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Lehrstuhl fir kinstliche Intelligenz

Kernfunktionen

Wie funktioniert der Kern-Trick?
Wann funktioniert der Kern-Trick?
Warum?
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Nicht-lineare Daten

Was tun?
+ Neue SVM-Theorie entwickeln? (Neeeel)

* Lineare SVM benutzen? (.If all you've got is a
hammer, every problem looks like a nail")

- Transformation in lineares Problem!

X2 X2 e %o o

o
D(X1,X5) = (X1%,X,) |®e® 2. ®° o0 ®
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Kernfunktionen

‘ Erinner'ungz L(a) Za — ZZZ Y.Y;a. ()(I ij)

=1 j=1

f(x) = ZO(.Y (x;*x)+b
*  SVM hdngt von x nur lUber Skalarprodukt x*x' ab.

+ Ersetze Transformation ® und Skalarprodukt *
durch Kernfunktion K(x;,x,) = ®(x;)*®(x,)

()] *
X > 7 > [ |

— 4‘—_____,,—%7

K
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Der Kern-Trick

« K(x,x)=x*x'
s O X2 xu

- Das Skalarprodukt der Vektoren im Merkmalsraum s
entspricht dem Wert der Kernfunktion lber den
Beispielen.

+ Welche Funktionen machen k(x,x)= ®(x)* ®(x') wahr?
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Polynome

» Ein Monomial hat nur einen Term: x4
+ Alle Produkte von d Vektorkomponenten ergeben

Mer'kmalsr'aum I,
o0 02> # 3

[X]l,[x] = (X X L)

+ Sei N die Anzahl der Buchstaben, d die Ldnge der

Worter, dann ist die Anzahl maglicher Warter:

(d+N—1j:(d+N—1)!

d d!(N -1)!
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Der Trick

* Der Merkmalsraum ist sehr grof3.

» Abbildung der Beispiele in den Merkmalsraum und
dann Berechnen der Skalarprodukte zwischen den
transformierten Beispielen ist sehr ineffizient.

» Eine Kernfunktion, die auf die Beispiele direkt
angewandt dasselbe Ergebnis liefert, wadre effizient!

- Diese Kernfunktion ist hier (x*x')?2
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Skalarprodukt im Polynomraum

- Geordnete Monomials:

b, 02> o 4

®,00: ([ [x.) ~ (X[ [XL X [,

» Skalarprodukt im Merkmalsraum:
®,(9* ®,(x) = [XFIx] +[xEIx]; +2[xh[x|.[x][x];

= (x*x)7

* Dies gilt allgemein fir alle geordneten Produkte d-ten
Grades der Komponenten von x: ® (x)* & (x')=(x*x")d
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Bewels
k(x,X) = B, * D (x) = (x*x)
O, (9* 0, (x) = ., 0., dx], olx],

[HR

j1= jg=1

3 [x], ], - z[x],d ],

é[x] ) )
(x* x)
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Randbemerkung

+ Gerade wurden Reihenfolgen unterschieden.
- Ublicherweise ist ®, aber ohne Doppelte.

» Eine Komponente, die Doppelte enthalten wiirde, wird
durch die Wurzel skaliert.

®,(x) = ([ [ V2[x [,

* Die genaue Form von @ ist aber eqgal: beide ergeben
dieselbe Kernfunktion k(x,x")=(x*x')d
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Verallgemeinerung

- Die Gram Matrix K fir eine Funktion k:X2->0 und

Beobachtungen xi,..., x,, ist eine mxm Matrix
Kij::k(xiz Xj)

+ Eine (reellwertige) positiv definite Matrix ist eine

mxm Matrix K, fur die fir alle ¢; in O gilt

ch K,

. Eme Funktion XxX , die sich fir alle x; in X als positiv

definite Gram Matrix mit symmetrischer Funktion k
darstellen lasst, heit Kernfunktion oder
reproduzierender Kern oder Kovarianzfunktion.
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Einfaches Beispiel

- So gelingt die Kernfunktion nicht: ¢, ¢,=1

a7

» So gelingt sie: Diagonale > Faktoren

e

+ Eigenwerte missen nicht-negativ sein.
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Konstruieren in 2 Richtungen

* Gegeben eine Kernfunktion k, konstruiere einen
Merkmalsraum, in den @ abbildet.

