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Unterschiede von DBMS und files

• DBMS unterstützt viele Benutzer, die gleichzeitig 
auf dieselben Daten zugreifen – concurrency 
control.

• DBMS speichert mehr Daten als in den 
Hauptspeicher passen. 
– Platten (Sekundärspeicher) oder sogar Bänder, CD, DVD 
(Tertiärspeicher) sind im Zugriff.

• DBMS organisiert die Daten so, dass minimal viele 
Plattenzugriffe nötig sind.
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Zugriffszeit vs. Speicherplatz

• Sekundärspeicher können mehr speichern, sind aber 
langsamer als der Hauptspeicher.

• Tertiärspeicher können mehr speichern, sind aber 
langsamer als Platten.
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Konsequenz für Algorithmen

• Random Access Model -- Annahmen:
– alle Daten sind im Hauptspeicher.
– Zugriff dauert bei allen Daten gleich lange.

• DBMS haben nicht RAM Annahmen
⇒ Algorithmen müssen anders geschrieben werden für 
dasselbe Problem.
– Wenig Plattenzugriffe! 
– So viel wie möglich mit einem Tupel, das man mal hat, tun!
– Daten, die häufig gebraucht werden, in den Cache ziehen!
– Nur sehr wenige Daten aus dem Tertiärspeicher verwenden!
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Index

• Ein Index ist jede Datenstruktur, die als Eingabe 
eine Eigenschaft eines Tupels nimmt und das 
Tupel mit dieser Eigenschaft schnell findet.

• Typischerweise ist ein Index ein Verzeichnis, das 
zu einem Attribut A die möglichen Werte Ai
angibt und auf die Speicherblöcke verweist, wo 
Tupel mit dem Wert Ai gespeichert sind.
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Wahl der Indizes -- Beispiel

• Q1: SELECT titel, jahr Filme eines 
FROM stars Schauspielers
WHERE name=s;

• Q2: SELECT name Schauspieler 
FROM stars eines Films
WHERE titel=t AND jahr=j;

• I: INSERT INTO stars VALUES (t, j, s);
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Kosten bei Anfragen

• stars sei auf Platte in 10 Blöcken gespeichert. 
Ohne Index machen wir also 10 Plattenzugriffe 
bei Q1 und Q2. 

• Jeder Schauspieler macht durchschnittlich 3 
Filme pro Jahr. Mit Index auf name brauchen wir 
1 Zugriff auf den Index und 3 Plattenzugriffe für 
seine 3 Filme.

• Jeder Film hat durchschnittlich 3 Schauspieler 
genannt. Mit Index auf titel brauchen wir einen 
Zugriff auf den Index und 3 Plattenzugriffe für  
die 3 Schauspieler
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Einfügekosten

• Ohne Index ist Einfügen (I) nur 1 Plattenzugriff, 
um in einem Block einen freien Platz zu finden und 
1 Zugriff, um den Block mit dem neuen Tupel 
zurückzuschreiben.

• Mit Index müssen 2 Plattenzugriffe für die 
Veränderung des Index und 2 Zugriffe für das 
Platzfinden und Schreiben des Tupels, also 4 
Zugriffe, vorgenommen werden. 
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Durchschnittskosten

6-2p1-2p24+6p14+6p22+8p1+8p2Durchschnitt

6442I

441010Q2

410410Q1

Beide 
Indizes

Index auf 
titel

Index auf 
name

Kein Index

Sei p1 der Bruchteil der Zeit, in dem Q1 bearbeitet wird 
(z.B. : bei 10% Q1-Anfragen ist p1=0,1)
p2 der für Q2, so ist der Bruchteil von I: 1-p1-p2.
Je nach tatsächlicher Häufigkeit sind unterschiedliche Indizes günstig.
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Tupel eines Schemas 
CREATE TABLE MovieStar(

name CHAR(30) PRIMARY KEY,
address VARCHAR(255),
gender CHAR(1),
birthdate DATE);

0           12                 44                         300  304      316

Name Adresse f,m Datum

Adresse d.
Schemas Länge Zeitstempel

Tupel werden mit Metadaten 
gespeichert, die das Schema,
die Tupellänge und zufüge- oder 
zuletzt-gelesen-Zeitpunkt angeben.
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Blöcke

• Tupel werden in Blöcken gespeichert.
• Ganze Blöcke werden in den Hauptspeicher 
geladen.

• Um ein Tupel zu finden, muss man:
– den Block in den Hauptspeicher laden, der das Tupel 
enthält.

– innerhalb des Blocks das Tupel finden.

