Universitat Dortmund

Lehrstuhl fir kiinstliche Intelligenz

Speichern von Daten

y
y 4
y 4

Unterschiede von DBMS und files

- DBMS unterstiitzt viele Benutzer, die gleichzeitig
auf dieselben Daten zugreifen - concurrency
control.

+ DBMS speichert mehr Daten als in den

Hauptspeicher passen.

- Platten (Sekunddrspeicher) oder sogar Bdnder, CD, DVD
(Tertidrspeicher) sind im Zugriff.

- DBMS organisiert die Daten so, dass minimal viele

Plattenzugriffe notig sind.

o

Zugriffszeit vs. Speicherplatz

Sekunddrspeicher konnen mehr speichern, sind aber
langsamer als der Hauptspeicher.

Tertidrspeicher kénnen mehr speichern, sind aber

langsamer als Platten.
10Y bytes 13 | Tertiar
12 | speicher
11 Sekundar
10 speicher

O Haupt
38 speicher

5 Cache
2 ..0..-2 ... -7 -8-9 10* secs. fur Zugriff

o

Konsequenz fur Algorithmen

Random Access Model -- Annahmen:
- alle Daten sind im Hauptspeicher.
- Zugriff dauert bei allen Daten gleich lange.

DBMS haben nicht RAM Annahmen

= Algorithmen miissen anders geschrieben werden fiir
dasselbe Problem.

- Wenig Plattenzugriffel

- So viel wie maglich mit einem Tupel, das man mal hat, tunl

- Daten, die hdufig gebraucht werden, in den Cache ziehenl!

- Nur sehr wenige Daten aus dem Tertidrspeicher verwenden!

Index

* Ein Index ist jede Datenstruktur, die als Eingabe
eine Eigenschaft eines Tupels nimmt und das
Tupel mit dieser Eigenschaft schnell findet.

+ Typischerweise ist ein Index ein Verzeichnis, das
zu einem Attribut A die maglichen Werte A,
angibt und auf die Speicherblocke verweist, wo
Tupel mit dem Wert A, gespeichert sind.

Blocke
A —» Index Mit » Tupel mit
! Tupeln A.

Wahl der Indizes -- Beispiel
+ Q1. SELECT titel, jahr Filme eines

FROM stars Schauspielers
WHERE names=s;

+ Q2: SELECT name Schauspieler
FROM stars eines Films

WHERE titel=t AND jahr=j;
» I: INSERT INTO stars VALUES (1, j, s):

y
y 4
y 4

Kosten bei Anfragen

+ stars sei auf Platte in 10 Blécken gespeichert.
Ohne Index machen wir also 10 Plattenzugriffe
bei Q1 und Q2.

+ Jeder Schauspieler macht durchschnittlich 3
Filme pro Jahr. Mit Index auf name brauchen wir
1 Zugriff auf den Index und 3 Plattenzugriffe fiir
seine 3 Filme.

» Jeder Film hat durchschnittlich 3 Schauspieler
genannt. Mit Index auf titel brauchen wir einen
Zugriff auf den Index und 3 Plattenzugriffe fiir
die 3 Schauspieler

22

Einflgekosten

» Ohne Index ist Einfiigen (I) nur 1 Plattenzugriff,
um in einem Block einen freien Platz zu finden und
1 Zugriff, um den Block mit dem neuen Tupel
zurickzuschreiben.

» Mit Index miissen 2 Plattenzugriffe fiir die
Verdnderung des Index und 2 Zugriffe fiir das
Platzfinden und Schreiben des Tupels, also 4
Zugriffe, vorgenommen werden.

o

y 4
Durchschnittskosten
Kein Index |Index auf |Index auf Beide
name titel Indizes
Q1 10 4 10 4
Q2 10 10 4 4
T 2 4 4 6
Durchschnitt | 2+8p1+8p2 | 4+6p2 4+6pl 6-2pl-2p2

Sei pl der Bruchteil der Zeit, in dem Q1 bearbeitet wird
(z.B.: bei 10% Q1-Anfragen ist p1=0,1)
p2 der fir Q2, so ist der Bruchteil von I: 1-p1-p2.

Je nach tatsdchlicher Hdufigkeit sind unterschiedliche Indizes glinstig.

o

Tupel eines Schemas

CREATE TABLE MovieStar(

name CHAR(30) PRIMARY KEY., Tupel werden mit Metadaten

address VARCHAR(255), gespeichert, die das Schema,
gender CHAR(1), die Tupelldnge und zufiige- oder
birthdate DATE); zuletzt-gelesen-Zeitpunkt angeben.
Adresse d. _
Schemas Lange Zeitstempel

/

Name Adresse fm |Datum

0 12 44 300 304 316

Blocke

» Tupel werden in Blocken gespeichert.

