q&

Data Cube

1. Einfihrung

2. Aggregation in SQL, GROUP BY
3. Probleme mit GROUP BY

4. Der Cube-Operator

5. Implementierung des Data Cube

6. Zusammenfassung und Ausblick

Dank an Hanna ﬁQPEkE!

On-line Analytical Processing (OLAP)

Ziel: Auffinden interessanter Muster in grofien
Datenmengen
Formulierung einer Anfrage
Extraktion der Daten
Visualisierung der Ergebnisse
Analyse der Ergebnisse und
Formulierung einer neuen Anfrage

319+2

Universitat Dortmund

OLAP-Werkzeuge

Datenmenge wird als n-dimensionaler Raum aufgefasst
Identifizierung von ,interessanten” Unterrdumen

In relationalen Datenbanken werden n-dimensionale
Daten als Relationen mit n-Attributen modelliert

Dimensionsreduktion durch Aggregation der Daten
entlang der weggelassenen Dimensionen

319+3

Beispiel: Autoverkaufe

Modell Jahr Farbe Anzahl
Opel 1990 rot 5
Opel 1990 weild 87
Opel 1990 blau 62
Opel 1991 rot 54
Opel 1991 weild 95
Opel 1991 blau 49
Opel 1992 rot 31
Opel 1992 weild 54
Opel 1992 blau 71
Ford 1990 rot 64
Ford 1990 weild 62
Ford 1990 blau 63
Ford 1991 rot 52
Ford 1991 weild 9
Ford 1991 blau 55
Ford 1992 rot 27
Ford 1992 weil3 62
Ford 1992 blau 39

319+4

Universitat Dortmund

Aggregation in SQL

Aggregatfunktionen:

COUNT(), SUM(), MIN(), MAX(), AVG()

Beispiel: SELECT AVG(Anzahl)
FROM Autoverkdufe

Aggregation lber verschiedene Werte

Beispiel: SELECT COUNT(DISTINCT Modell)
FROM Autoverkdufe

Aggregatfunktionen liefern einen einzelnen Wert

Aggregation iber mehrere Attribute mit GROUP BY

319+5

Universitat Dortmund ’

GROUP BY

SELECT Modell, Jahr, SUM(Anzahl)
FROM Autoverkdufe
GROUP BY Modell, Jahr

-Die Tabelle wird gemaB den Kombinationen der
ausgewdhlten Attributmenge in Gruppen unterteilt
-Jede Gruppe wird Uber eine Funktion aggregiert

‘Das Resultat ist eine Tabelle mit aggregierten Werten,
indiziert durch die ausgewdhlte Attributmenge

319+6

Beispiel: GROUP BY

Modell Jahr Farbe Anzahl
Opel 1990 rot 5 SELECT Modell, Jahr, SUM(Anzahl)
Opel 1990 weiR 87 FROM Autoverkdufe
Opel 1990 blau 62 GROUP BY Modell, Jahr
Opel 1991 rot 54
Opel 1991 weild 95
Opel 1991 blau 49 Modell Jahr Anzahl
Opel 1992 rot 31 Opel 1990 154
Opel 1992 weild 54 Opel 1991 198
Opel 1992 blau 71
Ford | 1990 rot 64 Opel 1992 156
Ford 1990 weil 62 Ford 1990 189
Ford 1990 blau 63 Ford 1991 116
Ford 1991 rot 52 Ford 1992 128
Ford 1991 weild 9
Ford 1991 blau 55
Ford 1992 rot 27
Ford 1992 weild 62
Ford 1992 blau 39 31947

Universitat Dortmund

Roll Up

Gleiche Anfrage in unterschiedlichen Detailierungsgraden
Verminderung des Detailierungsgrades = Roll Up
Erhohung des Detailierungsgrades = Drill Down

Beispiel: Autoverkdufe
Roll Up uber drei Ebenen

Daten werden nach Modell, dann nach Jahr,
dann nach Farbe aggregiert

die Verkaufszahlen werden zuerst fiir jedes Modell
aus jedem Jahr in jeder Farbe aufgelisteft,

dann werden alle Verkaufszahlen des gleichen Modells
und Jahres aufsummiert und daraus

die Verkaufszahlen der Modelle berechnet

319+8

GROUP BY: Roll Up

Modell Jahr Farbe Anzahl nach Modell, Anzahl nach Anzahl nach
Jahr, Farbe Modell, Jahr Modell

Opel 1990 rot 5
weild 87
blau 62

154
1991 rot 54
weil3 95
blau 49

198
1992 rot 31
weild 54
blau 71

156

508

319+9

Universitat Dortmund ’
y 4
y 4

Probleme mit GROUP BY: Roll Up

Tabelle ist nicht relational, da man wegen der leeren Felder
(Null-Werte) keinen Schliissel festlegen kann.
Die Zahl der Spalten wdachst mit der Zahl der aggregierten Attribute
Um das exponentielle Anwachsen der Spaltenanzahl zu vermeiden,
wird der ALL-Wert eingefiihrt.
Der ALL-Wert reprdsentiert die Menge, liber die die Aggregation
berechnet wird.

Beispiel:
Ein ALL in der Spalte Farbe bedeutet, dass in der Anzahl dieser
Zeile die Verkaufszahlen der roten, weilen und blauen Autos
zusammengefasst sind.

319+10

Universitat Dortmund 1#
y 4

GROUP BY: Roll Up mit ALL -
Modell Jahr Farbe Anzahl Erzeugung der Tabelle mit SQL:
Opel 1990 rot 5 SELECT Modell, ALL , ALL , SUM(Anzahl)
Opel 1990 weiR 87 FROM Autoverkaufe
WHERE Modell = ‘Opel’
Opel 1990 blau 62 GROUP BY Modell
Opel 1990 ALL 154 UNION
Opel 1991 rot 54 SELECT Modell, Jahr, ALL , SUM(Anzahl)
| 1991 R FROM Autoverkaufe
Ope N1 wei % WHERE Modell = ‘Opel
Opel 1991 blau 49 GROUP BY Modell, Jahr
Opel 1991 ALL 198 UNION
SELECT Modell, Jahr, Farbe, SUM(Anzahl)
Opel 1992 ot 3L FROM Autoverkaufe
Opel 1992 weild 54 WHERE Modell = ‘Opel
Opel 1992 blau 71 GROUP BY Modell, Jahr, Farbe
Opel 1992 ALL 156

Opel ALL ALL 506

319+11

Universitat Dortmund

Probleme mit GROUP BY: Roll Up

+ Beispiel war ein einfaches dreidimensionales Roll Up
+ Eine Aggregation iiber n Dimensionen erfordert n Unions

* Roll Up ist asymmetrisch:
Verkdufe sind nach Jahr, aber nicht nach Farbe aggregiert

319+12

Universitat Dortmund ’
o
Kreuztabellen

Symmetrische Darstellung mehrdimensionaler Daten
und Aggregationen

Opel 1990 1991 1992 Total (ALL)
rot 5 54 31 90
weild 87 95 54 236
blau 62 49 71 182
Total (ALL) 154 198 156 508

Diese Kreuztabelle ist eine zweidimensionale Aggregation
Nimmt man noch andere Automodelle hinzu, kommt fiir jedes Modell
eine weitere Ebene hinzu

Man erhdlt eine dreidimensionale Aggregation
319+13

Universitat Dortmund ’

Der CUBE-Operator X

n-dimensionale Generalisierung der bisher genannten Konzepte
Der OD Data Cube ist ein Punkt

Der 1D Data Cube ist eine Linie mit einem Punkt

Der 2D Data Cube ist eine Kreuztabelle

Der 3D Data Cube ist ein Wiirfel mit drei sich

u i Data Cube mit
tiberschneidenden Kreuztabellen ata Cube mi

allen Aggregationen

(6ray, Chaudhuri, Bosworth, Layman 1997) Modell oo o8 o >
g@ 0_9 o_fb >
& Jahr N2 A7 A @0
Ford
Opel
) GROUP BY Kreuztabelle Jahr
Agareaation (mit Gesamtsumme) Opel Ford Farbe .
. M Q@'
Summe weild weif3 2
blau blau &\}
- _ - o
summe Model Farbe & Jahr) N
o]
Stumme T
L

319+14

Universitat Dortmund ’

Der CUBE-Operator

Beispiel: SELECT Modell, Jahr, Farbe, SUM(Anzahl)
FROM Autoverkdufe
GROUP BY CUBE Modell, Jahr, Farbe
Der Cube-Operator erzeugt eine Tabelle, die sdmtliche
Aggregationen enthalt
Es werden GROUP BYs fiir alle moglichen Kombinationen
der Attribute berechnet
Die Erzeugung der Tabelle erfordert die Generierung der
Potenzmenge der zu aggregierenden Spalten.
Bei n Attributen werden 2" GROUP BYs berechnet
Sei Cy, C,, ..., C, die Kardinalitdt der n Attribute, dann ist die

