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Stützvektormethode (SVM)
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Erinnerung: Funktionslernen 
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Beispiel: Funktionenlernen
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Reale Beispiele

� !$	�����"	����6�KB
.�C�A��.��	$$���B
C�A��B
C.������
�������

� �

�"$	�����"	�����B
�A�-����L����"
��
�C
� �	��� �����
�
�"
������B
�A�5�

$������$�C
� &���	�����	�	$��
�������
�0
�"
��B
�A�?�
M�
�>
�C
� N��
���7�
��>���� �
���
�	��
�B
�A�&��	$>
� �
�C

� %
��
�����6�KB
.�C�A�B�B
C9�B
CC�

� 1
���
��
��������
�B
�A�1
���
��
.��B
C�A��L ���
��-
��C



Universität Dortmund

������

Erinnerung: Minimierung des 
beobachteten Fehlers
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Beispiel
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Beispiel II
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Probleme der ERM
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Beispiel III
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Einführung
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Grundbegriffe
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Warum Skalarprodukt?
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Einfachster Lernalgorithmus
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Lernalgorithmus im Bild
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Lernalgorithmus in Formeln
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Entscheidungsfunktion
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Fast...
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Die optimale Hyperebene
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Grundbegriffe II
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Bild
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Separierende Hyperebene
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Margin für separierbare Beispiele
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Margin
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Minimieren der Länge
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Optimierungsaufgabe
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Lagrange-Funktion
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Optimierungsfunktion als Lagrange
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Karush-Kuhn-Tucker Bedingungen
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Duales Problem
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Anschaulich?
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Umformung
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Umformung II
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SVM Optimierungsproblem
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Was wissen wir jetzt?
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Nicht linear trennbare Daten
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Weich trennende Hyperebene
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Bedeutung von ξξξξ und αααα

f(x)=0 f(x)=1f(x)=-1

ξ=0, α=0

ξ>1, α=C
0<ξ<1, 0<α<C

ξ=0, 0≤α<C

Beispiele xi mit αi>0 heißen Stützvektoren � SVM