Jede Kernfunktion kann als Skalarprodukt in einem
anderen Raum betrachtet werden.

* Gegeben ein Merkmalsraum ® mit Skalarprodukt,
konstruiere eine Kernfunktion k(x,x)= ®(x)* d(x").
Gelingt, weil fir alle ¢, in O und x; in X gilt:
2.GoK(X, %) = 26P(x)* > ¢P(x)

2
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Kernfunktionen praktisch

* Angabe von @ nicht notig, einzige Bedingung:
Kernmatrix (K(x; X;)); j-1., muss positiv definit sein.

» Polynom: K(x,x') = (x*x')d
» Radial-Basisfunktion: K(x,x") = exp(-y||x-x'||2)

* Neuronale Netze: K(x,x') = tanh(ax*x'+b)

» Konstruktion von Spezialkernen durch Summen und
Produkte von Kernfunktionen, Multiplikation mit
positiver Zahl, Weglassen von Attributen
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RBF-Kernfunktion

exp( 100x-x|?) @

I\ INC fo
texp(-10x-%,1) _ @
A= O
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Eigenschaften von RBF-Kernen

+ Allgemeine Form: k(x, x")=f(d(x,x"))
* Funkftion f kann auBer Gauss z.B. auch B-Spline sein.
* Als Metrik d(x,x’) wird auch gewahlt |x- x| =/(x=x)* (x-x)

- Bei ||x-x'||2 oder ||x-x'|| ist die RBF-Kernfunktion

invariant beziiglich Drehung und Verschiebung.

* Das bedeutet, dass das Lernergebnis unabhdngig von
dem Koordinatensystem unserer Daten ist.
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Mercer Bedingung

Es gibt eine Abbildung ® und eine Kernfunktion
k(x,x) =7 ®(x]; )0 (x])
gdw. fur jedies g(x) mit finitem
| o(x)*dx
gilt:
j k(x,X)g(X)g(x')dxdx'= 0

Wenn die Mercer Bedingung nicht gilt, konnte die Hesse Matrix
ber den Beispielen indefinit werden.
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Was wissen Sie jetzt?

Kernfunktionen berechnen das Skalarprodukt der
Beobachtungen in einem Merkmalsraum, ohne tatsdchlich erst in
den Merkmalsraum abzubilden. k(x,x")= ®(x)* ®(x')

Polykern und RBF-Kern als Beispiele.
Der Kern-Trick: k(x,x") ldsst sich allein aus x*x' berechnen.

Eine Funktion XxX , die sich fiir alle x; in X als positiv definite
Gram Matrix mit symmetrischer Funktion k darstellen ldsst,
heifit Kernfunktion.

Die Mercer Bedingung priift, ob es sich um eine Kernfunktion
handelt, also die Matrix positiv definit ist.
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Duales weiches
Optimierungsproblem

- Maximiere

L(a) :Za_zz YiYaa X * X,
=L =l j=1 i

u.d.Bedingungen > y.a, =0,0i :0<a, <C
=1
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Optimierungsproblem mit Kern

- Erst minimierten wir w, dann maximierten wir das

duale Problem, jetzt minimieren wir das duale
Problem, indem wir alles mit -1 multiplizieren...

- Minimiere L'(a)

_Zzylyj ( a; ~ Za

i=1 j=1
unter den Nebenbedmgungen
O<a, <C

Zm: y.a; =0
=
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Chunking

Beispiele x; mit a, = O kénnen aus der Matrix
gestrichen werden.

- Finde alle diese Beispiele, ldsche sie.

- Lose das Optimierungsproblem fiir die verbleibenden.

Iteratives Vorgehen:

- Lose das Optimierungsproblem fir die a; # O aus dem vorigen
Schritt und einige Beispiele, die die KKT-Bedingungen
verletzen.

Osuna, Freund, Girosi (1997): feste Matrixgrofe.
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Algorithmus flr das

Optimierungsproblem
Berechnen wir L' (a) durch Gradientensuche!

