2 Prolog

In dieser Vorlesung verwenden wir die Programmiersprache Prolog fur alle
Ubungsaufgaben. Dafiir gibt es mehrere Griinde. Erstens sind Prolog-Programme
kompakt, so dal3 sie den Blick auf das Wesentliche nicht verstellen. Zweitens sind
Prolog-Programme kurz genug, um oft auf eine Folie bzw. Tafelseite zu passen.
Drittens kann man sehr schnell anfangen, in Prolog zu programmieren. Zwar gibt
es ausgesprochen schwierige Prolog-Programme und sehr raffinierte Program-
miertricks in Prolog, aber diese missen nicht verstanden werden, bevor man an-
fangen kann zu programmieren. Mit den rudimentdaren Grundkenntnissen, die in
diesem Kapitel vermittelt werden, koénnen Sie sofort loslegen! Viertens sind in
Prolog bereits einige Dinge eingebaut, die wir fur die Ubungsaufgaben bendotigen.
So ist ein Parser (syntaktische Analyse im Kapitel 6) fester Bestandteil von Prolog.
Wir kénnen also Grammatiken schreiben und brauchen dann nur den Prolog-
Parser aufzurufen, um sie zu testen. In einer anderen Programmiersprache mufte
zunachst der Parser implementiert werden, bevor eine kleine Grammatik ge-
schrieben werden kann.

2.1 Formen

Manchmal wird Prolog als logischer Wissensreprasentationsformalismus be-
trachtet. Die zugrundeliegende Logik ist die der Hornklauseln mit Resolutions-
beweis. Man sagt dann, dal3 Prolog Wissen Uber einen Sachbereich in Form von
Fakten und Regeln darstellt. Eine Aufgabe wird durch eine Anfrage ausgedrickt.
Die Anfrage wird von Prolog durch seine eingebaute Beweisstrategie anhand des
Wissens beantwortet. Zusétzlich zur Logik enthalt Prolog Kontrollelemente der
Programmierung. Ich betrachte Prolog als Programmiersprache und wir kénnen
in dieser Programmiersprache Wissensreprasentationen verschiedener Art reali-
sieren. Im folgenden stelle ich zunachst die syntaktischen Formen von Prolog vor.
Dabei gebe ich die logische Notation und die Prolog-Schreibweise an.

Literal: Ein Literal ist ein positives oder negatives Pradikat mit bestimmter
Stelligkeit (Anzahl von Argumenten).

Ein Literal ist zum Beispiel: mutter (X, Y) ein anderes -~ vater (X, Y)

In Prolog sind zwei Préadikate mit unterschiedlicher Stelligkeit und dem-
selben Namen unterschiedliche Pradikate. Zum Beispiel sind

ki nd(Ki nd, Vater, Miutter) undki nd(Kind, Elternteil)
die beiden verschiedenen Pradikate
ki nd/ 3 und ki nd/ 2.

Klausel: Eine Klausel besteht aus Literalen, die disjunktiv (ODER) ver-
knupft sind.

Klausel: (Ly; V ...V Ly)
In Mengenschreibweise sieht dieselbe Klausel so aus:

{Ll,l [EREEEE] Ll, nl }

Hornklausel: Eine Hornklausel ist eine Klausel mit hdchstens einem po-
sitiven Literal. Zum Beispiel:

{oma(X,Y), - mutter(X,Z), = mutter(Z,Y)}
Als Regel geschrieben sieht dieselbe Klausel so aus:
oma(X,Y) :- nmutter(X 2), nutter(ZY).

In Prolog wird also das positive Literal vor :- geschrieben, die negati-
ven dahinter.

Anfrage: Eine Anfrage ist eine Hornklausel ohne positives Literal. Zum
Beispiel:

{- mutter(X,2), - nmutter(Z, YY)} oder {-oma(X, Y)}
In der Ublichen Prolog-Schreibweise sieht das so aus:
i- nmutter(X Z), nmutter(Z Y). oder :- oma(XY).

Fakt: Ein Fakt ist eine Hornklausel ohne negatives Literal. Es besteht also
nur aus einem positiven Literal. Zum Beispiel:

{oma(X, Y)}.
In Prolog-Notation ist dies
oma(X, Y).

Prolog-Programm: Ein Prolog-Programm entspricht einer Formel in
konjunktiver Normalform (d.h. ge-UND-ete ODER-Ausdriicke):

Programm: (L, v ... Vv Ly) & ... & (L Vv ... VvV L)
zB..(oma(X,Y) v = nutter(X,2) v = nutter(Z,VY)) &
(oma(X,Y) v - mutter(X,2) v -~ vater(ZY))

In Prolog wird das logische UND nicht aufgeschrieben. Esist implizit ge-
geben.

oma(X,Y) :- nmutter(X 2), nutter(ZY).
oma(X,Y) :- nmutter(X 2), vater(ZY).

Terme: Argumente eines Literals heiRen Terme. Variablen, Zahlen, Kon-
stante und Funktionen sind Terme. Das sind alle Terme. Wir schreiben Va-
riablen mit GroRbuchstaben oder beginnen sie mit _. Sowohl Konstante
und Funktionen als auch Pradikatsnamen beginnen mit kleinen Buchsta-
ben.

Funktionen sind meist arithmetisch und werden in einer Prolog-Bibliothek
mathematische Funktionen definiert. Meist wird eine Argumentstelle fir den

Eingabewert und eine fur das Ergebnis reserviert. In der Dokumentation wird das
Eingabeargument durch +, das Ausgabeargument durch - notiert. Zum Beispiel be-
deutet die Funktion

sin(X, Y), daB Y=sin(X)

und wird in der Dokumentation angefiihrt als

sin(+,-)

Wenn man arithmetische Funktionen verwenden will, mu3 man am Anfang
des Programms angeben:

:-ensure_l oaded(library(math)).

Listen sind intern auch Funktionen. Das Funktionssymbol ist der Punkt. Bei-
spielsweise wird die Liste a, b, c¢ intern so dargestellt:

-(a, . (b, .(c, []))
Die Funktion . hat die beiden Argumente Kopf und Rest .
. (Kopf, Rest)

Dabei besteht der Rest wieder in der Punkt-Funktion mit Kopf und Rest. Uber-
sichtlicher geschrieben werden Listen durch eckige Klammern. Wenn man die
ganze Liste schreiben mochte, wird sie einfach in die eckigen Klammern einge-
faldt:

[a, b, c]

Will man nur jeweils mit dem Kopf oder dem Rest etwas anfangen, schreibt
man:

[Kopf | Rest]
[a | Rest]

Statt wie oben fir jedes Kind anzugeben, wer die Mutter ist, kbnnen wir auch
mit der Listenfunktion fir eine Mutter alle ihre Kinder angeben:

ki nder (uta, [maria, mario]).

2.2 Arbeiten mit Prolog

Prolog kann interpretiert und compiliert verwendet werden. Wenn es interpre-
tiert verwendet werden soll, ruft man als erstes Prolog auf.

prol og

Das Prolog-System meldet sich mit

?-

Dann kann etwas eingetragen werden. Zum Beispiel kdnnen Fakten und Re-
geln eingetragen werden. Das Eintragen von Fakten und Regeln erfolgt mit dem
Prolog-Pradikat assert/1. Wenn etwas vorn vor die anderen Eintrégge angefligt
werden soll, nimmt man asserta/ 1, wenn es hinter die anderen Eintrdge kommen
soll, nimmt man assertz/1.

Beispiel:

?- assertz(vater(ulf, maria))

?- assertz(mutter(uta, mario)).

?- assertz(mutter(uta, maria)).

?- assertz(mutter(maria, anna)).

?- assertz((oma(X Y):- mutter(X, 2Z), mutter(Z,Y))).
?- assertz((oma(X Y):- nmutter(X, 2), vater(ZY))).

Dies Verfahren empfiehlt sich zum Ausprobieren. Ansonsten wird Prolog in
der compilierten Version genutzt. Man 06ffnet mit einem Editor eine Datei (z. B. mit
dem Befehl emacs verwandschaft. pl) und schreibt dort direkt die Fakten und Re-
geln hinein.

Beispiel:
%amlie von Maria mit vater/2, nmutter/2
vater (ul f, maria).
nmutter(uta, mario).
nmutter(uta, maria).
nmutter(nmaria, anna).
oma(X,Y) :- nutter(X 2), nutter(ZY).
oma(X,Y) :- nutter(X 2), vater(ZY).

Wenn die Datei unter einem Namen mit der Extension .pl gesichert ist, ruft
man Prolog auf und ladt die Datei mit dem Pradikat consul t/ 1.

?- consul t (verwandschaft. pl).

Dabei l6scht consul t/ 1 alle Fakten und Regeln aus der aktuellen Datensamm-
lung, die dasselbe Pradikat haben wie eines in der konsultierten Datei. Dies kann
zu zwei Arten von Problemen fihren. Zum einen koénnen Klauseln verschwinden,
die man gern behalten hétte. Nehmen wir an, ein Student und eine Studentin ha-
ben sich die Arbeit geteilt. Er hat die Familie von Ulf beschrieben, sie hat die Fa-
milie von Uta beschrieben. Er hat die Klausel fur die GroRmutter véaterlicherseits,
sie die Klausel fir die GroBmutter mutterlicherseits geschrieben. I|hre Datei heil3t
si e. pl und seine heildt er. pl . Nun wollen sie ihre Beschreibungen zusammenwer-
fen und rufen consul t (si e. pl) auf und dann consult(er.pl).Leider sind nun die
Fakten Uber die Familie von Uta und die Klausel Uber die Groffmutter mutterlicher-
seits fort. Entweder die Studierenden teilen sich die Arbeit, indem sie unterschied-
liche Pradikate eintragen oder sie bringen ihre Beschreibungen im Editor zu-
sammen.

Ein zweites Problem tritt immer wieder auf. Alles klappt prima an einem Tag,
aber am nachsten Tag oder bei jemand anderem klappt dasselbe nicht. Hierfir ist
der Grund oft, da dort, wo das Programm erfolgreich lauft, noch Eintrage im
Prolog-System vorhanden sind (aus einer interpretierten Fassung oder einem
vorher geladenen Programm), die das konsultierte Programm erganzen. Bei-
spielsweise konnte eine Studentin eine Datei vaternutter.pl geschrieben haben,
die nur die Fakten, nicht jedoch die Regeln enthélt. Die Regeln hat sie vorher in
der interpretierten Fassung eingetragen. Nun kann Prolog die GroRBmutter von
Anna ermitteln. Die Studentin schickt ihre Datei einem Kommilitonen. Bei ihm
kann nun Prolog nicht die Grolmutter von Anna ermitteln.

Wenn wir verwandschaft. pl vollstandig geladen haben, koénnen wir Anfra-
gen stellen:

;- oma(Onm, anna) .
Om = uta

:- nutter(uta, X).
X= mario ;
X= maria

Durch die Eingabe des Semikolons hinter X=mario wird Prolog veranlalt,
nach weiteren Losungen (X=mari a) zu suchen.

Schliefflich sei noch auf die Online-Hilfe in Quintus-Prolog hingewiesen. Mit
dem Pradikat hel p erhdlt man eine kurze Bedienungsanleitung und mit dem Pradi-
kat manual /1 koénnen Hilfetexte ausgewahlt werden.

2.3 Beweisen

Prolog verwendet zur Beantwortung von Anfragen das Verfahren der Resoluti-
on.

Seien K; und K, Klauseln. Dann heift RResolvent von K; und K,, falls es ein
Literal L gibt mit LOK,; und -LOK, und R die Form hat:

R= (K - {L}) O(K, - {-L})
Dabei ist =L definiert als = A, falls L= A, und als A, falls L=-A.

Die Resolution besteht also darin, ein positives und ein negatives Literal mit
demselben Pradikat herauszuschneiden und die Reste der Klauseln zusammen-
zufugen (Schnittregel).

-oma(Oma, anna) oma(uta, anna), -mutter(uta, maria), -mutter(maria, anna)

-mutter(uta, maria), -mutter(maria, anna) mutter(uta, maria)

-mutter(maria, anna) mutter(maria, anna)

Eine Folge von Resolutionen, die zu der leeren Klausel fihrt, ist ein Beweis. Die
leere Klausel (durch ein Quadrat dargestellt) ist immer falsch, so falsch wie -p & p.
Mit den Resolutionen wird ein Widerspruchsbeweis gefthrt. Indem man das Ge-
genteil von dem, was man wissen mochte, widerlegt, beweist man das, was man
wissen mochte. Deshalb sind Anfragen negative Literale. Es gibt bei demselben
Programm und derselben Anfrage oft viele mogliche Folgen von Resolutionen. Es
kdénnen auch mehrere Folgen von Resolutionen erfolgreich sein. Prolog hat eine
Beweisstrategie, die die Reihenfolge der Beweisversuche festlegt. Esist eine Rick-
wartsverkettung von Beweiszielen.

KontrollfluR3:

Prolog arbeitet von links nach rechts.

1) Erst wird ein positives Literal gesucht, das zu der Anfrage paldt. Damit ist
eine Klausel gefunden. Enthdlt diese Klausel nur das positive Literal

(Fakt), dann ist der Beweis erfolgreich beendet. Sonst:

2) Eswird das am linkesten stehende negierte Literal dieser Klausel ver-
sucht, zu beweisen. Es wird also wie eine Anfrage behandelt (Schritt 1).

2a) Gelingt dieser Beweis, wird das direkt rechts danebenstehende negierte
Literal der Klausel versucht, zu beweisen. Gibt es kein weiteres negiertes
Literal in dieser Klausel, so ist der Beweis erfolgreich beendet.

2b) Gelingt der Beweis nicht, so wird zum né&chstliegenden linken Literal zu-
rickgegangen und ein anderer Beweis fur dies Literal gesucht (Ruckzug
oder backtracking).

3) Wenn es keine Alternativen mehr gibt fur ein Literal, das nicht bewie-
sen werden konnte, so gelangt man schliellich zum positiven Literal der
Klausel zuriick. Es wird dann ein anderes positives Literal gesucht, das zu
der Anfrage pafit. Wenn es eines gibt, wird mit Schritt 2) fortgefahren.
Wenn es kein anderes mehr gibt, ist der Beweis gescheitert. Prolog mel-
det dann FAI L und antwortet no.

Wenn wir den Befehl trace. eingeben, konnen wir den KontrollfluB beob-
achten. Unser Beispiel ergibt bei der Anfrage :-oma(Oma, anna). etwa folgendes
Bild.

Bei Schritt 1) meldet Prolog

CALL oma(_Qma, anna)

Die erste Klausel mit dem positiven Literal oma ist die Regel fur die Grolmutter
mditterlicherseits. Jetzt wird - Schritt 2) - versucht, nutter (_Om, _V) zu
beweisen. Prolog meldet

CALL mutter (_Omal, _V1).

Zuerst findet Prolog mutter(uta, mari o). Prolog meldet
EXIT nutter(uta, nmario).

Es wird dann das néchste Literal versucht zu beweisen. Prolog meldet
CALL mutter (mario, _W).

Hier wird nichts passendes gefunden. Also wird noch einmal auf eine andere
Art versucht, das nachst links stehende Literal zu beweisen. Prolog mel-
det

REDO nmutter(_QOma2, _V2).
Es gibt einen alternativen passenden Fakt. Prolog meldet
EXIT nutter(uta, maria).
REDO nutter (maria, _W2).

EXIT nutter(maria, anna).

Da nun kein weiteres Literal mehr in der Klausel zu beweisen bleibt und alle
Teilbeweise erfolgreich waren, meldet Prolog auch

EXIT oma(uta, anna)

Das Prolog-Protokoll (trace) ist hier etwas geschont dargestellt. Schon an dem
einfachen Beispiel sieht man, dal} neue Variablennamen (mit _ vorweg) nétig wa-
ren, um nicht mit bereits in den Klauseln verwendeten Variablennamen durch-
einander zu geraten. Fur jeden Beweisversuch mul3 ein neuer Variablenname

eingefihrt werden. Dadies sehr viele werden konnen und Prolog die Bedeutung
der Klauseln nicht kennt, vergibt es intern Zahlen, die an das Zeichen _ ange-
hangt werden.

Wie werden nun Literale, die Variable enthalten, mit anderen Literalen des-
selben Pradikat gleich gemacht? Man braucht einen Gleichmacher fiur Argu-
mente eines Pradikats. In unserem Beispiel wurde _W2 durch anna substituiert, so
da® wir zwei bis auf ihr Vorzeichen gleiche Literale erhielten und schneiden
(resolvieren) konnten.

