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Stutzvektormethode (SVM)

Maximieren der Breite einer separierenden
Hyperebene - maximum margin method

Transformation des Datenraums durch Kernfunktion
Strukturelle Risikominimierung

Vladimir Vapnik ,The Nature of Statistical Learning Theory"
Springer Vg. 1995

W.N. Wapnik, A. Tscherwonenkis ., Theorie der
Zeichenerkennung” Akademie Vg. 1979

Christopher Burges "A Tutorial on Support Vector Machines for
Pattern Recognition" in: Data Mining and Knowledge Discovery?2,
1998, 121-167
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Erinnerung: Funktionslernen

Gegeben:
Beispiele X in LE

- die anhand einer Wahrscheinlichkeitsverteilung P auf X erzeugt wurden und

- mit einem Funktionswert Y = t(X) versehen sind (alternativ: Eine
Wahrscheinlichkeitsverteilung P(Y|X) der méglichen Funktionswerte).

H die Menge von Funktionen in LH.

Ziel: Eine Hypothese h(X) O H, die das erwartete Fehlerrisiko R(h)
minimiert.

Risiko:

R(h) = >, Q(x,h)P(x)
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Beispiel: Funktionenlernen

+ i\ e 0% N\ e 50% e 500 A
| | | >
- 1 2 3
® 25% e 0% e 20%
H={f,| f(x)=1firx=zaq, f,(x) = -1sonst, adT}
R(f,) =0,25+0+0,20 = 0,45
R(f;5) =0+0+0,20 = 0,20
R(f;5) =0+05+0,05 = 0,55
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Reale Beispiele

Klassifikation: Q(x,h) = 0, falls t(x) = h(x),
1 sonst
- Textklassifikation (x = Worthdufigkeiten)
- Handschriftenerkennung (x = Pixel in Bild)
- Vibrationsanalyse in Triebwerken (x = Frequenzen)
- Intensivmedizinische Therapie (x = Vitalzeichen)

Regression: Q(x,h) = (t(x)-h(x))?

- Zeitreihenprognose (x = Zeitreihe, 1(x) = ndchster Wert)
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Erinnerung: Minimierung des
beobachteten Fehlers

Funktionslernaufgabe nicht direkt |osbar. Problem:
Die tatsdchliche Funktion t(X) ist unbekannt.
Die zugrunde liegende Wahrscheinlichkeit ist unbekannt.

Ansatz:

eine hinreichend grofle Lernmenge nehmen und fiir diese den
Fehler minimieren.

= Empirical Risk Minimization
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Probleme der ERM

+ Aufgabe ist nicht eindeutig beschrieben: Mehrere
Funktionen mit minimalem Fehler existieren. Welche
wdhlen?

* Overfitting: Verrauschte Daten und zu wenig
Beispiele fiihren zu falschen Ergebnissen.
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Einflhrung

Bernhard Schélkopf, Alexander Smola .Learning with
Kernels" MIT Press 2002

- Zwei-Klassen-Problem:

- Trainingsdaten (X, Y1), ... (X, Ym): XmOX, Y O{+1, -1}
- Ahnlichkeit eines neuen x; bestimmt y,

- AhnlichkeitsmaB k: X x X > [
(x, x') =2 k(x, x)
z.B. Skalarprodukt x*x":=% [x]. [X']
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Grundbegriffe

+  Skalarprodukt x*y: Seien x und y Vektoren aus 00"
y=3 [

+ Euklidsche Ldnge (Ble‘rrag) eines Vektors ||x]||:
== S |

* Hyperebene H Sei wz0 der Normalenvektor und b0
der bias

H (w, b) :{x\w* x+b:O}
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Warum Skalarprodukt?

- Cosinus des Winkels zwischen x und x', wenn beide

Vektoren auf die Ldnge 1 normiert sind.

+ Abstand zwischen x und x' ist Ldnge des
Differenzvektors.

* Voraussetzung: Beispiele sind Vektoren.

- Uberfiihrung in einen Raum mit Skalarprodukt
D XD>u

+ Wenn X bereits ein Raum mit Skalarprodukt ist, kann
nicht-lineare Abbildung @ auch sinnvoll sein.
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Einfachster Lernalgorithmus

+ Beispiele in einem Raum mit Skalarprodukt.

