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4  Wissensbasierte Systeme

Wir haben Wissensrepräsentationsformalismen mit ihren Operatoren k e n n e n -
gelernt. Jetzt soll es darum gehen, wie solche Formalismen in komplexen Sys te-
men eingesetzt werden. Anstatt uns auf der Ebene der Interpreter mit e i n z e l n e n
Formeln auseinanderzusetzen, wollen wir jetzt das Verhalten von ganzen R e g e l -
mengen untersuchen: wie sind Regelmengen für verschiedene P r o b l e m k l a s s e n
am besten zu organisieren? Welche Problemklassen gibt es? Wie können wir s i e
beschreiben? Nach einem kurzen historischen Abriß des Weges von k l a s s i s c h e n
Expertensystemen hin zu modernen wissensbasierten Systemen stelle ich zwei
Methoden der Organisation von Problemlösungen detailliert vor: die h e u r i s t i s c h e
Klassifikation und die überdeckende Diagnose. Beide betreffen die P rob lemklas se
der Diagnose oder Klassifikation.23 Ich gehe dann auf den Wissenserwerb für w i s -
sensbasierte Systeme ein, indem ich zwei Paradigmen vorstelle: den mode l lba-
sierten Ansatz und das “schlampige“ Modellieren.

4 .1  Expertensysteme - ein historischer Abriß

Ein Expertensystem besteht nur in seinem Kern aus einer P rob lemlösungskompo-
nente. Außer der Problemlösungskomponente muß ein Expertensystem zusä tz l ich
noch über einige Komponenten verfügen, die für den Endbenutzer wichtig s ind .
So muß es eine D i a l o g k o m p o n e n t e  geben, die mit dem Endbenutzer i n t e r a g i e r t .
Einerseits muß das System Daten erfragen oder über ein Formular a n n e h m e n
können. Andererseits muß das System dem Benutzer "erklären" können, wie es z u
einer Problemlösung kam. Für denjenigen, der das Expertensystem aufbaut bzw.
wartet, ist eine R e g e l e r w e r b s k o m p o n e n t e  wichtig. Eigentlich ist auch e i n e
W a r t u n g s k o m p o n e n t e  wichtig, die die Konsistenz und Redundanzfreiheit v o n
Regelmengen prüft. Solche Werkzeuge gehören aber noch nicht zum Standard.

MYCIN, ein System zur medizinischen Diagnose, wurde an der U n i v e r s i t ä t
Stanford im Heuristic Programming Project entwickelt (Shortliffe 1976). MYCIN
diagnostiziert Krankheiten anhand von Bakterienbefunden. Es hat ein P r o d u k -
tionensystem als Repräsentationsformalismus. Es ist Bezugspunkt für die Dis-
kussion um klassische Expertensysteme. Von MYCIN ausgehend, können wir d i e
Entwicklung hin zu neueren Expertensystemen verfolgen (siehe Clancey 1983).
Diese Entwicklung wurde durch drei Aspekte vorangetrieben:

• Der Aufbau eines Expertensystems für eine Anwendung soll leichter u n d
schneller vonstatten gehen.

• Die Erklärungen an den Benutzer sollen übersichtlicher und v e r s t ä n d l i -
cher sein.

• Ein Expertensystem soll auch als Lehrsystem benutzbar sein, dessen Wis-
sensbasis von Studierenden für selbständiges Lernen genutzt w e r d e n
k a n n .

                                                
23 Ich verwende die beiden Begriffe Diagnose und Klassifikation synonym, wie es z.B. auch Frank Puppe tut.
Einige Wissenschaftler machen allerdings Unterschiede, so daß man bei jedem Artikel genau gucken muß, wie der
Autor seine Begriffe definiert!
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Der erste Schritt der Entwicklung führte von MYCIN zu EMYCIN, der E x p e r -
t e n s y s t e m h ü l l e . Statt für jede Anwendung erneut den Interpreter, die Dia-
logkomponente und die Erklärungskomponente zu schreiben, wird einmalig e i n e
Expertensystemhülle entwickelt. Eine Expertensystem-Hülle ist eine En twick -
lungsumgebung zur Erstellung eines bestimmten Expertensystems für eine A n -
wendung. Die Hülle enthält typischerweise einen Interpreter für die P rob l emlö -
sung, eine Dialogkomponente und Erwerbs-Werkzeuge. Die Regeln und Fragen a n
den Endbenutzer müssen dann anwendungsspezifisch eingegeben werden. Damit
ist der Aufbau eines Expertensystems schon etwas leichter geworden, als w e n n
alle Teile des Systems jedes Mal neu programmiert werden müßten.

Der nächste Schritt war die Trennung von Wissensarten. Ein E n d b e n u t z e r
muß das Systemverhalten nachvollziehen können. Wenn das System eine F r a g e
stellt oder wenn das System eine Problemlösung anbietet, muß es ausgeben k ö n -
nen, wie es dazu kam. Im einfachsten Falle gibt die sogenannte E r k l ä r u n g s -
k o m p o n e n t e  die Regeln und ihre Verkettung an, die zur Lösung oder zur F r a g e
an den Benutzer geführt haben. Wie verständlich diese Ausgabe ist, hängt d a n n
von den Regeln ab. Enthalten die Regeln durcheinander gemischt v e r s c h i e d e n e
Typen von Bedingungen, so ergibt die Rückverfolgung der Regelverkettung a u c h
ein Durcheinander. Berühmtes Beispiel solcher Vermischung ist die folgende R e -
gel des Expertensystems MYCIN (Shortliffe 1976), die Clancey analysiert h a t
(Clancey 1983:236):

IF Typ der Infektion ist Meningitis &
keine Labordaten sind vorhanden &
der Typ der Meningitis ist bakteroid &
der Patient ist älter als 17 Jahre &
der Patient ist Alkoholiker

THEN Evidenz für E.Coli (0.2) und Diplococcus (0.3)

Hier sind drei Bedingungstypen vermischt:

• Anwendbarkeitsbedingungen für die Regel (Meningitis, Verfügbarkeit der
Labordaten und Meningitistyp)

• sachbasierte Bedingungen (Alkoholismus begünstigt E.Coli u n d
Diplococcus)

• dialogbasierte Bedingungen (frage keine Kinder, ob sie Alkoholiker sind)

Werden diese verschiedenen Bedingungstypen unterschieden, so kann  m a n
zu sinnvollen Systemausgaben bei verschiedenen Fragen des Benutzers kommen:

• Warum wird jetzt diese Regel angewandt? -

Weil die Infektion Meningitis und vom Typ bakteroid ist und es k e i n e
Labordaten gibt.

• Warum soll festgestellt werden, ob der Patient Alkoholiker ist? -

Weil das für E.Coli und Diplococcus spricht.

• Warum wird jetzt nach dem Alter gefragt? -

Weil festgestellt werden soll, ob der Patient Alkoholiker ist und K i n d e r
keine Alkoholiker sind.
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Die sachbasierten Bedingungen sind oft - wie in diesem Fall auch - nicht a u s -
reichend explizit. Es ist in der Regel nicht angegeben, daß Alkoholismus I n f e k t i o -
nen mit eigenen Darmbakterien (eben E.Coli) begünstigt, weil Alkohol die I m -
munabwehr schwächt.

Die Fragen beziehen sich auf ein Sachwissen, das sich wie jedes Wissen ä n -
dern kann. Falls Kinder häufig zu Alkoholikern würden, wäre die Frage nach d e m
Alter nicht mehr angemessen. Auch dieses Wissen sollte sich so explizit in e i n e r
eigenen Regel finden lassen, daß es überprüfbar wird.

Der Anwender, der die Regelmenge wartet, stellt dieselben A n f o r d e r u n g e n
wie der Endbenutzer. Auch für die Wartung müssen Ergebnisse n a c h v o l l z i e h b a r
sein. Die Trennung der verschiedenen Bedingungsarten ist für die Ä n d e r b a r k e i t
einer Regelmenge entscheidend. Wenn sich Wissen über ein Gebiet ändert, m ü s -
sen die Änderungen entsprechend auch im System vorgenommen werden. W e n n
man aber die explizite Angabe nicht im System hat, in welche Regeln gerade d i e -
ses Wissen eingeflossen ist, kann das System nur sehr schwer gewartet w e r d e n .
Wenn z.B. der Alkoholismus bei Kindern zunimmt, so sollte es nur nötig sein, e i n e
Regel zu ändern, die ausdrücklich vom Alkoholismus bei Kindern handelt. Das w ä -
re eine Regel, die den Verdacht auf Alkoholismus erhöht oder erniedrigt und d a -
für bestimmte Fakten wie Alter heranzieht. Stattdessen mußte man bei MYCIN a l l e
E.Coli-Regeln durchgehen. Ebenso erlaubt die explizite Darstellung des Zusam-
menhangs zwischen Alkohol, Immunabwehr, und Bakterien erst die leichte E i n -
beziehung von neuen medizinischen Erkenntnissen. Stattdessen mußte man b e i
MYCIN alle Regeln durchsehen, ob sie indirekt auf so einem Zusammenhang b e -
ruhen. Die Trennung von Wissensarten dient also sowohl der Erklärung wie a u c h
der Wartung von Expertensystemen.

Clancey (1986) weist daraufhin, daß sich MYCIN so verhält, als verfolge es d i e
folgende Regel:

IF der Genus bekannt ist & nicht die Spezies bekannt ist
THEN nimm die für diesen Genus wahrscheinlichste Spezies an

Tatsächlich gibt es aber keine derartige Heuristik irgendwo im System. Das
Zusammenwirken verschiedener Regeln, die sich auf Genus und Spezies eines Mi -
kro-Organismus beziehen, ergibt ein solches Verhalten. Wenn das Verhalten des
Systems geändert werden soll, kann dies nicht mit lokalen, einsichtigen Ä n d e -
rungen geschehen. Der nächste Schritt in der Expertensystementwicklung w a r
die Einführung von expliziten Problemlösungsmethoden, auf die wir im n ä c h s t e n
Abschnitt eingehen werden.

Die klassischen Expertensystemhüllen, die auf EMYCIN aufbauen, sind h e u t e
als Produkte auf dem Markt und werden eingesetzt. In Deutschland wurden die Ex-
pertensystem-Hüllen TWAICE (Nixdorf) und BABYLON (GMD, VW-Gedas) entwickelt.
Gegenüber einem in einer üblichen Programmiersprache gefertigten System h a -
ben auch sie schon den Vorteil leichterer Änderbarkeit und besserer I n s p i z i e r -
barkeit. Für einen Nicht-Informatiker sind die Regeln leichter zu überprüfen a l s
ein Pascal-Programm. Dennoch ist der Detailliertheitsgrad immer noch zu f e i n ,
die Vermischung verschiedener Informationsarten immer noch gegeben. Die Ex-
pertensystemhülle D3 von der Gruppe um Frank Puppe (Puppe et al. 1996) ist e i n e
moderne Entwicklungsumgebung, die strikt zwischen dem eigentlichen S a c h b e -
reichswissen und sogenanntem Basiswissen unterscheidet.
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Expertensysteme haben sich in der Praxis längst durchgesetzt -- wenn a u c h
unter einer Fülle unterschiedlicher Namen.

• Viele wissensbasierte Systeme, die als Produkte für eine bestimmte A n w e n -
dung auf dem Markt sind, tragen nicht mehr das Etikett “Exper tensys tem“.
So ist z.B. das Tippfehlerkorrektursystem GRAMMAR das m e i s t v e r k a u f t e
Expertensystem, ohne daß es als solches vermarktet wird.

• Viele Anwendungen behandeln Konfigurationsprobleme: Rechen- o d e r
Telekommunikationsanlagen werden individuell für einen Kunden k o n f i -
guriert, wobei die Wissensbasis den aktuellen Stand all der vielen Kompo-
nenten und ihrer technischen Daten umfaßt. Ausgenutzt wird dabei, d a ß
portable Rechner zum Kunden mitgenommen werden können.

• Wartung technischer Systeme ist ein breites Anwendungsfeld. Zum e i n e n
kann ein Berater, der am Telefon die Probleme von Kunden e n t g e g e n -
nimmt und zu lösen versucht, von einem Expertensystem unterstützt w e r -
den. Zum anderen nehmen Wartungstechniker ein Expertensystem m i t
zum Kunden, wenn sie dort einen Fehler beheben sollen.

• Im Versicherungs- und Bankenwesen werden Expertensysteme e ingese tz t ,
um Rentabilität und Kreditwürdigkeit zu prüfen. Die meisten K r e d i t k a r t e n
werden mithilfe von Expertensystemen auf Mißbrauch hin geprüft: in j e -
der Nacht werden alle Buchungen auf bestimmte Muster hin ü b e r p r ü f t .
Wird ein typisches Mißbrauchsmuster erkannt, wird der betreffende K a r -
teninhaber angerufen, ob die Buchung wirklich ausgeführt werden soll.

• Einige Firmen speichern betriebliche Abläufe und organisatorisches F i r -
men-Know-How in Expertensystemen ab. Auf diese Weise werden R e o r g a -
nisationen unterstützt.

• Qualitätssicherung ist ein wichtiges Anwendungsfeld für Exper tensys teme.
Die Prüfstände zur Endkontrolle von Autos sind oft mit einem Expe r t ensy -
stem ausgestattet.

• Im Krankenhaus werden Expertensysteme eingesetzt -- z.B. um die v i e l e n
erhobenen Parameter zu einem Patienten zusammenzufassen.

• Als Nachschlagewerk sind Expertensysteme z.B. im juristischen Bereich i m
Einsatz. Die sich gegenwärtig ständig ändernden Gesetze eines B e r e i c h e s
können so nicht nur nachgeschlagen, sondern auch angewandt w e r d e n .
Beispielsweise berechnet ein System die Unterhaltszahlungen, zu d e n e n
ein Elternteil verpflichtet ist, anhand der Angaben über Einkommen d e r
Eltern und dergleichen. Das System gibt die entsprechenden Gesetzestexte
als Kommentar dazu aus, so daß die Berechnung nachvollziehbar ist..

Weltweit sind gegenwärtig (März 1997) 4929 Expertensysteme erfaßt. D a r i n
sind also nicht diejenigen Systeme enthalten, die eigentlich die Technik w i s s e n s -
basierter Systeme verwenden, aber nicht das Etikett. Dafür ist auch nicht g e p r ü f t ,
welche der erfaßten Systeme wieder aus dem Verkehr gezogen bzw. durch das
nächste Expertensystem abgelöst wurden. Die meisten Systeme wurden bisher i n
der Industrie (3741), die wenigsten im Handel (68) eingesetzt.
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4 .2  H e u r i s t i s c h e  K l a s s i f i k a t i o n

Die Analysen der ersten Expertensysteme ermöglichten ihre Beschreibung a u f
einer abstrakteren Ebene. Statt sich auf die Details einzelner Regeln e inzu las sen ,
kamen abstraktere Begriffe zur Beschreibung des Systemverhaltens auf. Diese
abstraktere Ebene wurde insbesondere von Ron Brachman, Bill Swartout, Bill
Clancey und Allen Newell formuliert. Sie wird entweder Wissensebene
(knowledge-level) oder ep i s t em ische  Ebene genannt. Damit ist wohl auch s c h o n
deutlich, daß wir uns in diesem Abschnitt mit dem Beschreibungsansatz der K I
befassen, indem wir ihn auf wissensasierte Systeme anwenden.

Als man die Produktionensysteme für Anwendungen in der KI entdeckte, w a r
man glücklich darüber, das Fachvokabular eines Experten auch vom R e c h n e r
verwenden lassen zu können. Und zwar nicht als eingefrorener Text - wie das i n
wohl allen Programmen der Fall ist - sondern mit Regeln, die die Bedeutung d e r
Vokabeln ebenfalls explizieren, so daß der Interpreter wirklich genau diese Be-
deutung benutzt statt einer opaken Folge von ASCII-Zeichen. Es stellte sich d a n n
heraus, daß die Regeln immer noch zu detailliert waren, verschiedene I n f o r m a t i -
onsarten vermengten und in einer Weise zusammenwirkten, die nicht o p e r a t i o n a l
beschrieben werden konnte. Also wurde nach Strukturierungen von Regeln u n d
Regelmengen sowie nach einem Vokabular gesucht, mit dem man die g e n e r e l l e
Methode eines Systems verständlich und operational beschreiben kann. Diese S u -
che traf mit einer anderen Entwicklungslinie der KI zusammen, die ebenfalls z u
höheren Beschreibungsformen führte (Brachman 1977, 1979). Die Quintessenz d e r
Wissensebene wurde von Newell (1982, eingeführt in Kapitel 1) a u f g e s c h r i e b e n .
Die Strukturierung und das Vokabular für die Beschreibung von S y s t e m v e r h a l t e n
wurde wesentlich von Clancey (1983, 1985, 1986) erarbeitet.

Die Problemlösungsmethode, die in MYCIN mithilfe der Regeln r e a l i s i e r t
werden    sol l te    , bestand aus drei Schritten:

• e s t a b l i s h _ h y p o t h e s e s : Beschwerden stoßen initiale Hypothesen an;

• g r o u p _ a n d _ d i f f e r e n t i a t e : Übergeordnete Diagnosen und A l t e r n a t i v e n
zur initialen Diagnose werden gefunden

• e x p l o r e _ a n d _ r e f i n e : Verfeinerung der Diagnose.

Diese Methode ließ sich bei zahlreichen Expertensystemen feststellen. V e r -
allgemeinert man es noch weiter, so kann man es als Klassifikation b e s c h r e i b e n :
Die Systeme abstrahieren von bestimmten Ausgangsdaten, bilden ab auf e i n e
Hierarchie von vorbereiteten Lösungen und verfeinern eine Lösung dann. E i n
solches Vorgehen wird allgemein Klassifikation genannt. Der Unterschied z u r
klassischen Klassifikation besteht darin, daß verschiedene Klass i f ikat ions-
hierarchien durch unsicheres Schließen verbunden werden.
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LösungenProblembeschreibungen

...

...

Diese Verbindung ist in der Graphik durch Linien ohne Pfeil angegeben. Sie
wird realisiert durch bestimmte Regeln, die eine Problemklassifikation als Bed in -
gung nehmen und eine Lösungsklassifikation als Handlung haben. Die Abs t r ak t i -
on von bestimmten Problembeschreibungen (Eingabedaten, Phänomenen) z u
Klassen von Problemen ist links mit aufwärts gerichteten Pfeilen angegeben. So
wird beispielsweise in einem medizinischen Diagnosesystem von b e s t i m m t e n
Labordaten auf das Vorhandensein eines Symptoms und von bestimmten Sympto-
men auf eine Pat ientencharakter is ierung geschlossen. Der heuristische S c h r i t t
ist dann der unsichere Schluß von dieser Pat ientencharakter is ierung auf e i n e
Krankheitsklasse. Die genaue Ausprägung der Krankheit bei diesem P a t i e n t e n
wird dann durch eine Verfeinerung in der Hierarchie der Krankheiten f e s t g e -
stellt. Abkürzungsregeln können schon bei der teilweisen Klassifikation e i n e s
Problems eine Lösungsklasse angeben.

An einem Beispiel wollen wir diese abstrakte Sicht mit konkreten Regeln i n
Beziehung zu setzen. Sinn des Beispiels ist es, die verschiedenen Ebenen, auf d e -
nen man über Expertensysteme spricht, deutlich zu machen. Dabei v e r e i n f a c h e n
wir jede Ebene stark. Wir beschreiben die Problemlösungsmethode der h e u r i s t i -
schen Klassifikation durch das Prologprogramm make_diagnosis, das
establish_hypotheses, group_and_differentiate und explore_and_refine a u f r u f t .
Die Ebene der Problemlösungsmethode ist mit der Inferenzstrategieebene v e r b u n -
den: die Problemlösungsmethode ruft Vorwärts- und Rückwärtsinferenz auf, w i e
sie oben bei Produktionensystemen beschrieben sind. Die Inferenzmethoden s i n d
nur dadurch erweitert, daß sie einen Regeltyp berücksichtigen. Die Regeln s i n d
einfache Produktionen, bei denen ein Regeltyp vorangestellt ist. Dadurch m ü s s e n
nicht bei jedem Schritt alle Regeln auf ihre Anwendbarkeit hin geprüft w e r d e n ,
sondern lediglich diejenigen eines bestimmten Typs. Auch für die Erstellung d e r
Wissensbasis ist es leichter, sich lediglich mit den Regeln eines Typs zur Zeit z u
beschäftigen. Eine Fragekomponente ist durch eine Klausel und einige Fakten a n -
gedeutet. Wichtig ist hier nur ihre Trennung vom Sachbereichswissen. Als S a c h -
bereich nehmen wir naives Wissen über Windpocken, Masern, Scharlach u n d
Gelbsucht an.

:- ensure_loaded(library(basics)).
:- load_files(´inference.pl´). % forward und backward-inference laden!
:- dynamic(context/1).
:- dynamic(already_explored/1).
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%   %%%
%%% Problemlösungsmethode heuristische Klassifikation   %%%
%%%   %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% make_diagnosis(+Complaints, -Diagnoses)
% Das System analysiert (und ggf. erfragt) die Beschwerden und gibt
% Diagnosen aus.

make_diagnosis(Complaints, Diagnoses):-
init(Complaints), % Beschwerden eintragen
establish_hypotheses(Diagnoses).

% establish_hypotheses(-Diagnoses)

% Solange Vorwärtsinferenz aus den Fakten Abstraktionen und Hypothesen
% herleiten kann, wird dies getan. Dann werden die Diagnosen durch
% Rückwärtsinferenz geprüft. Wenn die Prüfung nicht erfolgreich ist, so
% schlägt auch die erste Klausel fehl und die nächste wird probiert:
% Fragen an den Benutzer. Danach gelingt mit dem zusätlichen Wissen
% vielleicht die erste Klausel und reicht ihre geprüften Diagnosen hoch.
% Ansonsten beendet die dritte Klausel erfolgreich (und ergebnislos) das
% Diagnostizieren.

establish_hypotheses(Diagnoses):-
group_and_differentiate, % Eingabedaten abstrahieren
explore_and_refine(Diagnosis), % Diagnosen erstellen und prüfen
establish_hypotheses(Diagnoses).

establish_hypotheses(Diagnoses) :- % Wenn keine Diagnose bewiesen
% werden kann, kommt diese Klausel
% zum Zuge:

ask_general_questions, % Fragen an den Benutzer
establish_hypotheses(Diagnoses). % Vielleicht gelingt 1. Klausel

% jetzt?

establish_hypotheses(_). % Ende

% group_and_differentiate wird hier durch Vorwärtsinferenz mit Regeln des
% Typs ‘data_abstraction’ realisiert.

group_and_differentiate :-
closure(data_abstraction). % Berechnung der inferentiellen

% Hülle mit Vorwärtsinferenz

% explore_and_refine(-Diagnosis)

explore_and_refine(Diagnosis) :-
focus_hypothesis(Hypothesis), % Vorwärtsinferenz
test_hypothesis(Hypothesis), % Rückwärtsinferenz
refine_hypothesis(Hypothesis,Diagnosis). % Zurückliefern der Diagnose

% focus_hypothesis(-Hypothesis)

% Eine noch nicht untersuchte Hypothese wird zurückgeliefert und als
% untersucht markiert.

focus_hypothesis(Hypothesis) :-
forward_inference(trigger,Hypothesis),
\+ already_explored(Hypothesis),
assert(already_explored(Hypothesis),focus).
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% test_hypothesis(+Hypothesis)

% Eine Hypothese wird durch Rückwärtsinferenz untersucht. Dazu werden nur
% Regeln des Typs ‘heuristic’ verwendet.

test_hypothesis(Hypothesis) :-
backward_inference(heuristic,Hypothesis).

% refine_hypothesis(+Hypothesis,-Diagnosis)

% Durch Regeln des Typs ‘refinement’ wird aus der Hypothese eine Diagnose
% erstellt.

refine_hypothesis(Hypothesis,Diagnosis) :-
rule(refinement(Hypothesis),_,then:[Diagnosis]),
backward_inference(refinement(Hypothesis),Diagnosis).

% ask_general_questions stellt dem Benutzer Fragen.

ask_general_questions :-
(
 ask(alter,_);
 ask(temperatur,_);
 ask(hautausschlag,_);
 ask(geschwollene_mandeln,_);
 ask(geroeteter_rachen,_);
 ask(schluckbeschwerden,_);
 ask(augen_gelb,_);
 ask(haut_gelb,_)
).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%   Hilfsklauseln   %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

init([]) :-
init_inference,
retractall(already_explored(_)).

init([Complaint|Complaints]) :-
init(Complaints),
assert(context(Complaint)).

%%% Fragewissen: Attribute und ihre sprachliche Formulierung %%%

can_be_asked(alter,'Wie alt ist der Patient? ','(in Jahren)').

can_be_asked(temperatur,'Temperatur? ','(in Grad Celsius)').

can_be_asked(hautausschlag,'Liegt Hautausschlag vor? ',[ja,nein]).

can_be_asked(hautausschlag_knoten,'Besteht der Hautausschlag aus
Knoten? ', [ja,nein]).

can_be_asked(hautausschlag_blasen,'Besteht der Hautausschlag aus
Blasen? ',[ja,nein]).

can_be_asked(hautausschlag_flecken,'Besteht der Hautausschlag aus
Flecken? ',[ja,nein]).

can_be_asked(hautausschlag_punkte,'Besteht der Hautausschlag aus
Punkten? ',[ja,nein]).

can_be_asked(geschwollene_mandeln,'Sind die Mandeln geschwollen? ',
[ja,nein]).

can_be_asked(geroeteter_rachen,'Ist der Rachen geroetet? ',[ja,nein]).



93

can_be_asked(schluckbeschwerden,'Liegen Schluckbeschwerden vor? ' ,
[ja,nein]).

can_be_asked(augen_gelb,'Sind die Augen gelb verfaerbt? ',[ja,nein]).

can_be_asked(haut_gelb,'Ist die Haut gelb verfaerbt? ',[ja,nein]).

can_be_asked(labortest_masern,'Labortest auf Masern: Ergebnis? ' ,
[positiv,negativ]).

can_be_asked(labortest_windpocken,'Labortest auf Windpocken:
Ergebnis? ', [positiv,negativ]).

can_be_asked(labortest_streptokokken,'Labortest auf Streptokokken:
Ergebnis? ',[positiv,negativ]).

can_be_asked(labortest_hepatitis,'Labortest auf Hepatitis: Ergebnis? ',
[positiv,negativ]).

can_be_asked(windpocken_bereits_gehabt,'Hat der Patient die Windpocken
bereits gehabt? ',[ja,nein]).

can_be_asked(masern_bereits_gehabt,'Hat der Patient die Masern bereits
gehabt? ',[ja,nein]).

can_be_asked(leberfunktion,'Test der Leber: Ergebnis? ',
[gestoert,normal]).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%   %%%
%%% Wissensbasis: Regeln   %%%
%%%   %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Qualitativ

rule(data_abstraction,if:[l(temperatur,37)],then:[fieber=nein]).

rule(data_abstraction,if:[ge(temperatur,37),l(temperatur,38)],
then:[leichtes_fieber=ja]).

rule(data_abstraction,if:[ge(temperatur,38),l(temperatur,39)],
then:[mittleres_fieber=ja]).

rule(data_abstraction,if:[ge(temperatur,39)],then:[hohes_fieber=ja]).