Kardinalitat der resultierenden Data Cube-Relation [](C; +1)

319+15

Data Cube des Beispiels

Modell Jahr Farbe Anzahl
Opel 1990 rot 5
Opel 1990 weild 87
Opel 1990 blau 62
Opel 1991 rot 54
Opel 1991 weil3 95
Opel 1991 blau 49
Opel 1992 rot 31
Opel 1992 weild 54
Opel 1992 blau 71
Ford 1990 rot 64
Ford 1990 weild 62
Ford 1990 blau 63
Ford 1991 rot 52
Ford 1991 weild 9
Ford 1991 blau 55
Ford 1992 rot 27
Ford 1992 weil3 62
Ford 1992 blau 39

319+16

Modell Jahr Farbe Anzahl Jahr Farbe Anza
Opel 1990 rot 5 1992 rot 27
Opel 1990 weild 87 1992 weil3 62
Opel 1990 blau 62 1992 blau 39
Opel 1990 | | ALL 154 1992 | | ALL 128
Opel 1991 rot 54 ALL rot 143
Opel 1991 weil3 95 ALL weil3 133
Opel 1991 blau 49 ALL blau 157
Opel 1991 - 198 ALL - 433
Opel 1992 rot 31 1990 rot 69
Opel 1992 weil3 54 1990 weil3 149
Opel 1992 blau 71 1990 blau 125
Opel 1992 CALL 156 1990 | | ALL 343
Opel ALL rot 90 1991 rot 106
Opel ALL weild 236 1991 weil3 104
Opel ALL blau 182 1991 blau 104
Opel ALL | AL 508 1991 | | ALL | 314
Ford 1990 rot 64 1992 rot 58
Ford 1990 weil3 72 1992 weil3 116
Ford 1990 63 1992 blau 110
Ford 1990 189 1992 284
Ford 1991 rot 52 ALL F 233
Ford 1991 weild 9 ALL weild 369
Ford 1991 blau 55 ALL 339
Ford 1991 116 ALL & 941

Universitat Dortmund ’
y 4
y 4

Implementationsalternativen

Physische Materialisierung des gesamten Data Cube:

- beste Antwortzeit

- hoher Speicherplatzbedarf

Keine Materialisierung:

- jede Zelle wird nur bei Bedarf aus den Rohdaten berechnet
- kein zusdtzlicher Speicherplatz

- schlechte Antwortzeit

Materialisierung von Teilen des Data Cube:

- Werte vieler Zellen sind aus Inhalt anderer Zellen berechenbar
- diese Zellen nennt man ,.abhdngige” Zellen

- Zellen, die einen All-Wert enthalten, sind abhdngig

- Problem: Welche Zellen des Data Cube materialisieren?

- Zellen des Data Cube entsprechen SQL Anfragen (Sichten) 319418
N

Universitat Dortmund ’

Abhangigkeit von Sichten

Die Abhdngigkeitsrelation < zwischen zwei Anfragen Q, und Q,

Q; £ Q, gdw. Q; kann beantwortet werden, indem die Ergebnisse
von Q, verwendet werden. Q; ist abhdngig von Q,

Anfragen bilden einen Verband unter folgenden Voraussetzungen:

1. <ist eine Halbordnung und

2. es gibt ein maximales Element (eine oberste Sicht)

Der Verband wird durch eine Menge von Anfragen (Sichten) L

und der Abhdngigkeitsrelation < definiert und mit (L, <) bezeichnet
Ein Verband wird dargestellt durch einen Graphen, in dem die
Anfragen die Knoten sind und < die Kanten.

319+19

Universitat Dortmund ’
y 4
y 4

Auswahl von Sichten zur Materialisierung

Optimierungsproblem, das unter folgenden Bedingungen
gelost werden soll:

- Die durchschnittliche Zeit fiir die Auswertung der Anfragen
soll minimiert werden.

- Man beschrdnkt sich auf eine feste Anzahl von Sichten, die
materialisiert werden sollen, unabhdngig von deren Platzbedarf

Das Optimierungsproblem ist NP-vollstdndig.

Heuristiken fir Appoximationslésungen:
Greedy-Algorithmus

Der Greedy-Algorithmus verhdlt sich nie zu schlecht:
Man kann zeigen, dass die Giite mindestens 63% betrdgt.
(Harinayaran, Rajaraman, Ullman 1996)

319+20

Universitat Dortmund ’

Der Greedy Algorithmus

Gegeben ein Verband mit Speicherkosten C(v) fir jede Sicht v
Annahme: Speicherkosten = Anzahl der Reihen in der Sicht
Beschrankung auf k materialisierte Sichten

Nach Auswahl einer Menge S von Sichten wird
der Nutzen der Sicht v relativ zu S mit B(v, S) bezeichnet
und wie folgt definiert:

1. Fiir jede Sicht w < v wird B, berechnet: U; U,

(a) Sei u die Sicht mit den geringsten Kosten in S,
sodassw<u

(b) B, = C(u) - C(v), falls C(v) < C(u) W; Wy W
! 0 ansonsten
2.B(v,S)=2,.,8B,

319+21

Der Greedy Algorithmus

1 S ={oberste Sicht}
2 fori=1+to k do begin
3 Wadhle die Sicht vOS, so dass B(v, S) maximal ist;
4 S=50 {v}
5 end;

6 return S;

319+22

Beispiel

Erste Wahl Zweite Wahl Dritte Wahl
b 50 x5=250
C 25x5=125 25x2=50 25x1=25
d 80x2=160 30x2=60 30x2=60
e 70x3=210 20x3=60 20+20+10=50
f 60x2 =120 60+10=70
g 99x1=99 49x1=49 49x1=49
h 90x1=90 40x1=40 30x1=30

S:{a}, S:{a,b}, S:{a,b,f}, S:{a,b,d,f}

Greedy Auswabhl: b,d,f werden zusatzlich materialisi ert

319+23

q&

Was wissen Sie jetzt?

Maglichkeiten und Grenzen der Aggregation in SQL
Einfiihrung von Data Cubes zur Unterstiitzung von
Aggregationen lber n Dimensionen
Greedy-Algorithmus zur Auswahl einer festen
Anzahl von Sichten, die materialisiert werden

319+24

Universitat Dortmund ’
y 4
y 4

Lernen von Assoziationsregeln

Gegeben:
R eine Menge von Objekten, die bindre Werte haben
t eine Transaktion, t O R
r eine Menge von Transaktionen
Smin 0 [0,1] die minimale Unterstitzung,
Confmin O [0,1] die minimale Konfidenz
Finde alle Regeln ¢ der Form X > Y, wobei X OR,YOR, X n VY ={}

_[torx oy

{torxoYOot)
mmmd_\hDWQmH

"

s(r,c) = ‘ > s 2 conf ;.

min

319+25

Binare Datenbanken

R eine Menge von Objekten, die bindre Werte haben
A B,C

r eine Menge von Transaktionen A B ID
0 1 1
1 1 2
. . 0 1 3

t eine Transaktion, t OR
BC 1 0 4

319+26

Universitat Dortmund

>
Warenkorbanalyse
Aftershave Bier Chips EinkaufsID

0 1 1 1

1 1 0 2

0] 1 1 3

1 0 0) 4
{Aftershave}>{Bier} s= 4, conf=%
{Aftershave}> {Chips} s=0
{Bier} > {Chips} s = 3, conf=2/3 -- zusammen anbieten?
{Chips}>{Aftershave} s=0
{Aftershave}>{Bier,Chips} s=0

319+27

Wieder ein Verband...
{A,B, C, D}

TN

{ABC} {ABD} {BCD} {ACD}

{AB} {AC} {BC} {BD} {CD} {AD}

{A} {8} {¢} (b}

N\

{}

319+28

Ordnungsrelation

* Hier ist die Ordnungsrelation die Teilmengenbeziehung.
- Eine Menge S, ist groBer als eine Menge S,, wenn

S, 085,

+ Eine kleinere Menge ist allgemeiner.

319+29

Universitat Dortmund ’

Assoziationsregeln

LH: Assoziationsregeln sind keine logischen Regeln!
In der Konklusion konnen mehrere Attribute stehen
Attribute sind immer nur bindr.
Mehrere Assoziationsregeln zusammen ergeben kein Programm.

LE: Bindrvektoren (Transaktionen)
Attribute sind eindeutig geordnet.