+ Ganze Blocke werden in den Hauptspeicher
geladen.

* Um ein Tupel zu finden, muss man:

- den Block in den Hauptspeicher laden, der das Tupel
enthdlt.

- innerhalb des Blocks das Tupel finden.

Kopf
Tupel, | Tupel, Tupel

o

Indizes

- Ein Index dient dem schnellen Finden:

- Eingabe: eine Eigenschaft eines Tupels (z.B. einen
Attributwert) - Suchschlissel.

- Ausgabe: alle Tupel mit der Eigenschaft.
» Es kann mehrere Suchschliissel fir Tupel gebenl

- Datenstrukturen fir Indizes.

- Schnelles Finden von Tupelmengen.
- Leichtes Einfiigen und Loschen von Tupeln.

y
y 4
y 4

B-Trees

- B-trees verwalten so viele Suchschlissel wie

notig.

- Ein Block in einem B-tree besteht aus n

Suchschlisseln und n+1 Zeigern. Die Zeiger der
Bldtter verweisen auf Tupel, der letzte auf den
Nachbarblock.

- Jeder Block in einem B-tree ist halb oder

vollstdndig gefiillt - nicht weniger. Er enthdlt
mindestens 2 Zeiger.

* B-trees organisieren Blocke in einem Baum fester
Tiefe.

y
y 4
y 4

Beispiel fur einen numerischen
Suchschlissel

3

n=3, max. 4 pointer

v

13
/ \‘
4 23|31 43
5 7 11 1311719 |23|29 31|137|41| 43|47
v v v vy, v v vV v v v

Block mit Tupeln mit Attributwert 3 (Suchschlissel)

ra'y
Suche Im B-Tree

Suche nach Tupeln mit Suchschlisselwert K:

- An Mittelknoten mit Werten K, ..., K;:

- K< K; = zum 1.linken Unterknoten gehen,
- K; < K< K, = zum 2.linken Unterknoten gehen,

- Am Blattknoten nachsehen, ob K da ist - der
Zeiger zeigt auf Tupel mit K.

o

Einfligen von Tupeln

* Suche passenden Knoten fir Schliissel des
Tupels.

- Wenn dort noch Platz ist, fige Schlissel ein.

- Wenn kein Platz ist,
1. teile den Knoten,

2. flge im Ubergeordneten Knoten einen Zeiger hinzu,
wenn dort noch Platz ist

3. Sonst gehe zu 1.

Tellen von Knoten

» Erzeuge neuen Knoten M neben dem
urspringlichen Knoten N.

+ N behdlt die ersten| (n+2):2 | Zeiger, M erhdlt die
restlichen Zeiger.

+ N behdlt die ersten[n:2] (aufgerundet-halben)
Schliissel, M erhdlt die letzten | n:2] (abgerundet-
halben) Schliissel, der verbleibende Schliissel in
der Mitte wandert eine Ebene hinauf.

Universitat Dortmund

Beispiel
40
n=3 13 I
7/ 3143
2135 7 11 13|17
v \¢ vy vy, vy vy v vy
Voll!

Universitat Dortmund

Knoten teilen

Kein Platz mehr!

Universitat Dortmund

Nach oben propagieren
13 40

7‘/r3:2 31% [n:2)

o

Eigenschaften der B-Trees

» Sehr wenige Plattenzugriffe:

- Man liest von der Wurzel aus die passenden Knoten
— so viele Plattenzugriffe wie Ebenen des B-Trees +
Lesen der Tupel (+ Reorganisation).

- Meist geniigen 3 Ebenen eines B-Trees und die Wurzel
wird permanent im Hauptspeicher gehalten
— 2 Plattenzugriffe.
* Fir geeignetes n (z.B. n=10) kommt Teilen oder
Verbinden von Knoten selten vor, so dass die
Reorganisation wenig kostet.

y
y 4
y 4

Darstellung von Mengen: Hashing

» Eine Hash-Funktion bildet M mdgliche Elemente
einer Menge auf eine feste Anzahl B von Beuteln ab.

* Im Idealfall befindet sich in einem Beutel genau eine
Adresse.

h(x) =2 N liefert fiir einen Schliissel x eine
natirliche Zahl, die die Speicheradresse bezeichnet.

+ Hash-Tabellen sind extrem effizient (meist nur 1
Plattenzugriff).