Substitution: Eine Substitution ist eine endliche Menge {V./t;, ..., V. /t.},
wobei V;z V,; fir aleizj. V/t; bedeutet, dal3 die Variable V; an den Term t
gebunden wird. Eine Substitution anwenden, heif3t, alle Vorkommen der
Variablen innerhalb einer Klausel gleichzeitig durch den betreffenden
Term zu ersetzen. Meist bezeichnet man eine Substitution mit o. Die Iden-
titétssubstitution ist die leere Menge.

oma(Qma, anna) ¢ = oma(uta, anna) mit o:{Oma/ ut a}

Die Substitution macht ein Literal nie allgemeiner. Man darf also keinesfalls
fir eine Konstante oder Funktion eine Variable einsetzen! Nun wollten wir aber
nicht irgendwelche Terme fir irgendwelche Literale einsetzen, sondern mehrere
Literale (bis auf ihr Vorzeichen) gleich machen. Eine gleichmachende Substituti-
on heift Unifikation.

Unifikator: Eine Substitution o wird Unifikator genannt, wenn fir eine
endliche Menge von Literalen L die Anwendung der Substitution eine
Menge mit nur einem Element ergibt. Die Literale aus L sind dann unifi-
zierbar.

L: {vater(X mario), vater(Y, mario), vater(ulf, 2)}
o {Xulf, Yulf, Z mario}
Lo:{vater(ulf,mario)} | Lo | =1

mgu: Ein Unifikator o hei3t allgemeinster Unifikator (mgu), wenn fur
jeden anderen Unifikator p eine Substitution Tt existiert, so da3 p = ot. Mit
anderen Worten: wenn man einen allgemeinsten Unifikator durch eine
weitere Substitution spezialisiert, erreicht man einen anderen, nicht all-
gemeinsten Unifikator.

L: {unterhalt(ulf, maria, X),
unterhal t (Y, maria, Z2),
unterhal t (Y, maria, alimente(Y,V))}

o {Yulf, Xalimente(ulf,V), zZ/alinmente(ulf,V)}
p: {Y/ulf, X alimente(ulf, 1000), Z/alimente(ulf, 1000)}
. {V/ 1000}

Der klassische Unifikationsalgorithmus findet far unifizierbare Literale im-
mer den allgemeinsten Unifikator. (Der Beweis steht in Schéning 1995).

Unifikationsalgorithmus:

Eingabe: eine nicht-leere Menge L von Literalen.
o:={}

solange | Lo | > 1:

Durchsuche die Literale in Lo von links nach rechts, bis die erste Position
gefunden wird, wo sich mindestens zwei Literale L, und L, unterscheiden.

Wenn keines der beiden sich unterscheidenden Zeichen eine Variable ist,
halte an und gebe aus "nicht unifizierbar*. Sonst:

Sei X die Variable und t der im anderen Literal beginnende Term:

Wenn Xin t vorkommt, halte an und gebe aus "nicht unifizierbar®.
Sonst:

o ;=0 {X/t} ---- nacheinander o und {X/t} ausfihren

o als allgemeinsten Unifikator ausgeben und anhalten.

Da Namensgleichheit nur innerhalb einer Klausel auch Variablengleichheit
bedeutet (wéhrend gleichbenannte Konstante und Funktionen im gesamten Pro-
gramm gleich sind), werden in Prolog vor der Unifikation alle Variablen so um-
benannt durch neue, noch nirgends vergebene Namen, dal gleiche Variablen
innerhalb einer Klausel auch einen gleichen Namen erhalten, der sonst nicht
auftritt. Nehmen wir unser Beispiel von den Unterhaltszahlungen und gehen da-
von aus, dal die Variablen bereits richtig behandelt wurden.

| Lo |=3

1. Unterschied: ul f, Y
o:=o{Y ulf}
| Lo |=3

2. Unterschied: X, Z, alimente(ulf,V) -- muld aufgeteilt werden in:
X, alimente(ulf,V) undz, alinmente(ulf,V)
g:=c{Xalinmente(ulf/V), Z/alinente(ulf/V)}
|Lo |F1
o {Yulf, Xalimente(ulf,V), Z/alimente(ulf,V)}

Dies Beispiel illustriert, was mit beginnend gemeint war: die ganze Funktion
alinmente(ul f,Vv) wird fir die Variablen X und Z eingesetzt. Ein weiterer Unter-
schied besteht dann nicht mehr, so dal} die Variable V erhalten bleibt und nicht
etwa ein speziellerer Unifikator gewahlt wird.

2.4 Prologs Kontrollstruktur als Tiefensuche in UND/ODER-Graphen

Wir kénnen uns Prolog-Klauseln as ge-ODER-te Knoten in einem Graphen vor-
stellen, wobei die Literale in der Pramisse ge-UND-ete Unterknoten in dem Gra-

phen darstellen. Ein Beweis in Prolog kann dann als Tiefensuche in diesem Gra-
phen dargestellt werden.4

Ein UND-ODER-Graph ist ein Graph, bei dem auf einer Ebene alle Nachfolge-
knoten eines Knoten mit UND verknipft und auf der né&chsten Ebene alle Nachfol-
geknoten eines Knoten mit ODER verknupft sind. Der Weg vom Ausgangsknoten
zum Ziel ist ein Baum, da die durch UND miteinander verknlpften Knoten alle zur
Losung gehoéren. Ein einfacher UND-ODER-Graph sieht z.B. so aus:

a

Dabei sind die Teilziele b und c alternativ, die Teilziele d und e missen beide
gezeigt werden, ebenso wie die Teilprobleme f und g beide gelost werden miussen.
Von den Teilzielen h und i mul3 nur eine gezeigt werden, egal welche. Wenn h und
g Zielzustdnde ist, so gehéren die Knoten a, ¢, f, g und h zum Ld&sungsbaum.

Tiefensuche durch einen UND-ODER-Graphen kann as Lésung eines Pro-
blems, das in Teilprobleme zerlegt wurde, ganz einfach folgendermalRen aufgefalit
werden (Bratko 1987:322):

Zur Losung eines Problems - dargestellt durch einen Knoten K - benutze die fol-
genden Regeln:

1) Ist K ein Zielknoten, ist das Problem gel6st.

2) Hat K geODERte Teilprobleme as Nachfolger, dann I[6se eins von ihnen
(versuche eins nach dem anderen, bis eins gel6st ist).

3) Hat K geUNDete Teilprobleme as Nachfolger, dann Il6se sie alle
(versuche eins nach dem anderen, bis alle geldst sind).

Wahrend dieser Problemlésung mul3 der Ldsungsbaum mitgeschrieben wer-
den, damit man die LOsung auch verwenden kann. Wir nennen einen Knoten, des-
sen Nachfolgeknoten geODERt sind einen ODER-Knoten und den, dessen Nachfol-
geknoten geUNDet sind, einen UND-Knoten.

Der Losungsbaum enthalt

1) den Zielknoten,

2) fir die Losung verwendete ODER-Knoten mit dem jeweils an ihm han-
genden Unterbaum,

4 ACHTUNG: in der Klausel-Notation sind die Literale einer Klausel durch ODER verkniipft, die Klauseln eines
Programms sind UND verknipft. In der Graphen-Darstellung ist es genau anders herum!

3) fur die Loésung verwendete UND-Knoten mit einer Liste von jeweils an
ihm hangenden Unterbaumen.

Der Ldsungsbaum des obigen Beispiels sieht so aus:

/)\

" ®

Tatsachlich gibt Prolog nicht den Beweisbaum aus, sondern nur die in ihm
gefundenen Substitutionen fir die Variablen im Zielausdruck.

2.5 Programmieren

Die Beweisstrategie von Prolog und die Variablenbindung durch Unifikation hat
einige Effekte, die vielleicht nicht offensichtlich sind. Deshalb gehe ich in diesem
Abschnitt kurz darauf ein. Zum anderen gibt es zwei Methoden, wie die Beweiss-
trategie von Prolog beeinflult werden kann. Auch diese will ich vorstellen. Alle
weiteren Programmiertricks lernt man am besten durch eigenes Ausprobieren
und Erfahrung. Sie sind aber fur die Ubungsaufgaben nicht nétig.

Ein wichtiger Effekt der Prolog-Strategie ist, dal} dasselbe Pradikat zum Testen
und zum Generieren benutzt werden kann, je nachdem, wo die Variablen stehen.
Nehmen wir far das Aneinanderhdngen von Listen ein dreistelliges Pradikat an,
dessen erste beiden Argumente die aneinanderzuhangenden Listen und das dritte
Argument das Ergebnis darstellt.

append([1,2],[3,4],X
liefert uns wie erwartet

X=[1, 2, 3, 4]
Wir konnen aber auch eine Zerlegung suchen, indem wir

append(X, VY, [1,2,3,4])
aufrufen. Wir erhalten

X=[1, Y=[1,2,3,4]

X=[1], Y=[2,3, 4] ;

X=[1,2], Y=[3, 4] ;

X=[1,2,3], Y=[4] ;
X=[1,2,3,4], Y=[]

Natlrlich koénnen wir auch
append(X, Y, 2)

aufrufen -- Prolog garantiert nicht, da3 es anhdlt! Es ist die Aufgabe der Pro-
grammiererin oder des Programmierers, sich zu (Uberlegen, was sie bzw. er

schreibt. Normalerweise halt Prolog aber nach der ersten gefundenen Ld&sung an:
es wurde ein Beweis gefunden. Will man alle mdglichen Beweise sehen, mull man
einfach behaupten, der Beweis wére nicht gelungen. Wenn ein Beweis nicht ge-
lungen ist, sucht Prolog nach einer Alternative. Man teilt Prolog das Fehlschlagen
eines Beweises durch fail mit. Wer aso unbedingt Rechenzeit verbrauchen
mochte, erreicht dies durch das folgende kleine Programm:

endl os :- append (X, Y, 2), fail.

Nun werden alle Listen erzeugt, weil nach jeder erfolgreichen Substitution der
Variablen durch eine Liste der Beweis als gescheitert erklart wird und Prolog
nach einer Alternative sucht. Wenn der Wertebereich nicht unendlich ist wie die
Menge aller Listen, so kann dies Vorgehen durchaus sinnvoll sein, um alle Ldsun-
gen zu finden. Wollen wir zum Beispiel alle Kinder von mari a finden, so schreiben
wir:

alle_kinder(X,Y):-mutter(X, Y),wite('Kind="),wite(Y),fail.

Dies wirde auch alle Mitter liefern, falls es mehrere gdbe. Am Beispiel unserer
kleinen Datei in Abschnitt 2.1 liefert der Aufruf

al | e_ki nder (uta, X).
Ki nd=mari o Ki nd=mari a

no

Manchmal will man den KontrollfluB aber auch dahingehend verédndern, dafld
keine weiteren Alternativen ausprobiert werden. Wenn man schon weil3, daf3 es
maximal einen Beweis fUr ein Teilziel geben kann, setzt man hinter dieses Teilziel
ein Ausrufezeichen (cut). Solange das Ausrufezeichen nicht von links nach
rechts Uberschritten wurde, wird nach Alternativen gesucht. Danach werden mit
der gefundenen Belegung die weiter rechts stehenden Teilziele versucht zu bewei-
sen. Gelingt dies nicht, wird fur den Beweis vor dem Ausrufezeichen keine Alter-
native gesucht, sondern abgebrochen. Dadurch werden Programme schneller.
Diese Strategiemodifikation will sehr gut Uberlegt sein! Wenn wir beispielsweise
schreiben

oma(X,Y):- mutter(X,2),!,nutter(ZY).

weil wir uns dachten, dal} eine Frau ohne Kind nicht Oma sein kann (richtig), so
probieren wir in unserem Beispiel leider nicht mehr aus, ob Maria ein Kind hat.
Nachdem die Belegung nario fir Z gefunden wurde, beendet Prolog den Beweis
erfolglos. Falschlicherweise haben wir angenommen, da3 das zuerst gefundene
Kind auch Mutter ist, wenn Uberhaupt ein Kind Mutter ist. Oft ist man sich solcher
impliziten Annahmen aber nicht bewuft. Also, Vorsicht mit dem Ausrufezeichen!

AbschlieBend noch ein Absatz zur Rekursion. Dies ist das wichtigste Konzept
bei der Programmierung in Prolog. Man muf3 dabei aber beachten, dal3 Prolog von
links nach rechts arbeitet. Der Rekursionsaufruf sollte also hinten in der Klausel
sein.

i ste_bearbeiten([Kopf|Rest], [Ergebnis|Ergebnis rest]):-
bear bei t en(Kopf , Er gebni s),
|iste bearbeiten(Rest, Ergebnis rest).

Wir haben jetzt sichergestellt, da bei jedem Durchlauf der Klausel die Liste des
Aufrufs verklrzt wird. Gleichzeitig bauen wir die Ergebnisliste auf. Leider haben
wir davon noch nichts, wenn wir nicht eine Abbruchsbedingung schreiben. Um
Rechenzeit zu sparen, bertcksichtigen wir, da3 Prolog die Klauseln von oben
nach unten durchgeht. Wir schreiben aso immer als erste Klausel fur ein Pradi-
kat den Zustand auf, den wir erreichen wollen. Wann ist das Problem gelost? Was
wollen wir mit der Ldsung tun?

liste _bearbeiten([], Ergebnis):- wite(Ergebnis).

Hier wollen wir, dal} die zu bearbeitende Liste leer ist. Dann ist alles bearbeitet und
das Problem ist gel6st. Die Losung wollen wir ausgegeben haben, deshalb lassen
wir sie ausgeben. Wir schreiben diese Klausel vor die andere. Prolog schreibt das
Ergebnis jetzt in eine Zeile. Wenn wir jedes Teilergebnis in einer eigenen Zeile
haben wollen schreiben wir:

liste bearbeiten([], _). % Ergebnis interessiert uns hier
% ni cht mehr.
|iste _bearbeiten([Kopf|Rest], [Ergebnis|Ergebnis rest]) :-
bear bei t en(Kopf , Ergebni s),
write(Ergebnis), nl, % j edes Teil ergebnis wird

% ausgegeben und danach ei ne neue
% Zei | e angef angen.
|iste bearbeiten(Rest, Ergebnis rest).

2.6 Literatur

Bratko, Ivan (1988): PROLOG Programmierung far kinstliche Intelligenz,
Bonn [u.a]: Addison Wesley

Schoning, Uwe (1995). Logik fur Informatiker, Heidelberg: Spektrum Akad.
Verl.

Robinson, JA. (1965): A Machine Oriented Logic Based on the Resolution
Principle, in: Journal of the ACM, 12, 1.

3 Wissensreprasentation

Die Wissensreprasentation ist sicherlich das Kernstick der KI. Wir wollen Wissen
Uber einen Sachbereich formalisieren und die Formalisierung zur Ldsung von
Problemen nutzen. Wenn man Prolog als Wissensreprasentationsformalismus auf-
falit (was wir nicht tun), so haben wir bereits einen solchen Formalismus und
seinen Einsatz zur Problemlésung kennengelernt: Resolutionsbeweis bzw. Suche
in UND-ODER-Graphen. Wir haben dabei gesehen, dal3 sowohl das Paradigma der
Suche als auch das des Beweisens gute Moglichkeiten darstellen, Problemldsung zu
beschreiben. In diesem Kapitel werden nun Repréasentationen und ihre Nutzung
zum Problemldsen beschrieben. Prolog verwenden wir lediglich zur Programmie-
rung dieser Formalismen und ihrer Interpreter.

Uber Definitionen von Wissen und die Wissensebene wurde bereits im ersten
Kapitel Newells Zuschreibung von Wissen aufgrund des Rationalitatsprinzips dis-
kutiert. Hier soll nun noch ein weiteres Zitat angefihrt werden, das deutlich
macht, warum ich nicht nur "Hornklauseln" oder "logische Formeln" as Wissens-
reprasentation angefuhrt habe, sondern "Hornklauseln mit Resolutionsbeweis":

"We can say metaphorically, that a book is a source of knowledge, but without the
reader, the book is just ink on paper. Similarly, we often talk about the list and
pointer data structures in an Al database as knowledge per se when we really mean
that they represent facts or rules when used by a certain program to behave in a
knowledgeable way." (Barr, Davidson 79)

Wie immer Wissen im einzelnen definiert ist, Wissensreprasentation i st
dessen operationale Darstellung. Dabei wird eine Wissensrepasentationssprache
verwendet, um das Wissen Uber einen Sachbereich auszudricken. In diesem Skript
wie auch in der Literatur zum maschinellen Lernen ist die Wissensreprasentati-
onssprache verschieden vom Wissensreprasentations formalismus. In anderen
Artikeln wird oft Repréasentationssprache und Repréasentationsformalismus syn-
onym gebraucht.

