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4 Wissensbasierte Systeme

Wir haben Wissensrepréasentationsformalismen mit ihren Operatoren kennen-
gelernt. Jetzt soll es darum gehen, wie solche Formalismen in komplexen Syste-
men eingesetzt werden. Anstatt uns auf der Ebene der Interpreter mit einzelnen
Formeln auseinanderzusetzen, wollen wir jetzt das Verhalten von ganzen Regel-
mengen untersuchen: wie sind Regelmengen fir verschiedene Problemklassen
am besten zu organisieren? Welche Problemklassen gibt es? Wie kénnen wir sie
beschreiben? Nach einem kurzen historischen Abri3 des Weges von klassischen
Expertensystemen hin zu modernen wissensbasierten Systemen stelle ich zwei
Methoden der Organisation von Problemldsungen detailliert vor: die heuristische
Klassifikation und die Uberdeckende Diagnose. Beide betreffen die Problemklasse
der Diagnose oder Klassifikation.23 Ich gehe dann auf den Wissenserwerb fir wis-
sensbasierte Systeme ein, indem ich zwei Paradigmen vorstelle: den modellba-
sierten Ansatz und das “schlampige” Modellieren.

4.1 Expertensysteme - ein historischer Abrif

Ein Expertensystem besteht nur in seinem Kern aus einer Problemldsungskompo-
nente. Auller der Problemlésungskomponente mul3 ein Expertensystem zusatzlich
noch 0Uber einige Komponenten verflgen, die fur den Endbenutzer wichtig sind.
So mulR es eine Dialogkomponente geben, die mit dem Endbenutzer interagiert.
Einerseits mufl das System Daten erfragen oder dber ein Formular annehmen
kénnen. Andererseits mul3 das System dem Benutzer “"erkléren" konnen, wie es zu
einer Problemlésung kam. Fir denjenigen, der das Expertensystem aufbaut bzw.
wartet, ist eine Regelerwerbskomponente wichtig. Eigentlich ist auch eine
Wartungskomponente wichtig, die die Konsistenz und Redundanzfreiheit von
Regelmengen prift. Solche Werkzeuge gehodren aber noch nicht zum Standard.

MYCIN, ein System zur medizinischen Diagnose, wurde an der Universitat
Stanford im Heuristic Programming Project entwickelt (Shortliffe 1976). MYCIN
diagnostiziert Krankheiten anhand von Bakterienbefunden. Es hat ein Produk-
tionensystem als Reprasentationsformalismus. Es ist Bezugspunkt fur die Dis-
kussion um klassische Expertensysteme. Von MYCIN ausgehend, koénnen wir die
Entwicklung hin zu neueren Expertensystemen verfolgen (siehe Clancey 1983).
Diese Entwicklung wurde durch drei Aspekte vorangetrieben:

* Der Aufbau eines Expertensystems fiur eine Anwendung soll leichter und
schneller vonstatten gehen.

* Die Erklarungen an den Benutzer sollen udbersichtlicher und verstandli-
cher sein.

* Ein Expertensystem soll auch als Lehrsystem benutzbar sein, dessen Wis-
senshasis von Studierenden fur selbstédndiges Lernen genutzt werden
kann.

23 |ch verwende die beiden Begriffe Diagnose und Klassifikation synonym, wie es z.B. auch Frank Puppe tu.
Einige Wissenschaftler machen allerdings Unterschiede, so dald man bei jedem Artikel genau gucken muf3, wie der
Autor seine Begriffe definiert!
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Der erste Schritt der Entwicklung fuhrte von MYCIN zu EMYCIN, der Exper -
tensystemhialle. Statt fur jede Anwendung erneut den Interpreter, die Dia-
logkomponente und die Erklarungskomponente zu schreiben, wird einmalig eine
Expertensystemhille entwickelt. Eine Expertensystem-Hille ist eine Entwick-
lungsumgebung zur Erstellung eines bestimmten Expertensystems fir eine An-
wendung. Die Hille enthalt typischerweise einen Interpreter fur die Probleml6-
sung, eine Dialogkomponente und Erwerbs-Werkzeuge. Die Regeln und Fragen an
den Endbenutzer missen dann anwendungsspezifisch eingegeben werden. Damit
ist der Aufbau eines Expertensystems schon etwas leichter geworden, als wenn
alle Teile des Systems jedes Ma neu programmiert werden muften.

Der nachste Schritt war die Trennung von Wissensarten. Ein Endbenutzer
mul} das Systemverhalten nachvollziehen koénnen. Wenn das System eine Frage
stellt oder wenn das System eine Problemldsung anbietet, mul3 es ausgeben kdon-
nen, wie es dazu kam. Im einfachsten Falle gibt die sogenannte Erkl&arungs-
komponente die Regeln und ihre Verkettung an, die zur Losung oder zur Frage
an den Benutzer gefihrt haben. Wie verstandlich diese Ausgabe ist, hdngt dann
von den Regeln ab. Enthalten die Regeln durcheinander gemischt verschiedene
Typen von Bedingungen, so ergibt die Ruckverfolgung der Regelverkettung auch
ein Durcheinander. Berihmtes Beispiel solcher Vermischung ist die folgende Re-
gel des Expertensystems MYCIN (Shortliffe 1976), die Clancey analysiert hat
(Clancey 1983:236):

IF Typ der Infektion ist Meningitis &
keine Labordaten sind vorhanden &
der Typ der Meningitis ist bakteroid &
der Patient ist alter als 17 Jahre &
der Patient ist Alkoholiker
THEN Evidenz fur E.Coli (0.2) und Diplococcus (0.3)
Hier sind drei Bedingungstypen vermischt:

« Anwendbarkeitsbedingungen fur die Regel (Meningitis, Verfligbarkeit der
Labordaten und Meningitistyp)

¢ sachbasierte Bedingungen (Alkoholismus begtinstigt E.Coli und
Diplococcus)

« dialogbasierte Bedingungen (frage keine Kinder, ob sie Alkoholiker sind)

Werden diese verschiedenen Bedingungstypen unterschieden, so kann man
zu sinnvollen Systemausgaben bei verschiedenen Fragen des Benutzers kommen:

e Warum wird jetzt diese Regel angewandt? -

Weil die Infektion Meningitis und vom Typ bakteroid ist und es keine
Labordaten gibt.

e Warum soll festgestellt werden, ob der Patient Alkoholiker ist? -
Weil das fur E.Coli und Diplococcus spricht.
e Warum wird jetzt nach dem Alter gefragt? -

Weil festgestellt werden soll, ob der Patient Alkoholiker ist und Kinder
keine Alkoholiker sind.
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Die sachbasierten Bedingungen sind oft - wie in diesem Fall auch - nicht aus-
reichend explizit. Es ist in der Regel nicht angegeben, dal3 Alkoholismus Infektio-
nen mit eigenen Darmbakterien (eben E.Coli) beginstigt, weil Alkohol die Im-
munabwehr schwacht.

Die Fragen beziehen sich auf ein Sachwissen, das sich wie jedes Wissen an-
dern kann. Falls Kinder haufig zu Alkoholikern wirden, wéare die Frage nach dem
Alter nicht mehr angemessen. Auch dieses Wissen sollte sich so explizit in einer
eigenen Regel finden lassen, da3 es Uberprifbar wird.

Der Anwender, der die Regelmenge wartet, stellt dieselben Anforderungen
wie der Endbenutzer. Auch fir die Wartung missen Ergebnisse nachvollziehbar
sein. Die Trennung der verschiedenen Bedingungsarten ist fir die Anderbarkeit
einer Regelmenge entscheidend. Wenn sich Wissen Uber ein Gebiet andert, mus-
sen die Anderungen entsprechend auch im System vorgenommen werden. Wenn
man aber die explizite Angabe nicht im System hat, in welche Regeln gerade die-
ses Wissen eingeflossen ist, kann das System nur sehr schwer gewartet werden.
Wenn z.B. der Alkoholismus bei Kindern zunimmt, so sollte es nur nétig sein, eine
Regel zu &andern, die ausdricklich vom Alkoholismus bei Kindern handelt. Das wéa-
re eine Regel, die den Verdacht auf Alkoholismus erhdht oder erniedrigt und da-
fur bestimmte Fakten wie Alter heranzieht. Stattdessen mufRte man bei MYCIN alle
E.Coli-Regeln durchgehen. Ebenso erlaubt die explizite Darstellung des Zusam-
menhangs zwischen Alkohol, Immunabwehr, und Bakterien erst die leichte Ein-
beziehung von neuen medizinischen Erkenntnissen. Stattdessen mufite man bei
MYCIN alle Regeln durchsehen, ob sie indirekt auf so einem Zusammenhang be-
ruhen. Die Trennung von Wissensarten dient also sowohl der Erkléarung wie auch
der Wartung von Expertensystemen.

Clancey (1986) weist daraufhin, da3 sich MYCIN so verhdlt, als verfolge es die
folgende Regel:

I'F der Genus bekannt ist & nicht die Spezies bekannt ist
THEN ni mm di e flr di esen Genus wahrscheinlichste Spezies an

Tatsachlich gibt es aber keine derartige Heuristik irgendwo im System. Das
Zusammenwirken verschiedener Regeln, die sich auf Genus und Spezies eines Mi-
kro-Organismus beziehen, ergibt ein solches Verhalten. Wenn das Verhalten des
Systems geandert werden soll, kann dies nicht mit lokalen, einsichtigen Ande-
rungen geschehen. Der ndchste Schritt in der Expertensystementwicklung war
die Einfuhrung von expliziten Problemldsungsmethoden, auf die wir im n&achsten
Abschnitt eingehen werden.

Die klassischen Expertensystemhillen, die auf EMYCIN aufbauen, sind heute
als Produkte auf dem Markt und werden eingesetzt. In Deutschland wurden die Ex-
pertensystem-Hullen TWAICE (Nixdorf) und BABYLON (GMD, VW-Gedas) entwickelt.
Gegenuiber einem in einer Ublichen Programmiersprache gefertigten System ha-
ben auch sie schon den Vorteil leichterer Anderbarkeit und besserer Inspizier-
barkeit. Fir einen Nicht-Informatiker sind die Regeln leichter zu Uberprifen als
ein Pascal-Programm. Dennoch ist der Detailliertheitsgrad immer noch zu fein,
die Vermischung verschiedener Informationsarten immer noch gegeben. Die Ex-
pertensystemhille D3 von der Gruppe um Frank Puppe (Puppe et al. 1996) ist eine
moderne Entwicklungsumgebung, die strikt zwischen dem eigentlichen Sachbe-
reichswissen und sogenanntem Basiswissen unterscheidet.
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unter

sind

Expertensysteme haben sich in der Praxis léngst durchgesetzt -- wenn auch

einer Fulle unterschiedlicher Namen.

Viele wissensbasierte Systeme, die als Produkte fir eine bestimmte Anwen-
dung auf dem Markt sind, tragen nicht mehr das Etikett “Expertensystem®.
So ist z.B. das Tippfehlerkorrektursystem GRAMMAR das meistverkaufte
Expertensystem, ohne da3 es als solches vermarktet wird.

Viele Anwendungen behandeln Konfigurationsprobleme: Rechen- oder
Telekommunikationsanlagen werden individuell fir einen Kunden konfi-
guriert, wobei die Wissensbasis den aktuellen Stand all der vielen Kompo-
nenten und ihrer technischen Daten umfal3t. Ausgenutzt wird dabei, dal3
portable Rechner zum Kunden mitgenommen werden ko&nnen.

Wartung technischer Systeme ist ein breites Anwendungsfeld. Zum einen
kann ein Berater, der am Telefon die Probleme von Kunden entgegen-
nimmt und zu Iésen versucht, von einem Expertensystem unterstitzt wer-
den. Zum anderen nehmen Wartungstechniker ein Expertensystem mit
zum Kunden, wenn sie dort einen Fehler beheben sollen.

Im Versicherungs- und Bankenwesen werden Expertensysteme eingesetzt,
um Rentabilitdt und Kreditwirdigkeit zu prifen. Die meisten Kreditkarten
werden mithilfe von Expertensystemen auf MiRBbrauch hin geprift: in je-
der Nacht werden alle Buchungen auf bestimmte Muster hin Gberpruift.
Wird ein typisches MiBbrauchsmuster erkannt, wird der betreffende Kar-
teninhaber angerufen, ob die Buchung wirklich ausgefuhrt werden soll.

Einige Firmen speichern betriebliche Abléaufe und organisatorisches Fir-
men-Know-How in Expertensystemen ab. Auf diese Weise werden Reorga-
nisationen unterstitzt.

Qualitatssicherung ist ein wichtiges Anwendungsfeld fir Expertensysteme.
Die Priufstdnde zur Endkontrolle von Autos sind oft mit einem Expertensy-
stem ausgestattet.

Im Krankenhaus werden Expertensysteme eingesetzt -- z.B. um die vielen
erhobenen Parameter zu einem Patienten zusammenzufassen.

Als Nachschlagewerk sind Expertensysteme z.B. im juristischen Bereich im
Einsatz. Die sich gegenwértig standig andernden Gesetze eines Bereiches
koénnen so nicht nur nachgeschlagen, sondern auch angewandt werden.
Beispielsweise berechnet ein System die Unterhaltszahlungen, zu denen
ein Elternteil verpflichtet ist, anhand der Angaben Uber Einkommen der
Eltern und dergleichen. Das System gibt die entsprechenden Gesetzestexte
als Kommentar dazu aus, so dal3 die Berechnung nachvollziehbar ist..

Weltweit sind gegenwartig (Méarz 1997) 4929 Expertensysteme erfafit. Darin
also nicht diejenigen Systeme enthalten, die eigentlich die Technik wissens-

basierter Systeme verwenden, aber nicht das Etikett. Dafir ist auch nicht gepruft,
welche der erfaten Systeme wieder aus dem Verkehr gezogen bzw. durch das
nachste Expertensystem abgelost wurden. Die meisten Systeme wurden bisher in
der Industrie (3741), die wenigsten im Handel (68) eingesetzt.
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4.2 Heuristische Klassifikation

Die Analysen der ersten Expertensysteme ermoglichten ihre Beschreibung auf
einer abstrakteren Ebene. Statt sich auf die Details einzelner Regeln einzulassen,
kamen abstraktere Begriffe zur Beschreibung des Systemverhaltens auf. Diese
abstraktere Ebene wurde insbesondere von Ron Brachman, Bill Swartout, Bill
Clancey und Allen Newell formuliert. Sie wird entweder Wissensebene
(knowledge-level) oder epistemische Ebene genannt. Damit ist wohl auch schon
deutlich, dal3 wir uns in diesem Abschnitt mit dem Beschreibungsansatz der KI
befassen, indem wir ihn auf wissensasierte Systeme anwenden.

Als man die Produktionensysteme fur Anwendungen in der Kl entdeckte, war
man glucklich dartber, das Fachvokabular eines Experten auch vom Rechner
verwenden lassen zu konnen. Und zwar nicht als eingefrorener Text - wie das in
wohl allen Programmen der Fall ist - sondern mit Regeln, die die Bedeutung der
Vokabeln ebenfalls explizieren, so da3 der Interpreter wirklich genau diese Be-
deutung benutzt statt einer opaken Folge von ASCII-Zeichen. Es stellte sich dann
heraus, dal} die Regeln immer noch zu detailliert waren, verschiedene Informati-
onsarten vermengten und in einer Weise zusammenwirkten, die nicht operational
beschrieben werden konnte. Also wurde nach Strukturierungen von Regeln und
Regelmengen sowie nach einem Vokabular gesucht, mit dem man die generelle
Methode eines Systems verstandlich und operational beschreiben kann. Diese Su-
che traf mit einer anderen Entwicklungslinie der Kl zusammen, die ebenfalls zu
hoheren Beschreibungsformen fihrte (Brachman 1977, 1979). Die Quintessenz der
Wissensebene wurde von Newell (1982, eingefuhrt in Kapitel 1) aufgeschrieben.
Die Strukturierung und das Vokabular fur die Beschreibung von Systemverhalten
wurde wesentlich von Clancey (1983, 1985, 1986) erarbeitet.

Die Problemlésungsmethode, die in MYCIN mithilfe der Regeln realisiert
werden sollte, bestand aus drei Schritten:

e establish_hypotheses: Beschwerden stoRen initiale Hypothesen an;

« group_and_differentiate: Ubergeordnete Diagnosen und Alternativen
zur initialen Diagnose werden gefunden

« explore_and_refine: Verfeinerung der Diagnose.

Diese Methode liel3 sich bei zahlreichen Expertensystemen feststellen. Ver-
allgemeinert man es noch weiter, so kann man es als Klassifikation beschreiben:
Die Systeme abstrahieren von bestimmten Ausgangsdaten, bilden ab auf eine
Hierarchie von vorbereiteten Lodsungen und verfeinern eine Losung dann. Ein
solches Vorgehen wird allgemein Klassifikation genannt. Der Unterschied zur
klassischen Klassifikation besteht darin, dal3 verschiedene Klassifikations-
hierarchien durch wunsicheres SchlielRen verbunden werden.
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AMiA

Problembeschreibungen Lésungen

Diese Verbindung ist in der Graphik durch Linien ohne Pfeil angegeben. Sie
wird realisiert durch bestimmte Regeln, die eine Problemklassifikation as Bedin-
gung nehmen und eine Losungsklassifikation as Handlung haben. Die Abstrakti-
on von bestimmten Problembeschreibungen (Eingabedaten, Phanomenen) zu
Klassen von Problemen ist links mit aufwérts gerichteten Pfeilen angegeben. So
wird beispielsweise in einem medizinischen Diagnosesystem von bestimmten
Labordaten auf das Vorhandensein eines Symptoms und von bestimmten Sympto-
men auf eine Patientencharakterisierung geschlossen. Der heuristische Schritt
ist dann der unsichere Schlul? von dieser Patientencharakterisierung auf eine
Krankheitsklasse. Die genaue Ausprdgung der Krankheit bei diesem Patienten
wird dann durch eine Verfeinerung in der Hierarchie der Krankheiten festge-
stellt. Abkurzungsregeln koénnen schon bei der teilweisen Klassifikation eines
Problems eine Losungsklasse angeben.

An einem Beispiel wollen wir diese abstrakte Sicht mit konkreten Regeln in
Beziehung zu setzen. Sinn des Beispiels ist es, die verschiedenen Ebenen, auf de-
nen man Uber Expertensysteme spricht, deutlich zu machen. Dabei vereinfachen
wir jede Ebene stark. Wir beschreiben die Problemldésungsmethode der heuristi-
schen Klassifikation durch das  Prologprogramm make_di agnosis, das
est abl i sh_hypot heses, group_and_differentiate und explore_and_refine aufruft.
Die Ebene der Problemlésungsmethode ist mit der Inferenzstrategieebene verbun-
den: die Problemldsungsmethode ruft Vorwérts- und RUckwartsinferenz auf, wie
sie oben bei Produktionensystemen beschrieben sind. Die Inferenzmethoden sind
nur dadurch erweitert, dald sie einen Regeltyp berlcksichtigen. Die Regeln sind
einfache Produktionen, bei denen ein Regeltyp vorangestellt ist. Dadurch missen
nicht bei jedem Schritt alle Regeln auf ihre Anwendbarkeit hin geprift werden,
sondern lediglich diejenigen eines bestimmten Typs. Auch fur die Erstellung der
Wissensbasis ist es leichter, sich lediglich mit den Regeln eines Typs zur Zeit zu
beschaftigen. Eine Fragekomponente ist durch eine Klausel und einige Fakten an-
gedeutet. Wichtig ist hier nur ihre Trennung vom Sachbereichswissen. Als Sach-
bereich nehmen wir naives Wissen uber Windpocken, Masern, Scharlach und
Gelbsucht an.

:- ensure_| oaded(!ibrary(basics)).

;- load_files("inference.pl”). % forward und backward-inference | aden!
dynam c(context/1).

dynami c(al ready_expl ored/ 1).
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YRB880888888800888888808888888088888888088888880888088808888888808880
9880 %80
%880 Pr obl em 6sungsmet hode heuri stische Kl assifikation %80
980 %80
9888888888888888888888888888888/8/8/8/8/8/8/8/88888888888888888888888888808080

% make_di agnosi s(+Conpl ai nts, -Di agnoses)
% Das System anal ysiert (und ggf. erfragt) die Beschwerden und gi bt
% Di agnosen aus.

make_di agnosi s( Conpl ai nts, Di agnoses): -
i nit(Conplaints), % Beschwer den ei ntragen
est abl i sh_hypot heses(Di agnoses).

% est abl i sh_hypot heses( - Di agnoses)

% Sol ange Vorwértsi nferenz aus den Fakten Abstrakti onen und Hypot hesen
% herleiten kann, wird dies getan. Dann werden di e D agnhosen durch

% Ruckwartsi nferenz gepruft. Wenn die Prifung nicht erfolgreich ist, so
% schl &gt auch die erste Kl ausel fehl und die nédchste wird probiert:

% Fragen an den Benutzer. Danach gelingt mt dem zuséatlichen Wssen
%vielleicht die erste Klausel und reicht ihre gepriften D agnhosen hoch.
% Ansonsten beendet die dritte Kl ausel erfolgreich (und ergebnislos) das
% Di agnosti zi eren.

est abl i sh_hypot heses(Di agnoses): -
group_and_di fferenti ate, % Ei ngabedat en abstr ahi eren
expl ore_and_refi ne(Di agnosi s), % Di agnosen erstellen und prifen
est abl i sh_hypot heses( Di agnhoses) .

est abl i sh_hypot heses(Di agnhoses) : - % Wenn kei ne Di agnose bewi esen
% wer den kann, kommt diese Kl ausel
% zum Zuge:

ask_general _questi ons, % Fragen an den Benut zer
est abl i sh_hypot heses(Di agnoses). % Vielleicht gelingt 1. Kl ausel
% jetzt?
est abl i sh_hypot heses(_). % Ende

% group_and_differentiate wird hier durch Vorwartsinferenz nmt Regeln des
% Typs ‘data_abstraction’ realisiert.

group_and_di fferentiate :-
cl osure(data_abstraction). % Ber echnung der inferentiellen
% Hul le mit Vorwértsinferenz

% expl ore_and_refine(-Di agnosi s)

expl ore_and_refine(Di agnosis) :-
f ocus_hypot hesi s( Hypot hesi s), % Vor war t si nferenz
test _hypot hesi s( Hypot hesi s), % Ruckwart si nferenz
refine_hypot hesi s(Hypot hesi s, Di agnosi s). % Zur tuckliefern der D agnose

% f ocus_hypot hesi s( - Hypot hesi s)

% Ei ne noch nicht untersuchte Hypothese wird zurickgeliefert und als
% untersucht narkiert.

focus_hypot hesi s( Hypot hesi s) : -
forward_i nference(trigger, Hypot hesi s),
\ + al ready_expl ored( Hypot hesi s),
assert (al ready_expl or ed( Hypot hesi s), f ocus).
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% t est _hypot hesi s(+Hypot hesi s)

% Ei ne Hypot hese wird durch Riuckwartsinferenz untersucht. Dazu werden nur
% Regel n des Typs ‘heuristic’ verwendet.

test _hypot hesi s(Hypot hesis) : -
backwar d_i nference(heuristic, Hypot hesi s).

% r ef i ne_hypot hesi s(+Hypot hesi s, - Di agnhosi s)

% Durch Regeln des Typs ‘refinement’ wird aus der Hypot hese eine D aghose
%erstellt.

refi ne_hypot hesi s( Hypot hesi s, Di agnosi s) : -
rul e(refinenment (Hypot hesis), ,then:[Di agnosis]),
backwar d_i nf erence(refi nement ( Hypot hesi s), Di agnhosi s) .

% ask_general _questions stellt dem Benutzer Fragen.

ask_general _questions :-

ask(alter, );
ask(tenperatur, );

ask( haut ausschl ag, _);
ask(geschwol | ene_nandel n, _);
ask(geroeteter_rachen, );
ask(schl uckbeschwerden, );
ask(augen_gel b, );
ask(haut _gel b, )

init([l]) :-
init_inference,
retractal |l (al ready_explored(_)).

i ni t([Conplaint|Conplaints]) :-
i nit(Conplaints),
assert (context (Conplaint)).

%886 Fragewi ssen: Attribute und ihre sprachliche Fornulierung %86
can_be asked(alter,'We alt ist der Patient? ','(in Jahren)').
can_be asked(tenperatur,' Tenperatur? ','(in Grad Celsius)').
can_be_asked(haut ausschl ag, ' Li egt Hautausschlag vor? ',[ja, nein]).

can_be_asked( haut ausschl ag_knot en, ' Best ent der Hautausschl ag aus
Knoten? ', [ja,nein]).

can_be asked( hautausschl ag_bl asen, ' Best eht der Hautausschl ag aus
Bl asen? ', [ja, nein]).

can_be_asked(haut ausschl ag_f | ecken, ' Best eht der Haut ausschl ag aus
Fl ecken? ',[ja, nein]).

can_be_asked( haut ausschl ag_punkt e, ' Best ent der Hautausschl ag aus
Punkten? ',[ja,nein]).

can_be asked(geschwol | ene_nandel n,' Sind di e Mandel n geschwol l en? ',
[ja, nein]).

can_be asked(geroeteter _rachen,'lst der Rachen geroetet? ',[ja,nein]).
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can_be asked(schl uckbeschwerden,'Li egen Schl uckbeschwerden vor? ' ,
[ja, nein]).

can_be_asked(augen_gel b,' Sind di e Augen gelb verfaerbt? ',[ja,nein]).
can_be_asked(haut_gel b,"Ist die Haut gelb verfaerbt? ',[ja, nein]).

can_be asked(| abortest masern,' Labortest auf Masern: Ergebnis? ' |
[ positiv, negativ]).

can_be asked(| abortest w ndpocken, ' Labortest auf W ndpocken:
Ergebnis? ', [positiv,negativ]).

can_be_ asked(| abortest_strept okokken,' Labortest auf Streptokokken
Ergebni s? ', [positiv, negativ]).

can_be asked(l abortest hepatitis,'Labortest auf Hepatitis: Ergebnis? ',
[ positiv, negativ]).

can_be asked(w ndpocken _bereits _gehabt,' Hat der Patient die Wndpocken
bereits gehabt? ',[ja, nein]).

can_be_asked(masern_bereits_gehabt,' Hat der Patient die Masern bereits
gehabt? ', [ja, nein]).

can_be_ asked(| eberfunktion,' Test der Leber: Ergebnis? ',
[gestoert,normal]).