% Generalisierung

rule(data_abstraction,if:[leichtes_fieber=ja],then:[fieber=ja]).

rule(data_abstraction,if:[mittleres_fieber=ja],then:[fieber=ja]).

rule(data_abstraction,if:[hohes_fieber=ja],then:[fieber=ja]).

% Definition

rule(data_abstraction,if:[augen_gelb=ja],then:[gelbfaerbung=ja]).

rule(data_abstraction,if:[haut_gelb=ja],then:[gelbfaerbung=ja]).

% Definition

rule(data_abstraction,if:[fieber=ja,geschwollene_mandeln=ja],
then:[angina=ja]).

rule(data_abstraction,if:[fieber=ja,geroeteter_rachen=ja],
then:[angina=ja]).
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rule(data_abstraction,if:[fieber=ja,schluckbeschwerden=ja],
then:[angina=ja]).

% Trigger

rule(trigger,if:[fieber=ja,hautausschlag=ja],then:[windpocken=ja]).

rule(trigger,if:[fieber=ja,hautausschlag=ja],then:[masern=ja]).

rule(trigger,if:[angina=ja,hautausschlag=ja],then:[scharlach=ja]).

rule(trigger,if:[gelbfaerbung=ja],then:[gelbsucht=ja]).

% Heuristische Regeln

rule(heuristic,if:[fieber=ja,hautausschlag_knoten=ja,windpocken_bereits_g
ehabt=nein],then:[windpocken=ja]).

rule(heuristic,if:[fieber=ja,hautausschlag_blasen=ja,windpocken_bereits_g
ehabt=nein],then:[windpocken=ja]).

rule(heuristic,if:[fieber=ja,hautausschlag_punkte=ja,masern_bereits_gehab
t=nein],then:[masern=ja]).

rule(heuristic,if:[hohes_fieber=ja,hautausschlag_flecken=ja,angina=ja],
then:[scharlach=ja]).

rule(heuristic,if:[gelbfaerbung=ja],then:[gelbsucht=ja]).

% Verfeinerungsregeln

rule(refinement(windpocken=ja),if:[labortest_windpocken=positiv],
then:[windpocken=ja]).

rule(refinement(masern=ja),if:[labortest_masern=positiv],
then:[masern=ja]).

rule(refinement(scharlach=ja),if:[labortest_streptokokken=positiv],
then:[scharlach=ja]).

rule(refinement(gelbsucht=ja),if:[gelbfaerbung=ja,alter=0],
then:[gelbsucht_von_neugeborenem=ja]).

rule(refinement(gelbsucht=ja),if:[labortest_hepatitis=positiv],
then:[gelbsucht_a=ja]).

rule(refinement(gelbsucht=ja),if:[gelbfaerbung=ja,leberfunktion=gestoert]
, then:[gelbsucht_b=ja]).

4 .3  Überdeckende  Diagnose

Wie die heuristische Klassifikation als Abstraktion aus dem System MYCIN h e r v o r -
gegangen ist, so ist die überdeckende Diagnose aus dem System MOLE h e r v o r g e -
gangen (Eshelman et al. 1987). MOLE wurde zur Fehlerdiagnose bei t e c h n i s c h e n
Geräten eingesetzt. Wir illustrieren hier die überdeckende Diagnose anhand des -
selben Sachbereichs, damit die Unterschiede und Gemeinsamkeiten deutlich w e r -
den. Während die heuristische Klassifikation von den Symptomen auf ihre U r s a -
che zu schließen versucht, betrachtet die überdeckende Diagnose mögliche U r s a -
chen und überprüft, wie gut diese die Symptome erklären. Sind bei der h e u r i s t i -
schen Klassifikation die Regeln von der Art
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Symptom --> Diagnose

so sind sie bei der überdeckenden Diagnose gerade umgekehrt:

Diagnose --> Symptom.

Die heuristische Klassifikation modelliert die Hinweiskraft verschiedener S y m -
ptome für Diagnosen. Die überdeckende Diagnose modelliert K a u s a l b e z i e h u n g e n
zwischen Ursachen und Wirkungen. Die heuristische Klassifikation v e r w e n d e t
General is ierungsbeziehungen zwischen Symptomen (Datenabstraktion) u n d
möglichen Diagnosen. Die überdeckende Diagnose geht von einer direkten V e r -
bindung zwischen Ursache und Wirkung aus.

Die Vorstellung bei dieser Problemlösungsmethode ist, daß es Zustände gibt, d i e
erklärt werden müssen und Zustände, die Erklärungen darstellen.

windpocken scharlach

angina

hautausschlag=ja fieber=ja schluckbeschwerden=ja

bottom

hautausschlag_flecken=ja

Zwischen diesen verschiedenen Arten von Zuständen gibt es Relationen. Der P f e i l
zwischen Angina und Hautausschlag steht für die Relation will_cause . Der P f e i l
zwischen Angina und schluckbeschwerden=ja repräsentiert die Re la t ion
may_cause . Weiterhin gibt es positive Evidenzen für Zustände; z. B. wird ein f l e k -
kenförmiger Hautausschlag hier als Hinweis auf Scharlach benutzt. Das Ziel ist e s
einen Zustand (oder eine möglichst kleine Menge von Zuständen) zu finden, d e r
alle Symptome erklärt.

Die Methode besteht aus zwei Schritten:

 cover stellt mögliche Ursachen zusammen für diejenigen Zustände, die e r -
klärt werden müssen.

d i f f e r e n t i a t e  sucht nach möglichst wenigen Ursachen (exc lus iv i t y ), d i e
möglichst viele Zustände erklären (exhaus t iv i ty ) .

Die überdeckende Diagnose verwendet ausschließlich die R ü c k w ä r t s i n f e r e n z .
Allerdings werden für die Auswahl zwischen verschiedenen Diagnosen auch R e -
geln verwendet, die von Symptomen auf Diagnosen schließen. Dies ließe sich w o -
möglich auch durch Vorwärtsinferenz über kausalen Regeln erreichen. Das f o l -
gende Programm ist an die Untersuchung von Guus Schreiber a n g e l e h n t
(Schreiber 1992).

:- ensure_loaded(library(basics)).

:- ensure_loaded(library(sets)).

:- ensure_loaded(library(not)).
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:- load_files('inference.pl').

:- dynamic(context/1).

:- dynamic(considered_explanation/2).

:- dynamic(accepted_explanation/2).

:- dynamic(rejected_explanation/2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%   %%%
%%% Problemlösungsmethode überdeckende Diagnose   %%%
%%%   %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% make_diagnosis(+Complaints,-Cause)

% Das System analysiert Beschwerden, findet mögliche Ursachen, prüft sie
% und trägt sie in die Faktenbasis ein. Alle akzeptierten Erklärungen für
% die Beschwerden werden als Diagnose Cause zurückgeliefert.

make_diagnosis(Complaints,Cause) :-

init(Complaints), % Beschwerden eintragen. Aus technischen
% Gründen werden Beschwerden zu
% accepted_explanation eines initialen
% Zustands.

cover_and_differentiate, % Erklärungen für Beschwerden suchen.
findall(accepted_explanation(X,Y),accepted_explanation(X,Y),Cause).

% Ergebnis in Liste aufsammeln.

% cover_and_differentiate

% Zunächst werden die möglichen Ursachen für die Beschwerden in der
% Faktenbasis gesucht (cover). Dann wird anhand der Regeln exhaustivity,
% exclusivity, anticipate1, anticipate2, prefer1, prefer2 und rule_out
% die „plausibelste“ Menge von Ursachen für die Beschwerden gesucht.

cover_and_differentiate :-
(
 cover;         % cover
 exhaustivity;  % differentiate
 exclusivity;
 anticipate1;
 anticipate2;
 prefer1;
 prefer2;
 rule_out
),
cover_and_differentiate.

cover_and_differentiate.

% cover

% Es werden alle potentiellen Erklärungen für einen Zustand S1 gesucht,
% der bereits einen anderen Zustand _S2 potentiell erklärt. Die
% Erklärungen werden als considered_explanation eingetragen, damit sie
% von den anderen Regeln überprüft werden können. Nur die Veränderung der
% Faktenbasis zählt!
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cover :-
accepted_explanation(S1,_S2), % Finde ein S1, das noch erklärt
\+ considered_explanation(_S3,S1) % werden muß.
\+ rejected_explanation(_S5,S1),   % Erklärung bereits gescheitert?
findall(S4,(cover_relation(S4,S1), % alle potentiellen Ursachen für

               \+ rejected_explanation(S4,S1), % S1 suchen, die noch
  % nicht abgelehnt sind

       assertt(considered_explanation(S4,S1),cover)), % und ein-
  [_|_]). % tragen.

% exhaustivity

% S1 ist mögliche Ursache für S2. Es gibt keine andere mögliche Ursache
% für S2. Deshalb wird S1 als Erklärung für S2 akzeptiert.

exhaustivity :-
focus_state_pos(S2), % Fokussieren auf S2,
considered_explanation(S1,S2),  % eine Wirkung von S1.
\+ (considered_explanation(S3,S2), % Es gibt keine andere mögliche
\+ S1=S3), % Ursache für S2.
assertt(accepted_explanation(S1,S2),exhaustivity).

% exclusivity

% S1 ist mögliche Ursache für S3 und S4. Auch S2 ist mögliche Ursache für
% S3, erklärt aber nichts anderes. Deshalb wird S1 als Erklärung für S3
% und S4 akzeptiert.

exclusivity :-
focus_state_pos(S3), % Fokussieren auf S3,
considered_explanation(S1,S3), % S3 ist eine Wirkung von S1.
considered_explanation(S1,S4), % S1 kann auch S4 erklären.
\+ S3=S4,
\+ (considered_explanation(S2,S3), % S2 ist eine alternative

% Erklärung für S3, die aber
    considered_explanation(S2,S5), % nichts anderes erklärt.
    \+ S3=S5),
assertt(accepted_explanation(S1,S3),exclusivity).

% anticipate2

% S1 ist mögliche Ursache für S2. S1 wird ausgeschlossen, wenn eine
% notwendige Wirkung von S1 nicht beobachtet wird.

anticipate2 :-
focus_state_neg(S2), % Fokussieren auf S2,
considered_explanation(S1,S2), % eine Wirkung von S1.
anticipate_relation(S1,S3), % Finde S3, eine andere Wirkung
\+ S2=S3, % von S1.
not_finding_state(S3), % Wenn S3 nicht beobachtet wird,
assertt(rejected_explanation(S1,S2),anticipate2), % ist S1 auch keine

  % Erklärung für S2
assertt(rejected_explanation(S1,S3),anticipate2), % und S3.
retractt(considered_explanation(S1,S2),anticipate2),% S1 wird nicht
retractt(considered_explanation(S1,S3),anticipate2),% mehr betrachtet
retractt(accepted_explanation(S1,S2),anticipate2),  % und schon gar
retractt(accepted_explanation(S1,S3),anticipate1). %nicht akzeptiert.



98

% anticipate1

% S1 ist mögliche Ursache für S2. S1 wird vorerst als Erklärung
% akzeptiert, weil eine notwendige Wirkung von S1 beobachtet wurde.

anticipate1 :-
focus_state_pos(S2),
considered_explanation(S1,S2),
anticipate_relation(S1,S3),
\+ S2=S3,
finding_state(S3),
assertt(accepted_explanation(S1,S2),anticipate1),
assertt(accepted_explanation(S1,S3),anticipate1).

% prefer1

% S1 wird als Diagnose für S2 akzeptiert, weil per Rückwärtsinferenz
% positive Evidenz für S1 gefunden wird. Von prefer_connection werden
% Regeln der Form ‘if: Symptom then: Diagnose’ verwendet.

prefer1 :-
focus_state_pos(S2),
considered_explanation(S1,S2),
prefer_connection(S1,S2),
assertt(accepted_explanation(S1,S2),prefer1).

% prefer2

% S1 wird als Diagnose für S2 akzeptiert, weil S2 eine sichere Begründung
% für S1 ist.prefer_state verwendet Regeln der Form ‘if: Symptom then:
% Diagnose’ per Rückwärtsinferenz.

prefer2 :-
focus_state_pos(S2),
considered_explanation(S1,S2),
prefer_state(S1),
assertt(accepted_explanation(S1,S2),prefer2).

% rule_out

% Wenn es einen Befund gibt, der bei der Diagnose S1 nicht vorkommen
% kann, wird S1 nicht weiter betrachtet. rule_out_state verwendet
% Rückwärtsinferenz, um den mit S1 inkompatiblen Befund zu finden.

rule_out :-
focus_state_neg(S2),
considered_explanation(S1,S2),
rule_out_state(S1),
assertt(rejected_explanation(S1,S2),rule_out),
retract(considered_explanation(S1,S2),rule_out),
retract(accepted_explanation(S1,S2),rule_out).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% focus_state_pos(-Focus)

% Fokussieren auf einen Zustand, der als Ursache bereits akzeptiert
% wurde, nun aber selbst Wirkung einer tieferliegenden Ursache sein kann.
% Diese tieferliegende Ursache ist noch nicht als Erklärung akzeptiert.

focus_state_pos(Focus) :-
accepted_explanation(S1,_S2),
considered_explanation(_S3,S1),
\+ accepted_explanation(_S4,S1),
Focus=S1.

% focus_state_neg(-Focus)
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% Fokussieren auf einen Zustand, der als Ursache und Wirkung bereits
% akzeptiert wurde.

focus_state_neg(Focus) :- % Fokussieren auf einen Zustand mit
% akzeptierter Erklärung

accepted_explanation(S1,_S2),
accepted_explanation(_S3,S1),
Focus=S1.

% assertt/2 und retractt/2 verhalten sich wie assert/1 und retract/2. Es
% wird lediglich die zweite Argumentstelle zu Kontrolle auf den
% Bildschirm ausgegeben und die Prädikate schlagen nie fehl.

finding_state(State) :-
accepted_explanation(State,_).

finding_state(State) :-
get_attribute(State,_Attribute),
istrue(State).

not_finding_state(State) :-
rejected_explanation(State,_).

not_finding_state(State) :-
get_attribute(State,_Attribute),
not(istrue(State)).

cover_relation(S1,S2) :-
rule(will_cause,if:[S1],then:[S2]).

cover_relation(S1,S2) :-
rule(may_cause,if:[S1],then:[S2]).

anticipate_relation(S1,S2) :-
rule(will_cause,if:[S1],then:[S2]).

prefer_state(S1) :-
backward_inference(positive_evidence_state,S1).

prefer_connection(S1,S2) :-
backward_inference(positive_evidence_connection,[S1,S2]).

rule_out_state(S1) :- 
backward_inference(negative_evidence_state,not(S1)).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Hilfsklauseln   %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

init([]) :-
retractall(context(_)),
retractall(considered_explanation(_,_)),
retractall(accepted_explanation(_,_)),
retractall(rejected_explanation(_,_)).

init([Complaint|Complaints]) :-
init(Complaints),
add_complaint(Complaint).
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add_complaint(Complaint) :-
assertt(context(Complaint),add_complaint),
assertt(considered_explanation(Complaint,complaint),add_complaint),
assertt(accepted_explanation(Complaint,complaint),add_complaint).

% Fragewissen: Attribute und ihre Formulierung

can_be_asked(alter,'Wie alt ist der Patient? ','(in Jahren)').

can_be_asked(fieber,'Hat der Patient Fieber? ',[ja,nein]).

can_be_asked(hautausschlag,'Liegt Hautausschlag vor? ',[ja,nein]).

can_be_asked(hautausschlag_knoten,'Besteht der Hautausschlag aus
Knoten? ', [ja,nein]).

can_be_asked(hautausschlag_blasen,'Besteht der Hautausschlag aus
Blasen? ', [ja,nein]).

can_be_asked(hautausschlag_flecken,'Besteht der Hautausschlag aus
Flecken? ', [ja,nein]).

can_be_asked(hautausschlag_punkte,'Besteht der Hautausschlag aus
Punkten? ', [ja,nein]).

can_be_asked(geschwollene_mandeln,'Sind die Mandeln geschwollen? ',
[ja,nein]).

can_be_asked(geroeteter_rachen,'Ist der Rachen geroetet? ',[ja,nein]).

can_be_asked(schluckbeschwerden,'Liegen Schluckbeschwerden vor? ',
[ja,nein]).

can_be_asked(augen_gelb,'Sind die Augen gelb verfaerbt? ',[ja,nein]).

can_be_asked(haut_gelb,'Ist die Haut gelb verfaerbt? ',[ja,nein]).

can_be_asked(alkoholiker,'Ist der Patient Alkoholiker? ',[ja,nein]).

can_be_asked(windpocken_bereits_gehabt,'Hat der Patient die Windpocken
bereits gehabt? ',[ja,nein]).

can_be_asked(masern_bereits_gehabt,'Hat der Patient die Masern bereits
gehabt? ',[ja,nein]).

can_be_asked(leberfunktion,'Test der Leber: Ergebnis? ',
[gestoert,normal]).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%   %%%
%%% Wissensbasis: Regeln   %%%
%%%   %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%if: Ursache, then: Wirkung

rule(will_cause,if:[angina],then:[fieber=ja]).

rule(may_cause,if:[angina],then:[geschwollene_mandeln=ja]).

rule(may_cause,if:[angina],then:[geroeteter_rachen=ja]).

rule(may_cause,if:[angina],then:[schluckbeschwerden=ja]).

rule(will_cause,if:[windpocken],then:[fieber=ja]).

rule(will_cause,if:[windpocken],then:[hautausschlag=ja]).

rule(will_cause,if:[masern],then:[fieber=ja]).
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rule(will_cause,if:[masern],then:[hautausschlag=ja]).

rule(will_cause,if:[scharlach],then:[angina]).

rule(will_cause,if:[scharlach],then:[hautausschlag=ja]).

rule(may_cause,if:[gelbsucht],then:[augen_gelb=ja]).

rule(may_cause,if:[gelbsucht],then:[haut_gelb=ja]).

rule(will_cause,if:[gelbsucht_von_neugeborenem],then:[gelbsucht]).

rule(will_cause,if:[gelbsucht_a],then:[gelbsucht]).

rule(will_cause,if:[gelbsucht_b],then:[gelbsucht]).

% if: Symptom, then: Diagnose

rule(positive_evidence_state,if:[hautausschlag_knoten=ja],
then:[windpocken]).

rule(positive_evidence_state,if:[hautausschlag_blasen=ja],
then:[windpocken]).

rule(negative_evidence_state,if:[hautausschlag_knoten=nein,
hautausschlag_blasen=nein],
then:[not(windpocken)]).

rule(positive_evidence_state,if:[hautausschlag_punkte=ja],then:[masern]).

rule(negative_evidence_state,if:[hautausschlag_punkte=nein],
then:[not(masern)]).

rule(positive_evidence_state,if:[hautausschlag_flecken=ja],
then:[scharlach]).

rule(negative_evidence_state,if:[hautausschlag_flecken=nein],
then:[not(scharlach)]).

rule(positive_evidence_state,if:[leberfunktion=gestoert],
then:[gelbsucht_b]).

rule(positive_evidence_connection,if:[ge(alter,18),alkoholiker=ja],
then:[[gelbsucht_b,gelbsucht]]).

rule(positive_evidence_connection,if:[alter=0],
then:[[gelbsucht_von_neugeborenem,gelbsucht]]).

rule(negative_evidence_state,if:[windpocken_bereits_gehabt=ja],
then:[not(windpocken)]).

rule(negative_evidence_state,if:[masern_bereits_gehabt=ja],
then:[not(masern)]).

ACHTUNG! Die Problemlösungsmethode ist hier zur Verdeutlichung in Prolog g e -
schrieben. Es ist aber nur    f a s t    der vollständige Prolog-Code angegeben, der n o t -
wendig ist, damit das Programm tatsächlich eine Diagnose durchführt. Es f e h l e n
aber lediglich Kleinigkeiten, die noch einmal Platz beansprucht und die L e s b a r -
keit beeinträchtigt hätten. Was deutlich werden sollte, ist der Zusammenhang zwi-
schen den sehr abstrakten Begriffen einerseits, in denen über w i s sensbas i e r t e
Systeme gesprochen wird, und den Inferenzen und konkreten Regeln a n d e r e r -
seits, die wir im Kapitel 3 gesehen haben. Auch zeigen die beiden P rob l emlö -
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sungsmethoden, welche Gedanken zur Strukturierung eines Wissensbasis m a n
sich machen muß, bevor man ein Expertensystem erstellt.

4 .4  Wissenserwerb für  Expertensysteme

Wir haben im vorigen Abschnitt gesehen, daß die Bemühungen um eine V e r k ü r -
zung der Zeit, die Systementwickler für den Aufbau eines konkreten Expe r t ensy -
stems brauchen, zur Trennung von Wissensarten und expliziter R e p r ä s e n t a t i o n
der Problemlösung geführt haben. Um den Wissenserwerb für Expertensysteme zu
verbessern, mußte man also zunächst die Expertensystem-Hüllen verbessern. Das
Problem des Wissenserwerbs ist damit aber noch nicht gelöst! Es wird eine E n t -
wicklungsumgebung gebraucht, die das Eintragen und Testen von Wissen u n t e r -
stützt. Eine solche Entwicklungsumgebung muß die folgenden Tätigkeiten u n t e r -
s tü tzen:

• Inspektion vorhandener Daten und Regeln

• Erweitern der vorhandenen Daten und Regeln

• Prüfen und Verbessern vorhandener Daten und Regeln.

4 .4 .1  KADS

Da viele der neueren Arbeiten zum Wissenserwerb für Expertensysteme auf das
Paradigma von KADS (knowledge acquisition and documentation system) a u f -
bauen, soll es hier kurz vorgestellt werden. Die Grundidee von KADS ist die S t r u k -
turierung des Wissenserwerbs in zwei Phasen und vier Ebenen (Wielinga et a l .
1992). Die zwei Phasen sind

• Entwicklung eines conceptual model , das das zu entwickelnde E x p e r t e n -
system deklarativ beschreibt;

• Umsetzung des conceptual model  in ein design model , das die I m p l e m e n -
tierung des Expertensystems beschreibt.

In der ersten Phase wird Wissen über die Anwendung erhoben. Es wird e i n e
dem Sachbereich und der Aufgabenstellung nahe Terminologie verwendet u n d
noch nicht an die Operationalisierung als System gedacht. Die W i s s e n s e r h e b u n g
muß nicht von InformatikerInnen vorgenommen werden, sondern kann a u c h
von PsychologInnen oder Sachbereichsexperten durchgeführt werden. In d e r
zweiten Phase geht es um die Umsetzung des Wissens in ein operationales System.
Das design model  verwendet Informatikterminologie. Es stellt die Dokumenta t ion
des Expertensystems dar, während das conceptual model die Spezifikation darstellt.

Das conceptual model  ist die Zusammenfassung von detaillierteren Modellen.
Es stellt die oberste von vier Ebenen dar. Diese Ebenen sind:

• O r g a n i s a t i o n s m o d e l l  (organizational model) und A n w e n d u n g s m o d e l l
(application model): hier wird die Einbettung eines Prozesses (z.B. Diagno-
se) in eine Organisation (z.B. Krankenhaus) und die Funktionalität des z u
entwickelnden Systems erfaßt.
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• A u f g a b e n m o d e l l  (task model): hier wird die Funktionalität des Gesamtsy-
stems in einzelne Aufgaben unterteilt, die wiederum aus Teilaufgaben b e -
stehen können.

• K o o p e r a t i o n s m o d e l l  (model of cooperation) und S a c h b e r e i c h s m o d e l l
(model of expertise): Im Kooperationsmodell werden den Aufgaben b e -
stimmte Akteure zugeordnet, die sie ausführen sollen - Akteure k ö n n e n
Programme oder Menschen sein. Im Sachbereichsmodell wird spezif iz ier t ,
wie die Aufgaben zu lösen sind.

• Das conceptual  m o d e l  faßt Kooperationsmodell und Sachbe re i chsmode l l
zusammen .

Der KADS-Ansatz zum Wissenserwerb wird m o d e l l b a s i e r t  genannt. In d e n
neueren Arbeiten werden insbesondere formale Repräsentationen für die Spezi-
fikation (also das conceptual model) diskutiert, wobei entweder die Trennung v o m
design model  aufgehoben wird, indem diese Repräsentationen operational s ind ,
oder formale Beweisverfahren untersucht werden, mit denen die formale Spezif i -
kation zur Prüfung der Implementation eingesetzt werden kann. Wir können u n -
sere Darstellung der Problemlösungsmethoden heuristische Klassifikation u n d
überdeckende Diagnose als ein conceptual model  interpretieren. Da wir es in P r o -
log geschrieben haben, ist die Trennung zum design model  aufgehoben. U n s e r e
Programme sind direkte Umsetzungen der Spezifikation dieser P r o b l e m l ö s u n g s -
methoden, die Guus Schreiber in der KADS Spezifikationssprache ML2 v o r g e n o m -
men hat (Schreiber 1992).

4 .4 .2  Sloppy Model ing

Frühe Arbeiten betrachteten den Wissenserwerbsprozeß als Transfer von Wissen
eines Experten in ein System. Diese Sicht setzt voraus, daß Experten über explizi tes
und erklärbares Wissen verfügen, das sie zur Lösung ihrer Aufgaben h e r a n z i e -
hen. Dies ist aber meist nicht der Fall. Gerade die Anfänger verwenden explizi tes
Wissen zur Problemlösung - Experten haben Fertigkeiten entwickelt, die i h n e n
selbst unbewußt sind. Der Unterschied zwischen Fertigkeiten und Wissen b e w i r k t ,
daß das, was Experten als Erklärung für ihr Verhalten angeben können, n i c h t
unbedingt die Grundlage ihrer Fähigkeit, Probleme zu lösen, wiedergibt. In d e r
Psychologie wurde festgestellt, daß die Erklärung eigenen Verhaltens mit d e n s e l -
ben Prozessen vorgenomen wird, wie die Erklärung des Verhaltens anderer Leute .
Es gibt folglich keinen direkten Zugang zu den eigenen kognitiven Prozessen. Es
ist daher nicht angemessen, Wissen über einen Sachbereich und P rob l emlö -
sungsverhalten einfach dadurch zu erheben, daß man Experten befragt und i h r e
Antworten operational repräsentiert. Die Fragen können in dem Experten e v e n t u -
ell die Konstruktion von Erklärungen auslösen. Experten geben dann ad hoc A n t -
worten, die einer naiven Theorie entsprechen. Naive Theorien sind E r k l ä r u n g e n ,
die noch nicht kritisch überprüft wurden. Natürlich ist es nicht angemessen, Ex-
pertensysteme zu bauen, deren Wissensbasis eine naive Theorie wiedergibt!