Die Wissensreprasentationssprache entspricht der Signatur in der logi-
schen Terminologie. Sie enthélt also bereits die konkreten Pradikate oder Knoten-
und Kantennamen oder Operatornamen, die fur die Darstellung des Sachbereichs
bzw. Problems verwendet werden.

Der Wissensreprasentationsformalismus entspricht dem Kalkul in der logi-
schen Terminologie. Ein Wissensreprdasentationsformalismus legt also fest,
was wohlgeformte Ausdricke sind und wie sie verarbeitet werden.

SchlieBlich ist ein Wissensreprasentationssystem ein Programmsystem,
das die Repréasentation und Verarbeitung von Wissen unterstitzt. Ein Wissensre-
prasentationssystem ist sachbereichsunabhangig. Es unterstitzt den Aufbau und
die Wartung aller Wissensbasen fir Sachbereiche, die sich in dem entsprechen-
den Formalismus ausdriicken lassen.

3.1 Vollstandige Operatoren und Suchverfahren

Die meisten Probleme, die mit Kl-Verfahren gelost werden, lassen sich as Suche
im Problemraum beschreiben. Ein Suchproblem ist durch einen Anfangszustand,
einen Zielzustand und Ubergange zwischen Zustanden beschrieben. Dadurch ist
der Problemraum gegeben. Der Problemraum soll alle moglichen Ldsungen ent-
halten. Ist die Lésung gar nicht in dem Problemraum vorhanden, kann sie durch
kein Suchverfahren gefunden werden. Der Problemraum soll nicht einfach eine

ungeordnete Ansammlung aller fir eine Klasse von Problemen mdoglichen Ldsun-
gen sein. Als abschreckendes Beispiel zu einem chaotischen aber vollstandigen
Problemraum gibt es die Geschichte von hundert Affen, die jeder wahllos auf ei-
ner Schreibmaschine tippen. Wenn sie lange genug tippen und zufélligerweise
die entsprechenden Tasten in der entsprechenden Reihenfolge dricken, kénnten
sie alle Bucher des britischen Museums produzieren. Ein Algorithmus, der blind
ale Mdglichkeiten produziert, heifdt deshalb "british museum algorithm". Damit
ein gunstiges Suchverfahren angegeben werden kann, strukturiert man den Pro-
blemraum, so daR’ die Zustandsiibergdnge die Zustande geeignet anordnen. Die Zu-
standsiibergédnge werden als Operatoren realisiert, die angeben, wie zu einem
Knoten Nachfolger produziert werden. Man sagt, die Operatoren expandieren den
Knoten. Vor der Expansion heildt ein Knoten "offen", danach "geschlossen”. Meist
werden Abbruchbedingungen bereits in die Operatoren einbezogen, so da nur
Nachfolgezustande erzeugt werden, die "legal" sind. Daher werden die Operatoren
auch "legal move generator" genannt. Wir stellen uns den Problemraum as ge-
richteten Graphen vor, bei dem die Knoten die Zustande und die Kanten die Zu-
standslibergange darstellen, die so gerichtet sind, da sie von Anfangszustédnden
zu Zielzustanden fihren.

Das Suchverfahren soll mit moglichst wenig Aufwand die Lésung finden.
Das heifdt, es soll moglichst schnell auf die Losung stofRRen, sie als solche erkennen
und dann enden. Es soll mdglichst nicht den gesamten Problemraum durchsuchen
und als letztes erst die Losung finden. Essoll auch méglichst nicht dieselben Be-
reiche des Problemraums mehrmals durchsuchen. Der Losungsweg selbst soll
moglichst kurz, minimal, sein. Das heif3t, das Suchverfahren soll von einem Start-
knoten den minimalen Pfad zum Zielknoten finden. Zusétzlich kénnen mit ei-
ner Kante von einem Knoten zu einem anderen Kosten verbunden sein. Das Such-
verfahren soll dann nicht nur den kirzesten Pfad finden, sondern obendrein den
billigsten Pfad. Wenn die Kanten keine unterschiedlichen Kosten haben, ist der
kirzeste auch der billigste Pfad. Wenn wir also ein Problem als Suche formalisie-
ren wollen, mussen wir uns um die folgenden Punkte kimmern:

e Problemraum:
Was sind die Knoten, was sind die Kanten? Gibt es Zyklen in dem Graphen?
Oder ist es ein Baum?

Wie ist der Problemraum strukturiert, gibt es eine (partielle) Ordnung?

* Suchverfahren:
Sollen zunadchst alle Lo6sungsansitze gefunden werden (Breitensuche) oder
erst ein Losungsansatz zuende durchgegangen werden (Tiefensuche) oder
soll jeweils vom meistversprechenden Knoten aus weitergesucht werden
(heuristische Suche)?

Wie kann man abschéatzen, wie vielversprechend ein Knoten fir das Wei-
tersuchen ist?

* Abbruch der Suche:

Unter welcher Bedingung ist eine Lodsung gefunden (Zielzustand)?
Unter welcher Bedingung kann die Suche abgebrochen werden, weil es
(von diesem Knoten aus) keine Ldsung mehr geben kann?

Knoten im Problemraum kodnnen mogliche Loésungen sein oder Zwischener-
gebnisse oder Zustdnde oder Problembeschreibungen. Entsprechend sind die
Kanten Operatoren, die neue Knoten erzeugen, zusatzliche Hypothesen, elementa-
re Handlungen oder Zusammenhénge. Diese verschiedenen inhaltlichen Inter-
pretationen andern nichts an den Suchverfahren. Sie bedeuten aber ein unter-
schiedliches Interesse: wahrend man bei Knoten, die mogliche Ldésungen repra-

sentieren, nur an dem einen Ergebnisknoten interessiert ist, ist bei Zwischener-
gebnissen und Zustanden das Interesse auf den Pfad gerichtet. Bei Graphen, die
Zusammenhange widergeben, z.B. Probleme in Teilprobleme zerlegen, ist ein Teil-
graph interessant.

Das bekannte Problem der Missionare und Kannibalen soll als Suchproblem
formuliert werden:

Drei Missionare und drei Kannibalen befinden sich an einem FluBufer.
Alle wollen auf die andere Seite des Flusses. Sie haben ein Boot, das ein
oder zwei Personen befordern kann. Wenn an einem Ufer mehr Kanni-
balen als Missionare sind, werden die Missionare verspeist. Wie bekommt
man alle Personen auf die andere Seite des Flusses?

Der Anfangszustand ist also, dal3 alle Personen auf einer Seite des Flusses sind.
Der Zielzustand ist, dal3 alle Personen auf der anderen Seite des Flusses sind. Die
Zustandstbergange sind Fahrten von einer Seite zur anderen mit ein oder zwei
Personen. Der Zielzustand wird direkt erkannt. Operatoren, die die Personen einer
Uberfahrt vom einen Ufer abziehen und sie zu den Personen am anderen Ufer
hinzufiigen, erzeugen uns den Problemraum. Zustande, bei denen es mehr Kanni-
balen als Missionare gibt, werden nicht erzeugt. Das gewlinschte Ergebnis ist der
Pfad vom Ausgangszustand zum Zielzustand. Um die Operatoren etwas anschauli-
cher zu machen, seien einige in Prolog-Notation hier aufgefuhrt. Dabei geht die
formale Reprasentation davon aus, da3 nur ein Ufer explizit dargestellt werden
muf3. Ein Zustand wird dann représentiert durch die Anzahl der Missionare und die
Anzahl der Kannibalen am Ausgangsufer sowie einen bindren Wert, der gleich 0O
ist, wenn das Boot nicht am Ausgangsufer ist, und gleich 1 ist, wenn das Boot dort
ist. Der Anfangszustand ist dann

z(3,3,1)
- ale 3 Missionare und alle 3 Kannibalen und das Boot sind am Anfangsufer

Und der Zielzustand ist

z(0,0, X
- kein Missionar und kein Kannibale sind am Anfangsufer. (Wir wissen auch, daf
X=0 sein wird, da das Boot nicht von selbst an das andere Ufer gelangt -- dies ist

jedoch keine Bedingung.)

Die Operatoren geben die Félle an, da3 ein oder zwei Missionare vom An-
fangsufer wegfahren oder dort ankommen, dal ein oder zwei Kannibalen vom An-
fangsufer wegfahren oder dort ankommen, sowie da ein Missionar und ein Kan-
nibale vom Anfangsufer wegfahren oder ankommen. Es gibt also 10 spezielle Ope-
ratoren. Der Operator fir die Uberfahrt eines Missionars vom Ausgangsufer zum
anderen koénnte so aussehen:

o(z(MK 1), z(Meu, K 0)):-
M > 0,
Meu is M- 1,
(K £ Mieu ; Meu = 0),
F1is 3 - K,
F2 is 3 - Meu,
(FL < F2; F2 =0).

Der Operator fir die Uberfahrt von zwei Kannibalen zum Anfangsufer sieht so
aus:

o(z(MK0), z(M Kneu, 1)):-
K<3-1,

Kneu is K + 2,
(Kneu £ M; M= 0),
F1 is 3 - Kneu,

F2 is 3 - M

(FL <F2; F2 =0).

Dabei ist das erste Argument des Operators der aktuelle Zustand und das zweite
Argument der direkte Nachfolgezustand. Die erste Bedingung entscheidet Uber die
Anwendbarkeit des Operators: es kénnen nicht mehr Kannibalen oder Missionare
wegfahren, als da sind. In der dritten und den folgenden Zeilen werden die Bedin-
gungen daflr angegeben, dal3 kein Missionar verspeist wird. Zunachst wird es fir
das Ausgangsufer, dann komplementar fir das andere Ufer abgeprift. Das ";" be-
deutet ein lokales ODER. "is' Ubertrégt das Ergebnis der nachfolgenden Rechnung
auf die vorn stehende Variable. Wenn alle Bedingungen erfiillt sind, ist der Folge-
zustand erzeugt. Ein Suchverfahren verwendet die Operatoren, um die Nachfolge-
zustdnde zu erzeugen.

3.1.1 Tiefensuche

Bei einer Tiefensuche wird der Graph so durchsucht, dal3 zunachst eine ganze Fol-
ge von Uberfahrten bis zum Abbruch verfolgt wird . Es wird stets nur ein Pfad zur
Zeit gespeichert und verfolgt. Um endlose Schleifen zu vermeiden, markiert man
die Knoten, die bereits durchsucht worden sind. Obendrein muf3 man sich merken,
welche Kante von diesem Knoten aus beschritten wurde, damit man sie nicht noch
einmal wahlt. Beim Rickziehverfahren (backtracking) wird der aktuelle
Pfad markiert und gespeichert, so da? beim Abbruch an einem Knoten, der nicht
die Losung darstellt, zum letzten Knoten zurtckgesprungen werden kann. Vom
letzten Knoten aus wird dann eine andere Kante als die zuvor gewdhlte verfolgt.

Die folgende Prozedur fiihrt eine Tiefensuche durch®:

1. Bilde eine einelementige Liste, die den Wurzelknoten mit dem Startzu-
stand enthélt.

2. Bis die Liste leer ist, nimm das erste Element der Liste.
a) prufe, ob das Element der Zielknoten ist;
wenn ja, halte an und melde Erfolg; wenn nein, geht es weiter.

b) wenn das Element Nachfolger hat, entferne es aus der Liste und setze
seine Nachfolgeknoten als Elemente vorn in die Liste ein.

3. Wenn der Zielknoten gefunden wurde, melde Erfolg, sonst MiRerfolg.

In Prolog kdnnen wir dies folgendermalien realisieren:

[library(basics)]. Yglamit ist menber(X, Y) verflugbar, das
%raft, ob X Elenent der Liste Y ist.

%806 ti ef ensuche (-bisheriger Pfad, +aktueller Knoten, -Gesantpfad) %86

ti efensuche(P, K, [K P]):- ziel (K). %Abbruchbedi ngung Erfol g;
%iel (K) nuR definiert sein.

S Die einfachen Prozeduren firr Tiefen-, Breitensuche und Bergsteigen sind an Pat Winstons Darstellung in Win-
ston (1987) angelehnt.

ti efensuche(P, K, L):-

nachf (K, K1), % nachf ist der Operator, mul}
% definiert sein
\ + nenber (K1, P), %\ + drickt die Negation aus,

% Zykl en ver nei den
ti efensuche([K P], K1, L).

3.1.2 Breitensuche

Die Breitensuche (breadth-first search) expandiert alle Knoten auf einer Ebene.
Fur ale so erreichten Knoten werden dann alle Nachfolgerknoten erzeugt. Die
Breitensuche garantiert, dal3 die Ldsung gefunden wird. Allerdings kann sie recht
spat gefunden werden. Es ist also ein Suchverfahren, das wir anwenden, wenn wir
nicht schétzen koénnen, was vielversprechend ist, und was nicht.

Die folgende Prozedur fihrt eine Breitensuche durch:

1. Bilde eine einelementige Liste, die den Wurzelknoten mit dem Startzu-
stand enthélt.

2. Bis die Liste leer ist, nimm das erste Element der Liste.
a) prufe, ob das Element der Zielknoten ist;
wenn ja, halte an und melde Erfolg; wenn nein, geht es weiter.

b) wenn das Element Nachfolger hat, entferne es aus der Liste und setze
die Nachfolger hinten in die Liste ein.

3. Wenn der Zielknoten gefunden wurde, melde Erfolg, sonst MiRerfolg.

Dadurch dal? die Nachfolger hinten in der Liste gespeichert werden, statt wie
bei der Tiefensuche vorn, treten alle Knoten einer Ebene in der Liste auf, statt wie
bei der Tiefensuche nur diejenigen des aktuellen Pfads. Wie die Tiefensuche kann
auch die Breitensuche durch eine lokale Abschatzung verbessert werden. Man
expandiert dann schlecht bewertete Knoten gar nicht, fuhrt also die Breitensuche
nur mit den m besten Knoten einer Ebene fort.

Um die Breitensuche in Prolog aufzuschreiben, brauchen wir das Pradikat
findall/3. Nehmen wir wieder an, wir héatten als Operatoren Klauseln mit dem
Pradikat nachf (+K, -L). FUr einen bestimmten Knoten a liefert uns findall/3 alle
Nachfolger:

findall (X, nachf(a, X), Nachfol ger). % ur alle X wende das Préadi kat
%achf an und samr e dessen
%r gebnis in der Liste Nachfol ger.

Jetzt konnen wir die Breitensuche einfach formulieren:

breitensuche([[KIP] |], [KIP]):- ziel(K). %bbruchbedi ngung Erfolg
%iel (K)y mul3 definiert

%sein.
breitensuche([[K P] |Ps], L):-
findall ([K1, K] P],
(nachf (K, K1), \+ nenber (K1, [K P])), %i cht - zykl i sche Expansi on
Pneu) ,
append(Ps, Pneu,Pl), !, %Nachf ol ger hi nten anhangen.

brei tensuche(P1, L). % ekur si ver Aufruf.

3.1.3 Allgemeine Suche

Zwei Dinge steuern ein Suchverfahren: die Einsortierung der Nachfolgeknoten
und die Informationen, die wir nutzen kdnnen, um Kosten fir Wege abzuschéatzen.
Als allgemeines Suchverfahren, das eine globale Schéatzfunktion benutzt, kdnnen
wir die folgende Prozedur angebenb. Dabei sind in einer Liste OFFEN alle bisher
erzeugten, aber nicht nicht expandierten Knoten enthalten. In der Liste
GESCHLOSSEN sind alle bereits abgearbeiteten Knoten enthalten.

1. Die Liste OFFEN wird mit dem Anfangszustand initialisiert.

2. Die Liste GESCHLOSSEN wird als leere Liste initiaisiert.

3. Falls OFFEN leer ist, bricht die Suche ab und es wird ausgegeben:
"Zielzustand kann nicht erreicht werden.”

4. Der erste Knoten n der Liste OFFEN wird aus OFFEN entfernt und der Liste
GESCHLOSSEN hinzugefugt.

5. Wenn n der Zielzustand ist, bricht die Suche ab und der Pfad, der zu n
fahrte, wird ausgegeben.

Wenn n nicht der Zielzustand ist, wird n expandiert, so dal} eine Menge M
aller Nachfolger von n entsteht, die nicht schon Vorganger von n sind.
M wird als Nachfolger von n eingetragen.