- Naiver Ansatz berechnet Gradienten an einem Startpunkt
und sucht in angegebener Richtung bis kleinster Wert
gefunden ist. Dabei wird immer die Nebenbedingung
eingehalten. Bei m Beispielen hat a m Komponenten, nach
denen es optimiert werden muss. Alle Komponenten von a auf
einmal optimieren? m? Termel!

- Eine Komponente von a dndern? Nebenbedingung verletzt.
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Sequential Minimal Optimization

-+ Zwei Komponenten q;, a, im Bereich[0,C]x[0,C]
verdndernl!

- Optimieren von zwei q,

- Auswahl der q,
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KKT-Bedingungen einfach

* Notwendige und hinreichende Bedingungen an die
Losung des Optimierungsproblems: fir alle i
- 0;,=0 gdw.y, f(x)=1
- 0,=C gdw.y, f(x)<1
- 0<0o,<Cqgdw.y, f(x,)=1

a,=C Yi-Y2

m
a1 Zyiai =0
a,=0 a,=C YizY2 i=1
Oy + 03

a,=0
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J A
O, optimieren

+ Maximum der Funktion L'(a) entlang der Geraden
so,+0;=d mit s=y,/y,

Wenn y;=y, ist s=1, also steigt die Gerade.

Sonst s=-1, also fdllt die Gerade.

Schnittpunkte der Geraden mit dem
Bereich[0,C]x[0,CT:

- Falls s steigt: max(0; a, + a; = €) und min(C; a, + a, )

- Sonst: max(0; a, - a; ) und min(C; a, - a, + C)

- Optimales a, ist hochstens max-Term, mindestens min-Term.
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SMO

» Berechne 0, und gib die Schnittpunkte max, min der
Diagonalen mit der Box an.

+ 2.Ableitung von L' entlang der Diagonalen
1] = k(xl’ X1)+ k(X2’ Xz)_ 2k(X1’ Xz)

+ Wenn n>0, wird das Minimum fiir o, ausgerechnet,
wobei E der Fehler f(x)- vy ist:

Y2(E1 ~ Ez)
7]
+ Beschneiden, so dass min < a,"e¥ < max

. neu _ neu'
Berechnen a™ =a, +y,y, (0’2 —q! )

neu _

aZ aZ t
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Randbemerkung

Ein nicht positives n kann dann auftreten, wenn
- zwei Beispiele genau gleich aussehen oder
- die Kernfunktion nicht der Mercer-Bedingung gehorcht.
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Algorithmus

AuBere Schleife -- a, wdhlen

1.

2.

3.

Alle Beispiele durchgehen:
welche verletzen KKT-Bedingungen?

Non-bound Beispiele suchen (a; weder O noch C ):
welche verletzen KKT-Bedingungen?
Verdndern bis alle non-bound Beispiele KKT-Bedingungen erfiillen!

Goto 1

- Innere Schleife -- a, wdhlen

1.

2.
3.

Wenn E; > O, Beispiel mit kleinem E, suchen,
wenn E; < O, Beispiel mit groBem E, suchen.

L'(a) ausrechnen
b ausrechnen
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Satz von Osuna

* Der Algorithmus konvergiert, solange an jedem
Schritt 2 Lagrange Multiplikatoren optimiert werden
und mindestens einer davon verletzte vorher die KKT-

Bedingungen.
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Was wissen Sie jetzt?

Das Optimierungsproblem wird durch Optimieren je zweier
Lagrange-Multiplikatoren gelost, duBere Schleife wahlt ersten,
innere zweiten Multiplikator.

Sei a=(0y,... a,) eine Losung des Optimierungsproblems. Wir
wdhlen zum update:

3’2((]c (X1) ~ yl)_(f (Xz) B yz))
K(Xl’ Xl) _ZK(X1’X2) t K(Xz’ Xz)
a =a+ y1y2(az _ﬁz)

Prinzip des Optimierens: Nullsetzen der ersten Ableitung...

Der Algorithmus konvergiert, wenn vorher ein a KKT-Bedingung
verletzte.

a,=a,+

Optimales
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Was ist gutes Lernen?

Fauler Botaniker:
"klar ist das ein Baum - ist ja grin."

