is trained using the SVC class of the scikit-learn package. The kernel
of this model is configured to be linear.

To evaluate the model, a dataset with a binary classification task is chosen. The lono-
sphere dataset was originally analysed in 1989 as an application for Neural Networks [88].
The dataset consists of 351 examples with 34 features from a radar system in Goose Bay,
Canada. Additionally, each example is labeled with a binary class for either good return
or bad return.

The learning task is therefore a binary classification of this label. Details about the train-
ing of the model can be found in section 6.5.

Lastly a Decision Tree model is chosen as a comparison and to assess the capability of the
ExGETa framework to be applied to other model types. The implementation of Decision
Trees in scikit-learn is chosen as it is based on the CART algorithm described in chapter
2.2.

The Iris dataset is chosen for the Decision Tree model. This dataset was first published in
1936 [38]. It has become a popular basis for research, with multiple different versions of
the dataset being in use today due to data corruption [11]. The dataset is very small with
only 150 samples and 4 describing features (petal width/length and sepal width/length).
The examples are each labelled with one of the three species of the Iris genus: Iris setosa,
Iris virginica and Iris versicolor.

The simplicity of the dataset makes human understandable Decision Trees possible. The
training and experiments of this model are explained in section 6.6.

As not all implemented Evaluation Tasks are applicable to the trained models, the frame-
work correctly only generates the executable ones. An overview of the applicability of the
Evaluation Tasks is given in table 6.2. The reasons for the constraints are detailed in the

sections for each model.

6.3. EXPERIMENT 1: SVC ON MNIST 61

6.3 Experiment 1: SVC on MNIST

A simple SVC model using a Radial Basis Function (RBF) kernel is trained using the
common MNIST training dataset [57|. This training dataset consists of 60 000 of the total
70 000 greyscale images of handwritten digits.

As each of the 28 by 28 pixels represents a single feature, each datapoint has 784 describing
features and a label between 0 and 9. Before training, the data is normalized as is common
procedure.

The regularization parameter is chosen as C' = 0.5 and the training of the model is straight-
forward using the standard scikit-learn method. After the training, the model is saved

locally using pickle:

clf = SVC(C=0.5, kernel=’rbf’).fit(X_train,y_train)

> # save model

3 with open(’pickle_mnist.pkl#, ’wb’) as pickle_file:
pickle.dump(clf, pickle_file)
Listing 6.1: Training of an RBF SVM model for classifying the MNIST dataset

This model is applicable to three of the implemented Evaluation Tasks. Only the report on
the theoretical bounds cannot be generated, as it is only applicable to binary classification

tasks at the current time.

6.3.1 Confusion Matrix Evaluation

As the model solves a classification task using an SVM trained using scikit-learn, the Eval-
uation Task for the confusion matrix evaluation can be applied. The ExGETa framework
therefore generates this task correctly.

Due to the high number of classes, the confusion matrix can be used to evaluate measures
for each individual class. This results in 255 total metrics that are evaluated for this model
and dataset.

Although the full set of evaluations is too extensive to be analysed in detail at this point,
it should be noted that the metrics allow a comparison of the model in regards to the
different classes. As an example, the accuracy on the model for examples of class 1 is
99.7%, while examples of class 7 only have an accuracy of 98.6%. The full results of this

evaluation are given in the appendix.

6.3.2 Robustness Evaluation

The SAVer robustness evaluation should be applicable to the model, as scikit-learn SVM
models are supported by the tool. The generation of this evaluation for the given inputs
of the ExGETa framework is therefore correct.

Nevertheless, the execution of this Evaluation Task fails with an error. The problem is

62 CHAPTER 6. EVALUATION

found to be a line in the classifier_mapper.py file of the developers of SAVer, used to
convert the model into the correct format. While creating a converted model file, properties

of the scikit-learn model are extracted, including the value of ~:

1 elif classifier.kernel == ’rbf’:

csv_writer .writerow([’rbf’, classifier.gammal])

Listing 6.2: Extraction of the gamma value from the model during conversion

The v value is an important part of the rbf kernel formula:
K(z,2') = e lle=2'IP

The value of v is a parameter factor for controlling the influence of examples [27]|. The code

in the classifier_mapper.py does not correctly insert the needed v value, but instead

inserts the type of 7 used during training. Instead of a numerical value, the strings ’scale’

or 'auto’ are inserted if these options are used in scikit-learn.

A further calculation would be needed to compute the value for « using these formulas:

1 1
() Yauto =

Vscale =

N features * X.var N features

The issue is submitted to the repository of the authors® along with a suggestion for a
possible workaround. The author has announced a fix of this bug for the future, but at

the time of this writing, the robustness tool is not applicable to the model.

6.3.3 Energy Consumption Evaluation

The evaluation of the energy consumption is generated and executed successfully. As the
size of the dataset is comparatively small and the computational complexity of training an
SVM is limited, the resulting values are also rather modest.

A total power consumption of 7.89 Wh is recorded. This is evaluated to be equivalent to
about 2.37 g of carbon dioxide emissions. The accuracy of this evaluation is not proven,
as it is dependent on the measuring capabilities of the used system. The full results are

given in the appendix.

6.4 Experiment 2: SVR on California Housing

To show the possibilities of evaluating other tasks, a scikit-learn SVR model is trained to
solve a regression task on the California Housing dataset [74]. This dataset contains some

challenges that make some preprocessing necessary.

https://github.com/abstract-machine-learning/data-collection/issues/1

3 X

6.5. EXPERIMENT 3: LINEAR SVC ON IONOSPHERE 63

The column ocean_proximity does not contain numerical values but forms a categorical
feature instead. Additionally, the column total_bedrooms contains missing values. Dif-
ferent methods for imputation of missing values exist [94].

As this work is not focused on the development of optimized models, and the number of af-
fected examples is comparatively small with 207 out of 20 640 total examples, the rows with
a missing value are omitted. With the same background, the column ocean_proximity is
omitted, even though methods for converting the values exist [25].

The SVR model is trained with an RBF kernel on 80% of the normalized data. This model
is stored using joblib.

As most of the developed Evaluation Tasks are focused on classification models, only the
energy consumption evaluation based on CodeCarbon can be applied to the model. Con-
sequently only this task is generated by the framework when the trained model, dataset

and describing metadata are used as inputs.

6.4.1 Energy Consumption Evaluation

The training of this model consumes only a small amount of energy (0.30 Wh), equivalent
to 0.09 g of carbon emissions. This is mainly due to the limited complexity of training an
SVR model on a dataset of this size.

The emissions would be higher if the training process was executed repeatedly. Resampling
techniques like crossvalidation would result in a multiplication of the energy consumption
and emissions due to the repetition of training procedures. The full results of this evaluation

are given in the appendix.

6.5 Experiment 3: Linear SVC on Ionosphere

The training of the SVC model is achieved similarly to the process in chapter 6.3. The
main difference in the training parameters is the selection of a linear kernel.
The Tonosphere dataset [88] is not normalized, so scaling of the features is common prac-

tice. This is achieved using the built-in scikit-learn functions of the sklearn.preprocessing

collection:
label_encoder = LabelEncoder ()
Y = label_encoder.fit_transform(Y)

StandardScaler () .fit_transform(X)

 # Train-Test split

6

X_train = X[:traintestcutoff, :]

X_test = X[traintestcutoff:, :]
y_train = Y[:traintestcutoff]

10

11

12

13

64 CHAPTER 6. EVALUATION

y_test = Y[traintestcutoff:]

clf = SVC(C=0.5, kernel=’linear’).fit(X_train,y_train)
save model
joblib.dump(clf, "joblib_iono.pkl")

Listing 6.3: Training of a linear SVM model for classifying the Ionosphere dataset

The different subsets of training data and test data are chosen with a size of 200 elements
and 151 elements respectively. The unusually large ratio of test data is selected to get
more insights into the evaluation algorithms used on the model.

The produced model is applicable to all implemented Evaluation Tasks, and therefore
various aspects can be inspected. The ExGETa framework generates four Evaluation
Tasks when applied to the saved model. The outputs of the tasks are presented in the next

sections:

6.5.1 Confusion Matrix Evaluation

This Evaluation Task calculates all measures related to the confusion matrix, as presented
in chapter 5.1. The script for the computations is implemented in a way that analyses all
classes individually. For the binary classification case, this leads to some redundancy in the
measures, as for example the true positive rate for one class represents the true negative
rate for the other.

This could be optimized but represents a property connected to the task being applicable
to clagsifications with more than two classes. The Evaluation Task produces an output of
60 metrics. As the full output is not relevant for this evaluation, the output is included in
the appendix for interested readers. To give an idea on the performance of the model, the

overall accuracy score of 92.6% can be used.

6.5.2 Robustness Evaluation

The robustness evaluation is also applicable to the model. As described in chapter 5.2,
this task outputs a static set of metrics. These are stored to the MLflow server. The full
results are compiled in the appendix.

The most important measure is the conditional robustness, which represents the ratio
of correct and robust classifications. The value achieved by the SVM on the Ionosphere
dataset is 84.3%. Interesting to note is furthermore that only 12 of the 22 misclassifications
are evaluated as robust, representing a ratio of 54.5%. This leads to the deduction that
misclassifications are less robust than correct classifications, which might be a desired

result.

6.6. EXPERIMENT 4: DECISION TREE ON IRIS 65

Test Accuracy exceeds that of a naive most-frequent-class classifier and is higher

than 75%.

Test Error is within the bounds.

Probability for the bound holding is 95 percent.

Figure 6.2: Interpretations of the bounds evaluated on the linear SVM trained on the Ionosphere

dataset

6.5.3 Energy Consumption Evaluation

The energy consumption of this model is very low due to the small dataset size and compar-
atively low computational complexity of the linear SVM model. The values for consumed
energy, carbon emissions et cetera are close to zero, so a further analysis is not useful.

Anyhow, the evaluation is completed successfully, so the results are part of the appendix.
In practice, most models can be expected to have a higher energy output than this very

simple example.

