
Universität Dortmund

Lehrstuhl für künstliche Intelligenz

Speichern von Daten

Universität Dortmund

Unterschiede von DBMS und files

• DBMS unterstützt viele Benutzer, die gleichzeitig
auf dieselben Daten zugreifen – concurrency
control.

• DBMS speichert mehr Daten als in den
Hauptspeicher passen.
– Platten (Sekundärspeicher) oder sogar Bänder, CD, DVD
(Tertiärspeicher) sind im Zugriff.

• DBMS organisiert die Daten so, dass minimal viele
Plattenzugriffe nötig sind.

Universität Dortmund

Zugriffszeit vs. Speicherplatz

• Sekundärspeicher können mehr speichern, sind aber
langsamer als der Hauptspeicher.

• Tertiärspeicher können mehr speichern, sind aber
langsamer als Platten.

13
12
11
10
9
8
...
5

2 ... 0 ... –2 ... - 7 -8 -9 10x secs. für Zugriff

Cache

Haupt
speicher

Sekundär
speicher

Tertiär
speicher

10y bytes

Universität Dortmund

Konsequenz für Algorithmen

• Random Access Model -- Annahmen:
– alle Daten sind im Hauptspeicher.
– Zugriff dauert bei allen Daten gleich lange.

• DBMS haben nicht RAM Annahmen
⇒ Algorithmen müssen anders geschrieben werden für
dasselbe Problem.
– Wenig Plattenzugriffe!
– So viel wie möglich mit einem Tupel, das man mal hat, tun!
– Daten, die häufig gebraucht werden, in den Cache ziehen!
– Nur sehr wenige Daten aus dem Tertiärspeicher verwenden!

Universität Dortmund

Index

• Ein Index ist jede Datenstruktur, die als Eingabe
eine Eigenschaft eines Tupels nimmt und das
Tupel mit dieser Eigenschaft schnell findet.

• Typischerweise ist ein Index ein Verzeichnis, das
zu einem Attribut A die möglichen Werte Ai
angibt und auf die Speicherblöcke verweist, wo
Tupel mit dem Wert Ai gespeichert sind.

Ai
Index Tupel mit

Ai

Blöcke
Mit
Tupeln

Universität Dortmund

Wahl der Indizes -- Beispiel

• Q1: SELECT titel, jahr Filme eines
FROM stars Schauspielers
WHERE name=s;

• Q2: SELECT name Schauspieler
FROM stars eines Films
WHERE titel=t AND jahr=j;

• I: INSERT INTO stars VALUES (t, j, s);

Universität Dortmund

Kosten bei Anfragen

• stars sei auf Platte in 10 Blöcken gespeichert.
Ohne Index machen wir also 10 Plattenzugriffe
bei Q1 und Q2.

• Jeder Schauspieler macht durchschnittlich 3
Filme pro Jahr. Mit Index auf name brauchen wir
1 Zugriff auf den Index und 3 Plattenzugriffe für
seine 3 Filme.

• Jeder Film hat durchschnittlich 3 Schauspieler
genannt. Mit Index auf titel brauchen wir einen
Zugriff auf den Index und 3 Plattenzugriffe für
die 3 Schauspieler

Universität Dortmund

Einfügekosten

• Ohne Index ist Einfügen (I) nur 1 Plattenzugriff,
um in einem Block einen freien Platz zu finden und
1 Zugriff, um den Block mit dem neuen Tupel
zurückzuschreiben.

• Mit Index müssen 2 Plattenzugriffe für die
Veränderung des Index und 2 Zugriffe für das
Platzfinden und Schreiben des Tupels, also 4
Zugriffe, vorgenommen werden.

Universität Dortmund

Durchschnittskosten

6-2p1-2p24+6p14+6p22+8p1+8p2Durchschnitt

6442I

441010Q2

410410Q1

Beide
Indizes

Index auf
titel

Index auf
name

Kein Index

Sei p1 der Bruchteil der Zeit, in dem Q1 bearbeitet wird
(z.B. : bei 10% Q1-Anfragen ist p1=0,1)
p2 der für Q2, so ist der Bruchteil von I: 1-p1-p2.
Je nach tatsächlicher Häufigkeit sind unterschiedliche Indizes günstig.

Universität Dortmund

Tupel eines Schemas
CREATE TABLE MovieStar(

name CHAR(30) PRIMARY KEY,
address VARCHAR(255),
gender CHAR(1),
birthdate DATE);

0 12 44 300 304 316

Name Adresse f,m Datum

Adresse d.
Schemas Länge Zeitstempel

Tupel werden mit Metadaten
gespeichert, die das Schema,
die Tupellänge und zufüge- oder
zuletzt-gelesen-Zeitpunkt angeben.