- Ubergeneralisierung

- Wenig Kapazitat

- Bias

Botaniker mit fotografischem Geddchtnis:

"nein, dies ist kein Baum, er hat 15 267 Bldtter und kein anderer
hatte genau so viele."

- Overfitting

- Viel Kapazitdt

- Varianz

Kontrolle der Kapazitdt!
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» Losung: Minimiere obere

Bias-Varianz-Problem

» Zu kleiner Hypothesenraum:
Zielfunktion nicht gut genug
approximierbar (Bias) :

* Zu grofer Hypothesenraum: 5 e
Zuviel Einfluss zufdlliger OM
Abweichungen (Varianz) e

Schranke des Fehlers:
R(a) <, R,pp(@) + Var(a)
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Risikoschranke nach Vapnik

* Gegeben eine unbekannte Wahrscheinlichkeits-
verteilung P(x,y) nach der Daten gezogen werden. Die
Abbildungen x> f(x, a) werden dadurch gelernt, dass
a bestimmt wird. Mit einer Wahrscheinlichkeit 1-p ist
das Risiko R(a) nach dem Sehen von [ Beispielen
beschradnkt:

R@)<R,, (a)_,_\/'7(|09(2| /) +1)-log(u/4)

—~
VC confidence

_/
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Strukturelle Risikoschranke

» Unabhdngig von einer Verteilungsannahme. Alles, was
die Schranke braucht, ist, dass Trainings- und
Testdaten gemadB der selben Wahrscheinlichkeits-
verteilung gezogen werden.

- Das tatsdchliche Risiko kénnen wir nicht berechnen.

* Die rechte Seite der Ungleichung kénnen wir
berechnen, sobald wir n kennen.

* Gegeben eine Menge Hypothesen fir f(x,a), wahle
immer die mit dem niedrigsten Wert fir die rechte
Seite der Schranke (R,, oder VC confidence niedrig).
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Strukturelle Risikominimierung

Varianz

1. Ordne die Hypothesen in 0
Teilmenge gemaB ihrer
Komplexitat

2. Wdhle in jeder Teilmenge
die Hypothese mit dem

geringsten empirischen
Fehler

3. Wdhle insgesamt die =
Hypothese mit minimaler

Risikoschranke < >>

250 +35

Schranke(a) =
(a) + Var(a)
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KompIeX|tat
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Vapnik-Chervonenkis-Dimension

Definition: Eine Menge H von
Hypothesen zerschmettert eine Menge
E von Beispielen, wenn jede Teilmenge
von E durch ein h(OH abgetrennt werden
kann.

Definition: Die VC-Dimension einer
Menge von Hypothesen

H ist die maximale Anzahl von Beispielen
E, die von H zerschmettert wird.

Eine Menge von 3 Punkten kann von
geraden Linien zerschmettert werden,
keine Menge von 4 Punkten kann von
geraden Linien zerschmettert werden.
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ACHTUNG

Fir eine Klasse von Lernaufgaben gibt es mindestens
eine Menge E, die zerschmettert werden kann -
NICHT jede Menge E kann zerschmettert werden!

Zum Beweis der VC Dimension n muss man also zeigen:
- Es gibt eine Menge E aus n Punkten, die von H zerschmettert
werden kann. VCdim(H)=n

- Es kann keine Menge E' aus n+1 Punkten geben, die von H
zerschmettert werden kénnte. VCdim(H)<n
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VC-Dimension von Hyperebenen

Satz: Die VC-Dimension der Hyperebenen im
R"ist n+l. .

Beweis: @
+  VCdim(R") = n+1: Wdhle x, = O und x; = . .
(0....0,1,0,..0). Fiir eine beliebige

Teilmenge A von (x,,...,x,) setzey, = 1, falls

x; J Aundy, = -1 sonst.

Definiere w = Xy, x,und b = y,/2. Dann gilt

wXo+tb = yo/2 und wx;+b = y+y,/2. Also: o
wx+b trennt A.

VCdim(R") < n+1: Zuriickfiihren auf die
beiden Fdlle rechts.
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VCdim misst Kapazitat

- Eine Funktion mit nur 1 Parameter kann unendliche

VCdim haben: H kann Mengen von n Punkten
zerschmettern, egal wie grof n ist.