Wissenserwerb besteht also nicht darin, vorhandenes Wissen einfach z u
formalisieren und zu operationalisieren. Vielmehr besteht die Aufgabe des Wis-
senserwerbs darin, einen Sachbereich zu modellieren. Ein Expertensystem z u
bauen, heißt also, eine operationale Beschreibung für die Problemlösung in e i -
nem Sachbereich zu konstruieren. Die Aufgabe eines Wissenserwerbssystem b e -
steht darin, diesen Prozeß zu unterstützen. Als Herausforderung für Wissens-
erwerbssysteme habe ich die "schlampige Modellierung" (sloppy modeling) e i n -
geführt (Morik 1989):
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• Man kann niemals erwarten, ein vollständiges, korrektes und a n g e m e s s e -
nes Modell für einen Sachbereich, eine Aufgabenstellung erreichen z u
können. Vielmehr wird sich jedes auch noch so gründlich erarbeitete Mo-
dell nach einiger Zeit als unvollständig, inkorrekt oder u n a n g e m e s s e n
herausstellen, entweder weil neue Erkenntnisse erzielt wurden oder w e i l
sich der Sachbereich geändert hat.

• Ein System, das den Wissenserwerbsprozeß unterstützt, sollte seinen B e n u t -
zern so viel Freiheit wie möglich gewähren. Es sollte die Mode l l i e rungs -
tätigkeit unterstützen, die ein kreativer Prozeß ist. Das System sollte n i c h t
auf Festlegungen bestehen, die ein Benutzer (noch) nicht treffen kann.

Der zweite Punkt grenzt sloppy mode l ing  deutlich von dem Verfahren d e r
schrittweisen Verfeinerung ab. Bei der schrittweisen Verfeinerung wird dem Be-
nutzer ein bestimmtes Vorgehen aufgezwungen: jede Begriffsbestimmung o d e r
Regel schränkt die Möglichkeiten weiterer Definitionen oder Regeln ein. Mit
vorhergehenden Bestimmungen widersprüchliche Definitionen werden von S y -
stemen, die schrittweise Verfeinerung anwenden, v e r b o t e n .24 Nun ist es s i c h e r -
lich eine Hilfe, wenn ein System Widersprüche feststellen kann. Es sollte j e d o c h
dem Benutzer überlassen, wann und in welcher Weise er diese Widersprüche a u f -
lösen möchte. Der zweite Punkt grenzt sloppy mode l ing  ebenfalls von dem i so-
lierten maschinellen Lernen ab. Dort werden zunächst nur Beispiele erstellt, a u s
denen dann Regeln gelernt werden. Auch dies zwingt dem Benutzer ein b e s t i m m -
tes Vorgehen auf. So kann der Benutzer nicht diejenigen Regeln, die er b e r e i t s
entwickelt hat, in das System eingeben, sondern muß sich auf Beispiele b e s c h r ä n -
ken. Ein Wissenserwerbssystem im Paradigma des sloppy mode l ing  ermöglicht e s
seinen Benutzern, sowohl vom Allgemeinen zum Speziellen (schrittweise V e r f e i -
nerung) wie auch vom Speziellen zum Allgemeinen (Lernen aus Beispielen) v o r -
z u g e h e n .

Zur Modellierung gehören die folgenden Schritte, die von einem Wissens-
erwerbssystem unterstützt werden müssen:

• Der Rahmen des Modells wird erarbeitet, die Signatur festgelegt, die g r o b e
Struktur des Modells umrissen.

• Der Rahmen wird ausgearbeitet, Begriffe definiert, Regeln aufges te l l t ,
Fakten erhoben.

• Das Modell wird überprüft, fehlende Bestimmungen und W i d e r s p r ü c h e
entdeckt und es wird ausprobiert, ob sich damit Probleme der A n w e n d u n g
auch lösen lassen.

Wichtig beim sloppy mode l ing  ist es nun, daß alle diese Schritte vom Sys tem
unterstützt werden und zwar so, daß alle Entscheidungen revidierbar sind. Es w i r d
nicht davon ausgegangen, daß ein Schritt vollständig bearbeitet wird, bevor d e r
nächste angegangen wird! Benutzer können frei zwischen diesen Schritten h i n -
und herspringen. Alle Festlegungen, die einmal getroffen wurden, können v o m
System unterstützt wieder rückgängig gemacht werden. So kann z.B. anhand des
Versuchs, mit dem bisher operationalisierten Modell ein Problem zu lösen, f e s t g e -

                                                
24  Termsubsumtionssysteme werden z.B. meist so aufgebaut, daß zunächst die Oberbegriffe und dann die Unter-
begriffe in die Tbox eingetragen werden.
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stellt werden, daß die Signatur unangemessen ist. In dem Falle muß das Wis-
senserwerbssystem die Veränderung der Signatur unterstützen. Ein Beispiel m a g
dies verdeutlichen. Nehmen wir an, wir hätten vor, die verschiedenen Diagnosen
bei der Gelbfärbung der Haut zu modellieren. Vielleicht hätten wir mit dem Fall
des Patienten Tim und der einfachen Regel angefangen

color (yellow) --> disturbed (liver)

Diese Repräsentation wird sich schon bald als ungeschickt h e r a u s s t e l l e n .
Zum ersten kann diese Regel nicht verallgemeinert werden, da die Regel

color(X) --> disturbed (Z)

alle möglichen Organe bei allen möglichen Farben gestört sein läßt. Die Variable Z
ist nicht durch Bedingungen eingeschränkt. Wir könnten nun ein Prädikat r e l a t i -
on einführen, das eine Beziehung zwischen einer Farbe und einem Organ h e r -
stellt. Ein Faktum wäre dann

relation(yellow, liver)

und die Regel wäre

relation (X, Y) & color (X) --> disturbed (Y).

Zum zweiten macht die Regel nicht deutlich, wessen Hautfarbe gelb ist - e s
gilt für alle Patienten. Also werden wir die Signatur ändern wollen und statt des
einstelligen Prädikats color das zweistellige color2 einführen. Ein System, das d i e
Repräsentationsänderung unterstützt, kann nun per Vorwärtsinferenz mit d e r
T r a n s f o r m a t i o n s r e g e l

color(X) & patient (Y) --> color2 (X,Y)

für alle bereits eingetragenen Fakten für co lor  und das Faktum

patient (tim)

die entsprechenden co lor2  -Fakten erzeugen. Entsprechend muß aber auch die R e -
gel geändert werden:

color2 (X,Y) & relation (X, Z) --> disturbed (Z,Y)

Nun ist allerdings Tim, wenn denn einmal eine Gelbfärbung bei ihm a u f g e -
treten ist, für alle Zeiten gelb. Vielleicht wollen wir also lieber das v i e r s t e l l i ge
Prädikat color4 einführen, das Person, Farbe und Anfangs- und Endzeitpunkt d e r
Gelbfärbung angibt. Entsprechend wird dann auch das Prädikat d i s tu rbed  v i e r s t e l -
lig. Es zeigt sich nun aber, daß außer blau und gelb andere Farben keine med iz in i -
sche Bedeutung haben. Insofern wollen wir vielleicht statt der allgemeinen P r ä -
dikate colour4 und relat ion das dreistellige Prädikat yellow einführen. Die e n t s p r e -
chenden Transformationsregeln wären dann:

color4(yellow, X, T1, T2) --> yellow(X, T1, T2) und

disturbed (liver, X, T1, T2) --> liver_disturbed(X, T1, T2)

Dies überführt alle bereits gemachten Eintragungen z.B. über Tim in die neue R e -
präsentation. Wir müssen aber auch noch die Regel ersetzen durch

yellow(X, T1, T2) --> liver_disturbed(X, T1, T2).
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Um solche Repräsentat ionsänderungen zu unterstützen, muß ein Sys tem
mindestens alle betroffenen Fakten und Regeln heraussuchen und p r ä s e n t i e r e n
können und Regeln für die Vorwärtsinferenz zur Verfügung stellen. Besser a l s
die normale Vorwärtsinferenz ist eine spezielle Transformationsregel, deren K o n -
klusion auch dann noch gilt, wenn alle Prämissen gelöscht sind.

Die Erkenntnis, daß Wissenserwerb ein Prozeß des Modellierens ist und d a ß
Modellierung ein zyklischer, infiniter Prozeß ist, hat sich inzwischen a l l g e m e i n
durchgesetzt. Eine Realisierung eines Wissenserwerbssystems ist das an der GMD
entwickelte MOBAL (Morik et al. 1993). Es beinhaltet zudem maschinelle L e r n v e r -
fahren, auf die wir in Kapitel 5 zu sprechen kommen werden.
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5  Maschinelles Lernen

Das maschinelle Lernen gehört zu den Fähigkeiten, deren Verfügbarkeit auf e i -
nem Rechner bereits als Ziel formuliert wurde, als der erste praktische R e c h -
nereinsatz mit ENIAC in Philadelphia gelungen war. Die Idee dabei war, daß P r o -
grammierer von Routinearbeiten entlastet und Programme schneller e r s t e l l t
werden sollten. Für Turing (1950) war die Lernfähigkeit eines Rechners d i e
wichtigste Intelligenzleistung. Er empfahl, einen Rechner "zu erziehen", so d a ß
er seine Leistungen verbessert, da man unmöglich alles einprogrammieren k ö n -
ne. Insofern war maschinelles Lernen und Programmsynthese damals noch n i c h t
u n t e r s c h i e d e n .

5 .1  Was ist Lernen?

Die erste Frage, die meist gestellt wird, ist, wie wir Lernen definieren können, so
daß wir einem Rechner eine - eingeschränkte - Lernfähigkeit zusprechen k ö n -
nen. Die bekannte Definition von Simon (1983) lautet:

Lernen ist jede Veränderung eines Systems, die es ihm erlaubt, eine Aufgabe b e i
der Wiederholung derselben Aufgabe oder einer Aufgabe derselben Art besser z u
lösen.

Diese Definition ist aus zwei Gründen kritisiert worden: sie deckt auch s o l c h e
Phänomene ab, die man üblicherweise nicht als Lernen bezeichnet, und sie d e c k t
nicht alle dem Lernen zugerechneten Phänomene ab. Ein Beispiel dafür, daß L e r -
nen nicht der einzige Grund für eine verbesserte Leistung ist, stammt von Mi -
chalski (1986). Wenn es die Aufgabe ist, etwas zu schneiden, so wird die L e i s t u n g
dadurch verbessert, daß man ein schärferes Messer nimmt. Das Messerschärfen ist
aber kein Lernen. Nur das Herausfinden, daß mithilfe eines schärferen Messers
das Schneiden zu verbessern ist, wäre Lernen. Simons Definition kann diese b e i -
den Fälle aber nicht unterscheiden. Auch das zufällige Verwenden eines s c h ä r f e -
ren Messers würde seine Definition erfüllen. Die Lernfähigkeit von P r o g r a m m e n
könnte gemäß Simons Definition dadurch nachgewiesen werden, daß wir dasse lbe
Programm auf einem schnelleren Rechner laufen ließen. Das System, R e c h n e r
    u n d     Programm, würde dann dieselbe Aufgabe schneller lösen. Als V e r b e s s e r u n g
der Definition könnte man vorschlagen, daß     a l l e     Teile eines Systems v e r ä n d e r t
werden, um die Leistung zu steigern. Das würde dann aber das Hinzufügen e i n e r
Regel und die dadurch gesteigerte Leistung eines regelbasierten Systems b e i
gleichbleibendem Interpreter ausschließen. Man hätte dann gerade die Methode
ausgeschlossen, die maschinelles Lernen erst ermöglichte, nämlich die T r e n n u n g
von lernbaren Einheiten und nicht-lernbarer Verarbeitung.  

Michalski (1986) gibt auch ein drastisches Beispiel dafür an, daß Le i s tungs -
senkung ein Lernergebnis sein kann. Wenn Zwangsarbeiter eines K o n z e n t r a t i -
onslagers einen Weg finden, wie sie weniger leisten können, so wäre das ein Bei-
spiel für Lernen. Sie könnten lernen, wie man weniger tut und doch gleich b e -
schäftigt aussieht. Damit weist Michalski auf die Zielabhängigkeit des Le i s tungs -
begriffs hin. Die Arbeiter verbessern ihre Leistung der Vortäuschung und v e r -
schlechtern ihre Arbeitsleistung. Je nachdem, wie man die Aufgabe d e f i n i e r t ,
fällt ihre Tätigkeit unter Simons Definition, oder nicht. Scott (1983) a r g u m e n t i e r t
gegen die Leistungsmessung bei der Definition vom Lernen. Er führt als Beispiel
einen Spaziergänger in einer ihm noch unbekannten Stadt an, der an der ö f f e n t -
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lichen Bücherhalle vorbeikommt. Während er diese wahrnimmt, lernt er e twas
über die Stadt, ohne irgendeine Aufgabe zu haben, für deren Lösung er w i s s e n
muß, ob und wo es eine Bücherhalle gibt. Erst wenn ein Passant ihn nach d e m
Weg zur Bücherhalle fragt, kann er das Gelernte einsetzen - und zwar schon b e i m
ersten Passanten, nicht erst bei der Wiederholung. Simon hat einen     Test    a n g e g e -
ben, der auch bei dem Spaziergänger ergeben würde, daß der gelernt hätte, jedoch
keine     Def in i t ion    . Der Test gehört nicht zum Lernen selbst. Der S p a z i e r g ä n g e r
lernt unabhängig davon, ob er getestet wird. Scott (1983) definiert Lernen o h n e
Rückgriff auf eine gegebene Leistung:

Lernen ist ein Prozeß, bei dem ein System eine abrufbare Repräsentation von v e r -
gangenen Interaktionen mit seiner Umwelt aufbaut.

Damit ist die Leistung potentiell beobachtbar, weil die neue R e p r ä s e n t a t i o n
abrufbar ist. Das Lernen selbst ist aber unabhängig davon, ob sein Ergebnis j e -
mals gebraucht wird. Auch wird eine Leistungssenkung durch Lernen nicht a u s -
geschlossen. So könnte jemand, der nur eine einzige Aussage über etwas we iß ,
wenn genau nach dieser gefragt wird, womöglich schneller antworten als j e -
mand, der erst aus der Fülle seiner Informationen die passende h e r a u s s u c h e n
muß. Ähnlich ist auch Michalskis Definition (1986):

Lernen ist das Konstruieren oder Verändern von Repräsentationen von Er fahrun-
gen.

Beide Definitionen setzen einen Prozeß voraus, der Repräsentationen v e r -
wendet. Wieweit dieser durch Lernen aufgebaut oder verändert wird, bleibt o f f e n .
Schon aus dieser kurzen Diskussion über die Definition von Lernen wird deu t l i ch ,
daß Lernen ähnlich schwierig zu fassen ist wie Intelligenz. Es bleibt unser u m -
gangssprachliches Verständnis von dem, was für uns Lernen ist, als A n r e g u n g
und als Richtschnur.

5 .2  Drei Motivationen für das maschinelle Lernen

Maschinelles Lernen hat - wie alle anderen Teilgebiete der KI - drei v e r s c h i e d e n e
Motivationen: eine kognitionswissenschaftliche, eine theoretisch-technische u n d
eine praktische, anwendungsorientierte.

Für das maschinelle Lernen sind die einzelnen Ziele:

• Prinzipien menschlichen Lernens sollen mithilfe von operationalen Mo-
dellen untersucht werden.

• Insbesondere der induktive Schluß soll operationalisiert werden, a b e r
auch die Verwendung anderer Schlußfolgerungen (Deduktion und Abduk-
tion) zum Lernen soll untersucht werden.

• Die Arbeit am Rechner soll durch dessen Lernfähigkeit dem Benutzer e r -
leichtert werden.

Nach einem kurzen Überblick über diese drei Ausrichtungen k o n z e n t r i e r e n
sich  die darauf folgenden Abschnitte auf Verfahren, also den zweiten Aspekt.
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5 .2 .1  Menschl iches  und maschinel les  Lernen

Die kognitive Orientierung verwendet psychologische Arbeiten zum B e g r i f f s e r -
werb. Die Struktur, Verwendung und der Erwerb von Begriffen bei Kindern s i n d
Gegenstand vieler Untersuchungen. Hier werden nur einige zusammengefaßt, u m
einen Einblick in wichtige Fragestellungen zu geben. Literatur zum Einstieg i n
dieses Thema wird am Ende des Abschnitts angeführt.

Der Begriffserwerb kann in zwei Phänomenbereiche unterteilt werden: d i e
Kategorisierung oder Aggregation und die Charakterisierung oder Definition. Die
K a t e g o r i s i e r u n g  gruppiert Objekte, Ereignisse und Sachverhalte der Welt i n
Klassen - eben: Kategorien. Damit ist die Extension eines Begriffs gegeben. Die
C h a r a k t e r i s i e r u n g  beschreibt eine Kategorie, so daß für neue Objekte e n t -
schieden werden kann, in welche Kategorie sie gehören. Die intensionale Be-
schreibung der Kategorie dient also zur Bestimmung der Klassenzugehör igke i t .
Ein Objekt wird erkannt als Beispiel eines Begriffs, wenn die C h a r a k t e r i s i e r u n g
des Begriffs das Objekt abdeckt. Ein Begriff ist eine mentale, kognitive Einheit, d i e
sich auf eine Kategorie bezieht. Damit gibt es eigentlich drei Phänomenbereiche:

Kategorisierung ---> Charakterisierung ---> Klassifikation (Erkennung)

Die Einteilung dient der Strukturierung wissenschaftlicher Arbeit. Die P h ä -
nomenbereiche sollen nicht als Phasen eines linearen Ablaufs beim M e n s c h e n
verstanden werden.

5 .2 .1 .1  Gründe der Kategorienbildung

Zunächst könnte man als einen guten Grund dafür, Objekte der Welt zu einer Ka -
tegorie zusammenzufassen, angeben, daß sie ein Merkmal gemeinsam haben. Da
aber Merkmale nicht bereits in der Welt vorkommen, sondern ihrerseits geb i lde t
werden, könnten wir umgekehrt für jede Zusammenstellung von Objekten e i n
Merkmal einführen, das genau für diese Menge gilt.  Bei k Objekten gibt es p r i n -
zipiell 2k Mengen von Objekten. Tatsächlich verwenden Menschen aber nicht so
viele Kategorien. Es muß also noch zusätzliche Gründe geben, warum K a t e g o r i e n
gebildet werden. Drei Gründe, die in der Literatur diskutiert wurden, werden i m
folgenden angeführt .

Einige Objekte spielen eine wichtige Rolle für bestimmte Handlungen. Damit
begründen die Handlungen einen Bedarf für eine Kategorie. Wenn der Bedarf n u r
kurzfristig und einmalig ist, so werden Kategorien ad hoc gebildet und d a n a c h
nicht weiterhin v e r w e n d e t ,25 ansonsten wird die Kategorie k o n v e n t i o n a l i s i e r t .
Quine (1977) sah in der Notwendigkeit, etwas vorhersagen zu können, das Motiv
für individuelle und gesellschaftliche Kategorienbildung. Ein neuer Begriff w i r d
dann eingeführt, wenn er Objekte klassifizieren kann, deren Verhalten wir v o r -
hersagen wollen. Als Beispiel für eine zunächst unsinnige Kategorie, die a b e r
durch einen bestimmten Handlungs-zusammenhang sinnvoll werden kann, f ü h -
ren Murphy und Medin (1985, S. 294) gestreifte Objekte mit mehr als einem B e i n
an, die zwischen 11 und 240 kg wiegen. Im Kontext eines Spielfilms, in dem diese
Objekte Außerirdische sind, die die Menschheit bedrohen, wird die Ka tegor ie
sinnvoll. Es ist dann wichtig zu erkennen, wer dieser Kategorie angehört, wie e r

                                                
25 Zu ad hoc Kategorien s. Barsalou (1983)
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sich verhalten wird und wie Menschen sich vor ihm schützen können. Eine a n d e -
re üblicherweise sinnlose Kategorie besteht aus Primzahlen und Äpfeln. W e n n
dies aber die einzigen Gesprächsthemen für die Kollegin Wilma sind, so erhält d i e
Kategorie einen Bezug zu anderen Kategorien (Wilma, Gespräche) und ist n i c h t
mehr absurd (Murphy, Medin 1985, S.298).  Murphy und Medin betonen die Be-
griffsstruktur, die unterschiedliche Begriffe im Zusammenhang r e p r ä s e n t i e r t .
Erst durch den Zusammenhang wird eine Kategorie oder ein Begriff sinnvoll.

Ein Bedarf an Kategorien wird auch durch ihre Verwendung für die C h a r a k -
terisierung anderer Kategorien gegeben. Zum Beispiel ist es sinnvoll, die Katego-
rie Räder  zu bilden, wenn wir Fahrzeuge  definieren wollen. Im Zuge der C h a r a k t e r i -
sierung von Fahrzeugen entsteht eine neue Begriffsbildungsaufgabe. Es ist e i n -
fach praktischer, einen Begriff Räder zu haben, als stets die zugehörigen Objekte
aufzuzählen: schließlich umfaßt der Begriff eine potentiell unendliche M e n g e .
Nebenbei hebt dieses Beispiel den Zusammenhang von Begriffen hervor: B e g r i f f e
werden nicht isoliert voneinander gebildet.

Oft untersuchen psychologische Experimente die Charakterisierung von Ka -
tegorien, die von den Psychologen vorgegeben werden. Dabei kann es sich u m
existierende oder um künstlich gebildete Zusammenstellungen von Objekten h a n -
deln. Zu der Kategorie des Belebten ("living thing") gibt es seit Piaget eine Fül le
von Untersuchungen, die verschiedene Charakterisierungsansätze jeweils e i n e r
bestimmten Altersstufe zuordnen. Eine Untersuchung von Carey (1985) gibt o b e n -
drein Hinweise auf die Aggregation von Objekten. In ihrem Exeriment sollten d i e
Kinder zunächst belebte Objekte aufzählen. Das war für fast alle Kinder kein P r o -
blem. Man kann annehmen, daß sie diese Kategorie bereits vor dem E x p e r i m e n t
kannten. Als sie aber Beispiele unbelebter Objekte anführen sollten, hatten d i e
Kinder Schwierigkeiten. Sie gaben Beispiele für unbelebte Objekte, tote M e n s c h e n
oder Tiere, Fabelwesen sowie Abbildungen von Menschen und Tieren (z.B. i m
Fernsehen) an. Also führten sie unterschiedliche Kategorien an, aus denen sie -
möglicherweise ad hoc - Nicht-Belebtes bildeten. Interessant ist dabei, daß d iese
neue Kategorie unter verschiedenen Gesichtspunkten in Bezug auf die g e g e n s ä t z -
liche Kategorie gebildet wurde. Dies ist ein weiterer Hinweis darauf, daß Ka tegor i -
en und Begriffe im Zusammenhang gebildet werden.

5 .2 .1 .2  P r o b l e m e  ä h n l i c h k e i t s b a s i e r t e r  C h a r a k t e r i s i e r u n g

Der ähnlichkeitsbasierte Ansatz zur Erklärung der Begriffsbildung betrachtet d i e
Charakterisierung als das Finden solcher Merkmale, die alle Beispiele bzw. I n s t a n -
zen eines Begriffs gemeinsam haben. Ein Begriff ist dann durch eine Menge so l -
cher Merkmale repräsentiert. Daß die Ähnlichkeit von Objekten nicht a u s r e i c h t ,
eine Kategorie zu bilden, haben wir bereits oben festgestellt. Aber auch zur Cha-
rakterisierung reichen ähnliche Merkmale nicht aus.

Das erste Problem des ähnlichkeitsbasierten Ansatzes ist die Herkunft d e r
Merkmale. Dimensionen wie Farbe, Größe oder Formen werden selbst erst gebi lde t ,
sie sind nicht vorgegeben. Merkmale stammen aus der Wahrnehmung. Land h a t
gezeigt, daß die Farbwahrnehmung nicht nur auf der Wellenlänge beruht, s o n -
dern ebenso auf der Textur des Objekts und der Lichtreflexion (Land 1983). Es l i e g t
an dem menschlichen Körper, daß Farben so wahrgenommen werden. Ein Vogel
mag Farben anders erfahren. Biologische Untersuchungen können also über e i -
nen Aspekt der Herkunft von Merkmalen Auskunft geben: ihre Verankerung i n
der Wahrnehmung (Stichwort: symbol grounding). Sie können jedoch nicht d i e
kulturellen und situationsspezifischen Unterschiede der Wahrnehmung e r k l ä r e n .
Lenneberg (1967) wies die Abhängigkeit der Farbwahrnehmung von der d u r c h
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Wörter einer natürlichen Sprache gegebenen Einteilung des F a r b s p e k t r u m s
nach. Farben werden als mehr in der Mitte des Bereiches, der durch ihr Wort b e -
zeichnet wird, wiedergeben, als sie wirklich waren. So wurde ein grünliches Blau
blauer wahrgenommen, wenn die Sprache kein eigenes Wort für diesen F a r b t o n
besitzt. Türkis wird von Menschen, die das Wort "türkis" in ihrem aktiven S p r a c h -
schatz haben, genauer von Blau abgegrenzt, als von solchen V e r s u c h s p e r s o n e n ,
die nur "blau" und "grün" verwenden. Damit werden Unterschiede von F a r b t ö n e n ,
die zum selben Begriff gehören, verringert. Gleichzeitig werden U n t e r s c h i e d e
zwischen Farbtönen verschiedener Begriffe verstärkt. Auch der Einfluß d e r
(situationsbedingten) Erwartungen auf die Farbwahrnehmung wurde e r w i e s e n .
Die übliche Farbe eines Objektes wird auch dann gesehen, wenn eigentlich e i n e
andere gegeben ist. Es gibt also eine Rückwirkung des sprachlichen und b e g r i f f -
lichen Wissens auf die Wahrnehmung. Insofern erklärt die Verankerung v o n
Merkmalen in der Wahrnehmung wenig.