9%806/8888088880888880808888088888080888808888808088888888888088888888888888880888880

9880 %86
%80 W ssensbasi s: Regel n %%
980 %80

% Qualitativ
rul e(data_abstraction,if:[l(tenperatur,37)],then:[fieber=nein]).

rul e(data_abstraction,if:[ge(tenperatur,37),!|(tenperatur, 38)],
then: [l eichtes_fieber=ja]).

rul e(data_abstraction,if:[ge(tenperatur,38),! (tenperatur, 39)],
then:[nmittleres fieber=jal).

rul e(data_abstraction,if:[ge(tenperatur,39)],then:[hohes fieber=ja]).

% Gener al i si erung

rul e(data_abstraction,if:[leichtes_fieber=ja],then:[fieber=ja]).
rul e(data_abstraction,if:[mttleres_fieber=ja],then:[fieber=ja]).
rul e(data_abstraction,if:[hohes fieber=ja],then:[fieber=ja]).

% Definition
rul e(data_abstraction,if:[augen_gel b=ja], then:[gel bf aerbung=ja]).

rul e(data_abstraction,if:[haut_gel b=ja], then:[gel bfaerbung=ja]).

% Definition

rul e(data_abstraction,if:[fieber=ja, geschwl | ene_nandel n=j a],
t hen: [ angi na=j a] ).

rul e(data_abstraction,if:[fieber=ja, geroeteter_rachen=ja],
t hen: [ angi na=j a] ) .
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rul e(data_abstraction,if:[fieber=ja,schluckbeschwerden=ja],
t hen: [ angi na=j a] ).

% Tri gger

rule(trigger,if:[fieber=ja, hautausschl ag=j a], t hen: [ wi ndpocken=j a]).
rule(trigger,if:[fieber=ja, hautausschl ag=ja],then:[masern=ja]).

rul e(trigger,if:[angina=sja, haut ausschl ag=j a], then:[scharl ach=ja]).
rul e(trigger,if:[gel bfaerbung=ja],then:[gel bsucht=ja]).

% Heuri stische Regeln

rul e(heuristic,if:[fieber=ja, hautausschl ag_knot en=j a, wi ndpocken_bereits g
ehabt =nei n], t hen: [ Wi ndpocken=j a] ).

rul e(heuristic,if:[fieber=ja, hautausschl ag_bl asen=j a, wi ndpocken_bereits g
ehabt =nei n], t hen: [ wi ndpocken=j a]).

rul e(heuristic,if:[fieber=ja, hautausschl ag_punkt e=j a, masern_berei ts_gehab
t=nei n], then: [ masern=j al).

rul e(heuristic,if:[hohes _fieber=ja, hautausschl ag fl ecken=j a, angi na=j a] ,
t hen: [ scharl ach=ja]).

rul e(heuristic,if:[gel bfaerbung=ja], then:[gel bsucht=ja]).

% Ver f ei nerungsr egel n

rul e(refinement (W ndpocken=ja),if:[labortest_w ndpocken=positiv],
t hen: [ wi ndpocken=j a]).

rul e(refinenment(masern=ja),if:[labortest masern=positiv],
then: [ masern=jal).

rul e(refinement(scharlach=ja),if:[|abortest_streptokokken=positiv],
t hen: [ scharl ach=ja]) .

rul e(refinement (gel bsucht=ja),if:[gel bf aerbung=j a, al t er=0],
t hen: [ gel bsucht _von_neugeborenen¥j a]).

rul e(refinenment(gel bsucht=ja),if:[labortest hepatitis=positiv],
t hen: [ gel bsucht _a=ja]).

rul e(refinement (gel bsucht=ja),if:[gel bf aerbung=j a, | eberfunkti on=gestoert]
, t hen: [ gel bsucht _b=ja]).

4.3 Uberdeckende Diagnose

Wie die heuristische Klassifikation als Abstraktion aus dem System MYCIN hervor-
gegangen ist, so ist die Uberdeckende Diagnose aus dem System MOLE hervorge-
gangen (Eshelman et al. 1987). MOLE wurde zur Fehlerdiagnose bei technischen
Geradten eingesetzt. Wir illustrieren hier die Uberdeckende Diagnose anhand des-
selben Sachbereichs, damit die Unterschiede und Gemeinsamkeiten deutlich wer-
den. Wahrend die heuristische Klassifikation von den Symptomen auf ihre Ursa-
che zu schlieen versucht, betrachtet die tUberdeckende Diagnose mdgliche Ursa-
chen und Uberprift, wie gut diese die Symptome erkldren. Sind bei der heuristi-
schen Klassifikation die Regeln von der Art
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Symptom --> Diagnose
so sind sie bei der Uberdeckenden Diagnose gerade umgekehrt:

Diagnose --> Symptom.

Die heuristische Klassifikation modelliert die Hinweiskraft verschiedener Sym-
ptome fiur Diagnosen. Die lUberdeckende Diagnose modelliert Kausalbeziehungen
zwischen Ursachen und Wirkungen. Die heuristische Klassifikation verwendet
Generalisierungsbeziehungen zwischen  Symptomen (Datenabstraktion) und
moglichen Diagnosen. Die lUberdeckende Diagnose geht von einer direkten Ver-
bindung zwischen Ursache und Wirkung aus.

Die Vorstellung bei dieser Problemldsungsmethode ist, da? es Zustande gibt, die
erklart werden muissen und Zustande, die Erkldrungen darstellen.

windpocken scharlach <- - - shautausschlag_flecken=ja

angina

hautausschlag=ja  fieber=ja  schluckbeschwerden=ja

bottom

Zwischen diesen verschiedenen Arten von Zustanden gibt es Relationen. Der Pfeil
zwischen Angina und Hautausschlag steht fur die Relation will _cause. Der Pfeil
zwischen  Angina und schluckbeschwerden=ja reprasentiert die Relation
may_cause. Weiterhin gibt es positive Evidenzen fur Zustande; z. B. wird ein flek-
kenférmiger Hautausschlag hier als Hinweis auf Scharlach benutzt. Das Ziel ist es
einen Zustand (oder eine moglichst kleine Menge von Zustdnden) zu finden, der
alle Symptome erklart.

Die Methode bestent aus zwei Schritten:

cover stellt mogliche Ursachen zusammen fir diejenigen Zustédnde, die er-
klart werden mussen.

differentiate sucht nach moglichst wenigen Ursachen (exclusivity), die
moglichst viele Zustdnde erklaren (exhaustivity).

Die Uberdeckende Diagnose verwendet ausschliefdlich die Riuckwartsinferenz.
Allerdings werden fir die Auswahl zwischen verschiedenen Diagnosen auch Re-
geln verwendet, die von Symptomen auf Diagnosen schlieen. Dies liele sich wo-
moglich auch durch Vorwaértsinferenz Uber kausalen Regeln erreichen. Das fol-
gende Programm ist an die Untersuchung von Guus Schreiber angelehnt
(Schreiber 1992).

;- ensure_| oaded(!ibrary(basics)).
:- ensure_| oaded(library(sets)).

:- ensure_| oaded(library(not)).
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:- load_files('inference.pl').

;- dynamic(context/1).

: - dynam c(consi dered_expl anation/ 2).
.- dynami c(accept ed_expl anation/ 2).
.- dynam c(rejected_explanation/2).

%% make_di agnosi s(+Conpl ai nt s, - Cause)

% Das System anal ysiert Beschwerden, findet nbgliche Ursachen, pruft sie
%und tragt sie in die Faktenbasis ein. Alle akzeptierten Erkl arungen fur
% di e Beschwerden werden als Di agnose Cause zuruckgeliefert.

make_di agnosi s( Conpl ai nts, Cause) : -

i nit(Conplaints), % Beschwer den ei ntragen. Aus techni schen
% Grinden wer den Beschwerden zu
% accept ed_expl anati on eines initialen
% Zust ands.
cover_and differentiate, % Er kl &rungen fir Beschwerden suchen.
findall (accept ed_expl anati on(X Y), accept ed_expl anati on(X, Y), Cause).
% Ergebnis in Liste aufsamrel n.

% cover _and_differentiate

% Zundchst werden di e niglichen Ursachen fir die Beschwerden in der

% Fakt enbasi s gesucht (cover). Dann wird anhand der Regel n exhaustivity,
% exclusivity, anticipatel, anticipate2, preferl, prefer2 und rule_out
% di e ,plausibel ste* Menge von Ursachen fir di e Beschwerden gesucht.

cover_and _differentiate :-
(
cover; % cover
exhaustivity; %differentiate
excl usivity;
antici patel;
antici pat e2;
preferil;
prefer?2;
rul e_out
),

cover_and_differentiate.
cover _and _differentiate.

% cover

% Es werden alle potentiellen Erkl&rungen fir einen Zustand S1 gesucht,
% der bereits einen anderen Zustand _S2 potentiell erklart. D e

% Er kl &rungen werden al s consi dered_expl anati on ei ngetragen, damt sie

% von den anderen Regel n Uberpriaft werden kdonnen. Nur die Veré&anderung der
% Fakt enbasi s zahl t!
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cover -

accept ed_expl anati on(S1, _S2),

\ + consi dered_expl anati on(_S3, S1)
\'+ rej ected_expl anation(_Sb, S1),
findall (S4, (cover _relation(S4,S1),

% Fi nde ein S1, das noch erkl art
% wer den nuf3.

% Er kl &rung bereits gescheitert?
% all e potentiellen U sachen fir

\+ rejected_explanation($4, S1), % S1 suchen, die noch
% ni cht abgel ehnt si nd
assertt (consi dered_expl anati on(S4, S1), cover)), %und ein-

[_]_1). % t ragen.

% exhaustivity

% S1 i st nbgliche Usache fir S2. Es gi bt kei ne andere nbgliche Ursache
% fur S2. Deshalb wird S1 als Erklarung fir S2 akzeptiert.

exhaustivity :-
focus_state_pos(S2),
consi dered_expl anati on(S1, S2),
\'+ (consi dered_expl anation(S3,S2), % Es gi bt keine andere nogliche
\+ S1=S83), % Ursache fur S2.
assertt (accepted_expl anati on(Sl, S2), exhaustivity).

% Fokussi eren auf S2,
% ei ne Wrkung von S1.

% exclusivity

% S1 ist nigliche Usache fur S3 und S4. Auch S2 ist nmbgliche Ursache fuir
% S3, erklart aber nichts anderes. Deshalb wird S1 als Erkl arung fur S3
% und S4 akzeptiert.

exclusivity :-
focus_state pos(S3),
consi der ed_expl anati on(S1, S3),
consi dered_expl anati on(S1, $4),
\ + S3=%4,
\'+ (consi dered_expl anati on(S2, S3),

% Fokussi eren auf S3,
% S3 ist eine Wrkung von Sl.
% S1 kann auch S4 erkl aren.

% S2 ist eine alternative

% Erkl arung fir S3, die aber
consi dered_expl anation(S2, S5), %nichts anderes erkl art.
\ + S3=S5),

assertt (accepted_expl anati on(S1, S3), exclusivity).

% anti ci pat e2

% S1 i st nbgliche Usache fiur S2. S1 wird ausgeschl ossen, wenn eine

% not wendi ge Wrkung von S1 nicht beobachtet wird.

anticipate2 :-

focus_state_neg(S2),

consi dered_expl anati on(S1, S2),

anticipate_relation(S1, S3),

\ + S2=S3, % von S1.

not _findi ng_state(S3), % Wenn S3 ni cht beobachtet wird,

assertt(rejected_expl anation(S1, S2), anticipate2), %ist S1 auch keine
% Erkl &rung fiar S2

assertt(rejected_expl anation(Sl, S3), antici pate2), % und S3.

retractt (consi dered_expl anation(Sl, S2), anticipate2),% S1 wird nicht

retractt (consi dered_expl anation(Sl1, S3), anti ci pate2), % nehr betrachtet

retractt (accepted_expl anati on(S1, S2), antici pate2), % und schon gar

retractt (accepted_expl anati on(S1, S3), antici patel). %icht akzeptiert.

% Fokussi eren auf S2,
% ei ne Wrkung von S1.
% Fi nde S3, eine andere W rkung
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% anti ci patel

% S1 ist mdbgliche Usache fur S2. S1 wird vorerst als Erkl arung
% akzeptiert, weil eine notwendige Wrkung von S1 beobachtet wurde.

anticipatel :-
focus_state pos(S2),
consi dered_expl anati on(S1, S2),
anticipate_relation(S1, S3),
\ + S2=83,
findi ng_state(S3),
assertt(accepted_expl anati on(S1, S2), anti ci patel),
assertt (accepted_expl anation(Sl, S3), antici patel).

% preferl

% S1 wird als Diagnose fir S2 akzeptiert, weil per Rickwartsinferenz
% posi tive Evidenz fir S1 gefunden wird. Von prefer_connection werden
% Regel n der Form ‘if: Synptomthen: Di agnose’ verwendet.

preferl :-
focus_state pos(S2),
consi dered_expl anati on(S1, S2),
pref er _connecti on(S1, S2),
assertt (accepted_expl anation(Sl, S2), preferl).

% prefer?2

% S1 wird als Diagnose fur S2 akzeptiert, weil S2 eine sichere Begrindung
% fur Sl ist.prefer_state verwendet Regeln der Form'‘if: Synptomthen
% Di agnose’ per Rickwartsinferenz.

prefer2 :-
focus_state_pos(S2),
consi dered_expl anati on(S1, S2),
prefer_state(S1),
assertt (accepted_expl anation(Sl, S2), prefer?2).

% rul e_out

% Wenn es einen Befund gibt, der bei der Diagnose S1 nicht vorkomen
% kann, wird S1 nicht weiter betrachtet. rule_out_state verwendet
% Ruckwartsinferenz, umden nit Sl inkonpatiblen Befund zu finden

rule_out :-
focus_state neg(S2),
consi dered_expl anati on(S1, S2),
rul e_out state(Sl),
assertt(rejected_explanation(Sl, S2),rule_out),
retract (consi dered_expl anati on(S1, S2), rul e_out),
retract (accepted_expl anati on(S1, S2),rul e_out).

% f ocus_st ate_pos( - Focus)

% Fokussi eren auf einen Zustand, der als Ursache bereits akzeptiert
% wurde, nun aber sel bst Wrkung einer tieferliegenden Ursache sein kann
% Di ese tieferliegende U sache ist noch nicht als Erklarung akzeptiert.

focus_state_pos(Focus) :-
accept ed_expl anati on(S1, S2),
consi dered_expl anati on(_S3, S1),
\ + accepted_expl anation(_S4, S1),
Focus=S1.

% f ocus_st at e_neg( - Focus)
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% Fokussi eren auf einen Zustand, der als Ursache und Wrkung bereits
% akzeptiert wrde.

focus_state_neg(Focus) : - % Fokussi eren auf einen Zustand mt
% akzeptierter Erkl&rung
accept ed_expl anati on(S1, S2),
accept ed_expl anati on(_S3, S1),
Focus=S1.

% assertt/2 und retractt/2 verhalten sich wie assert/1 und retract/2. Es
%wrd lediglich die zweite Argunentstelle zu Kontrolle auf den
% Bi | dschi rm ausgegeben und di e Préadi kate schl agen nie fehl.

finding state(State) :-
accept ed_expl anation(State, ).

finding state(State) :-
get _attribute(State, Attribute),
istrue(State).

not finding state(State) :-
rejected explanation(State, ).

not finding state(State) :-
get _attribute(State, Attribute),
not (i strue(State)).

cover _relation(S1, S2) :-
rule(will_cause,if:[S1],then:[S2]).

cover_rel ation(S1, S2) : -
rul e(may_cause,if:[S1],then:[S2]).

anticipate_relation(S1, S2) : -
rule(wi |l _cause,if:[S1],then:[S2]).

prefer _state(S1) :-
backward_i nference(positive evidence state, S1).

prefer_connection(S1, S2) : -
backwar d_i nf erence(positive_evi dence_connection,[S1, S2]).

rul e_out_state(Sl1l) :-
backward_i nference(negative evidence_state, not(S1)).

init([]) :-

retractall (context(_)),

retractal | (accept ed_expl anation(_, )
retractall (rejected_explanation(_, )

i nit([Conplaint|Conplaints]) :-
i nit(Conplaints),
add_conpl ai nt (Conpl ai nt).
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add_conpl ai nt (Conpl ai nt) -
assertt (context (Conpl aint), add_conpl aint),
assertt (consi dered_expl anati on( Conpl ai nt, conpl ai nt), add_conpl ai nt),
assertt (accepted_expl anati on( Conpl ai nt, conpl ai nt), add_conpl ai nt) .

% Fragewi ssen: Attribute und ihre Formulierung
can_be_asked(alter,'We alt ist der Patient? ','(in Jahren)').
can_be_asked(fieber,' Hat der Patient Fieber? ',[ja, nein]).
can_be_asked( haut ausschl ag, ' Li egt Hautausschlag vor? ',[ja, nein]).

can_be_asked( haut ausschl ag_knot en, ' Best ent der Hautausschl ag aus
Knoten? ', [ja,nein]).

can_be asked( hautausschl ag_bl asen, ' Best eht der Hautausschl ag aus
Blasen? ', [ja,nein]).

can_be_asked(haut ausschl ag_f | ecken, ' Best eht der Haut ausschl ag aus
Fl ecken? ', [ja,nein]).

can_be_asked( haut ausschl ag_punkt e, ' Best eht der Hautausschl ag aus
Punkten? ', [ja, nein]).

can_be asked(geschwol | ene_nandel n,' Sind di e Mandel n geschwol I en? ',
[ja, nein]).

can_be_asked(geroeteter_rachen,'lst der Rachen geroetet? ', [ja,nein]).

can_be_asked(schl uckbeschwerden, ' Li egen Schl uckbeschwerden vor? ',
[ja,nein]).

can_be asked(augen_gel b,' Sind di e Augen gelb verfaerbt? ',[ja,nein]).
can_be_asked(haut _gelb,'Ist die Haut gelb verfaerbt? ',[ja, nein]).
can_be_asked(al kohol i ker,'Ist der Patient Al koholiker? ',[]ja,nein]).

can_be_asked(w ndpocken_bereits_gehabt,' Hat der Patient di e Wndpocken
bereits gehabt? ',[ja,nein]).

can_be_asked(masern_bereits_gehabt,' Hat der Patient die Masern bereits
gehabt? ', [ja, nein]).

can_be_ asked(| eberfunktion,' Test der Leber: Ergebnis? ',
[gestoert,normal ]).

%880 W ssensbasi s: Regel n %80

% f. U sache, then: Wrkung

rule(wi |l _cause,if:[angina],then:[fieber=ja]).

rul e(may_cause, i f:[angi na], t hen:[geschwol | ene_nandel n=j a]).
rul e(may_cause, i f:[angi na],then:[geroeteter_rachen=ja]).
rul e(may_cause, i f:[angi na], then:[schl uckbeschwerden=ja]).

rule(wi |l _cause,if:[w ndpocken],then:[fieber=ja]).
rule(will _cause,if:[w ndpocken],then:[hautausschl ag=ja]).

rule(will _cause,if:[masern],then:[fieber=ja]).
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rule(wi |l _cause,if:[masern],then:[hautausschlag=ja]).
rule(wi || _cause,if:[scharlach],then:[angina]).

rule(wi |l _cause,if:[scharlach],then:[hautausschlag=ja]).

rul e(may_cause, i f:[gel bsucht], then:[augen_gel b=ja]).
rul e(may_cause, i f:[gel bsucht], then:[haut _gel b=ja]).
rule(will _cause,if:[gel bsucht _von_neugeborenen, t hen:[gel bsucht]).
rule(will _cause,if:[gel bsucht_a],then:[gel bsucht]).
rule(wi |l _cause,if:[gel bsucht_b],then:[gel bsucht]).

%if: Synptom then: Diagnose

rul e(positive_evidence state,if:[hautausschlag knoten=ja],
t hen: [ wi ndpocken] ).

rul e(positive_evidence_state,if:[hautausschl ag_bl asen=j a],
t hen: [ wi ndpocken]).

rul e(negative_evidence_state,if:[hautausschl ag_knot en=nei n,
haut ausschl ag_bl asen=nei n],
t hen: [ not (wi ndpocken)]).

rul e(positive_evidence_state,if:[hautausschl ag_punkte=ja],then:[msern]).

rul e(negative_evi dence_state,if:[hautausschl ag_punkt e=nei n],
t hen: [ not (masern)]).

rul e(positive_evidence_state,if:[hautausschlag_fl ecken=ja],
t hen: [ scharl ach]).

rul e(negative_evidence_state,if:[hautausschlag_fl ecken=nein],
t hen: [ not (scharl ach)]).

rul e(positive_evidence_state,if:[l|eberfunktion=gestoert],
t hen: [ gel bsucht _b]).

rul e(positive_evidence _connection,if:[ge(alter, 18), al kohol i ker=ja],
t hen: [[ gel bsucht b, gel bsucht]]).

rul e(positive_evidence _connection,if:[alter=0],
t hen: [[ gel bsucht _von_neugebor enem gel bsucht]]).

rul e(negative_evidence_state,if:[w ndpocken_bereits_gehabt=ja],
t hen: [ not (wi ndpocken)]).

rul e(negative_evidence_state,if:[nmasern_bereits_gehabt=ja],
t hen: [ not (masern)]).

ACHTUNG! Die Problemldsungsmethode ist hier zur Verdeutlichung in Prolog ge-
schrieben. Esist aber nur fast der vollstdndige Prolog-Code angegeben, der not-
wendig ist, damit das Programm tatsachlich eine Diagnose durchfihrt. Es fehlen
aber lediglich Kleinigkeiten, die noch einmal Platz beansprucht und die Lesbar-
keit beeintrdchtigt héatten. Was deutlich werden sollte, ist der Zusammenhang zwi-
schen den sehr abstrakten Begriffen einerseits, in denen Uber wissensbasierte
Systeme gesprochen wird, und den Inferenzen und konkreten Regeln anderer-
seits, die wir im Kapitel 3 gesehen haben. Auch zeigen die beiden Problemld-
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sungsmethoden, welche Gedanken zur Strukturierung eines Wissensbasis man
sich machen muf3, bevor man ein Expertensystem erstellt.

4.4 Wissenserwerb fur Expertensysteme

Wir haben im vorigen Abschnitt gesehen, da3 die Bemihungen um eine Verkr-
zung der Zeit, die Systementwickler fir den Aufbau eines konkreten Expertensy-
stems brauchen, zur Trennung von Wissensarten und expliziter Représentation
der Problemldsung gefihrt haben. Um den Wissenserwerb fir Expertensysteme zu
verbessern, mufite man also zundchst die Expertensystem-Hullen verbessern. Das
Problem des Wissenserwerbs ist damit aber noch nicht gelost! Es wird eine Ent-
wicklungsumgebung gebraucht, die das Eintragen und Testen von Wissen unter-
stutzt. Eine solche Entwicklungsumgebung mul3 die folgenden Téatigkeiten unter-
stitzen:

¢ Inspektion vorhandener Daten und Regeln
e Erweitern der vorhandenen Daten und Regeln

e« Prifen und Verbessern vorhandener Daten und Regeln.

4.4.1 KADS

Daviele der neueren Arbeiten zum Wissenserwerb fir Expertensysteme auf das
Paradigma von KADS (knowledge acquisition and documentation system) auf-
bauen, soll es hier kurz vorgestellt werden. Die Grundidee von KADSIist die Struk-
turierung des Wissenserwerbs in zwei Phasen und vier Ebenen (Wielinga et al.
1992). Die zwei Phasen sind

« Entwicklung eines conceptual model, das das zu entwickelnde Experten-
system deklarativ beschreibt;

« Umsetzung des conceptual model in ein design model, das die Implemen-
tierung des Expertensystems beschreibt.

In der ersten Phase wird Wissen Uber die Anwendung erhoben. Eswird eine
dem Sachbereich und der Aufgabenstellung nahe Terminologie verwendet und
noch nicht an die Operationalisierung as System gedacht. Die Wissenserhebung
muf3 nicht von Informatikerlnnen vorgenommen werden, sondern kann auch
von Psychologlnnen oder Sachbereichsexperten durchgefiihrt werden. In der
zweiten Phase geht es um die Umsetzung des Wissens in ein operationales System.
Das design model verwendet Informatikterminologie. Es stellt die Dokumentation
des Expertensystems dar, wéahrend das conceptual model die Spezifikation darstellt.