- H kann unendliche VCdim haben und trotzdem kann

ich eine kleine Zahl von Punkten finden, die H nicht
zerschmettern kann.

»+ VCdim ist also nicht grof3, wenn die Anzahl der
Parameter bei der Klasse von Funktionen H grof ist.
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VC-Dim. und Anzahl der Parameter

- Setze f (x) = cos(ax) und x; = 107, i=1...[, beliebiges (.
Wahle y.[){-1,1}. Dann gilt fir a=1(>!/,(1-y;)10:

ax =1 ) A=y )10)10*: >3-y, nd-kj

- Z%(l—yi)ld‘k+%(1—yk>+__z%(1—yi)m-kj

N\ J N\ J
Y Y

0<Y...<101+102+ ...=1/9 Vielfaches von 2

(geometrische Reihe)
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VC-Dim. und Anzahl der Parameter

= cos(ax,)=cos(mz) mit z[0,}/,] fiir y,=1 und z0O[1,19/,] fiir y,=-1

COS

= cos(ax) zerschmettert x;,..x,
= cos(ax) hat unendliche VC-Dimension

— Die VC-Dimension ist unabhdngig von der Anzahl der Parameter!
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VC-Dimension der SVM

* Gegeben seien Beispiele x;,...,.x,00" mit

||x.|| < D fiir alle i. Fiir die VC-Dimension der durch

den Vektor w gegebenen optimalen Hyperebene h gilt:
VCdim(h) < min{D? | |w] |2, n}+1

* Die Komplexitdt einer SVM ist nicht nur durch die

Struktur der Daten beschrdnkt (Fluch der hohen

Dimension), sondern auch durch die Struktur der
Losung!
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Zusicherungen

» Strukturelle Risikominimierung garantiert, dass die
einfachste Hypothese gewdhlt wird, die noch an die
Daten anpassbar ist.

» Strukturelle Risikominimierung kontrolliert die
Kapazitdat des Lernens (weder fauler noch
fotografischer Botaniker).

- Die Strukturen von Klassen von Funktionen werden

durch die VCdim ausgedriickt. Grofle VCdim - grofe
VC-confidence.
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Was wissen wir jetzt?

Kernfunktionen - eine Transformation, die man nicht
erst durchfihren und dann mit ihr rechnen muss,
sondern bei der nur das Skalarprodukt gerechnet

wird.
* Idee der strukturellen Risikominimierung:

- obere Schranke fiir das Risiko
- Schrittweise Steigerung der Komplexitat

* Formalisierung der Komplexitat: VC-Dimension
* SRM als Prinzip der SVM
* Garantie fur die Korrektheit der Lernstrategie
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Performanzschéatzer

Welches erwartete Risiko R(a) erreicht SVM?
R(a) selbst nicht berechenbar

Trainingsfehler (zu optimistisch - Overfitting)
Obere Schranke mittels VC-Dimension (zu locker)

Kreuzvalidierung / Leave-One-Out-Schdtzer
(ineffizient)
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Performanzschatzer I

- Satz: Der Leave-One-Out-Fehler einer SVM ist

beschradnkt durch R, < |SV| / n

+ Beweis: Falsch klassifizierte Beispiele werden
Stitzvektoren. Also: Nicht-Stitzvektoren werden
korrekt klassifiziert. Weglassen eines Nicht-
Stitzvektors dndert die Hyperebene nicht, daher
wird es auch beim I1lo-Test richtig klassifiziert.
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Performanzschatzer Il

Satz: Der Leave-One-Out-Fehler einer SVM ist beschrankt
durch R, < [{i : (2a,D2+&)=1}| / n

(D = Radius des Umkreises um die Beispiele im transformierten
Raum).

Beweis: Betrachte folgende drei Flle:
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Fallstudie Intensivmedizin

Stddtische Kliniken Dortmund, Intensivmedizin 16
Betten, Priv.-Doz. Dr. Michael Imhoff

Hdmodynamisches Monitoring, minitliche Messungen
- Diastolischer, systolischer, mittlerer arterieller Druck

- Diastolischer, systolischer, mittlerer pulmonarer Druck

- Herzrate

- Zentralvengser Druck

Therapeutie, Medikamente:

- Dobutamine, adrenaline, glycerol trinitrate, noradrenaline,
dopamine, nifedipine
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Patient G.C., male, 60 years old

Hemihepatektomie right
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AP dia
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Wann wird Medikament gegeben?