6. Alle Elemente von M, die noch nicht in OFFEN oder GESCHLOSSEN vorhan-
den sind, werden der Liste OFFEN hinzugefugt.

7. Alle anderen Elemente aus M konnen dazu fuhren, da3 Kanten umdiri-
giert werden mussen und dann auch die Kosten von schon erzeugten
Nachfolge-Knoten aktualisiert werden mussen.

8. Die Liste OFFEN wird entsprechend der geschatzen Kosten sortiert, so dal3
der meistversprechende Knoten nach vorn kommt.

9. Rucksprung auf 3.
Wir koénnen dies in Prolog so aufschreiben:

suche(Ofen, Geschl, Ziel):-
menber (Ziel, Ofen), %Abbr uchbedi ngung Erfol g.
write(Geschl).

suche(Ofen, Geschl, Ziel):-
best (OFfen, Best, RestOffen), %oortierung von Ofen; best
%R definiert sein.
findal | (Nachf,
nachf (Best, Nachf), % Nachf ol ger des besten
% Knot ens
Al l eNachf),
verteil e(A | eNachf, RestOfen, [Best| Geschl], NeuOfen),
% kei ne Doppelten in
% NeuOf fen. verteile muB3

6 Die originale, englische Beschreibung von Suchverfahren ist in Nilsson (1980:64f) zu finden.

% definiert sein.
suche(NeuOf fen, [Best| Geschl], Ziel). % ekursiver Aufruf

suche([], Geschl, Ziel):- % Abbr uchbedi ngung M Rer f ol g.
wite(‘Msserfolg!’), !, fail.

Die Bestimmung des vielversprechendsten Knotens wird von der hier nicht
angegebenen Klausel best geleistet. Wenn wir kein Kriterium finden, das uns
hilft, nur vielversprechende Knoten zu expandieren, realisiert das Suchverfah-
ren die Breitensuche, wenn die Kosten immer 1 sind. Da die Kosten des bisherigen
Pfades fur alle Expansionen eines Knotens gleich sind, werden dann alle von die-
sem Knoten fortfuhrenden Kanten verfolgt. Das Verfahren realisiert eine unin-
formierte Tiefensuche, wenn die Liste OFFEN von verteil e einfach so sortiert ist,
da die neuen Nachfolger nach vorn kommen, wobei best jeweils der erste Knoten
wahlt.

3.1.4 Bergsteigen

Die Reihenfolge, in der Kanten ausgewdhlt werden, ist entscheidend. Im idealen
Fall wirden wir nur einen Pfad verfolgen: einen, der zur Ldsung fahrt! Wir kon-
nen uns Kriterien Uberlegen, nach denen beurteilt wird, wie vielversprechend
ein Knoten ist -- und schreiben dann best entsprechend. Mit anderen Worten, wir
schatzen, ob ein Knoten zum Losungspfad gehort, anhand bestimmter Kriterien.
Da die Kriterien Anndherungen an Gesetzmaligkeiten sind, wird eine Suche, die
sich nach Kriterien richtet, heuristische Suche genannt. Ein solches Kriterium
konnte die Unterschiedlichkeit des erreichten Zustands zum Zielzustand sein. Ein
Verfahren, das nur den Abstand zum Ziel zu verringern sucht, heil3t Bergstei-
gen (hill climbing). Tatsachlich fuhrt so ein Kriterium zu einer sinnvollen Ein-
schrankung der zu expandierenden Knoten. Es gibt aber Situationen, wo man sich
vom Ziel wieder entfernen mul3, um es schlieBlich zu erreichen! Solche Situatio-
nen kann eine derart lokale Abschatzung nicht behandeln. Es wird ja nur jeder
einzelne Knoten mit dem Zielzustand verglichen. In dem Missionare-und-
Kannibalen-Beispiel missen zum Beispiel Personen wieder zurtckfahren, damit
am Ende alle am anderen Ufer sind, ohne dal3 ein Missionar gefressen wiurde. Es
gibt Knoten, die bereits dichter am Ziel sind als der Nachfolgeknoten, der auf dem
optimalen Pfad zum Ziel liegt. Ein solcher, sehr gut bewerteter Knoten heildt 1o0-
kales Maximum und das Problem fir einen Bergsteige-Algorithmus, von diesem
nicht auf den richtigen Nachfolgeknoten zu kommen, heil&t Vorgebirgspro-
blem.

Die folgende Prozedur fuhrt Bergsteigen durch:

1. Bilde eine einelementige Liste, die den Wurzelknoten mit dem Startzu-
stand enthélt.

2. Bis die Liste leer ist, nimm das erste Element der Liste.
a) prufe, ob das Element der Zielknoten ist;
wenn ja, halte an und melde Erfolg; wenn nein, geht es weiter.
b) wenn das Element Nachfolger hat, entferne es aus der Liste. Ordne die
Nachfolger nach dem geringsten Abstand zum Ziel an und fige den be-
sten Nachfolger in die Liste ein. Die Liste enthédlt also nie mehr als ein

Element.

3. Wenn der Zielknoten gefunden wurde, melde Erfolg, sonst MiRerfolg.

3.1.5 A*

Statt der lokalen Abschétzung konnen wir auch eine globale Abschatzung Uber
den gesamten Pfad vornehmen. Wir kdénnen ein Kriterium suchen, das uns eine
Abschatzung liefert, wie weit es von diesem Knoten zum Zielzustand ist, und ein
weiteres Kriterium, das den zurickgelegten Weg vom Anfangsknoten zu diesem
Knoten mifRt oder abschatzt. Die globale Schéatzfunktion fir einen beliebigen
Knoten n ist:

f(n) =g(n) + h(n)

wobei g(n) die Kosten des Pfades vom Anfangszustand zum Knoten n angibt und
h(n) die Kosten vom Knoten n zum Zielzustand. An einem Knoten n kennen wir die
Kosten des bisherigen Pfads, g(n). Die Kosten fir den zukinftigen Pfad kennen
wir nicht -- wir muissen sie schatzen. Im Gegensatz zum Bergsteigen vergleicht
h(n) nicht nur den Knoten n mit dem Ziel, sondern schétzt den restlichen Pfad von
n bis zum Ziel ab. Wenn wir die Kosten zu niedrig einschatzen, missen maoglicher-
weise sehr viele Knoten expandiert werden, bevor der minimale Pfad zur L6sung
gefunden wird. Wenn wir die Kosten zu hoch einschdtzen, kann der minimale Pfad
Ubersehen werden - er befindet sich dann in dem nicht verfolgten Teil des Gra-
phen. Wenn die Schéatzfunktion h die untere Grenze der tatséchlichen Kosten h*
trifft, so heildt das Suchverfahren, das sie nutzt, A*. Dieses Verfahren findet im-
mer einen minimalen Pfad.

Nach Nilsson (1971) ist A* ein zulassiges Verfahren. Ein Suchverfahren ist
zulassig (admissible), wenn es fur jeden Graph einen optimalen Pfad findet und
dann anhélt, falls es einen solchen Pfad gibt. Der Beweis fir die Zulassigkeit von
A* &t sich folgendermafRRen nachvollziehen. Wir argumentieren fir den Fall, daR
es eine Losung fir das Suchproblem gibt. Wir schreiben die tatséchlichen Kosten
fur einen Pfad stets mit *, die geschatzten ohne Zusatz. Die tatsachlichen Kosten
des Gesamtpfades werden als Kosten des Startknotens s notiert: f*(s). Fir den Be-
weis der Zulassigkeit von A* betrachten wir zundchst das foldende Lemma.

Lemma: Wenn h(n) < h*(n) fur alle Knoten n, dann gibt es immer fir jeden op-
timalen Pfad zum Ziel einen Knoten n' dieses Pfades in OFFEN und es gilt f(n’)
< f*(n").

Beweis: Sei ny, n, ..., h, ein optimaler Pfad vom Startknoten n, zum Zielknoten n,.
Sei n' der erste Knoten dieses Pfades in OFFEN. Es gibt immer einen solchen
Knoten, denn sonst ware n, in GESCHLOSSEN und der Algorithmus terminiert.
Da alle Vorganger von n' bereits geschlossen sind, gilt g(n’)=g*(n’). Somit
gilt auch

f(n) = g*(n') + h(n) < g*(m) + he() = f*(m)

Theorem: Wenn h(n) < h*(n) und cost(n) >¢ >0 fur alle Knoten n, dann ist A*
zulassig.

Beweis: Angenommen A* terminiert nicht, indem es einen optimalen Pfad findet.
Dann gibt es drei Félle:

Fall 1:Was ware, wenn A* anhielte, bevor das Ziel gefunden ist? Dann muRte
OFFEN leer sein, denn sonst halt A* nicht an einem anderen as dem
Zielknoten an. Von dem Lemma wissen wir aber, dal es immer einen
Knoten n' in OFFEN gibt, der auf einem optimalen Pfad liegt, bevor A*
anhélt. Also kann A* nicht anhalten, bevor das Ziel gefunden wurde.

Fall 2: Was ware, wenn A* nie anhalt? Knoten, die mehr als
M = f*(s)/ ¢

Schritte vom Start entfernt sind, werden nie geodffnet, denn sie wéaren
teurer als irgendein Knoten n’ in OFFEN, der auf einem optimalen Pfad
liegt. Es gibt also nur endlich viele Knoten und Pfade zu diesen Knoten,
die durchlaufen werden konnen, bis ein optimaler Pfad gefunden wird.
Somit terminiert A* immer in endlicher Zeit.

Fall 3: Was ware, wenn A* einen Lo6sungspfad finden, der nicht optimal ist?
Ein solcher Pfad hétte dann ja hohere Kosten, d.h.

f*(t) = g(t) > f*(s).

Laut Lemma muf? es vorm Anhalten einen Knoten n' in OFFEN gegeben
haben, so daf3

f(n') < f*(s) < f(t).

Dann aber wahlt A* den Knoten n' und nicht t.

Eine hinreichende Bedingung fur h(n) < h*(n) (und somit fur die Zulé&ssig-
keit) ist die Monotonie von h. Unter Monotonie wird verstanden, da die ge-
schatzten Kosten f fur Nachfolger immer groRer als die Kosten fur Vorganger-
knoten sind. Mit anderen Worten: Die Differenz der geschatzten Kosten fir zwei
aufeinanderfolgende Knoten ist nie groRer als die tatsadchlichen Kosten.

h(n;) < h(n) + cost(n;,n;) wobei n, Nachfolger von n;ist.

Zusétzlich zur Zuléssigkeit von A* wollte Nilsson die Optimalitdt beweisen. Ein
Verfahren A ist informierter als ein Verfahren B, wenn ha(n) > hg(n) fur alle

inneren Knoten n gilt. Es wird angenommen, daf3 fir alle Knoten dieselbe Schéatz-
funktion h verwendet wird. Nilsson argumentiert, dal3 A* optimal ist, insofern als
es nie mehr Knoten expandiert als irgendein anderes zulassiges Verfahren, das
weniger informiert ist as A*. Was ware, wenn A* Knoten offnen wirde, die A
nicht offnet? Da A zuldssig ist, mul3 A die Kosten solcher Knoten fir teurer als
f*(s) haten, denn sonst wirden sie gedffnet. Also setzt A h(n) = f*(s) - g*(n).
Dann ware aber A informierter as A*, was wir anders vorausgesetzt haben. Also
ist A* optimal. Gegen diese Argumentation wendet sich Gelperin (1977). Hier sei
von der Diskussion nur angefiihrt, da® A ja Information besser nutzen koénnte, z.B.
indem es die Liste GESCHLOSSEN analysiert oder indem es eine Schatzfunktion f
besitzt, die nicht lediglich g und h addiert.

3.1.6 Spielbdume

Der Unterschied zwischen den eben betrachteten Graphen und Spielbaumen ist
nicht nur, dal3 jeder Knoten nur einen Vorgangerknoten hat, also ein Baum ist.
Wesentlich ist, daR fiir die Knoten einer Ebene’ der eine Spieler die Nachfolger-
knoten bestimmt, wahrend fir die Knoten der nachsten Ebene der andere Spieler
die Nachfolger bestimmt. Man geht bei Spielbdumen also von zwei gegeneinander
spielenden Personen aus. Wenn der Vorteil des einen Spielers genau dem Nachteil

7 Die Ebene wird Halbzug (ply) genannt. Die Anzahl der Halbziige ist die Tiefe des Baums.

des anderen Spielers entspricht, spricht man von einem Nullsummenspiel, weil
sich Nachteile (dargestellt durch negative Zahlen) und Vorteile (dargestellt durch
positive Zahlen) beider Spieler genau zu O addieren. In einer solchen Situation
gibt es nicht einen Zielzustand und einen optimalen Pfad, sondern fir jeden Spie-
ler einen anderen. Die Blatter oder Endpunkte des Baumes geben Gewinn oder
Verlust fur jeden Spieler an. Diese Information soll mdglichst schon am Anfang
verwendet werden. Dabei kann jeder Spieler davon ausgehen, dal im fur ihn
schlimmsten Fall der Gegenspieler, wenn er an der Reihe ist, den fur ihn selbst
schlechtesten, fir den Gegenspieler aber besten Nachfolgezustand wahlen wird.

Ein einfaches Beispiel ist "den letzten beillen die Hunde": ein Stapel von 5
Karten liegt auf dem Tisch, von dem jeder Spieler abwechselnd entweder eine oder
zwei abnimmt. Wer die letzte Karte des Stapels nimmt, hat verloren. Der Spielbaum
ist im folgenden so notiert, daf die Anzahl der genommenen Karten an den Kan-
ten, die Anzahl der auf dem Stapel verbleibenden an den Knoten und der Verlust
als "-" notiert ist.

> 110 Spieler A
/\
max
4 +10 3 .10 Spieler B
/X /\ "
3+10 2 +10 1 -10 2 +10 Spieler A
2-10 1 +10 1 +10 -A -A -A 1+10 Spieler B
-10 -10
AN |
min
1 -B -8B "B -B Spieler A
-10 +10 +10 +10 10
{ Spieler B
-A
-10

Vom Ergebnis aus kann A den Baum analysieren und danach den ersten Zug
entscheiden. Links unten ist ein Zustand, in dem A verloren hat. Wir kénnen die-
sem Zustand eine Bewertung zuordnen, die negativ ist, z.B. -10. Der Zustand |aft
sich nicht vermeiden, wenn der Vorgangerzustand erreicht ist. Also kann die ne-
gative Bewertung an den Vorgangerzustand hochgereicht werden. Der Vorgan-
gerzustand |&t sich von A nicht vermeiden, wenn 2 Karten vorhanden sind und B
am Zug ist. Dann wird B nicht freiwillig verlieren, indem B zwei Karten nimmt.
Das wére eine positive Bewertung fiar A, die wir mit +10 notiert haben. B wahlt
aber immer negativ bewertete Zustdnde. Also bewertet A schon diesen Zustand mit
-10 und nimmt in der Situation, wo drei Karten auf dem Stapel liegen, zwei davon.
Dann kann B nur noch verlieren, der Zustand bekommt also vom Verlust von B die
positive Bewertung hochgereicht. Das wird wiederum B nicht zulassen und des-
halb in der Situation mit 4 Karten nicht eine Karte nehmen. B sucht nach einem
Zustand, der niedriger bewertet ist als +10. Leider fihrt aber das Nehmen von zwei
Karten ebenfalls zu Bs Verlust. Es gibt keinen schlechter bewerteten Nachfolgezu-

stand. Deshalb wird bereits die Situation mit 4 Karten auf dem Stapel mit +10 positiv
bewertet. Da A anfangt, wird A sicherlich den positiv bewerteten Zustand wahlen.

Die Bewertungen der Ergebnisse werden also nach oben weitergereicht. Die
tatsachlichen Ergebnisse sind an den Blattern des Baumes aufgezeichnet. Sie bil-
den die Suchgrenze. Wenn A am Zug ist, erhdlt der Knoten den Wert des am besten
bewerteten Nachfolgeknoten. Das ist die max-Ebene. Wenn B am Zug ist, erhédlt der
Knoten den Wert des am schlechtesten bewerteten Nachfolgers. Das ist die min-
Ebene. Denn A wahit den fir A besten, B den fir A schlechtesten Zug. Dieses Ver-
fahren, Bewertungen von unteren Knoten an obere hochzureichen, hei3t Mini-
max-Algorithmus, weil abwechselnd maximale und minimale Werte nach oben
Ubertragen werden. In dieser Weise werden die Werte bis zum Anfangszustand
hochgereicht. Wenn wir den gesamten Baum durchgehen koénnen, wissen wir be-
reits am Anfang, wer gewinnt.