Aufgabe:
Aus hdufigen Mengen Assoziationsregeln herstellen

319+30

Universitat Dortmund ’

Apriori Algorithmus
(Agrawal, Mannila, Srikant, Toivonen, Verkamo 1996)

LH des Zwischenschritts: Hdaufige Mengen L, = X OY
mit k Objekten (large itemsets, frequent sets)

Wenn eine Menge haufig ist, so auch all ihre Teilmengen.
(Anti-Monotonie)

Wenn eine Menge selten ist, so auch all ihre Obermengen.
(Monotonie)

Wenn X inL,,;dannalle S, 00 X in L, (Anti-Monotonie)

Alle Mengen L, die k-1 Objekte gemeinsam haben, werden
vereinigt zu L ,;.

Dies ist der Kern des Algorithmus’, die Kandidatengenerierung.
319+31

Universitat Dortmund

y 4
M n '
Beispiel
%

Wenn hdufig {ABC} {ABD} {BCD} {ACD} k+1=3
dann hiufig {ABY (AC} {BC} (B.D} {C.D} {AD) k=2
Generiere aus Hdufige Mengen L
{AB}{A C}{B,(C} {A} (B} {¢} (D} ergeben

Kandidaten C,,;
{ABC} W

{}

319+32

Universitat Dortmund ’

Beispiel
Gesucht werden Kandidaten mit k+1=5
L,= { {ABCD}, {ABCE}, {ABDE}, {ACDE}, {BCDE} }
k-1 Stellen gemeinsam
vereinigen zu:
| = { ABCDE }
Sind alle k langen Teilmengen von | in L,?
{ABCD} {ABCE} {ABDE} {ACDE} {BCDE} - jd!
Dann wird | Kandidat Cs.

L,= { {ABCD}, {ABCE} }

| = { ABCDE }
Sind alle Teilmengen von | in L,?

{ABCD} {ABCE} {ABDE} {ACDE} {BCDE} - nein!
Dann wird | nicht zum Kandidaten.

319+33

Universitat Dortmund ’
y 4
y 4

Kandidatengenerierung

Erzeuge-Kandidaten(L,)
Ck+1 = {}
Foralll,, |, inL, , sodass I, ={i, ..., i, ;. i}

IZ :{ill ceey ik-l ’ l ‘k} lk < qu

IR (PR I D
if alle k-elementigen Teilmengen von | in L, sind
thenC,,; := C,,; O {lI}

ReturnC,,,

Prune(C,.,, r) vergleicht Hdufigkeit von Kandidaten mit smin.

319+34

Haufige Mengen E

Hdufige-Mengen(R, r, smin)

C:= U{'} k=1,
L= lg?une(cl)
while L, # { }
Cy.1 := Erzeuge-Kandidaten(L,)
L1 := Prune(Cy.y, 1)

k:= k+1

K
Return U L
j=2

319+35

q

APRIORI

Apriori(R, r, smin, confmin)

L:= Haufige-Mengen(R, r, smin)
c:= Regeln (L, confmin)
Returnc.

319+36

Universitat Dortmund ’

Regelgenerierung

Aus den hdufigen Mengen werden Regeln geformt.
Wenn die Konklusion ldanger wird, kann die Konfidenz sinken.
Die Ordnung der Attribute wird ausgenutzt:

l;={iy, oo iy, iy e ={iy, ... ik 3} > {i,} conf,
I, =iy, o ig iy e ={iy, ... 32 {i,. i} conf,

l =iy, i iy e ={i;} > {..,iq. i} conf,

conf, = conf , ... = conf

319+37

Universitat Dortmund

Elemente in den Mengen ergibt.

Implementierung

Hash-Tree fir den Prdfixbaum, der sich aus der Ordnung der

y
y 4
y 4

An jedem Knoten werden Schlissel und Hdufigkeit gespeichert.

NI 7N

{ABCHABD}

{ACD}

< — 0

{D}

{BD}

{CD}

{BCD}

Dynamischer Aufbau

319+38

Universitat Dortmund ’

Was wissen Sie jetzt?

Assoziationsregeln sind keine logischen Regeln.

Anti-Monotonie der Hdaufigkeit: Wenn eine Menge haufig ist, so auch
all ihre Teilmengen.

Man erzeugt hdufige Mengen, indem man hdufige Teilmengen zu einer
Menge hinzufiigt und diese Mengen dann auf Haufigkeit testet.
Bottom-up Suche im Verband der Mengen.

Monotonie der Seltenheit: Wenn eine Teilmenge selten ist, so auch
jede Menge, die sie enthalt.

Man beschneidet die Suche, indem Mengen mit einer seltenen
Teilmenge nicht weiter betrachtet werden.

319+39

Universitat Dortmund ’
y 4
y 4

Probleme von Apriori

Im schlimmsten Fall ist Apriori exponentiell in R, weil womdglich alle
Teilmengen gebildet wiirden.

In der Praxis sind die Transaktionen aber spdrlich besetzt.

Die Beschneidung durch smin und confmin reicht bei der
Warenkorbanalyse meist aus.

Apriori liefert unglaublich viele Regeln.
Die Regeln sind hochst redundant.

Die Regeln sind irrefiihrend, weil die Kriterien die apriori
Wahrscheinlichkeit nicht beriicksichtigen.

Wenn sowieso alle Cornflakes essen, dann essen auch hinreichend viele
FuBballer Cornflakes.

319+40

Universitat Dortmund ’
y 4
y 4

Prinzipien fur Regelbewertungen

1. RI(A>B)=0,wenn|A~>B|=(A|]|B|)/]|r|
A und B sind unabhdngig.

2. RI(A-> B)steigt monoton mit |A > B|.

3. RI(A-> B) fdllt monoton mit |A| oder |B| .

Also: RI >0, wenn |A > B| > (|A]| | B|) /|r]
d.h., wenn A positiv mit B korreliert ist.

RI<0,wenn |A > B|>(|Al | B])/|r]
d.h., wenn A negativ mit B korreliert ist.

Wir wissen, dass immer |A > B| < |A| < | B] gilt, also
RImin wenn |A > B| = |A| oder |A| = | B

RImax wenn |A > B| = |A| = | B]

Piatetsky-Shapiro 1991

319+41

Universitat Dortmund ’

Konfidenz

Die Konfidenz erfiillt die Prinzipien nicht! (Nur das 2.)
Auch unabhdngige Mengen A und B werden als hoch-konfident bewertet.

Die USA-Census-Daten liefern die Regel

aktiv-militdr > kein-Dienst-in-Vietnam mit 90% Konfidenz.

Tatsdchlich ist s(kein-Dienst-in-Vietham)=95%

Es wird also wahrscheinlicher, wenn aktiv-militdr gegeben ist!

Gegeben eine Umfrage unter 2000 Schiilern, von denen 60% Basketball
spielen, 75% Cornflakes essen. Die Regel

Basketball > Cornflakes hat Konfidenz 66%

Tatsdchlich senkt aber Basketball die Cornflakes Haufigkeit!

319+42

Signifikanztest

- Ein einfaches MaB, das die Prinzipien erfiillt, ist:

L

 Die Signifikanz der Korrelation zwischen A und B ist:

A g4

e

319+43

Universitat Dortmund
y 4
y 4

Sicherheitsmall

Shortliffe, Buchanan 1990 fiihrten ein Sicherheitsmal CF ein (fiir Regeln in
Wissensbasen).
Wenn conf(A = B) > s(B)
CF(A->B)= conf(A>B) - s(B)/(1-s(B))
Wenn conf(A->B) < s(B)
CF(A>B)= conf(A>B)
Sonst
CF(A>B)= 0.
Das Sicherheitsmaf befolgt die Prinzipien fiir Regelbewertung.

Wendet man Signifikanztest oder Sicherheitsma@ an, erhdlt man weniger
(irrelevante, irrefiihrende) Assoziationsregeln.

319+44

Universitat Dortmund ’
y 4
y 4

Was wissen Sie jetzt?

Sie haben drei Prinzipien fir die Regelbewertung kennengelernt:
- Unabhdngige Mengen sollen mit O bewertet werden.
- Der Wert soll héher werden, wenn die Regel mehr Belege hat.

- Der Wert soll niediger werden, wenn die Mengen weniger Belege
haben.

Sie haben drei Mafe kennengelernt, die den Prinzipien geniigen:
- Einfaches MaRg,

- statistisches MaB und

- SicherheitsmaB.

319+45

Universitat Dortmund ’

Aktuelle Forschung

+ Bessere Kriterien als support und Konfidenz

+ Kondensierte Reprdsentationen

» Anfrageoptimierung im Sinne induktiver Datenbanken
durch constraints

* Die erste Verbesserung haben wir schon gesehen.

* Hier sehen wir die zweite Verbesserung.
* Die Konferenzen KDD, PKDD und ICDM sind aber voll von

Beitrdgen zu .frequent itemsets"!