6.5.4 Bounds Report Evaluation

The bounds and properties discussed in chapter 5.3 can be evaluated, as the classification
task is binary with an SVM using a linear kernel. The ExGETa therefore correctly generates
the corresponding Evaluation Task.

Executing this task yields metrics and a report. This report contains metrics along with
the interpretations of them shown in figure 6.2. The full generated report is attached in
the appendix.

As the computed bounds are rather loose, this result can be taken as a rough indication
of a correct implementation and usage of the model. In contrast, the scenario of a user
mistakenly using the wrong class labels, and therefore testing the model on data completely
antithetical to the training data would achieve a very low accuracy and the report output

shown in figure 6.3.

6.6 Experiment 4: Decision Tree on Iris

The Iris dataset [38] is chosen to give an example for a Decision Tree model. The Decision
Tree model is trained using the sklearn.tree.DecisionTreeClassifier. This implemen-
tation is based on the CART concept [16] introduced in chapter 2.2.

The dataset is shuffled to remove any pre-existing ordering. After this, a split is selected

to divide the data into 2 training data (100 examples) and % test data (50 examples).

66 CHAPTER 6. EVALUATION
Test Accuracy is less or equal to that of a naive most-frequent-class classifier!

This represents a failed classification model!

Test Error exceeds bounds! Probability for the bound holding is 95 percent.

Please check the model and dataset!

Figure 6.3: Interpretations of the bounds evaluated on the linear SVM trained on the Ionosphere

petal length <= 2.60

False True

dataset using opposing testdata

petal length <= 4.95 dass = Iris-setosa

False True

class = Iris-virginica cass = Iris-versicolor

Figure 6.4: Trained Decision Tree based on the Iris dataset limited to a depth of two

The maximum depth of the Decision Tree is set to a very low value of two to acquire a
simple and compact model that can be analysed easily. This artificial limitation greatly
lowers the performance of the model, but is chosen to enable meaningful evaluations.
The resulting tree can be seen in figure 6.4. Interesting to note in this case is that only one
feature is used for the classification. This leads to the observation that the petal length
seems to be highly useful for discriminating between the three plant species.

The ExGETa framework can generate two of the implemented tasks. The robustness eval-
uation is not available because the underlying SAVer tool only supports the evaluation
of SVM models [82]. The bounds discussed in chapter 5.3 are also only implemented
for SVM models. The correct generation and execution of the other evaluations however
shows the capability for evaluation methods for other model types to be integrated into

the framework.

6.6.1 Confusion Matrix Evaluation

For the Decision Tree model trained on the Iris dataset the confusion matrix evaluation
produces 78 metrics as output. These are all stored correctly in the MLflow tracking
database.

An analysis of the results yields the finding that all examples of class Iris-setosa in the test

data are correctly identified. This can be seen in the accuracy for this class, which is 100%

6.7. ASSESSMENT OF THE IMPLEMENTATIONS 67

and the values for the true positive rate and true negative rate, which are also both 100%.
In contrast to this, there are some misclassifications between class Iris-versicolor and Iris-
virginica. Four examples of the test data are incorrectly classified as Iris-versicolor and
one example is incorrectly classified as Iris-virginica. This results in a true positive rate of
class Tris-versicolor of 94.7% and a true positive rate of 77.8% for class Iris-virginica. As
the misclassifications only happen between these classes, the accuracy of both classes is
90%.

When interpreting these results and combining them with the knowledge of the tree, one
could come to the conclusion that the leafs on the left side could be optimized with a

possible further split.

6.6.2 Energy Consumption Evaluation

Similarly to the linear SVC model evaluated in chapter 6.5, the Decision Tree model of
this experiment is very simple and the dataset only a low number of examples (150 total).
The evaluation of the energy consumption therefore also yields no useful measures.

It could however be noted, that the difference between this experiment and a more complex
task like the classification of MNIST data (see chapter 6.3) is immediately visible. While
the energy consumption of the Decision Tree model can hardly be measured, the training
of the SVM on the MNIST data (70 000 images) does consume an observable amount of

energy.

6.7 Assessment of the Implementations

The assessment of the implemented software consists of two main elements. Firstly it is
evaluated if and in what way the defined necessary elements are implemented. To reiterate,

the main aspects that needed to be developed are:
1. Development of a framework for Evaluation Tasks

Creation of a database for evaluation software
Conceptualization of standardized formats and processes
Assignment of stored evaluation software to given inputs

Generation of individually executable Evaluation Task packets dependent on

the given collection of software

(e) Provision of a central platform for uploading, downloading and viewing evalu-

ated outputs

68 CHAPTER 6. EVALUATION

2. Creation of an initial set of Evaluation Tasks

(a) Exemplary implementation of standalone evaluation software

(b) Integration of existing evaluation tools

After these aspects are evaluated, the quality of the developed software is rated in a more

standardized way. This ensures a more impartial rating of the implementations.

6.7.1 Achieved Goals

The assessment of the formulated goals is split into two parts. In the first part, the capa-
bilities of the framework are analysed, and the usefulness is evaluated for ML developers.
The second part is focused on the Evaluation Tasks that are implemented and what they

represent for the framework.

ExGETa Framework

The database is created using MongoDB (see chapter 4.1). In order to store large software,
the GridFS specification is used. The metadata for each task is stored in a separate
collection from the large program chunks for a better usability and more efficient queries.
This achieves the subgoal (1a), the creation of a database for evaluation software.
Standardized formats are specified for both the file structure of Evaluation Tasks and the
structure of the programs (see chapter 4.4). Together with the fixed use of Anaconda and
MLflow for an easier integration and management the subgoal (1b), conceptualization of
standardized formats and processes, can be considered met.

Queries are used to filter contents of the MongoDB database resulting in the exact set of
Evaluation Tasks suitable for the given inputs. This fulfils the goal (1c¢) of a system for
the assignment of software to given inputs.

A python script unzips and combines the retrieved evaluation software into independent
Evaluation Task packets. These packets can be executed individually and each provide
one or more metrics for the evaluation of the inputs, therefore meeting the requirements
of subgoal (1d).

The ML management tool MLHow is used to provide the platform for interaction with
the output metrics. The MLflow tracking service gives users the ability to store and view
the metrics that have been evaluated. The integration of this service therefore meets the

requirements for subgoal (1e).

Evaluation Tasks

To prove the usability of the framework, several Evaluation Tasks are implemented for
integration. These are described in detail in chapter 5. Some standalone programs are

implemented and integrated, these are the basic confusion matrix evaluation (section 5.1)

6.7. ASSESSMENT OF THE IMPLEMENTATIONS 69

and the evaluation of theoretical bounds and properties (section 5.3). These serve as
examples for possible additional standalone evaluation techniques that can be implemented
for the framework. The subgoal (2a) can therefore be considered fulfilled.

Existing tools for evaluation need to be able to be included into the framework. To analyse
the possibilities, wrappers for the tools SAVer (section 5.2) and CodeCarbon (section 5.4)
are added to the database of the framework. This shows, that the integration of existing

tools is possible and easy for common software, achieving goal (2b).

6.7.2 Software Quality

The quality of the developed software is evaluated loosely following the criteria of the
ISO/IEC 25010 [17] standard. Each analysed criteria is covered in an individual section

based on the subcriteria.

Functional Suitability

The main function the ExGETa framework should fulfil is the automated generation of
Evaluation Tasks for given input data. This function is implemented for exemplary models
and evaluation techniques.

The aim of this work is not the development of a fully functional framework for the evalu-
ation of all possible models but rather to form a baseline for future collaborative research.
Therefore the function desired by the user (automated evaluation of a comprehensive set
of models) is not completely implemented yet.

All implemented elements of the framework and the exemplary Evaluation Tasks are how-
ever correct in their function, as shown in the experiments. An exception to this is the
robustness evaluation generated for the MNIST SVM (see chapter 6.3), which cannot be
executed due to a bug in the underlying tool.

This shows a vulnerability of the framework, as it is only as good as the integrated Evalu-
ation Tasks. If the tasks or underlying implementations contain mistakes, the evaluations
may also be incorrect or not executable at all.

Overall the functional suitability of the framework is given, however it is so far constrained
to the specified conditions and limits of this work. Further research and expansions are

needed for a framework capable of fulfilling function of a universal evaluation tool.

Performance Efficiency

The performance efficiency of the framework itself is very good. The resources needed for
the generation of tasks is minimal and the time needed for the full generation process is in
the range of one to two seconds on a common consumer laptop.

The framework does however require a database for storage of the Evaluation Tasks (Mon-

goDB cloud storage is used in this work). This database also does not require extensive

70 CHAPTER 6. EVALUATION

computational resources with the full size of the data not exceeding 20 MB with the set of
implemented Evaluation Tasks.

The framework has the capacity for considerably more evaluations and procedures to be
integrated. The database technology is chosen to be performant and expandable in the
future. All software is created modular and capable for higher workloads than present at
the current state of the framework. The capacity for future integration of more complex

evaluations is therefore given.

Compatibility

The compatibility of the framework is defined mainly by the compatibility of the individual
Evaluation Tasks. The framework itself can share a common environment with other
software without problems as no low-level hardware commands are used.

The ExGETa framework can be integrated into a higher workflow structure. To this end,
the tool is interoperable with it’s inputs and execution command, the modular execution
of generated Evaluation Tasks and the outputs of the framework. The outputs represent
the biggest example for interoperability because the usage of the existing MLflow tracking
software enables the simple use of the MLflow API for accessing and working with the
output metrics and data.

The Evaluation Tasks themselves are compatible with the execution environment specified
in the requirements. At this time, tasks cannot exchange information between each other,
as the focus is on allowing a distributed execution of the Evaluation Tasks independently

of each other.

Usability

The focus in this thesis is on the conception and implementation of the baseline framework.
The usability of this tool can still be improved upon.

As the framework is newly developed, no tutorials or demonstrations other than what is
discussed in this work exist at this time. To improve this area, further documentation and
guide resources need to be realized.