Wir konnen eine Prozedur fur das Minimax-Verfahren angebenS:

1. Bestimme, ob die aktuelle Ebene Suchgrenze, eine min-Ebene oder eine
max-Ebene ist.

2. Wenn die Suchgrenze erreicht wurde, gib die statische Bewertung als
Ergebnis bekannt!

3. Wenn es eine min-Ebene ist, verwende die Minimax-Prozedur bei den
Nachfolgern der gegenwartigen Stellung und gib das Minimum der Er-
gebnisse an!

4. Wenn es eine max-Ebene ist, verwende die Minimax-Prozedur bei den
Nachfolgern der gegenwartigen Stellung und gib das Maximum der Er-
gebnisse an!

Dieses Verfahren setzt voraus, da wir den gesamten Baum erzeugen oder
wenigstens bis zu einer Tiefe, bei der eine Bewertung der Stellungen mdglich ist
(Suchgrenze). Es handelt sich um eine Tiefensuche mit einer Bewertungs-
funktion, deren Bewertungen zuriuck nach oben Ubertragen werden. Der Baum
des Beispiels hat im schlimmsten Falle eine Tiefe d von 5 Halbzigen und eine Ver-
zweigung b an jedem Knoten (Anzahl der Nachfolger) von 2. Die Anzahl der Bléat-

ter ist maximal bd, also im Beispiel 32. Die Menge der Blétter wéachst exponentiell

mit der Baumtiefe. Die Anzahl aller explorierten Knoten ist schlimmstenfalls pd+1.
1, im Beispiel also 63. Wir kénnen den Baum aber beschneiden.

Tatsachlich habe ich den rechten Zweig des Baumes nicht mehr beschrieben,
weil der Zustand mit 4 Karten auf dem Stapel bereits die héchste Bewertung hat -
warum sollte A dann Uber den anderen Zweig noch nachdenken, der nicht besser
sein kann! A kann aufhéren, wenn eine neue Bewertung nicht besser wird als die
bisher schlechteste; B kann aufhéren, wenn eine neue Bewertung nicht kleiner
wird als die bisher grofte Bewertung. Wir koénnen also ein beschréankendes Inter-
vall einfohren, dessen untere Grenze alpha der minimale Wert ist, den A garan-
tiert schon erreicht hat, und dessen obere Grenze beta der maximale Wert ist, den
A erhoffen kann zu erreichen. Aus der Sicht von B ist beta der minimale Wert, den
B bestimmt erreichen kann. Jeder Knoten, dessen Bewertung aullerhalb dieses
Intervalls liegt, ist irrelevant. Die Suche wird abgebrochen,

8 Die Darstellung entspricht der von Winston (1987).

wenn eine Bewertung eines Knoten, an dem A am Zuge ist,
kleiner oder gleich alpha ist, oder

wenn eine Bewertung eines Knoten, an dem B am Zuge ist,
grolRer oder gleich beta ist.

Anders ausgedrickt, es wird nur weitergesucht, wenn A einen hodheren Wert
as alpha erreichen kann, oder wenn B einen kleineren Wert als beta erreichen

k ann.

Ein Verfahren, das den Minimax-Algorithmus um das Beschneiden mithilfe

von alpha und beta erweitert, heit Alpha-Beta-Algorithmus.

alpha | beta
o | 4o Spieler A
+10 1
+10 +10 +10 max (alpha)
IE alpha| beta |Lalpha beta Spieler B
o +oo +10 | +oo
+10 +10
+10 Schnitt!
+1C +10 min (beta)
Iial pha [bet a Ig;al pha | beta IL al pha| bet a Spieler A
-0 -0) +10 +10 +00
-10 +10 -10
+10 Schnjtt!
Y WV A4
max (alpha)
-10 10 -10
al pha |bet a al pha|bet a |h_ al pha | bet a \ Spieler B
-0 +00 10 | +oo - 00 +10
-10 +10 +10 -A
+10 1
min (beta)
0| NI \+1c +1C
al pha | beta N Spieler A
- +00 -B -B -B P
-10
10 max (alpha)
A Spieler B

9 Wie man am Beispiel sehen kann, ist ein kleinerer Wert gut fiir B, denn Bs Verlust wird mit +10 notiert, Bs

Gewinn mit -10!

In jedem Knoten kann die Entwicklung des alpha- und beta-Wertes nachvoll-
zogen werden. Auf der alpha-Seite ist jeweils Uber den aktuellen Werten zu maxi-
mieren, auf der beta-Seite zu minimieren. Alpha und beta sind lokale Variablen in
jedem Knoten, die jeweils nur von einem Vorgangerknoten an seine Nachfolger
weitergereicht werden.

Im Beispiel wird zunéchst gemaR der Tiefensuche der linkeste Teilbaum auf-
gebaut. Der linkeste unterste Knoten erhélt die Bewertung -10, die hochgereicht
wird und as neuer alpha-Wert eingetragen wird. Der Knoten dariber erhdlt von
seinem zweiten Unterknoten den Wert +10 hochgereicht, der fir beta eingetragen
wird. Da es sich aber um ein minimierendes Hochreichen handelt, wird -10 an den
Knoten darliber weitergegeben. Hier, bei Knoten c, haben wir nun auch noch vom
Schwesterknoten den Wert +10. Dies ist der hochste Wert, den A bekommen kann,
also beta. Es wird dann der zweitlinkeste Pfad exploriert, bei dem 2 Karten auf dem
Stapel liegen (Knoten g). Dieser Knoten wird zundchst so expandiert, da A eine
Karte nimmt, was dazu fuhrt, da3 B die letzte Karte nehmen mufld und verliert. Der
Knoten h mit einer Karte erhdlt als aktuelle Bewertung +10. Die zweite Expansion
des Knoten g mit den 2 Karten muf3 nun nicht mehr untersucht werden, denn die
Bewertung von h ist bereits +10, also groRer oder gleich beta. Nach der beta-Regel
schneiden wir also alle weiteren Expansionen ab. Dann wird der rechte Teilbaum
exploriert. Knoten i wird expandiert, so da? der erste Nachfolgerknoten | eine Be-
wertung erhalten kann, namlich -10. Diese Bewertung ist nicht groRer as der
schlechteste Wert, mit dem A rechnen kann. Die Bewertung von j ist kleiner
gleich alpha. Nach der alpha-Regel brauchen wir keine weiteren Expansionen des
Knoten i zu untersuchen. Der gesamte so beschnittene Baum hat nur noch 5 Bléat-
ter. Dies entspricht ungeféhr der Quadratwurzel aus der Anzahl der maximalen
Blatter. Es ist etwas weniger, weil schon der unbeschnittene Baum weniger als 32
Blatter hatte.

Wir konnen eine Prozedur fir das Alpha-Beta-Verfahren angebenl©:

Bestimme, ob die Ebene die oberste Ebene ist, oder ob die Suchgrenze erreicht
wurde, oder ob es eine min-Ebene oder eine max-Ebene ist.

a) Falls es die oberste Ebene ist, soll alpha -« und beta +« sein.

b) Fals die Suchgrenze erreicht wurde, berechne den statischen Wert der
Stellung und gib ihn als Ergebnis zurick.

c) Falls es eine min-Ebene ist, fihre die folgenden Schritte durch, bis alle
Nachfolger durch Minimax geprift sind oder alpha = beta:

cl) Beta wird das Minimum von: dem beta-Wert des Elternknotens und dem
kleinsten bisher durch die Minimax der Nachfolger ermittelten Wert.

c2) Wende Minimax auf den nachsten Nachfolger der gegenwartigen Stel-
lung an und ersetze das vorliegende alpha und beta durch die Ergebnis-
se dieser neuerlichen Anwendung von Minimax.

c3) Liefere beta als Ergebnis.

d) Falls es eine max-Ebene ist, fihre die folgenden Schritte durch, bis alle
Nachfolger durch Minimax gepruft sind oder alpha > beta:

10 Die Darstellung entspricht der von Winston (1987).

dl) Alpha wird das Maximum von: dem alpha-Wert des Elternknotens und
dem grofRten bisher durch Minimax der Nachfolger ermittelten Wert.

d2) Wende Minimax auf den nachsten Nachfolger der gegenwaértigen Stel-
lung an und ersetze das vorliegende alpha und beta durch die Ergebnis-
se dieser neuerlichen Anwendung von Minimax.

d3) Liefere alpha als Ergebnis!

Im allgemeinen Fall wird die Verzweigung b eines Baumes durch den Alpha-
Beta-Algorithmus verringert, und zwar maximal auf die Quadratwurzel von b. I'm
Beispiel verringert sich die Verzweigung von 2 auf die Wurzel von 2, aso 1,4. Ins-

gesamt brauchen bei gerader Tiefe (dann ist B als letzter am Zug) nur 2pd/2 4
Blatter statisch bewertet zu werden. In unserem Beispiel sind das 7 Bléatter. Bei un-

gerader Tiefe (A ist als letzter am Zug) werden bestenfalls nur p(d+1)/2 4 p(d-1)/2
Blatter bewertet. In unserem Beispiel sind das 4,28. Im besten Falle kann der Al-
pha-Beta-Algorithmus doppelt so tief suchen wie ein erschopfender Minimax-
Algorithmus. Im schlechtesten Fall expandiert auch der Alpha-Beta-Algorithmus
alle Knoten.

Unser Beispiel hat nur zwei Bewertungen: +10 und -10. Es kann aber auch
Zwischenbewertungen geben wie z.B. -5, 0, +5. In diesem Falle sind die vom Alpha-
Beta-Algorithmus hochgereichten Knoten-Bewertungen nicht exakt. Bei Zwi-
schenwerten kann die korrekte Bewertung fir einen Knoten, bei dem A am Zug
ist, groRer sein as vom Alpha-Beta-Algorithmus errechnet. Die Bewertung fur
einen Knoten, bei dem B am Zug ist, kann kleiner sein als vom Alpha-Beta-Al-
gorithmus angegeben. Wir wissen aber, dal3 diese Unkorrektheit fir das Spielen
nicht wichtig ist: A muf3 sich nicht Uberlegen, was sein oder Bs schlechtest maogli-
cher Zug waére.

Bei realistischen Spielen wie z.B. Schach kann der Wert fir alpha und beta
nicht dadurch gefunden werden, dald man ein Endergebnis nach oben reicht. Die
Suche wird in der Tiefe beschrankt, z.B. auf 7 Halbzlige. Die Bewertung der Knoten
auf der Ebene 7 muf3 dann durch eine Bewertungsfunktion gefunden werden. Die-
se kann die Erfolgsaussichten fir das Gewinnen oder Verlieren abschétzen. Dazu
werden beim Schach etwa die Wertigkeit der Figuren und bestimmte Stellungs-
merkmale (z.B. Laufer am Rand) genutzt. Diese geschétzten Bewertungen werden
dann mit dem Minimax-Algorithmus nach oben gereicht, so dal3 alpha und beta
bestimmt werden konnen. Die Tiefenbeschrankung kann auch iterativ angewandt
werden: zunéchst wird der Alpha-Beta-Algorithmus fir eine bestimmte Tiefe an-
gewandt und dann wird die Liste der Nachfolgezustande geméR der Bewertung
sortiert und wieder, fir eine grollere Tiefe, der Alpha-Beta-Algorithmus ange-
wandt. Dies wird fortgesetzt bis eine bestimmte Zeitgrenze erreicht ist. Die zu dem
Zeitpunkt aktuellen Bewertungen werden fir die Auswahl des nachsten Zuges ge-
nutzt.

Bei dem - auch psychologisch untersuchten - Schachspiel wird besonders
deutlich, dal3 die Formalisierung eines Spiels als Suchproblem zwar die Aufgabe
beschreibt, nicht jedoch das menschliche Vorgehen. Je besser ein Schachspieler
ist, desto weniger Stellungen Uberlegt er sich dberhaupt. Einige 10 Stellungen
werden sehr genau untersucht, alle anderen werden gar nicht betrachtet (De
Groot 1965). Die erfolgreichen Schachprogramme, die mit den oben beschriebe-
nen Verfahren arbeiten und bereits Weltmeister schlagen, untersuchen Millio-
nen (und mehr) Stellungen. Je groRBer die Suchtiefe, desto erfolgreicher spielen
die Programme. Allerdings verwenden sie fir den Erdffnungsteil der Schachpar-
tien auch menschliches Wissen, das ihnen in Form einer Ero6ffnungsbibliothek
zur Verfligung gestellt wird.

3.1.7 Literatur

Barr, A., Davidson, J. (1979): Representation of Knowledge, in: Barr, Feigen-
baum (eds): The Handbook of Al,

De Groot, A.D. (1965): Thought and Choice in Chess, The Hague: Mouton

Gelperin, D. (1977): On the Optimality of A*, in: Artificial Intelligence Jour-
nal, 8, S. 69-76

Nilsson,N. J. (1980): Principles of Artificial Intelligence, Berlin: Springer

**Nilsson,N. J. (1971): Problem-Solving Methods in Artificial Intelligence,
McGraw-Hill

Pearl, J. (1984): Heuristics - Intelligent Search Strategies for Computer Pro-
blem Solving, Reading, MA: Addison-Wesley

**Winston, P. (1987): Kinstliche Intelligenz, Bonn: Addison-Wesley.

3.2 Problemlésung als Beweis

Die Beschreibung von Problemen in einer Form, die die Losung des Problems er-
laubt, ohne da3 man das Problem aus der sinnlichen Wahrnehmung heraus be-
greifen muB, ist der Jahrhunderte alte Traum von Logikern. Schon an der Form
einer Aussage soll man erkennen konnen, ob sie wahr ist oder nicht. Wenn zwei
Formen verschieden aussehen, obwohl sie doch dasselbe bedeuten, soll man mit-
hilfe von einfachen Manipulationen erkennen konnen, da sie "eigentlich”
gleich sind. Diese Manipulationen verandern nicht den Wahrheitsgehalt, sie sind
wahrheitserhaltend und falschheitserhaltend. Die Formen bestehen aus
verabredeten (per Konvention festgelegten) Zeichen (das sind Symbole) und den
Moglichkeiten ihrer Anordnung. Dies ist die Syntax. "Syntaxis" ist das griechi-
sche Wort fiar Anordnung.

Die Bedeutung von Aussagen, die in einer bestimmten Anordnung von Symbolen
dargestellt sind, ist ihr Wahrheitswert. Die Bedeutung eines Bezeichners (z.B.
"Baum" oder "Uta") sind die bezeichneten Objekte selbst (z.B. alle Baume oder eine
Person). Es gibt Aussagen, die keinen Wahrheitswert haben. So sind Hoffnungen
oder Befurchtungen nicht wahr oder falsch, sondern vielleicht berechtigt, (un-
)Jangenehm, anspornend. Der Satz "Hoffentlich komme ich heute nicht zu spat.”
hat in diesem Sinne keine Bedeutung. Aber natlrlich ist es ein sinnvoller Satz.
Wir trennen Sinn von Bedeutung seit Gottlob Frege. Der Sinn eines Satzes ist un-
abhangig von seinem Wahrheitsgehalt. Wir verstehen den Satz "Der Stuhl ist rot"”
unabhéngig davon, ob er wirklich rot ist. Der Sinn eines Bezeichners hangt mit
unserer Wahrnehmung zusammen. Esist seine Verankerung in unserer Erfah-
rung. Der Sinn kann verschieden sein, wo die Bedeutung gleich ist. Eigentlich
umfat Semantik sowohl Sinn als auch Bedeutung. In der Logik befallt man sich
meist mit der Bedeutung, wobei man sie allerdings im Sinn zu verankern sucht.

Im folgenden wird eine kurze Einfuhrung in die Logik gegeben. Dabei be-
handeln wir hier nur die Aussagenlogik. Die Aussagenlogik behandelt nicht die
einzelnen Bestandteile von Aussagen wie etwa Quantoren (alle, einige, mindestens
eine, genau eine, viele...), Individuen, Variablen. Stattdessen wird ein Sachverhalt
durch einen einzigen Ausdruck zusammengefaft. Diesem Ausdruck wird ein
Wahrheitswert zugeordnet.

3.2.1 Syntax
Die Aussagenlogik notiert komplette Sachverhalte durch Aussagensymbole. So ist
zum Beispiel der_Stuhl_ist_rot eine Aussagensymbol. Gelaufiger ist allerdings A, B,
. Aussagensymbole sind atomare Formeln oder Atome. Sie kdnnen mit Verknlp-
fungszeichen zu weiteren Formeln zusammengesetzt werden. Die Syntax der Aus-
sagenlogik definieren wir induktiv:
1) Die Wahrheitswerte und Aussagensymbole sind Formeln.
2) Sind A und B Formeln, so auch

- A A&B AOB A-B A+ B

3) Das sind alle Formeln.