319+46

Universitat Dortmund ’
y 4
y 4

Kondensierte Reprasentationen

Ersetzen der Datenbank bzw. der Baumstruktur durch eine kondensierte
Reprdsentation,

die kleiner ist als die urspriingliche Reprdsentation und

aus der wir alle hdufigen Mengen und ihre Haufigkeit ableiten konnen, ohne
noch mal die Daten selbst anzusehen.

Kondensierte Reprdsentationen fiir Assoziationsregeln:
Closed item sets
Free sets

Operator, der die Menge aller Assoziationsregeln ableitet:
Cover operator

319+47

Universitat Dortmund

WIr erinnern uns...

Hypothesen werden in einem Verband angeordnet.

Ein Versionenraum gibt die moglichen Hypothesen an, die
zu den gegebenen Daten passen - durch weitere Daten
wird der Versionenraum weiter eingeschrdnkt:

- Wenn ein positives Beispiel nicht abgedeckt ist, wird die Menge
der speziellsten Hypothesen generalisiert,

- Wenn ein negatives Beispiel abgedeckt ist, wird die Menge der
generellsten Hypothesen spezialisiert.

319+48

Universitat Dortmund ’

In anderen Worten:

Wir hdtten gern einen Versionenraum!
Der Versionenraum ist kleiner als der Hypothesenraum.
AuBerhalb des Versionenraums kann das Lernziel nicht liegen.

Wir missen also aus den Beispielen
eine untere Grenze und
eine obere Genze konstruieren.

Eine Halbordnung bzgl. Teilmengenbeziehung haben wir schon.

Die Grenzen haben wir auch.
Gemerkt?

319+49

Universitat Dortmund ’

~
y 4
Kleinere Mengen Bzgl. Der
A Hdufigkeit

GroBere Mengen

Wenn eine Menge hadufig ist, so auch all ihre Teilmengen. (Anti-Monotonie)

Beschneiden der Ausgangsmengen fir die Kandidatengenerierung gemaR
dieser Grenzel
319+50

Universitat Dortmund ’

Ober a

Kleinere Mengen

4 Bzgl. eines

constraint

GroBere Mengen

* Monotonie der Seltenheit: Wenn eine Teilmenge selten ist, so
auch jede Menge, die sie enthdlt. Seltenheit ist ein constraint.

* Beschneidung der Kandidatengenerierung nach der Monotonie.
319+51

Universitat Dortmund

4

y 4
n] '
Beispiel
A B C D Haufig genug
1 0 1 0 /{}
1 1 1 0 /\ [)
0 1 1 1 / «»
o | 1] o]+ AB ACBC BD CD
BRI e
ABC ACD | BCD
C \/
Frequency threshold 0.3 ABCD
enthdlt A

Dank an Jean-Francois Boulicaut!

319+52

Universitat Dortmund ’
y 4
y 4

Closed Iltem Sets

b closure(S) ist die maximale Obermenge (gemdR der

" Teilmengenbeziehung) von S, die noch genauso hdufig wie
S vorkommt.

0]
S ist ein closed item set, wenn closure(S)=S.

0]

0 + Bei einem Schwellwert von 0,2 sind alle Transaktionen
hadufig genug.

1 - Closed sind: C, AC, BC, ABC, ABCD
keine Obermenge von C kommt auch 6 mal vor;

0 A kommt 5 mal vor, aber auch die Obermenge AC und

keine Obermenge von AC

319+53

Universitat Dortmund 1#
y 4
y 4

Kondensierte Reprasentation und
Ableitung

Closed item sets sind eine kondensierte Reprdsentation:
Sie sind kompakt.

Wenn man die hdufigen closed item sets C berechnet hat, braucht man nicht
mehr auf die Daten zuzugreifen und kann doch alle hdufigen Mengen
berechnen.

Ableitung:
Fir jede Menge S prifen wir anhand von C:
Ist S in einem Element X von C enthalten?
- Nein, dann ist S nicht hdufig.

- Ja, dann ist die Hadufigkeit von S ungefdhr die von X,
Wenn es in mehreren Elementen von C vorkommt, nimm die maximale Hdufigkeit!

319+54

Universitat Dortmund ’

Freie Mengen ‘=
(free sets)

Eine Menge S ist frei, wenn es keine Regel mit Konfidenz=1 zwischen ihren
Elementen gibt, d.h.

-IX,Y|s=x0V,Yz{ }, X=Y

Eine Menge S ist d-frei, wenn es keine Regel mit weniger als &
Ausnahmen zwischen ihren Elementen gibt.

Die closed sets sind die closure der freien Mengen!
Man kann die closed sets aus den freien Mengen berechnen.

Freiheit ist eine anti-monotone Eigenschaft von Mengen.
Deshalb kann man die freien Mengen effizient berechnen.

319+55

Universitat Dortmund ’

A |B |C |D
1 |1 |1 |1
o |1 (1 |0
1 |0 |1 |O
1 |0 |1 |O
1 |1 |1 |1
1 (1 |1 |0
5 4 6 2

~
y 4

Beispiel

Bei einem Schwellwert von 0,2 sind die hdufigen

freien Mengen:
{}, ABDAB

Closed sind: C, AC, BC, ABC, ABCD

Closure({})=C
closure(A)=AC
closure(B)= BC
closure(D)=ABCD
closure(AB)=ABC

"Unfreie"” Mengen: AD: D = A, BD: D = B, ABD
C{}=C,AC:A=C,BC:B = C,CD: D = C, ABC, ADC, BCD**ABCD

Universitat Dortmund ’
y 4
y 4

Arbeiten mit freien Mengen

Free(r, 8): Eine Menge X ist 0-frei, wenn es in r keine Regel zwischen ihren
Elementen mit weniger als & Ausnahmen gibt.

Freq(r,o): {X | XOR, | XOr |/ |r|=0c}

FreqFree(r, o, 8): Freq (r, o) n Free(r, d)

Negative Grenze Bd-(r, o, 8): {X | X O R, XOFreqFree(r, ,8)und OY O X,Y O
FreqFree (r, o, d) }

Also die kiirzesten Mengen, die gerade nicht hdufig und frei sind, deren
Teilmengen aber haufig und frei sind.

Wir schdtzen die Haufigkeit einer Menge S so ab:

O0X O S und X ist &frei, aber nicht o-haufig, dann

himm O als Haufigkeit von S.

Sonst nimm die kleinste Anzahl im Vorkommen der Teilmengen X als
Haufigkeit von S.

319+57

q&

Abschatzung

h(r, S1)=h,.;, Sl S2 h(r,52)=0
Nicht FreqFree:

Frei, nicht hdufig
X1 X2 X3 .. Xn

[] []

FreqFree:

min({h(r,Y) | Y O X}) = h,;, 319+58

Universitat Dortmund
y 4
y 4

MInEX

Statt alle hdufigen Mengen zu suchen, brauchen wir nur noch alle
FreqFree(r, o, 8) zu suchen.

Bottom-up Suche im Halbverband der Mengen
beginnt beim leeren Element, nimmt dann alle 1-elementigen Mengen,...
endet bei den groBten Mengen, die noch FreqFree(r, o, 8) sind.

Der Test, ob Mengen frei sind, erfordert das Bilden von strengen
Regeln und erlaubt das Pruning der Mengen, in denen solche gefunden
wurden.

Algorithmus von Jean-Francois Boulicaut

319+59

Algorithmus (abstrakt)

Gegeben eine bindre Datenbasis r iiber Objekten R und
die Schwellwerte o und 9,

Gebe FreqFree(r, o, 8) aus.

L ()

2. =0

3. WhileC #{} do

4, FregFree . := {X |X O C,, X ist o-haufig und &6-frei}

B. Ci={X|XOR,OYD X,V O FreqFree; (r, 0,8), j <i }\
Jy<i€

6. i:=i+1 od

7. OutputU ;. ; FreqFree

319+60

Universitat Dortmund ’

Pruning

* Inder i-ten Iteration werden die &-starken Regeln der
Form X = {A} berechnet, wobei

X haufig und frei ist auf der i-ten Ebene und

A 00 R\X.

* Das Ergebnis wird verwendet, um alle nicht d -freien
Mengen zu entfernen - sie sind keine Kandiaten mehr in
der i+1-ten Iteration.

319+61

Universitat Dortmund ’
y 4
y 4

Eigenschaften von MinEXx

» Der Algorithmus ist immer noch aufwandig, aber schneller
als APRIORI und schneller als die Verwendung von closed
sets.

* Der Algorithmus ist exponentiell in der Menge .

* Der Algorithmus ist linear in der Menge der
Datenbanktupel, wenn & im selben Male steigt wie die Zahl
der Tupel.