The ExGETa framework does contain a basic user error protection, so if the tool is exe-
cuted with wrong types of arguments or the characteristics of the inputs are not described
correctly in the metadata file, the framework will exit with an error instead of generating
wrong results. The execution of the generated Evaluation Tasks is simplified to the point
of the standardized execution of a single script file, where not many errors can be made.
The user interface of the developed program is not very sophisticated. No graphical in-
terfaces exist at this point other than the output interface based on MLflow. This does
however provide a good platform for viewing and interacting with the evaluation results

for the user.

6.7. ASSESSMENT OF THE IMPLEMENTATIONS 71

Reliability

The framework is tested to be very reliable, working without errors for a diverse set of
experiments without downtime. This is mainly due to the usage of established technologies
like MongoDB that form the basis of the framework.

The ExGETa tool is fault tolerant in the sense that errors in the implementation of one
Evaluation Task do not affect the execution or results of other Evaluation Tasks. This
is shown in the experiment using the MNIST data, where the robustness could not be

evaluated due to an error in the underlying SAVer robustness tool (see chapter 6.3).

Security

The security of the framework is dependant on the configuration of the MongoDB database
and MLflow tracking server. Both of these storages have the capabilities for confidentiality,
accountability and authenticity |28, 84]. The management of access control is therefore up
to the person setting up these resources.

The degree of non-repudiation is also acceptable, as the results of all evaluations are logged

to the tracking server with information about the system and time of execution.

Maintainability

As the goal of this work is the development of a baseline framework, a focus in all elements
is on possibilities for future improvements, expansions and modifications. The Evaluation
Tasks are therefore implemented completely modularly so that new tasks can be integrated
easily and existing ones can be modified or improves without influencing others.

The framework itself is also ready for upcoming changes. All of the software is openly
available and not obfuscated. The steps of the generation of Evaluation Tasks can be
improved upon to introduce more sophisticated techniques for areas like execution on

different hardware.

Portability

The framework itself is designed to be highly portable. The tool can be executed on any
given machine without the need for an extensive setup. This preparation for execution of
the program is even shorter if the user has already realized a database for the Evaluation
Tasks and a running MLflow tracking server exists. Then the user only has to pass the
path to these resources to the framework to integrate it into the existing systems.

The Evaluation Tasks are also portable, as they use conda files for managing requirements
and dependencies. This allows for a high degree of efficiency in the installation and adap-
tation of the tasks for new hardware. No software has to be manually installed or adapted

by the user to execute the evaluation procedures.

72

CHAPTER 6. EVALUATION

Chapter 7

Discussion

In this final chapter, an overview of the developed concepts and software is given. The
findings of the evaluation are summarised and interpreted. Lastly an outlook on possible
future modifications, improvements and additions is given, as the developed framework

only represents a baseline for future collaborative research.

7.1 Results

In this work, a concept for a framework for automated generation of Evaluation Tasks for
machine learning models was developed. This abstract concept forms the answer to the
formulated research question: What elements are needed for an automated generation of
Evaluation Tasks for ML models?

The identified elements (see chapter 3.1) have then been implemented in the ExGETa
framework on a basic level. These are a database for evaluations and their applicabil-
ity information, a sound concept for inputs with a software that can match these with
the available evaluations, the implementation of a generation of individually executable
Evaluation Tasks and the provision of a central result storage. The implementation of all
relevant parts was confirmed in chapter 6.7.1. This evaluation of the framework has also
confirmed the correctness and completeness of the identified elements.

Multiple Evaluation Tasks with the focus on different aspects of the model have been
drafted and implemented. These Evaluation Tasks have proven the ability of the frame-
work to integrate multiple evaluations and correctly aggregate the results.

A set of different models has been trained and applied to the framework. These experi-
ments have shown that the developed software is capable of evaluating various aspects for
different models.

The applicability of individual Evaluation Tasks is also being checked correctly by the de-
veloped software. To this end, a database technology was chosen and realized to efficiently

handle queries regarding the stored evaluations.

73

74 CHAPTER 7. DISCUSSION

The framework is in the current state focused on SVM models and lacks the support for
many common models, for example Neural Networks. This limitation was accepted from
the start, as a fully functional and complete framework would have exceeded the scope of
one thesis. Future expansions can broaden the capabilities in this regard.

Within the bounds set at the start, a functional baseline has been created for future collab-
orative research to built upon. All parts of the ExGETa framework have been developed

to be modular and open. Possible additions for the future are detailed in the next section.

7.2 Future Work

In order to allow future additions and modifications on the developed software, all of the
files and code are made available in a public repository3®. The repository is set up to
allow for a simple quickstart with minimal effort. To this end, a readme file containing
information about the usage of the framework is provided.

The developed framework is in a baseline state, so there are copious possibilities for future
work. Some examples and suggestions are presented.

The first obvious area of expansion is the set of Evaluation Tasks. A fully functional frame-
work for evaluating ML models is dependent on the availability of tests for any model that
may be used as an input. As the scope of this work was focused around SVM models,
evaluation methods and checks for theoretical properties for other models, like Neural Net-
works, could be added. To achieve this, the Evaluation tasks need to be created according
to the specifications along with metadata about their applicability. All of this then needs
to be stored in the database. It is possible that the framework software would need to be
modified to allow other models.

The efficiency of the execution of Evaluation Tasks could also be optimized. The ExGETa
framework is set up to generally enable a distributed execution of the evaluations, but
no method for this has been implemented yet. The individual Evaluation Tasks could be
executed on different nodes in a network which would require a method for assigning nodes
to the Evaluation Tasks. The result storage is already implemented in a way that allows
this because the path to the storage server is already part of the metadata the evaluations
are provided with.

Another area for future work is the integration of specific hardware. The integration for
GPU specific executions is needed due to the common usage of these processors as accelera-
tors specifically for Deep Learning [69]. Beyond this, an integration of Field Programmable
Gate Arrays (FPGAs) is conceivable. This type of hardware entails specific challenges for
the implementations, but has also been used for accelerating Deep Learning [12]. Other
types of algorithms have also been adapted for execution on FPGAs, for example the train-
ing of SVMs [1].

3Ohttps://github.com/FDillk/ExGETa

7.2. FUTURE WORK 75

The evaluation of ML models is closely connected to the optimization of hyperparameters.
This describes the process of modifying the configuration of the training parameters of a
model to achieve optimal evaluation results [10]. The needed repeated evaluations could
be executed using the ExGETa framework.

During the experiments and assessment of the framework, some aspects have been identi-
fied as being challenging. A bug in an underlying tool that was used to evaluate robustness
has shown that the framework can always only be as reliable as the Evaluation Tagks in the
database (see chapter 6.3.2). Mistakes in the theory or implementation of the evaluations
will lead to an incomplete or incorrect set of results. The CodeCarbon robustness tool has
shown a similar problem highlighting this issue (see chapter 5.4.2). Future work must take
these problems into account during development of new features.

Lastly the developed framework could be integrated into the workflow of another software.
Due to the simple API for passing inputs and the standardized location of result data,
the framework can be included in a more extensive process. This process could include
the training of models or a more sophisticated generation of a visualization of the model
properties. Using the outputs of the evaluations from this framework, the generation of
certifications like the ones from the Care Label concept [72] can be simplified.

Overall many areas for expansion and optimization exist. The modular and open develop-
ment of the framework enable a future collaborative research effort in the area of automated

evaluations with a focus on ML models.

76

CHAPTER 7. DISCUSSION

List of Figures

2.1
2.2

3.1

5.1

5.2

5.3

6.1
6.2

6.3

6.4

Example of a Decision Tree based on the Iris dataset

Structure of a confusion matrix for the binary case
Full workflow of using the framework to evaluate a model

MLflow visualization of the outputs of the energy consumption Evaluation
Task e
Generated Dash application with outputs of the CodeCarbon energy con-
sumption Evaluation Task (part 1)
Generated Dash application with outputs of the CodeCarbon energy con-

sumption Evaluation Task (part 2)

Software Quality Model according to ISO/TEC 25010:2011
Interpretations of the bounds evaluated on the linear SVM trained on the
Tonosphere dataset
Interpretations of the bounds evaluated on the linear SVM trained on the
Ionosphere dataset using opposing testdata

Trained Decision Tree based on the Iris dataset limited to a depth of two . .

77

66

78

LIST OF FIGURES

Bibliography

1]

3]

[5]

(6]

7]

9]

AFIF1, SHEREEN, HAMID GHOLAMHOSSEINI and ROOPAK SINHA: FPGA Imple-
mentations of SVM Classifiers: A Review. SN Computer Science, 1(3):133, April
2020.

A1ZERMAN, M. A., E. A. BRAVERMAN and L. ROZONOER: Theoretical foundations

of the potential function method in pattern recognition learning. In Automation and
Remote Control, number 25, pages 821-837, 1964.

ALi, S. and K.A. SMITH: Automatic parameter selection for polynomial kernel. In
Proceedings of the 5th IEEE Workshop on Mobile Computing Systems and Applica-
tions, pages 243-249, 2003.

ANTHONY, MARTIN and NORMAN Bicacs: PAC Learning and Neural Networks. In
ARBIB, MICHAEL A. (editor): The Handbook of Brain Theory and Neural Networks,
page 840-843. MIT Press, Cambridge, MA, USA, second edition, November 2002.

ARONSZAIN, NACHMAN: Theory of Reproducing Kernels. Transactions of the Amer-
ican Mathematical Society, 68(3):337-404, 1950.

BALDOMINOS, ALEJANDRO, YAGO SAEZ and PEDRO Isasi: A Survey of Hand-
written Character Recognition with MNIST and EMNIST. Applied Sciences, 9(15),
August 2019.

BELINKOV, YONATAN and YONATAN Bisk: Synthetic and Natural Noise Both Break

Neural Machine Translation. In International Conference on Learning Representa-
tions, 2018.

BELLOTTI, VICTORIA and KEITH EDWARDS: [Intelligibility and Accountability:

Human Considerations in Context-Aware Systems. Human-Computer Interaction,
16(2):193-212, December 2001.

BEN-HUR, Asa, DaviD HORN, HAavAa T. SIEGELMANN and VLADIMIR VAPNIK: Sup-
port Vector Clustering. Journal of Machine Learning Research, 2:125-137, November
2001.

