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Lehrstuhl fir kiinstliche Intelligenz

Texte als Daten

Web Mining
Textklassifikation

Verwendung des Modells fiir
Textklassifikation fir
zeitgestempelte Daten




World Wide Web

- Seit 1993 wdchst die Anzahl der Dokumente --

geschatzt 12,9 Milliarden Seiten (2005)

+  Stdndig wechselnder Inhalt ohne Kontrolle, Pflege
- Neue URLs

- Neue Inhalte

- URLs verschwinden

- Inhalte werden verschoben oder geloscht

- Verweisstruktur der Seiten untereinander
- Verschiedene Sprachen
- Unstrukturierte Daten
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Informationsextraktion

+ Textstiicke innerhalb der Dokumente finden
+ Semantic Web: Auszeichnungssprache fir Dokumente zur

Verschlagwortung von Text(-teilen) durch Autoren

- Automatic tagging
* Named Entity Recognition (NER)

Machen wir jetzt nicht!
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Aufgaben

» Indexierung maoglichst vieler Seiten (Google)

» Suche nach Dokumenten, ranking der Ergebnisse z.B. nach
Hdufigkeit der Verweise auf das Dokument (Pagelink --
Google)

- Kategorisierung (Klassifikation) der Seiten
manuell (Yahoo), automatisch

- Strukturierung von Dokumentkollektionen (Clustering)

+ Personalisierung:

- Navigation durch das Web an Benutzer anpassen
- Ranking der Suchergebnisse an Benutzer anpassen



Information Retrieval

» Ein Dokument besteht aus einer Menge von
Termen (Wortern).

- Bag of words: Vektor, dessen Komponenten die

Hdufigkeit eines Wortes im Dokument angeben.
» Fir alle Dokumente gibt es eine Termliste
mit Verweis auf die Dokumente.

- Anzahl der Dokumente, in denen das Wort
vorkommt.



Beispiel zur Klassifikation

To: rueping@Is8.cs.uni-

dortmund.de -

\

-
- .
-

Subject: Astonishing._
Guaranteed XXX Pictures
FREE! Gao g

7’
4

In the next 2 minutes your are,”
going to learn how tq 4et /’
access to totally EREE xxx
pictures . Let p#é show you the
secrets | hgve learned to get
FREE porn passwords. Indeed,
with this in mind lets take a
quick look below to see what
you get, ok?

-

1 |astonishing 0.1
3 |free 0.4
2 1In 0.0
2 |pictures 0.2
1 |porn * 1.1
0 [SVM -0.6
5 |to 0.0
O | university -04
2 [ XXX 0.9

N

SVM
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Texte als Daten

f—

aqmniqhing

free
in

N W

/ ﬁictures
Term frequency porn

SVM

to
university
XXX

\»

N|O o1 [O|FRDN

37 | astonishing
65 | free
109 in

43 | pictures

32 | porn
5 | SVM
99 [ to

Document frequency 2] university




THIDF

+ Term Frequenz: wie hdufig kommt ein Wort w; in
einem Dokument d vor? TF(w,,d)

- Dokumentenfrequenz: in wie vielen Dokumenten
einer Kollektion D kommt ein Wort w; vor? DF(w,)

* Inverse Dokumentenfrequenz:
IDF(D,w) :Iogﬁ

DF (w)
+ Bewdhrte Reprdsentation:
TFIDF (W, D) = TF(w,d)IDF(w, D)

\/Z [TF (w,d)IDF (w,, D)



Textklassifikation

* Thorsten Joachims ., The Maximum-Margin
Approach to Learning Text Classifiers” Kluwer 2001

- Modell der Textklassifikation TCat

» Verbindung zur SVM-Theorie
=> theoretisch begriindete Performanzabschatzung
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Eigenschaften der Textklassifikationl

- Hochdimensionaler Merkmalsraum

- Reuters Datensatz mit 9 603 Dokumenten: V=27 658
verschiedene Worter

- Heapes Gesetz: Anzahl aller Wérter (s)
V= k sP
- Beispiel:
- Konkatenieren von 10 000 Dokumenten mit je 50 Wértern zu
einem,
+ K=15und B=0,5
- ergibt V=35 000 - stimmt!
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Eigenschaften der Textklassifikation2

* Heterogener Wortgebrauch

- Dokumente der selben Klasse haben manchmal
nur Stoppworter gemeinsam!