Wir verdoppeln 8, wenn wir die Tupelzahl verdoppeln.

* Der Algorithmus approximiert das .wahre" Ergebnis.
In der Praxis ist eine Abweichung von 0,3% aber kein
Problem.

319+62

Universitat Dortmund ’
y 4
y 4

Was wissen Sie jetzt?

Es gibt zwei Reprdsentationen, die weniger Elemente fiir eine Suche
nach hdufigen Mengen ausgeben als eben alle hdaufigen Mengen. Aus
diesen Reprdsentationen kénnen alle hdufigen Mengen hergeleitet
werden.

- Die closed sets sind maximale Obermengen von S mit derselben
Hdufigkeit wie S.

- Die free sets sind Mengen, aus denen man keine Assoziationsregeln
machen kann.

Wenn man die hdufigen freien Mengen berechnet, hat man die untere
Grenze im Versionenraum fiir Assoziationsregeln gefunden.

Der Algorithmus MinEx findet diese Grenze.

319+63

Zeltphanomene

‘ ‘ ‘ \ \ Sequenzen

‘ ‘ | Ereignisse
Attribute

Zeit

319+64

Universitat Dortmund ’

y 4
y 4
Beispiele fur Zeitrelihen

Messwerte von einem Prozess

- Intensivmedizin

- Aktienkurse

- Wetterdaten

- Roboter

ol | (T 10 Ab [:

4 | {j W p

= Wil NWM

1] 20 L) 80 Bl 100 120 140 160 180 200 l a 100 200 200 £

Kontinuierliche Messung in z.B. Tagen, Stunden, Min uten, Sekunden

319+65

Universitat Dortmund ’
y 4
y 4

Beispiele fur Ereignisse

Datenbankrelationen
- Vertragsdaten, Verkaufsdaten, Benutzerdaten
- Lebenssituation (Einkommen, Alter)

Verkaufe Monat Anzahl Verkaufer

Juni 256 Meier

: |

Ereignisse mit Zeitangaben in Jahren, Monaten, Tagen

319+66

Universitat Dortmund ’
y 4
y 4

Granularitat

Eine Granularitdt ist eine Abbildung von natiirlichen Zahlen (oder
Zeichenketten) auf Teilmengen der Zeitwerte, so dass gilt:

1. Wenn i< jund G(i), 6(j) nicht leer, dann ist jedes Element von G(i)
kleiner als alle Elemente von G(j).

2. Wenn i< k< jund 6(i) und G(j) nicht leer, dann ist G(k) auch nicht
leer.

. Der Index ik,j bezeichnet eine Kodierung der Zeiteinheiten. Die
Zeiteinheiten lberlappen sich nicht.

. Die Teilmengen von Indizes folgen aufeinander. Tage, Arbeitstage,
Wochen, Semester, Kalenderjahre sind Zeiteinheiten.

Beispiel: Jahre seit 2000 sei definiert als G mit G(i)={} fiir i<1,
G(1)=alle Zeit im Jahre 2000, G(i+1)= alle Zeit in 2001,...

319+67

Universitat Dortmund ’

Temporale Module

+ Temporales Modulschema (R,G), wobei R ein
Relationenschema ist und G eine Zeitgranularitat.

+ Temporales Modul (R,G,p), wobei p die
Zeitfensterabbildung von natirlichen Zahlen auf Tupel in
der Zeiteinheit ist.

» Zu einer Zeiteinheit 6(i) liefert p alle Tupel, die in der
entsprechenden Zeit gelten.

+ Beispiel: Sei in R das Jahresgehalt fir Mitarbeiter und sei
G Jahre seit 2000, dann liefert p fir i=1 alle Gehdlter im
Jahre 2000.

319+68

Universitat Dortmund ’
y 4
y 4

Temporale Datenbank

* Das Schema einer temporalen Datenbank ist eine Menge
von temporalen Modulschemata.

+ Eine Menge von temporalen Modulen bildet eine temporale
Datenbank.

Claudio Bettini, Sushil Jajodia, Sean X. Wang (1998)

. Time Granularities in Databases, Data Mining, and Temporal
Reasoning”
Springer

319+69

Universitat Dortmund ’

Beispiel

t1(kurs)=CS50=12(kurs)

p(1993-5-26)=[CS50, 3, Woo, 2 000, 50]
p(1993-5-30)=[CS50, 3, Woo, 2 000, 45] ...

G sei Tag als Einheit, 6(1)= 1993-5-26, 6(2)= 1993-5-30

H sei Kalenderwoche als Einheit H(22)={1993-5-26, 1993-5-27, 1993-5-
28, 1993-5-29, 1993-5-30, 1993-5-31, 1993-6-1}

kurs credits | wimi gehalt |#studis |tag

CS50 3 Woo 2000 |50 1993-5-26

CS50 3 Woo 2000 |45 1993-5-30

CS50 3 Woo 2500 |48 1993-6-2

CS50 3 Lee 2000 |46 1993-6-13

CS50 3 Lee 2000 |44 1993-6-16

CS50 3 Lee 2000 |43 1993-6-20 319+70

Universitat Dortmund ’
y 4
y 4

Partielle Ordnungen der Granularitat

- Wann ist eine Granularitat feiner als eine andere?

Z.B. Tag, Woche

+ Wann ist eine Granularitdt eine Untergranularitat einer
anderen?

Wenn es fir jedes 6(i) einen Index j gibt, so dass
G(i)=H(j), dann ist 6 Untergranularitat von H.

- Wann deckt eine Granularitdt eine andere ab?

Wenn der Bildbereich von G im Bildbereich von H
enthalten ist, dann deckt wird G von H abgedeckt.

319+71

Universitat Dortmund

Schemaentwurf

1. Die Attribute tag und kurs sollen Schliissel sein.
Die funktionale Abhdngigkeit kurs - credits soll gegeben sein.

~
y 4

3. Das Gehalt eines Mitarbeiters dndert sich nicht innerhalb eines
Monats.

4. Mitarbeiter wechseln sich nicht innerhalb derselben Woche ab.

kurs credits | wimi gehalt |#studis |tag

CS50 3 Woo 2000 |50 1993-3-3
CS50 3 Woo 2000 |45 1993-3-8
CS50 3 Woo 2500 |48 1993-4-5
CS50 3 Lee 2000 |46 1993-4-10
CS50 3 Lee 2000 |44 1993-5-7
CS50 3 Lee 2000 |43 1993-5-12

On!

319+72

Universitat Dortmund ’
y 4
y 4

Anomalien

Redundanz: credits, gehalt

Einfigeanomalie: Woos Gehalt in einem Tupel dndern und in den
anderen desselben Monats lassen...

Loschanomalie: Wenn der Kurs geldscht wird, verlieren wir die
Mitarbeiternamen...

kurs credits | wimi gehalt |#studis |tag

CS50 3 Woo 2000 |50 1993-5-26

CS50 3 Woo 2000 |45 1993-5-30

CS50 3 Woo 2500 |48 1993-6-2

CS50 3 Lee 2000 |46 1993-6-13

CS50 3 Lee 2000 |44 1993-6-16

CS50 3 Lee 2000 |43 1993-6-20 | 519472

Universitat Dortmund

Dekomposition
wimi gehalt | monat kurs | credits
Woo 2000 [1993-5
CS50 | 3
Woo 2 500 1993-6
Lee 2000 1993-6
kurs #studis |tag
CS50 |50 1993-5-26
kurs |wimi | kalender CS50 |45 1993-5-30
woche
CS50 |Woo |23 CS50 |46 1993-6-13
CS50 |(Lee |24 CS50 |44 1993-6-16
CS50 |Lee |25 CS50 |43 1993-6-20

319+74

Universitat Dortmund 1#
y 4
y 4

Temporale funktionale Abhangigkeiten

Sei (R, G, p) ein temporales Modul, dann gilt X 2>, Y gdw.
wenhn gilt

1. +1(X) = t2(X)

2. t1linp(i) und t2 in p(j)

3. Esgibt ein z mit 6(i) O 6(j)= 6(i,j) und G(i,j) O H(z)

dann t1(Y)=12(Y).

kur‘s 9kalender'woche Wlml

kurs ., #studis

wimi 2, ...+ gehalt

319+75

Kurs 2| ienderwoche Wimi gilt, denn wenn

Universitat Dortmund

Beispiell

1. t1(kurs)=CS50=12(kurs),
2. 11 in p(datuml) und t2 in p(datumb)
3. 6(i)=datuml, G(j)=datumb, {datuml, datumb} in H(z)={datuml,
datum2, datum3, datum4,datumb, datumé, datum?7}