Das conceptual model ist die Zusammenfassung von detaillierteren Modellen.
Es stellt die oberste von vier Ebenen dar. Diese Ebenen sind:

e Organisationsmodell (organizational model) und Anwendungsmodell
(application model): hier wird die Einbettung eines Prozesses (z.B. Diagno-
se) in eine Organisation (z.B. Krankenhaus) und die Funktionalitdt des zu
entwickelnden Systems erfalt.
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« Aufgabenmodell (task model): hier wird die Funktionalitdt des Gesamtsy-
stems in einzelne Aufgaben unterteilt, die wiederum aus Teilaufgaben be-
stehen konnen.

e Kooperationsmodell (model of cooperation) und Sachbereichsmodell
(model of expertise): Im Kooperationsmodell werden den Aufgaben be-
stimmte Akteure zugeordnet, die sie ausfuhren sollen - Akteure kdnnen
Programme oder Menschen sein. Im Sachbereichsmodell wird spezifiziert,
wie die Aufgaben zu lésen sind.

e Das conceptual model fat Kooperationsmodell und Sachbereichsmodell
zusammen.

Der KADS-Ansatz zum Wissenserwerb wird modellbasiert genannt. In den
neueren Arbeiten werden insbesondere formale Repréasentationen fir die Spezi-
fikation (also das conceptual model) diskutiert, wobei entweder die Trennung vom
design model aufgehoben wird, indem diese Reprasentationen operational sind,
oder formale Beweisverfahren untersucht werden, mit denen die formale Spezifi-
kation zur Prifung der Implementation eingesetzt werden kann. Wir kdénnen un-
sere Darstellung der Problemlésungsmethoden heuristische Klassifikation und
Uberdeckende Diagnose als ein conceptual model interpretieren. Da wir es in Pro-
log geschrieben haben, ist die Trennung zum design model aufgehoben. Unsere
Programme sind direkte Umsetzungen der Spezifikation dieser Problemlésungs-
methoden, die Guus Schreiber in der KADS Spezifikationssprache ML2 vorgenom-
men hat (Schreiber 1992).

4.4.2 Sloppy Modeling

Frihe Arbeiten betrachteten den Wissenserwerbsproze3 als Transfer von Wissen
eines Experten in ein System. Diese Sicht setzt voraus, da Experten Uber explizites
und erklarbares Wissen verfligen, das sie zur Losung ihrer Aufgaben heranzie-
hen. Dies ist aber meist nicht der Fall. Gerade die Anfanger verwenden explizites
Wissen zur Problemlésung - Experten haben Fertigkeiten entwickelt, die ihnen
selbst unbewuf®t sind. Der Unterschied zwischen Fertigkeiten und Wissen bewirkt,
dal3 das, was Experten as Erklarung fir ihr Verhalten angeben koénnen, nicht
unbedingt die Grundlage ihrer F&higkeit, Probleme zu l6sen, wiedergibt. In der
Psychologie wurde festgestellt, da3 die Erkldrung eigenen Verhaltens mit densel-
ben Prozessen vorgenomen wird, wie die Erklarung des Verhaltens anderer Leute.
Es gibt folglich keinen direkten Zugang zu den eigenen kognitiven Prozessen. Es
ist daher nicht angemessen, Wissen Uber einen Sachbereich und Probleml6-
sungsverhalten einfach dadurch zu erheben, da man Experten befragt und ihre
Antworten operational reprasentiert. Die Fragen konnen in dem Experten eventu-
ell die Konstruktion von Erklarungen auslésen. Experten geben dann ad hoc Ant-
worten, die einer naiven Theorie entsprechen. Naive Theorien sind Erklarungen,
die noch nicht kritisch Uberprift wurden. Natlrlich ist es nicht angemessen, EXx-
pertensysteme zu bauen, deren Wissensbasis eine naive Theorie wiedergibt!

Wissenserwerb besteht also nicht darin, vorhandenes Wissen einfach zu
formalisieren und zu operationalisieren. Vielmehr besteht die Aufgabe des Wis-
senserwerbs darin, einen Sachbereich zu modellieren. Ein Expertensystem zu
bauen, heifl3t also, eine operationale Beschreibung fir die Problemldsung in ei-
nem Sachbereich zu konstruieren. Die Aufgabe eines Wissenserwerbssystem be-
steht darin, diesen Proze3 zu unterstitzen. Als Herausforderung fur Wissens-
erwerbssysteme habe ich die "schlampige Modellierung” (sloppy modeling) ein-
gefahrt (Morik 1989):
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¢ Man kann niemals erwarten, ein vollstédndiges, korrektes und angemesse-
nes Modell fir einen Sachbereich, eine Aufgabenstellung erreichen zu
koénnen. Vielmehr wird sich jedes auch noch so grundlich erarbeitete Mo-
dell nach einiger Zeit als unvollstdndig, inkorrekt oder unangemessen
herausstellen, entweder weil neue Erkenntnisse erzielt wurden oder weil
sich der Sachbereich geéndert hat.

« Ein System, das den Wissenserwerbsprozefd unterstiitzt, sollte seinen Benut-
zern so viel Freiheit wie moglich gewahren. Es sollte die Modellierungs-
tatigkeit unterstitzen, die ein kreativer Prozel3 ist. Das System sollte nicht
auf Festlegungen bestehen, die ein Benutzer (noch) nicht treffen kann.

Der zweite Punkt grenzt sloppy modeling deutlich von dem Verfahren der
schrittweisen Verfeinerung ab. Bei der schrittweisen Verfeinerung wird dem Be-
nutzer ein bestimmtes Vorgehen aufgezwungen: jede Begriffsbestimmung oder
Regel schrankt die Moglichkeiten weiterer Definitionen oder Regeln ein. Mit
vorhergehenden Bestimmungen widersprichliche Definitionen werden von Sy-
stemen, die schrittweise Verfeinerung anwenden, verboten.24 Nun ist es sicher-
lich eine Hilfe, wenn ein System Widerspriche feststellen kann. Es sollte jedoch
dem Benutzer Uberlassen, wann und in welcher Weise er diese Widerspriche auf-
l6sen mochte. Der zweite Punkt grenzt sloppy modeling ebenfalls von dem iso-
lierten maschinellen Lernen ab. Dort werden zunéchst nur Beispiele erstellt, aus
denen dann Regeln gelernt werden. Auch dies zwingt dem Benutzer ein bestimm-
tes Vorgehen auf. So kann der Benutzer nicht diejenigen Regeln, die er bereits
entwickelt hat, in das System eingeben, sondern muf} sich auf Beispiele beschréan-
ken. Ein Wissenserwerbssystem im Paradigma des sloppy modeling ermdglicht es
seinen Benutzern, sowohl vom Allgemeinen zum Speziellen (schrittweise Verfei-
nerung) wie auch vom Speziellen zum Allgemeinen (Lernen aus Beispielen) vor-
zugehen.

Zur Modellierung gehoren die folgenden Schritte, die von einem Wissens-
erwerbssystem unterstitzt werden mussen:

« Der Rahmen des Modells wird erarbeitet, die Signatur festgelegt, die grobe
Struktur des Modells umrissen.

« Der Rahmen wird ausgearbeitet, Begriffe definiert, Regeln aufgestellt,
Fakten erhoben.

e« Das Modell wird Uberpruft, fehlende Bestimmungen und Widerspriche
entdeckt und es wird ausprobiert, ob sich damit Probleme der Anwendung
auch losen lassen.

Wichtig beim sloppy modeling ist es nun, daf alle diese Schritte vom System
unterstitzt werden und zwar so, dal alle Entscheidungen revidierbar sind. Eswird
nicht davon ausgegangen, dal3 ein Schritt vollstandig bearbeitet wird, bevor der
nachste angegangen wird! Benutzer konnen frei zwischen diesen Schritten hin-
und herspringen. Alle Festlegungen, die einmal getroffen wurden, kénnen vom
System unterstiitzt wieder rickgangig gemacht werden. So kann z.B. anhand des
Versuchs, mit dem bisher operationalisierten Modell ein Problem zu lésen, festge-

24 Termsubsumtionssysteme werden z.B. meist so aufgebaut, dafl? zunéchst die Oberbegriffe und dann die Unter-
begriffe in die Thox eingetragen werden.
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stellt werden, da die Signhatur unangemessen ist. In dem Falle mul3 das Wis-
senserwerbssystem die Verdnderung der Signatur unterstitzen. Ein Beispiel mag
dies verdeutlichen. Nehmen wir an, wir hatten vor, die verschiedenen Diagnhosen
bei der Gelbférbung der Haut zu modellieren. Vielleicht hatten wir mit dem Fall
des Patienten Tim und der einfachen Regel angefangen

color (yellow) --> disturbed (liver)

Diese Repréasentation wird sich schon bald als ungeschickt herausstellen.
Zum ersten kann diese Regel nicht verallgemeinert werden, da die Regel

color(X) --> disturbed (2)

alle moglichen Organe bei allen moglichen Farben gestdrt sein lait. Die Variable Z
ist nicht durch Bedingungen eingeschrénkt. Wir konnten nun ein Pradikat relati-
on einfihren, das eine Beziehung zwischen einer Farbe und einem Organ her-
stellt. Ein Faktum wéare dann

relation(yellow, liver)

und die Regel ware
relation (X, Y) & color (X) --> disturbed (Y).

Zum zweiten macht die Regel nicht deutlich, wessen Hautfarbe gelb ist - es
gilt fur alle Patienten. Also werden wir die Signatur &ndern wollen und statt des
einstelligen Pradikats color das zweistellige color2 einfihren. Ein System, das die
Reprasentationsdnderung unterstiitzt, kann nun per Vorwartsinferenz mit der
Transformationsregel

color(X) & patient (Y) --> color2 (X Y)
fur alle bereits eingetragenen Fakten fir color und das Faktum

patient (tim

die entsprechenden color2 -Fakten erzeugen. Entsprechend muf3 aber auch die Re-
gel geandert werden:

color2 (X Y) &relation (X, Z) --> disturbed (Z,Y)

Nun ist allerdings Tim, wenn denn einmal eine Gelbférbung bei ihm aufge-
treten ist, fur alle Zeiten gelb. Vielleicht wollen wir also lieber das vierstellige
Pradikat color4 einfuhren, das Person, Farbe und Anfangs- und Endzeitpunkt der
Gelbfarbung angibt. Entsprechend wird dann auch das Pradikat disturbed vierstel-
lig. Es zeigt sich nun aber, dal aul’er blau und gelb andere Farben keine medizini-
sche Bedeutung haben. Insofern wollen wir vielleicht statt der allgemeinen Pra-
dikate colour4 und relation das dreistellige Pradikat yellow einfdhren. Die entspre-
chenden Transformationsregeln waren dann:

color4(yellow, X, T1, T2) --> yellowm X, T1, T2) und

di sturbed (liver, X T1, T2) --> liver_disturbed(X T1, T2)

Dies uberfihrt alle bereits gemachten Eintragungen z.B. Uber Tim in die neue Re-
prasentation. Wir mussen aber auch noch die Regel ersetzen durch

yel low( X, T1, T2) --> liver_disturbed(X, T1, T2).
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Um solche Représentationsdnderungen zu unterstitzen, mul3 ein System
mindestens alle betroffenen Fakten und Regeln heraussuchen und présentieren
kénnen und Regeln fir die Vorwartsinferenz zur Verfagung stellen. Besser als
die normale Vorwértsinferenz ist eine spezielle Transformationsregel, deren Kon-
klusion auch dann noch gilt, wenn alle Prdmissen geldscht sind.

Die Erkenntnis, da? Wissenserwerb ein Prozeld des Modellierens ist und dald
Modellierung ein zyklischer, infiniter Prozeld ist, hat sich inzwischen allgemein
durchgesetzt. Eine Realisierung eines Wissenserwerbssystems ist das an der GMD
entwickelte MOBAL (Morik et al. 1993). Es beinhaltet zudem maschinelle Lernver-
fahren, auf die wir in Kapitel 5 zu sprechen kommen werden.
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5 Maschinelles Lernen

Das maschinelle Lernen gehdrt zu den Fahigkeiten, deren Verfugbarkeit auf ei-
nem Rechner bereits als Ziel formuliert wurde, als der erste praktische Rech-
nereinsatz mit ENIAC in Philadelphia gelungen war. Die Idee dabei war, dal3 Pro-
grammierer von Routinearbeiten entlastet und Programme schneller erstellt
werden sollten. FOr Turing (1950) war die Lernfahigkeit eines Rechners die
wichtigste Intelligenzleistung. Er empfahl, einen Rechner "zu erziehen", so dafl
er seine Leistungen verbessert, da man unmdglich alles einprogrammieren kon-
ne. Insofern war maschinelles Lernen und Programmsynthese damals noch nicht
unterschieden.

5.1 Was ist Lernen?

Die erste Frage, die meist gestellt wird, ist, wie wir Lernen definieren konnen, so
dal3 wir einem Rechner eine - eingeschrénkte - Lernfdhigkeit zusprechen kodn-
nen. Die bekannte Definition von Simon (1983) lautet:

Lernen ist jede Verdnderung eines Systems, die es ihm erlaubt, eine Aufgabe bei
der Wiederholung derselben Aufgabe oder einer Aufgabe derselben Art besser zu
I 8sen.

Diese Definition ist aus zwei Grinden kritisiert worden: sie deckt auch solche
Phanomene ab, die man UUblicherweise nicht as Lernen bezeichnet, und sie deckt
nicht alle dem Lernen zugerechneten Phédnomene ab. Ein Beispiel daftr, dal3 Ler-
nen nicht der einzige Grund fir eine verbesserte Leistung ist, stammt von Mi-
chalski (1986). Wenn es die Aufgabe ist, etwas zu schneiden, so wird die Leistung
dadurch verbessert, da8 man ein scharferes Messer nimmt. Das Messerscharfen ist
aber kein Lernen. Nur das Herausfinden, daR mithilfe eines scharferen Messers
das Schneiden zu verbessern ist, ware Lernen. Simons Definition kann diese bei-
den Félle aber nicht unterscheiden. Auch das zufédllige Verwenden eines schéarfe-
ren Messers wirde seine Definition erfillen. Die Lernféhigkeit von Programmen
konnte gemaR Simons Definition dadurch nachgewiesen werden, daf3 wir dasselbe
Programm auf einem schnelleren Rechner laufen lieRen. Das System, Rechner
und Programm, wirde dann dieselbe Aufgabe schneller I[6sen. Als Verbesserung
der Definition koénnte man vorschlagen, dal3 alle Teile eines Systems verandert
werden, um die Leistung zu steigern. Das wirde dann aber das Hinzufligen einer
Regel und die dadurch gesteigerte Leistung eines regelbasierten Systems bei
gleichbleibendem Interpreter ausschliefen. Man hétte dann gerade die Methode
ausgeschlossen, die maschinelles Lernen erst ermdglichte, namlich die Trennung
von lernbaren Einheiten und nicht-lernbarer Verarbeitung.

Michalski (1986) gibt auch ein drastisches Beispiel dafur an, da3 Leistungs-
senkung ein Lernergebnis sein kann. Wenn Zwangsarbeiter eines Konzentrati-
onslagers einen Weg finden, wie sie weniger leisten konnen, so wére das ein Bei-
spiel fur Lernen. Sie konnten lernen, wie man weniger tut und doch gleich be-
schaftigt aussieht. Damit weist Michalski auf die Zielabhangigkeit des Leistungs-
begriffs hin. Die Arbeiter verbessern ihre Leistung der Vortduschung und ver-
schlechtern ihre Arbeitsleistung. Je nachdem, wie man die Aufgabe definiert,
fallt ihre Tatigkeit unter Simons Definition, oder nicht. Scott (1983) argumentiert
gegen die Leistungsmessung bei der Definition vom Lernen. Er fihrt as Beispiel
einen Spazierganger in einer ihm noch unbekannten Stadt an, der an der offent-
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lichen Bicherhalle vorbeikommt. Wahrend er diese wahrnimmt, lernt er etwas
Uber die Stadt, ohne irgendeine Aufgabe zu haben, fir deren Ldsung er wissen
muf3, ob und wo es eine Bicherhalle gibt. Erst wenn ein Passant ihn nach dem
Weg zur Bicherhalle fragt, kann er das Gelernte einsetzen - und zwar schon beim
ersten Passanten, nicht erst bei der Wiederholung. Simon hat einen Test angege-
ben, der auch bei dem Spazierganger ergeben wirde, dal3 der gelernt hétte, jedoch
keine Definition. Der Test gehért nicht zum Lernen selbst. Der Spazierganger
lernt unabhangig davon, ob er getestet wird. Scott (1983) definiert Lernen ohne
Ruckgriff auf eine gegebene Leistung:

Lernen ist ein Proze3, bei dem ein System eine abrufbare Repréasentation von ver-
gangenen Interaktionen mit seiner Umwelt aufbaut.

Damit ist die Leistung potentiell beobachtbar, weil die neue Reprasentation
abrufbar ist. Das Lernen selbst ist aber unabhdngig davon, ob sein Ergebnis je-
mals gebraucht wird. Auch wird eine Leistungssenkung durch Lernen nicht aus-
geschlossen. So konnte jemand, der nur eine einzige Aussage Uber etwas weil3,
wenn genau nach dieser gefragt wird, womdglich schneller antworten als je-
mand, der erst aus der Fille seiner Informationen die passende heraussuchen
muB. Ahnlich ist auch Michalskis Definition (1986):

Lernen ist das Konstruieren oder Verandern von Repréasentationen von Erfahrun-
gen.

Beide Definitionen setzen einen Prozel3 voraus, der Repréasentationen ver-
wendet. Wieweit dieser durch Lernen aufgebaut oder verandert wird, bleibt offen.
Schon aus dieser kurzen Diskussion Uber die Definition von Lernen wird deutlich,
dal3 Lernen &hnlich schwierig zu fassen ist wie Intelligenz. Es bleibt unser um-
gangssprachliches Verstandnis von dem, was fir uns Lernen ist, als Anregung
und als Richtschnur.

5.2 Drei Motivationen fir das maschinelle Lernen

Maschinelles Lernen hat - wie alle anderen Teilgebiete der Kl - drei verschiedene
Motivationen: eine kognitionswissenschaftliche, eine theoretisch-technische und
eine praktische, anwendungsorientierte.

Fir das maschinelle Lernen sind die einzelnen Ziele;

e Prinzipien menschlichen Lernens sollen mithilfe von operationalen Mo-
dellen untersucht werden.

e Insbesondere der induktive Schlu® soll operationalisiert werden, aber
auch die Verwendung anderer SchlufR3folgerungen (Deduktion und Abduk-
tion) zum Lernen soll untersucht werden.

e Die Arbeit am Rechner soll durch dessen Lernfahigkeit dem Benutzer er-
leichtert werden.

Nach einem kurzen Uberblick (ber diese drei Ausrichtungen konzentrieren
sich die darauf folgenden Abschnitte auf Verfahren, also den zweiten Aspekt.
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5.2.1 Menschliches und maschinelles Lernen

Die kognitive Orientierung verwendet psychologische Arbeiten zum Begriffser-
werb. Die Struktur, Verwendung und der Erwerb von Begriffen bei Kindern sind
Gegenstand vieler Untersuchungen. Hier werden nur einige zusammengefalt, um
einen Einblick in wichtige Fragestellungen zu geben. Literatur zum Einstieg in
dieses Thema wird am Ende des Abschnitts angeflhrt.

Der Begriffserwerb kann in zwei Phdnomenbereiche unterteilt werden: die
Kategorisierung oder Aggregation und die Charakterisierung oder Definition. Die
Kategorisierung gruppiert Objekte, Ereignisse und Sachverhalte der Welt in
Klassen - eben: Kategorien. Damit ist die Extension eines Begriffs gegeben. Die
Charakterisierung beschreibt eine Kategorie, so dal fur neue Objekte ent-
schieden werden kann, in welche Kategorie sie gehdren. Die intensionale Be-
schreibung der Kategorie dient also zur Bestimmung der Klassenzugehdrigkeit.
Ein Objekt wird erkannt als Beispiel eines Begriffs, wenn die Charakterisierung
des Begriffs das Objekt abdeckt. Ein Begriff ist eine mentale, kognitive Einheit, die
sich auf eine Kategorie bezieht. Damit gibt es eigentlich drei Phanomenbereiche:

Kategorisierung ---> Charakterisierung ---> Klassifikation (Erkennung)

Die Einteilung dient der Strukturierung wissenschaftlicher Arbeit. Die Phéa-
nomenbereiche sollen nicht as Phasen eines linearen Ablaufs beim Menschen
verstanden werden.

5.2.1.1 Griunde der Kategorienbildung

Zunéchst konnte man als einen guten Grund dafir, Objekte der Welt zu einer Ka-
tegorie zusammenzufassen, angeben, dal3 sie ein Merkmal gemeinsam haben. Da
aber Merkmale nicht bereits in der Welt vorkommen, sondern ihrerseits gebildet
werden, konnten wir umgekehrt fir jede Zusammenstellung von Objekten ein
Merkmal einfihren, das genau fir diese Menge gilt. Bei k Objekten gibt es prin-

zipiell 2k Mengen von Objekten. Tatsachlich verwenden Menschen aber nicht so
viele Kategorien. Es muR also noch zusatzliche Grinde geben, warum Kategorien
gebildet werden. Drei Griinde, die in der Literatur diskutiert wurden, werden im
folgenden angefihrt.

Einige Objekte spielen eine wichtige Rolle fir bestimmte Handlungen. Damit
begrinden die Handlungen einen Bedarf fiir eine Kategorie. Wenn der Bedarf nur
kurzfristig und einmalig ist, so werden Kategorien ad hoc gebildet und danach
nicht weiterhin verwendet,2> ansonsten wird die Kategorie konventionalisiert.
Quine (1977) sah in der Notwendigkeit, etwas vorhersagen zu kdnnen, das Motiv
for individuelle und gesellschaftliche Kategorienbildung. Ein neuer Begriff wird
dann eingefuihrt, wenn er Objekte klassifizieren kann, deren Verhalten wir vor-
hersagen wollen. Als Beispiel fir eine zunadchst unsinnige Kategorie, die aber
durch einen bestimmten Handlungs-zusammenhang sinnvoll werden kann, fih-
ren Murphy und Medin (1985, S. 294) gestreifte Objekte mit mehr als einem Bein
an, die zwischen 11 und 240 kg wiegen. Im Kontext eines Spielfilms, in dem diese
Objekte AuRerirdische sind, die die Menschheit bedrohen, wird die Kategorie
sinnvoll. Es ist dann wichtig zu erkennen, wer dieser Kategorie angehdrt, wie er

25 7u ad hoc Kategorien s. Barsalou (1983)
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sich verhalten wird und wie Menschen sich vor ihm schitzen kénnen. Eine ande-
re Ublicherweise sinnlose Kategorie besteht aus Primzahlen und Apfeln. Wenn
dies aber die einzigen Gespréachsthemen fir die Kollegin Wilma sind, so erhalt die
Kategorie einen Bezug zu anderen Kategorien (Wilma, Gesprache) und ist nicht
mehr absurd (Murphy, Medin 1985, S.298). Murphy und Medin betonen die Be-
griffsstruktur, die unterschiedliche Begriffe im Zusammenhang reprasentiert.
Erst durch den Zusammenhang wird eine Kategorie oder ein Begriff sinnvoll.

Ein Bedarf an Kategorien wird auch durch ihre Verwendung fir die Charak-
terisierung anderer Kategorien gegeben. Zum Beispiel ist es sinnvoll, die Katego-
rie Rader zu bilden, wenn wir Fahrzeuge definieren wollen. Im Zuge der Charakteri-
sierung von Fahrzeugen entstent eine neue Begriffsbildungsaufgabe. Esist ein-
fach praktischer, einen Begriff Rader zu haben, als stets die zugehérigen Objekte
aufzuzadhlen: schlieBlich umfalit der Begriff eine potentiell unendliche Menge.
Nebenbei hebt dieses Beispiel den Zusammenhang von Begriffen hervor: Begriffe
werden nicht isoliert voneinander gebildet.

Oft untersuchen psychologische Experimente die Charakterisierung von Ka-
tegorien, die von den Psychologen vorgegeben werden. Dabei kann es sich um
existierende oder um Kkunstlich gebildete Zusammenstellungen von Objekten han-
deln. Zu der Kategorie des Belebten ("living thing") gibt es seit Piaget eine Fulle
von Untersuchungen, die verschiedene Charakterisierungsansitze jeweils einer
bestimmten Altersstufe zuordnen. Eine Untersuchung von Carey (1985) gibt oben-
drein Hinweise auf die Aggregation von Objekten. In ihrem Exeriment sollten die
Kinder zunéchst belebte Objekte aufzahlen. Das war fur fast alle Kinder kein Pro-
blem. Man kann annehmen, dal} sie diese Kategorie bereits vor dem Experiment
kannten. Als sie aber Beispiele unbelebter Objekte anfihren sollten, hatten die
Kinder Schwierigkeiten. Sie gaben Beispiele fur unbelebte Objekte, tote Menschen
oder Tiere, Fabelwesen sowie Abbildungen von Menschen und Tieren (z.B. im
Fernsehen) an. Also fihrten sie unterschiedliche Kategorien an, aus denen sie -
moglicherweise ad hoc - Nicht-Belebtes bildeten. Interessant ist dabei, dal} diese
neue Kategorie unter verschiedenen Gesichtspunkten in Bezug auf die gegensatz-
liche Kategorie gebildet wurde. Dies ist ein weiterer Hinweis darauf, dal} Kategori-
en und Begriffe im Zusammenhang gebildet werden.

5.2.1.2 Probleme A&ahnlichkeitsbasierter Charakterisierung

Der &hnlichkeitsbasierte Ansatz zur Erklérung der Begriffshildung betrachtet die
Charakterisierung als das Finden solcher Merkmale, die alle Beispiele bzw. Instan-
zen eines Begriffs gemeinsam haben. Ein Begriff ist dann durch eine Menge sol-
cher Merkmale reprasentiert. DaR die Ahnlichkeit von Objekten nicht ausreicht,
eine Kategorie zu bilden, haben wir bereits oben festgestellt. Aber auch zur Cha-
rakterisierung reichen &hnliche Merkmale nicht aus.