- Es gibt keine relevanten Terme, die in allen
positiven Beispielen vorkommen.

- Familiendghnlichkeit (Wittgenstein): A und B
haben dhnliche Nasen, B und C haben dhnliche
Ohren und Stirn, A und C haben dhnliche Augen.
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Eigenschaften der Textklassifikation3

- Redundanz der Merkmale

- Ein Dokument enthdlt mehrere die Klasse anzeigende
Worter.

- Experiment:
* Ranking der Warter nach ihrer Korrelation mit der Klasse.

- Trainieren von Naive Bayes fir Merkmale von Rang
1-200 (90% precision/recall),
201 -500 (75%)
601 - 1000 (63%)
1001- 2000 (59%)
2001- 4000 (57%)
4001- 9947 (51%) -- zufdllige Klassifikation (227%)



Eigenschaften der Textklassifikation4

- Dunn besetzte Vektoren

- Reuters Dokumente durchschnittlich 152
Woérter lang
* mit 74 verschiedenen Wortern
 bei den meisten Wortern O

- Euklidsche Ldnge der Vektoren klein



Eigenschaften der Textklassifikation5

+ Zipfs Gesetz: Verteilung von Wartern in

Dokumentkollektionen ist ziemlich stabil.
- Ranking der Warter nach Hdufigkeit (r)

- Haufigkeit des hdufigsten Wortes (max)

- 1/r max hdaufig kommt ein Wort des Rangs r vor.

+ Generalisierte Verteilung von Hdaufigkeit nach
Rang (Mandelbrot): c ist Grofe der
Dokumentkollektion in Wortvorkommen

c

(k+r)?
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Plausibilitat guter Textklassifikation
durch SVM

- R sei Radius des Balles, der die Daten enthdlt. Dokumente

werden auf einheitliche Ldnge normiert, so dass R=1.
* Margin sei 9, so dass grofles o kleinem R?/3° entspricht

Reuters | R?/&? ye&
Earn 1143 0
acquisition | 1848 0
money-fx | 1489 27
grain 585 0
crude 810 4

Reuters | R?/&? ye&
trade 869 9
interest 2082 33
ship 458 0
wheat 405 2
corn 378 0]
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TCat Modell -- Prototyp

- Hochdimensionaler Raum: 11100 Worter im Lexikon

Diinn besetzt: Jedes Dokument hat nur 50 Worter, also
mindestens 11050 Nullen

» Redundanz: Es gibt 4 mittelhdufige und 9 seltene Worter, die
die Klasse anzeigen

+ Verteilung der Worthdufigkeit nach Zipf/Mandelbrot.
* Linear separierbar mit b=0,

w= 0,23 fir mittelhdufige Worter in POS, 11100

w= -0,23 fiir mittelhdufige Warter in NEG, E :W

w= 0,04 fir seltene Worter in POS, i
=1

w= -0,04 fir seltene Worter in NEG,
w=0 sonst
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TCat im Bild

20 aus 100 Stoppwértern, 5 aus 600 mittelhdufigen und 10 aus
seltenen Wortern kommen in POS- und NEG-Dokumenten vor;
4 aus 200 mittelhdufigen Wortern in POS, 1 in NEG,

9 aus 3000 seltenen Wortern in POS, 1 in NEG

(Es missen nicht immer die selben Warter seinl)

positive Dokumente

negative Dokumente




TCat

The TCat concept
TCat([pl:nl: fl],...,[psinsi fs])

describes a binary classification task with s sets
of disjoint features. The i-th set includes f,
features. Each positive example contains p;
occurences of features from the respective set
and each negative example contains h,
occurrences. The same feature can occur multiple

times in one document.
(Joachims 2002)
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TCat zum Bild

TCat( [20 :20: 100] sehr hdufig
[4: 1. 200] [1: 4. 200] [B: B: 600]

mittel hauﬁg

[9: 1. 3000] [1: 9: 3000] [10 :10: 4000]

selten

)
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Lernbarkeit von TCat durch SVM

(Joachims 2002) Der erwartete Fehler einer SVM ist nach

oben beschrankt durch:

N\ P
a—zf—
1=1 ¥

R° a+2b+c

n+1 ac-b?