Das zweite Problem des ähnlichkeitsbasierten Ansatzes ist die Auswahl v o n
Merkmalen. Selbst wenn wir einen Prozeß annähmen, der aus W a h r n e h m u n g e n
Merkmale formt, so könnten zur Charakterisierung eines Begriffs doch fast u n -
endlich viele Merkmale herangezogen werden. Weitere Einschränkungen s i n d
nötig. Wie schon bei der Kategorienbildung kann auch bei der C h a r a k t e r i s i e r u n g
die Definition anderer Begriffe zur Auswahl der Merkmale herangezogen w e r d e n .
Begriffe werden im Zusammenhang definiert. Es werden Merkmale ausgewäh l t ,
die solche Begriffe unterscheiden, die nicht verwechselt werden sollen. Die Ge-
gensatz-Beziehung von Begriffen wählt nur die Merkmale zur C h a r a k t e r i s i e r u n g
aus, die für  alle gegensätzlichen Begriffe anwendbar sind und sie u n t e r s c h e i d e n .
Carey (1985) beobachtete außerdem, daß Kinder, wenn sie einmal bestimmte Merk-
male dafür benutzten, einen Begriff zu charakterisieren, gegensätzliche B e g r i f f e
mit anderen Werten derselben Merkmale definierten. Dies wird "Konsistenz d e r
Charakterisierung" genannt. Eine Folge dieses Prinzips ist, daß Änderungen e i n e s
Begriffs Folgen für seine Gegensatz-Begriffe haben. Zusammen mit der G e g e n -
satzrelation zwischen Begriffen hilft die Unterbegriffsrelation bei der M e r k m a l s -
auswahl. Voneinander abzugrenzen sind ja nur solche Begriffe, die ü b e r h a u p t
verwechselbar sind. Insbesondere gegensätzliche Unterbegriffe desselben Ober-
begriffs werden mit denselben Merkmalen beschrieben.

Carey (1985) betont die Abhängigkeit der Begriffsstruktur von dem Wissen
eines Menschen. Die Definition des Belebten hängt ab von dem Wissensstand ü b e r
Biologie. Auch Keil und Kelly (1987) zeigen, daß Versuchspersonen mit wenig Wis-
sen über einen Sachbereich eher beschreibende Merkmale auswählen, w ä h r e n d
zur Verwendung definitorischer Merkmale  mehr Wissen nötig ist. Die V e r s c h i e -
bung von Beschreibungen zu Definitionen ist damit nur indirekt einer Altersstufe
zuzuschreiben - sie ist die Folge des wachsenden Wissens. Kinder wie Laien b e v o r -
zugen leicht erkennbare, Fachleute  - und für das Alltagswissen sind E r w a c h s e n e
Fachleute - nutzen gut abgrenzende Merkmale. Murphy und Medin (1985) s p r e -
chen von einem Netzwerk erklärender Merkmale. Sie geben Beispiele dafür a n ,
daß eine Theorie Merkmale auszuwählen vermag und auch Merkmale k o r r e l i e r t .
Biologische Theorien über das Wachstum von Pflanzen geben besteht_aus_Zellen
und wächst  den Vorzug vor der Farbangabe. Diese Merkmale hängen zusammen. Sie
gelten für alle Pflanzen und werden also auch an z.B. Karotten vererbt. Würde
man nun erfahren, daß Karotten gar nicht aus Zellen bestehen, so müßte man d e n
Begriff Pf lanze  ändern. Trifft man hingegen auf blaue Karotten, so sind von d i e s e r
Änderung andere Begriffe nicht betroffen. Definitorische Merkmale kann m a n
an dem Ausmaß der Konsequenzen für andere Begriffe erkennen. Def in i to r i sche
Merkmale charakterisieren Oberbegriffe derart, daß sie an Unterbegriffe w e i t e r -
gegeben werden können.



113

Das dritte Problem des ähnlichkeitsbasierten Ansatzes besteht in der Be-
griffsrepräsentation. Eine reine Ansammlung von Merkmalen strukturiert Be-
griffe nicht. Die Beziehungen zwischen Begriffen ebenso wie die B e z i e h u n g e n
zwischen Merkmalen scheinen aber sehr wichtig zu sein und sollten deshalb r e -
präsentiert werden.  

"In order to characterize knowledge about and use of a concept, we must include a l l
of the relations involving that concept and the other concepts that depend on i t "
(Murphy, Medin 1985, S. 297)

Begriffliche Gegensätze und Unterbegriffe sollten zusammen mit der Kons i -
stenz ihrer Charakterisierungen und der Vererbung definitorischer M e r k m a l e
dargestellt werden. Wir können Merkmale verallgemeinern zu Begriffen, so d a ß
die Relationen zwischen Merkmalen in derselben Weise behandelt werden w i e
Begriffsrelationen. Tatsächlich ist es ja nicht einzusehen, warum Zellen mal e i n
Merkmal sind (wenn wir Pflanzen beschreiben wollen), mal selbst der B e g r i f f
sind, der definiert werden soll (wenn wir über Zellen sprechen). Ist die Beg r i f f s -
repräsentation nur eine Liste von Merkmalen, so hängt sie von dem j e w e i l i g e n
Gesprächsgegenstand ab. Werden Begriffe jedoch durch ihre Z u s a m m e n h ä n g e
untereinander dargestellt, so kann - ohne eine Änderung der Repräsentation -
auf einen Begriff als Gesprächsgegenstand zugegriffen werden oder als C h a r a k t e -
risierung eines anderen Begriffes. Zum Beispiel können Karottenfarbe und A p r i k o -
senfa rbe   als Unterbegriffe von Modefarbe genauso genutzt werden wie zur C h a r a k -
terisierung der jeweiligen Pflanzen. Ein weiterer Vorteil der V e r e i n h e i t l i c h u n g
von Begriffen und Merkmalen besteht in der Änderbarkeit der B e g r i f f s s t r u k t u r .
Wenn wir über Zellen etwas hinzulernen, ändert sich die Charakterisierung v o n
Pflanzen, die ja aus Zellen bestehen, automatisch - wir müssen keinen zusä tz l i chen
Prozeß annehmen, der dies neue Wissen in den Begriff Pf lanze  überträgt.

Schließlich soll nicht verschwiegen werden, daß auch diese Sicht auf B e g r i f -
fe noch nicht alle Probleme löst. Gerade alltägliche Begriffe wie Tasse oder Schuhe
werden auch durch Zusammenhänge zwischen Begriffen noch nicht h i n r e i c h e n d
erklärt. Das Wesentliche einer Tasse  ist weder ihre Form noch ihre U n t e r b e g r i f f s -
Beziehung zu Behäl tern, sondern daß wir daraus trinken. Natürlich kann man e i n e
Relation wi rd-benutz t - fü r  einführen, aber das wäre nur ein netter Name. Ta tsäch-
lich ist die Tätigkeit des Trinkens selbst das Entscheidende für die Feststellung, o b
etwas eine Tasse ist oder nicht. Es sind also nicht nur Beziehungen zu anderen Be-
griffen, sondern auch zu Handlungen, die Alltagsbegriffe ausmachen.

5 .2 .1 .3  Beiträge aus dem maschinellen Lernen

Das maschinelle Lernen ist zunächst dem ähnlichkeitsbasierten Ansatz g e f o l g t
und hat den Aggregationsschritt vorausgesetzt. So gibt es eine Fülle von Systemen,
die aus vorgegebenen Beispielen für einen Begriff dessen Charakterisierung i n -
duzieren. Systeme zum conceptual clustering - obwohl auch meist ä h n l i c h k e i t s b a -
siert - beschreiben immerhin den Aggregationsschritt mit. Ein Oberbegriff w i r d
zu einer Hierarchie von Begriffen verfeinert, wobei ähnliche Objekte z u s a m m e n -
gruppiert werden.

Die Notwendigkeit für komplexere Repräsentationen und das E i n b e z i e h e n
von Hintergrundwissen wurde von Michalski schon 1983  und von Kodratoff u n d
Ganascia 1986 dargestellt. Reichere Formalismen sind etwa Te rmsubsumt ions -
systeme (Lernen einer Tbox aus einer Abox -- Kietz, Morik 1994, Lernbarkeit v o n
Begriffsdefinitionen in CLASSIC -- Pitt 1996) oder Hornklauseln. Die induktive l o -
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gische Programmierung behandelt das Lernen von eingeschränkten p r ä d i k a t e n -
logischen Formeln unter Verwendung von Hintergrundwissen.

Der Bedarf für einen Begriff wird von Michalski und Stepp (1986) durch e i -
nen Zielgraphen expliziert, der ihr conceptual c lus t e r ing  Verfahren CLUSTER/S
steuert.  Wrobel (1994) entwickelt den Ansatz von Emde, Habel und R o l l i n g e r
(1983) weiter. Durch Ausnahmen einer ansonsten erfolgreichen Regel ist ein Be-
darf für einen neuen Begriff gegeben, wenn sich anders die Ausnahmen n i c h t
von den erfogreichen Regelanwendungen unterscheiden lassen. Die A u s n a h m e n
sollen durch einen neuen Begriff zusammengefaßt werden, auf den eine zusätzl i-
che Prämisse der Regel verweist. Das System KLUSTER (Kietz, Morik 1994) b e -
schreibt den Bedarf für einen neuen Begriff aufgrund der Unfähigkeit, mit d e n
vorhandenen Begriffen eine Kategorie zu charakterisieren.

Aktuelle Arbeiten versuchen, die Verankerung des Begriffserwerbs in d e r
Welt zu modellieren. So schlägt Wrobel (1991) einen kognitiv motivierten F o r -
schungsrahmen vor, in dem strikt inkrementell gelernt wird. Das heißt, die E i n -
gabedaten stellen einen Strom von Informationen dar, der nicht vollständig g e -
speichert wird. Vielmehr werden die Daten nach und nach strukturiert und d iese
Strukturierung auf nachfolgende Eingaben angewandt. Revisionen können n i c h t
anhand aller bereits gegebenen Daten überprüft werden. Saitta  und Giorda-
na(1990) schlagen eine Begriffsstruktur vor, in der Merkmale Handlungen z u r
Verifizierung des Merkmals darstellen. Die Verankerung von B e w e g u n g s -
begriffen wie durch die Tür gehen oder eine Wand entlang gehen wurde durch L e r n e n
aus Bewegungs- und Wahrnehmungsdaten eines mobilen Roboters im e u r o p ä i -
schen Projekt BLearn untersucht (Klingspor, Morik, Rieger 1996).

Ein interdisziplinäres Forschungsprogramm der European Science Foundat i -
on, Learning in Humans and Machines(LHM) , untersucht die Beziehungen zwi-
schen didaktischen, kognitionspsychologischen und Arbeiten der KI. So w u r d e n
beispielsweise empirische Daten über kindliche Erklärungen des T a g / N a c h t -
Zyklus’ im System MOBAL modelliert. Mit diesem operationalen Modell k o n n t e n
dann Experimente gemacht werden, deren Ergebnisse nun durch weitere e m p i r i -
sche Untersuchungen validiert werden müssen(Mühlenbrock, Morik, wird e r -
scheinen). Es gibt bereits ein Buch über LHM (Spada, Reimann 1996), eine S e r i e
von weiteren Büchern wird 1998 erscheinen.

5 .2 .1 .4  Li teraturhinweise  zur  Psycholog ie

Barsalou, L.W. (1983): Ad hoc Categories, in: Memory and Cognition, 11, 1983

Carey, S. (1985): Conceptual Change in Childhood, MIT Press

Keil, F.C., Kelly, M.H. (1987): Developmental Changes in Category S t r u c t u r e ,
in: Harnad (ed): Categorical Perception - The Groundwork of Cognit ion ,
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und Datenverarbeitung, Schloß Birlinghoven, 1991
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einer Begriffsstruktur zur Erklärung des Tag/Nacht-Zyklus’
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Piaget, J. (1977): The Development of Thought, New York: Viking Pinguin

Rosch, E. (1978): Principles of Categorization, in: Rosch, Lloyd (eds): Cogni t ion
and Categorzation, Hillsdale, N.J.: Erlbaum

Scholnick, E.K. (ed)(1983): New Trends in Conceptual Representation - Chal-
lenges to Piaget's Theory?, Hillsdale, N.J.: Erlbaum

Spada, H., Reimann, P. (Hg.) (1996): Learning in Humans and Machines: To-
wards an Interdisciplinary Learning Science, Oxford: Elsevier

5 .2 .2  Induktion und Abduktion

Der deduktive Schluß ist am längsten und gründlichsten untersucht worden. I m
maschinellen Lernen steht der induktive Schluß im Vordergrund. N e u e r d i n g s
wird auch der abduktive Schluß einbezogen. Wir können die drei Schlüsse f o l g e n -
dermaßen darstellen:

(A -> B), A |=  B  ist ein deduktiver Schluß.

Beispiel: ∀ x | mensch(x) -> sterblich(x), mensch(uta)   |=   sterblich (u ta )

Die deduktiven Inferenzregeln sind:

           A       ->        B                      A    (Modus Ponens) u n d            ∀        X       |        a(X)       ->        b(X)    ( I n s t a n t i i e r u n g )
       B     a(c) -> b(c)

a(c1), b(c1), ..., a(cn), b(cn) |<  ∀ x | a(x) -> b(x)  ist ein induktiver Schluß.

Beispiel:

mensch(uta), sterblich(uta), mensch(udo), sterblich(udo),
mensch(uwe),  s terblich(uwe)

|< ∀ X | mensch(X) -> sterblich(X)

Wir nennen die Grundbeispiele Daten, D, und die allquantifizierte Aussage
Hypothese, H. Wenn wir noch eine Theorie, T, als Hintergrundwissen h i n z u n e h -
men, so ist der induktive Schluß:

T, D |< H, wobei  T, H |= D,  T |≠ D und  T, D |≠ ¬ H  

Das heißt, die Beispiele folgen erst aus der Theorie, wenn der allgemeine Satz
H (die Hypothese) hinzugenommen wird, vorher nicht. Außerdem ist die H y p o t h e -
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se konsistent mit der Theorie und den Beispielen, d.h. aus Theorie und Be isp ie len
folgt nicht die Negation der Hypothese.  

Beispiel: T: ∀ X | mensch(X) --> säugetier(X) ,
mensch(uta), mensch(udo), mensch(uwe),

D : sterblich(uta), sterblich(udo), sterblich(uwe)   |<

H: ∀ X | säugetier(X) --> sterblich(X)

Daraus, daß Menschen Säugetiere sind, folgt, daß auch Uta, Udo und Uwe Säu -
getiere sind. Nimmt man hinzu, daß alle Säugetiere sterblich sind, so kann m a n
folgern, daß auch Uta, Udo und Uwe sterblich sind. Ohne eine induzierte H y p o t h e -
se folgt es nicht. Daß alle Säugetiere nicht sterblich sind, läßt sich aus der T h e o r i e
und den Beispielen nicht folgern.

Der abduktive Schluß  schließlich wird sehr unterschiedlich aufgefaßt.  Im
einfachsten Falle dreht er den Modus Ponens um.

(A -> B), B  |> A

Beispiel: ∀ X | mensch(X) -> sterblich(X), sterblich (uta)   |>   mensch(uta)

Nehmen wir eine Theorie als Hintergrundwissen hinzu, so ist der a b d u k t i v e
Sch luß :

T, (A -> B), B |> A,       wobei T, (A -> B), B |≠ ¬A  und   A ≠ B

Die folgenden Abschnitte handeln überwiegend vom induktiven Schluß. N u r
das erklärungsbasierte Lernen, das auch dargestellt wird, verwendet ihn n i c h t
zum Lernen.

5 .2 .3  A nwendungen  masch ine l l en  Lernens

Maschinelles Lernen wird überwiegend eingesetzt, um eine Menge von R e g e l n
oder einen Entscheidungsbaum aus Daten zu gewinnen oder eine gegebene R e -
gelmenge zu verbessern. Die Regeln werden dann entweder direkt von M e n s c h e n
verwendet oder einem Expertensystem und damit dessen Benutzern zur Verfügung
gestellt. Schon der Einsatz einfacher Lernverfahren führt zu einer e r h e b l i c h e n
Verkürzung der Entwicklungszeit einer Wissensbasis. Meist wird anhand e i n e r
ausgewählten Teilmenge von klassifizierten Daten (L e r n s e t ) eine Menge v o n
Regeln oder ein Entscheidungsbaum induziert. Das Lernergebnis wird dann a n -
hand einer anderen Teilmenge der klassifizierten Daten (T e s t s e t ) geprüft. Dabei
wird der Testset ohne die vorgegebene Klassifikation mit dem Lernergebnis k l a s -
sifiziert. Wenn die Klassifikation durch das Lernergebnis mit der b e n u t z e r g e g e -
benen Klassifikation übereinstimmt, ist es k o r r e k t . Wenn nicht, wird noch e i n -
mal mit einem anderen Lernset gelernt oder per Hand das Lernergebnis v e r b e s -
s e r t .

Donald Michie (1989) berichtet über erfolgreiche Anwendungen von L e r n -
verfahren, die Entscheidungsbäume induzieren. Dabei muß das L e r n e r g e b n i s
nicht unbedingt von einem Expertensystem genutzt werden. Oft hilft bereits das
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Ausdrucken des Entscheidungsbaumes als Merkzettel. Die Erstellung des k o m p r i -
mierten Merkzettels ist die Leistung des Lernverfahrens.  So führt Michie den E r -
folg bei einer  Anwendung für die NASA darauf zurück, daß Menschen s e l t e n
mehr als 3-5 Faktoren auf einmal berücksichtigen können. Falls mehr als 5 Fakto-
ren zu einer Entscheidung beitragen, ist ein induzierter Entscheidungsbaum, d e r
auf der Grundlage aller vorliegenden Daten und aller Faktoren gebildet w u r d e ,
hilfreich. Insofern hilft das statistisch basierte Lernen bei der Analyse von Daten,
deren  Ergebnis in eine verständliche, geordnete Form übertragen wird. Diese
Analyseleistung war auch bei einem anderen von Michie angeführten Beispiel
ausschlaggebend für den Erfolg. Im Bankenbereich der Kreditvergabe w e r d e n
sicherheitshalber Kredite nicht vergeben, die in einer Grauzone liegen. Mi th i l f e
eines Produktes, das auf ID3 beruht, konnten Daten über zurückgezahlte und nicht
zurückgezahlte Kredite analysiert werden. Das Ergebnis strukturiert diese G r a u -
zone, so daß mehr Kredite sicher vergeben werden können. Da das Ergebnis d i e
Faktoren nennt, die ausschlaggebend für eine sichere Kreditvergabe sind, k a n n
die Erwartung für das Kreditvolumen anhand statistischer Kenntnisse aktuell a n -
gepaßt werden. Ein Seiteneffekt war, daß der Bank bessere Kundenprofile für i h -
ren Kundendienst zur Verfügung stehen. Schließlich konnte Michie von e i n e r
Firma eine schriftliche Bestätigung erhalten, daß die Produktivität einer F a b r i k
von 83% auf 95% gesteigert werden konnte durch den Einsatz induktiven L e r -
n e n s .26 Dies ist deshalb so wertvoll, weil die Firmen nur selten über ihre A n w e n -
dungen maschinellen Lernens berichten, so daß öffentlich zugängliches Ma te r i a l
f e h l t .

Oft ist eine Induktionskomponente in eine Wissenserwerbsumgebung für e i -
ne Expertensystem-Hülle integriert wie zum Beispiel beim System IKEE für die Ex-
pertensystem-Hülle TWAICE.27 Exemplarische Anwendungen verschiedener L e r n -
verfahren wurden in dem ESPRIT-Projekt "Machine Learning Toolbox" (P2154) i n
Zusammenarbeit von Industr ieunternehmen,  Universitäten und F o r s c h u n g s i n -
stitutionen untersucht. So wurde zum Beispiel das System MOBAL28 für u n t e r -
schiedliche Anwendungen erprobt. Ein medizinischer Sachbereich wurde e i n e r -
seits mithilfe von benutzergegebenen Regeln dargestellt. Andererseits lernte das
System typische Therapieabläufe aus im Krankenhaus gesammelten und von e i -
nem Arzt klassifizierten (und bereinigten) Daten. Mithilfe der K o n s i s t e n z p r ü f u n g
von MOBAL (Wrobel 1994) wurden Abweichungen festgestellt und dann a n a l y s i e r t
(Morik et al. 1994). Eine andere Anwendung des Systems MOBAL entspricht g e n a u -
er dem klassischen Anwendungsbereich maschinellen Lernens: eine Wissensbasis
zur Zugangsberechtigung von Benutzern zu bestimmten Rechnerleistungen sol l
mithilfe des Systems erstellt werden. Dabei unterstützt das System v e r s c h i e d e n e
Aufgaben der Modellierung. Lernverfahren können Regeln aus Daten g e w i n n e n
und anhand von Ausnahmen verfeinern. Der Benutzer kann ebenfalls R e g e l n
eingeben. Diese Regeln werden beim Regellernen und Regelverfeinern b e r ü c k -
sichtigt (Sommer et al. 1994). Neben den Lernverfahren verfügt MOBAL aber noch
über andere Komponenten, die den Benutzer bei der Modellierung u n t e r s t ü t z e n .
In der Anwendung ist es meist mit einem isolierten Lernverfahren nicht getan!

                                                

26 Dies entspricht einer Umsatzsteigerung von 10.000 US$ im Jahr.
27 TWAICE und IKEE sind Entwicklungen der Nixdorf Computer AG, die nunmehr Teil der SNI ist.
28 MOBAL wurde an der Gesellschaft für Mathematik und Datenverarbeitung in Birlinghoven entwickelt (Morik
et al. 1993).
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Wenn in dem Aufbau und der Verfeinerung von Wissensbasen mithilfe m a -
schinellen Lernens bisher auch die meisten Erfahrungen gesammelt wurden, so
gibt es doch keinen prinzipiellen Grund, sich darauf zu beschränken. V i e l m e h r
kann jedes System durch Lernfähigkeit verbessert werden. Die wichtigsten A n -
wendungsfelder sind gegenwärtig:

Lernen aus (Hyper-)texten : Das Lernen neuer Begriffe aus Texten w u r d e
mit dem wit-System versucht (Reimer, Pohl 1991). Der WebWatcher u n -
terstützt Benutzer des WWW beim browsing  durch Lernen (Joachims et a l .
1997). Zur Unterstützung des information re t r ieva l  durch Lernen v o n
Benutzerinteressen gibt es eine Fülle von Arbeiten (z.B.: Lang (1995),
Balabanovic und Shoham (1995), Pazzani et al. (1996), Lieberman (1995)).
Der Erwerb von Grammatiken aus Texten wurde früh untersucht, a b e r
wegen der hohen Komplexität abgebrochen. Gegenwärtig wird die A n n ä -
herung an eine Grammatik unter Hinzuziehen eines Orakels (Benu tze r s )
versucht (Adriaans 1993).

Lernen in der R o b o t i k : In der Robotik wird einerseits die P l a n u n g s k o m -
ponente verbessert (Dillmann (1988), Segre(1988), Zercher (1991)), z u m
anderen die Ausführungskomponente (Kaelbling 1991). Es gibt aber a u c h
Ansätze, gerade die Verbindung zwischen Bewgriffen der P l a n u n g s e b e n e
und den Sensor- und Handlungsdaten zu verbessern (Klingspor, Mor ik ,
Rieger 1996).

Wissensentdeckung  in D a t e n b a n k e n  (data mining): Es geht es d a r u m ,
unübersichtliche Datensammlungen nach Regularitäten zu u n t e r s u c h e n
oder sogar alle gültigen und interessanten Regeln zu finden. Dies w i r d
bisher vor allem mit statistischen Methoden versucht (Stichwort: exp lo-
rative Datenanalyse). Maschinelle Lernverfahren, die meist einen s ta t i -
stischen Kern enthalten, gehen in der Aufbereitung ihrer E r g e b n i s s e
über rein statistische Verfahren hinaus, indem sie verständliche R e g e l n
ausgeben. Außerdem werden die Hypothesen für gültige Regeln vom S y -
stem selbst aufgestellt und nicht vom Benutzer formuliert. Ein s c h n e l l e s
Verfahren für binäre Attribute wie sie in Warenhausdaten v o r k o m m e n
(jede Ware ist ein Attribut, 1 heißt, daß sie gekauft wurde, ein Da ten-
banktupel ist ein Einkauf) ist Apriori (Agrawal 1996). Ein p r ä d i k a t e n l o g i -
sches Verfahren zum Regellernen mit direktem Datenbankzugriff i s t
RDT/DB (Brockhausen, Morik 1997).

5 .3  L e r n a u f g a b e n

Hier werden drei Lernaufgaben vorgestellt: das Lernen von Funk t i onsapp rox ima-
tionen, von Begriffsdefinitionen und von allen gültigen Regeln. Dabei wird u n -
terschieden zwischen überwachtem Lernen (Lernen aus Beispielen) und u n -
überwachtem Lernen (Lernen aus Beobachtungen). Beispiele sind einer Kate -
gorie zugeordnete (klassifizierte) Aussagen. Im Gegensatz dazu sind B e o b a c h -
t u n g e n  nicht klassifiziert. Beim Lernen aus Beispielen wurde also die Ka tegor i -
sierung bereits vom Benutzer oder einem anderen System vorgenommen. Beim
Lernen aus Beobachtungen gehört die Aggregation zur Lernaufgabe.

Ein weiterer Unterschied ist, ob die Beispiele oder Beobachtungen auf e i n m a l
oder nach und nach dem Verfahren gegeben werden. I n k r e m e n t e l l  ist ein V e r -
fahren, das nicht alle Eingabedaten auf einmal bekommt und dann lernt, s o n d e r n
jeweils ein zusätzliches Beispiel oder eine neue Beobachtung einliest, daraus lernt,
dann das nächste einliest, und so weiter. So ist der Versionenraum (siehe 5.4) i n -
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krementell, ID3 hingegen nicht inkrementell (siehe 5.7.1). Die Schwierigkeit i n -
krementellen Lernens besteht darin, daß Entscheidungen bereits getroffen w e r -
den, bevor der Rest der Beispiele oder Beobachtungen zur Verfügung steht.

Entscheidend für die Schwierigkeit einer Lernaufgabe sind nicht nur die Be-
dingungen an die Lösung, sondern auch der Repräsentationsformalismus, in d e m
die Hypothesen (mögliche Lernergebnisse) ausgedrückt werden.