Dirk Siefkes hat in seinem schonen Buch "Formalisieren und Beweisen"
(1990)11 das folgende Beispiel in Aussagenlogik notiert: Von vier Kindern hat ei-
nes einen Ball in ein Fenster geworfen. Anne sagt: "Emil war's." Emil sagt:"Nein,
Gustaf." Gustaf sagt:"Emil lugt." Fritz sagt:" Ich war's nicht!"™ Nur ein Kind sagt die
Wahrheit, alle anderen lugen. Fur "Anne hat den Bal ins Fenster geworfen"”
schreiben wir Abal |, entsprechend Eball, Gball, Fball fur die anderen maogli-
chen Werfer. Fir "Anne hat die Wahrheit gesagt" schreiben wir Awahr, entspre-
chend Ewahr, Gwahr, Fwahr fur die anderen moglichen (Nicht)Lugner. Der ganze
Fall kann also folgendermafen in Aussagenlogik geschrieben werden:

Awahr « Eball

Ewahr « Goall

Fwahr o - Fball

Gnahr o - BEwahr

Awahr - - BEwahr & -Fwahr & - Gwaahr

Ewahr - - Awahr & - Pwahr & - Gaahr nur ein Kind sagt die Wahrheit!
Fwahr - - Awahr & - BEwahr & - Gaahr

Gnvahr - - Awahr & - BEwahr & - Fwahr

Awahr O Ewahr O Fwahr O Gwahr eins der Kinder warf den Ball

Abal I - Eball & - Fball & - Gbhall

J

Eball - - Aball & - Fball & - Ghall nur ein Kind warf den Ball!
Fball - - Aball & - Eball & - Gball
Ghall - - Aball & - Eball & - Fball
Um mit diesen Aussagen arbeiten zu konnen, missen wir aber auch Wahr-
heitswerte zuordnen koénnen. Wir wollen aus diesen Formen ja ablesen koénnen, ob

es moglich ist, da3 genau ein Kind die Wahrheit sagt und genau ein Kind den Ball
ins Fenster geworfen hat, und - wenn ja - welches Kind es war.

3.2.2 Semantik
Die Wahrheitswerte sind nur wahr (W) und falsch (F). Fir Verknipfungen gibt es

Wahrheitstafeln, die die Wahrheitsfunktion (Boolesche Funktion) von Wahrheits-
werten in Wahrheitswerte angeben:

11Djeser Abschnitt ist eng an dies Buch angelehnt.

W F &|W F <>|W F 4|W F H|W F

lFw wwer www wwe wwre
FIF F Flw F Flw W F|F w

Dawir bei den Aussagen nicht von vornherein wissen, ob sie wahr oder falsch
sind, belegen wir sie mit den moglichen Wahrheitswerten. Eine Belegung einer
Formel ist ein Abbildung von der Menge der Aussagensymbole der Formel in die
Menge der Wahrheitswerte. Wir werten eine Formel unter einer Belegung aus,
indem wir jedes Aussagensymbol durch seinen Wahrheitswert unter der Belegung
ersetzen und dann die Wahrheitstafeln anwenden. Eine Formelmenge X ist wahr
unter einer Belegung, wenn jede Formel aus X unter der Belegung wahr ist. Die
Formelmenge ist also wie eine Konjunktion von Formeln. Die Auswertung der
Formel Gwahr - - Awahr & - Ewahr & - Pwahr flr eine willkidrlich gewéhlte Be-
legung ergibt:

Gwahr - - Awahr & - Ewahr & - Fwahr
w L Fr L Fy L F

| W W w |

W |

W

Wir kénnen natirlich auch umgekehrt fragen, unter welchen Belegungen
die Formel wahr ware. Die Formel wéare wahr, wenn Gmahr falsch wére und minde-
stens eins von Awahr, Ewahr, Fwahr wahr ist; oder wenn Gwahr wahr ist und Awahr,
Ewahr, Fwahr alle falsch sind. Wenn alle Formeln des Falls wahr sein sollen und
wenn Gaahr wahr sein soll, sind die moglichen Belegungen eingeschrankt. Wir
gehen die Formeln des Fenster-Falles durch und rechnen die Belegungen ruck-
warts: Awahr ist bereits mit fal sch belegt. Damit die erste Formel wahr wird, muf}
Ebal | mit f al sch belegt werden. Ewahr ist schon mit falsch belegt; damit die zweite
Formel wahr wird, wird Gbal | mit falsch belegt. Fwahr ist bereits mit f al sch belegt.
Damit die dritte Formel wahr wird, mu3 -Fbal | falsch sein, also Fball wahr. Damit
ist das Problem gel6st, wer den Ball durch das Fenster geworfen hat. Alle weiteren
Formeln lassen sich mit Wahrheitswerten belegen.

Mit einem ahnlichen Vorgehen lalt sich auch die Frage beantworten, ob An-
ne die Wahrheit gesagt hat. Wenn alle Formeln wahr sind und Awahr wahr ist,
dann sind Ewahr, Fwahr, Gwaahr falsch. Wenn aber Gaahr falsch ist und die vierte
Formel soll wahr sein, dann muld Ewahr wahr sein. Das ist ein Widerspruch! Es gibt
also keine Belegung, so da3 Awahr wahr ist und ale Formeln wahr sind. Wenn
Awahr wahr ist, dann ist die Formel

Gnahr o = Ewahr
falsch. Anne ist mit einem Widerspruchsbeweis Uuberflhrt.

3.2.3 Erfullbarkeit, Allgemeingiltigkeit, Folgerbarkeit

Eine Formel oder Formelmenge heildt erfullbar, wenn es eine Belegung gibt,
unter der sie wahr ist. So war eben im Beispiel die Formelmenge erfillbar, weil
mit der Belegung wahr fur Gwahr vertrégliche Belegungen fir alle anderen Aussa-
gensymbole gefunden werden konnten.

Die Formeln des Fenster-Falles sind nicht allgemeingiltig, weil es eine
Belegung gibt, bei der nicht ale Formeln wahr sind. Allgemeingiltig ist eine
Formel oder Formelmenge genau dann, wenn sie unter jeder Belegung wahr ist
(sind).

Dal3 Fritz den Ball geworfen hat, wurde deutlich unter der Annahme, daf alle
Formeln wahr sein sollen und Gustaf die Wahrheit gesagt hat. Wir brauchen die
zweite Annahme aber gar nicht. Tatséchlich ist es so, dal3 immer, wenn alle For-
meln wahr sind, auch Gaahr und Fbal |l wahr sind. Gwahr und Fball sind aus der
Formelmenge (logisch) folgerbar. Eine Formel A folgt logisch aus einer Formel B
(bzw. Formelmenge)

B|= A (bzw. X |= A,

wenn unter jeder Belegung, unter der B bzw. X wahr ist, auch A wahr ist. Eine
Formelmenge Y folgt aus X, wenn jede Formel von Y aus X folgt. Die logische Folge-
rung ist

transitiv: X |= Y, Y |= Z also X |= Z,
reflexiv.: X |= X

Auch die folgende, allgemeinere Beziehung gilt: Y O X, aso Y |= X, d.h.
Formeln folgen logisch aus sich selbst und weiteren Formeln.

Aus mehr Formeln kann man mindestens gleichviel folgern:
YOX, X |=2, alsoY|= Z

Die Folgerung A |= B ist auf der Metaebene wie A - B auf der Ebene darun-
ter. Wenn A - B wahr werden soll, muB man eine geeignete Belegung fur Aund B
finden. Wenn A | = B wahr werden soll, mufl3 es fur alle Belegungen von A und B so
sein. Also ist A | = B gleichbedeutend damit, dal3 A - B allgemeinglltig ist.

Wenn wir zeigen wollen, dal3 aus unseren Fenster-Formeln logisch folgt, dal
Gustaf die Wahrheit gesagt hat und Fritz den Ball geworfen hat, missen wir also
zeigen, dal3 alle Belegungen, die die Formeln wahr machen, auch Gaahr und Fbal |
wahr machen. Woher wissen wir denn, dal wir die Annahme, dal Gwnahr wahr ist,
gar nicht hinzuzunehmen brauchen, um Fritz zu Uberfihren? Vielleicht gibt es
noch viel mehr Belegungen, unter denen die Formelmenge wahr ist und nicht
immer ist dann auch Gmahr und Fball wahr. Wie kénnen wir entscheiden, ob
Gwahr und Fbal | aus den Formeln folgen? Ist das Uberhaupt entscheidbar? Dies ist
das Problem der Entscheidbarkeit fir die logische Folgerung. Das Problem ist
fur die Aussagenlogik zu lésen: man braucht nur alle Belegungen miteinander zu
kombinieren fir alle Aussagensymbole - und das sind ja endlich viele. In Dirk

Siefkes Beispiel sind es 8. Bei zwei Wahrheitswerten haben wir also 28 Mdglich-
keiten zu prufen, ob, immer wenn die Formeln wahr sind, auch Gwahr und Fbal |
wahr ist. Daman bereits bei kleinen Beispielen sehr viel mehr Aussagensymbole
braucht, hilft die Entscheidbarkeit nicht so viel.

Eine andere Methode, um zu zeigen, dal} Fritz den Ball geworfen haben mulf3,
ist der Widerspruchsbeweis. Um zu zeigen, dal} Fball wahr sein muf3, nimmt man
an, dal3 Fball falsch sei. Wenn das zu einem Widerspruch fuhrt, heil3t das, dal
Fbal | wahr sein muf3, um die Formeln zu erfdllen. DaR man dies tun darf, kann
man mit wahrheitserhaltenden Manipulationen beweisen. Man kann zeigen, dal3
A |= B, indem man zeigt, da? A - B allgemeingiltig ist (s.0.). Jetzt ist die Frage, ob
diesmit A & = B - F gleichbedeutend ist. Dabei wenden wir nur Manipulationen
an, die unabhangig von den Belegungen von A und B sind:

(A -BOC)o (A& - B - O
Wir nehmen als C die Formel F (fur falsch): A & = B - F

Der Widerspruchsbeweis ist also zulassig. Er setzt allerdings voraus, dal3 die
Formeln nicht ohnehin zu einem Widerspruch fihren.

Eine Formelmenge X heildt widersprichlich, wenn es eine Formel A gibt, so
dal Aund - Alogisch aus X folgen. Sonst heif3t X widerspruchsfrei. Eine Formel-
menge ist widersprichlich genau dann, wenn X |= F. Eine widersprichliche
Menge von Formeln ist nicht erflallbar. Und aus einer widersprichlichen For-
melmenge folgt jede beliebige Formel. Also wieder:

X |= A genau dann, wenn X & - A widersprichlich ist.
SchlieBlich sei noch der Beweis durch Kontraposition angefihrt. A |= B
wird bewiesen durch -B |= -A Dasist zuldssig, weil A |= B mit A - B gezeigt

werden kann, was &aquivalent ist mit -B - - A

3.2.4 Formen

Wenn es ein Ziel der Logik ist, an der auReren Form die Bedeutung abzulesen, ist
eine Normalform nutzlich, bei der Gleiches immer gleich aussient und in der sich
alles ausdriicken 1akt. Die wahrheitserhaltenden Manipulationen sind dann dazu
noétig, in diese Form zu Uberflhren.

Ein Literal ist ein positives Atom (P) oder ein negatives Atom (-P). Die dop-
pelte Negation ergibt einfach ein positives Atom (P statt --P).

Die konjunktive Normalforml2 pesteht aus Formeln, die Wahrheitswerte
sind oder ein Konjunktion von Disjunktionen von Literalen.

F, W (A;,20... OA1,n) &... &Am1 O... OAno)

In keiner Disjunktion darf ein Atom mehrfach vorkommen, auch nicht ne-
giert.

Zum Umformen in diese Form braucht man vor allem die folgenden Manipu-
lationen:

A o Bwirdzu (A - B&B - A

A - Bwirdzu -A OB

-(A & B) wirdzu -A 0O -B, =(A O B) wirdzu -A & -B
-Wwird zu F, WO A wirdzu W W& A wird zu A,

-F wirdzu W F O A wirdzu A, F & A wird zu F,

A D (B &OC wirdzu (ADOB&A OC.
Man schreibt (A1,1 0..0A1, n) auch as Menge {A1, 1, ..., A1, n}-

12pje dijunktive Normalform ist dieselbe wie die konjunktive, nur & und O vertauscht.

{A1,1, ..., A1, n} isteineKlausel. Die leere Menge ist immer falsch. Statt
mit Formeln kann man mit endlichen Mengen von Klauseln arbeiten. Allgemein-
gultige Klauseln sind von der Form {P, =P} und falsche von der Form {}. Ein Atom
und seine Negation dirfen jetzt in einer Klausel vorkommen.

Eine Hornklausel ist eine Klausel mit hdochstens einem positiven Literal (s. Ka-
pitel 2). Verbindet man Hornklauseln durch Konjunktion oder negiert man sie, so
kann man das Ergebnis wieder as Hornklausel schreiben. Die Disjunktion von
Hornformeln ist aber nicht &quivalent zu einer Menge von Hornformeln. Wie soll
POQ ausgedriickt werden? Hornformeln sind also keine Normalform, in die alle
Aussagen Ubertragen werden konnen. Sie stellen ein Einschrdnkung dar, die es
erleichtert, Uber die Erfullbarkeit zu entscheiden.

3.2.5 Korrektheit, Vollstandigkeit, Widerlegung

Wenn wir eine Behauptung nicht durch reine Anschauung begrinden wollen
und wenn wir die Behauptung allgemeiner Uberprifung zuganglich machen
wollen, missen wir festlegen, was wir as Begrindungen zulassen wollen. Sieg-
fried Kanngiel3er (1984) zitiert aus Leonhard Eulers "Briefen an eine deutsche
Prinzessin (ber verschiedene Gegenstande der Physik und Philosophie" 13 iiber
die guten Grinde, etwas fur wahr zu halten:

1) Zeugnis der Sinne,
2) richtiger Schluf3, regulére Syllogismen,
3) Bericht von glaubwirdigen Personen.

In diesem Abschnitt geht es um den richtigen Schluf3, die Deduktion. Wir ha-
ben bereits in Wahrheitstafeln gegrindete Verknipfungen und die logische Fol-
gerung gesehen. Diese wurden im Ball-Beispiel dazu verwendet, eine Frage zu be-
antworten oder die Belegung aller Aussagensymbole zu finden, die alle Formeln
wahr macht. Die Verwendung soll nun in Form von Regeln festgelegt werden. Die
Regeln sollen Formeln nur unter Betrachtung ihrer Form in andere Uberfihren,
bis man das gewlinschte Ergebnis hat. Die Regeln sollen so sein, dal3 genau und
nur solche Ergebnisse herauskommen, wie man sie durch die logische Folgerung
erhielte. Die Regeln sollen also die semantische Folgerung syntaktisch rekon-
struieren. Die syntaktische Rekonstruktion der Folgerung heil3t Ableitung. X |-
B heifldt, da? B aus der Formelmenge X abgeleitet wird. Man mul3 dazu angeben, wel-
che Regeln die Ableitung realisieren: X |- B nmit [Formeln, Regeln und Axiome
ergeben zusammen ein Kalkil. Axiome sollen moglichst wenige Formeln sein. | n
dem Ball-Beispiel war es nicht nétig, Gwahr as Axiom zu nehmen. Wegen der Axio-
me wird ein Kalkil auch axiomatische Theorie genannt.

Es gibt verschiedene Logikkalkile. Hier fihre ich nur zwei Regeln an: die
positive (mit W) und die negative (mit F) Schnittregel. Sie sehen so aus:

W-P PLC-D A-P PLOC-F
C-D ALC-F

[

13Dje Prinzessin war Sophie Friederike Charlotte L eopoldine Louise (Brandenburg-Schwedt). Sie erhielt Privat-
unterricht von Euler, der dann schriftlich fortgefuhrt wurde. Nur auf diese Weise konnte sie an den philosophi-
schen Diskussionen Uber Leibniz' Monadenlehre und anderes teilhaben.

Wenn eine Regel aus einer Formelmenge X die Formel B ableitet und aus X
folgt B, so ist die Regel korrekt. X |- B ist also korrekt, wenn X |= B. Eine Menge
von Regeln ist korrekt, wenn jede ihrer Regeln korrekt ist.