Es gibt r Worter,

s Merkmalsmengen,

fiir einige i: p, # n.

und die Termhdufigkeit
befolgt Zipfs Gesetz.
Wadhle d so, dass:

d C ~
Z(r+k)<”_I
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Was wissen Sie jetzt?

- Die automatische Klassifikation von Texten ist durch das

WWW besonders wichtig geworden.

-+ Texte konnen als Wortvektoren mit TFIDF dargestellt
werden. Die Formel fir TFIDF konnen Sie auch!

+ Textkollektionen haben bzgl. der Klassifikation die
Eigenschaften: hochdimensional, diinn besetzt, heterogen,
redundant, Zipfs Gesetz.

- Sie sind mit breitem margin linear trennbar.
+ Das TCat-Modell kann zur Beschrdnkung des erwarteten

Fehlers eingesetzt werden. Die Definition von TCat kennen
Sie mindestens, besser wadre noch die Fehlerschranke zu
kennen.
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Und jetzt wenden wir das Gelernte auf
ein Gebiet fernab von Texten an!



L okale Muster

- Lokale Muster beschreiben seltene
Ereignisse.

* Gegeben ein Datensatz, fir den ein globales
Modell bestimmt wurde, weichen lokale
Muster davon ab.

- Lokale Muster beschreiben Daten mit einer

internen Struktur, z.B. Redundanz,
Heterogenitat
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Zelt-gestempelte Daten

+ Zeit-gestempelte Daten konnen transformiert
werden in:

- Eine Menge von of Ereignissen,

- Zeitintervalle,

- Zeitreihen.

* Aufgaben sind
- Vorhersage von Ereignissen (Winepi),

- Entdeckung von Relationen zwischen Intervallen
(Hoppner),

- Klassifikation von Prozessen.
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Klassische Methoden

+ Zeitreihenanalyse fir Vorhersage, Trend und
Zyklus Erkennung

* Indexing und clustering von Zeitreihen (time
warping)

+ Segmentierung (motif detection)

» Entdeckung von Episoden

- frequent sets,

- chain logic programs (grammars)

* Regression



Beispielreprasentation

+ Die Beispielreprdsentation Lg bestimmt die
Anwendbarkeit der Methoden.

» Bedeutung von L¢ lange unterschatzt.
* Suche nach gutem L¢ ist aufwdndig.
* Transformieren der Rohdaten in L; auch.
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Einige Reprasentationen L flr
zeltgestempelte Daten

* Schnappschuss: ignoriere Zeit, nimm nur den
aktuellen Zustand.

+ Ereignisse mit Zeitintervallen: aggregiere
Zeitpunkte zu Intervallen, wende frequent set
mining an.

 Generierte Merkmale: hier: transformiere
Zeitinformation in Hdufigkeitsmerkmalel
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Haufigkeitsmerkmale fur Zeitaspekte

+ Term frequency: wie oft dnderte Attribut A

seinen Wert q; fir ein Objek} c

tf (a,,¢,) =[{x Dtimepointsia of ¢, changed] j

- Document frequency: in wie vielen Objekten c;
dnderte Attribut A seinen Wert a..
df (a) = H{Cj OCla of ¢ changed}H

- TF/IDF:

S

thdf (a) =t (a.¢;)log— (a)



Fallstudie SwissLlife

- Lokale Muster

- Seltenes Ereignis der Kiindigung
- Lokales Muster weicht ab vom generellen Modell
- Interne Struktur in lokalen Mustern

+ Zeit-gestempelte Daten
- Schnappschuss

- Zeitintervall
- Generierte Merkmale: TFIDF
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Lokale Muster in Versicherungsdaten

* Nur 7.77% der Vertrdge enden vorzeitig (customer churn).