Das erste Problem des ahnlichkeitsbasierten Ansatzes ist die Herkunft der
Merkmale. Dimensionen wie Farbe, Grole oder Formen werden selbst erst gebildet,
sie sind nicht vorgegeben. Merkmale stammen aus der Wahrnehmung. Land hat
gezeigt, dal3 die Farbwahrnehmung nicht nur auf der Wellenldnge beruht, son-
dern ebenso auf der Textur des Objekts und der Lichtreflexion (Land 1983). Esliegt
an dem menschlichen Korper, dal3 Farben so wahrgenommen werden. Ein Vogel
mag Farben anders erfahren. Biologische Untersuchungen koénnen aso Uber ei-
nen Aspekt der Herkunft von Merkmalen Auskunft geben: ihre Verankerung in
der Wahrnehmung (Stichwort: symbol grounding). Sie kénnen jedoch nicht die
kulturellen und situationsspezifischen Unterschiede der Wahrnehmung erkléaren.
Lenneberg (1967) wies die Abhangigkeit der Farbwahrnehmung von der durch
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Worter einer natUrlichen  Sprache gegebenen Einteilung des Farbspektrums
nach. Farben werden als mehr in der Mitte des Bereiches, der durch ihr Wort be-
zeichnet wird, wiedergeben, als sie wirklich waren. So wurde ein grinliches Blau
blauer wahrgenommen, wenn die Sprache kein eigenes Wort fir diesen Farbton
besitzt. Turkis wird von Menschen, die das Wort "turkis" in ihrem aktiven Sprach-
schatz haben, genauer von Blau abgegrenzt, as von solchen Versuchspersonen,
die nur "blau” und "grin" verwenden. Damit werden Unterschiede von Farbténen,
die zum selben Begriff gehoren, verringert. Gleichzeitig werden Unterschiede
zwischen Farbtonen verschiedener Begriffe verstarkt. Auch der EinfluR der
(situationsbedingten) Erwartungen auf die Farbwahrnehmung wurde erwiesen.
Die Ubliche Farbe eines Objektes wird auch dann gesehen, wenn eigentlich eine
andere gegeben ist. Es gibt also eine Riuckwirkung des sprachlichen und begriff-
lichen Wissens auf die Wahrnehmung. Insofern erklart die Verankerung von
Merkmalen in der Wahrnehmung wenig.

Das zweite Problem des ahnlichkeitsbasierten Ansatzes ist die Auswahl von
Merkmalen. Selbst wenn wir einen Prozel anndhmen, der aus Wahrnehmungen
Merkmale formt, so konnten zur Charakterisierung eines Begriffs doch fast un-
endlich viele Merkmale herangezogen werden. Weitere Einschrénkungen sind
notig. Wie schon bei der Kategorienbildung kann auch bei der Charakterisierung
die Definition anderer Begriffe zur Auswahl der Merkmale herangezogen werden.
Begriffe werden im Zusammenhang definiert. Es werden Merkmale ausgewahlt,
die solche Begriffe unterscheiden, die nicht verwechselt werden sollen. Die Ge-
gensatz-Beziehung von Begriffen wahlt nur die Merkmale zur Charakterisierung
aus, die fur alle gegensétzlichen Begriffe anwendbar sind und sie unterscheiden.
Carey (1985) beobachtete aufRerdem, da3 Kinder, wenn sie einmal bestimmte Merk-
male dafir benutzten, einen Begriff zu charakterisieren, gegensatzliche Begriffe
mit anderen Werten derselben Merkmale definierten. Dies wird "Konsistenz der
Charakterisierung” genannt. Eine Folge dieses Prinzips ist, da® Anderungen eines
Begriffs Folgen fir seine Gegensatz-Begriffe haben. Zusammen mit der Gegen-
satzrelation zwischen Begriffen hilft die Unterbegriffsrelation bei der Merkmals-
auswahl. Voneinander abzugrenzen sind ja nur solche Begriffe, die Uberhaupt
verwechselbar sind. Insbesondere gegensatzliche Unterbegriffe desselben Ober-
begriffs werden mit denselben Merkmalen beschrieben.

Carey (1985) betont die Abhangigkeit der Begriffsstruktur von dem Wissen
eines Menschen. Die Definition des Belebten hdngt ab von dem Wissensstand Uber
Biologie. Auch Keil und Kelly (1987) zeigen, dal3 Versuchspersonen mit wenig Wis-
sen Uber einen Sachbereich eher beschreibende Merkmale auswéhlen, wahrend
zur Verwendung definitorischer Merkmale mehr Wissen nétig ist. Die Verschie-
bung von Beschreibungen zu Definitionen ist damit nur indirekt einer Altersstufe
zuzuschreiben - sie ist die Folge des wachsenden Wissens. Kinder wie Laien bevor-
zugen leicht erkennbare, Fachleute - und fir das Alltagswissen sind Erwachsene
Fachleute - nutzen gut abgrenzende Merkmale. Murphy und Medin (1985) spre-
chen von einem Netzwerk erklarender Merkmale. Sie geben Beispiele dafir an,
dal3 eine Theorie Merkmale auszuwdahlen vermag und auch Merkmale korreliert.
Biologische Theorien Uber das Wachstum von Pflanzen geben besteht_aus_Zellen
und wachst den Vorzug vor der Farbangabe. Diese Merkmale hangen zusammen. Sie
gelten fiar alle Pflanzen und werden also auch an z.B. Karotten vererbt. Wdirde
man nun erfahren, da3 Karotten gar nicht aus Zellen bestehen, so mifte man den
Begriff Pflanze andern. Trifft man hingegen auf blaue Karotten, so sind von dieser
Anderung andere Begriffe nicht betroffen. Definitorische Merkmale kann man
an dem Ausmald der Konsequenzen fir andere Begriffe erkennen. Definitorische
Merkmale charakterisieren Oberbegriffe derart, dal sie an Unterbegriffe weiter-
gegeben werden konnen.
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Das dritte Problem des ahnlichkeitsbasierten Ansatzes besteht in der Be-
griffsreprasentation. Eine reine Ansammlung von Merkmalen strukturiert Be-
griffe nicht. Die Beziehungen zwischen Begriffen ebenso wie die Beziehungen
zwischen Merkmalen scheinen aber sehr wichtig zu sein und sollten deshalb re-
prasentiert werden.

"In order to characterize knowledge about and use of a concept, we must include all
of the relations involving that concept and the other concepts that depend on it"
(Murphy, Medin 1985, S. 297)

Begriffliche Gegensédtze und Unterbegriffe sollten zusammen mit der Konsi-
stenz ihrer Charakterisierungen und der Vererbung definitorischer Merkmale
dargestellt werden. Wir kénnen Merkmale verallgemeinern zu Begriffen, so dal3
die Relationen zwischen Merkmalen in derselben Weise behandelt werden wie
Begriffsrelationen. Tatsachlich ist es ja nicht einzusehen, warum Zellen ma ein
Merkmal sind (wenn wir Pflanzen beschreiben wollen), mal selbst der Begriff
sind, der definiert werden soll (wenn wir Uber Zellen sprechen). Ist die Begriffs-
reprasentation nur eine Liste von Merkmalen, so hangt sie von dem jeweiligen
Gespréachsgegenstand ab. Werden Begriffe jedoch durch ihre Zusammenhéange
untereinander dargestellt, so kann - ohne eine Anderung der Reprasentation -
auf einen Begriff als Gespréchsgegenstand zugegriffen werden oder als Charakte-
risierung eines anderen Begriffes. Zum Beispiel kdnnen Karottenfarbe und Apriko-
senfarbe as Unterbegriffe von Modefarbe genauso genutzt werden wie zur Charak-
terisierung der jeweiligen Pflanzen. Ein weiterer Vorteil der Vereinheitlichung
von Begriffen und Merkmalen besteht in der Anderbarkeit der Begriffsstruktur.
Wenn wir Uber Zellen etwas hinzulernen, &ndert sich die Charakterisierung von
Pflanzen, die ja aus Zellen bestehen, automatisch - wir missen keinen zusatzlichen
Prozef annehmen, der dies neue Wissen in den Begriff Pflanze Ubertragt.

Schliel3lich soll nicht verschwiegen werden, dal3 auch diese Sicht auf Begrif-
fe noch nicht alle Probleme I|6st. Gerade alltagliche Begriffe wie Tasse oder Schuhe
werden auch durch Zusammenhénge zwischen Begriffen noch nicht hinreichend
erklart. Das Wesentliche einer Tasse ist weder ihre Form noch ihre Unterbegriffs-
Beziehung zu Behaltern, sondern daf3 wir daraus trinken. NatlUrlich kann man eine
Relation wird-benutzt-fir einfihren, aber das wéare nur ein netter Name. Tatsach-
lich ist die Tétigkeit des Trinkens selbst das Entscheidende fir die Feststellung, ob
etwas eine Tasse ist oder nicht. Es sind also nicht nur Beziehungen zu anderen Be-
griffen, sondern auch zu Handlungen, die Alltagsbegriffe ausmachen.

5.2.1.3 Beitrdge aus dem maschinellen Lernen

Das maschinelle Lernen ist zundchst dem &hnlichkeitsbasierten Ansatz gefolgt
und hat den Aggregationsschritt vorausgesetzt. So gibt es eine Fille von Systemen,
die aus vorgegebenen Beispielen fir einen Begriff dessen Charakterisierung in-
duzieren. Systeme zum conceptual clustering - obwohl auch meist &hnlichkeitsba-
siert - beschreiben immerhin den Aggregationsschritt mit. Ein Oberbegriff wird
zu einer Hierarchie von Begriffen verfeinert, wobei &hnliche Objekte zusammen-
gruppiert werden.

Die Notwendigkeit fir komplexere Repréasentationen und das Einbeziehen
von Hintergrundwissen wurde von Michalski schon 1983 und von Kodratoff und
Ganascia 1986 dargestellt. Reichere Formalismen sind etwa Termsubsumtions-
systeme (Lernen einer Thox aus einer Abox -- Kietz, Morik 1994, Lernbarkeit von
Begriffsdefinitionen in CLASSIC -- Pitt 1996) oder Hornklauseln. Die induktive |o-
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gische Programmierung behandelt das Lernen von eingeschrankten préadikaten-
logischen Formeln unter Verwendung von Hintergrundwissen.

Der Bedarf fur einen Begriff wird von Michalski und Stepp (1986) durch ei-
nen Zielgraphen expliziert, der ihr conceptual clustering Verfahren CLUSTER/S
steuert.  Wrobel (1994) entwickelt den Ansatz von Emde, Habel und Rollinger
(1983) weiter. Durch Ausnahmen einer ansonsten erfolgreichen Regel ist ein Be-
darf fOr einen neuen Begriff gegeben, wenn sich anders die Ausnahmen nicht
von den erfogreichen Regelanwendungen unterscheiden lassen. Die Ausnahmen
sollen durch einen neuen Begriff zusammengefaldt werden, auf den eine zusatzli-
che Pramisse der Regel verweist. Das System KLUSTER (Kietz, Morik 1994) be-
schreibt den Bedarf fir einen neuen Begriff aufgrund der Unféhigkeit, mit den
vorhandenen Begriffen eine Kategorie zu charakterisieren.

Aktuelle Arbeiten versuchen, die Verankerung des Begriffserwerbs in der
Welt zu modellieren. So schlagt Wrobel (1991) einen Kkognitiv motivierten For-
schungsrahmen vor, in dem strikt inkrementell gelernt wird. Das heil3t, die Ein-
gabedaten stellen einen Strom von Informationen dar, der nicht vollstdndig ge-
speichert wird. Vielmehr werden die Daten nach und nach strukturiert und diese
Strukturierung auf nachfolgende Eingaben angewandt. Revisionen koénnen nicht
anhand aller bereits gegebenen Daten Uberprift werden. Saitta und Giorda-
na(1990) schlagen eine Begriffsstruktur vor, in der Merkmale Handlungen zur
Verifizierung des Merkmals darstellen. Die Verankerung von Bewegungs-
begriffen wie durch die Tur gehen oder eine Wand entlang gehen wurde durch Lernen
aus Bewegungs- und Wahrnehmungsdaten eines mobilen Roboters im europai-
schen Projekt BLearn untersucht (Klingspor, Morik, Rieger 1996).

Ein interdisziplinares Forschungsprogramm der European Science Foundati-
on, Learning in Humans and Machines(LHM), untersucht die Beziehungen zwi-
schen didaktischen, kognitionspsychologischen und Arbeiten der KIl. So wurden
beispielsweise empirische Daten dber kindliche Erklarungen des Tag/Nacht-
Zyklus' im System MOBAL modelliert. Mit diesem operationalen Modell konnten
dann Experimente gemacht werden, deren Ergebnisse nun durch weitere empiri-
sche Untersuchungen validiert werden mussen(Muhlenbrock, Morik, wird er-
scheinen). Esgibt bereits ein Buch Uber LHM (Spada, Reimann 1996), eine Serie
von weiteren Buichern wird 1998 erscheinen.

5.2.1.4 Literaturhinweise zur Psychologie
Barsalou, L.W. (1983): Ad hoc Categories, in. Memory and Cognition, 11, 1983
Carey, S. (1985): Conceptual Change in Childhood, MIT Press
Keil, F.C., Kelly, M.H. (1987): Developmental Changes in Category Structure,
in: Harnad (ed): Categorical Perception - The Groundwork of Cognition,

Cambridge University Press

Land, E.(1983): in: Proc. Natl. Acad. Sci. 80, 1983; Verweis ohne Titel in: Varela,
F.J. (1988): Cognitive Science - A Cartography of Current Ideas, Suhrkamp

Lenneberg, E.H. (1967): Biological Foundations of Language, New York
Kietz, J.-U., Morik, K. (1991): Constructive Induction : Learning Concepts for

Learning, Arbeitspapiere der GMD, Nr. 543, Gesellschaft fir Mathematik
und Datenverarbeitung, Schlo3 Birlinghoven, 1991
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Muhlenbrock, M., Morik, K. (wird erscheinen): Rekonstruktion des Erwerbs
einer Begriffsstruktur zur Erklarung des Tag/Nacht-Zyklus’

Murphy, G. L,. Medin, D.L.(1985): The Role of Theories in Conceptual Cohe-
rence, in: Psychological Review, Vol 92, Nr.3

Piaget, J. (1977). The Development of Thought, New York: Viking Pinguin

Rosch, E. (1978): Principles of Categorization, in: Rosch, Lloyd (eds): Cognition
and Categorzation, Hillsdale, N.J.: Erlbaum

Scholnick, E.K. (ed)(1983): New Trends in Conceptual Representation - Chal-
lenges to Piaget's Theory?, Hillsdale, N.J.: Erlbaum

Spada, H., Reimann, P. (Hg.) (1996). Learning in Humans and Machines: To-
wards an Interdisciplinary Learning Science, Oxford: Elsevier
5.2.2 Induktion und Abduktion
Der deduktive Schlul3 ist am langsten und grundlichsten untersucht worden. I'm
maschinellen Lernen steht der induktive SchluR im Vordergrund. Neuerdings

wird auch der abduktive Schlul3 einbezogen. Wir koénnen die drei Schlisse folgen-
dermal3en darstellen:

(A -> B), A|= B ist ein deduktiver SchluB.
Beispiel: Ox | mensch(x) -> sterblich(x), mensch(uta) |=  sterblich (uta)

Die deduktiven Inferenzregeln sind:

A->B A (Modus Ponens) und _OX]|a(X) ->b(X) (Instantiierung)
B a(c) -> b(c)

a(c1), b(ci), ..., alcn), b(cn) |< Ox | ax) -> b(x) ist ein induktiver SchluB.

Beispiel:

mensch(uta), sterblich(uta), mensch(udo), sterblich(udo),
mensch(uwe), sterblich(uwe)
kK 0OX | mensch(X) -> sterblich(X)

Wir nennen die Grundbeispiele Daten, D, und die allquantifizierte Aussage

Hypothese, H. Wenn wir noch eine Theorie, T, als Hintergrundwissen hinzuneh-
men, so ist der induktive Schlufi:

T,D|<H,wobei T,H|=D, TDund T,D#-H

Das heildt, die Beispiele folgen erst aus der Theorie, wenn der allgemeine Satz
H (die Hypothese) hinzugenommen wird, vorher nicht. Aulerdem ist die Hypothe-
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se konsistent mit der Theorie und den Beispielen, d.h. aus Theorie und Beispielen
folgt nicht die Negation der Hypothese.

Beispiel: T: [X | mensch(X) --> séugetier(X) ,
mensch(uta), mensch(udo), mensch(uwe),
D: sterblich(uta), sterblich(udo), sterblich(uwe) |<

H: OX | sdugetier(X) --> sterblich(X)

Daraus, dal3 Menschen Séugetiere sind, folgt, daf auch Uta, Udo und Uwe S&u-
getiere sind. Nimmt man hinzu, dal3 alle Saugetiere sterblich sind, so kann man
folgern, da3 auch Uta, Udo und Uwe sterblich sind. Ohne eine induzierte Hypothe-
se folgt es nicht. Dal3 alle Sadugetiere nicht sterblich sind, lalt sich aus der Theorie
und den Beispielen nicht folgern.

Der abduktive Schluf3 schliefdlich wird sehr unterschiedlich aufgefaft. Im
einfachsten Falle dreht er den Modus Ponens um.

(A->B),B pA

Beispiel: [IX | mensch(X) -> sterblich(X), sterblich (uta) > mensch(uta)

Nehmen wir eine Theorie as Hintergrundwissen hinzu, so ist der abduktive
Schluf3:

T,(A->B),B|>A, wobeiT,(A->B),B#-A und A%B

Die folgenden Abschnitte handeln Uberwiegend vom induktiven SchluB. Nur
das erklarungsbasierte Lernen, das auch dargestellt wird, verwendet ihn nicht
zum Lernen.

5.2.3 Anwendungen maschinellen Lernens

Maschinelles Lernen wird Uberwiegend eingesetzt, um eine Menge von Regeln
oder einen Entscheidungsbaum aus Daten zu gewinnen oder eine gegebene Re-
gelmenge zu verbessern. Die Regeln werden dann entweder direkt von Menschen
verwendet oder einem Expertensystem und damit dessen Benutzern zur Verfligung
gestellt. Schon der Einsatz einfacher Lernverfahren fihrt zu einer erheblichen
Verklrzung der Entwicklungszeit einer Wissensbasis. Meist wird anhand einer
ausgewahlten Teilmenge von klassifizierten Daten (Lernset) eine Menge von
Regeln oder ein Entscheidungsbaum induziert. Das Lernergebnis wird dann an-
hand einer anderen Teilmenge der klassifizierten Daten (T estset) geprift. Dabei
wird der Testset ohne die vorgegebene Klassifikation mit dem Lernergebnis Kklas-
sifiziert. Wenn die Klassifikation durch das Lernergebnis mit der benutzergege-
benen Klassifikation Ubereinstimmt, ist es korrekt. Wenn nicht, wird noch ein-
mal mit einem anderen Lernset gelernt oder per Hand das Lernergebnis verbes-
sert.

Donald Michie (1989) berichtet (ber erfolgreiche Anwendungen von Lern-
verfahren, die Entscheidungsbdume induzieren. Dabei mul das Lernergebnis
nicht unbedingt von einem Expertensystem genutzt werden. Oft hilft bereits das
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Ausdrucken des Entscheidungsbaumes as Merkzettel. Die Erstellung des kompri-
mierten Merkzettels ist die Leistung des Lernverfahrens. So fuhrt Michie den Er-
folg bei einer Anwendung fir die NASA darauf zurick, da Menschen selten
mehr als 3-5 Faktoren auf einmal berlcksichtigen konnen. Falls mehr als 5 Fakto-
ren zu einer Entscheidung beitragen, ist ein induzierter Entscheidungsbaum, der
auf der Grundlage aller vorliegenden Daten und aller Faktoren gebildet wurde,
hilfreich. Insofern hilft das statistisch basierte Lernen bei der Analyse von Daten,
deren Ergebnis in eine verstandliche, geordnete Form Ubertragen wird. Diese
Analyseleistung war auch bei einem anderen von Michie angefiihrten Beispiel
ausschlaggebend fir den Erfolg. Im Bankenbereich der Kreditvergabe werden
sicherheitshalber Kredite nicht vergeben, die in einer Grauzone liegen. Mithilfe
eines Produktes, das auf ID3 beruht, konnten Daten Uber zurlickgezahlte und nicht
zurickgezahlte Kredite analysiert werden. Das Ergebnis strukturiert diese Grau-
zone, so dal3 mehr Kredite sicher vergeben werden kénnen. Da das Ergebnis die
Faktoren nennt, die ausschlaggebend fir eine sichere Kreditvergabe sind, kann
die Erwartung fir das Kreditvolumen anhand statistischer Kenntnisse aktuell an-
gepalit werden. Ein Seiteneffekt war, dal3 der Bank bessere Kundenprofile fir ih-
ren Kundendienst zur Verfagung stehen. Schliellich konnte Michie von einer
Firma eine schriftliche Bestatigung erhalten, daf3 die Produktivitdt einer Fabrik
von 83% auf 95% gesteigert werden konnte durch den Einsatz induktiven Ler-
nens.26 Dies ist deshalb so wertvoll, weil die Firmen nur selten Uber ihre Anwen-
dungen maschinellen Lernens berichten, so daR 6ffentlich zugangliches Material
fehlt.

Oft ist eine Induktionskomponente in eine Wissenserwerbsumgebung fir ei-
ne Expertensystem-HuUlle integriert wie zum Beispiel beim System IKEE fur die Ex-
pertensystem-Hillle TWAICE.27 Exemplarische Anwendungen verschiedener Lern-
verfahren wurden in dem ESPRIT-Projekt "Machine Learning Toolbox" (P2154) in
Zusammenarbeit von Industrieunternehmen, Universitdten und Forschungsin-
stitutionen untersucht. So wurde zum Beispiel das System MOBALZ28 fiir unter-
schiedliche Anwendungen erprobt. Ein medizinischer Sachbereich wurde einer-
seits mithilfe von benutzergegebenen Regeln dargestellt. Andererseits lernte das
System typische Therapieablaufe aus im Krankenhaus gesammelten und von ei-
nem Arzt klassifizierten (und bereinigten) Daten. Mithilfe der Konsistenzprifung
von MOBAL (Wrobel 1994) wurden Abweichungen festgestellt und dann analysiert
(Morik et al. 1994). Eine andere Anwendung des Systems MOBAL entspricht genau-
er dem Kklassischen Anwendungsbereich maschinellen Lernens: eine Wissensbasis
zur Zugangsberechtigung von Benutzern zu bestimmten Rechnerleistungen soll
mithilfe des Systems erstellt werden. Dabei unterstiitzt das System verschiedene
Aufgaben der Modellierung. Lernverfahren koénnen Regeln aus Daten gewinnen
und anhand von Ausnahmen verfeinern. Der Benutzer kann ebenfalls Regeln
eingeben. Diese Regeln werden beim Regellernen und Regelverfeinern berick-
sichtigt (Sommer et al. 1994). Neben den Lernverfahren verfiigt MOBAL aber noch
Uber andere Komponenten, die den Benutzer bei der Modellierung unterstitzen.
In der Anwendung ist es meist mit einem isolierten Lernverfahren nicht getan!

26 Dies entspricht einer Umsatzsteigerung von 10.000 US$ im Jahr.
27 TWAICE und IKEE sind Entwicklungen der Nixdorf Computer AG, die nunmehr Teil der SNI ist.

28 MOBAL wurde an der Gesellschaft fiir Mathematik und Datenverarbeitung in Birlinghoven entwickelt (Morik
et al. 1993).
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Wenn in dem Aufbau und der Verfeinerung von Wissensbasen mithilfe ma-
schinellen Lernens bisher auch die meisten Erfahrungen gesammelt wurden, so
gibt es doch keinen prinzipiellen Grund, sich darauf zu beschranken. Vielmehr
kann jedes System durch Lernféhigkeit verbessert werden. Die wichtigsten An-
wendungsfelder sind gegenwartig:

Lernen aus (Hyper-)texten: Das Lernen neuer Begriffe aus Texten wurde
mit dem wit-System versucht (Reimer, Pohl 1991). Der WebWatcher un-
terstitzt Benutzer des WWW beim browsing durch Lernen (Joachims et al.
1997). Zur Unterstlitzung des information retrieval durch Lernen von
Benutzerinteressen gibt es eine Fille von Arbeiten (z.B.: Lang (1995),
Balabanovic und Shoham (1995), Pazzani et a. (1996), Lieberman (1995)).
Der Erwerb von Grammatiken aus Texten wurde frih untersucht, aber
wegen der hohen Komplexitdt abgebrochen. Gegenwértig wird die Annéa-
herung an eine Grammatik unter Hinzuziehen eines Orakels (Benutzers)
versucht (Adriaans 1993).

Lernen in der Robotik: In der Robotik wird einerseits die Planungskom-
ponente verbessert (Dillmann (1988), Segre(1988), Zercher (1991)), zum
anderen die Ausfuhrungskomponente (Kaelbling 1991). Es gibt aber auch
Ansatze, gerade die Verbindung zwischen Bewgriffen der Planungsebene
und den Sensor- und Handlungsdaten zu verbessern (Klingspor, Morik,
Rieger 1996).