Dann t1(wimi)=t2(wimi)

kurs credits | wimi gehalt |#studis |tag

CS50 3 Woo 2000 |50 1993-5-26
CS50 3 Woo 2000 |45 1993-5-30
CS50 3 Woo 2500 |48 1993-6-2
CS50 3 Lee 2000 |46 1993-6-13
CS50 3 Lee 2000 |44 1993-6-16
CS50 3 Lee 2000 |43 1993-6-20

319+76

Universitat Dortmund ’

Beispiel2

kurs =2, ..t #studis gilt nicht, denn

1. t1(kurs)=CS50=12(kurs),

2.11in p(1993-5-26) und t2 in p(1993-5-30)

3. 6(i)= 1993-5-26, 6(j)= 1993-5-30, 6(i,j) in H(mai)
aber t1(#studis)=50 und t2(#studis)=45

kurs credits | wimi gehalt |#studis |tag

CS50 3 Woo 2000 |50 1993-5-26

CS50 3 Woo 2000 |45 1993-5-30

CS50 3 Woo 2500 |48 1993-6-2

CS50 3 Lee 2000 |46 1993-6-13

CS50 3 Lee 2000 |44 1993-6-16

CS50 3 Lee 2000 |43 1993-6-20 319+77

Universitat Dortmund ’
y 4
y 4

Temporaler Oberschliissel

+ Eine Menge von Attributen X heilt temporaler
Oberschlissel eines Moduls (R,), wenn X->. R logisch aus
der Menge der temporalen funktionalen Abhdngigkeiten
folgt.

+ X2, Y folgt logisch aus TFD, wenn fir jedes Modul, in dem
alle Abhdngigkeiten in TFD gelten, auch X->, Y gilt.

+ Wenn zwei Tupel zu (R,G) in derselben Zeiteinheit von G in
den Attributen X dieselben Werte haben, dann sind sie
insgesamt gleich.

+ Trivialerweise ist stets R ein Oberschlissel zu (R,5).

319+78

Universitat Dortmund ’

Temporale Projektion

+ Sei M=(R,6,p) und X O R.
TrX.(m) ist dig Projektion auf (X, G, pl), wobei fiir alle i
pI() = X (p(D)
mit der ublichen Projektion TiX.

Fir alle Schnappschisse i werden die Tupel in m auf die Attribute X
projiziert. Das Ergebnis ist = U]TX

+ Sei F die Menge der temporalen funktionalen
Abhdngigkeiten und Z eine Menge von Attributen, dann ist
Z(F)={X>uY|F=>X>,Y,XYUOZ}.

Man hZaT die temporalen funktionalen Abhdngigkeiten mit den Attributen
in L.

319+79

Universitat Dortmund ’
y 4
y 4

Temporale Boyce-Codd Normalform

Sei M=(R,G) ein temporales Modulschema mit F als Menge
der temporalen funktionalen Abhdngigkeiten.
M ist in temporaler BCNF, wenn fiir jede temporale

funktionale Abhdngigkeit X =, Y, die aus F logisch folgt
(wobei X, Y OR, Y OX, mindestens eine Zeiteinheit von G wird von

einer in H abgedeckt) gilt:

1. X >R folgt logisch aus F, dh. X ist ein temporaler Oberschlissel

2. Firallei# jvonG gilt nicht: X >Y 0O 16(i,j) (F).

. ist die femporale Version der ublichen
Oberschlisselbedingung.

. verhindert, dass es temporale funktionale Abhdngigkeiten
mit H gibt, wobei zwei Zeiteinheiten von G durch eine

Zeiteinheit von H abgedeckt werden.
319+80

Universitat Dortmund ’

Beispiel

M=(Kurse, tag, p)

F:{kurs—>credits, wimi=> .. gehalt, kurs> ... wimi,
kurs->,,, #studis}

F= kurs=> ,,cne Wimi (wobei kurs, wimi O Kurse, wimi O kurs, ein Tag
wird von einer Woche abgedeckt)

Es soll gelten:

1. kurs 2, credits, wimi, gehalt, #studis -- stimmt

2. Die temporale Relation auf alle Paare von Tagen projiziert, gibt es
dort nicht die funktionale Abhdngigkeit kurs>wimi -- stimmt nicht!

Es gibt zwei Tage derselben Woche, so dass dort kurs>wimi gilt.

319+81

Universitat Dortmund ’

Was wissen wir jetzt?

Wir haben die Zeit aus einer Datenbankperspektive gesehen.

Normalerweise wird ein Zeitattribut in einer Datenbank gar nicht
anders als andere Attribute behandelt.

Das kann aber zu irrefiihrenden oder redundanten Schemata fihren,
wenn wir eigentlich mehrere Granularitdten der Zeit haben.

Deshalb arbeitet der Bereich der temporalen Datenbanken daran, alle
Formalisierungen der Datenbanken auf eine besondere
Beriicksichtigung der Zeit hin zu erweitern.

Gesehen haben wir funktionale Abhdngigkeiten, Projektion und
Normalform.

319+82

Universitat Dortmund

Zum Behalten

+ Selbst bei normalen Datenbanken sollte man bei
Zeitstempeln aufpassen:
- Gibt es unterschiedliche Granularitdaten? Tag, Woche, Monat
- Besser ist nur eine Granularitdt je Tabelle, fiir verschiedene
Granularitdten besser verschiedene Tabellen anlegen!
* Wenn unterschiedliche Granularitdt vorhanden ist:
- Welche Attribute sind bei welcher Zeiteineit verdnderlich?

- Wenn Attribute bei einer Zeiteinheit nicht verdndert werden
konnen, sollen sie auch nicht mit dieser gestempelt werden!

- Attribute sollen nur mit der Granularitdt aufgefihrt werden, bei
der sich ihre Werte dndern!

319+83

Universitat Dortmund ’
y 4
y 4

Lernaufgaben flr Ereignisse

+ Wie finde ich Ereignisse in Zeitreihen?
+ Wie finde ich Episoden (hdufige Mengen von Ereignissen in

partieller Ordnung) in Ereignissequenzen?

Wie will ich die Zeit in den Sequenzen darstellen:
- Absolute Dauer

- Zeit zwischen Prdmisse und Konklusion

- Relation zwischen Zeitintervallen (vor, wéhrend, nach...)

319+84

Universitat Dortmund ’

Lernaufgaben

Lernaufgaben bei einer gegebenen Sequenz von Ereignissen:

(Menge von Ereignissen in partieller Ordnung)

1. Finde hdufige Episoden in Sequenzen [Mannila et al.]
Wenn A auftritt, dann tritt B in der Zeit T auf [Das et al.]
2. Beziehungen zwischen Zeit-Intervallen lernen [Hoppner]

A startet vor B, B und C sind gleichzeitig, C und D iiberlappen
sich, D endet genau, wenn E anfdngt ...

319+85

Universitat Dortmund ’

Heikki Mannilas Ansatz-WINEP]

E sind Attribute, genannt Ereignistypen.
Ein Ereignis e ist ein Paar (A, t), wobei A in E und T integer.

Eine Beobachtungssequenz s ist ein Zeitraum von Ts bis Te mit einer

Folge s, die aus Ereignissen besteht:

s=(<(A,, 1), (A,, 1), ..., (A, T,)>, Ts, Te) wobei T, <t

und Ts <t < Te firallei=1..n

Es geht darum, hadufige Episoden in Sequenzen zu finden.

Analog zu APRIORI.

Anwendungen aus der Telekommunikation: Einbruchsversuche in ein

Netzwerk, hdufige Klickfolgen bei einer Web site, Nutzungsprofile,...
Heikki Mannila, Hannu Toivonen, Inkeri Verkamo "Discovery of frequent

episodes in event sequences", Tech. Report C-1997-15 Univ. Helsinki

319+86

Universitat Dortmund ’

Fenster

+ Ein Fenster w der Breite win ist ein Tripel (w, ts, te) und
enthdlt die Ereignisse (A, t), bei denen ts <t < te und ts <
Te und te > Ts. ACHTUNG, kein Tippfehler! Randereignisse
werden so richtig gezdhlt, sonst kdmen sie in weniger
Fenstern vor als Ereignisse in der Mitte der Folge.

Ts Te

|
ts te ts te

Die Menge aller Fenster W(s,win) hat die Kardinalitdt
Te-Ts + win-1.

319+87

Universitat Dortmund ’

Beispiel

s=(s, 29, 68)

s=<(E,31), (D, 32), (F,33), (A,35), (B, 37), (C,38),(E,39),(F 40),...(D,67)
Fensterbreite 5 ergibt z.B. die Folge:

(<(A,35), (B, 37), (¢,38),(E,39), 35,40)

4 Ereignisse kommen in den 5 Zeitpunkten vor

Das Ereignis, das an Zeitpunkt 40 vorkommt, ist nicht im Fenster
(s, 35,40), sondern erst in dem (s, 36, 41).