- Fir einige Attribute weicht die likelihood in der churn-
Klasse von der globalen ab.

- Interne Struktur:

- Uberlappung hdufige Mengen in churn Vertrdgen sind
auch haufig in fortgesetzten Vertrdgen.

- Redundanz: in jedem Vertrag gibt es mehrere
Attribute, die auf Fortsetzung oder Kiindigung
hinweisen.

- Heterogenitat: Es gibt gekiindigte Vertrdge, die nicht
ein einziges Attribut gemeinsam haben.



Databa

MO_TFROLID MO_TFKOMPID MO_TFKOMP
TRID:MUMBER(17,0) NOT NULL %DI@DG_ TKID:NUMBER{ 7,00 MOT NULL TKID:MUMBER(17,0) NOTHNULL |
TID:MNUMBER(1 7,0) WIDNUMBER(17,0) THAENDMR:NUMBER(S,0) NOT NULL
TWID-NUMBER(17.0) WIDNUMBER{ 7,00 NOT NULL
PRID:NUMBER(17 0) ‘“"Dmh
PRTYP-NUMBER(E, 0} S
PRTYPMNR:NUMBER(E, 1) -
= T
T+ T e WD T~ WD
. —_-_________Hq_ "-a._\_kh
TRID e e e
MO VVERTID
- WIDNUMBER(17,0) MOT MULL
MO_TFROL - WD
- S
TRID:NUMBER(17 0) MOT MULL e
TRAENDMNR:NUMBER(E,0) NOT NULL HRH T
'M.H
H-"'H-..
- WD
S
R"“—u\.
-
0_PART L K
-, MO_PARROLID

rF‘TID:NUMEIEHI{‘IEi,D]I MOT MULL

WIDCNUMBER{TT 0) MNOT MULL
FRTYF:MUMBER(E, 0} MOT MULL
FRTYPNREMNUMBER(G, 0 MOT MULL

EPYERSMENUMBER(4, D) MOT MULL

(WID-NUMBER( T 09 MOTMULL |

FRTYF:MUMBER(E 0} MOT MULL

WD

WIDMUMBERDT T 0) MOT MULL A
YWYAENDNEINUMBER(E O) MOT MULL

L

ARROL

rWID:NUME!EHﬁT,EI} NOT MULL
FRTYF:MUMBER(G 03 MOT MULL

PRTYPMR:NUMBER(E,0) MOTMULL |

FRTYPNRE:NUMBERI(E D) NOT NULL
YERSNRMUMBER(S,0) NOT MULL
WIDNUMBERT T 0) NOT MULL
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Contract Table

7VVID VVAENDNR | VVWIVO |VVWIBIS | VVAENDAT | VVAENDART

5016 1 1997 1999 1997 33
5016 2 1999 2001 1999 33
5016 3 2001 2001 2001 33
5016 4 2001 2001 2001 33
5016 5 2001 2002 2001 81
5016 6 2002 9999 2001 94




Datensatz

- Tabellen enthalten Informationen tiber
217586 Komponenten and
163745 Kunden

- Attribute:
- 14 Attributes ausgewdhlt

- Eines der Attribute gibt den Grund an fir einen
Wechsel. Es gibt 121 Griinde. Daraus werden 121
Boolean Attribute.

- 134 Attribute mit TFIDF Werten.



Erste Experimente

+ Bei SwissLife wurde die Abweichung der
Wahrscheinlichkeit bestimmter Attributwerte in
gekindigten und fortgesetzten Vertrdgen
festgestellt anhand der Schnappschuss-
reprdsentation = keine operationale Vorhersage.