Widerlegung: eine Formelmenge X wird widerlegt, indem F aus ihr abgelei-
tet wird. Eine Formel A wird beziglich einer Formelmenge X widerlegt, indem F aus
X, A abgeleitet wird.

Es reicht nicht aus, dal} eine Menge von Regeln korrekt ableitet. Es konnte ja
immer noch sein, dal einige logische Folgerungen nicht abgeleitet werden! Ad-
aquat ist eine Menge von Regeln erst, wenn sie korrekt und vollstandig ist.

Vollstdndig fur das Ableiten ist eine Menge von Regeln, wenn gilt: immer
wenn X |= B,dann auch X |- B. Vollstdndig fur das Widerlegen ist eine Menge
von Regeln, wenn gilt: immer wenn X |= F, dann auch X |- F.

O ist nicht vollstandig fir das Ableiten, weil man aus der leeren Menge
nichts ableiten kann - ergo fehlen die Tautologien -, aber vollstandig fir das Wi-
derlegen von Hornformeln: wenn X |= F, dann X |- F. Dies kann durch einen
Beweis mit Kontraposition gezeigt werden. Wir zeigen also zuerst, daf, wenn X
nicht F ableitet, F auch nicht aus X folgt. Wir nehmen an, da3 X nicht F ableitet.
Wenn X nicht F ableitet, soll es erflllbar sein. Also mulR es eine Belegung B geben,
die X wahr macht. Die konstruieren wir. Die erste Idee dazu ist: B(P) = Wgdw. P 0O
X. P soll eine Formel aus X sein. Q - P enthalt P aber nur als Teilformel. Die
Konstruktion gibt also noch nicht alles wieder und muf3 verbessert werden. Dazu

bildet man ein X* aus X vereinigt mit {P; P Atom X |- P}. B(P) = Wgdw. P O
X" Jetzt sind alle Formeln und alles Ableitbare wahr. Xist erfiillbar. Die Semantik
stimmt mit O bezuglich der Widerlegung Uberein. Der genaue Beweis verwendet

nur die positive Schnittregel und steht in Siefkes (1990. 61).

3.2.6 Literatur

*Bléasius, K.H., Burckert, H.-J. (1987): Deduktionssysteme - Automatisierung
logischen Denkens, Miunchen: Oldenbourg

KanngielRer, Siegfried (1984): Simulationskonzepte des Wissens und der
Grammatik, in: Rollinger (ed): Probleme des (Text-)Verstehens, Tubin-
gen: Niemeyer, S. 24-44,

Schoéning, Uwe (1995). Logik fur Informatiker, 4.Aufl. Heidelberg: Spektrum
Akademischer Verlag.

*Siefkes, Dirk (1990): Formalisieren und Beweisen - Logik fir Informatiker,
Braunschweig: Vieweg

3.3 Termsubsumtionssysteme und ihre Vorlaufer

Im letzten Kapitel haben wir gesehen, wie man Logik zum Problemldésen benutzen
kann. In diesem Kapitel will ich zeigen, wie in der Kl Logik benutzt wird, um ei-
nen Formalismus zu fundieren. Der Beschreibungsansatz der KI beschreibt ein
Phdnomen in einem Formalismus, der seinerseits Eigenschaften hat. Logik wird
oft deshalb als Beschreibungssprache gewahlt, weil wir einige ihrer Eigenschaf-
ten kennen und auf Jahrhunderte der Forschung zugreifen konnen. 14 Dabei ist
aber die Logik fur den Zweck der Problembeschreibung wund fur die Interaktion
mit dem Benutzer eines Systems nicht so gut geeignet. Man kann dann einen an-
deren Formalismus konstruieren, den man wiederum in Logik beschreibt. Damit
hat der Formalismus nicht nur eine Interpretation in Form eines Programms, das
Ausdriicke des Formalismus verarbeitet, sondern auch eine Interpretation, die auf
logische Formeln abbildet. Diese logische Fundierung macht das Verstdndnis eines
Systems unabhangig vom Kennen des Programmes. Damit ermdéglicht es eine bes-
sere Kommunikation unter den Wissenschaftlerinnen. Auch konnen Eigenschaf-
ten des Programms eingeteilt werden in unerwinschte (von der Logik nicht vor-
hergesagte) und erwilnschte, was den Systementwicklerinnen hilft. Natirlich hat
dies auch einen Nachteil: die Pradikatenlogik reicht nicht aus, um alles auszu-
dricken, was wir ausdricken mochten! Weiterentwicklungen der Logik sind dann
notig. Bis dahin kann man in begrindeten Féllen etwas operationalisieren, das
noch nicht logisch fundiert ist.

Im folgenden werde ich zundchst den Hintergrund der Entwicklung von KL-
ONE angeben: semantische Netze und Frames. KL-One-artige Formalismen heilRen
Termsubsumtions-Formalismen. Diese werde ich mithilfe der Logik beschreiben.
Das Ganze ist ein Lehrstuck der KI und zeigt, wie aus einer intuitiven Anschauung
schliefdlich ein logisch fundierter Formalismus wird, der fir den Benutzer aber
immer noch die Anschaulichkeit besitzt. Das Lehrstlick ist genau dokumentiert in
Brachman & Levesque's Sammelband (1985).

3.3.1 Der Hintergrund - semantische Netze

Semantische Netze wurden psychologisch motiviert eingefihrt. Die Ausgangsbe-
obachtung war, da Menschen bei Versprechern nicht beliebige Worter verwech-
seln. Dies wurde nicht mehr als Freudsche Verdrangung gesehen, sondern infor-
mationstheoretisch aufgefal’t: es werden solche Wéorter verwechselt, deren se-
mantische Représentation sich nur in wenigen bits unterscheidet. Wie soll also so
eine semantische Reprasentation aussehen? Man nehme Begriffe (die seman-
tische Repréasentation von Wéortern) als Knoten und Beziehungen zwischen ihnen
as Kanten. Der Zugriff auf einen Begriff ist ein Pfad durch einen solchen Be-
griffsgraphen. Bei nur einer Verzweigung sich zu irren, fihrt zu einem Verspre-
cher. Das semantische Netz gibt also eine Speicherung von Begriffen an, die die
Ahnlichkeit von Begriffen durch die Kirze eines Pfades von einem Begriff zum
anderen ausdriickt.1® Durch die Zusammenhange der Knoten ergibt sich ihre Be-
deutung. Die Verarbeitung geschah zunéachst mit der Methode der spreading acti-
vation: von zwei Knoten ausgehend werden alle von ihnen abgehenden Zeiger
aktiviert. Diese aktivieren dann die Knoten, auf die sie zeigen. Von diesen Knoten

14 Eine andere Form der Beschreibung wahit als formale Basis, Uber die bereits viel bekannt ist: neuronale Netze werden
mit Differentialgleichungen beschrieben.

15 Die Doktorarbeit von Ross Quillian 1966 hie3 " Semantic Memory". Sie filhrte semantische Netze ein. Die
Kurzfassung kam 1967 in Behavioral Science heraus und ist im Sammelband von Brachman und Levesgue nach-
gedruckt.

ausgehende Zeiger werden wiederum aktiviert. Dies wird solange gemacht, bis
man eine Verbindung zwischen den beiden Ausgangsknoten gefunden hat. Diese
Verbindung ist dann ein Knoten, der von beiden Ausgangsknoten aus aktiviert
wurde. Die jeweiligen Pfade werden ausgegeben und sind ein Vergleich zwischen
zwei Begriffen. Allerdings ist diese ungerichtete Aktivierung fur praktische An-
wendungen nicht geeignet und erlaubt nicht, bestimmte Schluffolgerungen aus-
zudricken.

In der Folge wurden dann semantische Netze verbessert:

« die Knoten werden in einer Hierarchie angeordnet, so dal eine besondere
Kante mit dem Namen isa oder ako (fur "a kind of") vom Unter- zum
Oberbegriff zeigt;

e« entlang der i sa-Kanten werden alle Eigenschaften (alle anderen Kanten)
des Oberbegriffs an seine Unterbegriffe vererbt;

* Anfragen an ein semantisches Netz werden mithilfe des partiellen Ab-
gleichs beantwortet.

Eine Anfrage an ein Netz wird als Teilnetz konstruiert, das mit dem Netz abge-

glichen wird. Dabei erhalten alle Variablen die Werte, die sie zu einem erfolgrei-
chen Abgleich brauchen. Nehmen wir z.B. das folgende semantische Netz:

(Vogel) (Besitz) (Nest)
A

isa isa isa
Rotkehl i i

' besitzt_wer C— besitzt_was - —
chen / = BesitzR) ™{_NestR
isa

(Clyde)

An dieses Netz konnen jetzt etwa folgende Anfragen gestellt werden:

1) Was besitzt Clyde? etwa geschrieben:
besitzt_wer (clyde , besitzt_was (X, Y))

2) Besitzen dle Végel ein Nest? etwa geschrieben: 0O X|
isa (X, vogel) & besitzt wer (X, besitzt_was (Y, Z)) & isa(Z, nest)

3) Gibt es einen Vogel, der ein Nest besitzt? etwa geschrieben: 0OX|
isa (X, vogel) & besitzt wer (X, besitzt_ was (Y, Z)) & isa(Z, nest)

Zu jeder Anfrage mul3 jetzt fir den Abgleich ein partielles Netz konstruiert
werden. Das sind dann etwa die folgenden:

isa

besitzt_wer besitzt_was
[— . - | o
(Cyde) > Besitz? } —(2)

Zur Beantwortung mul3 der Abgleich mit dem Netz die Vererbung berick-
sichtigen. Dabei wird dann X an besitzR gebunden und Y an nest R. Die Antwort ist
dann etwa: Clyde besitzt ein NestR oder besitzt wer (clyde, besitzt_was
(besitzR, nestR)).Der Abgleich berlcksichtigt also die Hierarchie und die Ver-
erbung.

ad 1)

Die Berlcksichtigung von SchluRfolgerungen beim Abgleich wird noch
deutlicher bei der Anfrage 2).

(Vogel) (Besitz) (Nest)
A y i

isa isa isa

(alle X ' besitzt_wer besitzt_was
ad 2) »{ Besitz?) >{_Nest?

Hier mu3 nicht nur die i sa-Hierarchie fir den Abgleich verwendet werden,
um dann X einmal an Rot kehl chen und dann Y an besitzRund Z an nestRzu bin-
den, sondern dies mul3 fur alle Unterbegriffe von Vogel getan werden. Der Ab-
gleichsprozel3 muf3 also ein Verfahren enthalten, das

O X | isa (X vogel)
behandelt. In diesem Falle wéare die Antwort: ja

Fir die dritte Anfrage wird ein &ahnliches Teilnetz konstruiert, nur dal3 die
Variable X diesmal nicht all- sondern existenzquantifiziert ist. Die Antwort ist
dann: ja, Rotkehlchen. Der AbgleichsprozeR mul3 die verschiedenen Quantoren
von Variablen behandeln und SchluRfolgerungen ziehen koénnen, weil das se-
mantische Netz mit seiner speziellen Kante isa Regeln ausdrickt. Dadurch ist
nicht alles direkt ablesbar, was das semantische Netz ausdruckt, sondern muf3
durch Schluf3folgerung explizit gemacht werden. Der Abgleich kann aso ein
Theorembeweiser sein.

An einer Darstellung von Begriffen und ihren Zusammenhéngen sind na-
tdrlich auch die Linguisten interessiert. Wenn man die Wortsemantik im Zusam-
menhang ausdricken kann und vielleicht auch eine Satzsemantik daraus kon-
struieren kann, kann man endlich natirlichsprachlichen Sadtzen eine operatio-
nale Reprasentation zuordnen. Man begann also, die Semantik von Wodrtern als
semantisches Netz darzustellen, wobei die Knoten Begriffe und die Kanten Bezie-
hungen zwischen Begriffen darstellten.

Der Gedanke einer "Normalform", eines festen Repertoires von Kanten-
namen, liegt dann nahe. Denn wenn man einfach an die Kante das naturlich-
sprachliche Wort schreibt, hat man nicht viel gewonnen. Eswurde viel Uber se-
mantische Primitive geschrieben. Das sollten diejenigen Kanten sein, mit denen
man alle Beziehungen zwischen Begriffen konstruieren kann. Das erste Primitiv
war isa. Schank (1973) fihrte mit seinen conceptual dependency networks se-
mantische Primitive fir Handlungen ein, aus denen sich Beschreibungen aller

Handlungen zusammensetzen lassen sollten. So z.B. ntrans fir "mental transfer”
als geistiger Austausch und ptrans fur "physical transfer" als Austausch von Din-
gen (Kaufen, Verkaufen, Schenken, Geben, Nehmen, ...) oder direkte physische
Einwirkung auf etwas oder jemanden. Ein typisches Beispiel von Schank war
"John hurts Mary." das er dann folgendermal’en repréasentierte:

ptrans
John “—> Do

Health = X-3
Mary<_4‘>
—Health = X
Dabei steht der dicke Pfeil fir ptrans, die Gesundheit wird auf einer 10-
Punkte-Skala angegeben. Den Pfeilzielen konnen auf3erdem Rollennamen mitge-
geben werden wie etwa Akt eur (bei John), Lei dt ragender/ Nut zni eRer (bei Mary),

CGegenstand (bei Heal th), Handlung (bei DO). Bestimmte Kasus oder Prapositionen
im Satz werden dann diesen Rollen zugeordnet.

Das Problem bei diesen Ansédtzen, semantische Netze und conceptual depen-
dency networks, ist, daR sehr unterschiedliche Dinge als Kanten auftreten.l® So
wurde etwa nicht zwischen Ober-Unterbegriffsrelation und Begriff-
Instanzrelation getrennt: i sa verband sowohl das Rotkehlchen mit dem Vogel wie
auch das bestimmte Rotkehlchen Clyde mit Rotkehlchen . Auch der Unterschied
zwischen ptrans und mtrans undi sa war zunachst nur an diesen Namen zu erken-
nen, fir die es dann jeweils eine eigene Prozedur geben mulite, die die entspre-
chende Kante verarbeitet. Diese Prozeduren waren nicht einfach miteinander
vergleichbar. Deshalb kritisierte Hayes (1977) dieses Vorgehen als "pretend it's
english® und Drew McDermott (1978) schlug den "Gensym-Test" vor: damit man
nicht durch eine naturlichsprachliche Bezeichnung irregeleitet wird und mehr
vermutet als durch die Prozedur realisiert wird, ersetze man alle Bezeichner durch
automatisch generierte Symbole.

Ebenso unklar wie die Kanten waren die Knoten.l” Sollen generische Begrif-
fe ausgedriickt werden ("das Rotkehlchen als solches') oder alle Mitglieder des
Begriffs durch einen Knoten reprasentiert werden (extensionale Begriffsrepra-
sentation)? Ist ein Unterbegriff dann eine echte Teilmenge des Oberbegriffs? Sol-
che Festlegungen konnten obendrein nur schwer diskutiert werden, weil die Au-
toren verschiedener Reprasentationssysteme Uber ihre Arbeiten in wilder Mi-
schung von programmiersprachlichen, anwendungsspezifischen, logischen und
kognitiven Ausdricken berichteten.

3.3.2 Frames
Die Idee bei einem Frame war, alles Wissen, das zu einem bestimmten Objekt oder

einer bestimmten Situation der Welt gehoért, zusammenzufassen. So sollte ein Be-
griff wie Kindergeburtstag nicht einfach als Unterbegriff von Geburtstagsfeier defi-

16 Der Aufsatz von William Woods "What's in alink?' erschien 1975 und ist auch im angefiihrten Sammelband
nachgedruckt.

17 "What's in a Concept?" fragte Ron Brachman und schrieb tiber den epistemol ogischen Status von semanti-
schen Netzen (ebenfalls nachgedruckt im Sammelband).

niert werden, sondern auch die typischen Ereignisse wie Topfschlagen oder Reise
nach Jerusalem, die typische Dekoration wie Luftballons, die typische Kleidung
und das Ubliche Essen (SuRigkeiten, Kuchen mit Kerzen) sowie die Geschenke dar-
gestellt werden. Dabei sind diese nicht wirklich zwingend. Ein Kind kann in abge-
rissener Jeans und ohne Geschenk auf einen Geburtstag gehen, auf dem es Kartof-
felsalat mit Wirstchen gibt und Videos geguckt werden. Dies Ereignis wird aber als
abweichend wahrgenommen. Egal, ob definierende Eigenschaft oder typisches
Ereignis, das Zusammengehorige sollte auch zusammengefallt reprasentiert wer-
den. Ein Beispiel fur den Kindergeburtstag (nach Minsky 1981):

bi rt hday_party:
dress: sunday best

present: nmust pl ease host; nust be bought and gift-wapped.

child' s birthday_party:

i sa: bi rt hday_party

ganes: hi de and seek, pin tail on donkey
decor: bal | oons, favors, crepe_paper

party neal : cake, ice_cream soda, hot_dogs

cake: candl es, bl ow out, wi sh, sing birthday song

ice_cream standard three_flavor

Paul s's birthday_party:

i nstance_of: child' s birthday_party
dr ess: Paul 's bl ue suit
present: kite 315

ice_cream wvanilla_700

Hier ist also die Unterbegriffsrelation i sa von der Beziehung zwischen einem
Begriff und seiner Instanz (i nst ance_of) getrennt. Die Instanz soll nur solche Ei-
genschaften haben, die Spezialisierungen der Eigenschaften des Begriffs darstel-
len. Dabei kann zwischen definierenden und attributiven (auch: kontingenten)
Eigenschaften unterschieden werden. Die attributiven Eigenschaften mussen
dann nicht unbedingt Spezialisierungen der Eigenschaften des Begriffs sein.
Minskys Beispiel hat Uberhaupt nur attributive Eigenschaften, denn die Definiti-
on des Geburtstags liegt ja in dem Geburtsdatum eines Menschen.