5 .3 .1  B e g r i f f s l e r n e n

Das Begriffslernen ist die klassische Aufgabe des maschinellen Lernens. B e g r i f f e
wie z.B. “kreditwürdige Personen“, “Situation für den Landeanflug mit Autopi lo-
ten“, “Streptokokken-Infekt“ können unmittelbar in Planungssystemen, E n t -
scheidungsunterstützungssystemen oder Diagnosesystemen zur Klassifikation a n -
gewandt werden. Die Beschreibungen der Beobachtungen enthalten M e r k m a l e
(und Relationen) von Objekten. Die Beschreibungen der Beispiele enthalten z u -
sätzlich die Angabe, ob das Beispiel eine Instanz des zu lernenden Begriffs i s t
(positives Beispiel) oder nicht (negatives Beispiel). Als Bedingung an die L ö s u n g
der Lernaufgabe werden logische Verhältnisse zwischen den Instanzen und d e r
Hypothese formuliert. Da unterschiedliche Hypothesen für eine gegebene M e n g e
von Beobachtungen/Beispielen die Bedingungen Konsistenz und Vorhersage o d e r
Vollständigkeit und Korrektheit erfüllen können, wird manchmal ein zusätz l iches
Präferenzkriterium angegeben. Dies kann z.B. sein, daß immer die a l l g e m e i n s t e
Begriffsdefinition gewählt werden soll oder gerade die speziellste. Einige V e r f a h -
ren sind in der Lage, Hintergrundwissen T zu berücksichtigen. Wir haben d a n n
die Repräsentationssprachen: eine Beschreibungssprache LE für Beispie-
le/Beobachtungen, eine Hypothesensprache LH und eine Sprache für das H i n t e r -
grundwissen L T . Natürlich hängen diese drei zusammen.

Beispielsweise kann L E  variablenfreie Hornklauseln,
L T Grundfakten und
L H  Hornklauseln sein,

wobei die Signaturen sich überschneiden, d.h. die Menge der Prädikate in LE, LT

und LH  sind nicht disjunkt.

Begri f fs lernen aus  Beispie len: Begr i f f s l ernen  aus B e o b a c h t u n -
g e n :

Gegeben:

Hypothesensprache LH für den Be-
g r i f f ,

Hintergrundwissen T in einer S p r a -
che LT (ggf. leer)

Menge P positiver Beispiele in e i n e r
Beschreibungssprache LE

Gegeben:

Hypothesensprache LH für den Be-
g r i f f ,

Hintergrundwissen T in einer S p r a -
che LT  (ggf. leer)

Menge E von Beobachtungen in e i n e r
Sprache LE

                                                
29 In der Lernliteratur wird entweder nicht (wie bei Termsubsumtions-Formalismen) zwischen Klassifikation von
Begriffen und Realisierung von Begriffen unterschieden oder es wird unter Klassifikation gerade die Realisierung
in Termsubsumptionssystemen verstanden.
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Menge N negativer Beispiele in LE

Relation, die Beispiele e anhand von
Hypothese c klassifiziert (z.B. das Ab-
g l e i c h s p r ä d i k a t
covers(c,e)29 oder die deduktive
Ableitung T,c|-- e)

ggf. Präferenzkriterium, das Hypo-
thesen (partiell) ordnet

∃  p ∈  P:T,P-{p}|-/- p(Notwendigkeit)

Ziel:

c ∈  LH mit

T, c |-/- ⊥ (Kons i s tenz)

∀  p ∈  P:  covers  (c,p) ist wahr bzw. T, c
|-- P  (Vol ls tändigkei t )

∀  n ∈  N:  covers (c,n) ist falsch bzw.
∀  n ∈  N:  T, c|-/- n     (Korrektheit)

(c erfüllt das Präferenzkriterium)

Relation, die Begriffsdefinitionen c
und Beobachtungen e verbindet (z.B.
das Abgleichsprädikat covers(c,e)
oder die deduktive A b l e i t u n g
T,c|--e)

ggf. Präferenzkriterium, das Hypo-
thesen (partiell ordnet)

∃  e ∈  E: T,E-{e}|-/- e (Notwendigkeit)

Ziel:

c ∈  LH mit

T, c |-/- ⊥ (Kons i s tenz)

∃  e ∈ LE, e ∉  E und T, c |-- e 
( V o r h e r s a g e )

(c erfüllt das Präferenzkriterium)

5 .3 .2  R e g e l l e r n e n

Das Lernen     a l l e r     gültigen und redundanzfreien Regeln (kurz: Regellernen) ist d i e
schwierigste Lernaufgabe. Sie findet in einer Menge von Daten ( B e o b a c h t u n g e n
und Hintergrundwissen) alle Regeln, die bei diesen Daten gelten. Es geht n i c h t
darum, eine Vorhersage für die Realität, der die Daten entstammen, a n z u n ä h e r n ,
sondern verständliche Aussagen über die Daten zu machen - wie auch immer s i c h
Daten und Regeln auf die Realität beziehen. Insofern ist der Grundgedanke bei d e r
Funktionsapproximation und dem Regellernen völlig unterschiedlich: W ä h r e n d
beim ersten das Lernergebnis eine gegebene Wahrheit annähern soll, beläßt das
Regellernen die Suche nach Wahrheit beim Benutzer des Systems. Ein R e g e l l e r n -
verfahren faßt die Daten zusammen und überläßt es dem Benutzer fes tzus te l len ,
wie der Bezug zur Realität einzuschätzen ist. Daher ist eine häufige A n w e n d u n g
des Regellernens die Datenkorrektur. Wenn Regeln, die im minimalen l o g i s c h e n
Modell der Daten gültig, notwendig und vollständig sind, vom Benutzer für u n -
wahr befunden werden, so kann dies ein Hinweis auf fehlerhafte oder u n v o l l -
ständige Daten sein. Beispielsweise haben wir bei Mercedes-Daten über F a h r z e u g e
gelernt, daß ein Fahrzeug 0 bis 8 Achsen hat. Da wir wissen, daß dies nicht s t immt ,
konnten wir gezielt die falschen Einträge in der Datenbank bereinigen, die f ü r
ein Fahrzeug 0 Achsen angaben.

Gegeben:

Sprache für Regeln LH

Beobachtungen E in einer Sprache LE
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ggf. Theorie in einer Sprache LT

T, E |-/- ⊥   (Konsistenz)

Ziel:

C ∈  LH  so daß M (C) ⊇  M+(T, E) (Gül t igkei t )

∀  c ∈  C, ∃  e ∈  E: T, E-{e} |-/- e und T, E-{e}, c |-- e (Notwendigke i t )

Wenn c gültig und notwendig ist, dann C |-- c (Vol ls tändigkei t )

Es gibt keine echte Teilmenge G von C, die gültig und vollständig ist 
(Min imal i t ä t )

Bei dieser Lernaufgabe werden die Begriffe Modell M und minimales Modell
M+ verwendet. Gegeben eine Interpretation I für eine Menge von Formeln F. I i s t
ein M o d e l l  von F, geschrieben Μ (F), wenn alle Formeln von F in I wahr s ind .
Wenn I ein Modell von F ist und es keine Interpretation I’ gibt, so daß I ⊇  I’ und I ’
ist ein Modell von F, dann heißt I minimales Modell  von F, geschrieben M+(F).

Normalerweise gibt es viele verschiedene und beliebig große Modelle f ü r
prädikatenlogische Formeln. Einige Beschränkungen der Prädikatenlogik f ü h r e n
aber dazu, daß es nur     e i n     minimales Modell für eine Menge von Formeln gibt. Zum
Beispiel haben definite Hornklauseln immer genau ein minimales Modell, wenn es
eines gibt. Eine H o r n k l a u s e l  heißt def in i t , wenn sie entweder aus einem pos i t i -
ven und beliebig vielen negativen Literalen besteht oder nur aus einem p o s i t i v e n
Literal. In Prolog sind also Fakten und Regeln definite Hornklauseln, nicht j e d o c h
Anfragen. Wegen der harten Anforderung der Gültigkeit des Regellernens w e r -
den solche Beschränkungen bevorzugt.

5 .4  Lernen als Suche

Mitchell (1982) hat Lernen aus Beispielen als Suche beschrieben. Der S u c h r a u m
für Begriffe ist die Menge aller mithilfe von LH  bildbaren Ausdrücke. Das sind alle
möglichen Charakterisierungen, für die dann festgestellt werden muß, ob sie a l l e
positiven Beispiele abdecken und kein negatives. Der einfachste L e r n a l g o r i t h m u s
ist demnach der Aufzählungsalgorithmus: er zählt alle in LH bildbaren A u s d r ü c k e
auf  (Hypothesengenerierung) und prüft für jeden, welche Beispiele (und N i c h t -
Beispiele) abgedeckt werden (Hypothesentest). Sobald die Zielbedingung gilt, h ä l t
der Algorithmus an.  

Der Aufzählungsalgorithmus funktioniert natürlich nur für a u f z ä h l b a r e
Sprachen und ist nicht gerade effizient.  Ein übliches Verfahren, einen Algo-
rithmus, der Hypothesen generiert und testet, effizienter zu machen, b e s t e h t
darin, Bedingungen des Testens bereits bei der Generierung zu b e r ü c k s i c h t i g e n .
Im Falle des induktiven Lernens wissen wir, daß wir eine Hypothese suchen, d i e
genereller ist als die Beispiele und spezieller als eine Beispiele und Nicht-Beispiele
gleichermaßen abdeckende Aussage. Wir tun also gut daran, die Hypothesen n a c h
ihrer Allgmeinheit anzuordnen, um dann schrittweise generellere oder spezie l le-
re Hypothesen zu generieren.  Gehen wir von den Beispielen aus, um s c h r i t t w e i s e
generellere Hypothesen zu erzeugen bis alle positiven Beispiele abgedeckt w e r -
den, spricht man von einem bottom-up Verfahren. Gehen wir von einer alles a b -
deckenden Aussage aus, die wir schrittweise spezialisieren bis sie kein n e g a t i v e s
Beispiel mehr abdeckt, spricht man von einem top-down Verfahren. Die Suche i n
einem strukturierten Raum möglicher Hypothesen kann beschnitten werden, w a s
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bei der Suche im unstrukturierten Raum nicht möglich ist. Dort müssen ja a l l e
Hypothesen betrachtet werden, weil man keinen Anhaltspunkt hat, wo im R a u m
der Zielbegriff liegen könnte.

Mitchell schlug für Definitionssprachen  eine Halbordnung (quasi-ordering)
aufgrund der spezieller-als- bzw. genereller-als-Relation vor. Eine H a l b o r d n u n g
ist eine reflexive, transitive aber nicht antisymmetrische Relation. Wenn Begriffe
mithilfe von Attributwerten charakterisiert werden, die sich in einer H i e r a r c h i e
entlang dieser spezieller-als- bzw. genereller-als-Relation partiell anordnen l a s -
sen, läßt sich der Suchraum als Kreuzprodukt der geordneten Attributwerte immer
( h a l b - ) o r d n e n .

spezie l ler-a ls :

c1 ist spezieller als c2 genau dann, wenn

∀  e ∈  LE gilt: covers (c1, e) --> covers (c2, e), d.h.:

{ e ∈  LE | covers (c2, e) } ⊇  { e ∈  LE | covers (c1, e) }

c2 ist eine Generalisierung von c1, weil c2 alle Beispiele abdeckt, die c1 a u c h
abdeckt, und zusätzlich vielleicht noch mehr Beispiele.  Mit dieser Angabe k a n n
entschieden werden, ob eine Hypothese genereller oder spezieller als eine a n d e r e
ist. Dies reicht aber noch nicht aus. Wenn wir schrittweise generalisieren bzw.
spezialisieren wollen, müssen wir minimal generellere und minimal spez ie l l e re
Hypothesen zu einer Hypothese finden.

Schrittweises Generalisieren:

g, g' ∈  LH , e ∈  LE, g ist minimal genereller als c bezügl. e genau dann, wenn

g ist genereller als c und

covers (g,  e) und

es gibt kein g'  ∈  LH , so daß  g genereller als g' ist und

covers (g', e) gilt.

Es wird also eine speziellste Generalisierung g erzeugt: zwischen sie und d i e
bisherige Generalisierung c paßt keine andere Generalisierung g' mehr.  Dies i s t
insbesondere sinnvoll, wenn e ein positives Beispiel ist, das abgedeckt sein soll.

Entsprechend formalisiert Mitchell auch die Spezialisierung.

Schrittweises Spezialisieren:

s, s' ∈  LH , e ∈  LE, s ist minimal spezieller als c bezügl. e genau dann, wenn

s ist spezieller als c und
¬  covers (s, e) und

es gibt kein s' ∈  LH , so daß s spezieller ist als s' ist und

¬  covers (s', e) gilt.

Es wird also eine generellste Spezialisierung s erzeugt. Dies ist i n s b e s o n d e r e
sinnvoll, wenn e ein negatives Beispiel ist, das nicht abgedeckt sein soll.

Jetzt lassen sich drei Lernalgorithmen angeben, die alle die Lernaufgabe w i e
oben angeführt lösen.
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Top-down Lernverfahren:
Beginne mit den allgemeinsten bildbaren Hypothesen;
solange noch negative Beispiele abgedeckt werden,

wende auf die Hypothese das schrittweise Spezialisieren an;
wenn eine Hypothese kein negatives Beispiel abdeckt,

gib diese Hypothese aus und halte an.

Bottom-up Lernverfahren:
Beginne mit den speziellsten bildbaren Hypothesen;
solange noch nicht alle positiven Beispiele abgedeckt werden,

wende das schrittweise Generalisieren an;
wenn eine Hypothese alle positiven Beispiele abdeckt,

gib diese Hypothese aus und halte an.

Mitchell (1982) führte zusätzlich zu diesen beiden Algorithmen die b i -
direktionale Suche im Versionenraum (versions space) ein, die Spez ia l i s i e rung
und Generalisierung kombiniert. Es werden gleichzeitig zwei Mengen bea rbe i t e t :
die Menge aller aktuellen Generalisierungen und die Menge aller aktuellen Spe -
zialisierungen. Jedes Element dieser Mengen ist möglicherweise die gesuchte H y -
pothese. Die Mengen enthalten also alternative Hypothesen. Sobald sich die beiden
Mengen überschneiden, ist die Lösung gefunden: es ist die Hypothese aus d e r
S c h n i t t m e n g e .  

Versionen-Raum Lernverfahren:
Initialisiere die Menge G mit den generellsten Begriffen
und die Menge S mit den speziellsten Begriffen.
Solange die Mengen G und S disjunkt sind, lies ein Beispiel e ein und

falls e ∈  N und e von G abgedeckt wird,
entferne alle s ∈ S, die e abdecken,
spezialisiere G bis e nicht mehr abgedeckt wird,
entferne alle g ∈ G, die echt spezieller sind als ein anderes g’ ∈ G

falls e ∈  P und e von S nicht abgedeckt wird,
entferne alle g ∈ G, die e nicht abdecken,
generalisiere S bis e abgedeckt wird.
entferne alle s ∈ S, die echt genereller sind als ein anderes s’ ∈ S

entferne alle g ∈ G, für die es kein s ∈ S gibt, das spezieller ist
entferne alle s ∈ S, für die es kein g ∈ G gibt, das genereller ist

Sobald G und S gleich sind und nur noch eine Hypothese enthalten, dann g i b
diese aus und halte an!

Die Mengen G und S sind also folgendermaßen definiert:

G={g, so daß ∀  pi  ∈  P , ∀  ni ∈  N   | covers (g, pi),  ¬covers (g, ni) ,
es gibt kein g', das genereller ist als g und
alle pi abdeckt und kein ni}

S={s, so daß ∀  pi ∈  P , ∀ ni ∈  N   | covers (s, pi), ¬  covers (s, ni) ,
es gibt kein s', das spezieller ist als s und
alle pi abdeckt und kein ni}

Dabei sind pi und ni die bisher dem System gezeigten positiven und n e g a t i v e n
Beispiele.
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Ein Beispiel soll die Strukturierung des Suchraums illustrieren. Nehmen w i r
an, LH enthielte zwei Merkmale mit hierarchisch angeordneten Werten, wobei d i e
allgemeineren Werte oben, die spezielleren unten stehen.

Antriebsmittel

Antrieb in der Luft             Antrieb am Boden

Propeller           Düsen          2Räder          4Räder

2Propeller    2Düsen  3Düsen  4Düsen

Antriebsart

Motor Mensch

Benzin    Diesel       Fuß     Hand

Die Blätter der Merkmalsbäume werden verwendet, um Beispiele, die d a r ü b e r
gelegenen Merkmale, um Charakterisierungen anzugeben. Beispiele sehen d a n n
so aus:

P: { [2Räder, Benzin], [4Räder, Diesel], [2Räder, Fuß]}

N: { [3Düsen, Hand] }

Der geordnete Suchraum stellt alle Kombinationen der beiden Merkmale i n
der Anordnung von generelleren Charakterisierungen (oben) zu s p e z i e l l e r e n
(unten) dar.  Das Abgleichsprädikat cover für die zwei Merkmale ist f o l g e n d e r m a -
ß e n :

covers([a,b],[c,d]) gdw. covers(a,c) & covers(b,d).

Dabei sind die Beschreibungen a und b für das Beispiel und c und d für d e n
entstehenden Begriff. Im Suchraum können verschiedene generellere B e s c h r e i -
bungen dieselbe Spezialisierung haben. Da die beiden Merkmalsbäume u n t e r -
schiedlich tief sind, liegen nicht alle Beispielbeschreibungen (Blätter) auf d e r -
selben Ebene des Suchraums. Ein Ausschnitt:

[Antriebsmittel,Antriebsart]

[Luft, -art] [Boden, -art] [-mittel, Motor] [-mittel, Mensch]

[Propeller, -art] [Düsen, -art] [2Räder, -art] [4Räder,.-art] [Boden, Motor] ...[Boden, Mensch]...

[2Propeller, -art] [Propeller,Motor] [Propeller, Mensch]... [2Räder,Motor] [2Räder, Mensch] ...

[2Propeller,Motor][2Propeller,Mensch][2Räder,Benzin ][2Räder,Diesel] [2Räder,Fuß ] [2Räder,Hand]...

In diesem Beispiel kann man das Abgleichsprädikat durch die V o r g ä n g e r r e -
lation zwischen Knoten im Merkmalsbaum definieren. Der s t r u k t u r i e r t e
Suchraum entsteht dann beim Abgleichen. Obendrein muß die schrittweise Gene -
ralisierung und Spezialisierung formuliert werden sowie der globale Ablauf. I n
Prolog läßt sich das leicht machen. Ein Versionenraum-Programm verhält s i c h
etwa so:
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?- POSITIVES BEISPIEL?

[2Räder, Benzin]

G: {[-mittel, -art]} S: {[2Räder, Benzin]}

BEISPIEL?

[3Düsen, Hand] n

G: { [Boden, -art], [-mittel, Motor]} S: { [2Räder, Benzin]}

BEISPIEL?

[4Räder, Diesel] p

G: { [Boden, -art], [-mittel, Motor]} S: { [Boden, Motor]}

BEISPIEL?

[2Räder, Fuß] p

G: {[Boden, -art]} S: {[Boden, -art]}

LÖSUNG: [BODEN, -ART]

5 .5  Lernen a ls  Funkt ionsapproximat ion

Viele Lernprobleme lassen sich als Funktionsapproximation auffassen (z.B. das
Begriffslernen, s. 5.3.1). Das Ziel ist es, eine Hypothese zu finden, die zur V o r h e r -
sage von zukünftigen Ereignissen benutzt werden kann. Gegeben sind T r a i n i n g s -
beispiele von der Funktion, die gelernt werden soll. Gesucht ist die Hypothese, d i e
diese Funktion möglichst gut approximiert. Eine Hypothese approximiert die Ziel-
funktion genau dann gut, wenn ihre Vorhersagen möglichst häufig eintreten.

Ein Beispiel hierfür ist Kreditwürdigkeitsprüfung. Das Lernproblem ist h i e r ,
anhand von z. B. der Kreditgeschichte, Kontostand etc. vorherzusagen, ob d e r
Bankkunde einen Kredit ordnungsgemäß zurückzahlen wird oder nicht. T ra i -
ningsbeispiele sind die Erfahrungen mit anderen Kunden. Gesucht ist eine H y -
pothese, welche die Zahlungsmoral eines neuen Kunden möglichst genau v o r h e r -
sagen kann (d. h. sich möglichst selten irrt).

Dieses Modell läßt sich formal wie folgt aufschreiben:

Es existieren:

• Ein Generator (G), der Beispielbeschreibungen xi∈ E anhand einer W a h r -
scheinlichkeitsverteilung P(xi) erzeugt.

• Ein Orakel (O), das jeder von G erzeugten Beispielbeschreibung x e i n e n
Wert yi=t(x) zuweist. Im allgemeinen ist die Funktion t(x) nicht d e t e r m i -
nistisch, sondern liefert einen Wert yi nur mit einer Wahrscheinlichkeit
P(y i|x) .

• Eine Hypothesensprache LH .
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Das Ziel ist:

• Die Hypothese h aus H, welche den folgenden Ausdruck (den sog. “zu e r -
wartenden Fehler“ oder auch “zu erwartende Risiko“) minimiert

R(h)= Q x h P xi i
i

E

( , ) ( ) min
| |

⋅ →
=
∑

1

P(x i) ist die Wahrscheinlichkeit,  daß das Beipiel xi aus der Be i sp ie lbeschre i -
bungsprache gezogen wird. Es ist also wichtig, auf wahrscheinlich a u f t r e t e n d e n
Beipielen xi weniger Fehler zu machen als auf unwahrscheinl ichen Beispie len.
Q(xi,h) ist eine Fehlerfunktion (sog. “Loss-Function“). Sie beschreibt die Qualität
der Vorhersage von Hypothese h für Beispiel x. Anhand der Form von Q u n t e r -
scheidet man u. a. die folgenden zwei Aufgaben:

• Klass i f ika t ion :  Einteilung von Beispielen in eine feste und v o r g e g e b e n e
Anzahl von Klassen (z. B. Klassifikation von Bankkunden in die Klassen
“kreditwürdig“ und “nicht kreditwürdig“). Hier wird normalerweise d i e
folgende Fehlerfunktion verwendet. Sie liefert den Wert 1, wenn die V o r -
hersage h(xi) falsch ist.

Q x h
h x t x

h x t xi
i i

i i

( , )
( ) ( )

( ) ( )
=

≠
=





1

0

• R e g r e s s i o n :  Approximation einer reellwertigen Funktion (z. B. V o r h e r -
sage von Aktienkursen). Häufig ist Q hier die quadrierte Abweichung des
vohergesagten Wertes h(x) der Hypothese vom Sollwert t(x).

Q x h t x h xk k k( , ) ( ) ( )= −[ ]2

Die direkte Minimierung des zu erwartenden Fehlers R(h) ist nicht m ö g l i c h ,
da wir weder P(xi)  noch t(xi) für alle i kennen. Allerdings haben wir T r a i n i n g s -
beispiele gegeben, die vom Generator anhand von P(x i) gezogen wurden und f ü r
die wir t(xi) kennen. Diese Trainingsbeispiele werden dazu benutzt, den zu e r w a r -
tenden Fehler R(h) mit dem “beobachteten Fehler“ R e m p(h) zu a p p r o x i m i e r e n30.
Der beobachtete Fehler für eine Menge von Trainingsbeispielen [x1,t(x1)], ...,
[x n, t(xn)] und eine Hypothese h berechnet sich als.

R h
n

Q x hemp i
i

n

( ) ( , )
`

= ⋅
=

∑1

1

Daraus läßt sich das folgende Lernproblem formulieren. Diese Methode des
Lernens wird “Empirical Risk Minimization“ (ERM) genannt.

                                                
30 Diese Art der Approximation ist allerdings nur für große Anzahlen von Trainingsbeispielen verläßlich. Eine
Verbesserung wird durch die gleichzeitige Betrachtung der Komplexität des Hypothesenraumes und der Anzahl der
Trainingsbeispiele erreicht (s. Vapnik 1995). Man kann dann berechnen, wie sehr R(h) und Remp(h) voneinander
abweichen.
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G e g e b e n :

• Eine Menge von Trainingsbeispielen [x1,t(x1)], ..., [xn,t(xn) ] .

• Hypothesensprache LH .

G e s u c h t :

• Die Hypothese h aus H, für die der beobachtete Fehler R e m p(h) m i n i m a l
ist .

Der in 5.5 vorgestellte Backprop Algorithmus für neuronale Netze folgt d i e -
sem Prinzip sehr direkt. Die Hypothesensprache des Netzes sind alle m ö g l i c h e n
Kombinationen von Gewichten in den Neuronen des Netzes.

5 .6  Neuronale Netze: Backprop

Von den hier vorgestellten Verfahren realisiert das Backprop Verfahren für n e u -
ronale Netze das  ERM Prinzip am direktesten. Die Lernaufgabe ist:

G e g e b e n :

• Eine Menge von Beispielen in einer Attribut-Wert-Repräsentation mit b i -
nären Attributen.

• Die Struktur des neuronalen Netzes.

Z i e l :

• Ein neuronales Netz, das für neue Beispiele die Zielfunktion mit m ö g -
lichst geringem Fehler vorhersagt.

Der im weiteren vorgestellte B a c k p r o p a g a t i o n  Algorithmus ist in der Lage,
sowohl Klassifikations- als auch Regressionsprobleme zu bearbeiten. Der Back-
propagation-Algorithmus stellt nur eine Methode aus dem Bereich der neuronalen
Netze dar und wird hier exemplarisch behandelt. Eine Übersicht über weitere Ver-
fahren findet sich in (Rieger (1993).

Bei der Betrachtung von neuronalen Netzen muß zwischen einer b io log i sch
und einer durch das maschinelle Lernen motivierten Herangehensweise u n t e r -
schieden werden. Im folgenden werden Neuronale Netze aus der Sicht des m a s c h i -
nellen Lernens behandelt und nicht versucht, biologische Vorgänge im Gehirn zu
modellieren. Es wird allgemein bezweifelt, daß im Gehirn Prozesse ablaufen, d i e
mit dem Backpropagation-Algorithmus vergleichbar sind.