Mehrklassenproblem in mehrere 2Klassen-Probleme
umwandeln:

- Fir jedes Medikament entscheide, ob es gegeben werden soll
oder nicht.

- Positive Beispiele: alle Minuten, in denen das Medikament
gegeben wurde

- Negative Beispiele: alle Minuten, in denen das Medikament
hicht gegeben wurde

Parameter: Kosten falscher Positiver = Kosten falscher
Negativer

Ergebnis: Gewichte der Vitalwerte so dass positive und
negative Beispiele maximal getrennt werden (SVM).
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f(x) =

o

Beispiel: Intensivmedizin

0.014
0.019
—-0.001
—0.015
—0.016
0.026
0.134
-0.177

(artsys=17400
artdia=86.00
artmn=121.00
cvp = 800
hr =7900
papsys=26.00
papdia=13.00
papmn=15.00

—4.368

Vitalzeichen von
Intensivpatienten

Hohe Genauigkeit
Verstdndlichkeit?
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Wie wird Medikament dosiert ?

Mehrklassenproblem in mehrere 2Klassenprobleme
umwandeln: fir jedes Medikament und jede Richtung
(increase, decrease, equal), 2 Mengen von Patienten-
daten:

- Positive Beispiele: alle Minuten, in denen die Dosierung in der
betreffenden Richtung gedndert wurde

- Negative Beispiele: alle Minuten, in denen die Dosierung nicht
in der betreffenden Richtung gedndert wurde.
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Steigern von Dobutamine

ARTEREN: -0.05108108119
SUPRA: 0.00892807538657973
DOBUTREX: -0.100650806786886
WEIGHT: -0.0393531801046265
AGE: -0.00378828681071417
ARTSYS: -0.323407537252192
ARTDIA: -0.0394565333019493
ARTMN: -0.180425080906375
HR:-0.10010405264306
PAPSYS: -0.0252641188531731
PAPDIA: 0.0454843337112765
PAPMN: 0.00429504963736522
PULS: -0.0313501236399881

Vektor w fur k Attribute
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Anwendung des Gelernten

* Patientwerte - Gelernte Gewichte fiir Dobutamin
pat46, artmn 95, min. 2231 artmn -0,18

pat46, artmn 90, min. 2619

Kk
svm_calc=>» wx decision=sign(svm_calc+b)
=1
svm_calc (pat46, dobutrex, up,min.2231,39)
svm_calc (pat46, dobutrex, up,min.2619, 25)

b=-26, I.e. Increase In minute 2231,
not increase In minute 2619. 250 +54
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Steigern von Glyceroltrinitrat

(0014

0.019
-0.001
-0.015
-0.016

0.026

0.134
-0.177
—-9.543
—-1.047
-0.185

0.542
-0.017

2.391

0.033

0.334

0.784

0.015

artsysl 7400
artdia86.00
artmn121.00
cvp 800
hr79.00
papsys26.00
papdial3.00
papmnl5.00
nifedipine0
noradrenaline0
dobutamie0
dopamie0
glyceroltrinitrate0
adrenaline0
age7’791
emergency0
bsal79
brocal02

—-4.368

Jedes Medikament hat einen
Dosierungsschritt.

Fur Glyceroltrinitrat ist es 1,

far Suprarenin (adrenalin) 0.01.
Die Dosis wird um einen Schritt
erhoht oder gesenkt.

Vorhersage:
pred_interv(pat49, min.32,nitro, 1.0)
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Evaluierung

Blind test liber 95 noch nicht gesehener Patientendaten.