Universität Dortmund

Blöcke

• Tupel werden in Blöcken gespeichert.
• Ganze Blöcke werden in den Hauptspeicher
geladen.

• Um ein Tupel zu finden, muss man:
– den Block in den Hauptspeicher laden, der das Tupel
enthält.

– innerhalb des Blocks das Tupel finden.

Tupel2
Kopf

Tupel2 Tupeln

Universität Dortmund

Indizes

• Ein Index dient dem schnellen Finden:
– Eingabe: eine Eigenschaft eines Tupels (z.B. einen
Attributwert) – Suchschlüssel.

– Ausgabe: alle Tupel mit der Eigenschaft.

• Es kann mehrere Suchschlüssel für Tupel geben!
• Datenstrukturen für Indizes.
– Schnelles Finden von Tupelmengen.
– Leichtes Einfügen und Löschen von Tupeln.

Universität Dortmund

B-Trees

• B-trees verwalten so viele Suchschlüssel wie
nötig.

• Ein Block in einem B-tree besteht aus n
Suchschlüsseln und n+1 Zeigern. Die Zeiger der
Blätter verweisen auf Tupel, der letzte auf den
Nachbarblock.

• Jeder Block in einem B-tree ist halb oder
vollständig gefüllt – nicht weniger. Er enthält
mindestens 2 Zeiger.

• B-trees organisieren Blöcke in einem Baum fester
Tiefe.

Universität Dortmund

Beispiel für einen numerischen
Suchschlüssel

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Block mit Tupeln mit Attributwert 3 (Suchschlüssel)

n=3, max. 4 pointer

Universität Dortmund

Suche im B-Tree

Suche nach Tupeln mit Suchschlüsselwert K:
• An Mittelknoten mit Werten K1, ..., Kn:
– K < K1 ⇒ zum 1.linken Unterknoten gehen,
– K1 ≤ K < K2 ⇒ zum 2.linken Unterknoten gehen,
– ...

• Am Blattknoten nachsehen, ob K da ist – der
Zeiger zeigt auf Tupel mit K.

Universität Dortmund

Einfügen von Tupeln

• Suche passenden Knoten für Schlüssel des
Tupels.
– Wenn dort noch Platz ist, füge Schlüssel ein.
– Wenn kein Platz ist,
1. teile den Knoten,
2. füge im übergeordneten Knoten einen Zeiger hinzu,
wenn dort noch Platz ist

3. Sonst gehe zu 1.

Universität Dortmund

Teilen von Knoten

• Erzeuge neuen Knoten M neben dem
ursprünglichen Knoten N.

• N behält die ersten (n+2):2 Zeiger, M erhält die
restlichen Zeiger.

• N behält die ersten n:2 (aufgerundet-halben)
Schlüssel, M erhält die letzten n:2 (abgerundet-
halben) Schlüssel, der verbleibende Schlüssel in
der Mitte wandert eine Ebene hinauf.

Universität Dortmund

Beispiel

13

7 23 31 43

2 3 5 7 11 13 17 19

40

31 37 41 43 4723 29

Voll!

n=3

Universität Dortmund

Knoten teilen
13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 43 47

31 37 40 41

Kein Platz mehr!

Universität Dortmund

Nach oben propagieren
13 40

7 23 31

2 3 5 7 11 13 17 19 23 29 43 47

31 37 40 41

43

(3+2):2

3:2 n:2

Universität Dortmund

Eigenschaften der B-Trees

• Sehr wenige Plattenzugriffe:
– Man liest von der Wurzel aus die passenden Knoten
⇒ so viele Plattenzugriffe wie Ebenen des B-Trees +
Lesen der Tupel (+ Reorganisation).

– Meist genügen 3 Ebenen eines B-Trees und die Wurzel
wird permanent im Hauptspeicher gehalten
⇒ 2 Plattenzugriffe.

• Für geeignetes n (z.B. n=10) kommt Teilen oder
Verbinden von Knoten selten vor, so dass die
Reorganisation wenig kostet.

Universität Dortmund

Darstellung von Mengen: Hashing

• Eine Hash-Funktion bildet M mögliche Elemente
einer Menge auf eine feste Anzahl B von Beuteln ab.

• Im Idealfall befindet sich in einem Beutel genau eine
Adresse.
h(x) � Ν liefert für einen Schlüssel x eine
natürliche Zahl, die die Speicheradresse bezeichnet.

• Hash-Tabellen sind extrem effizient (meist nur 1
Plattenzugriff).