79

80

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

BIBLIOGRAPHY

BERGSTRA, JAMES, REMI BARDENET, YOSHUA BENGIO and BALAZS KEGL: Algo-
rithms for Hyper-Parameter Optimization. In Proceedings of the 24th International
Conference on Neural Information Processing Systems, NIPS'11, page 25462554,
Red Hook, NY, USA, 2011. Curran Associates Inc.

BEzDEK, J.C., J.M. KELLER, R. KRISHNAPURAM, L.I. KUNCHEVA and N.R. PAL:
Will the real iris data please stand up? TEEE Transactions on Fuzzy Systems,
7(3):368-369, 1999.

BraiecH, AHMED GHAZI, KHALED BEN KHALIFA, CARLOS VALDERRAMA,
MARCELO A.C. FERNANDES and MOHAMED HEDI BEDOUT: A Survey and Tazon-
omy of FPGA-Based Deep Learning Accelerators. Journal of Systems Architecture,
98(C):331-345, September 2019.

BocHINSKI, ERIK, TOBIAS SENST and THOMAS SIKORA: Hyper-Parameter Opti-
mization for Convolutional Neural Network Committees Based on Evolutionary Al-
gorithms. In 2017 IEEFE International Conference on Image Processing (ICIP), page
3924-3928. IEEE Press, 2017.

BoseERr, BERNHARD E.; ISABELLE M. GUYON and VLADIMIR N. VAPNIK: A Train-
ing Algorithm for Optimal Margin Classifiers. In Proceedings of the 5th Annual ACM
Workshop on Computational Learning Theory, pages 144-152. ACM Press, 1992.

BREIMAN, LEO: Random Forests. Machine Learning, 45(1):5-32, October 2001.

BREIMAN, LEO, JEROME H. FRIEDMAN, RICHARD A. OLSHEN and CHARLES J.
STONE: Classification and Regression Trees. Chapman & Hall, Boca Raton, FL,
USA, 1984.

BSI: Systems and software engineering - Systems and software Quality Requirements
and Evaluation (SQuaRE) - System and software quality models: Country code (BS
ISO/IEC 25010:2011). Standard, British Standards Institution, London, UK, March
2011.

BuiTtinck, LARS, GILLES LOUPPE, MATHIEU BLONDEL, FABIAN PEDRECOSA,
ANDREAS MUELLER, OLIVIER GRISEL, VLAD NICULAE, PETER PRETTENHOFER,
ALEXANDRE GRAMFORT, JAQUES GROBLER, ROBERT LAYTON, JAKE VANDER-
PrAs, ARNAUD JoLy, BRIAN HoLT and GAEL VAROQUAUX: API design for ma-
chine learning software: experiences from the scikit-learn project. In ECML PKDD
Workshop: Languages for Data Mining and Machine Learning, pages 108-122, 2013.

BuNsE, MIRKO and KATHARINA MORIK: Certification of Model Robustness in Ac-

tive Class Selection. In Proceedings of the Furopean Conference on Machine Learning

BIBLIOGRAPHY 81

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

[28]

and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD
2021, Part 11, page 266-281, Berlin, Heidelberg, September 2021. Springer-Verlag.

BURGES, CHRISTOPHER J. C.: A Tutorial on Support Vector Machines for Pattern
Recognition. Data Mining and Knowledge Discovery, 2(2):121-167, June 1998.

Cao, YULONG, CHAOWEI XI1AO, BENJAMIN CYR, YIMENG ZHOU, WON PARK,
SARA RAaMPAzz1, Q1 ALFRED CHEN, KEVIN FU and Z. MORLEY MAO: Adversarial
Sensor Attack on LiDAR-Based Perception in Autonomous Driving. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security,
CCS 19, page 22672281, New York, NY, USA, 2019. ACM.

CARLINI, NICHOLAS, PRATYUSH MISHRA, TAVISH VAIDYA, YUANKAI ZHANG,
MICAH SHERR, CLAY SHIELDS, DAVID WACGNER and WENCHAO ZHOU: Hidden
Voice Commands. In Proceedings of the 25th USENIX Conference on Security Sym-
posium, SEC’16, page 513-530, USA, 2016. USENIX Association.

CARLINI, NICHOLAS and DAVID WAGNER: Towards FEvaluating the Robustness of
Neural Networks. In 2017 IEEE Symposium on Security and Privacy (SP), pages
39-57, Los Alamitos, CA, USA, May 2017. IEEE.

CEN: Codes for the representation of names of countries and their subdivisions -
Part 1: Country code (ISO 3166-1:2020). Standard, European Committee for Stan-
dardization, Brussels, BE, September 2020.

CERDA, PATRICIO, GAEL VAROQUAUX and BALAzS KEGL: Similarity encoding
for learning with dirty categorical variables. Machine Learning, 107(8):1477-1494,
September 2018.

CHANG, CHIH-CHUNG and CHIH-JEN LIN: LIBSVM: A Library for Support Vector
Machines. ACM Transactions on Intelligent Systems and Technology, 2(3), May
2011.

CHANG, QUN, QINGCAI CHEN and XIAOLONG WANG: Scaling Gaussian RBF kernel
width to improve SVM classification. In 2005 International Conference on Neural

Networks and Brain, volume 1, pages 19-22, 2005.

CHEN, ANDREW, ANDY CHOW, AARON DAVIDSON, ARJUN DCUNHA, ALl GHODSI,
SUE ANN HoNG, ANDY KONWINSKI, CLEMENS MEWALD, SIDDHARTH MURCHING,
TomMas NYKODYM, PAUL OGILVIE, MANI PARKHE, AVESH SINGH, FEN XIE, MATEI
ZAHARIA, RICHARD ZANG, JUNTAI ZHENG and COREY ZUMAR: Developments in
MLflow: A System to Accelerate the Machine Learning Lifecycle. In Proceedings of
the Fourth International Workshop on Data Management for End-to-End Machine
Learning, DEEM’20, New York, NY, USA, 2020. ACM.

82

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

BIBLIOGRAPHY

CHEN, T1ANQI and CARLOS GUESTRIN: XGBoost: A Scalable Tree Boosting System.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 16, pages 785-794, New York, NY, USA, 2016.
ACM.

CONTRERAS, GILBERTO and MARGARET MARTONOSI: Power Prediction for Intel
XScale®) Processors Using Performance Monitoring Unit Events. In Proceedings of
the 2005 International Symposium on Low Power Electronics and Design, ISLPED
05, page 221-226, New York, NY, USA, August 2005. Association for Computing
Machinery.

CoORTES, CORINNA and VLADIMIR VAPNIK: Support-Vector Networks. Machine
Learning, 20(3):273-297, September 1995.

Davoubpian, ALi, Liu CHEN and MENGCHI Liu: A Survey on NoSQL Stores. ACM
Computing Surveys, 51(2), April 2018.

DieNUM, VIRCINIA: Responsible Artificial Intelligence: How to Develop and Use Al
in a Responsible Way. Springer Publishing Company, Inc., 1st edition, 2019.

DRrRUCKER, HARRIS, CHRIS J. C. BURGES, LINDA KAUFMAN, ALEX SMOLA and
VLADIMIR N. VAPNIK: Support Vector Regression Machines. In Proceedings of the

9th International Conference on Neural Information Processing Systems, NIPS’96,
page 155-161, Cambridge, MA, USA, 1996. MIT Press.

Fan, RoNG-EN, KAT-WET CHANG, CHO-JUT HSIEH, XIANG-RUT WANG and CHIH-
JEN LiN: LIBLINEAR: A Library for Large Linear Classification. Journal of Machine
Learning Research, 9:1871-1874, June 2008.

FawcerT, ToM: An Introduction to ROC Analysis. Pattern Recognition Letters,
27(8):861-874, June 2006.

FiLip, PETR and LUukAS CEGAN: Comparison of MySQL and MongoDB with focus

on performance. In 2020 International Conference on Informatics, Multimedia, Cyber
and Information System (ICIMCIS), pages 184-187. IEEE, 2020.

FisHER, RONALD AYLMER: The Use of Multiple Measurements in Tazonomic Prob-
lems. Annals of Eugenics, 7(2):179-188, 1936.

GARCIA, V., RAMON A. MOLLINEDA and J. SAIVADOR SANCHEZ: Theoretical
Analysis of a Performance Measure for Imbalanced Data. In 20th International Con-

ference on Pattern Recognition, pages 617-620, 2010.

BIBLIOGRAPHY 83

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

GARCIA-MARTIN, EvA, CREFEDA FAVIOLA RODRIGUES, GRAHAM RILEY and

HAKAN GRAHN: Estimation of Energy Consumption in Machine Learning. Jour-
nal of Parallel and Distributed Computing, 134(C):75-88, December 2019.

GARG, SATVIK, PRADYUMN PUNDIR, GEETANJALI RATHEE, P.K. GUPTA, SOMYA
GARG and SARANSH AHLAWAT: On Continuous Integration / Continuous Delivery
for Automated Deployment of Machine Learning Models using MLOps. In 2021 IEFE
Fourth International Conference on Artificial Intelligence and Knowledge Engineer-
ing (AIKE), pages 25-28, 2021.

GU, YUNHUA, XING WANG, SHU SHEN, JIN WANG and JEONG-UK KiM: Analysis
of data storage mechanism in NoSQL database MongoDB. In 2015 IEEE Interna-

tional Conference on Consumer Electronics - Taiwan, pages 70-71, 2015.

HAHNEL, MARrRCUS, BJORN DOBEL, MARCUS VOLP and HERMANN HARTIG: Mea-
suring Energy Consumption for Short Code Paths Using RAPL. SIGMETRICS Per-
form. Eval. Rev., 40(3):13-17, January 2012.

HarL, MARK, EIBE FRANK, GEOFFREY HOLMES, BERNHARD PFAHRINGER, PE-
TER REUTEMANN and [AN H. WITTEN: The WEKA Data Mining Software: An
Update. SIGKDD Explorations Newsletter, 11(1):10-18, November 2009.