Neuronale Netze setzen sich aus N e u r o n e n  zusammen. Jedes Neuron b e -
rechnet eine relativ einfache Funktion und erst ihr Zusammenwirken erlaubt d i e
Repräsentation von komplexen Begriffen. Der Backpropagation-Algorithmus b e -
nutzt Neuronen des folgenden Typs (genannt „sigmoides Neuron“).
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∑

x1

x3

x2

xn

w1

w2

w3

wn

o(x)net(x)

x0=1

w0

Ein Neuron besitzt einen Vektor von aktuellen Eingabewerten   
r
x x xn= ( ,..., )1

mit xi ∈ ℜ  (x0 ist immer gleich 1 und realisiert einen Schwellwert). Für jede Di-
mension i  dieses Vektors existiert ein Gewichtungsfaktor wi , der in der L e r n p h a -
se durch den Algorithmus verändert werden kann. Aus den Eingabewerten u n d
den Gewichten berechnet das Neuron die Summe

  
net x w xi i

i

n

( )
r = ⋅

=
∑

1

Um die Ausgabe   o x( )
r

 des Neurons für den Eingabevektor   
r
x  zu b e r e c h n e n ,

wird die Summe   net x( )
r

 durch eine sigmoide Funktion σ( )x  auf den W e r t e b e r e i c h
0 1..[ ] normiert.

  
o x net x

e net x
( ) ( ( ))

( )

r r
v= =

+ −σ 1

1

Diese nichtlineare Transformation des Ausgabewertes wird benutzt, da d u r c h
sie der unten beschriebene Trainingsalgorithmus anwendbar wird und so e f f i z i -
entes Lernen ermöglicht. Wird  σ( )x  weggelassen und   net x( )

r
 direkt als Ausgabe

verwandt, spricht man von linearen Neuronen. Allerdings ist die Menge d e r
Funktionen, die Netze mit linearen Neuronen darstellen können, auf l i n e a r e
Funktionen reduziert. Erst die nichtlineare Ausgabefunktion σ( )x  ermöglicht d e m
neuronalen Netz das effiziente Lernen von komplizierten nichtlinearen F u n k t i o -
n e n .

Sehr häufig werden Netze der folgenden f eed forward  S t r u k t u r  v e r w e n d e t .
Mit genügender Anzahl von (sigmoiden) Neuronen in der Mittel-Schicht, k ö n n e n
Netze dieser Struktur eine große Klasse von Funktionen beliebig genau a p p r o x i -
mieren (z. B. beliebige Boolesche Funktionen und beschränkte stetige F u n k t i o -
n e n ) .

Das Netz besteht aus drei Schichten: Einer Eingabe-Schicht, einer Mit te l -
Schicht (auch Hidden-Schicht genannt) und einer Ausgabe-Schicht. Die Ausga -
ben einer Schicht sind die Eingaben zur jeweils nachgelagerten Schicht. Jedes
Neuron der nachgelagerten Schicht ist mit jedem Ausgang der v o r g e l a g e r t e n
Schicht verbunden.

An der Eingabe-Schicht wird die Beschreibung eines Beispiels in das Netz
eingegeben. In dieser Schicht befinden sich keine eigentlichen Neuronen, s o n -
dern sie dient nur als Schnittstelle für die Eingaben. Nehmen wir an wir h ä t t e n
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die Attribute (vgl. das Beispiel aus Abschnitt 5.7.1)  Größe, Filmart und Farbigkeit.
Um die Werte der Attribute in das Netz eingeben zu können, müssen sie auf Z a h l e n
abgebildet werden. Für das Attribut Größe  mit den Werten groß  und klein  wird z. B.
groß auf 1 und klein auf 0 abgebildet. Die anderen Attribute werden auf ä h n l i c h e
Weise kodiert.

Die Anzahl der Neuronen in der Mittel-Schicht ist frei wählbar und be s t immt
die Komplexität der Funktionen, die das Netz lernen kann. Die Ausgabe der Ausga -
be-Schicht ist die Klassifikation des Beispiels. Vielfach besteht die Ausgabe -
Schicht auch aus mehreren Neuronen und gibt somit einen Vektor aus.

Man unterscheidet zwei Durchlaufrichtungen durch das Netz: V o r w ä r t g e -
richtet und rückwärtsgerichtet. Beim V o r w ä r t s d u r c h l a u f  werden die A u s g a b e n
der Ausgabe-Schicht ausgehend von den Eingaben der Eingabe-Schicht b e r e c h -
net. Hierzu werden zuerst die  Neuronen der Mittel-Schicht berechnet und d a n a c h
die der Ausgabe-Schicht. Die Ausgabe ist eine Zahl im Bereich 0 1..[ ] und k a n n
durch einen Schwellwert (z. B.: wenn größer 0.5, dann positiv, sonst negativ) i n
eine binäre Ausgabe umgewandelt werden. Auf diese Weise berechnet das Netz
seine Vorhersage für die Klassifikation eines Beispiels.

Der R ü c k w ä r t s d u r c h l a u f  wird in der Lernphase verwendet. Lernen b e -
deutet, daß die Gewichte der Neuronen mit Hilfe von Trainingsbeispielen angepaßt
werden. Anhand einer Menge von Trainingsbeispielen E  werden die Gewichte
der Neuronen mit einem stochastisches Gradienten-Abstiegsverfahren so e i n g e -
stellt, daß die folgende Fehlerfunktion F  minimiert wird.

F t e o e
e E

= −[ ]
∈
∑ ( ) ( )

2

t e( ) ist die Klassifikation des Trainingsbeispiels e  und o e( ) ist die Ausgabe des
Netzes. Der folgende Algorithmus beschreibt die Lernphase des Netze und die d a -
mit verbundene Veränderung der Gewichte.

Bis der Fehler ‘klein genug’ ist wiederhole für jedes Trainingsbeispiel e E∈ :

V o r w ä r t s d u r c h l a u f :

1. Berechne o e( ) mit einem Vorwärtsdurchlauf.

R ü c k w ä r t s d u r c h l a u f :

2. Für alle Neuronen k ∈Output - Schicht :
δ ← ⋅ − ⋅ −o e o e t e o ek k k k( ) ( ( )) ( ( ) ( ))1

3. Für Neuronen k ∈Hidden - Schicht : δ δ: ( ) ( ( ))= ⋅ − ⋅ ⋅
∈

∑o e o e wk k kh k
k

1
Output-Schicht

4. Verändere alle Gewichte anhand der Regel:
w w w w xji ji ji ji j ji← + ⋅ ← − ⋅η δ∆ ∆ und 

x ji ist der i -te Eingabewert von Neuron j . wji  ist das entsprechende Gewicht .

Die Idee des Algorithmus ist es, bei jedem Beispiel die Gewichte in kleinen S c h r i t -
ten so zu verändern, daß der Fehler geringer wird. ∆wji  beschreibt die R i c h t u n g

der Veränderung und die Lernrate η  gibt die Schrittgröße an. Die Lernrate sol l te
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„angemessen“ gewählt werden. Ein großes η  verringert die Trainingszeit. Wird
es jedoch zu groß gewählt, kann es sein, daß die Gewichte nicht k o n v e r g i e r e n .

∆w
E

wji
e

ji

= δ
δ

 ist der Gradient (die Ableitung) der Fehlerfunktion F t e o ee = −[ ( ) ( )]2  für

Trainingsbeispiel e  mit Bezug auf das Gewicht wji . Eine ausführliche H e r l e i t u n g

dieses Algorithmus findet sich in Mitchell (1997). Da es sich bei dem A l g o r i t h m u s
um ein Bergsteigeverfahren handelt, ist es nicht garantiert, daß die optimale E i n -
stellung der Gewichte gefunden wird. Obwohl der Algorithmus in lokalen M i n i m a
steckenbleiben kann, liefert er in der Praxis oft akzeptable Lösungen.

Nachdem die Gewichte anhand der Trainingsdaten eingestellt worden s ind ,
können durch Vorwärtsdurchläufe auch neue Beispiele klassifiziert werden.

5 .7  Begr i f f s l ernen  in  Aussagenlog ik

In diesem Abschnitt werden zwei klassische induktive Lernverfahren b e s c h r i e -
ben. Das erste ist ein top-down Lernen aus Beispielen mit statistischer M e r k -
malsselektion. Es stellt die Erkennungsfunktion für einen Begriff als E n t s c h e i -
dungsbaum dar. Ein Entscheidungsbaum hat Kanten, an denen Attributwerte s t e -
hen, Knoten sind Verzweigungspunkte und Blätter stellen Begriffsnamen dar. U m
zu entscheiden, ob ein neues Beispiel zu einem Begriff gehört, wird den K a n t e n
gefolgt, deren Beschriftung einem Attributwert des Beispiels entspricht, bis e i n
Blatt erreicht ist. Das Beispiel wird dem Begriff zugeordnet, der an dem Blatt a n g e -
geben ist. Diese Verfahren heißen "top-down induction of decision trees". Die b e -
kannteste Realisierung ist ID3 (Quinlan 1986) bzw. C4.5 (Quinlan 1993).

Das zweite Verfahren, conceptual c lus ter ing , lernt top-down aus Beobach -
tungen, d.h. der Benutzer muß keine Begriffszugehörigkeit angeben. Auch dieses
Verfahren enthält eine statistische Bewertungsfunktion. Dabei entsteht e i n e
Hierarchie von Begriffen unter einem Oberbegriff. Es gibt verschiedene c o n c e p -
tual clustering Verfahren. Hier wird  die Star-Methode vorgestellt. Die Methode
wurde von Michalski entwickelt, eine Realisierung ist CLUSTER (Michalski, S t epp
1983).

5 .7 .1  I D 3

Die Lernaufgabe für top-down Induktion von Entscheidungsbäumen ist:

Gegeben:

eine Menge von Beispielen in einer Attribut-Werte-Repräsentation

Ziel:

ein Entscheidungsbaum, der ein neues Objekt klassifiziert

Diese Lernaufgabe ist eine Spezialisierung der oben genannten B e s c h r e i -
bung von Lernen als Suche. Die Beispielbeschreibungssprache ist durch eine L i -
ste von Attributen mit ihren möglichen Werten gegeben. Die H y p o t h e s e n s p r a c h e
verwendet dieselben Attribute in einem mächtigeren Formalismus, dem E n t s c h e i -
d u n g s b a u m .

Der Kern des Verfahrens ist die Bewertung des Informationsgewinns e i n e s
Attributes für die Klassifikation eines Objektes. Wie gut kann ich ein Objekt k las s i -
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fizieren, ohne ein Attribut zu kennen? Wie gut kann ich klassifizieren, wenn i c h
den Wert eines bestimmten Attributes kenne? Welches Atribut bringt den g r ö ß t e n
Informationsgewinn? Aus der Liste aller Attribute wird zunächst das mit d e m
größten Informationsgewinn gewählt, angewandt und dann aus der Liste e n t -
fernt. Für die verbleibenden Attribute wird dann wieder genauso verfahren, b i s
schließlich kein weiteres Attribut mehr Informaionen liefert - oder die Liste l e e r
ist.  Der Informationsgehalt eines Attributs wird durch die Entropie angegeben:

pm-∑
m=1

n

log2pm

bei n verschiedenen Attributwerten und der Wahrscheinlichkeit pm  für d e n
m-ten Wertes. Man vergleicht dann den Informationsgehalt der v e r s c h i e d e n e n
Attribute mit dem Informationsgehalt der Beispielmenge selbst (also ohne A t t r i -
bute) und wählt das informativste Attribut oder gar keines. Natürlich kann d i e
Bewertung auch anders gewählt werden, z.B. nach Bayes oder im Sinne d e r
Textkompression (wieviele Zeichen brauche ich bei minimaler Codierung, um e t -
was auszudrücken - das ist der Informationsgehalt).  Dieses Forschungsthema sol l
hier aber nicht behandelt werden.

Der Algorithmus von ID3:

ID3(K,C,A)

Knoten K, Menge von Beispielen C und Liste von Attributen A

1. W e n n

• Attributliste leer ist und nicht alle Beispiele in C gehören z u m
gleichen Begriff, dann Fehlermeldung.

• alle Beispiele in C zum gleichen Begriff gehören, dann ist K e i n
Blatt und wird mit dem Begriff beschriftet.

• C leer ist, dann Fehlermeldung.

2. Wähle das Attribut a mit maximalem Informationsgewinn.

3. Reduziere die Attributliste A um a. Wir erhalten A’.

4. Für alle Attributwerte wi von a:

• Hänge Knoten Ki and K an und beschrifte ihn mit wi.

• Ermittle Menge der Beispiele Ci aus C, deren Attribut a den Wert wi

h a t .

• Rufe ID3(Ki,Ci,A’) rekursiv auf.

Ein Beispiel soll den Algorithmus verdeutlichen. Als Attributliste für die Be-
schreibung eines Sachbereichs von fotographischen Aufnahmen für be s t immte
Zwecke ist die folgende Attributliste mit den zugehörigen Attributwerten gegeben:

Att r ibut l is te :

(Größe {groß, klein},

Filmart {Foto, Dia},

Farbigkeit {s_w, bunt})
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Die Beispiele sind:

{ (groß, Dia, s_w, -), (klein, Dia, s_w, -), (groß, Dia, bunt,-),

   (groß, Foto, s_w, +), (groß, Foto, bunt,-), (klein, Foto, bunt,-) }

Ohne ein Attribut zu kennen, ist die Menge der Beispiele bereits ziemlich g e -
ordnet, weil 5 von 6 Beispielen negativ sind und nur eines positiv ist. Die E n t r o p i e
der Beispielmenge ist 0,649:

5
6

log2
5
6

= -0,219
  für negative Beispiele

1
6

log2
1
6

= -0,430
 für das positive Beispiel

Summe mit umgekehrtem Vorzeichen: 0,649

Der Informationsgewinn, wenn wir den Wert des Attributs Größe kennen, e r -
gibt sich aus der Entropie ohne Attribut minus der Entropie für Größe :

g r o ß

(groß, Dia, s_w, -), (groß, Dia, bunt,-),(groß, Foto, s_w, +), (groß, Foto, bunt,-)

3
4

log2
3
4

= -0,311
 für negative Beispiele, die als  g roß  beschrieben sind

1
4

log2
1
4

= -0,5
     für das positive Beispiel

Die Summe mit umgekehrtem Vorzeichen ist 0,811.

k l e i n

(klein, Dia, s_w, -), (klein, Foto, bunt,-)

2
2

log2
2
2

= 0
 für die beiden negative Beispiele, die als kle in  beschrieben sind.

Für das Attribut Größe ergibt sich also:

4
6

0,811 + 2
6

0 = 0,541
 als Entropie.

Der Informationsgewinn durch dieses Attribut ergibt sich aus dem V e r g l e i c h
mit der Entropie ohne ein Attribut:

0,649 - 0,541 = 0,108

Dieselbe Berechnung muß für alle anderen Attribute durchgeführt w e r d e n ,
damit dann das Attribut mit dem größten Informationsgewinn ausgewählt w e r d e n
kann.  Für F i lmar t  ergibt sich:
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Foto:

(groß, Foto, s_w, +), (groß, Foto, bunt,-), (klein, Foto, bunt,-)

2
3

log2
2
3

= -0,399
 für die zwei negativen Beispiele

1
3

log2
1
3

= -0,528
 für das positive Beispiel

Die Summe mit umgekehrtem Vorzeichen ist: 0,927.

Dia:

(groß, Dia, s_w, -), (klein, Dia, s_w, -), (groß, Dia, bunt,-)

3
3

log2
3
3

= 0
 für die drei negativen Beispiele.

Es ergibt sich also als Entropie für Fi lmart :

3
6

0,927 + 3
6

0 = 0,463

Der Informationsgewinn ist: 0,649 - 0,463 = 0,185. Damit ist Fi lmart  besser g e -
eignet, die Daten zu ordnen als Größe.

Wenn Fi lmart  ausgewählt wurde, werden zwei Kanten angelegt und mit Foto
bzw. Dia beschriftet. Der unter Dia gebildete Knoten enthält nur negativ k lass i f i -
zierte Beispiele und wird damit zum Blatt. Der unter Foto gebildete Knoten muß g e -
nauso wie der oberste behandelt werden. Am Ende ergibt sich der folgende E n t -
s c h e i d u n g s b a u m :

Filmart

Foto                            Dia

Farbigkeit                                         - 

s_w                   bunt

+                                   -

Ein neues Objekt, zum Beispiel (klein, Foto, s_w), wird nach diesem E n t s c h e i -
dungsbaum nun klassifiziert (hier: positiv ).

Man kann einen Entscheidungsbaum in eine Menge von Regeln ü b e r s e t z e n .
Diese Regelmenge kann in einem Nachbearbeitungsschritt optimiert werden.
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5 .7 .2  Conceptual  Cluster ing

Conceptual c lus ter ing ist aus dem statistischen Verfahren der cluster A n a l y s e
hervorgegangen. Im Gegensatz zur Statistik, die lediglich numerische A n g a b e n
zurück liefert, wird aber beim maschinellen Lernen die Auswertung der Evaluat i -
on in Form verständlicher Begriffscharakterisierungen ausgegeben. Zum Beispiel
werden die Begriffe in einer Hierarchie angeordnet. Die Lernaufgabe u n t e r s c h e i -
det sich von der top-down Induktion von Entscheidungsbäumen dadurch, daß d e r
Aggregationsschritt dazugehört. Es wird also nicht aus Beispielen, sondern a u s
Beobachtungen gelernt.

Ich beschreibe hier lediglich das star-Verfahren (Michalski, Stepp 1986). Be-
kannte Verfahren sind aber auch COBWEB (Fisher 1987) und UNIMEM (Lebowitz
1987). Die Beschreibungssprache für Beobachtungen ist eine offene P r ä d i k a t e n -
logik (also: ohne Quantoren bzw. nur mit All-Quantoren), wobei Sorten v o r g e g e -
ben werden. Zum Beispiel gibt es nominale, lineare (geordnete) und h i e r a r c h i -
sche Wertebereiche für Variablen.

Ein cluster is t  eine intensional definierte Menge von Beobachtungen, a lso
eine Begriffscharakterisierung. Ein s tar  ist eine abgrenzende Beschreibung, a lso
ein elementares cluster.

Die Grundidee des Verfahrens ist die Abgrenzung von Mengen von Beob-
achtungen. Dazu werden zunächst k beliebige Beobachtungen gewählt. Oft ist k=2,
so daß ein binärer Baum von Begriffen gebildet wird. Die ausgewählten Beobach -
tungen werden dann gegeneinander abgegrenzt, d.h. es werden Cha rak t e r i s i e -
rungen gefunden, die die beiden Beobachtungen unterscheiden. Dieser Schritt i s t
die star-Bildung. Aus solchen Charakterisierungen wird eine ü b e r s c h n e i d u n g s -
freie Abdeckung aller Beobachtungen durch k Begriffe konstruiert. Wählt m a n
recht ähnliche Beobachtungen, so erhält man eher typische C h a r a k t e r i s i e r u n -
gen, deckt aber vielleicht nicht gut genug alles ab. Wählt man sehr u n t e r s c h i e d l i -
che Beobachtungen, deckt man vermutlich viele Beobachtungen gut ab, v e r p a ß t
aber vielleicht abgrenzende Merkmale. Ein Bewertungskriterium entscheidet, o b
die Menge der Beobachtungen hinlänglich strukturiert ist, oder nicht. W e n n
nicht, werden noch einmal andere Ausgangsbeobachtungen gewählt, mit d e n e n
die Schritte noch einmal durchlaufen werden. Die gefundenen Begriffe w e r d e n
weiter verfeinert, indem das Verfahren auf alle von dem jeweiligen Begriff a b g e -
deckten Beobachtungen angewandt wird. Das Verfahren hält an, sobald das Be-
wertungskriterium erfüllt ist und so viele Ebenen von Begriffen gebildet w u r d e n
wie vom Benutzer gefordert. Das Verfahren für eine Ebene von Begriffen n o c h
einmal im Überblick:

Star-Methode:

1. Wahl von k Ausgangsbeobachtungen

2. Bestimmung des star für jede Ausgangsbeobachtung gegen die andere(n)

3. Konstruktion einer disjunkten Abdeckung

4. Evaluierung:

wenn das Bewertungskriterium erfüllt ist, alle C h a r a k t e r i s i e r u n g e n
ausgeben und zur nächsten Ebene übergehen.
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wenn das Bewertungskriterium nicht erfüllt ist, für neue A u s g a n g s b e -
obachtungen wieder die Schritte 1.-4. ausführen.

Anhand eines einfachen Beispiels soll das Verfahren genauer vo rges t e l l t
werden. Dabei nehmen wir Beobachtungen an, die alle durch eine Relation r(X,Y)
beschrieben werden, wobei die Wertebereiche für X und Y beide vom Typ
"nominal" sind, d.h. die möglichen konstanten Terme werden aufgezählt.

X: { Video, 16mm, Super8}

Y: { Spiel, Trick, Dokumentar}

Es gibt also potentiell 9 Beobachtungen, die mit der Relation a u s g e d r ü c k t
werden können. Nehmen wir an, die folgenden vier Beobachtungen wären g e g e -
b e n :

e1: r(Video, Spiel)

e2: r(16mm, Trick)

e3: r(Super8, Dokumentar)

e4: r(Super8, Trick)

Wir können die möglichen Beobachtungen in einer zweidimensionalen G r a -
phik darstellen, wobei die tatsächlichen Beobachtungen fett gedruckt sind.

e6 e8 e3

e5 e2 e4

e1 e7 e9
Video     16mm    Super8

Doku

Spiel

Trick

y

x

Wie kann man diesen Bereich nun strukturieren?

Wählen wir als Ausgangsbeobachtungen e1 und e4. Der erste Schritt ist je tz t
die star-Bildung. Sie soll die Unterschiede zwischen Beobachtungen deutlich m a -
chen. Zunächst wird maximal generalisiert, danach soweit als nötig spezia l is ier t .
Ein star  wird notiert als G(b1|b2), wobei b1 gegen b2 abgegrenzt wird, d.h. es w i r d
alles notiert, was b2 nicht hat, aber b1. Ein star  besteht aus einer Disjunktion v o n
Merkmalen. Diese Disjunktion ist die maximale Generalisierung, die gerade b 2
noch ausschließt. Es werden bei zwei Ausgangsbeobachtungen zwei stars  gebildet.

Im Beispiel:

G(e1|e4): r(¬  Super8,Y) ∨ r(X, ¬Trick)

= r(Video ∨ 16mm, Y) ∨ r(X, Spiel ∨ Dokumentar)



136

Damit sind e1, e2 und e3 abgedeckt und nur e4 ist ausgeschlossen. Von d e n
möglichen  Beobachtungen sind e5, e6, e7, e8 und e9 abgedeckt.

G(e4|e1): r(¬Video, Y)  ∨ (X, ¬  Spiel)

= r(16mm ∨ Super8, Y)  ∨ (X, Trick ∨ Dokumentar)

Damit sind e2, e3 und e4 abgedeckt, nur e1 ist ausgeschlossen.

Nun werden diese beiden stars  G spezialisiert zu RG. Bisher war die Re la t ion
immer nur an einer Argumentstelle eingeschränkt worden. Jetzt wird zu j e d e r
Einschränkung einer Argumentstelle eine passende Einschränkung der a n d e r e n
gesucht. Dazu werden die Y-Werte zu den im star  angegebenen X-Werten a u f g e -
sammelt. Zu Video oder 16mm gibt es nur Spiel oder Trick. Entsprechend werden zu
den X-Werten die vorkommenden Y-Werte aufgesammelt. Also ergibt sich

RG(e1|e4): r(Video ∨ 16mm,  Spiel ∨ Τ rick) ∨

r(Video ∨ Super8, Spiel ∨ Dokumentar )

Damit wird e1, e2 und e3 immer noch abgedeckt. Die Spezialisierung ist n u r
an den möglichen Beobchtungen zu erkennen. Es ist jetzt e8  ausgeschlossen.

RG(e4|e1): r(16mm ∨ Super8, Trick ∨ Dokumentar )

Damit sind e2, e3, e4 abgedeckt. Von den vorher auch abgedeckten m ö g l i c h e n
Beobachtungen sind jetzt e5, e6, e7 und e9 nicht mehr abgedeckt.

Bei G(e4|e1) ergibt sich kein Unterschied für RG(e4|e1), ob nun von g e g e b e -
nen X-Werten aus nach Y-Werten oder von gegebenen Y-Werten nach X-Werten
gesucht wird.

Auch die spezialisierten stars  sind noch nicht überschneidungsfrei  für a l l e
(also auch die möglichen) Beobachtungen. Jedes Disjunkt eines stars  wird mit j e -
dem Disjunkt des anderen stars  verglichen. So deckt r(Video ∨ 16mm,  Spiel ∨
Τ rick) e1, e2, e5 und e7 ab und  r(16mm ∨ Super8, Trick ∨ Dokumentar) deckt e2, e3,
e4 und e8 ab. Sie werden im nächsten Schritt durch Einschränkungen eines Terms
disjunkt gemacht. Im Beispiel soll e2 von nur einem star  abgedeckt werden, m u ß
also aus dem anderen ausgeschlossen werden. Dabei gibt es verschiedene Mög-
lichkeiten, dies zu tun. Hier wird das Verfahren exponentiell. Es wird die erste g e -
fundene Einschränkung gewählt und erst die Qualitätsbewertung der Begr i f f sde-
finition entscheidet, ob diese Möglichkeit gut genug war. Im Beispiel k a n n
RG(e4|e1) eingeschränkt werden zu

r(Super8, Trick ∨ Dokumen ta r )

Aber auch das zweite Disjunkt von RG(e1|e4), r(Video ∨ Super8, Spiel ∨ Doku-
mentar), und RG(e4|e1), r(16mm ∨ Super8, Trick ∨ Dokumentar), ü b e r s c h n e i d e n
sich. Um dies überschneidungsfrei  zu bekommen, kann RG(e4|e1) e i n g e s c h r ä n k t
werden auf:

r(16mm ∨ Super8, Trick)

Damit sind nun clus ter  gebildet, und es stehen zwei alternative Begr i f f sdef i -
nitionen zur Bewertung an:
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1) r(Video ∨ 16mm,  Spiel ∨ Τ rick) für cluster  um e1

deckt e1, e2, e5 und e7 ab

r(Super8, Trick ∨ Dokumentar) für cluster  um e4

deckt e3 und e4  ab

2 ) r(Video ∨ Super8, Spiel ∨ Dokumentar) für cluster  um e1

deckt e1, e3, e6 und e9 ab

r(16mm ∨ Super8, Trick) für cluster  um e4

deckt e2 und e4 ab

Die Bewertungsfunktion kann vom Benutzer vorgegeben werden. Micha l sk i
nennt sie lexical evaluation function  (LEF). Ein einfaches Maß für ein c l u s t e r
ist:

 1- 
Anzahl abgedeckter Beobachtungen

Anzahl abgedeckter Objekte  

Für die Bewertung der Begriffsqualität werden die Bewertungen z u s a m m e n -
gehöriger cluster  addiert. In unserem Beispiel sind jeweils vom ersten clus ter   u m
e1 zwei tatsächlich beobachtete Objekte abgedeckt und insgesamt vier. Der c l u s t e r
um e4 deckt im ersten und zweiten Fall zwei Objekte ab, die beide auch b e o b a c h t e t
wurden. Damit ergibt sich für beide Fälle dieselbe Bewertung von (1- 2/4) + ( 1 -
2/2) = 1/2. Diese Bewertung erlaubt hier also keine Auswahl zwischen den A l t e r -
nativen, und wir können eine der beiden Definitionen beliebig wählen.