Tupel2
Kopf

Tupel2 Tupeln
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Indizes

• Ein Index dient dem schnellen Finden:
– Eingabe: eine Eigenschaft eines Tupels (z.B. einen 
Attributwert) – Suchschlüssel.

– Ausgabe: alle Tupel mit der Eigenschaft.

• Es kann mehrere Suchschlüssel für Tupel geben!
• Datenstrukturen für Indizes.
– Schnelles Finden von Tupelmengen.
– Leichtes Einfügen und Löschen von Tupeln.
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B-Trees

• B-trees verwalten so viele Suchschlüssel wie 
nötig.

• Ein Block in einem B-tree besteht aus n 
Suchschlüsseln und n+1 Zeigern. Die Zeiger der 
Blätter verweisen auf Tupel, der letzte auf den 
Nachbarblock. 

• Jeder Block in einem B-tree ist halb oder 
vollständig gefüllt – nicht weniger. Er enthält 
mindestens 2 Zeiger.

• B-trees organisieren Blöcke in einem Baum fester 
Tiefe. 
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Beispiel für einen numerischen 
Suchschlüssel

13

7 23 31 43

2   3    5 7   11    13  17 19 23  29 31 37 41 43 47

Block mit Tupeln mit Attributwert 3 (Suchschlüssel) 

n=3, max. 4 pointer
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Suche im B-Tree

Suche nach Tupeln mit Suchschlüsselwert K:
• An Mittelknoten mit Werten K1, ..., Kn:
– K < K1 ⇒ zum 1.linken Unterknoten gehen, 
– K1 ≤ K < K2  ⇒ zum 2.linken Unterknoten gehen, 
– ...

• Am Blattknoten nachsehen, ob K da ist – der 
Zeiger zeigt auf Tupel mit K.
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Einfügen von Tupeln

• Suche passenden Knoten für Schlüssel des 
Tupels. 
– Wenn dort noch Platz ist, füge Schlüssel ein.
– Wenn kein Platz ist, 
1. teile den Knoten,
2. füge im übergeordneten Knoten einen Zeiger hinzu, 
wenn dort noch Platz ist

3. Sonst gehe zu 1.
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Teilen von Knoten

• Erzeuge neuen Knoten M neben dem 
ursprünglichen Knoten N.

• N behält die ersten (n+2):2 Zeiger, M erhält die 
restlichen Zeiger.

• N behält die ersten n:2 (aufgerundet-halben) 
Schlüssel, M erhält die letzten n:2 (abgerundet-
halben) Schlüssel, der verbleibende Schlüssel in 
der Mitte wandert eine Ebene hinauf.
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Beispiel

13

7 23 31 43

2   3    5 7   11    13  17 19

40

31 37 41 43 4723  29

Voll!

n=3
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Knoten teilen
13

7 23 31 43

2   3    5 7   11    13  17 19 23  29 43 47

31 37 40 41

Kein Platz mehr!
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Nach oben propagieren
13  40

7 23 31

2   3    5 7   11    13  17 19 23  29 43 47

31 37 40 41

43

(3+2):2

3:2 n:2
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Eigenschaften der B-Trees

• Sehr wenige Plattenzugriffe:
– Man liest von der Wurzel aus die passenden Knoten 
⇒ so viele Plattenzugriffe wie Ebenen des B-Trees + 
Lesen der Tupel (+ Reorganisation).

– Meist genügen 3 Ebenen eines B-Trees und die Wurzel 
wird permanent im Hauptspeicher gehalten 
⇒ 2 Plattenzugriffe.

• Für geeignetes n (z.B. n=10) kommt Teilen oder 
Verbinden von Knoten selten vor, so dass die 
Reorganisation wenig kostet.
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Darstellung von Mengen: Hashing

• Eine Hash-Funktion bildet M mögliche Elemente 
einer Menge auf eine feste Anzahl B von Beuteln ab.

• Im Idealfall befindet sich in einem Beutel genau eine 
Adresse.
h(x) � Ν liefert für einen Schlüssel x eine 
natürliche Zahl, die die Speicheradresse bezeichnet.