HaAO, JIANGANG and TiIN KaM Ho: Machine Learning Made Easy: A Review of

Scikit-learn Package in Python Programming Language. Journal of Educational and
Behavioral Statistics, 44(3):348-361, 2019.

HARRISON, DAVID and DANIEL L. RUBINFELD: Hedonic housing prices and the de-

mand for clean air. Journal of Environmental Economics and Management, 5(1):81-
102, 1978.

Hsien, Cuo-Jul, KAl-WEl CHANG, CHIH-JEN LIN, S. SATHIYA KEERTHI and
S. SUNDARARAJAN: A Dual Coordinate Descent Method for Large-Scale Linear

SVM. In Proceedings of the 25th International Conference on Machine Learning,
ICML 08, page 408-415, New York, NY, USA, 2008. ACM.

Ivory, MELODY Y. and MARTI A HEARST: The State of the Art in Automating
Usability Evaluation of User Interfaces. ACM Computing Surveys, 33(4):470-516,
December 2001.

JAAKKOLA, ToMMI S. and DAVID HAUSSLER: Probabilistic Kernel Regression Mod-
els. In Proceedings of the 1999 Conference on Al and Statistics. Morgan Kaufmann,
1999.

84

[50]

[51]

[52]

[53]

[54]

[53]

[56]

[57]

[58]

[59]

BIBLIOGRAPHY

JoAacHIMS, THORSTEN: Making Large-Scale Support Vector Machine Learning Prac-
tical. In SCHOLKOPF, B., C. BURGES and A. SMOLA (editors): Advances in Kernel
Methods: Support Vector Learning, chapter 11, page 169-184. MIT Press, Cambridge,
MA, USA, 1999.

JOACHIMS, THORSTEN: Estimating the Generalization Performance of an SVM Ef-
ficiently. In Proceedings of the Seventeenth International Conference on Machine
Learning, ICML 00, page 431-438, San Francisco, CA, USA, 2000. Morgan Kauf-

mann Publishers Inc.

JOACHIMS, THORSTEN: A Statistical Learning Learning Model of Text Classification
for Support Vector Machines. In Proceedings of the 24th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR
01, page 128-136, New York, NY, USA, 2001. ACM.

JOACHIMS, THORSTEN: Learning to Classify Text Using Support Vector Machines:
Methods, Theory and Algorithms. Kluwer Academic Publishers, Norwell, Mas-
sachusetts, USA, 2002.

JoacHIMS, THORSTEN: Training Linear SVMs in Linear Time. In Proceedings of
the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD 06, page 217-226, New York, NY, USA, 2006. ACM.

KEERTHI, S. S., S. K. SHEVADE, C. BHATTACHARYYA and K. R. K. MURTHY:
Improvements to Platt’s SMO Algorithm for SVM Classifier Design. Neural Compu-
tation, 13(3):637-649, 2001.

LACOSTE, ALEXANDRE, ALEXANDRA LUCCIONI, VICTOR SCHMIDT and THOMAS
DANDRES: Quantifying the Carbon Emissions of Machine Learning. Workshop on
Tackling Climate Change with Machine Learning at NeurIPS 2019, 2019.

LeCun, YANN, LEON BoT1TOU, YOSHUA BENGIO and PATRICK HAFFNER:
Gradient-based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278-2324, November 1998.

LEiscH, FRIEDRICH and EVGENIA DIMITRIADOU: milbench: Machine Learning
Benchmark Problems, January 2021. R package version 2.1-3.

L1, DA, XiNBO CHEN, MICHELA BECCHI and ZILIANG ZONG: FEvaluating the En-
ergy Efficiency of Deep Convolutional Neural Networks on CPUs and GPUs. In 2016
IEEFE International Conferences on Big Data and Cloud Computing (BDCloud), So-
cial Computing and Networking (SocialCom,), Sustainable Computing and Communi-
cations (SustainCom) (BDCloud-SocialCom-SustainCom), pages 477-484, Atlanta,
GA, USA, October 2016. IEEE.

BIBLIOGRAPHY 85

[60]

[61]

[62]

[63]

[64]

[65]

|66]

[67]

[68]

[69]

[70]

LiN, HSUAN-TIEN and CHIH-JEN LIN: A Study on Sigmoid Kernels for SVM and
the Training of non-PSD Kernels by SMO-type Methods. Neural Computation, June
2003.

Lon, WEI-YIN: Improving the precision of classification trees. The Annals of Applied
Statistics, 3(4):1710-1737, December 2009.

Lon, WEI-YIN: Classification and Regression Trees. Wiley Interdisciplinary Re-
views: Data Mining and Knowledge Discovery, 1:14 — 23, January 2011.

LoTTicK, KADAN, SILVIA SUSAI, SORELLE A. FRIEDLER and JONATHAN P. WIL-
SON: FEnergy Usage Reports: Environmental awareness as part of algorithmic ac-
countability. Workshop on Tackling Climate Change with Machine Learning at
NeurIPS 2019, 2019.

LUNDBERG, SCOTT M. and SU-IN LEE: A Unified Approach to Interpreting Model
Predictions. In Proceedings of the 81st International Conference on Neural Infor-
mation Processing Systems, NIPS’17, page 4768-4777, Red Hook, NY, USA, 2017.

Curran Associates Inc.

MARKIDIS, STEFANO, STEVEN WEI DER CHIEN, ERWIN LAURE, Ivy Bo PENG
and JEFFREY S. VETTER: NVIDIA Tensor Core Programmability, Performance
and Precision. In 2018 IEEE International Parallel and Distributed Processing Sym-
posium Workshops (IPDPSW), pages 522-531, May 2018.

MCAFEE, ANDREW, ERIK BRYNJOLFSSON, THOMAS H DAVENPORT, DJ PATIL
and DoMINIC BARTON: Big data: the management revolution. Harvard business
review, 90(10):60-68, 2012.

MEIER, ANDREAS and MICHAEL KAUFMANN: SQL & NoSQL Databases: Mod-
els, Languages, Consistency Options and Architectures for Big Data Management,

chapter Data Management, page 6. Springer Vieweg Wiesbaden, Wiesbaden, 2019.

MERCER, JAMES: Functions of Positive and Negative Type, and their Connection
with the Theory of Integral Equations. Philosophical Transactions of the Royal Society
of London. Series A, Containing Papers of a Mathematical or Physical Character,
209:415-446, 1909.

MITTAL, SPARSH and SHRAIYSH VAISHAY: A Survey of Technigques for Optimizing
Deep Learning on GPUs. Journal of Systems Architecture, 99(C), October 2019.

MOOLAYIL, JOJO: Learn Keras for Deep Neural Networks, chapter 2, pages 17-52.
Springer, Vancouver, CA, 2019.

86

[71]

[72]

73]

[74]

[75]

[76]

[77]

[78]

BIBLIOGRAPHY

MOORE, CHARLES, SARAH BROWN, PHIL. MACDONALD, MATT EWEN and HAN-
NAH BROADBENT: FEuropean Electricity Review 2022. 'Technical Report, Ember,
London, UK, February 2022.

MoRIK, KATHARINA, HELENA KOTTHAUS, LUKAS HEPPE, DANNY HEINRICH,
RAPHAEL FISCHER, ANDREAS PAULY and N1CcO PIATKOWSKI: The Care Label Con-
cept: A Certification Suite for Trustworthy and Resource-Aware Machine Learning,
2021.

NASCIMENTO, ELIZAMARY DE SOUZA, IFTEKHAR AHMED, EDSON OLIVEIRA,
MARCIO PIEDADE PALHETA, IGOR STEINMACHER and TAYANA CONTE: Under-
standing Development Process of Machine Learning Systems: Challenges and Solu-
tions. In 2019 ACM/IEEE International Symposium on Empirical Software Engi-
neering and Measurement (ESEM), pages 1-6, 2019.

Pace, R. KELLEY and RONALD BARRY: Sparse Spatial Autoregressions. Statistics
& Probability Letters, 33(3):291-297, 1997.

PAPERNOT, NicoLAS, FARTASH FACGHRI, NICHOLAS CARLINI, IAN GOODFEL-
LOW, REUBEN FEINMAN, ALEXEY KURAKIN, CIHANG XIE, YASH SHARMA, ToM
BROWN, AURKO ROY, ALEXANDER MATYASKO, VAHID BEHZADAN, KAREN HAM-
BARDZUMYAN, ZHISHUAI ZHANG, YI-LIN JUANG, ZHI L1, RYAN SHEATSLEY, AB-
HIBHAV GARG, JONATHAN UEsATO, WILLI GIERKE, YINPENG DONG, DAvVID
BERTHELOT, PAUL HENDRICKS, JONAS RAUBER, RUJUN LONG and PATRICK McC-
DANIEL: Technical Report on the CleverHans v2.1.0 Adversarial Examples Library,
2018.

PAaszKE, ADAM, SAM GROSS, FRANCISCO MASsA, ADAM LERER, JAMES BRAD-
BURY, GREGORY CHANAN, TREVOR KILLEEN, ZEMING LIN, NATALIA GIMELSHEIN,
Luca ANTIGA, ALBAN DESMAISON, ANDREAS KOPF, EDWARD YANG, ZACHARY
DEVITO, MARTIN RAISON, ALYKHAN TEJANI, SASANK CHILAMKURTHY, BENOIT
STEINER, LU FANG, JUNJIE BAT and SOUMITH CHINTALA: PyTorch: An Imperative
Style, High-Performance Deep Learning Library. In WALLACH, H., H. LAROCHELLE,
A. BEYGELZIMER, F. D'ALCHE-Buc, E. Fox and R. GARNETT (editors): Advances
in Neural Information Processing Systems 32, pages 8024-8035. Curran Associates,
Inc., 2019.

PATLE, ARTI and DEEPAK SINGH CHOUHAN: SVM kernel functions for classifica-

tion. In 2013 International Conference on Advances in Technology and Engineering
(ICATE), pages 1-9, 2013.