- Experte stimmte iiberein mit tatsdachlichen Medikamentengaben in
52 Fdllen

- SVM Ergebnis stimmte uberein mit tatsdchlichen
Medikamentengaben in 58 Fdllen

Dobutamine Actual Actual Actual
up equal down

Predictedup |10 (9) |12 (8) 0 (0)

Predicted 7 (9) 35 (31) |9(9)
equal

Predicted 2 (1 7 (15) 13 (12)
down
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SVMs fur Regression

- Minimi i ) |
Inimiere HV\MZ +C(Zfi +Z£I j
* so dass fir dlle i gilt: = =1

f(x;) = w*x+b <y, +¢ +¢,” und
f(x) = w*x+b 2 yi- £ - &,

.............. 250 +57
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Verlustfunktion

lineare Verlustfunktion guadratische Verlustfunktion
A
/ \ )
] >
S O f(X)-y
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Duales Optimierungsproblem

- Maximiere

n

W(a) :iyi (a; —ai)—gi(ai' +a)) -1 (o —a)a; —a,)K(x,x)

* unter O<a,a’ <Cfir allg:i und

Zai, - Zai

+ Mit y.0{-1,+1}, e=0 und a,=0 fiir y,=1 und a,” =0 fiir y,=-1
erhdlt man die Klassifikations-SVM!
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Beispiel: Prognose von Zeitreihen

0 AV i b4 Y
/ \—— ——/ \N

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
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Prognose von Zeitreihen

- Trend

- Zyklen
» Besondere Ereignisse (Weihnachten, Werbung, ...)
- Wieviel vergangene Beobachtungen?

- Ausreifler

250 +61



Universitat Dortmund

Abverkauf Drogerieartikel

— Insect killers 1
— Insect killers 2
— Sun milk
— Candles 1
— Baby food 1
— Beauty
— Sweets
— Self-tanning cream
— Candles 2
Baby food 2

A

Week 250 +62
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Vorhersage Abverkauf

Gegeben Verkaufsdaten von 50 Artikeln in 20 Ldden iber 104
Wochen
Vorhersage Verkdufe eines Artikels, so dass
Die Vorhersage niemals den Verkauf unterschatzt,
Die Vorhersage liberschdatzt weniger als eine Faustregel.

Beobachtung: 90% der Artikel werden weniger als 10 mal pro
Woche verkauft.

Anforderung: Vorhersagehorizont von mehr als 4 Wochen.
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Verkaufsdaten

Shop Week lteml ltem50
Dml 1 4 12
Dml s s s
Dml 104 9 16
Dm?2 1 3 19
Dm20 104 12 16

LE g1i 1 T{ A; ... A, Menge multivariater Zeitreihen
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Vorverarbeitung

- Multivariat nach univariat
LEI': i:Tl (11 Tk ak

For all shops for all items:
Create view Univariate as
Select shop, week, item,
Where shop="dm,"

From Source;

* Multiples Lernen

Dml teml 1 4.. 104 9

Dml_ltem50 1 12 104 16

Dm20_ltem50 1 14 104 16
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Vorverarbeitung Il

+ Viele Vektoren aus einer Reihe gewinnen durch Fenster

LH5 i:TI a ... Tw a,
bewege Fenster der Grofle w um m Zeitpunkte

Dml teml 1 1 4.5 7
Dml teml 2 2 4.. 6 8

Dm1 fteml 100 100 6.. 104 9

DM20 Item50_100 100 12. 104 16
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SVM im Regressionfall

Multiples Lernen:

fir jeden Laden und jeden Artikel, wende die SVM an.
Die gelernte Regressionsfunktion wird zur Vorhersage
genutzt.

Asymmetrische Verlustfunktion :

- Unterschdtzung wird mit 20 multipliziert,
d.h. 3 Verkaufe zu wenig vorhergesagt -- 60 Verlust

- Uberschdtzung zéhlt unverdndert,
d.h. 3 Verkdufe zu viel vorhergesagt -- 3 Verlust

(Stefan Riping 1999)
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Vergleich mit
Exponential Smoothing

Horizont SVM exp. smoothing
56.764 52.40
2 57.044 59.04
3 57.855 65.62
4 58.670 71.21
8 60.286 88.44
13 59.475 102.24

Verlust
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Was wissen wir jetzt?

Anwendung der SVM fiir die
Medikamentenverordnung

Idee der Regressions-SVM

Anwendung der SVM fiir die Verkaufsvorhersage

- Umwandlung multivariater Zeitreihen in mehrere univariate
- Gewinnung vieler Vektoren durch gleitende Fenster

- Asymmetrische Verlustfunktion
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