• Hash-Tabellen sind extrem effizient (meist nur 1 
Plattenzugriff).
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Beispiel Hash-Funktion
{braun, rot, blau, violett, türkis} M=5

• h(x)=Wortlänge – 3  ergibt 2, 0, 1, 4, 3 
perfekt, M=B, je Beutel 1 Adresse

• Buchstabenwerte ci: A-Z,Ä,Ö,Ü durchzählen
• h(x)= (∑ ci) modulo C 
– C=6 ergibt 2, 5, 0, 1, 4     perfekt, M=B (1 Element)
– C=4 ergibt 0, 1, 0, 3, 2     B=4 (1,25 Elemente)
– C=5 ergibt 1, 3, 1, 3, 1      B=2 (2,5 Elemente)

• B Adressen mit (1/B) M Elementen
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Lastfaktor

• Der Lastfaktor einer Hash-Tabelle ist bei der 
Anzahl B von Adressen und der Kardinalität M der 
darzustellenden Menge das Verhältnis M/B.

• Üblich: Lastfaktor 1,33.
• Abschätzung von M.
• Falls man sich verschätzt hat, muss neu angelegt 
werden. Aufwand in O(M)!
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Hash-Tabellen

• Hash-Tabellen werden zur Verwaltung des 
Hauptspeichers eingesetzt.

• Sie können aber auch den Sekundärspeicher 
indexieren.

• Eine Hash-Tabelle enthält n Beutel, von denen 
jeder eine Menge von Objekten (hier: Blöcke) 
enthält.

• Eine Hash-Funktion h(K) errechnet für einen 
Schlüssel einen Wert v aus [0...n], v∈ Ν.
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Beispiel einer Hash-Tabelle

4 Beutel: 0,1,2,3
Jeder Beutel enthält 2 Tupel
(+Überlauf).

Ein Tupel mit Suchschlüssel 
K gelangt in den Beutel h(K).

0

1

2

3
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Suchen, Einfügen

• Suche nach Tupel mit Suchschlüssel K: Beutel mit 
der Nummer h(K) aufsuchen und darin nach Tupel 
suchen. Idealerweise hat der Beutel genau einen 
Block, dann ist Suche in O(1).

• Einfügen eines Tupels:
Beutel mit h(K) finden und Tupel anhängen. Falls 
der Beutel voll ist, den Überlauf verwenden. Der 
Überlauf sollte nicht mehrere Blöcke umfassen.
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Linear hashing

• Indirekte Adressierung: die Beutel enthalten 
Adressen von Blöcken, nicht die Blöcke selbst.

• Dynamisch: Anzahl der Beutel wird immer so 
gewählt, dass die durchschnittliche Anzahl von
Tupeln je Beutel 80% der in einen Block passenden 
Tupel beträgt.
Da nur die Adressen verschoben werden und nicht 
die Daten, ist das möglich.
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Genauer

• Die hash-Funktion liefert eine k-bit Binärzahl.
• Eine i-bit Binärzahl, i<k, i= log2 n nummeriert die 
Beutel durch, bei gegenwärtig n Beuteln. 

• Es werden die i-hintersten Stellen von h(K) 
genommen! 
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Beispiel

k=4, i=1, n=2

3 Tupel (r=3)

Im Beutel mit der Nummer 0 sind alle Tupel, deren 
Suchschlüssel mit 0 endet, in dem mit der Nummer 1 
sind alle Tupel, deren Suchschlüssel mit 1 endet.
Soll r < 1,7 n gelten, dann muss ein neuer Beutel 
hinzugefügt werden. 

0

1

0000
1010

1111
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Partitioned hashing

• Multidimensionale Indexierung: 
– Mehrere Attribute A1,..., An sollen als Suchschlüssel 
verwendet werden. 

– Es sollen aber bei einer Suche nicht alle Attribute Ai
durch Werte vi angegeben werden müssen.

• Die bits der hash-Funktionen h1(v1),..., hn(vn) 
werden konkateniert und ergeben so die k-bit der 
Gesamt-hash-Funktion. 
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Beispiel

• Indexierung nach 
– Alter h(a)= a modulo 2
Gerades Alter ergibt 0yz, ungerades Alter 
ergibt 1yz, (y,z sind Variablen für bits).

– Gehalt h(g)=g:1000 modulo 4
Rest 1 ergibt x01, Rest 3 ergibt 11.

– Gesamt-hash-Wert ist xyz.
• h(50,75000) ergibt 011.
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Beispiel

111

110

101

100

011

010

001

000 30,120
50,100

50,120
60,100

70,110

50,75

25,60
45,60

57,400
37,140
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Was wissen Sie jetzt?

• Sie ahnen, dass Datenbanken etwas anderes sind 
als eine Sammlung von Dateien.

• Sie kennen einige Datenstrukturen zur 
Speicherverwaltung:
– B-Trees,
– Hash-Tabellen mit linear hashing und partitioned 
hashing

• Sie wissen dass jede Datenstruktur mit 
Operationen einhergeht, hier besprochen: Suchen 
und Einfügen.