PEDREGOSA, F., G. VAROQUAUX, A. GRAMFORT, V. MICHEL, B. THIRION,
O. GRISEL, M. BLONDEL, P. PRETTENHOFER, R. WEISS, V. DUBOURG, J. VAN-

BIBLIOGRAPHY 87

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

87]

[88]

DERPLAS, A. PASs0S, D. COURNAPEAU, M. BRUCHER, M. PERROT and E. DUCH-

ESNAY: Scikit-learn: Machine Learning in Python. Journal of Machine Learning
Research, 12:2825-2830, 2011.

PrarT, JOHN: Sequential Minimal Optimization: A Fast Algorithm for Training
Support Vector Machines. Advances in Kernel Methods-Support Vector Learning,
208, July 1998.

PLuGGE, EELCO, PETER MEMBREY and TiM HAWKINS: GridF'S. In The Definitive
Guide to MongoDB: The NoSQL Database for Cloud and Desktop Computing, pages
83-95. Apress, Berkeley, CA, 2010.

QUINLAN, J. Ross: C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, October 1993.

RANZATO, FRANCESCO and MARCO ZANELLA: Robustness Verification of Support
Vector Machines. In Static Analysis: 26th International Symposium, page 271-295,
Berlin, Heidelberg, 2019. Springer-Verlag.

RAUBER, JONAS, WIELAND BRENDEL and MATTHIAS BETHGE: Foolboz: A Python

toolbox to benchmark the robustness of machine learning models, 2018.

SAMANTA, AsHIS KUMAR and NABENDU CHAKI: Performance Monitoring of Mon-
goDB on Varied Cluster Configuration: An Fxperimental Approach. In 2021 Inter-
national Conference on Innovation and Intelligence for Informatics, Computing, and
Technologies (8ICT), pages 525-530. IEEE, 2021.

SAMEK, WOJCIECH, GREGOIRE MONTAVON, ANDREA VEDALDI, LARS KAI
HANSEN and KLAUS-ROBERT MULLER (editors): Ezplainable Al: interpreting, ex-

plaining and visualizing deep learning, volume 11700. Springer Nature, 2019.

SCHMIDT, VICTOR, KAMAL GOYAL, ADITYA JOSHI, BORrIS FELD, LiaM CONELL,
NikoLAS LASKARIS, DOUG BLANK, JONATHAN WILSON, SORELLE FRIEDLER and
SasuA Lucciont: CodeCarbon: Estimate and Track Carbon Emissions from Ma-
chine Learning Computing. 2021.

SHALEV-SHWARTZ, SHAI, YORAM SINGER and NATHAN SREBRO: Pegasos: Primal
Estimated Sub-GrAdient SOlver for SVM. In Proceedings of the 24th International
Conference on Machine Learning, ICML ’07, page 807-814, New York, NY, USA,
2007. ACM.

SIGILLITO, VINCENT G, SIMON P WING, LARRIE V HUTTON and KiLE B BAKER:

Classification of radar returns from the ionosphere using neural networks. Johns
Hopkins APL Technical Digest, 10(3):262-266, 1989.

88

[39]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

98]

199]

[100]

BIBLIOGRAPHY

SMITH, EINAR: Python, the Fundamentals. In Introduction to the Tools of Scien-

tific Computing, pages 19-50. Springer International Publishing, Cham, Switzerland,
2020.

SOKOLOVA, MARINA and GUY LAPALME: A systematic analysis of performance

measures for classification tasks. Information Processing & Management, 45:427—
437, July 20009.

STEINWART, I., D. HUsH and C. SCOVEL: An Ezxplicit Description of the Reproduc-
ing Kernel Hilbert Spaces of Gaussian RBF Kernels. IEEE Transactions on Infor-
mation Theory, 52(10):4635-4643, 2006.

SZEGEDY, CHRISTIAN, WOJCIECH ZAREMBA, ILYA SUTSKEVER, JOAN BRUNA, DU-
MITRU ERHAN, IAN GOODFELLOW and ROB FERGUS: Intriguing properties of neural

networks. In International Conference on Learning Representations, 2014.

THARWAT, ALAA: Classification assessment methods. Applied Computing and In-
formatics, 17(1):168-192, January 2021.

VAN BUUREN, STEF: Flezible Imputation of Missing Data. Chapman & Hall/CRC
Interdisciplinary Statistics. CRC Press LLC, Second edition, 2018.

VAPNIK, VLADIMIR N. (editor): Statistical Learning Theory, chapter 10, page
401-442. Adaptive and Learning Systems for Signal Processing, Communications
and Control. Wiley-Interscience, Chichester, United Kingdom, 1998.

VAPNIK, VLADIMIR N.: The Nature of Statistical Learning Theory. Information
Science and Statistics. Springer, New York, NY, USA, Second edition, 2000.

WATADA, JUNZO, ARUNAVA ROY, RUTURAJ KADIKAR, HOANG PHAM and BING

XU: Emerging Trends, Techniques and Open Issues of Containerization: A Review.
IEEE Access, 7:152443-152472, October 2019.

ZAHARIA, MATEI, ANDREW CHEN, AARON DAVIDSON, ALl GHODSI, SUE ANN
HonG, ANDY KONWINSKI, SIDDHARTH MURCHING, T'OMAS NYKODYM, PAUL
OGIIVIE, MANT PARKHE et al.: Accelerating the machine learning lifecycle with
MLflow. TEEE Data Engineering Bulletin, 41(4):39-45, 2018.

ZHANG, JIE M., MARK HARMAN, LETI MA and YANG Liu: Machine Learning Test-

ng: Survey, Landscapes and Horizons. IEEE Transactions on Software Engineering,
48(1):1-36, 2022.

ZUGNER, DANIEL and STEPHAN GUNNEMANN: Certifiable Robustness of Graph

Conwvolutional Networks under Structure Perturbations. In Proceedings of the 26th

BIBLIOGRAPHY 89

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD 20, page 1656-1665, New York, NY, USA, August 2020. ACM.

90

BIBLIOGRAPHY

Appendix A

Outputs of the Evaluations

A.1 RBF SVC on MNIST

accuracy _class_0

accuracy class 1

accuracy class 2

accuracy class 3

accuracy class 4

accuracy class 5

accuracy class 6

accuracy class 7

accuracy class 8

accuracy _class_9

accuracy _score

balanced accuracy class_0
balanced accuracy class 1
balanced accuracy class 2
balanced accuracy class_3
balanced accuracy class 4
balanced accuracy class_5
balanced accuracy class 6
balanced accuracy class 7
balanced accuracy class 8
balanced accuracy class_9
balanced accuracy score
diagnostic _odds_ratio class 0
diagnostic _odds ratio class 1

diagnostic_odds_ratio class_2

91

0.996
0.997
0.99
0.992
0.992
0.992
0.994
0.986
0.991
0.989
0.959
0.99
0.994
0.976
0.977
0.977
0.97
0.982
0.972
0.97
0.961
0.958
21233.2
53182.6
3331.8

APPENDIX A. OUTPUTS OF THE EVALUATIONS

diagnostic_odds_ratio class_3 0288.1
diagnostic _odds_ratio class 4 5913.8
diagnostic_odds_ratio_class_5 4534.8
diagnostic _odds_ratio class 6 9293.7
diagnostic _odds_ratio class 7 1890
diagnostic_odds_ratio class_8 3753.7
diagnostic _odds_ratio class 9 3280.7
fl score class 0 0.979
f1 score class 1 0.988
fl score class 2 0.95
fl _score class 3 0.96
fl _score class 4 0.961
fl score class 5 0.952
f1 score class 6 0.969
fl score class 7 0.931
f1 score class 8 0.951
fl score class 9 0.945
fdr_class 0 0.024
fdr class_1 0.015
fdr class_2 0.06
fdr class_3 0.04
fdr class_4 0.035
fdr class 5 0.038
fdr class_6 0.03
fdr_class 7 0.091
fdr class_8 0.042
fdr class_9 0.035
fn class 0 17
fn_class 1 11
fn class 2 42
fn class_3 41
fn class 4 42
fn class_5 o1
fn class 6 31
fn class 7 47
fn_ class_8 95
fn class 9 75
for class_0 0.017
for class 1 0.01

Al

RBF SVC ON MNIST

for class 2

for class 3

for class 4

for class 5

for class 6

for class_ 7

for class_ 8

for class_9

for class 0

for class 1

for class 2

for class_3

for class 4

for class 5

for class_6

for class 7

for class_8

for class 9

fowlkes mallows index class 0
fowlkes mallows index class 1
fowlkes mallows index class 2
fowlkes mallows index class 3
fowlkes mallows index class 4
fowlkes mallows index class 5
fowlkes mallows index class 6
fowlkes mallows index class 7
fowlkes mallows index class 8
fowlkes mallows index class 9
fp_class_0

fp_class 1

fp class 2

fp_class 3

fp class 4

fp class 5

fp class 6

fp_class_7

fp_class 8

fp_class_9

fpr_class 0

0.041
0.041
0.043
0.057
0.032
0.046
0.056
0.074
0.002
0.001
0.005
0.005
0.005
0.006
0.003
0.005
0.006
0.008
0.979
0.988
0.95
0.96
0.961
0.952
0.969
0.931
0.951
0.945
24

17

63

40

34

33

29

98

40

34
0.003

93

APPENDIX A. OUTPUTS OF THE EVALUATIONS

fpr _class_1 0.002
fpr class_ 2 0.007
fpr_class_3 0.004
fpr class 4 0.004
fpr class 5 0.004
fpr_class_6 0.003
fpr class 7 0.011
fpr_class_8 0.004
fpr class 9 0.004
hamming loss 0.041
informedness class 0 -1.015
informedness class 1 -1.008
informedness class 2 -1.034
informedness class 3 -1.036
informedness class 4 -1.039
informedness class 5 -1.054
informedness class_6 -1.029
informedness class 7 -1.035
informedness class_8 -1.052
informedness class 9 -1.071
markedness class 0 0.974
markedness class 1 0.984
markedness class 2 0.935
markedness class 3 0.956
markedness class 4 0.96
markedness class_b 0.957
markedness class 6 0.966
markedness class 7 0.904
markedness class 8 0.952
markedness class 9 0.957
matthews corrcoef 0.954
matthews corrcoef class 0 0.977
matthews corrcoef class 1 0.986
matthews corrcoef class 2 0.944
matthews corrcoef class 3 0.955
matthews corrcoef class 4 0.957
matthews corrcoef class 5 0.948
matthews corrcoef class 6 0.965
matthews corrcoef class 7 0.923