- Durchschnitt einer Klasse: 1
CTmy Z)f
in der Mitte liegt Punkt 1+ I
c:=(c, +c)/2 =, 2%
Vektor x-c verbindet - lilvi=
neues Beispiel Und C Anzahl positiver Beispiele: m,

+  Ahnlichkeit zum Durchschnitt einer Klasse:

Winkel zwischen w:=c, - ¢c. und x-c
» Berechnen uber Skalarproduki!
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Lernalgorithmus im Bild
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Lernalgorithmus in Formeln

S|gn$x—(c+ +c_)/2)0c, -c.))
sgn\(xD@)—(ch_)—%cf —%Q o +%Cf +%c Dc_j
o )= (x0e )« [ )
sign((xCc, ) - (xCc_ ) +b)
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Entscheidungsfunktion

Wir setzen nun die Mittelwerte fir c, und c_ ein:

y:sign( Zx*x—— D oX* X +b}

M, {ijy=+ M. {iy=+

:sign£ > k(%% )-— Zk(x x,)+b)
M, {ijy=+ M. ijy=+

Das neue Beispiel wird also mit allen Trainingsbeispielen
verglichen.
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Fast...

... wdre das schon die Stitzvektormethode. Aber:

» Einfach den Mittelpunkt der Beispiele einer Klasse zu
berechnen ist zu einfach, um ein ordentliches w zu
bekommen.

* Man erhdlt so nicht die optimale Hyperebene.
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Die optimale Hyperebene

Beispiele heiflen linear trennbar, wenn es eine
Hyperebene H gibt, die die positiven und
negativen Beispiele voneinander trennt.

H heift optimale Hyperebene, wenn ihr
Abstand d zum ndchsten positiven und zum
ndachsten negativen Beispiel maximal ist.

Satz: Es existiert eine eindeutig bestimmte
optimale Hyperebene.
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Grundbegriffe Il

- Der Normalenvektor steht senkrecht auf allen

Vektoren der Hyperebene. Es gilt:
>0 falls xim positiven Raum
wW* X + b3 =0 falls xauf H

<0 falls xim negativen Raum
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w*x+b=0

Skalieren von w
und b, so dass
lw*x+b|=1 fir
alle Beispiele am
nachsten zur
Hyperebene.
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Separierende Hyperebene

* Beispiele in Form von Vektoren x aus [P und

Klassifikation y=+1 (positive Beispiele) oder
y=-1 (negative Beispiele)

E:{ [xllYI]: [XZ:YZ]: ceey [xm:Ym]}

+ Separierende Hyperebene H:

positive Beispiele im positiven Halbraum,

negative Beispiele im negativen Halbraum,

x*w+b=0 fiir Punkte auf der Hyperebene.

+ Der Abstand von H zum Ursprung ist b / ||w]|
* Die Separierbarkeit erfillen viele Hyperebenen.

250 +21



o

Margin fur separierbare Beispiele

» Abstand d, von H zum ndchsten positiven Beispiel
+ Abstand d. von H zum ndchsten negativen Beispiel

* Margin: d, + d. .
. H1 X*wW+b=>+1lbel y =+1

. H2 X*w+b<-lbay =-1
zusammengefasst: LIX 1y, (W* X + b)—1> 0

- Der Abstand von H1 zum Ursprung ist [1-b | / [|w]]
+ Der Abstand von H2 zum Ursprung ist |-1-b | / ||w]]
» d,=d_=1/||w|| und margin=2/ ||w||
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- Um 2/ ||w]|| zu maximieren, missen

Margin

* H1 und H2 sind parallel, haben
denselben Normalenvektor w.

* Per Konstruktion liegt kein Beispiel
zwischen H1 und H2.

wir ||w|| minimieren.
» Die Nebenbedingungen miissen
eingehalten werden:

Oi:y (x *w+b)-1=0

H2
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J A
Minimieren der Lange
1

* Um die geometrische Breite Mzu maximieren, miussen
wir die Ldnge von w minimieren.
Wir kénnen genauso gut w*w minimieren.

+ So finden wir nun eine eindeutige Hyperebene aus den
vielen moglichen trennenden.

» Fiir alle Beispiele ist sie richtig: f(x;)>0 gdw. y>0

- Wir konnen sie anwenden, um neue unklassifizierte

Beobachtungen zu klassifizieren:
f(x)=w*x+b
das Vorzeichen gibt die Klasse an.
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Optimierungsaufgabe

. Minimiere ||w]|]|?

* so dass fur alle i gilt:

f(x.)=w*x+b =1 fury, = 1 und

f(x;) = w*x+b < -1 firy, = -1

- Aquivalente Nebenbedingungen: y*f(x;)-1=0

+ Konvexes, quadratisches Optimierungsproblem =
eindeutig in O(n3) fir n Beispiele losbar.

+ Satz: ||w|| = 1/d, d = Breite der optimalen
Hyperebene bzgl. der Beispiele.
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Lagrange-Funktion

+ Sei das Optimierungsproblem gegeben, f(w) zu
minimieren unter der Nebenbedingung g;(w)=0
i=1,...,m, dann ist die Lagrange-Funktion

Lwa) = (W)~ a6,

* Dabei muss gelten a, =0

* Fir Ungleichheitsbedingungen werden a-
Multiplikatoren eingefihrt, Gleichheitsbedingungen
werden direkt eingesetzt.