Beispiel Hash-Funktion

{braun, rot, blau, violett, tiirkis} M=5

* h(x)=Wortldnge - 3 ergibt 2,0, 1, 4, 3
perfekt, M=B, je Beutel 1 Adresse

- Buchstabenwerte c;: A-Z,A,0,U durchzdhlen

* h(x)= (X ¢;) modulo C
- C=6ergibt2,5,0,1,4 perfekt, M=B (1 Element)
- C=4 ergibt0,1,0, 3,2 B=4 (1,25 Elemente)
- C=5ergibt1,3,1,3,1 B=2(25 Elemente)

- B Adressen mit (1/B) M Elementen

Lastfaktor

- Der Lastfaktor einer Hash-Tabelle ist bei der
Anzahl| B von Adressen und der Kardinalitat M der
darzustellenden Menge das Verhdltnis M/B.

. Ublich: Lastfaktor 1,33.
* Abschdtzung von M.

» Falls man sich verschatzt hat, muss neu angelegt
werden. Aufwand in O(M)!

Hash-Tabellen

* Hash-Tabellen werden zur Verwaltung des
Hauptspeichers eingesetzt.

- Sie konnen aber auch den Sekunddrspeicher
indexieren.

- Eine Hash-Tabelle enthdlt n Beutel, von denen
jeder eine Menge von Objekten (hier: Blocke)
enthdlt.

» Eine Hash-Funktion h(K) errechnet fiir einen
Schlissel einen Wert v aus [0...n], vOIN.

Universitat Dortmund

Beispiel einer Hash-Tabelle

4 Beutel: 0,1,2,3

Jeder Beutel enthdlt 2 Tupel
(+Uberlauf).

Ein Tupel mit Suchschlissel

K gelangt in den Beutel h(K).

Suchen, Einfligen

» Suche nach Tupel mit Suchschlissel K: Beutel mit
der Nummer h(K) aufsuchen und darin nach Tupel

suchen. Idealerweise hat der Beutel genau einen
Block, dann ist Suche in O(1).

+ Einfligen eines Tupels:

Beutel mit h(K) finden und Tupel anhdngen. Falls
der Beutel voll ist, den Uberlauf verwenden. Der
Uberlauf sollte nicht mehrere Blocke umfassen.

Linear hashing

* Indirekte Adressierung: die Beutel enthalten
Adressen von Blocken, nicht die Blocke selbst.

* Dynamisch: Anzahl der Beutel wird immer so
gewdhlt, dass die durchschnittliche Anzahl von
Tupeln je Beutel 80% der in einen Block passenden
Tupel betrdgt.

Da nur die Adressen verschoben werden und nicht
die Daten, ist das moglich.

Genauer

 Die hash-Funktion liefert eine k-bit Bindrzahl.
- Eine i-bit Bindrzahl, i<k, i= [log, n| nummeriert die
Beutel durch, bei gegenwdrtig n Beuteln.

- Es werden die i-hintersten Stellen von h(K)
genommenl!

Beispiel
k=4,i=1,n=2 0 | 0000
1010
3 Tupel (r=3)
1 | 1111

Im Beutel mit der Nummer O sind alle Tupel, deren
Suchschlissel mit O endet, in dem mit der Nummer 1
sind alle Tupel, deren Suchschlissel mit 1 endet.
Soll r <1,7 n gelten, dann muss ein neuer Beutel
hinzugefigt werden.

o

Partitioned hashing

* Multidimensionale Indexierung:

- Mehrere Attribute A,,..., A, sollen als Suchschlissel
verwendet werden.

- Es sollen aber bei einer Suche nicht alle Attribute A.
durch Werte v, angegeben werden missen.

+ Die bits der hash-Funktionen h,(vy)...., h,(v,)
werden konkateniert und ergeben so die k-bit der
Gesamt-hash-Funktion.

Beispiel

» Indexierung nach

- Alter h(a)= a modulo 2
Gerades Alter ergibt Oyz, ungerades Alter
ergibt lyz, (y,z sind Variablen fir bits).

- Gehalt h(g)=g:1000 modulo 4
Rest 1 ergibt x01, Rest 3 ergibt 11.

- Gesamt-hash-Wert ist xyz.
* h(50,75000) ergibt 011.

Universitat Dortmund

Beispiel

000 * 30,120 | 7| 50,120
001 50,100 60,100
010 » 70,110

011 ~

100 T 50,75

101 \

110 2560 | 157,400
11 45,60 37,140

y
y 4
y 4

Was wissen Sie jetzt?

- Sie ahnen, dass Datenbanken etwas anderes sind
als eine Sammlung von Dateien.

+ Sie kennen einige Datenstrukturen zur

Speicherverwaltung:

- B-Trees,

- Hash-Tabellen mit linear hashing und partitioned
hashing

+ Sie wissen dass jede Datenstruktur mit

Operationen einhergeht, hier besprochen: Suchen

und Einflgen.