Das Ergebnis einer Iteration ist die Aufteilung des  gesamten Bereichs in zwei
cluster : Hier: r(Video ∨ 16mm,  Spiel ∨ Τ rick) und r(Super8, Trick ∨ Dokumenta r ) .
Diese Begriffe können nun verfeinert werden, indem innerhalb von ihnen w i e -
der clus ter  gebildet werden. In unserem Beispiel macht es wohl keinen Sinn, d a
die abgedeckten Bereiche bereits sehr klein sind. In realen Anwendungen m i t
Hunderten von Beobachtungen wird der Algorithmus auf jedes clus ter  erneut a n -
gewandt bis eine Mindestanzahl abgedeckter Beobachtungen unterschritten ist.   

e6 e8 e3

e5 e2 e4

e1 e7 e9
Video     16mm    Super8

Doku

Spiel

Trick

y

x

All

cluster1      cluster2

e1, e2, e5, e7         e3, e4

In der graphischen Darstellung sieht man deutlich, daß dies B e g r i f f s p a a r
nicht alle möglichen Beobachtungen erfaßt. Es kann also nicht vollständig k lass i -
fizieren. Bei einem anderen Bewertungsmaß, das die Anzahl     a l l e r     Objekte mit e i n -
bezieht, könnten beide alternativen Begriffspaare abgelehnt werden, weil s i e
nicht den gesamten Bereich aller möglicher Beobachtungen abdecken. Damit i s t
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die V o r h e r s a g e k r a f t  (predictiveness) eingeschränkt: nicht alle möglichen Be-
obachtungen können mit den Begriffen klassifiziert werden. Man könnte a lso
noch einmal andere Ausgangsbeobachtungen wählen, mit denen erst a l l g e m e i n e
stars  gebildet und dann spezialisiert werden. Zum Beispiel kann man gegensä t z l i -
chere Ausgangsbeoachtungen wählen, etwa e1 und e3. Wenn auch die neuen Be-
griffspaare nicht genügend Vorhersagekraft haben, kann man die B e w e r t u n g e n
der beiden Iterationen vergleichen. Hat sich die Qualität immerhin v e r b e s s e r t ,
werden für den nächsten Versuch zentrale Beobachtungen zum A u s g a n g s p u n k t
gemacht (z.B. e2 und e4), hat sie sich weiter verschlechtert, gibt es für diese b e -
grenzte Menge von Beobachtungen keine Alternative mehr (andere gegensä t z l i -
che Beobachtungspaare, hier: e6 und e9, wurden nicht beobachtet). Man k a n n
dann annehmen, daß entweder die nicht erfaßten möglichen Beobachtungen t a t -
sächlich nicht vorkommen können oder die Begriffsbildung nicht e r f o l g r e i c h
w a r .

Das Bewertungsmaß entscheidet, ob das s tar -Verfahren vollständige Be-
griffsdefinitionen lernt. Die Korrektheit ist im Gegensatz zu Verfahren, die a u s
Beispielen lernen, schwieriger festzustellen: es gibt keine vorgebene E i n t e i l u n g
der Beobachtungen in Begriffe, mit der die gefundene Einteilung v e r g l i c h e n
werden könnte.

5 .8  Dedukt ives  Lernen

Für erklärungsbas iertes  Lernen  ist die Lernaufgabe nicht, Beispiele oder Be-
obachtungen zu einer Begriffsdefinition zu verallgemeinern, sondern eine Be-
griffsdefinition für eine Anwendung zu operationalisieren. Wenn eine Beg r i f f s -
definition in einer Terminologie vorliegt, die erst mühsam aus der von der A n -
wendung vorgegebenen Terminologie gewonnen werden muß, ist die Neudef in i t i -
on des Begriffs in Anwendungstermini eine Operationalisierung.

Gegeben:

Zielbegriff mit einer Definition

Übungsbeispiel: positives Beispiel für den Zielbegriff

S a c h b e r e i c h s t h e o r i e

Operationalitätskriterium: ein Prädikat, das entscheidet, welche Termini z u r
Neudefinition des Zielbegriffs herangezogen werden dürfen.

Ziel:

Eine Definition des Zielbegriffs, die dem Operationalitätskriterium gehorcht.

Die Idee dabei ist, daß eine Lösung (Übungsbeispiel) anhand des Wissens
(Sachbereichstheorie) nachvollzogen wird. Dabei wird die S a c h b e r e i c h s t h e o r i e
mit den Angaben zum Beispiel in Verbindung gebracht. Aus dieser V e r b i n d u n g
werden dann die operationalen Bestandteile herausgezogen und  für z u k ü n f t i g e
Beispiele zur Klassifikation genutzt. Es handelt sich also um ein sicheres L e r n v e r -
fahren: es wird deduziert, daß das Übungsbeispiel von dem Zielbegriff a b g e d e c k t
wird. Die Deduktionsschritte werden für zukünftige Beispiele direkt genutzt. Es
findet keine Generalisierung statt. Der operationale Begriff ist eine Spezial isie-
rung. Da die Sachbereichstheorie erhalten bleibt, können aber auch alle Beispie-
le, die vor dem Lernen klassifizierbar waren, weiterhin klassifiziert werden.
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Das einfache Verfahren von Mitchell (1985) verwendet einen T h e o r e m b e -
weiser, um das Übungsbeispiel aus der Sachbereichstheorie abzuleiten. In d e m
Beweispfad werden dann mithilfe der Substitutionen Variablen eingeführt. Die
Termini, in denen das Übungsbeispiel beschrieben ist, werden als operational d e -
finiert. Die Blätter des Beweisbaumes ergeben dann den operationalen Begriff.

Die drei in der Literatur immer wieder angeführten Beispiele für dieses V e r -
fahren betreffen Mord und Selbstmord, Tassen sowie die Stapelbarkeit von Objek-
ten. Letzteres wird hier vorgeführt:

Zie lbegr i f f :

leichter(X,Y) --> stapelbar(X,Y)

Übungsbe i sp ie l :

auf(obj1, obj2)
isa(obj1, kiste)
isa(obj2, tisch)
farbe(obj1, rot)
farbe(obj2, blau)
volumen(obj1, 1)
dichte(obj1, 0.1)

S a c h b e r e i c h s t h e o r i e :

volumen(P,V) & dichte(P,D) --> gewicht(P, V*D)
gewicht(P, W1) & gewicht(Q, W2) & W1 < W2 --> leichter(P,Q)
isa(P,tisch) --> gewicht (P,5)
0.1 < 5

Opera t iona l i tä t skr i te r ium:

volumen, dichte, < und isa sind operational und sonst keine Prädikate.

Mithilfe der Sachbereichstheorie kann nachgewiesen werden, daß die Kiste
auf den Tisch stapelbar ist.

Der Beweisbaum sieht folgendermaßen aus:

stapelbar(obj1, obj2)

leichter(obj1, obj2)

gewicht(obj1, 0.1)                 <(0.1,5)                       gewicht(obj2, 5

volumen(obj1,1)    dichte(obj1, 0.1)                                 isa(obj2, tisch

Dieser Beweis wird für die künftige Nutzung durch andere Beispiele v e r b e s -
sert, indem Variablen gemäß der Substitutionen, die im Beweis verwendet w u r d e n ,
anstelle der Konstanten gesetzt werden.
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stapelbar(X,Y)

leichter(X,Y)

gewicht(X,W1)                 <(W1, W2)                       gewicht(Y,W2)

volumen(obj1,1)    dichte(obj1, 0.1)                                 isa(obj2, tisch)

X/P, Y/Q

Y/Q, W2/5X/P,W1/V*D

Die Substitutionen sind in dem Beweisbaum a n g e g e b e n .31 Als o p e r a t i o n a l e
Begriffsdefinition ergibt sich:

volumen(X,V) & dichte(X; D) & V*D < 5) & isa (Y, tisch) --> stapelbar(X,Y)

Dieses Verfahren kann leicht in Prolog programmiert werden, wobei m a n
Prolog als Theorembeweiser benutzt, der gleich die Substitutionen m i t l i e f e r t
(Mitchell, Kedar-Cabelli 1986). Falls die Sachbereichstheorie unübersichtlich i s t
und man stets Anwendungen einer speziellen Form hat, führt die o p e r a t i o n a l e
Definition zu einer Performanzsteigerung des Klassifikationssystems. In a n d e r e n
Fällen jedoch nicht!  

An dem Beispiel sind die Schwächen des Verfahrens gut zu erkennen. Das
Operationalitätskriterium ist hier einfach eine Aufzählung von Prädikaten. I n
echten Anwendungen kann ein reicheres Kriterium nötig sein, das sich d a n n
nicht mehr so einfach abprüfen läßt (DeJong, Mooney 1986).

Eigenarten des Übungsbeispiels, die vielleicht nicht immer in der A n w e n -
dung vorkommen, geraten genauso in die neue Begriffsdefinition wie die für d i e
Anwendung wichtigen Eigenschaften. So ist hier der Gewichtsvergleich z w i s c h e n
Tischen und allen anderen Objekten in der Begriffsdefinition enthalten. Das i s t
sinnvoll, wenn in der Anwendung grundsätzlich nur auf Tische etwas ges te l l t
werden soll. Wenn aber die Operationalisierung der Definition darin b e s t e h e n
sollte, daß das Prädikat le ichter  durch die Prädikate volumen, dichte und < e r se tz t
wird, so ist der neue Begriff zu speziell geworden. Wir müßten dann ein a n d e r e s
Übungsbeispiel wählen, in dem auch das Gewicht des zweiten Objekts b e r e c h n e t
wird, so daß ein symmetrischer Beweisbaum entsteht. Die Wahl des Übungsbe i sp i e l
ist also entscheidend. Der neue Begriff kann auch deshalb zu speziell d e f i n i e r t
sein, weil Prädikate nicht generalisiert werden. (DeJong, Mooney 1986).

Wenn wir ein solches Übungsbeispiel wählen würden, fehlt aber v i e l l e i c h t
in der Sachbereichstheorie der Vergleich der Gewichte (<) für diese Werte. E ine
vollständige Sachbereichstheorie ist notwendig bei diesem Verfahren, da der Be-
weis gelingen muß. Erweiterungen erklärungsbasierten Lernens b e s c h ä f t i g e n
sich daher mit der Vervollständigung von Beweisen. Aus demselben Grund m u ß
die Sachbereichstheorie natürlich konsistent sein.

                                                

31 Für den Schritt der Variabilisierung wird das Mord- ( tötet(X,Y) ) bzw. Selbstmordbeispiel ( tötet (X,X) ) oft ange-
führt.
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5 .9  Induktives Lernen in Prädikatenlogik

Wie oben schon dargestellt, ist mit Lernen meist ein induktiver Schluß g e m e i n t .
Diesen induktiven Schluß für die Prädikatenlogik konstruktiv zu formalisieren, so
daß für eine gegebene Menge von Daten (und eine Theorie) die speziellste ( o d e r
generellste) Verallgemeinerung gefunden werden kann, ist in jüngster Zeit e i n
wieder lebhaft diskutiertes Thema geworden. Die ersten Ergebnisse von P l o t k i n
(1971) waren wenig ermutigend: im allgemeinen Fall ist in der P r ä d i k a t e n l o g i k
erster Stufe nicht entscheidbar, ob die speziellste mit Hintergrundwissen und Bei-
spielen konsistente und gemäß einer Interessanthei tsordnung minimale G e n e r a -
lisierung gefunden wird! Inzwischen ist dieser Satz reformuliert worden: die P r ä -
dikatenlogik muß eingeschränkt werden, damit eine speziellste G e n e r a l i s i e r u n g
gefunden werden kann. Die aktuellen Ansätze unterscheiden sich zum e i n e n
darin, wie die Generalisierung definiert wird, zum anderen in den konkreten E i n -
schränkungen der Prädikatenlogik.

5 .9 .1  G e n e r a l i s i e r u n g

Bei den logik-basierten Verfahren geht es darum, genau anzugeben, wann e i n
Literal oder eine Klausel eine Generalisierung eines anderen Literals bzw. e i n e r
anderen Klausel darstellt. Wenn man die Generalisierungsbeziehung fo rma l i s i e -
ren kann, dann kann man hoffentlich auch ein Verfahren finden, das zu g e g e -
benen Literalen bzw. Klauseln eine Generalisierung konstruiert. Und das w ä r e
dann ein induktiver Schluß.

Eine Möglichkeit, die Generalisierung zu beschreiben, verwendet die I m p l i -
k a t i o n .

Eine Klausel C1 ist genereller als eine andere, C2, geschrieben C1 ≥ C2, w e n n
C1 --> C2 gilt.

Eine Klausel C1 ist genereller als eine andere, C2, bezüglich einer Theorie T,
wenn T, C1 --> C2 gilt.

Um dann eine Generalisierung zu finden, müssen wir die Klausel finden, d i e
die gegebenen Beispiele impliziert. Dies ist schwierig, weil es darauf h i n a u s l ä u f t ,
die logische Folgerung zwischen Klauseln als Grundlage zu nehmen, die nicht i m
allgemeinen Fall entscheidbar ist.

Deshalb wird die schwächere S u b s u m t i o n s b e z i e h u n g  bevorzugt. Die S u b -
sumtion ist eine korrekte, aber unvollständige Ableitungsrelation. Eine Klausel C1
ist genereller als eine andere Klausel C2, C1 ≥ C2, wenn gilt: C1 subsumiert C2. Bei
Literalen ist das einfach.

Ein Literal L1 subsumiert ein anderes Literal L2, genau dann wenn es e i n e
Substitution θ gibt, so daß L1θ = L2.

Wenn wir Klauseln als Mengen schreiben, so ist die generellere Klausel e i n e
Teilmenge der spezielleren. Natürlich müssen die Terme so substituiert w e r d e n ,
daß es paßt. Dazu suchen wir die geeignete Substitution θ .

Eine Klausel C1 subsumiert eine Klausel C2, C1 ≥  C2, genau dann w e n n
 C2 ⊇  C1θ.
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Damit wird Substitution und Teilmengenbeziehung zur Grundlage der F o r m a -
lisierung von Induktion.

Wir können uns Generalisierung einmal (semantisch) an den Objekten
(Daten, Beispielen) einer logischen Struktur deutlich machen. Eine Klausel C1 i s t
genereller als eine andere Klausel C2, wenn sie mehr Objekte abdeckt. So ist z u m
Beispiel  

tier(X) --> säugetier (X) ≥  tier(rex) --> säugetier (rex)   und

tier(X) --> säugetier (X) ≥ tier(X) & im_haus(X)--> säugetier (X).

tier(X)
im_haus(X)

x
x

x

x
x

x

x
x

x
x

x
x

x

xx x

x
x

x

tier(rex)

Die Säugetiere umfassen einmal nur rex  (und vielleicht noch andere Objekte),
einmal mindestens die Schnittmenge der beiden Objektmengen, schließlich s o g a r
mindestens alle Tiere.

{¬  tier(X), ¬  im_haus(X), säugetier(X)} ⊇ {¬  tier(X), säugetier(X)}.  

An dem Beispiel ist auch deutlich zu sehen, daß neben der Te i lmengenbez ie -
hung, der Subsumtion, auch die logische Folgerung gilt. Die Faustregel lautet: j e
mehr Literale eine Klausel hat, desto spezieller ist sie. Das von Plotkin (1971) e r -
kannte Problem läßt sich ebenfalls an dem Beispiel zeigen: Wenn durch e i n e
Theorie gegeben ist, daß einige Literale gleichbedeutend sind mit einem a n d e r e n
Literal, so hilft das einfache Abzählen nichts. Wenn für alle Tiere bekannt ist, d a ß
sie sterblich sind, so wird eine der oben angeführten Klauseln über Tiere n i c h t
spezieller, wenn sterblich(X) hinzugefügt wird. Es ist einfach redundant. Wir m ü s -
sen das H i n t e r g r u n d w i s s e n  also etwas raffinierter berücksichtigen.

C1 ist genereller als C2 bezüglich einer Theorie T, wenn in jeder I n t e r p r e t a t i -
on I, die T wahr macht, für alle Atome A gilt, daß, wann immer C2 auf A
zutrifft, dann trifft auch C1 auf A zu.

Wir sehen also in der I n t e r p r e t a t i o n32 nach, welche Objekte von einer K lau -
sel abgedeckt werden. Wir nehmen das Hintergrundwissen insofern hinzu, als w i r
nur in Modellen der Theorie nachsehen. Dies ist die Bedeutung der Genera l i s i e -
rung mit Hintergrundwissen. Plotkin (1971) führte die Subsumtion relativ zu e i -
ner gegebenen Theorie T folgendermaßen ein:

Eine Klausel C1 ist genereller als eine andere, C2, bezüglich einer Theorie T,
genau dann wenn

T, C1 |-- C2, wobei in der Ableitung C1 höchstens einmal vorkommt.

                                                
32 Praktischerweise nimmt man eine Herbrand-Interpretation, die für C1, C2, T konstruiert ist.
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Sein Beispiel ist:
C2: flauschig(X) & katze(X) --> kuscheltier(X).
T: katze(X) --> haustier(X).

haustier(X) & flauschig (X) & klein(X) --> kuscheltier(X)

Dann ist eine generellere Klausel zum Beispiel:
C1: katze(X) --> klein(X)

Wir können in C2 katze(X) durch seine Konsequenz, haustier(X), e r g ä n z e n .
Dann ist C1 die fehlende Klausel, um aus der Theorie C2 abzuleiten. Daß alle Ka tzen
klein sind, wird nur einmal verwendet. Ärgerlicherweise hat die G e n e r a l i s i e r u n g
nur indirekt mit dem zu tun, wovon die generalisierte Klausel C2 handelt, n ä m l i c h
kuschelt ier(X). Deshalb hat Wray Buntine (1988) eine andere Subsumtion b e z ü g l i c h
Hintergrundwissen eingeführt, die general i s ierte  Subsumtion .

Eine Klausel C1 ist genereller als eine andere, C2, bezüglich einer Theorie T,
genau dann wenn es

   eine Substitution θ gibt, die den Klauselkopf von C1 mit dem von C2 u n i f i -
ziert, geschrieben ∃θ , so daß   C1kopf θ = C2kopf  ,

   eine Skolemsubstitution σ, die alle Variablen in C2 durch neue K o n s t a n t e n
ersetzt, und

   es gibt einen Klauselkörper von C1 mit den Substitutionen θ und σ, der l o -
gisch aus dem skolemisierten Klauselkörper von C2 folgt, geschrieben 

T, C2körper σ   |=   ∃  (C1körper θσ )

Wir müssen also die generellere Klausel durch Substitutionen erst e i n -
schränken, damit sie aus der spezielleren folgt. Durch die Unifikation der Klause l -
köpfe kann bei dem Beispiel der Kuscheltiere jetzt nicht mehr etwas über die Grö-
ße von Katzen als Generalisierung gewonnen werden. Wir können hier g e n e r a l i -
s i e r e n :

C1: flauschig(X) & haustier (X) --> kuscheltier (X)

Dabei ist θ {}, σ {X/a}. Mit der Schnittregel und der Unifikation {X/a} k ö n n e n
wir aus der ersten Klausel der Theorie und dem Körper von C2 gerade C1körper θσ
f o l g e r n .  

5 .9 .2  G e n e r a l i s i e r u n g s v e r f a h r e n

Wenn wir die Generalisierungsordnung über Klauseln kennen, dann können w i r
auch ein Verfahren konstruieren, das zu zwei Klauseln (bezüglich H i n t e r g r u n d -
wissen T) eine Generaliserung findet. Dabei wollen wir nicht irgendwie, s o n d e r n
so speziell wie möglich generalisieren.

5 .9 .2 .1  Least General Generalization (LGG)

Plotkin (1970) führt ein zweistufiges Verfahren ein. Zerst werden Literale g e n e -
ralisiert: zwei Literale werden anti-unifiziert. Es wird also die inverse Opera t ion
zum allgemeinsten Unifikator ausgeführt. Für zwei Literale, L1 und L2 wird d i e
Generalisierung Lg gebildet, indem
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nach einer Substitution θ  gesucht wird, so daß

Lgθ = L1 und Lgθ = L2 und

für alle anderen Literale Lg’ mit Lg’θ = L1 und Lg’θ = L2 gibt es eine Subs t i tu -
tion ρ mit Lg’ρ=Lg.

Der Algorithmus dazu nimmt zwei Literale, p(s1, ..., sn) und p(t1, ..., tn), m i t
demselben Prädikatsymbol als Eingabe und generalisiert von links nach r e c h t s
die beiden Terme an gleicher Argumentposition: s1, und t1, ..., sn und tn. Wo i m m e r
dasselbe Paar von Termen vorkommt, wird es durch eine neue Variable erse tz t .
Dies Vorgehen ist wie das der Unifikation. Die Operation über den Termen ist a b e r
gerade entgegengesetzt:

LGG(s i, ti)= X, falls si, ti konstante Terme oder Variablen (≠  X) sind;

LGG(f(s1, ..., sn), f(t1, ..., tn))= f(LGG(s1, t1), ..., LGG(sn,tn))

LGG(f(s1, ..., sn), g(t1, ..., tm))= X

Beispiel:

L1: unterhalt(ulf, maria, alimente(ulf, 1000))

L2: unterhalt(udo, marion, alimente(udo, 500))

LGG(L1, L2): unterhalt(X, Y, alimente(X, V))

Wo immer ulf und udo übereinanderstehen,  werden sie durch X ersetzt, w o
immer maria und marion übereinanderstehen,  werden sie durch Y ersetzt, wo i m -
mer 1000 und 500 übereinanderstehen, werden sie durch V ersetzt.

Die Generalisierung von Klauseln betrifft lediglich solche Paare von L i t e r a -
len, die dasselbe Prädikatsymbol mit gleicher Stelligkeit und dasselbe V o r z e i c h e n
haben. Um nun zwei Klauseln zu generalisieren, müssen wir erst einmal alle L i te -
rale der beiden Klauseln miteinander kombinieren. Enthält zum Beispiel die K lau -
sel C1 die Literale L11, L12 und L13, die Klausel C2 die Literale L21, L22 und L23, so
erhalten wir zwei Listen, bei denen die zu generalisierenden Paare direkt ü b e r -
e i n a n d e r s t e h e n .

C1: [L11, L11, L11, L12, L12, L12, L13, L13, L13]

C2: [L21, L22, L23, L21, L22, L23, L21, L22, L23]

Der Algorithmus zur speziellsten Generalisierung von zwei Klauseln, C1 u n d
C2, besteht aus drei Schritten:

Für alle Paare von Literalen L1i ∈  C1, L2j ∈  C2, suche diejenigen mit demselben
Prädikatsymbol und gleicher Stelligkeit und gleichem Vorzeichen h e r a u s
und bilde den LGG(L1i, L2j) .

Die Generalisierung von C1 und C2 ist die Vereinigung der g e n e r a l i s i e r t e n
Li te ra le .

Die Generalisierung wird reduziert, d.h. redundante Literale werden e n t -
f e r n t .
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Beispiel:

C1: member(2, [2]) -->member(2, [1,2])

C2: member(c, [b, c]), member(c, [c]) --> member(c, [a, b, c])

Aus Platzgründen wird member  im folgenden durch m  abgekürzt.

C1:[¬ m(2, [2]), ¬ m(2, [2]), ¬ m(2, [2]), m(2,[1,2]), m(2,[1,2]), m(2,[1,2])]

C2:[¬m(c,[b,c], ¬m(c,[c]), m(c,[a, b,c]),¬m(c,[b,c]),¬m(c, [c]), m(c, [a, b,c])]

Das dritte, vierte und fünfte Paar haben nicht dasselbe Vorzeichen. Es werden a lso
lediglich die folgenden Generalisierungen gebildet:

LGG(¬ member(2, [2]), ¬member(c,[b,c])) = ¬member(A, [C|D])

LGG(¬ member(2, [2]), ¬member(c, [c])) = ¬member(A, [A])

LGG(member(2,[1,2]), member(c, [a, b,c])) = member(A, [B, C|D])

LGG(C1, C2):   member(A, [C|D]), member(A, [A]) --> member(A, [B, C|D])

Der LGG von Klauseln kann sehr lang werden, da jedes Paar von Literalen z u
einem generalisierten Literal der Ergebnisklausel wird. Im schlimmsten Fall i s t
das Lernergebnis für zwei Klauseln, C1 mit k Literalen und C2 mit n Literalen, k n
l a n g !

Der Reduktionsschritt probiert bei jedem Literal der Ergebnisklausel C aus, ob
es weggelassen werden kann, ohne zu einer Generalisierung zu führen, also ob

C ≥ C-{L} gilt.

Wenn also C genereller als oder gleich generell wie C-{L} ist, obwohl ja nun C
mehr Literale enthält, dann ist L redundant und kann gestrichen werden. Le ide r
ist dieser Schritt NP-schwierig.

5 .9 .2 .2  Generalisierte θ - S u b s u m t i o n

Seine Definition der generalisierten Subsumtion operationalisiert Buntine (1988),
indem er für jede Klausel Ci der generelleren Klauselmenge zeigt, daß sie z u r ü c k -
geführt werden kann auf eine Klausel der spezielleren Klauselmenge, indem

• Variable aus Ci in Konstante oder andere Terme überführt werden,

• Atome dem Klauselkörper von Ci hinzugefügt werden, oder

• der Klauselkörper von Ci im Hinblick auf die Theorie teilweise a u s g e w e r t e t
wird , d.h. ein Atom  aus Ci wird mit einer Klausel der Theorie resolviert.

Dieses Verfahren ist entscheidbar, wenn die Theorie keine Funktionen e n t -
hält. Wir wenden es umgekehrt an, um zu gegebenen spezielleren Klauseln e i n e
Generalisierung bezüglich Hintergrundwissen zu finden.
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Das System ITOU (Rouveirol 1992) generalisiert eine Klausel C2, indem es

• Literale aus dem Klauselkörper streicht,

• alle Vorkommen eines Terms in C2 durch dieselbe Variable ersetzt, oder

• einige Vorkommen eines Terms in C2 durch verschiedene Variablen e r -
setzt.