Al

RBF SVC ON MNIST

matthews corrcoef class 8
matthews corrcoef class 9
neg_likelihood ratio class_ 0
neg likelihood ratio class 1
neg_likelihood ratio class 2
neg_likelihood ratio class 3
neg_likelihood ratio class 4
neg likelihood ratio class_ 5
neg likelihood ratio class 6
neg likelihood ratio class 7
neg likelihood ratio class 8
neg_likelihood ratio_ class_9
npv_class 0

npv_class 1

npv_class 2

npv_class 3

npv_class 4

npv_class 5

npv_class 6

npv_class 7

npv_class 8

npv_class 9
pos_likelihood ratio class 0
pos_ likelihood ratio class 1
pos_ likelihood ratio class 2
pos_ likelihood ratio_class_3
pos_likelihood ratio class 4
pos_likelihood ratio class 5
pos_ likelihood ratio_class 6
pos_likelihood ratio class 7
pos_ likelihood ratio_class_8
pos_likelihood ratio class 9
ppv_class 0

ppv_class 1

ppv_class 2

ppv_class 3

ppv_class 4

ppv_class 5

ppv_class 6

0.946
0.939
0.017

0.01
0.041
0.041
0.043
0.057
0.032
0.046
0.057
0.075
0.998
0.999
0.995
0.995
0.995
0.994
0.997
0.995
0.994
0.992
369.3
016.4
136.6
215.6
253.9
260.2
301.7
87.37
212.9
244.8
0.976
0.985

0.94

0.96
0.965
0.962

0.97

95

APPENDIX A. OUTPUTS OF THE EVALUATIONS

ppv_class 7 0.909
ppv_class 8 0.958
ppv_class 9 0.965
prevalence class 0 9020
prevalence class 1 8865
prevalence class 2 8968
prevalence class 3 8990
prevalence class 4 9018
prevalence class 5 9108
prevalence class 6 9042
prevalence class 7 8972
prevalence class 8 9026
prevalence class 9 8991
pt_class 0 0.049
pt_class 1 0.042
pt_class 2 0.079
pt_class 3 0.064
pt_class 4 0.059
pt_class 5 0.058
pt_class 6 0.054
pt class 7 0.097
pt_class 8 0.064
pt class 9 0.06
tn_class 0 8996
tn_class 1 8848
tn_class 2 8905
tn_class 3 8950
tn_ class 4 8984
tn_class 5 9075
tn_class 6 9013
tn_class 7 8874
tn_class 8 8986
tn_class 9 8957
tnr_class_ 0 0.997
tnr_class 1 0.998
tor_class_ 2 0.993
tor_class_3 0.996
tnr_class_4 0.996
tnr_class_5 0.996

A.1. RBF SVC ON MNIST

tnr_class_6 0.997
tnr_class 7 0.989
tnr_class_8 0.996
tnr_class_9 0.996
tp_class 0 963
tp_class 1 1124
tp_class 2 990
tp_class_3 969
tp_class 4 940
tp_class 5 841
tp_class 6 927
tp_class 7 981
tp_class_8 919
tp_class 9 934
tpr_class_0 0.983
tpr_class 1 0.99
tpr_class_2 0.959
tpr_class 3 0.959
tpr_class_4 0.957
tpr_class_b 0.943
tpr_class 6 0.968
tpr_class 7 0.954
tpr_class 8 0.944
tpr_class_9 0.926
ts_class 0 0.959
ts_class 1 0.976
ts_class_ 2 0.904
ts_class 3 0.923
ts_class 4 0.925
ts_class 5 0.909
ts_class 6 0.939
ts_class 7 0.871
ts_class_8 0.906
ts_class 9 0.895
zero one_loss 0.041

Table A.1: Output of the Confusion Matrix Evaluation of the rbf SVC on MNIST

98 APPENDIX A. OUTPUTS OF THE EVALUATIONS

mif/low 1z Experiments Models GitHub Docs

Default > Codecarbon Efficiency Evaluation

Codecarbon Efficiency Evaluation

Run ID: 139b74d5f61842c59630d1c8a27ed476 Date: 2022-09-07 05:22:12 Source: evaluation_task.py
Git Commit: 8b249ab7b95bfb78c606fb31575b3e62ffaa8bad User: Fabian Duration: 2.1s

Status: FINISHED Lifecycle Stage: active
> Description Edit
> Parameters

v Metrics (11)

Name Value
cpu_count [» 12
pu_energy w2 1.336e-4
pu_power & 1142
duration [~ 4229
emissions & 2.374e-4
emissions_rate & 5614e-4
energy_consumed & 7.889e-4
gpu_energy W 0
gpu_power ¥ 0
ram_energy 6.552e-4
ram_power & 5903

> Tags
v Attifacts

[@ emissions.csv

Figure A.1: Output of the Energy Consumption Evaluation of the rbf SVC on MNIST

A.2. RBF SVR ON CALIFORNIA HOUSING 99

A.2 RBF SVR on California Housing

MITIOW 1250 Experiments Models GitHub Docs

Default > Codecarbon Efficiency Evaluation

Codecarbon Efficiency Evaluation

Run ID: d958a0591a6b4c07a7c6e6992cccc159 Date: 2022-09-08 02:51:13 Source: O evaluation_task.py
Git Commit: c7d772b8a48b01b677d37d277013d6079a1c2632 User: Fabian Duration: 2.4s
Status: FINISHED Lifecycle Stage: active

> Description Edit

> Parameters

v Metrics (11)

Name Value
cpu_count [# 12
cpu_energy o2 5.075e-6
pu_power [1.142
duration [~ 162
emissions [9.044e-6
emissions_rate &2 5.584e-4
energy_consumed |~ 3.005e-5
gpu_energy [~ 0
gpu_power & 0
ram_energy & 2497e-5
ram_power [5903

> Tags

v Artifacts

emissions.csv

Figure A.2: Output of the Energy Consumption Evaluation of the rbf SVR on California Housing

100 APPENDIX A. OUTPUTS OF THE EVALUATIONS

A.3 Linear SVC on Ionosphere Dataset

MIT /oW 1260 Experiments Models GitHub Docs

Default > SAVer Robustness Evaluation

SAVer Robustness Evaluation

Run ID: e0ce6e51886d464{9cc3166c2e5859d2 Date: 2022-08-29 16:09:10 Source: 2 evaluation_task.py
Git Commit: ef8718fea8043c3964c6b576c46d98918261d67c User: Fabian Duration: 2.1s
Status: FINISHED Lifecycle Stage: active

> Description Edit

> Parameters

v Metrics (9)

Name Value
avgtime [0004
epsilon [~ 05
nconditionalrobust | 296
ncorrect &2 317
nrobust [~ 329
ratiocondrobust &2 0.843
ratiocorrect [0.903
ratiorobust |+ 0.937
size &2 351

> Tags

> Artifacts

Figure A.3: Output of the Robustness Evaluation of the linear SVC on Ionosphere

A.3. LINEAR SVC ON IONOSPHERE DATASET 101

ml .

riment: lodels
et B Acurey o
Basic Accuracy Evaluation
Run 0: 8031207 et cfascaBsaceons Oote: 2022-08.29 170238 Source: 3 evaustion_fskpy
i Commits f6T1B1eabOA3C0BAHSTEASISBSNER6 TUSTe User: Fabion Duaton: 215
Status: FINIHED eyl Stage: acive
> Description rit
> parameters
v Metrics (60)
Name e
scaracy.cass 0 12 as26
o1 as2s

—— 026

e sccrac 0s2s
blanced accurcy cos 1l 025

e ccuraey.score os2s
ogposic odds a0 doss 0 2 152
Sagposic odds a0 coss 112152
1 score lss 02 o
1 score s 112 0951
fole discoveny rote cos 012 0273
foe discovery rote cos 112 0017
b negatve cess. 0 12 2
folse.negtive clos 1 b2 f
e negetve e cos 0t 0077
fbe negatve e coss 1 12 0073
JE— oot
e omision tedass 11 0273
ol posie. lss. 02 B
ol psitve.class.1 2. 2
s positve e oss b2 007
s positve e coss 1o 0077

foulkes mallows index class 0l 0819

foulkes mallows index class 1 0954

harming loss 12 0074
Hingeloss 12 0218
informedness class 0 L2 o0k
informecess.class_1 0996
jaccard score L2 ooz
log Joss 2 255

markedress class 0 L2 on

o
matthews corcoef o777
mattheus corecoef cass 0 b 077
matthews cortcoef_clss_1 k2 o
neg likelhood rato class 012 0083
neq likelihood rati w oo

negalive predictive value.class 0 W2 0983

negative_predictive value_class_1 W 0727

pos ikelihood ratioclsss 0 26
pos likelihood ratio class 1 ke 1205
positive w or
w osm
prevalence_class 0 L2 23
prevalence_class 1 L2 2
prevalence threshold class 0 L2 022
prevalerce threshold class 112 0224
o a0 seone 2 095
reat score_cas 056
reat score cass 1 L2 092
top.two_accuracy_5 1
true_negative, class 0 2 114
2%
0927
0923
%
114
0923
tnue positve ate class 1 L2 0927
2er0.0ne loss L2 007

> Tags

> Arifacts

Figure A.4: Output of the Confusion Matrix Evaluation of the linear SVC on Ionosphere

102 APPENDIX A. OUTPUTS OF THE EVALUATIONS

Ml /oW 1250 Experiments Models GitHub Docs

Default > Codecarbon Efficiency Evaluation

Codecarbon Efficiency Evaluation

Run ID: e79d9283977b4ff1b8574a220328914a Date: 2022-08-29 16:12:48 Source: C evaluation_task.py
Git Commit: ef8718fea8043c3964c6b576¢46d98918261d67c User: Fabian Duration: 2.1s
Status: FINISHED Lifecycle Stage: active