» Hoppners Ansatz mit Apriori auf Zeitintervallen
und ihren Relationen = selbe Regeln giiltig fiir
Abbruch und Fortsetzung.
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_ y 4
Calculating Term Frequency
VVID | . | VWSTAC |VVPRFT |VVPRZA |VVINKZWEI| VVBEG | VVEND | VVINKPRL
16423 b 4| N 1 2 21946 | 1998 | 29529
16423 4 1 2 21946 | 1998 |295,29
16423 4 2 01946 |2028 |0
16423 © | 2 0[1946 |2028 |0
16423 © | 2 21946 1998 | 295,29
16423 (5) ©) 2 01946 [1998 |0
/ VVSTAC[N
(4) | VWPRFIN
0 | VWPRzA
3 | VVINKZWEI
O | VVBEG
2 | VVEND
\ 3 VVINKPRL/




Experimente mit der TFIDF

Reprasentation

» Vergleich der originalen Reprdsentation und der
TFIDF

- 10fold cross validation
- Apriori mit Konklusion "churn”
- J4.8
* Naive Bayes
* mySVM mit linearem Kern

- F-measure balanciert precision und recall gleich.

Alle Lernalgorithmen werden besser mit der
TFIDF- Reprdsentation.

y



Resultate (F-measure)

Lerner TF/IDF repr. Original repr.
Apriori 63.35 30.24
J4.8 99.22 81.21
Naive Bayes 51.8 45.41
mySVM 97.95 16.06
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Erklarung?

- TF/IDF stammt aus Lernen iGber Texten.
* Dazu gibt es eine Theorie -- TCat.
- Konnen wir die auch hier einsetzen??
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Datenbeschreibung im TCat Modell

+ Tcat ([2:0:2], [1:4:3], # high frequency
[3:1:3], [0:1:4], # medium frequency
[1:0:19], [0:1:64], # low frequency
[1:1:39] # rest

)

[1:4:3]: 3 Merkmale kommen 1 mal in positiven und 4
mal in hegativen Beispielen vor.



Learnability of TCat
» Error bound (Joachims 2002)

P

R? a+2b+c a—Z_;T

n+1 ac-b’ o

b:Z PN,

=1 fi

S n‘2

Nach 1000 Beispielen C= f—'
=1

erwarteter Fehler < 2.2% =1

2
Tatsachlicher Fehler 2.05% R2 =Zd:£ C )¢j

a=541

b= 2.326
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Experimente zu lokalen Mustern

* Durch TCat-Konzepte Daten kiinstlich
generieren.

* Lokale Muster als seltene Ereignisse mit
interner Struktur.
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Lokale Muster: Verzerrte Verteilung

- 10 000 Beispiele mit 100 Attributen
+ SVM runs mit 10 fold cross validation

Le
TF/IDF

Target concept: | Verzerrung:

2. frequency of
changes




Lokale Muster: Strukturen

- 10 000 Beispiele mit 100 Attributen
+ 20 Attribute wechseln pro Beispiel (diinn besetzt)

- Variieren:

- Heterogenitdt: f./p; Beispiele der selben Klasse haben
kein gemeinsames Attribut {4, 5, 10, 20}

- Redundanz: p,/f; oder n/f, fiir die Redundanz innerhalb
einer Klasse {0.5, 0.2, 0.1}

- Uberlappung: einige Attribute sind hdufig in beiden
Klassen {0.25, 0.66}
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Resultate

+ Fiir alle Kombinationen ohne Uberlappung
sind die Lernergbnisse 100% in Boolean und

im TF/IDF- Format.

+ Mehr Uberlappung verschlechtert das
Lernen bei Boolean auf 68.577% F-measure.

* Fir alle Kombinationen (auch mit grofer
Uberlappung) erreicht das Ler'nen mit
TF/IDF Daten 100% precision und recall.



Navigation im L - Raum

+ Zunehmende GroBe des Datensatzes:
Schnappschuss < Intervalle < Boolean < TF/IDF

+ TF/IDF ist gunstig fir lokale Muster, wenn diese
Redundanz, Heterogenitat als Struktur aufweisen.

* Berechnung des TCat Modells fir gegebene Daten
implementiert = Fehlerschranke angebbar.

- Transformation der Rohdaten in TF/IDF
implementiert.
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Was wissen Sie jetzt?

* Lokale Muster haben manchmal die typische
TCat-Struktur.

- Sie haben gesehen, wie manche
zeitgestempelte Datenbanken in TCat-
Modelle transformiert werden konnen.

- Die Lernbarkeit mit linearer SVM der so
transformierten Daten konnen Sie
ausrechnen.