Wissensentdeckung in Datenbanken (data mining): Es geht es darum,
unutbersichtliche Datensammlungen nach Regularitdten zu untersuchen
oder sogar alle giltigen und interessanten Regeln zu finden. Dies wird
bisher vor allem mit statistischen Methoden versucht (Stichwort: explo-
rative Datenanalyse). Maschinelle Lernverfahren, die meist einen stati-
stischen Kern enthalten, gehen in der Aufbereitung ihrer Ergebnisse
Uber rein statistische Verfahren hinaus, indem sie verstandliche Regeln
ausgeben. AuRerdem werden die Hypothesen fir gultige Regeln vom Sy-
stem selbst aufgestellt und nicht vom Benutzer formuliert. Ein schnelles
Verfahren fur bindre Attribute wie sie in Warenhausdaten vorkommen
(jede Ware ist ein Attribut, 1 heif3t, dal3 sie gekauft wurde, ein Daten-
banktupel ist ein Einkauf) ist Apriori (Agrawal 1996). Ein pradikatenlogi-
sches Verfahren zum Regellernen mit direktem Datenbankzugriff ist
RDT/DB (Brockhausen, Morik 1997).

5.3 Lernaufgaben

Hier werden drei Lernaufgaben vorgestellt: das Lernen von Funktionsapproxima-
tionen, von Begriffsdefinitionen und von allen gultigen Regeln. Dabei wird un-
terschieden zwischen 0Uberwachtem Lernen (Lernen aus Beispielen) und un-
Uberwachtem Lernen (Lernen aus Beobachtungen). Beispiele sind einer Kate-
gorie zugeordnete (klassifizierte) Aussagen. Im Gegensatz dazu sind Beobach-
tungen nicht Kklassifiziert. Beim Lernen aus Beispielen wurde also die Kategori-
sierung bereits vom Benutzer oder einem anderen System vorgenommen. Beim
Lernen aus Beobachtungen gehdrt die Aggregation zur Lernaufgabe.

Ein weiterer Unterschied ist, ob die Beispiele oder Beobachtungen auf einmal
oder nach und nach dem Verfahren gegeben werden. Inkrementell ist ein Ver-
fahren, das nicht alle Eingabedaten auf einmal bekommt und dann lernt, sondern
jeweils ein zusétzliches Beispiel oder eine neue Beobachtung einliest, daraus lernt,
dann das néchste einliest, und so weiter. So ist der Versionenraum (siehe 5.4) in-
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krementell, 1D3 hingegen nicht inkrementell (siehe 5.7.1). Die Schwierigkeit in-
krementellen Lernens besteht darin, dald Entscheidungen bereits getroffen wer-
den, bevor der Rest der Beispiele oder Beobachtungen zur Verfagung steht.

Entscheidend fir die Schwierigkeit einer Lernaufgabe sind nicht nur die Be-
dingungen an die LoOsung, sondern auch der Reprasentationsformalismus, in dem
die Hypothesen (moégliche Lernergebnisse) ausgedriickt werden.

5.3.1 Begriffslernen

Das Begriffslernen ist die klassische Aufgabe des maschinellen Lernens. Begriffe
wie z.B. “kreditwirdige Personen“, *“Situation fir den Landeanflug mit Autopilo-
ten*, “Streptokokken-Infekt* koénnen unmittelbar in Planungssystemen, Ent-
scheidungsunterstitzungssystemen oder Diagnosesystemen zur Klassifikation an-
gewandt werden. Die Beschreibungen der Beobachtungen enthalten Merkmale
(und Relationen) von Objekten. Die Beschreibungen der Beispiele enthalten zu-
sétzlich die Angabe, ob das Beispiel eine Instanz des zu lernenden Begriffs ist
(positives Beispiel) oder nicht (negatives Beispiel). Als Bedingung an die Ldsung
der Lernaufgabe werden logische Verhaltnisse zwischen den Instanzen und der
Hypothese formuliert. Da unterschiedliche Hypothesen fir eine gegebene Menge
von Beobachtungen/Beispielen die Bedingungen Konsistenz und Vorhersage oder
Vollstéandigkeit und Korrektheit erfillen konnen, wird manchmal ein zusétzliches
Préaferenzkriterium angegeben. Dies kann z.B. sein, da3 immer die allgemeinste
Begriffsdefinition gewahlt werden soll oder gerade die speziellste. Einige Verfah-
ren sind in der Lage, Hintergrundwissen T zu bertcksichtigen. Wir haben dann
die Reprasentationssprachen: eine Beschreibungssprache Le far Beispie-
le/Beobachtungen, eine Hypothesensprache L,und eine Sprache fir das Hinter-
grundwissen L,. Natlrlich hédngen diese drei zusammen.

Beispielsweise kann L variablenfreie Hornklauseln,
L. Grundfakten und
L, Hornklauseln sein,
wobei die Signaturen sich dberschneiden, d.h. die Menge der Pradikate in Lg, Lt
und L, sind nicht disjunkt.

Begriffslernen aus Beispielen: Begriffslernen aus Beobachtun-
gen:
Gegeben: Gegeben:

Hypothesensprache LH fir den Be- Hypothesensprache LH fur den Be-
griff, griff,

Hintergrundwissen T in einer Spra- Hintergrundwissen T in einer Spra-
che LT (ggf. leer) che LT (g9f. leer)

Menge P positiver Beispiele in einer Menge E von Beobachtungen in einer
Beschreibungssprache LE Sprache LE

29 |n der Lernliteratur wird entweder nicht (wie bei Termsubsumtions-Formalismen) zwischen Klassifikation von
Begriffen und Realisierung von Begriffen unterschieden oder eswird unter Klassifikation gerade die Realisierung
in Termsubsumpti onssystemen verstanden.
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Menge N negativer Beispiele in LE

Relation, die Beispiele e anhand von Relation, die Begriffsdefinitionen ¢
Hypothese ¢ klassifiziert (z.B. das Ab- und Beobachtungen e verbindet (z.B.

gleichspradikat das Abgleichspradikat covers(c, e)
Ableitung T,c|-- e) T.c|--e)

ggf. Praferenzkriterium, das Hypo- 99f. Praferenzkriterium, das Hypo-
thesen (partiell) ordnet thesen (partiell ordnet)

Op0O P:T,P-{p}-/- p(Notwendigkeity —OeO E: TE-{e}|-/- e (Notwendigkeit)

Ziel: Ziel:
cOLH mit cOLH mit
T,c|/-O (Konsistenz) T,c|-/- O (Konsistenz)

OpOP: covers (cp) ist wahr bzw. T, ¢ DeOLE,e0DEundT, c|--e
[-- P (Vollstandigkeit) (Vorhersage)

On ON: covers (c,n) ist falsch bzw.
OnO N: T, cf/-n (Korrektheit)

(c erfillt das Praferenzkriterium) (c erfallt das Praferenzkriterium)

5.3.2 Regellernen

Das Lernen aller giltigen und redundanzfreien Regeln (kurz: Regellernen) ist die
schwierigste Lernaufgabe. Sie findet in einer Menge von Daten (Beobachtungen
und Hintergrundwissen) alle Regeln, die bei diesen Daten gelten. Es geht nicht
darum, eine Vorhersage fiUr die Realitdat, der die Daten entstammen, anzundhern,
sondern verstandliche Aussagen Uber die Daten zu machen - wie auch immer sich
Daten und Regeln auf die Realitédt beziehen. Insofern ist der Grundgedanke bei der
Funktionsapproximation und dem Regellernen vollig unterschiedlich: Wahrend
beim ersten das Lernergebnis eine gegebene Wahrheit anndhern soll, beléldt das
Regellernen die Suche nach Wahrheit beim Benutzer des Systems. Ein Regellern-
verfahren fafdt die Daten zusammen und Uberld3t es dem Benutzer festzustellen,
wie der Bezug zur Realitét einzuschatzen ist. Daher ist eine haufige Anwendung
des Regellernens die Datenkorrektur. Wenn Regeln, die im minimalen logischen
Modell der Daten gultig, notwendig und vollstandig sind, vom Benutzer fir un-
wahr befunden werden, so kann dies ein Hinweis auf fehlerhafte oder unvoll-
standige Daten sein. Beispielsweise haben wir bei Mercedes-Daten Uber Fahrzeuge
gelernt, da3 ein Fahrzeug 0 bis 8 Achsen hat. Da wir wissen, daf3 dies nicht stimmt,
konnten wir gezielt die falschen Eintrdge in der Datenbank bereinigen, die fir
ein Fahrzeug 0 Achsen angaben.

Gegeben:
Sprache fir Regeln LH

Beobachtungen E in einer Sprache LE
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gof. Theorie in einer Sprache LT
T, E |-/- O (Konsistenz)

Ziel:
COLH soda3M (C) O M+(T, E) (Gultigkeit)
OcOC,0e0E T,E{€} |-/-eund T, E{€}, c|-e (Notwendigkeit)
Wenn ¢ gultig und notwendig ist, dann C |-- ¢ (Vollstandigkeit)

Es gibt keine echte Teilmenge G von C, die giltig und vollstandig ist
(Minimalitat)

Bei dieser Lernaufgabe werden die Begriffe Modell M und minimales Modell
M+ verwendet. Gegeben eine Interpretation | fir eine Menge von Formeln F. | ist
ein Modell von F, geschrieben M (F), wenn ale Formeln von Fin | wahr sind.
Wenn | ein Modell von F ist und es keine Interpretation I’ gibt, so da® | OI" und I’
ist ein Modell von F, dann heift | minimales Modell von F, geschrieben M+(F).

Normalerweise gibt es viele verschiedene und beliebig groRe Modelle fur
pradikatenlogische Formeln. Einige Beschrankungen der Pradikatenlogik fuhren
aber dazu, dal? es nur ein minimales Modell fir eine Menge von Formeln gibt. Zum
Beispiel haben definite Hornklauseln immer genau ein minimales Modell, wenn es
eines gibt. Eine Hornklausel heifldt definit, wenn sie entweder aus einem positi-
ven und beliebig vielen negativen Literalen besteht oder nur aus einem positiven
Literal. In Prolog sind also Fakten und Regeln definite Hornklauseln, nicht jedoch
Anfragen. Wegen der harten Anforderung der Gultigkeit des Regellernens wer-
den solche Beschrankungen bevorzugt.

5.4 Lernen als Suche

Mitchell (1982) hat Lernen aus Beispielen as Suche beschrieben. Der Suchraum
fir Begriffe ist die Menge aller mithilfe von LH bildbaren Ausdricke. Das sind alle
moglichen Charakterisierungen, fur die dann festgestellt werden muf3, ob sie alle
positiven Beispiele abdecken und kein negatives. Der einfachste Lernalgorithmus
ist demnach der Aufzéhlungsalgorithmus. er zahlt alle in LH bildbaren Ausdricke
auf (Hypothesengenerierung) und priaft for jeden, welche Beispiele (und Nicht-
Beispiele) abgedeckt werden (Hypothesentest). Sobald die Zielbedingung gilt, halt
der Algorithmus an.

Der Aufzadhlungsalgorithmus funktioniert natdrlich nur fir aufzdhlbare
Sprachen wund ist nicht gerade effizient. Ein Ubliches Verfahren, einen Algo-
rithmus, der Hypothesen generiert und testet, effizienter zu machen, besteht
darin, Bedingungen des Testens bereits bei der Generierung zu bericksichtigen.
Im Falle des induktiven Lernens wissen wir, dal3 wir eine Hypothese suchen, die
genereller ist als die Beispiele und spezieller als eine Beispiele und Nicht-Beispiele
gleichermallen abdeckende Aussage. Wir tun also gut daran, die Hypothesen nach
ihrer Allgmeinheit anzuordnen, um dann schrittweise generellere oder spezielle-
re Hypothesen zu generieren. Gehen wir von den Beispielen aus, um schrittweise
generellere Hypothesen zu erzeugen hbis alle positiven Beispiele abgedeckt wer-
den, spricht man von einem bottom-up Verfahren. Gehen wir von einer alles ab-
deckenden Aussage aus, die wir schrittweise spezialisieren bis sie kein negatives
Beispiel mehr abdeckt, spricht man von einem top-down Verfahren. Die Suche in
einem strukturierten Raum moglicher Hypothesen kann beschnitten werden, was
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bei der Suche im unstrukturierten Raum nicht moglich ist. Dort missen ja alle
Hypothesen betrachtet werden, weil man keinen Anhaltspunkt hat, wo im Raum
der Zielbegriff liegen konnte.

Mitchell schlug fur Definitionssprachen eine Halbordnung (quasi-ordering)
aufgrund der spezieller-als- bzw. genereller-als-Relation vor. Eine Halbordnung
ist eine reflexive, transitive aber nicht antisymmetrische Relation. Wenn Begriffe
mithilfe von Attributwerten charakterisiert werden, die sich in einer Hierarchie
entlang dieser spezieller-als- bzw. genereller-als-Relation partiell anordnen las-
sen, lakt sich der Suchraum als Kreuzprodukt der geordneten Attributwerte immer
(halb-)ordnen.

spezieller-als:
cl ist spezieller als c2 genau dann, wenn
0O ed LE gilt: covers (cl, e) --> covers (c2, e), d.h.:

{eldLE|covers(c2, e} O{ el LE | covers (cl, €) }

c2 ist eine Generalisierung von cl, weil c2 alle Beispiele abdeckt, die c1 auch
abdeckt, und zusatzlich vielleicht noch mehr Beispiele. Mit dieser Angabe kann
entschieden werden, ob eine Hypothese genereller oder spezieller as eine andere
ist. Dies reicht aber noch nicht aus. Wenn wir schrittweise generalisieren bzw.
spezialisieren wollen, missen wir minimal generellere und minimal speziellere
Hypothesen zu einer Hypothese finden.

Schrittweises Generalisieren:

9,9 0LH,e0LE, g ist minimal genereller als ¢ beziigl. e genau dann, wenn
g ist genereller als ¢ und
covers (g, €) und
es gibt kein g O LH, so da3 g genereller als g' ist und

covers (g', €) gilt.

Es wird also eine speziellste Generalisierung g erzeugt: zwischen sie und die
bisherige Generalisierung ¢ palt keine andere Generalisierung ¢ mehr. Dies ist
insbesondere sinnvoll, wenn e ein positives Beispiel ist, das abgedeckt sein soll.

Entsprechend formalisiert Mitchell auch die Spezialisierung.

Schrittweises Spezialisieren:
s,sULH,e0 LE, sist minimal spezieller als ¢ beziigl. e genau dann, wenn
S ist spezieller als ¢ und
" covers (s, € und
es gibt kein s 0 LH, so dal3 s spezieller ist as s ist und
- covers (s, e) gilt.

Es wird also eine generellste Spezialisierung s erzeugt. Dies ist insbesondere
sinnvoll, wenn e ein negatives Beispiel ist, das nicht abgedeckt sein soll.

Jetzt lassen sich drei Lernalgorithmen angeben, die alle die Lernaufgabe wie
oben angefuhrt Idsen.
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Top-down Lernverfahren:
Beginne mit den allgemeinsten bildbaren Hypothesen;
solange noch negative Beispiele abgedeckt werden,

wende auf die Hypothese das schrittweise Spezialisieren an;
wenn eine Hypothese kein negatives Beispiel abdeckt,

gib diese Hypothese aus und halte an.

Bottom-up Lernverfahren:

Beginne mit den speziellsten bildbaren Hypothesen;

solange noch nicht alle positiven Beispiele abgedeckt werden,
wende das schrittweise Generalisieren an;

wenn eine Hypothese alle positiven Beispiele abdeckt,
gib diese Hypothese aus und halte an.

Mitchell (1982) flhrte zusatzlich zu diesen beiden Algorithmen die bi-
direktionale Suche im Versionenraum (versions space) ein, die Spezialisierung
und Generalisierung kombiniert. Eswerden gleichzeitig zwei Mengen bearbeitet:
die Menge aller aktuellen Generalisierungen und die Menge aller aktuellen Spe-
zialisierungen. Jedes Element dieser Mengen ist moéglicherweise die gesuchte Hy-
pothese. Die Mengen enthalten also alternative Hypothesen. Sobald sich die beiden
Mengen Uberschneiden, ist die Ldosung gefunden: es ist die Hypothese aus der
Schnittmenge.

Versionen-Raum Lernverfahren:
Initialisiere die Menge G mit den generellsten Begriffen
und die Menge S mit den speziellsten Begriffen.
Solange die Mengen G und S disjunkt sind, lies ein Beispiel e ein und
falls e O N und e von G abgedeckt wird,
entferne alle s 0 S, die e abdecken,
spezialisiere G bis e nicht mehr abgedeckt wird,
entferne alle g O G, die echt spezieller sind als ein anderes g0 O G
fals e O P und e von S nicht abgedeckt wird,
entferne alle g O G, die e nicht abdecken,
generalisiere S bis e abgedeckt wird.
entferne alle s O S, die echt genereller sind als ein anderes s O S
entferne alle g O G, fur die es kein s O S gibt, das spezieller ist
entferne alle s O S, fur die es kein g O G gibt, das genereller ist
Sobald G und S gleich sind und nur noch eine Hypothese enthalten, dann gib
diese aus und halte an!

Die Mengen G und S sind also folgendermalien definiert:

G={g,soda® 0O pj OP,0 njO N | covers(g, pi), —covers (g, nj),
es gibt kein g', das genereller ist als g und
alle pj abdeckt und kein nj}

S={s,sodaR O pj0OP,0OnjOd N |covers (s, pj), = covers (s, nj),
es gibt kein s, das spezieller ist as s und
alle pj abdeckt und kein nj}

Dabei sind p, und n; die bisher dem System gezeigten positiven und negativen
Beispiele.
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Ein Beispiel soll die Strukturierung des Suchraums illustrieren. Nehmen wir
an, L, enthielte zwei Merkmale mit hierarchisch angeordneten Werten, wobei die
allgemeineren Werte oben, die spezielleren unten stehen.

Antriebsmittel

Antrieb in der Luft Antrieb am Boden
AntrieQsart
Propeller Disen 2Rader 4Rader %
2Propeller 2Dilsen 3Diisen 4Dusen Befizin Diesel FukR® Hand

Die Blatter der Merkmalsbdume werden verwendet, um Beispiele, die dariber
gelegenen Merkmale, um Charakterisierungen anzugeben. Beispiele sehen dann
SO aus:

P: { [2Rader, Benzin], [4Rader, Diesel], [2Réader, Ful3]}
N: { [3Disen, Hand] }

Der geordnete Suchraum stellt alle Kombinationen der beiden Merkmale in
der Anordnung von generelleren Charakterisierungen (oben) zu spezielleren
(unten) dar. Das Abgleichspradikat cover fur die zwei Merkmale ist folgenderma-
Ren:

covers([a,b],[c,d]) gdw. covers(a,c) & covers(b,d).

Dabei sind die Beschreibungen aund b fir das Beispiel und c und d fir den
entstehenden Begriff. Im Suchraum koénnen verschiedene generellere Beschrei-
bungen dieselbe Spezialisierung haben. Da die beiden Merkmalsbdume unter-
schiedlich tief sind, liegen nicht alle Beispielbeschreibungen (Blatter) auf der-
selben Ebene des Suchraums. Ein Ausschnitt:

[Antriebsmittel, Antriebsart]

[Luft, -art] [Boden, -ari] [-mittel, Motor] [-rittel, Mensch]

// | —
[
[Prop|e||w,/art] [D@F@ﬂ [4Raderm

—

[2Propeller, -art] [Propeller,Motor] [Propeller, Mensch]... [2Rader,Motor] [2Rader, Mensch] ...

[2Propeller,Motor][2PropeIIer,Mensch][@Benzin J[2R&der,Diesel] [2Rader,FuR ] [2Ré&der,Hand]...

In diesem Beispiel kann man das Abgleichspradikat durch die Vorgangerre-
lation zwischen Knoten im Merkmalsbaum  definieren. Der strukturierte
Suchraum entsteht dann beim Abgleichen. Obendrein muf3 die schrittweise Gene-
ralisierung und Spezialisierung formuliert werden sowie der globale Ablauf. | n
Prolog laRt sich das leicht machen. Ein Versionenraum-Programm verhd@t sich
etwa so:
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?- POSITIVES BEISPIEL?
[2Rader, Benzin]
G: {[-mittel, -art]} S: {[2R&der, Benzin]}
BEISPIEL?
[3Disen, Hand] n
G: { [Boden, -art], [-mittel, Motor]} S: { [2R&der, Benzin]}
BEISPIEL?
[4R&der, Diesel] p
G: { [Boden, -art], [-mittel, Motor]} S: { [Boden, Motor]}
BEISPIEL?
[2R&der, Ful3] p
G: {[Boden, -art]} S. {[Boden, -art]}

LOSUNG: [BODEN, -ART]

5.5 Lernen als Funktionsapproximation

Viele Lernprobleme lassen sich as Funktionsapproximation auffassen (z.B. das
Begriffslernen, s. 5.3.1). Das Ziel ist es, eine Hypothese zu finden, die zur Vorher-
sage von zukilnftigen Ereignissen benutzt werden kann. Gegeben sind Trainings-
beispiele von der Funktion, die gelernt werden soll. Gesucht ist die Hypothese, die
diese Funktion moglichst gut approximiert. Eine Hypothese approximiert die Ziel-
funktion genau dann gut, wenn ihre Vorhersagen moglichst haufig eintreten.

Ein Beispiel hierfur ist Kreditwirdigkeitsprifung. Das Lernproblem ist hier,
anhand von z. B. der Kreditgeschichte, Kontostand etc. vorherzusagen, ob der
Bankkunde einen Kredit ordnungsgemafl zuritickzahlen wird oder nicht. Trai-
ningsbeispiele sind die Erfahrungen mit anderen Kunden. Gesucht ist eine Hy-
pothese, welche die Zahlungsmoral eines neuen Kunden méglichst genau vorher-
sagen kann (d. h. sich moglichst selten irrt).

Dieses Modell lalt sich formal wie folgt aufschreiben:
Es existieren:

. Ein Generator (G), der Beispielbeschreibungen x;,0E anhand einer Wabhr-
scheinlichkeitsverteilung P(x;) erzeugt.

. Ein Orakel (O), das jeder von G erzeugten Beispielbeschreibung x einen
Wert y;=t(x) zuweist. Im allgemeinen ist die Funktion t(x) nicht determi-
nistisch, sondern liefert einen Wert y; nur mit einer Wahrscheinlichkeit

P(yilx).

. Eine Hypothesensprache L.
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Das Ziel ist:

. Die Hypothese h aus H, welche den folgenden Ausdruck (den sog. “zu er-
wartenden Fehler” oder auch “zu erwartende Risiko®) minimiert

|E|

R(M='y Q0x, W P(x) ~ min

P(x;) ist die Wahrscheinlichkeit, dal} das Beipiel x; aus der Beispielbeschrei-
bungsprache gezogen wird. Esist also wichtig, auf wahrscheinlich auftretenden
Beipielen x; weniger Fehler zu machen als auf unwahrscheinlichen Beispielen.
Q(x;,h) ist eine Fehlerfunktion (sog. “Loss-Function). Sie beschreibt die Qualitat
der Vorhersage von Hypothese h fir Beispiel x. Anhand der Form von Qunter-
scheidet man u. a. die folgenden zwei Aufgaben:

« Klassifikation: Einteilung von Beispielen in eine feste und vorgegebene
Anzahl von Klassen (z. B. Klassifikation von Bankkunden in die Klassen
“kreditwirdig” und “nicht kreditwirdig®). Hier wird normalerweise die
folgende Fehlerfunktion verwendet. Sie liefert den Wert 1, wenn die Vor-
hersage h(x;) falsch ist.

_ b h(x) #t(x)
QN =5 hix) =t(x)

e Regression: Approximation einer reellwertigen Funktion (z. B. Vorher-
sage von Aktienkursen). Haufig ist Qhier die quadrierte Abweichung des
vohergesagten Wertes h(x) der Hypothese vom Sollwert t(x).

Q% h) =[t(x) —h(x)]’

Die direkte Minimierung des zu erwartenden Fehlers R(h) ist nicht mdglich,
da wir weder P(x;) noch t(x;) fur alle i kennen. Allerdings haben wir Trainings-
beispiele gegeben, die vom Generator anhand von P(x;) gezogen wurden und fUr
die wir t(x;) kennen. Diese Trainingsbeispiele werden dazu benutzt, den zu erwar-
tenden Fehler R(h) mit dem “beobachteten Fehler* R,,(h) zu approximieren30,
Der beobachtete Fehler fir eine Menge von Trainingsbeispielen [x,t(x;)], ...,
[Xn,t(X,)] und eine Hypothese h berechnet sich als.

1%
Renl) =75 Q%)

Daraus 1&3t sich das folgende Lernproblem formulieren. Diese Methode des
Lernens wird “Empirical Risk Minimization®* (ERM) genannt.

30 Diese Art der Approximation ist allerdings nur fiir groe Anzahlen von Trainingsbeispielen verlaRlich. Eine
Verbesserung wird durch die gleichzeitige Betrachtung der Komplexitét des Hypothesenraumes und der Anzahl der
Trainingsbeispiele erreicht (s. Vapnik 1995). Man kann dann berechnen, wie sehr R(h) und R,,(h) voneinander
abweichen.
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Gegeben:

- Eine Menge von Trainingsbeispielen [xi,t(Xx;)], ..., [Xnt(X,)].
e Hypothesensprache L.

Gesucht:

. Die Hypothese h aus H, fur die der beobachtete Fehler R.,,(h) minimal
ist.

Der in 5.5 vorgestellte Backprop Algorithmus fir neuronale Netze folgt die-
sem Prinzip sehr direkt. Die Hypothesensprache des Netzes sind alle mdéglichen
Kombinationen von Gewichten in den Neuronen des Netzes.