> Description Edit

> Parameters

v Metrics (11)

Name Value
cpu_count W 12
cpu_energy ¥ 1.141e-8
cpu_power [~ 1.142
duration & 0.091
emissions & 1.109¢-8
emissions_rate [+ 1.220e-4
energy_consumed 2 36838
gpu_energy w2 0
gpu_power [» 0
ram_energy [2542¢-8
ram_power & 5903
> Tags
v Artifacts
P ~
[® emissions.csv Full Pathfile:///. e 7baff1b8574 i a 3
Size: 4.24KB
timestamp, project_name,run_id, duration, emissions,emissions_rate,cpu_power,gpu_power, ram_power,Cpu_energy ,gpu_energy, ram_energy ,energy_consumed, country_name
2022-08-07T21 test, cBadab16-db34-4b2-b69a-cd754445edd0, 39 . 446857213974, 1. 322509394) ,1.14225,0.0,2.9277162551879%
test, c8adab16-db34-4fb2-b69a-cd754445edd1,39. 446857213974, 1. 3225093947206949e-05, 0. 0003352635642294,1.14225,0.0,2.9277162551879¢
test, cBadab16-db34-4fb2-b69a-cd754445edd2, 39. 446857213974, 0. 9322509394720696, 0. 3352635642294458,10000.1,0.0,2.9277162551879883, 1
test, cBadabl6-db34-4fb2-b69a-cd754445edd3,939. 44687213974, 0. 9322509394720696, 0. 3352635642294458,10000.1,0.0, 2.9277162551879883, 1
test, cBadabl16-db34-4fb2-b69a-cd754445edda, 839. 44685213974, 0. 9322509394720696, 0. 3352635642294458, 10000.1,0.0, 2. 9277162551879883, 1
2022-08-07722:32:06, codecarbon, 776ce8d4 6e87773b,518.50! 12,0.0001: ,0.0003374467243552,1.14225,0.0,2.9277162551879883
2022-08-28T21:57:25, codecarbon, 81f5614a-53fa-4cf 14,5. 1.257 86e-05,0.0023473777522557,22.5,0.0,5.902700901031494,
2022-08-29T03:46:12, codecarbon, de18171b-a045-4eda-84a6-4acafdsa7 67,509 . 5760514736176, 0 . 0002860065072083 0. 0005612636354892,1. 14225, 0.0, 5. 992700991031494,, €
2022-08-29T15:04:54, codecarbon, 4bdcd6c6-ba7c-4412-abff -86c843678057,0. 1460769176483154, 1.1641377934532504e-08, 7 .9693480133250552-05,1.14225,0.0, 5. 902700901
2022-08-29T16:12:48, 5 d -964f 0.0 1582,1.108611 27684e-08,0.0001 199,1.14225,0.0,5.9027009¢
v
< > |« >

Figure A.5: Output of the Energy Consumption Evaluation of the linear SVC on Ionosphere

A.3. LINEAR SVC ON IONOSPHERE DATASET 103

Experiments Models GitHub Docs

Default > Bounds Report Evaluation

Bounds Report Evaluation

Run ID: 37f2543f8e1949d5b96b9608a949fa50 Date: 2022-08-29 15:00:58 Source: 2 evaluation_task.py
Git Commit: ef8718fea8043c3964c6b576c46d98918261d67c User: Fabian Duration: 2.1s
Status: FINISHED Lifecycle Stage: active

> Description Edit

> Parameters

v Metrics (10)

Name Value
Emprirical Error 12 011

Error Bound - Joachims |2 0899
Estimated F1 12 067

Estimated Precision 12 0744
Estimated Recall &2 061

Evaluated F1 &2 0946
Evaluated Precision [0983
Evaluated Recall 12 0911
Evaluated Score & 0913

Vapnik Chervonenkis Dimension &2 35

> Tags
v Atifacts
B Boundsreport pdf Full Path:file:/// f2543f8e artifa df 0 .
Size: 1.8KB -
n
1 /1

Bounds and Measures Report

Vapnik Chervonenkis dimension: 35
Estimated Recall: 0.61

Observed Recall: 0.9112903225806451
Estimated Precision: 0.7439024390243902
Observed Precision: 0.9826086956521739
Estimated F1 measure: 0.6703296703296703
Observed F1 measure: 0.9456066945606695
Estimated Error: 0.7

Test Error Bound: 0.8994495032341326
Observed Test Error: 0.08666666666666667

Test Accuracy exceeds that of a naive most-frequent-class classifier and is higher

than 75%.

- Test Error is within the bounds.

Figure A.6: Output metrics of the Bounds Report Evaluation of the linear SVC on Ionosphere

104 APPENDIX A. OUTPUTS OF THE EVALUATIONS

Bounds and Measures Report

Vapnik Chervonenkis dimension: 35
Estimated Recall: 0.61

Observed Recall: 0.9112903225806451
Estimated Precision: 0.7439024390243902
Observed Precision: 0.9826086956521739
Estimated F1 measure: 0.6703296703296703
Observed F1 measure: 0.9456066945606695
Estimated Error: 0.7

Test Error Bound: 0.8994495032341326
Observed Test Error: 0.08666666666666667

Test Accuracy exceeds that of a naive most-frequent-class classifier and is higher

than 75%.

Test Error is within the bounds.

Probability for the bound holding is 95 percent.

References:

Burges, Christopher J. C.: A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 2(2):121-167, jun 1998.

Joachims, Thorsten: Learning to Classify Text Using Support Vector Machines: Methods, Theory and Algorithms. Kluwer Academic Publishers, Norwell,
Massachusetts, USA, 2002.

Figure A.7: Output report of the Bounds Report Evaluation of the linear SVC on Ionosphere

A4. DECISION TREE ON IRIS 105

A.4 Decision Tree on Iris

Experiments ~ Models GitHub Docs

Default > Codecarbon Efficiency Evaluation

Codecarbon Efficiency Evaluation H

Run ID: 1c682c1ad97d4728a5e09ff1bd1c111c Date: 2022-09-09 22:03:48 Source: O evaluation_task.py
Git Commit: c7d772b8a48b01b677d37d277013d6079a1c2632 User: Fabian Duration: 2.1s
Status: FINISHED Lifecycle Stage: active

> Description Edit

> Parameters

v Metrics (11)

Name Value
cpu_count ¥ 12
cpu_energy & 1.000e-5
cpu_power 2 1.142
duration [~ 15.84
emissions k2 18155
emissions_rate [0,001
energy_consumed 6.030e-5
gpu_energy [0
gpu_power & 0
ram_energy [5.030e-5
ram_power 2 5903

> Tags

v Artifacts

[® emissions.csv

Full Pathifile:///./mlruns/0/1c682¢1ad97d4728a5e09ff1bd 1c111¢/artifacts/emissions.csv (1 3

Size: 5.08KB
timestamp, project_name,run_id,duration,emissions,emissions_rate,cpu_power,gpu_power ,ram_power ,Cpu_energy,gpu_energy,ram_energy, energy_consumed, country_name
2022-08-07721:16:07,ExGETa test, cBadabl6-db34-4fb2-b69a-cd754445edd0, 39.446857213974,1. 3 4 [,1.14225,0.0,2.9277162551879¢
2022-08-077T21:17:07,ExGETa test, cBadabl6-db34-4fb2-b69a-cd754445edd1,39. 446857213974, 1. 322509394 ,0 94,1.14225,0.0,2.9277162551879¢
2022-08-07T21:18:07,ExGETa test, cBadabl6-db34-4fb2-b69a-cd754445edd2,39. 446857213974, 0. 9322509394720696 , 0. 3352635642294458,16000.1,0.0,2.9277162551879883, 1
2022-08-07722:19:07,ExGETa test, c8adab16-db34-4f! 7 939.44687213974,0. 20696,0 204458,10000.1,0.0,2.9277162551879883, 1
2022-08-077T22:20:07,ExGETa test, cBadabl6-db34-4fb2-b69a-cd754445edda, 839.44685213974,0.9322569394720696 , 0. 3352635642294458,16000.1,0.0,2.9277162551879883, 1
2022-08-07T22:32:06, codecarbon, 776ce8d4-0ab6-4d4d-960d-3bac6e87773b, 51 3 12,0.0001 ,0.0003374467243552,1.14225,0.0,2.9277162551879883,

2022-08-28T21:57:25, codecarbon, 815614a-53fa-4cf3-a792-973cd1ba7al4, 5. 357266426086426, 1. 2575528021501786e-05,0.0023473777522557,22.5,0..0, 5. 962700901031494,
2022-08-29T03:46:12, codecarbon, de18171b-a045-4eda-84a6-4ac4fd6a7 67,509 . 5760514736176 ,0.0002860065072083, 0. 0005612636354892,1. 14225, 0.0, 5.992760901031494,, €
2022-08-29T15:04:54, codecarbon, 4bdcd6c6-ba7c-4412-abff-86c843678057,0.1460769176483154, 1.1641377934532504e-08, 7 . 969348013325055¢-05, 1. 14225,0.0,5.902700901
2022-08-29T16:12:48, b d -964f [158,1.1086115339527684¢ -08, 0. 0001220008183837,1.14225,0.0,5. 902700901031
2022-09-08702:51:12, codecarbon, 6729fe6f -d501-4025-a2d4-9812dbda2c34,16. 195680518722534,9..04: ,0. ,1.14225,0.0,5.9627009010314
2022-09-09T22:03:48, codecarbon, 6b335c71-2262-48eb-9e4f-26ab6b2310e, 15 841333150863647, 1.815167328504621e-05,0.0011458425318235674,1.14225,0.0, 5.902700901¢

Figure A.8: Output of the Energy Consumption Evaluation of the Decision Tree on Iris

106 APPENDIX A. OUTPUTS OF THE EVALUATIONS

Figure A.9: Output of the Confusion Matrix Evaluation of the Decision Tree on Iris