Das erste Fenster ist ({},25, 30) und das letzte ist («(D,67)>,67,72).

(D,67) kommt in 5 Fenstern der Breite 5 vor.
Genauso oft wie etwa (B,37).

Es gibt 68-29+5-1= 43 Fenster-.

319+88

Universitat Dortmund

Episoden

a=(V,g, g) ist eine serielle Episode, wenn fiir alle x,

y in V gilt: x <y oder y < x. V ist eine Menge von
Knoten. g: V > E.

B=(V, <, g) ist eine parallele Episode, wenn die
Ordnungsrelation ‘rr'ivial ist (gilt nie).

B=(V, <, 9) O y=(V', <", g'), |
wenn es eine emdeu’rlge Abbildung f gibt, f: V> V

so dass g(v)=g'(f(v)) fir alle v in V und
fir alle vw in V mit v < w gilt f(v) <'f(w).

Beispiel: B ist eine Unterepisode von y, weil
f(x)=a, f(y)=b
< ist eqal.

319+89

Universitat Dortmund ’

Episode ist in _ Folge

Eine Episode a=(V <, g) ist in einer Folge (occurs in)
s=(<(Aq, 1), (A,, 1), ..., (A,, 1,)>, Ts, Te), wenn

- Es gibt eine eindeutige Abbildung h:V - {1....,n} so dass
g(x)= A) fir alle x in V und

- Fiir alle x,y OV mit x 2y und x <y gilt: 1, < Ty

319+90

Universitat Dortmund ’

Beispiel

s=(<(A,35), (B, 37), (C,38),(E,39)>, 35,40)

+ Mit g(x)=A, g(y)=B und 0
h(x)=1, h(y)=2 ist B in s.
Es gibt mehrere Abbildungen, so dass 3 (Y)
in s ist, weil die Ordnung trivial ist.

* Mit g(a)=A, g(b)=B, g(z)=C und
h(a)=1, h(b)=2, h(z)=3 istyins @\‘
Th(a) < Th(z) Und Th(b) < Th(z) @/

319+91

Universitat Dortmund ’
y 4
y 4

Haufigkeit einer Episode

+ Die Hdufigkeit einer Episode a in einer Folge s bei einer
Fensterbreite win ist

{wOW (s, win)a istinwj
W (s, win)

* Wir setzen einen Schwellwert min_fr, so dass a nur hdufig
1Ist, wenn fr(a,s,win)=min_fr.

+ Die Menge der hdufigen Episoden wird geschrieben als
F(s,win,min_fr).

fr(a,s,win) = ‘

319+92

1.
2.

3.
4.
5

Universitat Dortmund ’
y 4
y 4

WINEPI: Regeln generieren

Gegeben eine Menge E von Ereignistypen, eine
Ereignisfolge s iiber E, eine Klasse Z von Episoden, eine
Fensterbreite win, ein Schwellwert min_fr und einer
min_conf

Finde Episodenregeln.
Berechne (s, win, min_fr); /* Finde hdufige Episoden */
For all a in (s, win, min_fr) do /* Generiere Regeln */
for all B0a do
if fr(a)/fr(B) = min_conf then
gib aus B>a mit conf=fr(a)/fr(B):

319+93

N

N N

Universitat Dortmund ’
y 4
y 4

WINEPI: Finde haufige Episoden

Gegeben eine Menge E von Ereignistypen, eine Ereignisfolge s iber E,
eine Klasse von Episoden, eine Fensterbreite win und ein
Schwellwert min_fr

Finde die Menge haufiger Episoden ‘(s win,min_fr).

Cos{aOE||a =1} /*Erste Kandidaten */
(=1,
While C, # {} do
Fri={a OC/| fr(a, s, win) 2min_fr}; /*Datenbankdurchlauf*/
(= [+1;

Ci={a OF || a |=Lund fiir alle B OF mit pOa, | B | < [gilt
BOF) /*Kandidatengenerierung*/
For all [do ‘F, ausgeben;

319+94

Universitat Dortmund

Reprasentation

Episode als Vektor

- sortiert lexikografisch (parallele Episoden) oder

- sortiert nach < (serielle Episoden)

a= A A B C wird geschrieben: a[1]=A a[2]=A a[3]=B a[4]=C
Sortierter Array fir die Menge der Episoden

Fr[1] erste Episode der Ldnge [

- sortiert nach gemeinsamen Unterepisoden der Linge (-1

Fi 1]
2]
=

AABC
AABD
AABF

- D.h:Wenn F,[i] und F/[j] in den ersten L1 Ereignissen iibereinstimmen,
dann auch alle ‘F/[k] mit i< k < j.

F, [1] und F/[3] stimmen in den ersten 3 Ereignissen uberein, so auch F/[2] .

319+95

Universitat Dortmund ’
y 4
y 4

Kandidatengenerierung -- ldee

Aus hdufigen Episoden sollen um eins ldngere Episoden generiert
werden.

Die ldngste Abfolge von Sequenzen i=1,... m mit denselben [-1
Ereignissen heilt ein Block.

Innerhalb eines Blockes werden alle Episoden (an [ter Stelle)
kombiniert, um solche der Ldnge [+1 zu generieren.

Fr
2> C
L o1 2. |[o
1 A B C Frblockstart[1]=1
Frblockstart[2]=1
m A B F }Eblocks’rar‘r[m]zl
m+1 A C D Fblockstart[m+1]=m+1

319+96

Universitat Dortmund ’
y 4
y 4

WINEPI: Kandidatengenerierungl

* Gegeben ein sortiertes Array F,von hdufigen parallelen
Episoden der Ldnge [

* Finde ein sortiertes Array paralleler Episoden der Ldnge
(+1 als Kandidaten.

319+97

Universitat Dortmund ’

~

y 4
1. Cpgp={}
2. k:=0;
3. If [=1then for x:=1to || do F,.blockstart[h]=1;
4. Fori:=1to |F/|do /*Ein i nach dem anderen durchgehen */
B. Current_blockstart:z=k+1;
6. For (j:=i; F,.blockstart[il= F.blockstart[j]j:=j+1) do /*j lduft */
7. For x:=1 to [do a[x):= F [il[x) a[(+11= F L]
8. For y:=1to [-1 do /* Unterepisoden sollen in ‘F; vorkommen™/
9. For x:=1 to y-1 do B[x]:= a[x];
10. For x:=y to [do B[x]:= a[x+1];
11, If Bist nicht in ‘F, then gehe zum ndchsten j in Zeile 6,

else speichere a als Kandidat.

12. ki=k+1;

13. Cg,[K]=a;
14, Cr,.blockstart[k]:=current_blockstart;
15. Output Cp,;

319+98

Universitat Dortmund 1#
y 4
y 4

Komplexitat der Kandidatengenerierung

* Theorem: Die Kandidatengenerierung hat die Komplexitdt
O(L2 |Fr1? log |F/]).

+ Beweis: Zeile 3 braucht O(|F/|).
Die duBere Schleife (Zeile 4) wird O(|F/|) mal durchlaufen.
Die innere Schleife (Zeile 6) wird O(|F/|) mal durchlaufen.
In den Schleifen werden Kandidaten (Zeile 7) und
Unterepisoden (Zeile 8-10) konstruiert in der Zeit
O([+1+ [([-1)).
Die (-1 Unterepisoden werden in Frgesucht (Zeile 11). Da
Frsortiert ist, gelingt dies in O((log |F/|).

g(|fé|+ Frl | Frl (B+ L(£-1)) Llog | F(])= OCL? |Fr? log | F/]).
ed.

319+99

Universitat Dortmund ’
y 4
y 4

Datenbankdurchlauf -- Idee

Contains(A ,a) enthdlt alle Episoden, in denen der Ereignistyp A genau a
mal vorkommt. So werden parallele Episoden iiber ihre Attribute
indexiert.

a.event_count speichert, wie viele Ereignisse von a in Fenster w
vorkommen.

Wenn | a | Ereignisse in w vorkommen, speichern wir ts von w in
a.in_window. Das war der Anfang eines Fensters mit der vollstdndigen
Episode.

Wenn a.event_count abnimmt, wird a.freq_count um die Anzahl von
Fenstern erhoht, in denen die gesamte Episode vorkam, d.h.
a.event_count = | a |. So wird bei jeder Episode hochgezdhlt, in wie
vielen Fenstern sie vorkam.