5.6 Neuronale Netze: Backprop

Von den hier vorgestellten Verfahren realisiert das Backprop Verfahren fir neu-
ronale Netze das ERM Prinzip am direktesten. Die Lernaufgabe ist:

Gegeben:

- Eine Menge von Beispielen in einer Attribut-Wert-Repréasentation mit bi-
naren Attributen.

« Die Struktur des neuronalen Netzes.
Ziel:

. Ein neuronales Netz, das fir neue Beispiele die Zielfunktion mit mdg-
lichst geringem Fehler vorhersagt.

Der im weiteren vorgestellte Backpropagation Algorithmus ist in der Lage,
sowohl Klassifikations- as auch Regressionsprobleme zu bearbeiten. Der Back-
propagation-Algorithmus stellt nur eine Methode aus dem Bereich der neuronalen
Netze dar und wird hier exemplarisch behandelt. Eine Ubersicht tber weitere Ver-
fahren findet sich in (Rieger (1993).

Bei der Betrachtung von neuronalen Netzen muf3 zwischen einer biologisch
und einer durch das maschinelle Lernen motivierten Herangehensweise unter-
schieden werden. Im folgenden werden Neuronale Netze aus der Sicht des maschi-
nellen Lernens behandelt und nicht versucht, biologische Vorgange im Gehirn zu
modellieren. Eswird allgemein bezweifelt, dal} im Gehirn Prozesse ablaufen, die
mit dem Backpropagation-Algorithmus vergleichbar sind.

Neuronale Netze setzen sich aus Neuronen zusammen. Jedes Neuron be-
rechnet eine relativ einfache Funktion und erst ihr Zusammenwirken erlaubt die
Reprasentation von komplexen Begriffen. Der Backpropagation-Algorithmus be-
nutzt Neuronen des folgenden Typs (genannt ,sigmoides Neuron®).
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Ein Neuron besitzt einen Vektor von aktuellen Eingabewerten X:(xi,...,xn)
mit x, [I] (X, ist immer gleich 1und realisiert einen Schwellwert). Fir jede Di-
mension 1 dieses Vektors existiert ein Gewichtungsfaktor W, der in der Lernpha-

se durch den Algorithmus verdndert werden kann. Aus den Eingabewerten und
den Gewichten berechnet das Neuron die Summe

net(x) = 3w

Um die Ausgabe 0(X) des Neurons fur den Eingabevektor X zu berechnen,
wird die Summe net(X) durch eine sigmoide Funktion o(x) auf den Wertebereich
[0.1] normiert.

1

e—net(>‘<)

o(X) = o(net(X)) = 17

Diese nichtlineare Transformation des Ausgabewertes wird benutzt, da durch
sie der unten beschriebene Trainingsalgorithmus anwendbar wird und so effizi-
entes Lernen ermoglicht. Wird o(x) weggelassen und net(X) direkt als Ausgabe

verwandt, spricht man von linearen Neuronen. Allerdings ist die Menge der
Funktionen, die Netze mit linearen Neuronen darstellen koénnen, auf lineare
Funktionen reduziert. Erst die nichtlineare Ausgabefunktion o(x) ermdglicht dem
neuronalen Netz das effiziente Lernen von komplizierten nichtlinearen Funktio-
nen.

Sehr haufig werden Netze der folgenden feedforward Struktur verwendet.
Mit genlgender Anzahl von (sigmoiden) Neuronen in der Mittel-Schicht, kdnnen
Netze dieser Struktur eine grof’e Klasse von Funktionen beliebig genau approxi-
mieren (z. B. beliebige Boolesche Funktionen wund beschrankte stetige Funktio-
nen).

Das Netz besteht aus drei Schichten: Einer Eingabe-Schicht, einer Mittel-
Schicht (auch Hidden-Schicht genannt) und einer Ausgabe-Schicht. Die Ausga-
ben einer Schicht sind die Eingaben zur jeweils nachgelagerten Schicht. Jedes
Neuron der nachgelagerten Schicht ist mit jedem Ausgang der vorgelagerten
Schicht verbunden.

An der Eingabe-Schicht wird die Beschreibung eines Beispiels in das Netz
eingegeben. In dieser Schicht befinden sich keine eigentlichen Neuronen, son-
dern sie dient nur as Schnittstelle fir die Eingaben. Nehmen wir an wir hatten
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die Attribute (vgl. das Beispiel aus Abschnitt 5.7.1) G 6RBe, Fil mart und Far bi gkei t.
Um die Werte der Attribute in das Netz eingeben zu konnen, missen sie auf Zahlen
abgebildet werden. Fir das Attribut Gr 68e mit den Werten gr o und kl ei n wird z. B.
grofR auf 1 und kl ei n auf O abgebildet. Die anderen Attribute werden auf a&hnliche
Weise kodiert.

Die Anzahl der Neuronen in der Mittel-Schicht ist frei wahlbar und bestimmt
die Komplexitat der Funktionen, die das Netz lernen kann. Die Ausgabe der Ausga-
be-Schicht ist die Klassifikation des Beispiels. Vielfach besteht die Ausgabe-
Schicht auch aus mehreren Neuronen und gibt somit einen Vektor aus.

Man unterscheidet zwei Durchlaufrichtungen durch das Netz: Vorwaéartge-
richntet und rickwaértsgerichtet. Beim Vorwaéartsdurchlauf werden die Ausgaben
der Ausgabe-Schicht ausgehend von den Eingaben der Eingabe-Schicht berech-
net. Hierzu werden zuerst die Neuronen der Mittel-Schicht berechnet und danach
die der Ausgabe-Schicht. Die Ausgabe ist eine Zahl im Bereich [0.1] und kann

durch einen Schwellwert (z. B.: wenn grof3er 0.5, dann positiv, sonst negativ) in
eine bindare Ausgabe umgewandelt werden. Auf diese Weise berechnet das Netz
seine Vorhersage fir die Klassifikation eines Beispiels.

Der Rickwartsdurchlauf wird in der Lernphase verwendet. Lernen be-
deutet, da die Gewichte der Neuronen mit Hilfe von Trainingsbeispielen angepalit
werden. Anhand einer Menge von Trainingsbeispielen E werden die Gewichte
der Neuronen mit einem stochastisches Gradienten-Abstiegsverfahren so einge-
stellt, dal3 die folgende Fehlerfunktion F minimiert wird.

F=Y[te-o@]

ellE

t(e) ist die Klassifikation des Trainingsbeispiels e und 0(€) ist die Ausgabe des
Netzes. Der folgende Algorithmus beschreibt die Lernphase des Netze und die da-
mit verbundene Verédnderung der Gewichte.

Bis der Fehler ‘klein genug’ ist wiederhole fur jedes Trainingsbeispiel €UE;
Vorwéartsdurchlauf:

1. Berechne o0(e) mit einem Vorwartsdurchlauf.

Rickwartsdurchlauf:
2. Fur ale Neuronen k [JOutput - Schicht:
6 — o(e)[{1-o(e)) Lt (e) 0o (e))
3. Fir Neuronen k OJHidden- Schicht: d:= o (e)[{1-o0.(e)) T Zth (D,

kOOutput - Schicht

4. Verdndere alle Gewichte anhand der Regel:
W« W, +nlAw; und Aw; « =9, [X;
X;ist der i-te Eingabewert von Neuron j. w; ist das entsprechende Gewicht.

Die Idee des Algorithmus ist es, bei jedem Beispiel die Gewichte in kleinen Schrit-
ten so zu verandern, daf der Fehler geringer wird. iji beschreibt die Richtung

der Veranderung und die Lernrate n gibt die SchrittgroBe an. Die Lernrate sollte
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,angemessen“ gewahlt werden. Ein groRes n verringert die Trainingszeit. Wird
es jedoch zu groR gewdhlt, kann es sein, daB die Gewichte nicht konvergieren.

Aw; = —= ist der Gradient (die Ableitung) der Fehlerfunktion F, =[t(e) —o(e)]* fur
ji

Trainingsbeispiel e mit Bezug auf das Gewicht w;. Eine ausfuhrliche Herleitung

dieses Algorithmus findet sich in Mitchell (1997). Daes sich bei dem Algorithmus

um ein Bergsteigeverfahren handelt, ist es nicht garantiert, dal} die optimale Ein-

stellung der Gewichte gefunden wird. Obwohl der Algorithmus in lokalen Minima

steckenbleiben kann, liefert er in der Praxis oft akzeptable Ld&sungen.

Nachdem die Gewichte anhand der Trainingsdaten eingestellt worden sind,
koénnen durch Vorwartsdurchlaufe auch neue Beispiele klassifiziert werden.

5.7 Begriffslernen in Aussagenlogik

In diesem Abschnitt werden zwei klassische induktive Lernverfahren beschrie-
ben. Das erste ist ein top-down Lernen aus Beispielen mit statistischer Merk-
malsselektion. Es stellt die Erkennungsfunktion fir einen Begriff as Entschei-
dungsbaum dar. Ein Entscheidungsbaum hat Kanten, an denen Attributwerte ste-
hen, Knoten sind Verzweigungspunkte und Blatter stellen Begriffsnamen dar. Um
zu entscheiden, ob ein neues Beispiel zu einem Begriff gehort, wird den Kanten
gefolgt, deren Beschriftung einem Attributwert des Beispiels entspricht, bis ein
Blatt erreicht ist. Das Beispiel wird dem Begriff zugeordnet, der an dem Blatt ange-
geben ist. Diese Verfahren heiflen "top-down induction of decision trees". Die be-
kannteste Realisierung ist ID3 (Quinlan 1986) bzw. C4.5 (Quinlan 1993).

Das zweite Verfahren, conceptual clustering, lernt top-down aus Beobach-
tungen, d.h. der Benutzer muld keine Begriffszugehorigkeit angeben. Auch dieses
Verfahren enthdlt eine statistische Bewertungsfunktion. Dabei entsteht eine
Hierarchie von Begriffen unter einem Oberbegriff. Esgibt verschiedene concep-
tual clustering Verfahren. Hier wird die Star-Methode vorgestellt. Die Methode
wurde von Michalski entwickelt, eine Realisierung ist CLUSTER (Michalski, Stepp
1983).

5.7.1 I1D3

Die Lernaufgabe fir top-down Induktion von Entscheidungsbdumen ist:
Gegeben:
eine Menge von Beispielen in einer Attribut-Werte-Reprasentation
Ziel:
ein Entscheidungsbaum, der ein neues Objekt klassifiziert
Diese Lernaufgabe ist eine Spezialisierung der oben genannten Beschrei-
bung von Lernen als Suche. Die Beispielbeschreibungssprache ist durch eine Li-
ste von Attributen mit ihren moglichen Werten gegeben. Die Hypothesensprache

verwendet dieselben Attribute in einem méachtigeren Formalismus, dem Entschei-
dungsbaum.

Der Kern des Verfahrens ist die Bewertung des Informationsgewinns eines
Attributes fur die Klassifikation eines Objektes. Wie gut kann ich ein Objekt klassi-
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fizieren, ohne ein Attribut zu kennen? Wie gut kann ich klassifizieren, wenn ich
den Wert eines bestimmten Attributes kenne? Welches Atribut bringt den grdfR3ten
Informationsgewinn? Aus der Liste aller Attribute wird zundchst das mit dem
gréfiten Informationsgewinn gewdhlt, angewandt und dann aus der Liste ent-
fernt. Fir die verbleibenden Attribute wird dann wieder genauso verfahren, bis
schliefdlich kein weiteres Attribut mehr Informaionen liefert - oder die Liste leer
ist. Der Informationsgehalt eines Attributs wird durch die Entropie angegeben:

n
> Pml0og2pm

m=1

bei n verschiedenen Attributwerten und der Wahrscheinlichkeit pm fur den
m-ten Wertes. Man vergleicht dann den Informationsgehalt der verschiedenen
Attribute mit dem Informationsgehalt der Beispielmenge selbst (also ohne Attri-
bute) und wahlt das informativste Attribut oder gar keines. Natirlich kann die
Bewertung auch anders gewahlt werden, z.B. nach Bayes oder im Sinne der
Textkompression (wieviele Zeichen brauche ich bei minimaler Codierung, um et-
was auszudriicken - das ist der Informationsgehalt). Dieses Forschungsthema soll
hier aber nicht behandelt werden.

Der Algorithmus von ID3:

ID3(K,C,A)
Knoten K, Menge von Beispielen C und Liste von Attributen A
1. Wenn

« Attributliste leer ist und nicht alle Beispiele in C gehbéren zum
gleichen Begriff, dann Fehlermeldung.

- ale Beispiele in Czum gleichen Begriff gehoren, dann ist K ein
Blatt und wird mit dem Begriff beschriftet.

« C leer ist, dann Fehlermeldung.
2. Wahle das Attribut a mit maximalem Informationsgewinn.
3. Reduziere die Attributliste A um a Wir erhalten A’.
4. Fur alle Attributwerte w; von a

« Hange Knoten K; and K an und beschrifte ihn mit w;.

« Ermittle Menge der Beispiele C aus C, deren Attribut a den Wert w;,
hat.

+ Rufe ID3(K;,C,,A’) rekursiv auf.

Ein Beispiel soll den Algorithmus verdeutlichen. Als Attributliste fiur die Be-
schreibung eines Sachbereichs von fotographischen Aufnahmen fir bestimmte
Zwecke ist die folgende Attributliste mit den zugehdrigen Attributwerten gegeben:

Attributliste:

(GroRe {grof3, klein},

Filmart {Foto, Dia},

Farbigkeit {s w, bunt})
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Die Beispiele sind:
{ (grof3, Dia, s w, -), (klein, Dia, s w, -), (grof3, Dia, bunt,-),
(groR3, Foto, s w, +), (gro3, Foto, bunt,-), (klein, Foto, bunt,-) }
Ohne ein Attribut zu kennen, ist die Menge der Beispiele bereits ziemlich ge-

ordnet, weil 5 von 6 Beispielen negativ sind und nur eines positiv ist. Die Entropie
der Beispielmenge ist 0,649:

S|0g-,2= -
6'0926 0.219 fur negative Beispiele

Liog,1=-0,430
6 926~ fur das positive Beispiel

Summe mit umgekehrtem Vorzeichen: 0,649

Der Informationsgewinn, wenn wir den Wert des Attributs GroRe kennen, er-
gibt sich aus der Entropie ohne Attribut minus der Entropie fiir GroRe:

grof}

(groB3, Dia, s w, -), (grof3, Dia, bunt,-),(gro3, Foto, s w, +), (grof3, Foto, bunt,-)

3log,3= -0,311
4 gzZ ’ fir negative Beispiele, die als groR beschrieben sind

Liog,l= 0,5
4 0922 ' fur das positive Beispiel

Die Summe mit umgekehrtem Vorzeichen ist 0,811.
klein

(klein, Dia, s w, -), (klein, Foto, bunt,-)

2log2= 0
2 gTZ fur die beiden negative Beispiele, die als klein beschrieben sind.

Fir das Attribut GroRe ergibt sich also:

(%0’811)+(%0): 0,541 als Entropie.

Der Informationsgewinn durch dieses Attribut ergibt sich aus dem Vergleich
mit der Entropie ohne ein Attribut:

0,649 - 0,541 = 0,108
Dieselbe Berechnung muf3 fir alle anderen Attribute durchgefiihrt werden,

damit dann das Attribut mit dem gréften Informationsgewinn ausgewahlt werden
kann. Fir Filmart ergibt sich:
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Foto:

(grof3, Foto, s w, +), (grof3, Foto, bunt,-), (klein, Foto, bunt,-)

2100,2= -
3|092§ 0,399 for die zwei negativen Beispiele

1jog,1= 0,528
309237 % fur das positive Beispiel

Die Summe mit umgekehrtem Vorzeichen ist: 0,927.
Dia:
(groB3, Dia, s w, -), (klein, Dia, s w, -), (gro3, Dia, bunt,-)

3log,3=0
3 gTS fur die drei negativen Beispiele.

Es ergibt sich also als Entropie fir Filmart:

(30,927)+(%o)= 0,463

Der Informationsgewinn ist: 0,649 - 0,463 =0,185. Damit ist Filmart besser ge-
eignet, die Daten zu ordnen als GréRe.

Wenn Filmart ausgewdhlt wurde, werden zwei Kanten angelegt und mit Foto

bzw. Dia beschriftet. Der unter Dia gebildete Knoten enthé@lt nur negativ klassifi-
Zierte Beispiele und wird damit zum Blatt. Der unter Foto gebildete Knoten mul3 ge-
nauso wie der oberste behandelt werden. Am Ende ergibt sich der folgende Ent-

scheidungsbaum:

Filmart

Foto ia

Farbigkeit -

+ -

Ein neues Objekt, zum Beispiel (klein, Foto, s w), wird nach diesem Entschei-
dungsbaum nun klassifiziert (hier: positiv ).

Man kann einen Entscheidungsbaum in eine Menge von Regeln (bersetzen.
Diese Regelmenge kann in einem Nachbearbeitungsschritt optimiert werden.
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5.7.2 Conceptual Clustering

Conceptual clustering ist aus dem statistischen Verfahren der cluster Analyse
hervorgegangen. Im Gegensatz zur Statistik, die lediglich numerische Angaben
zurtck liefert, wird aber beim maschinellen Lernen die Auswertung der Evaluati-
on in Form verstandlicher Begriffscharakterisierungen ausgegeben. Zum Beispiel
werden die Begriffe in einer Hierarchie angeordnet. Die Lernaufgabe unterschei-
det sich von der top-down Induktion von Entscheidungsbaumen dadurch, dal3 der
Aggregationsschritt dazugehort. Es wird also nicht aus Beispielen, sondern aus
Beobachtungen gelernt.

Ich beschreibe hier lediglich das star-Verfahren (Michalski, Stepp 1986). Be-
kannte Verfahren sind aber auch COBWEB (Fisher 1987) und UNIMEM (Lebowitz
1987). Die Beschreibungssprache fiur Beobachtungen ist eine offene Préadikaten-
logik (also: ohne Quantoren bzw. nur mit All-Quantoren), wobei Sorten vorgege-
ben werden. Zum Beispiel gibt es nominale, lineare (geordnete) und hierarchi-
sche Wertebereiche fur Variablen.

Ein cluster st eine intensional definierte Menge von Beobachtungen, also
eine Begriffscharakterisierung. Ein star ist eine abgrenzende Beschreibung, also
ein elementares cluster.

Die Grundidee des Verfahrens ist die Abgrenzung von Mengen von Beob-
achtungen. Dazu werden zunéchst k beliebige Beobachtungen gewahlt. Oft ist k=2,
so dafl3 ein bindrer Baum von Begriffen gebildet wird. Die ausgewéahlten Beobach-
tungen werden dann gegeneinander abgegrenzt, d.h. es werden Charakterisie-
rungen gefunden, die die beiden Beobachtungen unterscheiden. Dieser Schritt ist
die star-Bildung. Aus solchen Charakterisierungen wird eine Uberschneidungs-
freie Abdeckung aller Beobachtungen durch k Begriffe konstruiert. Wahlt man
recht ahnliche Beobachtungen, so erhdt man eher typische Charakterisierun-
gen, deckt aber vielleicht nicht gut genug alles ab. Wahlt man sehr unterschiedli-
che Beobachtungen, deckt man vermutlich viele Beobachtungen gut ab, verpaldt
aber vielleicht abgrenzende Merkmale. Ein Bewertungskriterium entscheidet, ob
die Menge der Beobachtungen hinlanglich strukturiert ist, oder nicht. Wenn
nicht, werden noch einmal andere Ausgangsbeobachtungen gewéhlt, mit denen
die Schritte noch einmal durchlaufen werden. Die gefundenen Begriffe werden
weiter verfeinert, indem das Verfahren auf alle von dem jeweiligen Begriff abge-
deckten Beobachtungen angewandt wird. Das Verfahren halt an, sobald das Be-
wertungskriterium erfallt ist und so viele Ebenen von Begriffen gebildet wurden
wie vom Benutzer gefordert. Das Verfahren fir eine Ebene von Begriffen noch
einmal im Uberblick:

Star-Methode:

1. Wahl von k Ausgangsbeobachtungen

2. Bestimmung des star fur jede Ausgangsbeobachtung gegen die andere(n)
3. Konstruktion einer disjunkten Abdeckung

4. Evaluierung:

wenn das Bewertungskriterium erfallt ist, alle Charakterisierungen
ausgeben und zur nachsten Ebene (bergehen.
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wenn das Bewertungskriterium nicht erfallt ist, fur neue Ausgangsbe-
obachtungen wieder die Schritte 1.-4. ausfuhren.

Anhand eines einfachen Beispiels soll das Verfahren genauer vorgestellt
werden. Dabei nehmen wir Beobachtungen an, die alle durch eine Relation r(X,Y)
beschrieben werden, wobei die Wertebereiche fir X und Y beide vom Typ
"nominal” sind, d.h. die moglichen konstanten Terme werden aufgezahlt.

X: { Video, 16mm, Super8}

Y: { Spiel, Trick, Dokumentar}

Es gibt also potentiell 9 Beobachtungen, die mit der Relation ausgedrickt
werden konnen. Nehmen wir an, die folgenden vier Beobachtungen waéren gege-
ben:

el: r(Video, Spiel)

e2: r(16mm, Trick)

e3: r(Super8, Dokumentar)

ed: r(Super8, Trick)

Wir koénnen die mdglichen Beobachtungen in einer zweidimensionalen Gra-
phik darstellen, wobei die tatsdchlichen Beobachtungen fett gedruckt sind.

y
Doku ! e6 68 es
Trick 65 ez e4
Spiel el e7 eq

Video 16mm Super8

Wie kann man diesen Bereich nun strukturieren?

Wahlen wir als Ausgangsbeobachtungen el und ed4. Der erste Schritt ist jetzt
die star-Bildung. Sie soll die Unterschiede zwischen Beobachtungen deutlich ma-
chen. Zunéchst wird maximal generalisiert, danach soweit als nétig spezialisiert.
Ein star wird notiert als G(bl|b2), wobei bl gegen b2 abgegrenzt wird, d.h. es wird
alles notiert, was b2 nicht hat, aber bl. Ein star besteht aus einer Disjunktion von
Merkmalen. Diese Disjunktion ist die maximale Generalisierung, die gerade b2
noch ausschliefdt. Es werden bei zwei Ausgangsbeobachtungen zwei stars gebildet.

Im Beispiel:
G(elled): r(- Super8,Y) Or(X, =Trick)

= r(Video O 16mm, Y) Or(X, Spiel ODokumentar)
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Damit sind el, e2 und €3 abgedeckt und nur e4 ist ausgeschlossen. Von den
moglichen Beobachtungen sind e5, €6, €7, e8 und €9 abgedeckt.

G(edlel): r(=Video, Y) 0O(X, = Spiel)
= r(16mm 0O Super8, Y) 0O(X, Trick O Dokumentar)
Damit sind e2, €3 und e4 abgedeckt, nur el ist ausgeschlossen.

Nun werden diese beiden stars G spezialisiert zu RG. Bisher war die Relation
immer nur an einer Argumentstelle eingeschrankt worden. Jetzt wird zu jeder
Einschréankung einer Argumentstelle eine passende Einschréankung der anderen
gesucht. Dazu werden die Y-Werte zu den im star angegebenen X-Werten aufge-
sammelt. Zu Video oder 16mm gibt es nur Spiel oder Trick. Entsprechend werden zu
den X-Werten die vorkommenden Y-Werte aufgesammelt. Also ergibt sich

RG(el|ed): r(Video 0O 16mm, Spiel OT rick) O
r(VideoO Super8, Spiel O Dokumentar)

Damit wird el, e2 und €3 immer noch abgedeckt. Die Spezialisierung ist nur
an den moglichen Beobchtungen zu erkennen. Es ist jetzt e8 ausgeschlossen.

RG(e4d|el): r(16mm 0O Super8, Trick O Dokumentar)

Damit sind e2, €3, e4 abgedeckt. Von den vorher auch abgedeckten madglichen
Beobachtungen sind jetzt €5, e6, €7 und €9 nicht mehr abgedeckt.

Bei G(ed|el) ergibt sich kein Unterschied fir RG(edlel), ob nun von gegebe-
nen X-Werten aus nach Y-Werten oder von gegebenen Y-Werten nach X-Werten
gesucht wird.