Universität Dortmund

Beispiel Hash-Funktion
{braun, rot, blau, violett, türkis} M=5

• h(x)=Wortlänge – 3 ergibt 2, 0, 1, 4, 3
perfekt, M=B, je Beutel 1 Adresse

• Buchstabenwerte ci: A-Z,Ä,Ö,Ü durchzählen
• h(x)= (∑ ci) modulo C
– C=6 ergibt 2, 5, 0, 1, 4 perfekt, M=B (1 Element)
– C=4 ergibt 0, 1, 0, 3, 2 B=4 (1,25 Elemente)
– C=5 ergibt 1, 3, 1, 3, 1 B=2 (2,5 Elemente)

• B Adressen mit (1/B) M Elementen

Universität Dortmund

Lastfaktor

• Der Lastfaktor einer Hash-Tabelle ist bei der
Anzahl B von Adressen und der Kardinalität M der
darzustellenden Menge das Verhältnis M/B.

• Üblich: Lastfaktor 1,33.
• Abschätzung von M.
• Falls man sich verschätzt hat, muss neu angelegt
werden. Aufwand in O(M)!

Universität Dortmund

Hash-Tabellen

• Hash-Tabellen werden zur Verwaltung des
Hauptspeichers eingesetzt.

• Sie können aber auch den Sekundärspeicher
indexieren.

• Eine Hash-Tabelle enthält n Beutel, von denen
jeder eine Menge von Objekten (hier: Blöcke)
enthält.

• Eine Hash-Funktion h(K) errechnet für einen
Schlüssel einen Wert v aus [0...n], v∈ Ν.

Universität Dortmund

Beispiel einer Hash-Tabelle

4 Beutel: 0,1,2,3
Jeder Beutel enthält 2 Tupel
(+Überlauf).

Ein Tupel mit Suchschlüssel
K gelangt in den Beutel h(K).

0

1

2

3

Universität Dortmund

Suchen, Einfügen

• Suche nach Tupel mit Suchschlüssel K: Beutel mit
der Nummer h(K) aufsuchen und darin nach Tupel
suchen. Idealerweise hat der Beutel genau einen
Block, dann ist Suche in O(1).

• Einfügen eines Tupels:
Beutel mit h(K) finden und Tupel anhängen. Falls
der Beutel voll ist, den Überlauf verwenden. Der
Überlauf sollte nicht mehrere Blöcke umfassen.

Universität Dortmund

Linear hashing

• Indirekte Adressierung: die Beutel enthalten
Adressen von Blöcken, nicht die Blöcke selbst.

• Dynamisch: Anzahl der Beutel wird immer so
gewählt, dass die durchschnittliche Anzahl von
Tupeln je Beutel 80% der in einen Block passenden
Tupel beträgt.
Da nur die Adressen verschoben werden und nicht
die Daten, ist das möglich.

Universität Dortmund

Genauer

• Die hash-Funktion liefert eine k-bit Binärzahl.
• Eine i-bit Binärzahl, i<k, i= log2 n nummeriert die
Beutel durch, bei gegenwärtig n Beuteln.

• Es werden die i-hintersten Stellen von h(K)
genommen!

Universität Dortmund

Beispiel

k=4, i=1, n=2

3 Tupel (r=3)

Im Beutel mit der Nummer 0 sind alle Tupel, deren
Suchschlüssel mit 0 endet, in dem mit der Nummer 1
sind alle Tupel, deren Suchschlüssel mit 1 endet.
Soll r < 1,7 n gelten, dann muss ein neuer Beutel
hinzugefügt werden.

0

1

0000
1010

1111

Universität Dortmund

Partitioned hashing

• Multidimensionale Indexierung:
– Mehrere Attribute A1,..., An sollen als Suchschlüssel
verwendet werden.

– Es sollen aber bei einer Suche nicht alle Attribute Ai
durch Werte vi angegeben werden müssen.

• Die bits der hash-Funktionen h1(v1),..., hn(vn)
werden konkateniert und ergeben so die k-bit der
Gesamt-hash-Funktion.

Universität Dortmund

Beispiel

• Indexierung nach
– Alter h(a)= a modulo 2
Gerades Alter ergibt 0yz, ungerades Alter
ergibt 1yz, (y,z sind Variablen für bits).

– Gehalt h(g)=g:1000 modulo 4
Rest 1 ergibt x01, Rest 3 ergibt 11.

– Gesamt-hash-Wert ist xyz.
• h(50,75000) ergibt 011.

Universität Dortmund

Beispiel

111

110

101

100

011

010

001

000 30,120
50,100

50,120
60,100

70,110

50,75

25,60
45,60

57,400
37,140

Universität Dortmund

Was wissen Sie jetzt?

• Sie ahnen, dass Datenbanken etwas anderes sind
als eine Sammlung von Dateien.

• Sie kennen einige Datenstrukturen zur
Speicherverwaltung:
– B-Trees,
– Hash-Tabellen mit linear hashing und partitioned
hashing

• Sie wissen dass jede Datenstruktur mit
Operationen einhergeht, hier besprochen: Suchen
und Einfügen.