319+100

Universitat Dortmund ’

~
n n '
Beispiel
m @ @ @ 7
g -]
s[1].event_count=3 =(<(A,35), (B, 37), (€.38),(E,39), 35,40
C,[1].in_window=35 w=(<(A.35), (B, 37). ().(E.39))
ﬂ C,[1].freq_count ﬂ ﬂ
Contains(B,1) Contains(B,2) Contains(C,1) G,
C[1], ¢[2] Csli]' 1 2 3
Eg[ﬁ}' Gl4] 1 A B C
2 A B B
Contains(A,1) Contains(D,1) Contains(F,1) 3 A 2 =
C,111, C,[4] C,[3]
Cl2], 4 A C D
C,[3],

C3[4] 319+101

Universitat Dortmund

Update der Fenster

Beim Verschieben der Fenster von w nach w' bleiben die
meisten Ereignisse dieselben: nur ein Ereignis kommt hinzu
und ein Ereignis verschwindet.

- Alle Episoden mit dem neuen Ereignistyp A kénnen lber
contains(A,1) erreicht und ihr event_count um 1 erhéht werden.

- War bereits ein Vorkommen von A in Fenster w, so konnen die
passenden Episoden iiber contains(A,2) erreicht und ihr
event_count um 1 erhoht werden.

319+102

Universitat Dortmund ’

Datenbankdurchlauf

* Gegeben: Eine Sammlung von Episoden C, eine

Ereignissequenz s=(s, Ts, Te), eine Fensterbreite win, eine
Hdufigkeitsschranke min_fr.

» Finde die Episoden von C, die hdufig in s vorkommen bzgl.
win und min_fr.

319+103

Universitat Dortmund ’
y 4
y 4

Datenbankdurchlaufl: Initialisierung

For each a in C do
For each A in a do /* Initialisieren mit O */
A.count:=0;
For i:=1 to | a | do contains(A,i):={ };
. ForeachainC do /* Struktur aufbauen */

For each A in a do
a:=Anzahl von Ereignissen des Typs A in qQ;
contains(A ,a):=contains(A,a) O {a};
a.event_count:=0; /* Initialisieren mit O */
10. a.freq_count:=0;

Vo O NOOhwwN

319+104

Universitat Dortmund 1#
y 4
y 4

Datenbankdurchlauf2: neue Ereignisseée

1. For start:=Ts - win+l to Te do /* neue Ereignisse inw' */
2. Forall (A, t)ins mit t=start+win - 1 do

3 A.count:=A.count+1;

4. For each a in contains(A,A.count) do

5 a.event_count:= a.event_count+A.count;

6 If a.event_count= | a | then a.in_window:=start;

Ts Te

| |
| | | |
Fs e s tq

start » Start 319+105

Universitat Dortmund 1#
y 4
y 4

Datenbankdurchlauf3: alte Ereignisse

1. Foradll (A, t)ins mit t=start - 1 do

2 For each a in contains(A,A.count) do

3 If a.event_count=|a | then

4 a.freq_count:= a.freq_count- a.in_window+start;
B. a.event_count:= a.event_count - A.count;

6. A.count:=A.count - 1;

7. For all Episoden a in Cdo /* Ausgabe*/
8. If a.freq_count/(Te-Ts+win-1) min_fr then output a;

319+106

Universitat Dortmund 1#
y 4

Komplexitat des Datenbankdurchlaufs

» Theorem: Die Komplexitdt des Datenbankdurchlaufs fiir
parallele Episoden ist O((n+(2) OCT)), wobei alle Episoden
die Ldnge [haben und n die Ldnge der Sequenz ist.

- Initialisierung braucht O((n+(?2) OCD).

In den innersten Schleifen bei neuen Ereignissen (Zeile 4)
und bei alten Ereignissen (Zeile 5) wird so oft auf
a.event_count zugegriffen wie sich das Fenster
verschiebt: O(n). Dies kann allen Episoden passieren: OCL
Der update wegen neuer und alter Ereignisse braucht also
O(n OCD).

Q.e.d.

319+107

Universitat Dortmund

Clustering Vorbereitung

+y.1) aufteilen

o X

.,X,) In Subsequenzen s; = (X;

(Xqs-.

Zeitreihe s

> Schritt 2

3

Fenster der Bereite w

319+108

Universitat Dortmund

Clustering

DistanzmaB d(s;,s;): Entfernung zwischen zwei Subsequenzen
Bsp.: Euklldlscher' Abstand (Z(x.-y,)?)%°
Konstante d > O: gibt an, wie grofl der Unterschied zwischen den

Subsequenzen sein darf

- /\

Bilde aus der Menge aller Subseqenzen
Cluster C,,...C,

l @
a3= /
Jedes Cluster erhdlt ein Symbol q,,..a, (.Shapes”)

319+109

Universitat Dortmund

Anwendung des Clustering

y 4
y 4

Die Serie s = (x4,...,X,) kann jetzt mit Hilfe der shapes beschrieben

werden (,d

iskretisiert")

_

— - -

— - -

Original time series = (1,2, 1,2, 1,2,3,2,3,4,3,4)

Window width =3

Discretized series = (al, a2, al, a2, a3, al, a2, a3, al, a2)

Primitive shapes after
clustering

319+110

Universitat Dortmund ’
y 4
y 4

Regeln In diskreten Sequenzen

Regeln der Form Wenn A auftritt,
dann tritt B in der Zeit T auf einfach ableitbar mithhilfe APRIORI

Berechnung in der Zeit m*k2 moglich
- (k=Anzahl der Symbole, m = #verschiedene Maoglichkeiten fiir T)

Erweiterung:

- Wenn A;und A, und ... und A, innerhalb der Zeit V auftritt, dann tritt B in
der Zeit T auf

- Microsoft | (1), Microsoft + (2) + Intel - (2) = IBM - (3)
- Problem: Anzahl der Regeln steigt stark an

319+111

Universitat Dortmund ’
y 4
y 4

Beziehungen zwischen Ereignissen

Von James F. Allen wurden 13 verschiedene Intervallbeziehungen festgelegt:
- A iberlappt B, A beendet B, A vor B, A enthdlt B, ...
Beispiel: A beendet B

(B, StartB, EndeB)

(A, StartA, EndeA)
-]
f

StartB<StartA, EndeA = EndeB,

319+112

Universitat Dortmund 1#
y 4

y 4
Beziehungen zwischen Zeit-Intervallen lernen

[HOppner]

state interval sequence:

C D C F C
A B A B A E B
___ time
Darstellung der Beziehungen als Matrix:
A B R2 ABC
Rl \\\\\\\\\\\\\\\ A = b \\\\\\\ ;_‘ﬁi - b O
> »
B | a = B | a =io
C |io o =

(abbreviations: a=after, b=before, o=overlaps, io=is-overlapped-by)

319+113

state interval sequence:

A B A B A E B
__ dnm;k
Die Regeln sind von der Form P - R
Pramisse P - A B Regel R ABC
\\‘4 Al =D0b a Al=Db o
B | a = B | a =10
C |0 0o =

Beispiel: A, B, C sind Vertrage verschiedener Kateg orien

319+114

Universitat Dortmund ’
y 4
y 4

Haufige Muster finden

Muster muss im Fenster der Lange t ..., beobachtbar sein

max

sliding window

C D C

[time

Der maximale Abstand zwischen den Ereignissen eines Muster ist begrenzt

319+115

Universitat Dortmund ’
y 4
y 4

Was bedeutet haufig?

Als Mal3 fur die Haufigkeit von Mustern dient der ,,Suppo rt*

B ' :
A . |
N support -
Ein Muster wird als haufig erachtet, \ A B
wenn es einen Support > supp i, hat
Al= o
B [io =

319+116

Universitat Dortmund ’

y 4
y 4
Anwendung von APRIORI

Ermittle den Support aller 1-Muster
Im k-ten Lauf:
- entferne alle Muster mit supp<supp,.i,

- generiere aus den verbliebenen k-Mustern eine Menge von Kandidaten
fur k+1-Muster

- ermittle den Support der Kandidaten im ndchsten Lauf

Wiederhole diese Schritte, bis keine hdaufigen Muster mehr gefunden
werden kénnen

Generiere die Regeln aus den haufigen Mustern

319+117

Universitat Dortmund ’

Was wissen Sie jetzt?

Man kann den Apriori Algorithmus fiir die Entdeckung von
Zeitsequenzen anwenden.

Der Ansatz von Gaudam Das et alii:

- Fenster werden lber die Zeitreihe geschoben

- Die so erhaltenen Subsequenzen werden durch ein DistanzmaB ge-cluster-
t. Es entstehen Muster wie aufsteigend, absteigend.

- Mit den Mustern als Eingabe werden Assoziationsregeln gelernt.
Der Ansatz von Frank Hoppner:

- Fenster werden lber die Zeitreihe geschoben

- Matritzen zu Allens Intervallen angelegt

- Haufige, moglichst lange Sequenzen werden ermittelt und
Assoziationsregeln gelernt.

319+118