Auch die spezialisierten stars sind noch nicht Uberschneidungsfrei fur alle
(also auch die moglichen) Beobachtungen. Jedes Disjunkt eines stars wird mit je-
dem Disjunkt des anderen stars verglichen. So deckt r(Video 0O 16mm, Spiel 0O
Trick) el, €2, €5 und e7 ab und r(16mm O Super8, Trick O Dokumentar) deckt e2, e3,
e4 und e8 ab. Sie werden im né&chsten Schritt durch Einschrénkungen eines Terms
disjunkt gemacht. Im Beispiel soll €2 von nur einem star abgedeckt werden, muf3
also aus dem anderen ausgeschlossen werden. Dabei gibt es verschiedene Madg-
lichkeiten, dies zu tun. Hier wird das Verfahren exponentiell. Es wird die erste ge-
fundene Einschrankung gewdahlt und erst die Qualitatsbewertung der Begriffsde-
finition entscheidet, ob diese Moglichkeit gut genug war. Im Beispiel kann
RG(e4lel) eingeschrankt werden zu

r(Super8, Trick O Dokumentar)

Aber auch das zweite Disjunkt von RG(el|ed), r(VideoO Super8, Spiel 0O Doku-
mentar), und RG(edlel), r(16mm 0O Super8, Trick O Dokumentar), Uberschneiden
sich. Um dies Uberschneidungsfrei zu bekommen, kann RG(ed|el) eingeschrankt
werden auf:

r(l6mm 0O Super8, Trick)

Damit sind nun cluster gebildet, und es stehen zwei alternative Begriffsdefi-
nitionen zur Bewertung an:
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1) r(Video 0O16mm, Spiel OT rick) far cluster um el
deckt el, €2, €5 und e7 ab
r(Super8, Trick 0O Dokumentar) fir cluster um e4
deckt €3 und e4 ab
2) r(VideoO Super8, Spiel 0O Dokumentar) fiar cluster um el
deckt el, €3, e6 und €9 ab
r(16mm 0O Super8, Trick) fir cluster um e4
deckt €2 und e4 ab
Die Bewertungsfunktion kann vom Benutzer vorgegeben werden. Michalski
ins(::;r:mt sie lexical evaluation function (LEF). Ein einfaches Mal3 fir ein cluster

Anzahl abgedeckter Beobachtungen

1- ——Anzah! abgedeckier Objekie

Fur die Bewertung der Begriffsqualitdt werden die Bewertungen zusammen-
gehoriger cluster addiert. In unserem Beispiel sind jeweils vom ersten cluster um
el zwei tatséchlich beobachtete Objekte abgedeckt und insgesamt vier. Der cluster
um e4 deckt im ersten und zweiten Fall zwei Objekte ab, die beide auch beobachtet
wurden. Damit ergibt sich fir beide Falle dieselbe Bewertung von (1- 2/4) + (1-
2/2) =1/2. Diese Bewertung erlaubt hier also keine Auswahl zwischen den Alter-
nativen, und wir kénnen eine der beiden Definitionen beliebig wahlen.

Das Ergebnis einer Iteration ist die Aufteilung des gesamten Bereichs in zwei
cluster: Hier: r(Video 0O16mm, Spiel OT rick) und r(Super8, Trick O Dokumentar).
Diese Begriffe konnen nun verfeinert werden, indem innerhalb von ihnen wie-
der cluster gebildet werden. In unserem Beispiel macht es wohl keinen Sinn, da
die abgedeckten Bereiche bereits sehr klein sind. In realen Anwendungen mit
Hunderten von Beobachtungen wird der Algorithmus auf jedes cluster erneut an-
gewandt bis eine Mindestanzahl abgedeckter Beobachtungen unterschritten ist.

y All

\
Doku 66 68 e3
clusterl cluster2

Tick | €5 €5 €4 [el’ o2 5 et H > e4]
wid @1 7)€

Video 16mm Super8

In der graphischen Darstellung sieht man deutlich, da dies Begriffspaar
nicht alle moglichen Beobachtungen erfaflt. Es kann also nicht vollstandig klassi-
fizieren. Bei einem anderen Bewertungsmal3, das die Anzahl aller Objekte mit ein-
bezient, konnten beide alternativen Begriffspaare abgelehnt werden, weil sie
nicht den gesamten Bereich aller moglicher Beobachtungen abdecken. Damit ist
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die Vorhersagekraft (predictiveness) eingeschrankt. nicht alle méglichen Be-
obachtungen koénnen mit den Begriffen Kklassifiziert werden. Man koénnte also
noch einmal andere Ausgangsbeobachtungen wahlen, mit denen erst allgemeine
stars gebildet und dann spezialisiert werden. Zum Beispiel kann man gegensatzli-
chere Ausgangsbeoachtungen wahlen, etwa el und e3. Wenn auch die neuen Be-
griffspaare nicht genlgend Vorhersagekraft haben, kann man die Bewertungen
der beiden Iterationen vergleichen. Hat sich die Qualitdét immerhin verbessert,
werden fur den nachsten Versuch zentrale Beobachtungen zum Ausgangspunkt
gemacht (z.B. €2 und e4), hat sie sich weiter verschlechtert, gibt es fir diese be-
grenzte Menge von Beobachtungen keine Alternative mehr (andere gegensatzli-
che Beobachtungspaare, hier: e6 und €9, wurden nicht beobachtet). Man kann
dann annehmen, daf entweder die nicht erfalten mdglichen Beobachtungen tat-
séchlich nicht vorkommen koénnen oder die Begriffsbildung nicht erfolgreich
war.

Das Bewertungsmald entscheidet, ob das star-Verfahren vollstandige Be-
griffsdefinitionen lernt. Die Korrektheit ist im Gegensatz zu Verfahren, die aus
Beispielen lernen, schwieriger festzustellen: es gibt keine vorgebene Einteilung
der Beobachtungen in Begriffe, mit der die gefundene Einteilung verglichen
werden konnte.

5.8 Deduktives Lernen

Fir erkladrungsbasiertes Lernen ist die Lernaufgabe nicht, Beispiele oder Be-
obachtungen zu einer Begriffsdefinition zu verallgemeinern, sondern eine Be-
griffsdefinition fir eine Anwendung zu operationalisieren. Wenn eine Begriffs-
definition in einer Terminologie vorliegt, die erst mihsam aus der von der An-
wendung vorgegebenen Terminologie gewonnen werden muf3, ist die Neudefiniti-
on des Begriffs in Anwendungstermini eine Operationalisierung.

Gegeben:

Zielbegriff mit einer Definition

Ubungsbeispiel: positives Beispiel fiur den Zielbegriff
Sachbereichstheorie

Operationalitatskriterium: ein Pradikat, das entscheidet, welche Termini zur
Neudefinition des Zielbegriffs herangezogen werden dirfen.

Ziel:
Eine Definition des Zielbegriffs, die dem Operationalitatskriterium gehorcht.

Die Idee dabei ist, daB eine LoOsung (Ubungsbeispiel) anhand des Wissens
(Sachbereichstheorie) nachvollzogen wird. Dabei wird die Sachbereichstheorie
mit den Angaben zum Beispiel in Verbindung gebracht. Aus dieser Verbindung
werden dann die operationalen Bestandteile herausgezogen und fir zuklnftige
Beispiele zur Klassifikation genutzt. Es handelt sich also um ein sicheres Lernver-
fahren: es wird deduziert, daR das Ubungsbeispiel von dem Zielbegriff abgedeckt
wird. Die Deduktionsschritte werden fir zukinftige Beispiele direkt genutzt. Es
findet keine Generalisierung statt. Der operationale Begriff ist eine Spezialisie-
rung. Da die Sachbereichstheorie erhalten bleibt, kénnen aber auch alle Beispie-
le, die vor dem Lernen klassifizierbar waren, weiterhin klassifiziert werden.
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Das einfache Verfahren von Mitchell (1985) verwendet einen Theorembe-
weiser, um das Ubungsbeispiel aus der Sachbereichstheorie abzuleiten. In dem
Beweispfad werden dann mithilfe der Substitutionen Variablen eingefihrt. Die
Termini, in denen das Ubungsbeispiel beschrieben ist, werden als operational de-
finiert. Die Blétter des Beweisbaumes ergeben dann den operationalen Begriff.

Die drei in der Literatur immer wieder angefiihrten Beispiele fur dieses Ver-
fahren betreffen Mord und Selbstmord, Tassen sowie die Stapelbarkeit von Objek-
ten. Letzteres wird hier vorgefihrt:

Zielbegriff:
leichter(X,Y) --> stapelbar(X,Y)
Ubungsbeispiel:

auf(objl, obj2)
isa(objl, Kiste)
isa(obj2, tisch)
farbe(objl, rot)
farbe(obj2, blau)
volumen(objl, 1)
dichte(obj1, 0.1)

Sachbereichstheorie:

volumen(P,V) & dichte(P,D) --> gewicht(P, V*D)

gewicht(P, W1) & gewicht(Q, W2) & W1 < W2 --> leichter(P,Q)
isa(P,tisch) --> gewicht (P,5)

0.1<5

Operationalitatskriterium:
volumen, dichte, < und isa sind operational und sonst keine Pradikate.

Mithilfe der Sachbereichstheorie kann nachgewiesen werden, da3 die Kiste
auf den Tisch stapelbar ist.

Der Beweisbhaum sieht folgendermal3en aus:

stapele(objl, obj2)

leichter(objl, obj2)

gewicht(objl, 0.1) <10.1,5) gewicht(obj2, &

I |
volumen(objl,1) dichte(objl, 0.1) isa(obj2, tiscr

Dieser Beweis wird fur die kiinftige Nutzung durch andere Beispiele verbes-
sert, indem Variablen gemald der Substitutionen, die im Beweis verwendet wurden,
anstelle der Konstanten gesetzt werden.
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stapelbar(X,Y)

X/P, Y/IQ
leichter(X,Y)
gewicht(X,W1) <(W1|, wW2) gewicht(Y,W2)
X/P,Wl/V*D| Y/Q, W2/5
I _ | _ . o
volumen(objl,1) dichte(objl, 0.1) isa(obj2, tisch)

Die Substitutionen sind in dem Beweisbaum angegeben.3l Als operationale
Begriffsdefinition ergibt sich:

volumen(X,V) & dichte(X; D) & V*D < 5) & isa (Y, tisch) --> stapelbar(X,Y)

Dieses Verfahren kann leicht in Prolog programmiert werden, wobei man
Prolog als Theorembeweiser benutzt, der gleich die Substitutionen mitliefert
(Mitchell, Kedar-Cabelli 1986). Falls die Sachbereichstheorie unubersichtlich st
und man stets Anwendungen einer speziellen Form hat, fihrt die operationale
Definition zu einer Performanzsteigerung des Klassifikationssystems. In anderen
Fallen jedoch nicht!

An dem Beispiel sind die Schwachen des Verfahrens gut zu erkennen. Das
Operationalitatskriterium ist hier einfach eine Aufzahlung von Prédikaten. | n
echten Anwendungen kann ein reicheres Kriterium notig sein, das sich dann
nicht mehr so einfach abprifen la3t (DeJong, Mooney 1986).

Eigenarten des Ubungsbeispiels, die vielleicht nicht immer in der Anwen-
dung vorkommen, geraten genauso in die neue Begriffsdefinition wie die fur die
Anwendung wichtigen Eigenschaften. So ist hier der Gewichtsvergleich zwischen
Tischen und allen anderen Objekten in der Begriffsdefinition enthalten. Das ist
sinnvoll, wenn in der Anwendung grundsétzlich nur auf Tische etwas gestellt
werden soll. Wenn aber die Operationalisierung der Definition darin bestehen
sollte, dal3 das Prédikat leichter durch die Prédikate volumen, dichte und < ersetzt
wird, so ist der neue Begriff zu speziell geworden. Wir muften dann ein anderes
Ubungsbeispiel wahlen, in dem auch das Gewicht des zweiten Objekts berechnet
wird, so daR ein symmetrischer Beweisbaum entstent. Die Wahl des Ubungsbeispiel
ist also entscheidend. Der neue Begriff kann auch deshalb zu speziell definiert
sein, weil Pradikate nicht generalisiert werden. (DeJong, Mooney 1986).

Wenn wir ein solches Ubungsbeispiel wahlen wirden, fehlt aber vielleicht
in der Sachbereichstheorie der Vergleich der Gewichte (<) fur diese Werte. Eine
vollstéandige Sachbereichstheorie ist notwendig bei diesem Verfahren, da der Be-
weis gelingen muBB. Erweiterungen erkl&rungsbasierten Lernens beschéaftigen
sich daher mit der Vervollstdndigung von Beweisen. Aus demselben Grund muf3
die Sachbereichstheorie natirlich konsistent sein.

31 Fiir den Schritt der Variabilisierung wird das Mord- ( tétet(X,Y) ) bzw. Selbstmordbeispiel ( tétet (X,X) ) oft ange-
fahrt.
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5.9 Induktives Lernen in Pradikatenlogik

Wie oben schon dargestellt, ist mit Lernen meist ein induktiver Schlul? gemeint.
Diesen induktiven Schlu fur die Pradikatenlogik konstruktiv zu formalisieren, so
dal3 fur eine gegebene Menge von Daten (und eine Theorie) die speziellste (oder
generellste) Verallgemeinerung gefunden werden kann, ist in jlngster Zeit ein
wieder lebhaft diskutiertes Thema geworden. Die ersten Ergebnisse von Plotkin
(1971) waren wenig ermutigend: im allgemeinen Fall ist in der Pradikatenlogik
erster Stufe nicht entscheidbar, ob die speziellste mit Hintergrundwissen und Bei-
spielen konsistente und gemald einer Interessantheitsordnung minimale Genera-
lisierung gefunden wird! Inzwischen ist dieser Satz reformuliert worden: die Préa-
dikatenlogik mufl3 eingeschrankt werden, damit eine speziellste Generalisierung
gefunden werden kann. Die aktuellen Ansdtze unterscheiden sich zum einen
darin, wie die Generalisierung definiert wird, zum anderen in den konkreten Ein-
schrankungen der Pradikatenlogik.

5.9.1 Generalisierung

Bei den logik-basierten Verfahren geht es darum, genau anzugeben, wann ein
Literal oder eine Klausel eine Generalisierung eines anderen Literals bzw. einer
anderen Klausel darstellt. Wenn man die Generalisierungsbeziehung formalisie-
ren kann, dann kann man hoffentlich auch ein Verfahren finden, das zu gege-
benen Literalen bzw. Klauseln eine Generalisierung konstruiert. Und das ware
dann ein induktiver Schluf3.

Eine Mdglichkeit, die Generalisierung zu beschreiben, verwendet die Impli-
kation.

Eine Klausel C1 ist genereller als eine andere, C2, geschrieben Cl= C2, wenn
C1l --> C2 gilt.

Eine Klausel Clist genereller als eine andere, C2, beziiglich einer Theorie T,
wenn T, C1 --> C2 gilt.

Um dann eine Generalisierung zu finden, missen wir die Klausel finden, die
die gegebenen Beispiele impliziert. Dies ist schwierig, weil es darauf hinauslauft,
die logische Folgerung zwischen Klauseln als Grundlage zu nehmen, die nicht im
allgemeinen Fall entscheidbar ist.

Deshalb wird die schwéchere Subsumtionsbeziehung bevorzugt. Die Sub-
sumtion ist eine korrekte, aber unvollstandige Ableitungsrelation. Eine Klausel C1
ist genereller als eine andere Klausel C2, Cl=> C2, wenn gilt: C1 subsumiert C2. Bei
Literalen ist das einfach.

Ein Literal L1 subsumiert ein anderes Literal L2, genau dann wenn es eine
Substitution 6 gibt, so daf3 L16 = L2.

Wenn wir Klauseln als Mengen schreiben, so ist die generellere Klausel eine
Teilmenge der spezielleren. Natirlich missen die Terme so substituiert werden,
da3 es palit. Dazu suchen wir die geeignete Substitution 6.

Eine Klausel C1 subsumiert eine Klausel C2, Cl1 = C2, genau dann wenn
C2 0 Cle.
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Damit wird Substitution und Teilmengenbeziehung zur Grundlage der Forma-
lisierung von Induktion.

Wir konnen uns Generalisierung einmal (semantisch) an den Objekten
(Daten, Beispielen) einer logischen Struktur deutlich machen. Eine Klausel Clist
genereller als eine andere Klausel C2, wenn sie mehr Objekte abdeckt. Soist zum
Beispiel

tier(X) --> saugetier (X) = tier(rex) --> sdugetier (rex) und

tier(X) --> sdugetier (X) = tier(X) & im_haus(X)--> saugetier (X).

tier(rex)

im_haus(X)

Die Saugetiere umfassen einmal nur rex (und vielleicht noch andere Objekte),
einmal mindestens die Schnittmenge der beiden Objektmengen, schlielllich sogar
mindestens alle Tiere.

{- tier(X), = im_haus(X), sdugetier(X)} O {- tier(X), saugetier(X)}.

An dem Beispiel ist auch deutlich zu sehen, daf3 neben der Teilmengenbezie-
hung, der Subsumtion, auch die logische Folgerung gilt. Die Faustregel lautet: je
mehr Literale eine Klausel hat, desto spezieller ist sie. Das von Plotkin (1971) er-
kannte Problem &3t sich ebenfalls an dem Beispiel zeigen: Wenn durch eine
Theorie gegeben ist, dal einige Literale gleichbedeutend sind mit einem anderen
Literal, so hilft das einfache Abzadhlen nichts. Wenn fur alle Tiere bekannt ist, dalR
sie sterblich sind, so wird eine der oben angefiuhrten Klauseln Uber Tiere nicht
spezieller, wenn sterblich(X) hinzugefigt wird. Esist einfach redundant. Wir mus-
sen das Hintergrundwissen also etwas raffinierter bertcksichtigen.

Cl ist genereller als C2 beziglich einer Theorie T, wenn in jeder Interpretati-
on |, die Twahr macht, fur alle Atome A gilt, dal3, wann immer C2auf A
zutrifft, dann trifft auch C1 auf A zu.

Wir sehen also in der Interpretation32 nach, welche Objekte von einer Klau-
sel abgedeckt werden. Wir nehmen das Hintergrundwissen insofern hinzu, als wir
nur in Modellen der Theorie nachsehen. Dies ist die Bedeutung der Generalisie-
rung mit Hintergrundwissen. Plotkin (1971) fuhrte die Subsumtion relativ zu ei-
ner gegebenen Theorie T folgendermal3en ein:

Eine Klausel Clist genereller als eine andere, C2, beziiglich einer Theorie T,
genau dann wenn

T, C1 |-- C2, wobei in der Ableitung C1l hochstens einmal vorkommt.

32 praktischerweise nimmt man eine Herbrand-Interpretation, die firr C1, C2, T konstruiert ist.
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Sein Beispiel ist:
c2 flauschig(X) & katze(X) --> kuscheltier(X).
T: katze(X) --> haustier(X).
haustier(X) & flauschig (X) & klein(X) --> kuscheltier(X)

Dann ist eine generellere Klausel zum Beispiel:
Cl: katze(X) --> klein(X)

Wir konnen in C2 katze(X) durch seine Konsequenz, haustier(X), ergénzen.
Dann ist C1 die fehlende Klausel, um aus der Theorie C2 abzuleiten. Dal} alle Katzen
klein sind, wird nur einmal verwendet. Argerlicherweise hat die Generalisierung
nur indirekt mit dem zu tun, wovon die generalisierte Klausel C2 handelt, ndmlich
kuscheltier(X). Deshalb hat Wray Buntine (1988) eine andere Subsumtion bezlglich
Hintergrundwissen eingefuhrt, die generalisierte Subsumtion.

Eine Klausel Clist genereller als eine andere, C2, beziiglich einer Theorie T,
genau dann wenn es

eine Substitution 6 gibt, die den Klauselkopf von Cl mit dem von C2 unifi-
ziert, geschrieben ® , so da3 Clkopf 8 = C2kopf

eine Skolemsubstitution o, die alle Variablen in C2durch neue Konstanten
ersetzt, und

es gibt einen Klauselkérper von C1 mit den Substitutionen 6 und o, der lo-
gisch aus dem skolemisierten Klauselkdrper von C2 folgt, geschrieben
T, C2korper 0 |= O (Clkérper 80)

Wir missen aso die generellere Klausel durch Substitutionen erst ein-
schrénken, damit sie aus der spezielleren folgt. Durch die Unifikation der Klausel-
kopfe kann bei dem Beispiel der Kuscheltiere jetzt nicht mehr etwas Uber die Gro-
e von Katzen als Generalisierung gewonnen werden. Wir kénnen hier generali-
sieren:

C1: flauschig(X) & haustier (X) --> kuscheltier (X)

Dabei ist 8 {}, o {X/a}. Mit der Schnittregel und der Unifikation {X/a} kénnen
wir aus der ersten Klausel der Theorie und dem Korper von C2gerade Clkgrper 60

folgern.

5.9.2 Generalisierungsverfahren

Wenn wir die Generalisierungsordnung Uber Klauseln kennen, dann koénnen wir
auch ein Verfahren konstruieren, das zu zwei Klauseln (bezuglich Hintergrund-
wissen T) eine Generaliserung findet. Dabei wollen wir nicht irgendwie, sondern
so speziell wie mdoglich generalisieren.

5.9.2.1 Least General Generalization (LGG)

Plotkin (1970) fiahrt ein zweistufiges Verfahren ein. Zerst werden Literale gene-
ralisiert: zwei Literale werden anti-unifiziert. Es wird also die inverse Operation
zum allgemeinsten Unifikator ausgefthrt. Fur zwei Literale, L1 und L2 wird die
Generalisierung Lg gebildet, indem
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nach einer Substitution 6 gesucht wird, so daf3
Lgd =L1und Lge = L2 und

fur alle anderen Literale Lg" mit Lg'6 = L1 und Lg'6 = L2 gibt es eine Substitu-
tion p mit Lg’ p=Lg.

Der Algorithmus dazu nimmt zwei Literale, p(s;, ..., S,) und p(t,, ..., t;), mit
demselben Pradikatsymbol als Eingabe und generalisiert von links nach rechts
die beiden Terme an gleicher Argumentposition: s;, und t;, ..., s, und t,. Woimmer
dasselbe Paar von Termen vorkommt, wird es durch eine neue Variable ersetzt.
Dies Vorgehen ist wie das der Unifikation. Die Operation Uber den Termen ist aber
gerade entgegengesetzt:

LGG(s, t)= X, fals s, t; konstante Terme oder Variablen (# X) sind;
LGG(f(sy, .o S, f(ty, .oy t))= F(LGG(Sy, 1), ..., LGG(Syt0))

LGG(f(s1y ooy Su)s O(ty, ooy t))= X
Beispiel:

L1: unterhalt(ulf, maria, alimente(ulf, 1000))
L2: unterhalt(udo, marion, alimente(udo, 500))
LGG(L1, L2): unterhalt(X, Y, alimente(X, V))

Wo immer ulf und udo Ubereinanderstehen, werden sie durch X ersetzt, wo
immer maria und marion Ubereinanderstehen, werden sie durch Y ersetzt, wo im-
mer 1000 und 500 (Ubereinanderstehen, werden sie durch V ersetzt.

Die Generalisierung von Klauseln betrifft lediglich solche Paare von Litera-
len, die dasselbe Pradikatsymbol mit gleicher Stelligkeit und dasselbe Vorzeichen
haben. Um nun zwei Klauseln zu generalisieren, miussen wir erst einmal alle Lite-
rale der beiden Klauseln miteinander kombinieren. Enthdlt zum Beispiel die Klau-
sel C1 die Literale L11, L12 und L13, die Klausel C2die Literale L21, L22 und L23, so
erhalten wir zwei Listen, bei denen die zu generalisierenden Paare direkt Uber-
einanderstehen.

C1:[L11, L1211, L11, L1212, L12, L12, L13, L13, L13]
C2: [L21, L22, L23, L21, L22, L23, L21, L22, L23]

Der Algorithmus zur speziellsten Generalisierung von zwei Klauseln, Clund
C2, besteht aus drei Schritten:

Fur alle Paare von Literalen L1, 0 C1, L2, 0 C2, suche diejenigen mit demselben
Pradikatsymbol und gleicher Stelligkeit und gleichem Vorzeichen heraus
und bilde den LGG(L1;, L2).

Die Generalisierung von Cl und C2ist die Vereinigung der generalisierten
Literale.

Die Generalisierung wird reduziert, d.h. redundante Literale werden ent-
fernt.
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Beispiel:
C1: menber (2, [2]) -->member (2, [1,2])
C2: menber (c, [b, c]), menber (c, [c]) --> member (c, [a b, c])
Aus Platzgrinden wird member im folgenden durch m abgekirzt.
CL[-~ m2, [2]), ~ m2, [2]), - m(2, [2]), m(2,[1,2]), m(2,[1,2]), m(2,[1,2])]
C2:[-m(c,[b,c], -m(c,[c]), m(c,[a Db,c]),~m(c,[b,c]),~m(c, [c]), m(c, [a b,c])]

Das dritte, vierte und finfte Paar haben nicht dasselbe Vorzeichen. Es werden also
lediglich die folgenden Generalisierungen gebildet:

LGG(- menber (2, [2]), -menber (c,[b,c])) = -nmenber (A, [C|D])

LGG(- menber (2, [2]), ~menber (c, [c])) = ~menber (A, [A])

LGG(menber (2,[1,2]), menber (c, [a, b,c])) = menber (A, [B, C|D])

LGG(C1, C2): menber (A, [CID]), menber (A, [A]) --> nenber (A, [B, C|D])

Der LGG von Klauseln kann sehr lang werden, da jedes Paar von Literalen zu
einem generalisierten Literal der Ergebnisklausel wird. Im schlimmsten Fall ist
das Lernergebnis fur zwei Klauseln, C1 mit k Literalen und C2 mit n Literalen, k n

lang!

Der Reduktionsschritt probiert bei jedem Literal der Ergebnisklausel C aus, ob
es weggelassen werden kann, ohne zu einer Generalisierung zu fihren, also ob

C= C-{L} gilt.

Wenn also C genereller als oder gleich generell wie C-{L} ist, obwohl ja nun C
mehr Literale enthdt, dann ist L redundant und kann gestrichen werden. Leider
ist dieser Schritt NP-schwierig.

5.9.2.2 Generalisierte 6-Subsumtion

Seine Definition der generalisierten Subsumtion operationalisiert Buntine (1988),
indem er fir jede Klausel Cj der generelleren Klauselmenge zeigt, da3 sie zurick-

gefuhrt werden kann auf eine Klausel der spezielleren Klauselmenge, indem
« Variable aus Cjin Konstante oder andere Terme Uberfihrt werden,
« Atome dem Klauselkdrper von Cj hinzugefligt werden, oder

e der Klauselkdrper von Cjim Hinblick auf die Theorie teilweise ausgewertet
wird , d.h. ein Atom aus Cj wird mit einer Klausel der Theorie resolviert.