- Es ist leichter, Vektor a zu bestimmen, als direkt

nach der Erfiillung der Bedingungen zu suchen.
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Optimierungsfunktion als Lagrange

* Minimiere L(w,b,a)!

L) = 2fof” =2 a3, 5w b))

+ Eine optimale Lésung zeichnet sich durch die
folgenden notwendigen Bedingungen an a aus:

W= Y% iaiyizo
i=1 i=1

» L soll beziglich w und b minimiert, beziiglich a
maximiert werden.
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Karush-Kuhn-Tucker Bedingungen

- Fir das primale Optimierungsproblem gelten die KKT
Bedingungen gdw. w, b, a die Lésung ist.

aiL(Wibia):Wv_Zaiiniv:O V:l""’d
W, i |

%L(w,b,a) =->a,y, =0
Y (% *W+b)—|120
Liza, 20
Oi (v (w* % +b)-1)=0

i Beispiele, v Attribute der Beispiele=Komponenten der Vektoren
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Duales Problem

* Die Gleichheitsbedingungen werden in L(w,b,a)
eingesetzt.

* Der duale Lagrange-Ausdruck L(a) soll maximiert
werden.

» Das Minimum des urspriinglichen
Optimierungsproblems tritt genau bei jenen Werten
von w,b,a auf wie das Maximum des dualen Problems.
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Anschaulich?

+ Wir wollen w minimieren, also Aw=0, also Minimum von
w in Richtung des Gradienten suchen.

Die Nebenbedingungen sind entweder weit ab oder
der auf ihnen liegende ndachste Punkt zum Minimum
gibt das Minimum unter Einhaltung der
Nebenbedingungen an.

Y. (w*x;+b)=1

Q/V

Nebenbedingung beschrdnkt 250 +30
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Umformung
%W*W -y a. ly. (x *w+b) -1]
=1
EW*W B mai yi(Xi*W-l_b) +Zai
2 i=1 i=1
EW*W — 2 A Y X TwW _Zaiyib +Za’i
2 i=1 i=1 i=1
Lorw - ay X *w +> a,
2 i=1 i=1

Bei gutem o muss gelten 0=) ay

i=1
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Umformung I
- Es gilt fir optimalen Vektor a w= Zm:ai y. X wir ersetzen
i=1
= i=1
1 m m m m m
_'EEZE::E: Jy:yu _-:E::E: JVZYH 4-:E:Cn
=1 j=1 i=1 j=1 =1
m 1 m m
= +Zai EZZ ayiyx
i=1 i=1 j=1

- Mit den Nebenbedingungen:

0= leai Y. und 020
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SVM Optimierungsproblem

Maximiere
unter O<a, firalleiund Xay, =0

L(a) :Zai —%ZZ Yy, aq; (Xi ij)
= im1 j=1

Fir jedes Beispiel gibt es ein a in der Lésung.
- 0 =0, heifit, dass das Beispiel x; im passenden Halbraum liegt.
- 0 <a; heiBt, dass das Beispiel x; auf H1 oder H2 liegt (Stitzvektor).

Es gilt w = 20y x;,
- Also f(x) = 2Zay,(x;*x)+b
- Also ist der beste Normalenvektor w eine Linearkombination
von Stitzvektoren (a,z0).
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Was wissen wir jetzt?

* Maximieren des Margins einer Hyperebene ergibt
eine eindeutige Festlegung der optimalen trennenden
Hyperebene.

Dazu minimieren wir die Ldnge des Normalenvektors
W.

- Formulierung als Lagrange-Funktion

- Formulierung als duales Optimierungsproblem

Das Lernergebnis ist eine Linearkombination von
Stutzvektoren.

* Mit den Beispielen missen wir nur noch das
Skalarprodukt rechnen.
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Nicht linear trennbare Daten

- In der Praxis sind linear

trennbare Daten selten.

- 1. Ansatz: Entferne eine

minimale Menge von
Datenpunkten, so dass die
Daten linear trennbar
werden (minimale
Fehlklassifikation).

» Problem: Algorithmus wird
exponentiell.
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Weich trennende Hyperebene

+ Wdhle COO,; und minimiere |, /|2 +C . &
Wl +CY ¢

* so dass fir alle i gilt:

f(x,) = w*x+b = 1-g, firy, = 1und
f(x;) = w*x#b < -1+¢, fury, = -1

- Aquivalent: y > f(x) = 1- &,
.- >

J 250 +36
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Bedeutung von ¢ und a

/ /

,’I ,’I .\E:O, a=0
/ /
/, ,/I \azo, 0<a<C
II II
1, asc —A>e [ o OO

f(x)=-1 fx)=0 f(x)=1

Beispiele x; mit a,>0 heil3en Stutzvektoren = SVM
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