Tatsächlich ist es schwierig zu entscheiden, welches Literal zu streichen i s t
und wie die Terme in C2 ersetzt werden sollen.

5 .9 .3  Indukt ive  Logische  Programmierung

Es gibt eine Reihe von Systemen, die die Begriffslernaufgabe in einer e i n g e -
schränkten Prädikatenlogik lösen. Dabei werden unterschiedliche Genera l i s i e -
rungsoperatoren, unterschiedliche Beschränkungen der Prädikatenlogik für Bei-
spiele, Hintergrundwissen und Lernergebnis sowie unterschiedliche H e u r i s t i k e n
angewandt. Der Gebrauch von Heuristiken widerspricht allerdings der Grund idee
induktiver logischer Programmierung. Man will ja eine Generalisierung f i n d e n ,
die genau die Eigenschaften der Daten wiederspiegelt. Nur wenn zugesichert w e r -
den kann, daß das Lernergebnis die speziellste Generalisierung oder die g e n e r e l l -
ste Diskriminierung ist, kann der Anwender das Lernergebnis zur Datenkorrektur
verwenden. Wenn das Lernergebnis in einem klar definierten Verhältnis zu d e n
Eingabedaten steht, dann liefert es eine Zusammenfassung der Daten und hilft b e i
ihrer Inspektion. Ein heuristisch gewonnenes Ergebnis kann keinerlei Zus iche -
rungen machen und ist daher weniger überzeugend. Wir unterscheiden also zwi -
schen Systemen,

• die sichere Ergebnisse liefern, indem sie vollständig einen e i n g e s c h r ä n k -
ten Hypothesenraum durchsuchen (Beschränkung der H y p o t h e s e n s p r a -
che) -- Beispiele sind GOLEM (Muggleton, Feng 1992), LINUS(Lavrac,
Dzeroski 1994), CLINT (de Raedt 1991), Cillg (Kietz 1996)

und solchen,

• die heuristisch den Hypothesenraum durchsuchen -- z.B. FOIL (Qu in l an
1990).

Die Beschränkungen der Repräsentationsformalismen für vollständige V e r -
fahren waren in den letzten Jahren das primäre Forschungsfeld induktiver l o g i -
scher Programmierung. Die Beweise sind in Kietz (1996) zu finden.

5 .9 .4  Lernen als nicht-monotoner Schluß --  Regellernen

Die schwierige Aufgabe des Regellernens wurde zuerst von Nicolas Helft (1989)
untersucht. Er ordnet den induktiven Schluß in die nicht-monotonen Sch lüsse
ein. Monoton ist ein Schluß, wenn durch Hinzufügen von neuen Aussagen k e i n e
bisherigen Folgerungen ungültig werden. Monotonie ist also:

T |= X  also auch T ∪  N |= X, wobei T ein Theorie, N eine neue Aussage oder e i n e
Menge neuer Aussagen, X eine Aussage oder eine Menge von Aussagen ist.
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Nicht-monoton ist ein Schluß, für den diese Eigenschaft nicht garantiert is t .
Durch das Hinzufügen von Lernergebnissen wird zwar nichts falsch, was v o r h e r
wahr war. Aber es werden mögliche Modelle des gegebenen Wissens ausgesch los -
sen. Insofern kann man alle Lernverfahren als nicht-monotone Verfahren a n s e -
hen. Dieser Sichtweise ging Helft (1989) nach. Seine Lernaufgabe:

Gegeben:

Wissen eines Sachbereichs mit Beobachtungen D

Ziel:

Eine Generalisierung G, die aus D induziert ist

Wie sieht nun die induktive Ableitung aus? Helft verwendet dafür eine zwei -
stufige Bewertung, die Formeln anhand ihrer Folgerbarkeit aus minimalen Mo-
dellen von D beurteilt, und dann Bewertungen von Formeln für alle m i n i m a l e n
Modelle erstellt. Die generellste Generalisierung für D sind dann alle Formeln r,

deren Bewertung 1 ist,

die nicht schon (deduktiv) aus D folgen und

für die es keine generellere Generalisierung gibt.

Ein minimales Modell von D enthält genau die Interpretation aller A u s s a g e n
aus D und nicht mehr. Helft ergänzt für alle konstanten Terme aus D negierte Aus -
sagen, wenn es über sie keine positiven Aussagen in D gibt. Dies entspricht e i n e r
closed world assumption, weil keine weiteren Aussagen als nur die durch D g e g e -
benen in dem Modell gültig sind. Würde Helft sich auf Hornformeln b e s c h r ä n k e n ,
so gäbe es überhaupt nur ein minimales Modell. Er nimmt aber g - K l a u s e l n
(groundable clauses). Das sind Klauseln, bei denen keine weitere E i n s c h r ä n k u n g
gemacht wird, als daß zu jeder Variablen aus einem positiven Literal (also d e r
Konklusion) auch dieselbe Variable in einem negativen Literal (also in der P r ä -
misse) vorkommt und keine Funktionen als Terme auftreten. Man kann also e i n e
Disjunktion in der Konklusion haben, und man braucht keine Funktionen zu b e -
rücksichtigen. Außerdem muß eine Klausel injektiv über Grundformeln sein. Das
heißt, für jedes Paar von Variablen X, Y einer Klausel gibt es eine Substitution, so
daß Xσ ≠ Yσ, und Xσ, Yσ sind Grundinstanzen. Damit werden überflüssige V a r i a b l e n
u n t e r d r ü c k t .

Eine Formel r erhält bezüglich eines Modells M

die Bewertung Val(r, M) = 1,

wenn sie aus dem M logisch folgt (d.h. M ist ein Modell für r)

und es für die Prämisse von r Grundinstanzen in M gibt

und die Prämisse injektiv über dem Modell ist.

Sonst erhält sie die Bewertung Val(r, M) = 0.

Im zweiten Schritt erhält eine Formel r bezüglich aller minimalen Modelle

den Wert  Val(r, D) = 1, wenn sie für alle minimalen Modelle den Wert 1 hatte,
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den Wert Val(r, D) = 0, wenn sie für alle minimalen Modelle den Wert 0 hatte,

den Wert Val(r, D) = 0.5, wenn sie für mindestens ein minimales Modell, aber 
nicht für alle, den Wert 1 hatte.

Damit läßt sich dann die Generalisierung G für das Sachbereichswissen D so
a n g e b e n :

G(D) = { r |  Val(r,D)=1  &  ¬ (D |= r)  &  

wenn r' ∈  G(D) & r' |= r   dann r |= r' }

Alle solche Formeln r sind Generalisierungen von D, die in den Model len
gültig sind, aber nicht schon logisch folgern. Daß sie auch die allgemeinsten Ge-
neralisierungen sind, legt er durch die dritte Bedingung fest: jede andere G e n e r a -
lisierung r' kann nur äquivalent mit r sein, wenn es eine F o l g e r u n g s b e z i e h u n g
zwischen r' und r gibt.  Helft induziert also generellste Formeln (MGDs) und n i c h t
speziellste. Daß sie dennoch nicht überallgemein sind, erreicht er durch die c l o s e d
world assumption.

Ein Beispiel soll dies verdeutlichen. Nehmen wir als Sachbereichswissen D:

f l i eg t ( twee ty) ,

voge l ( twee ty) ,

voge l (po l ly ) ,

∀ X | vogel(X) --> federn(X)

Dann ist das minimale Modell mit der closed world assumption:

f l i eg t ( twee ty) ,

voge l ( twee ty) ,

f e d e r n ( t w e e t y ) ,

voge l (po l ly ) ,

f e d e r n ( p o l l y ) ,

¬  fliegt(polly)

Für die folgenden beiden Formeln gelten die für G(D) angegebenen Bed in -
gungen, d.h. sie sind gültig in dem Modell, werden aber nicht schon logisch g e -
folgert und sind maximal generell.

G(D):

∀ X | fliegt(X) --> vogel(X)

∀ X | fliegt (X) --> federn(X)

Das sind recht genau diejenigen Formeln, die der Intuition entsprechen. I n s -
besondere wurden Fehlschlüsse, wie etwa "alles, was Federn hat, fliegt", v e r m i e -
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den. Dadurch, daß über die Semantik, die den gegebenen Aussagen des S a c h b e -
reichs zugrunde liegen (eben das Modell), die Generalisierungen gefunden w u r -
den, erreicht dieses Verfahren meist einleuchtende induzierte Formeln.

Leider wurde dieses Verfahren, obwohl laut Helft von ihm in Prolog i m p l e -
mentiert, bisher nicht eingesetzt. Es gibt aber eine Reihe von R e g e l l e r n v e r f a h -
ren der induktiven logischen Programmierung, deren erstes RDT (Kietz, Wrobe l
1992) ist. Dies Verfahren konnte praktisch sowohl in der Robotik (Klingspor, Mo-
rik, Rieger 1996) als auch in der Wissensentdeckung in D a t e n b a n k e n
(Brockhausen, Morik 1997) eingesetzt werden. Durch eine vom Benutzer a n z u g e -
bende syntakische Einschränkung der Hypothesensprache wird eine -- bis a u f
sicheres p r u n i n g  -- vollständige top-down Suche im Raum aller Regeln der H y -
pothesensprache ermöglicht .

5 .1 0  Theorie des Lernbaren

Die Theorie des maschinellen Lernens kann in drei Teile eingeteilt werden:

• induktive logische Programmierung

• Lernen im Grenzwert

• wahrscheinlich annähernd korrektes Lernen.

Zum ersten Teil wurde im Abschnitt 5.9.3 etwas gesagt. Für eine Dar s t e l l ung
fehlt hier der Raum. Die beiden anderen Bereiche werden oft z u s a m m e n g e f a ß t
unter verschiedenen Titeln wie computational learning theory oder a l g o r i t h m i -
sches Lernen . Wie implizit schon Plotkin, behandelt man in diesem Bereich des
maschinellen Lernens die Frage: was ist überhaupt lernbar und unter w e l c h e n
Umständen? (Deshalb die Überschrift dieses Abschnittes.) Auch dieser Bereich i s t
zu umfangreich, um ihn hier darzustellen. Stattdessen werden seine F r a g e s t e l l u n -
gen und schlaglichtartig einige Ergebnisse vorgestellt.

5 .1 0 .1  Identif ikation im Grenzwert

Die Arbeiten zur Identifikation im Grenzwert (identification in the limit) l e -
gen folgende Vorstellung zugrunde. Es geht beim Lernen um das Ermitteln e i n e r
Theorie oder Funktion oder Sprache anhand einer Folge von Eingaben ( w a h r e
und falsche Fakten, Werte aus dem Definitionsbereich und zugehöriger Wert a u s
dem Wertebereich einer Funktion, Wörter einer Sprache). Nach jeder s o l c h e n
Eingabe gibt das lernende System ein Lernergebnis aus. Dieser Prozeß geht e w i g
so weiter. Ein Lernergebnis erk lär t  ein Modell einer Theorie oder eine F u n k t i o n
oder eine Sprache, wenn das lernende System nach diesem Lernergebnis auf a l l e
folgenden Eingaben nur noch mit syntaktischen Varianten des L e r n e r g e b n i s s e s
reagiert. In gewisser Weise entspricht dieser Begriff der Erklärung dem der Be-
schreibungsadäquatheit  in der Linguistik. Das Lernergebnis ist sozusagen b e -
schreibungsadäquat, weil es auch neue Eingaben richtig beantwortet. Auch zu d e r
Beobachtungsadäquatheit in der Linguistik gibt es eine Entsprechung in d e r
Lerntheorie: Ein Lernergebnis b e s c h r e i b t  ein Modell oder eine Funktion o d e r
eine Sprache, wenn alle folgenden Reaktionen des Systems ebenfalls richtig s ind .
Hier muß dem Lernergebnis nicht die richtige Theorie, die richtige Funk t ionsde -
finition oder die richtige Grammatik zugrunde liegen, aber es muß zur jewei l s
richtigen Reaktion auf eine Eingabe führen. Insofern kann das L e r n e r g e b n i s



150

dann - in einer Analogie - beobachtungsadäquat im linguistischen Sinne g e n a n n t
w e r d e n .

Der einfachste Lernalgorithmus ist der Aufzählungsalgorithmus, der a l l e
Theorien, Funktionen, Sprachen aufzählt. Er rät einfach ein Ergebnis und, w e n n
sich dieses Ergebnis bei der nächsten Eingabe als falsch herausstellt, nimmt er das
nächste. Nehmen wir diesen einfachsten Algorithmus als Grundlage, wir k ö n n e n
uns aber auch jeden anderen denken. Dann i d e n t i f i z i e r t  der Algorithmus das
richtige Ergebnis (die Theorie, die Funktion, die Sprache) im G r e n z w e r t , w e n n ,
nachdem einmal (im Grenzwert) das richtige Ergebnis gefunden wurde, nie w i e -
der ein anderes gewählt wird. Die Bedingung fordert, daß    i r g e n d w a n n     das R i c h t i -
ge gefunden wird. Dies ist dann der Grenzwert. Ab diesem Zeitpunkt v e r ä n d e r t
sich das Lernergebis nicht mehr. Die Bedingung sagt nicht, daß das L e r n v e r f a h -
ren oder irgendjemand sonst     b e m e r k t   , daß jetzt das Richtige gefunden ist. D e r
Grenzwert ist also unbekannt. Einen guten Überblick zu diesem Scenario und d e n
darin erforschten Bereichen geben Angluin und Smith in der "Encyclopedia o f
Artificial Intelligence"  oder auch Angluin, Smith (1983).

Ein Beispiel soll deutlich machen, warum es gar nicht möglich ist, zu wis sen ,
wann das richtige Ergebnis erreicht wurde. Man könnte ja meinen, daß, wenn das
Ergebnis eines Algorithmus', von dem nachgewiesen wurde, daß er im G r e n z w e r t
identifiziert, sich längere Zeit nicht verändert, dieses dann wohl das richtige ist .
Das Beispiel zeigt, daß es für jede "längere Zeit" eine noch längere gibt, in der s i c h
das Ergebis als falsch herausstellen kann. Das Beispiel handelt vom I d e n t i f i z i e r e n
einer Funktion. Der Definitions- und der Wertebereich sind die natürlichen Z a h -
len. Das, was aufgezählt wird, sind Funktionen, hier speziell: alle Polynome m i t
nur einer Variablen. Das System gibt als Lernergebnis ein Polynom zur B e r e c h -
nung der Funktion aus. Die Beispiele für die Funktion p werden dem System  i n
Form von Paaren (n, p(n)) in aufsteigender Reihenfolge von n ( n ∈  |N) e i n g e g e -
b e n .

Beispiel: (0,1) Hypothese des Lernalgorithmus: 1

Beispiel: (1,1) Hypothese des Lernalgorithmus: 1

Beispiel: (2,1) Hypothese des Lernalgorithmus: 1

Beispiel: (3,1) Hypothese des Lernalgorithmus: 1

Beispiel: (4,1) Hypothese des Lernalgorithmus: 1

Nun könnte man allmählich meinen, die Wahrheit identifiziert zu haben: e s
handelt sich um das konstante Polynom 1! Nähmen wir also an, daß nach 5 m a l i g e r
Wiederholung des Ergebnisses das richtige gefunden ist. Aber dann kommt a l s
n ä c h s t e s :

Beispiel: (5, 121)

Es könnte sich etwa um die folgende Funktion handeln:

1 + x (x-1) (x-2) (x-3) (x-4)

Bei dieser Funktion ist für x ∈  {0,1,2,3,4} jeweils ein Faktor gleich 0. Für j ede
beliebige Schwelle können wir so eine Funktion konstruieren, bei der im S c h r i t t
nach der Schwelle das so lange konstante Ergebnis nicht mehr gilt. Deshalb k ö n -
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nen wir nicht fordern, daß aufgrund unvollständiger Information (die E i n g a b e n )
bestimmt werden kann, wann das richtige Ergebnis identifiziert wurde. Daher also
die schwache Einschränkung darauf, daß jedenfalls ab dem Zeitpunkt, zu dem das
Richtige gelernt wurde - wann immer das sei - das Richtige nicht durch etwas Fal -
sches ersetzt wird, sondern höchstens durch etwas genauso Richtiges.

Das Traurige ist nur, daß selbst mit dieser Einschränkung keine i n d u k t i v e
Methode gefunden werden konnte, die alle vollständig berechenbaren F u n k t i o -
nen beschreibt oder gar erklärt. Und, ebenso niederschmetternd, es gibt a u c h
keine induktive Methode, die reguläre Sprachen lernt - obwohl doch Kinder s o g a r
die natürlichen Sprache ihrer Umgebung lernen!

Was man tun kann, ist

• die Anforderungen noch weiter abschwächen

• das Scenario dahingehend ändern, daß mehr Informationen in das Sys tem
eingegeben werden.

Und außerdem gibt es oft Spezialverfahren.

5 .1 0 .2  Wahrscheinl ich  annähernd korrektes  Lernen

Wahrscheinlich annähernd korrektes Lernen (probably approximately c o r r e c t
learning - P A C - l e a r n i n g ) stellt wie das Lernen im Grenzwert ein t h e o r e t i s c h e s
Scenario dar, in dem Eigenschaften von Lernverfahren untersucht werden k ö n -
nen. Wie schon im vorigen Abschnitt, so ist auch hier die Motivation, so wenig wie
möglich von einem Lernverfahren zu fordern und doch noch etwas darüber a u s -
sagen zu können. Die gemeinsame Überlegung hinter diesen beiden P a r a d i g m e n
ist: es ist völlig aussichtslos, ein korrektes und vollständiges Lernverfahren z u
fordern, das nach einer bestimmten Menge von Eingaben sicher und prompt das
richtige Ergebnis abliefert und dann anhält. Der Unterschied besteht in den v o m
jeweiligen Paradigma gewählten Abstrichen. Bei der Identifikation im G r e n z w e r t
verzichtet man darauf, daß das Verfahren bei der richtigen Lösung anhält. Beim
PAC-learning schwächt man die Anforderung an die Korrektheit des L e r n e r g e b -
nisses ab. Das Lernergebnis ist nur noch mit einer bestimmten W a h r s c h e i n l i c h -
keit von 1- δ  mit einem Fehler von höchstens ε richtig. Es wird also nur a p p r o x i -
miert, nicht mehr identifiziert. Der Abschwächung bei der Korrektheit s t e h e n
aber zwei schwierige Anforderung an das Lernen gegenüber: Das Lernen soll i n
polynomial beschränkter Rechenzeit zum Ergebnis kommen und zwar n a c h d e m
das Verfahren lediglich Beispiele und davon eine beschränkte Zahl gesehen h a t .
Die Beispiele sind in genau der Wahrscheinl ichkeitsvertei lung,  in der t a t s ä c h l i c h
Instanzen und Nicht-Instanzen des zu lernenden Begriffs vorkommen. Es w i r d
also eine Stichprobe gegeben. Das Lernergebnis soll die Begriffsdefinition o d e r
Erkennungsfunktion für den Begriff sein.

Hier wird nur das Scenario des PAC-learning vorgestellt. Eine kurze, ü b e r -
sichtliche Einführung bietet Hoffmann (1991), eine ausführliche Behandlung des
Bereiches bietet Kearns (1990).  

Ein Lernalgorithmus für Begriffe einer Repräsentationsklasse (z.B. Boolsche
Funktionen oder Formeln in einer Normalform mit k Termen) erhält Beispiele f ü r
einen bestimmten Begriff c aus dieser Repräsentationsklasse. Die Beispiele werden
zufällig gewählt, entsprechen aber der "wirklichen", unbekannten W a h r s c h e i n -



152

lichkeitsverteilung der Beispiele. Der Lernalgorithmus erhält außerdem die P a -
rameter δ und ε, δ<1, ε < 1.

δ gibt an, mit welcher Wahrscheinlichkeit der Algorithmus den Begriff lernt.

ε gibt an, wie nahe das Lernergebnis h dem tatsächlichen Begriff c ist, d .h .
wieviele Instanzen oder Nicht-Instanzen falsch klassifiziert werden.

h klassifiziert Beispiele annähernd korrekt, wenn die Wahrscheinlichkeit e - ,
daß ein negatives Beispiel als Instanz des Begriffs klassifiziert wird, und die Wahr-
scheinlichkeit e+, daß ein positives Beispiel als Nicht-Instanz des Begriffs k lass i f i -
ziert wird, kleiner ist als ε .

Die beiden Parameter schwächen also die Anforderung an die K o r r e k t h e i t
einer gelernten Begriffsdefinition h ab. Die Begriffsdefinition entstammt der R e -
präsentationsklasse H.

Eine Repräsentationsklasse ist l e rnbar  durch H, wenn es einen A l g o r i t h m u s
A(δ,ε) gibt, der bei einer festen aber beliebigen W a h r s c h e i n l i c h k e i t s v e r t e i l u n g
und festen, aber beliebigen ε  und δ, δ<1, eine Hypothese h ∈ H ausgibt, die mit einer
Wahrscheinlichkeit größer als 1- δ annähernd korrekt ist, und dann anhält.  

Eine Repräsentationsklasse ist polynominal lernbar aus Beispielen d u r c h
H, wenn

 • Beispiele aus C und H in polynominaler Zeit klassifiziert werden k ö n n e n
u n d

 • der Lernalgorithmus in einer Anzahl von Schritten zum Ergebnis kommt ,
die sich als Polynom über 1/ε , 1/δ und |c| bestimmen läßt.

 • Die Repräsentationsgröße |c| ist zum Beispiel die Länge einer R e p r ä s e n t a t i -
o n .

In diesem Scenario kann man nun für bekannte Sprachklassen bzw. i h r e
Automaten die prinzipielle Lernbarkeit von Begriffen, die in dieser Sprache a u s -
gedrückt sind, untersuchen. Man kann auch die Anzahl der Beispiele e r r e c h n e n ,
die man dem Algorithmus geben muß, damit er lernen kann.

Ein Begriff aus der statistischen Lerntheorie ist innerhalb des PAC-Lernens
wieder aufgegriffen worden. Die C h e r v o n e n k i s - D i m e n s i o n  soll die Ausd rucks -
stärke einer Repräsentationsklasse angeben. Sei H der Hypothesenraum über X
und S eine m-elementige Teilmenge von X. S wird von H zerschmettert ( sha t t e r ed ) ,
falls es für alle S' ⊆  S eine Hypothese hs’ ∈  H gibt, die S' abdeckt, d.h. S ∩  hs' = S'. Al le
Teilmengen von S werden also durch Hypothesen in H erkannt. Die V a p n i k -
Chervonenkis-Dimension von H, VCdim(H), ist die Anzahl der Elemente von d e r
größten Menge S, wobei S von H zerschmettert wird. Sie gibt also an, wieviele U n -
terschiede H machen kann.

VCdim(H) = max { m : ∃ S ⊆  X,  S  = m, H zerschmettert S}

Wenn es kein  Maximum der Kardinalität von S gibt, ist VCdim u n e n d l i c h .
Wenn der Hypothesenraum H endlich ist, so VCdim(H)≤log2( H  ). Um eine M e n g e
der Größe m zu zerschmettern, sind 2m verschiedene Hypothesen nötig, weil es j a
2 m  verschiedene Teilmengen gibt. Wenn wir umgekehrt die größte Menge w i s s e n
wollen, die ein Hypothesenraum zerschmettern kann, so müssen wir m b e s t i m -
men, also log2( H  )(d.h.log2(2m)) .
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Als einfaches Beispiel  zur Illustration nehmen wir

•  für X Punkte in einer Ebene, dargestellt  durch (xi, yi) ;

•  für H nehmen wir ein Perzeptron mit zwei Eingängen, das in einem Zu-
stand, der durch zwei Gewichte w1 und w2 und einen Schwellwert t gegeben
ist, die folgende Boolsche Funktion berechnet:

h(xi,yi)=1 gdw. t ≤ w1xi. + w2xi.

Wenn wir eine 3-elementige Teilmenge S von X haben, wobei für keinen d e r
drei Punkte xi = xj oder yi = yj  gilt, so gibt es 23 Möglichkeiten, die Elemente von S i n
positive und negative Beispiele zu klassifizieren. Die 8 verschiedenen H y p o t h e s e n
s ind :

S h 1 h 2 h 3 h 4 h 5 h 6 h 7 h 8

(x1, y1) + + + - - - - +

(x2, y2) - + + - - + + -

(x3, y3) - - + - + + - +

Man kann sich eine Hypothesen als trennende Linie zwischen positiven u n d
nagativen Beispielen vorstellen. VCdim(H) ist also mindestens schon einmal 3.
Aber könnte H nicht auch eine 4-elementige Teilmenge von X zerschmettern? Das
Bild A zeigt, daß im ersten Fall { (x1, y1), (x3, y 3)}  und { ( x2, y 2), (x4 y 4)}  nicht d u r c h
eine Linie getrennt werden können und im zweiten Fall { (x4, y 4)}  nicht von d e n
anderen drei Beispielen getrennt werden kann. VCdim(H) ist also nicht nur m i n -
destens 3, sondern genau 3.

x , y4 4

x , y2 2

x , y3 3

x1, y1

x , y3 3 x , y2 2

x , y4 4

x1, y1

Abbildung A: 4-elementige Teilmengen von X

Es ist oft sehr schwierig, die VCdim genau zu bestimmen. Oft werden nur A b -
schätzungen gefunden. Den Zusammenhang zwischen der VCdim einer Beg r i f f s -
klasse und ihrer wahrscheinlich annähernd korrekten Lernbarkeit geben d i e
folgenden Ergebnisse an:

•  C ist PAC-lernbar gdw. VCdim(C) endlich ist (Blumer et al., 1990)
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•  Wenn C endlich ist, so ist VCdim(C) ≤ log2( C  ) und damit endlich (Blumer e t
al., 1990).

In den letzten Jahren ist eine Fülle von Beweisen zur Lernbarkeit bestimmter
Repräsentationsklassen erarbeitet worden. So sind z.B. Definitonen, die aus g e -
wichteten Attributwerten bestehen, polynomiell lernbar, wenn die Gewichte
nicht nur auf 0 oder 1 beschränkt sind, sondern überall zwischen 0 und 1 l i e g e n .
Sind die Gewichte auf 0 oder 1 beschränkt, so sind derartige Definitionen n i c h t
mehr polynomiell lernbar. Das ist deshalb interessant, weil neuronale Netze, d i e
sich gut in das PAC-Paradigma einfügen, gerade durch G e w i c h t s v e r s c h i e b u n g e n
lernen. Sie bearbeiten also ein polynomiell lösbares Problem.
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