Dieses Verfahren ist entscheidbar, wenn die Theorie keine Funktionen ent-
halt. Wir wenden es umgekehrt an, um zu gegebenen spezielleren Klauseln eine
Generalisierung beziglich Hintergrundwissen zu finden.
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Das System ITOU (Rouveirol 1992) generalisiert eine Klausel C2, indem es
e Literale aus dem Klauselkorper streicht,
e ale Vorkommen eines Terms in C2 durch dieselbe Variable ersetzt, oder

e einige Vorkommen eines Terms in C2 durch verschiedene Variablen er-
setzt.

Tatsachlich ist es schwierig zu entscheiden, welches Literal zu streichen ist
und wie die Terme in C2 ersetzt werden sollen.

5.9.3 Induktive Logische Programmierung

Es gibt eine Reihe von Systemen, die die Begriffslernaufgabe in einer einge-
schrankten Pradikatenlogik l6sen. Dabei werden unterschiedliche Generalisie-
rungsoperatoren, unterschiedliche Beschrankungen der Pradikatenlogik fir Bei-
spiele, Hintergrundwissen und Lernergebnis sowie unterschiedliche Heuristiken
angewandt. Der Gebrauch von Heuristiken widerspricht allerdings der Grundidee
induktiver logischer Programmierung. Man will ja eine Generalisierung finden,
die genau die Eigenschaften der Daten wiederspiegelt. Nur wenn zugesichert wer-
den kann, dall das Lernergebnis die speziellste Generalisierung oder die generell-
ste Diskriminierung ist, kann der Anwender das Lernergebnis zur Datenkorrektur
verwenden. Wenn das Lernergebnis in einem Kklar definierten Verhdltnis zu den
Eingabedaten steht, dann liefert es eine Zusammenfassung der Daten und hilft bei
ihrer Inspektion. Ein heuristisch gewonnenes Ergebnis kann Kkeinerlei Zusiche-
rungen machen und ist daher weniger Uberzeugend. Wir unterscheiden aso zwi-
schen Systemen,

e die sichere Ergebnisse liefern, indem sie vollstdndig einen eingeschrank-
ten Hypothesenraum durchsuchen (Beschrdankung der Hypothesenspra-
che) -- Beispiele sind GOLEM (Muggleton, Feng 1992), LINUS(Lavrac,
Dzeroski 1994), CLINT (de Raedt 1991), Cillg (Kietz 1996)

und solchen,

e die heuristisch den Hypothesenraum durchsuchen -- z.B. FOIL (Quinlan
1990).

Die Beschrankungen der Reprasentationsformalismen fir vollstandige Ver-
fahren waren in den letzten Jahren das primare Forschungsfeld induktiver logi-
scher Programmierung. Die Beweise sind in Kietz (1996) zu finden.

5.9.4 Lernen als nicht-monotoner SchluR -- Regellernen

Die schwierige Aufgabe des Regellernens wurde zuerst von Nicolas Helft (1989)
untersucht. Er ordnet den induktiven Schlu® in die nicht-monotonen Schlisse
ein. Monoton ist ein Schlu3, wenn durch Hinzufiigen von neuen Aussagen keine
bisherigen Folgerungen ungultig werden. Monotonie ist also:

T|=X adsoauch T O N |= X, wobei T ein Theorie, N eine neue Aussage oder eine
Menge neuer Aussagen, X eine Aussage oder eine Menge von Aussagen ist.
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Nicht-monoton ist ein Schluf3, fir den diese Eigenschaft nicht garantiert ist.
Durch das Hinzufligen von Lernergebnissen wird zwar nichts falsch, was vorher
wahr war. Aber es werden mogliche Modelle des gegebenen Wissens ausgeschlos-
sen. Insofern kann man alle Lernverfahren als nicht-monotone Verfahren anse-
hen. Dieser Sichtweise ging Helft (1989) nach. Seine Lernaufgabe:

Gegeben:

Wissen eines Sachbereichs mit Beobachtungen D

Ziel:

Eine Generalisierung G, die aus D induziert ist

Wie sieht nun die induktive Ableitung aus? Helft verwendet dafiir eine zwei-
stufige Bewertung, die Formeln anhand ihrer Folgerbarkeit aus minimalen Mo-
dellen von D beurteilt, und dann Bewertungen von Formeln fir alle minimalen
Modelle erstellt. Die generellste Generalisierung fir D sind dann alle Formeln r,

deren Bewertung 1 ist,

die nicht schon (deduktiv) aus D folgen und

far die es keine generellere Generalisierung gibt.

Ein minimales Modell von D enthdlt genau die Interpretation aller Aussagen
aus D und nicht mehr. Helft erganzt far alle konstanten Terme aus D negierte Aus-
sagen, wenn es Uber sie keine positiven Aussagen in D gibt. Dies entspricht einer
closed world assumption, weil keine weiteren Aussagen als nur die durch D gege-
benen in dem Modell gultig sind. Wirde Helft sich auf Hornformeln beschranken,
so gdbe es Uberhaupt nur ein minimales Modell. Er nimmt aber g-Klauseln
(groundable clauses). Das sind Klauseln, bei denen keine weitere Einschrdnkung
gemacht wird, als da3 zu jeder Variablen aus einem positiven Literal (also der
Konklusion) auch dieselbe Variable in einem negativen Literal (also in der Pra-
misse) vorkommt und keine Funktionen als Terme auftreten. Man kann aso eine
Disjunktion in der Konklusion haben, und man braucht keine Funktionen zu be-
ricksichtigen. AuBerdem mul3 eine Klausel injektiv dber Grundformeln sein. Das
hei3t, flir jedes Paar von Variablen X, Y einer Klausel gibt es eine Substitution, so
dal3 Xo # Yo, und Xo, Yo sind Grundinstanzen. Damit werden Uberfllssige Variablen
unterdruckt.

Eine Formel r erhélt bezuglich eines Modells M

die Bewertung Val(r, M) = 1,

wenn sie aus dem M logisch folgt (d.h. M ist ein Modell fir r)

und es fur die Prdmisse von r Grundinstanzen in M gibt

und die Pramisse injektiv Uber dem Modell ist.

Sonst erhélt sie die Bewertung Val(r, M) = 0.

Im zweiten Schritt erhdlt eine Formel r bezlglich aller minimalen Modelle

den Wert Val(r, D) = 1, wenn sie fur alle minimalen Modelle den Wert 1 hatte,
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den Wert Val(r, D) = 0, wenn sie fur alle minimalen Modelle den Wert 0 hatte,

den Wert Val(r, D) = 0.5, wenn sie fur mindestens ein minimales Modell, aber
nicht far alle, den Wert 1 hatte.

Damit &3t sich dann die Generalisierung G fir das Sachbereichswissen D so
angeben:

G(D)={r| va(rD)=1 & - (DI|Fr &
wennr' O GMD)&r|=r danr|=r1"}

Alle solche Formeln r sind Generalisierungen von D, die in den Modellen
gultig sind, aber nicht schon logisch folgern. Dal3 sie auch die allgemeinsten Ge-
neralisierungen sind, legt er durch die dritte Bedingung fest: jede andere Genera-
lisierung r' kann nur aquivalent mit r sein, wenn es eine Folgerungsbeziehung
zwischen r' und r gibt. Helft induziert also generellste Formeln (MGDs) und nicht
speziellste. Dal3 sie dennoch nicht Uberallgemein sind, erreicht er durch die closed
world assumption.

Ein Beispiel soll dies verdeutlichen. Nehmen wir als Sachbereichswissen D:

fliegt(tweety),

vogel (tweety),

vogel (polly),

0 X | vogel(X) --> federn(X)

Dann ist das minimale Modell mit der closed world assumption:

fliegt(tweety),

vogel (tweety),

federn(tweety),

vogel (polly),

federn(polly),

- fliegt(polly)

Fur die folgenden beiden Formeln gelten die fir G(D) angegebenen Bedin-
gungen, d.h. sie sind giltig in dem Modell, werden aber nicht schon logisch ge-
folgert und sind maximal generell.

G(D):

O X | fliegt(X) --> vogel(X)

0 X | fliegt (X) --> federn(X)

Das sind recht genau diejenigen Formeln, die der Intuition entsprechen. Ins-
besondere wurden Fehlschlisse, wie etwa "alles, was Federn hat, fliegt", vermie-
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den. Dadurch, dal3 Uber die Semantik, die den gegebenen Aussagen des Sachbe-
reichs zugrunde liegen (eben das Modell), die Generalisierungen gefunden wur-
den, erreicht dieses Verfahren meist einleuchtende induzierte Formeln.

Leider wurde dieses Verfahren, obwohl laut Helft von ihm in Prolog imple-
mentiert, bisher nicht eingesetzt. Esgibt aber eine Reihe von Regellernverfah-
ren der induktiven logischen Programmierung, deren erstes RDT (Kietz, Wrobel
1992) ist. Dies Verfahren konnte praktisch sowohl in der Robotik (Klingspor, Mo-
rik, Rieger 1996) as auch in der Wissensentdeckung in Datenbanken
(Brockhausen, Morik 1997) eingesetzt werden. Durch eine vom Benutzer anzuge-
bende syntakische Einschrankung der Hypothesensprache wird eine -- bis auf
sicheres pruning -- vollstdndige top-down Suche im Raum aller Regeln der Hy-
pothesensprache ermdoglicht.

5.10 Theorie des Lernbaren

Die Theorie des maschinellen Lernens kann in drei Teile eingeteilt werden:
e induktive logische Programmierung
 Lernen im Grenzwert
e wahrscheinlich annahernd korrektes Lernen.

Zum ersten Teil wurde im Abschnitt 5.9.3 etwas gesagt. Fur eine Darstellung
fehlt hier der Raum. Die beiden anderen Bereiche werden oft zusammengefalit
unter verschiedenen Titeln wie computational learning theory oder algorithmi-
sches Lernen. Wie implizit schon Plotkin, behandelt man in diesem Bereich des
maschinellen Lernens die Frage: was ist lUberhaupt lernbar und unter welchen
Umstanden? (Deshalb die Uberschrift dieses Abschnittes.) Auch dieser Bereich ist
zu umfangreich, um ihn hier darzustellen. Stattdessen werden seine Fragestellun-
gen und schlaglichtartig einige Ergebnisse vorgestellt.

5.10.1 ldentifikation im Grenzwert

Die Arbeiten zur lIdentifikation im Grenzwert (identification in the limit) le-
gen folgende Vorstellung zugrunde. Esgeht beim Lernen um das Ermitteln einer
Theorie oder Funktion oder Sprache anhand einer Folge von Eingaben (wahre
und falsche Fakten, Werte aus dem Definitionsbereich und zugehoriger Wert aus
dem Wertebereich einer Funktion, Worter einer Sprache). Nach jeder solchen
Eingabe gibt das lernende System ein Lernergebnis aus. Dieser Prozel3 geht ewig
so weiter. Ein Lernergebnis erklért ein Modell einer Theorie oder eine Funktion
oder eine Sprache, wenn das lernende System nach diesem Lernergebnis auf alle
folgenden Eingaben nur noch mit syntaktischen Varianten des Lernergebnisses
reagiert. In gewisser Weise entspricht dieser Begriff der Erklarung dem der Be-
schreibungsadédquatheit in der Linguistik. Das Lernergebnis ist sozusagen be-
schreibungsadéaquat, weil es auch neue Eingaben richtig beantwortet. Auch zu der
Beobachtungsadaquatheit in der Linguistik gibt es eine Entsprechung in der
Lerntheorie: Ein Lernergebnis beschreibt ein Modell oder eine Funktion oder
eine Sprache, wenn alle folgenden Reaktionen des Systems ebenfalls richtig sind.
Hier mul3 dem Lernergebnis nicht die richtige Theorie, die richtige Funktionsde-
finition oder die richtige Grammatik zugrunde liegen, aber es mul3 zur jeweils
richtigen Reaktion auf eine Eingabe fuhren. Insofern kann das Lernergebnis



150

dann - in einer Analogie - beobachtungsadédquat im linguistischen Sinne genannt
werden.

Der einfachste Lernalgorithmus st der Aufzahlungsalgorithmus, der alle
Theorien, Funktionen, Sprachen aufzahlt. Er ré einfach ein Ergebnis und, wenn
sich dieses Ergebnis bei der nachsten Eingabe als falsch herausstellt, nimmt er das
nachste. Nehmen wir diesen einfachsten Algorithmus als Grundlage, wir kénnen
uns aber auch jeden anderen denken. Dann identifiziert der Algorithmus das
richtige Ergebnis (die Theorie, die Funktion, die Sprache) im Grenzwert, wenn,
nachdem einmal (im Grenzwert) das richtige Ergebnis gefunden wurde, nie wie-
der ein anderes gewdhlt wird. Die Bedingung fordert, dal3 irgendwann das Richti-
ge gefunden wird. Dies ist dann der Grenzwert. Ab diesem Zeitpunkt verédndert
sich das Lernergebis nicht mehr. Die Bedingung sagt nicht, da3 das Lernverfah-
ren oder irgendjemand sonst bemerkt, da3 jetzt das Richtige gefunden ist. Der
Grenzwert ist also unbekannt. Einen guten Uberblick zu diesem Scenario und den
darin erforschten Bereichen geben Angluin und Smith in der "Encyclopedia of
Artificial Intelligence" oder auch Angluin, Smith (1983).

Ein Beispiel soll deutlich machen, warum es gar nicht mdglich ist, zu wissen,
wann das richtige Ergebnis erreicht wurde. Man koénnte ja meinen, daf, wenn das
Ergebnis eines Algorithmus', von dem nachgewiesen wurde, dal3 er im Grenzwert
identifiziert, sich langere Zeit nicht verandert, dieses dann wohl das richtige ist.
Das Beispiel zeigt, da es fir jede "langere Zeit" eine noch léangere gibt, in der sich
das Ergebis als falsch herausstellen kann. Das Beispiel handelt vom ldentifizieren
einer Funktion. Der Definitions- und der Wertebereich sind die natirlichen Zah-
len. Das, was aufgezahlt wird, sind Funktionen, hier speziell: alle Polynome mit
nur einer Variablen. Das System gibt als Lernergebnis ein Polynom zur Berech-
nung der Funktion aus. Die Beispiele fir die Funktion p werden dem System in
Form von Paaren (n, p(n)) in aufsteigender Reihenfolge von n ( nO [N) eingege-
ben.

Beispiel: (0,1) Hypothese des Lernalgorithmus: 1
Beispiel: (1,1) Hypothese des Lernalgorithmus: 1
Beispiel: (2,1) Hypothese des Lernalgorithmus: 1
Beispiel: (3,1) Hypothese des Lernalgorithmus: 1
Beispiel: (4,1) Hypothese des Lernalgorithmus: 1

Nun konnte man allméahlich meinen, die Wahrheit identifiziert zu haben: es
handelt sich um das konstante Polynom 1! N&hmen wir also an, dal} nach 5maliger
Wiederholung des Ergebnisses das richtige gefunden ist. Aber dann kommt als
nachstes:

Beispiel: (5, 121)

Es konnte sich etwa um die folgende Funktion handeln:

1+ x (x-1) (x-2) (x-3) (x-4)

Bei dieser Funktion ist fur x O {0,1,2,3,4} jeweils ein Faktor gleich 0. Fir jede

beliebige Schwelle kdnnen wir so eine Funktion konstruieren, bei der im Schritt
nach der Schwelle das so lange konstante Ergebnis nicht mehr gilt. Deshalb kén-
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nen wir nicht fordern, daf} aufgrund unvollstandiger Information (die Eingaben)
bestimmt werden kann, wann das richtige Ergebnis identifiziert wurde. Daher also
die schwache Einschrankung darauf, dal3 jedenfalls ab dem Zeitpunkt, zu dem das
Richtige gelernt wurde - wann immer das sei - das Richtige nicht durch etwas Fal-
sches ersetzt wird, sondern hodchstens durch etwas genauso Richtiges.

Das Traurige ist nur, daf3 selbst mit dieser Einschrénkung Kkeine induktive
Methode gefunden werden konnte, die alle vollstandig berechenbaren Funktio-
nen beschreibt oder gar erklart. Und, ebenso niederschmetternd, es gibt auch
keine induktive Methode, die reguléare Sprachen lernt - obwohl doch Kinder sogar
die natdrlichen Sprache ihrer Umgebung lernen!

Was man tun kann, ist
« die Anforderungen noch weiter abschwéchen

e das Scenario dahingehend &ndern, dal3 mehr Informationen in das System
eingegeben werden.

Und auBBerdem gibt es oft Spezialverfahren.

5.10.2 Wahrscheinlich annahernd korrektes Lernen

Wahrscheinlich anndhernd korrektes Lernen (probably approximately correct
learning - PAC-learning) stellt wie das Lernen im Grenzwert ein theoretisches
Scenario dar, in dem Eigenschaften von Lernverfahren untersucht werden kdn-
nen. Wie schon im vorigen Abschnitt, so ist auch hier die Motivation, so wenig wie
moglich von einem Lernverfahren zu fordern und doch noch etwas dariber aus-
sagen zu konnen. Die gemeinsame Uberlegung hinter diesen beiden Paradigmen
ist: es ist vollig aussichtslos, ein korrektes und vollstandiges Lernverfahren zu
fordern, das nach einer bestimmten Menge von Eingaben sicher und prompt das
richtige Ergebnis abliefert und dann anhélt. Der Unterschied besteht in den vom
jeweiligen Paradigma gewahlten Abstrichen. Bei der Identifikation im Grenzwert
verzichtet man darauf, da3 das Verfahren bei der richtigen Ldsung anhédlt. Beim
PAC-learning schwécht man die Anforderung an die Korrektheit des Lernergeb-
nisses ab. Das Lernergebnis ist nur noch mit einer bestimmten Wahrscheinlich-
keit von 1- & mit einem Fehler von hochstens ¢ richtig. Eswird also nur approxi-
miert, nicht mehr identifiziert. Der Abschwé&chung bei der Korrektheit stehen
aber zwei schwierige Anforderung an das Lernen gegenlber: Das Lernen soll in
polynomial beschrankter Rechenzeit zum Ergebnis kommen und zwar nachdem
das Verfahren lediglich Beispiele und davon eine beschréankte Zahl gesehen hat.
Die Beispiele sind in genau der Wahrscheinlichkeitsverteilung, in der tatsachlich
Instanzen und Nicht-Instanzen des zu lernenden Begriffs vorkommen. Es wird
also eine Stichprobe gegeben. Das Lernergebnis soll die Begriffsdefinition oder
Erkennungsfunktion fir den Begriff sein.

Hier wird nur das Scenario des PAC-learning vorgestellt. Eine kurze, Uber-
sichtliche Einfihrung bietet Hoffmann (1991), eine ausfuhrliche Behandlung des
Bereiches bietet Kearns (1990).

Ein Lernalgorithmus fir Begriffe einer Représentationsklasse (z.B. Boolsche
Funktionen oder Formeln in einer Normalform mit k Termen) erhélt Beispiele fur
einen bestimmten Begriff ¢ aus dieser Repréasentationsklasse. Die Beispiele werden
zuféllig gewdhlt, entsprechen aber der "wirklichen", unbekannten Wahrschein-
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lichkeitsverteilung der Beispiele. Der Lernalgorithmus erhdt auflerdem die Pa-
rameter & und g, 8<1, € < 1.

d gibt an, mit welcher Wahrscheinlichkeit der Algorithmus den Begriff lernt.

€ gibt an, wie nahe das Lernergebnis h dem tatsachlichen Begriff c ist, d.h.
wieviele Instanzen oder Nicht-Instanzen falsch klassifiziert werden.

h klassifiziert Beispiele anndhernd korrekt, wenn die Wahrscheinlichkeit e-,
da ein negatives Beispiel als Instanz des Begriffs klassifiziert wird, und die Wahr-
scheinlichkeit e+, dald ein positives Beispiel als Nicht-Instanz des Begriffs klassifi-
ziert wird, kleiner ist als ¢.

Die beiden Parameter schwéachen also die Anforderung an die Korrektheit
einer gelernten Begriffsdefinition h ab. Die Begriffsdefinition entstammt der Re-
prasentationsklasse H.

Eine Reprasentationsklasse ist lernbar durch H, wenn es einen Algorithmus
A(d,e) gibt, der bei einer festen aber beliebigen Wahrscheinlichkeitsverteilung
und festen, aber beliebigen € und 3, &1, eine Hypothese h O H ausgibt, die mit einer
Wahrscheinlichkeit groer als 1- & anndhernd korrekt ist, und dann anhélt.

Eine Reprasentationsklasse ist polynominal lernbar aus Beispielen durch
H, wenn

e Beispiele aus Cund H in polynominaler Zeit klassifiziert werden kdnnen
und

e der Lernalgorithmus in einer Anzahl von Schritten zum Ergebnis kommt,
die sich als Polynom Uber 1/e, 1/d und |c| bestimmen laft.

« Die Reprasentationsgrof3e |c| ist zum Beispiel die Lange einer Reprasentati-
on.

In diesem Scenario kann man nun fur bekannte Sprachklassen bzw. ihre
Automaten die prinzipielle Lernbarkeit von Begriffen, die in dieser Sprache aus-
gedrickt sind, untersuchen. Man kann auch die Anzahl der Beispiele errechnen,
die man dem Algorithmus geben mufR3, damit er lernen kann.

Ein Begriff aus der statistischen Lerntheorie ist innerhalb des PAC-Lernens
wieder aufgegriffen worden. Die Chervonenkis-Dimension soll die Ausdrucks-
starke einer Reprasentationsklasse angeben. Sei H der Hypothesenraum Uber X
und S eine m-elementige Teilmenge von X. S wird von H zerschmettert (shattered),
falls es fur alle S O S eine Hypothese hy O H gibt, die S' abdeckt, d.h. S n hy=S. Alle
Teilmengen von S werden aso durch Hypothesen in H erkannt. Die Vapnik-
Chervonenkis-Dimension von H, VCdim(H), ist die Anzahl der Elemente von der
grofiten Menge S, wobei S von H zerschmettert wird. Sie gibt also an, wieviele Un-
terschiede H machen kann.

VCdim(H) = max {m: OSO X, (B0= m, H zerschmettert S}

Wenn es kein Maximum der Kardinalitdt von S gibt, ist VCdim unendlich.
Wenn der Hypothesenraum H endlich ist, so VCdim(H)<log,(C(HD. Um eine Menge
der GroRRe m zu zerschmettern, sind 2™ verschiedene Hypothesen nétig, weil es ja
2™ verschiedene Teilmengen gibt. Wenn wir umgekehrt die grof3te Menge wissen
wollen, die ein Hypothesenraum zerschmettern kann, so missen wir m bestim-
men, also log2(tHD(d.h.log,(2M)).
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Als einfaches Beispiel zur Illustration nehmen wir
e fur X Punkte in einer Ebene, dargestellt durch (x;, y);

- fir H nehmen wir ein Perzeptron mit zwei Eingangen, das in einem Zu-
stand, der durch zwei Gewichte w, und w, und einen Schwellwert t gegeben
ist, die folgende Boolsche Funktion berechnet:

h(x;,yi)=1 gdw. t < w;X;. + W,X;.

Wenn wir eine 3-elementige Teilmenge S von X haben, wobei fur keinen der
drei Punkte x;= x; oder y,=y; gilt, so gibt es 2° Md&glichkeiten, die Elemente von S in
positive und negative Beispiele zu klassifizieren. Die 8 verschiedenen Hypothesen
sind:

S hy |h, [hy [h, |he |he |h, [hy
(X11 yl) + + + - - - - +
(Xo, V) |- + + - - + + -
(Xa, Va) |- - + - + + - +

Man kann sich eine Hypothesen als trennende Linie zwischen positiven und
nagativen Beispielen vorstellen. VCdim(H) ist aso mindestens schon einmal 3.
Aber koénnte H nicht auch eine 4-elementige Teilmenge von X zerschmettern? Das
Bild A zeigt, dal3 im ersten Fall {(Xy, Y1), (X5, ¥Y3)} und {( X5, V,), (X4 Y4)} nicht durch
eine Linie getrennt werden koénnen und im zweiten Fal {(x, Y,)} nicht von den
anderen drei Beispielen getrennt werden kann. VCdim(H) ist also nicht nur min-
destens 3, sondern genau 3.

le yl Xll yl

. . Xz'.V2

Abbildung A: 4-elementige Teilmengen von X

Es ist oft sehr schwierig, die VCdim genau zu bestimmen. Oft werden nur Ab-
schatzungen gefunden. Den Zusammenhang zwischen der VCdim einer Begriffs-
klasse und ihrer wahrscheinlich anndhernd korrekten Lernbarkeit geben die
folgenden Ergebnisse an:

« C ist PAC-lernbar gdw. VCdim(C) endlich ist (Blumer et al., 1990)
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« Wenn C endlich ist, so ist VCdim(C) < log,(CCO und damit endlich (Blumer et
a., 1990).

In den letzten Jahren ist eine Fille von Beweisen zur Lernbarkeit bestimmter
Repréasentationsklassen erarbeitet worden. So sind z.B. Definitonen, die aus ge-
wichteten Attributwerten bestehen, polynomiell lernbar, wenn die Gewichte
nicht nur auf 0 oder 1 beschrénkt sind, sondern Uberall zwischen O und 1 liegen.
Sind die Gewichte auf 0 oder 1 beschrénkt, so sind derartige Definitionen nicht
mehr polynomiell lernbar. Das ist deshalb interessant, weil neuronale Netze, die
sich gut in das PAC-Paradigma einfligen, gerade durch Gewichtsverschiebungen
lernen. Sie bearbeiten also ein polynomiell |dsbares Problem.
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