Ein Frame hat bestimmte Eigenschaften, die fur ihn relevant sind. Sie werden
slots genannt. In einem slot steht ein Verweis auf einen anderen Frame (nicht-
terminaler slot) oder direkt eine Zeichenkette (terminaler slot). Fir die Eintrage
in einen slot gibt es Einschrdnkungen, die bei nicht-terminalen slots dadurch
gegeben sind, dal3 der Eintrag eine Instanz eines Frames sein mufd; bei terminalen
slots ist die Einschrankung einfach durch eine Bereichsangabe gegeben (z.B. in-
teger [10, 50] fur den Wert des Geburtstagsgeschenkes). Bei attributiven slots

schrénkt nur der Wertebereich die mdoglichen Eintrdge ein, auch wenn es sich um
einen nicht-terminalen slot handelt. Man kann den Verweis auf den ent-
sprechenden Frame als slot-Fuller auch als Voreinstellung (default) auffassen, die
dann durch einen Wert Uberschrieben werden kann.

Wie bei den Kanten gab es auch bei den slots die Frage nach einem festen Re-
pertoire von slots, also nach semantischen Primitiven. Und auch hier war wieder
die Frage nicht zu beantworten, was denn eigentlich dress, present oder
i ce_cream bedeuten, wenn wir nicht vorgeben, dal das System englisch versteht.

An einen slot kann eine spezielle Verarbeitungsprozedur "angeheftet” wer-
den (procedural attachment oder demon). Diese Prozeduren werden von Anfragen
an oder von neuen Eintragen in ein System von Frames ausgeldst. Sie heiRen dann
if-needed respektive if-added Prozeduren. Die if-needed Prozeduren berechnen
der Wert des slots bei einer Anfrage fir das spezielle, angefragte Objekt. Man
spricht auch von question-time inferences. Zum Beispiel kann man den Umfang
eines Kreises aus seinem Radius berechnen.

Kreis:
Radi us: real
Unf ang: i f_needed: 2 m Radius

Es ist also eine Ruckwértsverkettung, mit der man den Wert eines slots ablei-
tet.

Die if-added Prozeduren berechnen den speziellen slot-Wert fir ein neu ein-
getragenes Objekt. Man spricht auch von read-time inferences. Zum Beispiel kann
man flr einen speziellen Kreis beim Eintragen des Wertes fir den slot Radi us so-
fort den Umfang berechnen und das Ergebnis bei Umf ang eintragen.

Kreis:
Radi us: i f _added: Unfang= 2 1 Radi us
Unf ang: real

Es ist also eine Vorwartsverkettung, mit der man den Wert eines slots ableitet,
der sich aus einem anderen Wert ergibt.

Die Prozeduren durchbrechen den expliziten Charakter der Reprasentation.
Sie sind selbst nicht mehr durch Eintrdge veranderbar, sondern nur mithilfe ei-
nes Texteditors, und liegen nicht mehr so offen zutage wie die Wertrestriktionen
durch Verweis auf einen anderen Frame oder durch eine Bereichsangabe.

Die Verarbeitung, Anfragen und Eintrdge, geschieht mithilfe von Zugriffs-
prozeduren auf Frames, ihre slots und deren Werte. Im einfachsten Falle werden
die Namen von Frames und slots sowie die Werte terminaler slots abgeglichen. I m
allgemeineren Fall kann eine Struktur in der Anfrage mit Namen im Frame-
System abgeglichen werden, wobei die Vererbungshierarchie und die if_needed-
Prozeduren ausgewertet werden. So kann gefragt werden, bei welchen Gelegen-
heiten Sonntags-Kleidung getragen wird. Oder auch, ob fir Kindergeburtstage
Geschenke gekauft werden. Oder auch, welchen Umfang ein Kreis mit bestimmtem
Radius hat.

Frame?, dress: sunday best

child' s_birthday_party, present: nust be bought.

kreis_13, unfang: ?

Man kann einen Frame auch logisch beschreiben und dann entsprechend
auch Anfragen und Eintrage als Beweis auffassen. Fir den Kindergeburtstag ergibt
sich:

O X | frame(child s_birthday_party, X) --> franme(birthday_party, X)

O X | frame(child' s_birthday_party, X) --> 0O Y1l | dress(X Yl) &
sunday_best (Y1)

OX | frame(child s_birthday_party, X) --> 0 Y2 | ganmes(X Y2) &
(hi de_and_seek(Y2) v pin_tail_on_donkey(Y2))

Entsprechend kodnnen dann die Anfragen formuliert werden:
Oz | frame(Z, X), dress(X, Y1), sunday_best (Y1)
O X | frame(child' s_birthday_party, X), present(X nust_be_bought)
frame(kreis_13, X), radius(X, 12), unfang(X Val ue)

Bei dem speziellen kreis_13 ist es unsinnig, von allen Instanzen des Frames zu

sprechen, weil er bereits eine Instanz ist. Daher ist bei der letzten Anfrage kein
Quantor angegeben.

Die logische Beschreibung hat child's_birthday_party zu einem Argument
von frame gemacht. Damit kdnnen Anfragen nach Frames ganz allgemein opera-
tionalisiert werden. Es bleiben aber noch dress, sunday_best und present as spe-
zielle Prédikate, deren Status unklar ist.

Bestimmte Prozeduren werten Anfragen und Eintrage aus.

Die Prozeduraufrufe (in Prolog: Klauselkopfe) wéaren fir Anfragen etwa

ask _frames(Fornelliste),

ask _truth (Fornelliste),

ask_val ue(Fornel liste)

und die konkreten Aufrufe fir die Anfragen von oben waren:
ask_franmes([frame(Nane, X), dress(X Y1), sunday_best(Y1)])
ask truth([frame(child' s_birthday party, X), present(X, nust_be bought)])
ask _value([franme(kreis_13, X), radius(X, 12), unfang(X Value)]).

Fir Eintrége gébe es beispielsweise die Prozeduren tell _frane fir den Ein-
trag eines kompletten Frames, tell _slot fir den Eintrag eines zusétzlichen slot ,

tell _value_restriction fir den Eintrag einer Einschrankung, t el | _val ue fir den
Eintrag eines neuen Wertes fir einen slot.

Die unterschiedlichen Frame-Systeme unterscheiden sich in ihren Festle-
gungen. Entsprechend sind die Zugriffsprozeduren, d.h. die Verarbeitung unter-
schiedlich. Ein Problem der Frames war ferner, da mit den angehefteten Proze-
duren if _needed und if_added der explizite Charakter der Représentation verlassen

wurde und die Ebene der Programmierung direkt in den Formalismus einbezogen
wurde. Wie bei den semantischen Netzen waren die Festlegungen zunéchst nicht
genau definiert: was ist ein Frame, was ist ein slot, wie werden die moglichen Ein-
trage eingeschrankt, wie verhalten sich definierende und attributive Eigen-
schaften?

3.3.3 Zur Beschreibung von semantischen Netzen und Frames

Im Laufe der Diskussionen und Weiterentwicklungen von semantischen Netzen
und Frames wurde deutlich, dal3 sie eigentlich nur notationelle Varianten vonein-
ander sind. Man erkennt das, wenn man fir beide die Bedeutung ihrer Konstrukte
(slot, Kante, Frame, Knoten) logisch formuliert. Dann sind die Festlegungen (etwa
Wertebeschrankungen bei slot-Werten, Wertebeschrankungen bei Ursprungs-
und Zielknoten einer Kante) implementationsunabhangig beschrieben und dis-
kutierbar. Das eben fehlte ja zunachst!

Eswird dann auch klar, was den unklaren Status der Einheiten des Repréa-
sentrationsformalismus’ (Kanten, slots) ausmachte: durcheinander gingen die
verschiedenen Ebenen, auf denen man Uber dieselbe Sache sprechen kann:

die Implementationsebene, auf der eine Kante en Name und
ein(LISP)Zeiger, ein Knoten eine Liste und das Abgleichsprogramm eine
Sammlung von Prozeduren flr verschiedene Kantentypen ist,

die logische Ebene, auf der die Kanten Prédikate (oder Operatoren?) und
die Knoten Terme (oder Mengen von Konstanten?) sein kodnnen,

die begriffliche Ebene, auf der Wort- oder Satzbedeutungen gemeint sind,
wobei Kanten verschiedene Rollenbeziehungen und Knoten Begriffe dar-
stellen,

die sprachliche Ebene, auf der die Kanten zum Beispiel Verben und die
Knoten Substantive darstellen, Kantentypen vielleicht (Tiefen-)kasus zu-
geordnet sind.

Diese Ebenen konnen aufeinander aufbauen, wenn sie jeweils fur sich wohl
definiert sind. Die Vermittlung zwischen logischer Ebene und begrifflicher Ebene
war zundchst nur durch die semantischen Primitive bzw. ihre Prozeduren defi-
niert. Um dies klarer zu fassen, fihrte Brachman 1979 die epistemische Ebene
ein (der Artikel ist ebenfalls im Sammelband von Brachman und Levesque nach-
gedruckt). Diese Ebene entspricht der Wissensebene von Newell. Auf dieser Ebene
wird das begrenzte Repertoire von epistemischen Primitiven definiert. Mit den
epistemischen Primitiven lassen sich dann Begriffe und ihre Beziehungen defi-
nieren. Sie beziehen sich auf das Definieren, nicht auf das Definierte. Tatsachlich
war i sa eigentlich ein epistemisches Primitiv: gibt man diesem eine klare Bedeu-
tung, nach der es von verschiedenen Abgleichsverfahren, realisiert in verschie-
denen Programmiersprachen, immer gleich interpretiert wird, so kann es sinn-
voll und vergleichbar auf die Einheiten der begrifflichen Ebene angewandt wer-
den. Da das Definieren selbst weniger vielféltig ist als al das, was man alles defi-
nieren mag, kann man hoffen, mit einem Uberschaubaren Kanon von epistemi-
schen Primitiven auszukommen. Zum Beispiel kann man mit isa und role aus-
kommen, wobei isa die Oberbegriff-Unterbegriffsrelation und rol e die definie-
renden Eigenschaften darstellt. Eine Begriffsdefinition ist dann immer eine Hier-
archie von Begriffen, wobei die gemeinsamen Eigenschaften aller Unterbegriffe
beim Oberbegriff angegeben werden und die unterscheidenden Eigenschaften bei
den jeweiligen Unterbegriffen. Dies ist das Descartesche Modell der Definition:
erst gibt man den allgemeinen Begriff, dann die unterscheidenden Eigenschaften.

Ein Beispiel zeigt die Ebenen und den Unterschied der epistemischen Ebene
zur begrifflichen und logischen. Wir Ubernehmen die Aussagen aus dem Rotkehl-
chen-Nester-Beispiel. Von derselben Sache werden jeweils unterschiedliche
Aspekte Dbetrachtet:

Auf der epistemischen Ebene sprechen wir ~ von Oberbegriff-
Unterbegriffsrelation isa, von definierenden Eigenschaften und Vererbung von Eigen-
schaften. Zum Beispiel: Vogel ist ein Oberbegriff von Rotkehlchen, etwas zu besitzen
ist eine Eigenschaft von Rotkehlchen. Wir legen fest, was mit den epistemischen
Primitiven gemeint ist. Zum Beispiel: Ein Begriff ist die Entscheidung, welche In-
stanzen zu seiner Extension gehodren. Die i sa-Relation zwischen Begriffen drickt
aus: Ein Oberbegriff deckt mindestens alle Instanzen der Unterbegriffe ab. role
drickt definierende Eigenschaften aus, indem es zwei Begriffe verbindet. Dabei
gilt: alle Instanzen des Begriffs mussen eine Eigenschaft haben, die eine Instanz
des anderen Begriffs ist.

Auf der begrifflichen Ebene geht es um die Begriffe des Sachbereichs, die
wir reprasentieren. In unserem Beispiel also um Rotkehlchen, Nester, Besitzverhaltnis
und Clyde. Zum Beispiel: Vogel ist ein Oberbegriff von Rotkehlchen, besitzt_was ist eine
Eigenschaft von Rotkehlchen.

Auf der logischen Ebene sprechen wir von Pradikaten, Termen, Quantoren und
Variablen. Wir kénnen bei Prolog fir die Implementierung oft die Ausdricke der
logischen Ebene direkt auf die Implementierungsebene (Ubertragen - aber nicht
immer! Zum Beispiel: 0O X | isa(X, rotkehlchen) --> isa(X vogel). Wir be-
schreiben die Festlegungen der epistemischen Ebene logisch. Zum Beispiel fassen
wir r ol e as eine Funktion auf, die allen Instanzen eines Begriffs eine Instanz ei-
nes anderen Begriffs zuordnet.

Der Einfachheit halber konnen wir Prolog als Interpreter verwenden. Das ist
dann die Implementationsebene. Auf dieser Ebene reden wir von cuts und Auf-
rufen und eingebauten Pradikaten. Wir verwalten files. Dal3 wir hier auch von Klauseln
sprechen, liegt daran, da3 Prolog zum Ziel hatte, die logische Ebene direkt zu ope-
rationalisieren. Wir konnen aber auch LISP oder C oder Pascal verwenden und
sprechen dann von Listen und Funktionen. Wir operationalisieren die Festlegungen
der epistemischen Ebene, indem wir flir isa und role Klauseln schreiben, die
Netzanfragen und -eintrdage entsprechend auswerten. Die Klauselkdpfe sind zum
Beispiel: ask(isa(X, Y)), tell(rol e(Name, Range, Value)).

Wir konnten etwa folgende Eintrédge in einer Prolog-Basis haben, die das Vo-
gel-Nest-Netz ausdricken:

i sa(rotkehl chen, bird). isa(nestR nest). isa(besitzR besitz).
rol e(besitzt_wer, rotkehl chen, besitzR). rol e(besitzt_was, besitzR nestR).
Die Instanz cl yde wére dann
i nstance(cl yde, rotkehlchen). rol e(besitzt_wer, clyde, besitzC).
Man kann dann folgern
rol e(besitzt _was, besitzC, instance(X nestR)).
Das Beispiel zeigt:
« Wichtig ist, da3 wir nicht geschrieben haben besitzt_wer(rotkehl chen,

besitzR), weil wir sonst fir jede Kante eine eigene Klausel zur Verarbei-
tung schreiben muiften. So brauchen wir nur jeweils eine fir i sa und role

zu schreiben. Die Verarbeitungsprozeduren beziehen sich jetzt auf episte-
mische Primitive.

e Wichtig sind nicht die jeweiligen Festlegungen, die in dem Beispiel ange-
geben sind, sondern da3 man sie explizit und implementationsunabhéangig
treffen kann. Dabei verschwinden Entitdten der Implementationsebene
aus den Ubergeordneten Ebenen. Der Bruch, der bei den if_needed- und
if_added-Prozeduren auftrat, geschieht nicht mehr. Allerdings sind damit
fur Einzelfdlle mogliche Tricks, die man in einem Programm unterbrin-
gen, aber nicht fur alle Féle in ihrer Bedeutung definieren kann, nicht
mehr vorhanden. Die Transparenz kann zulasten einer punktuellen Sy-
stemleistung gehen.

* Alles, was wir in Logik nicht ausdricken konnen, geht nicht. So haben wir
keine attributiven Werte (Relationen zwischen Knoten) mehr. Erst eine
andere als die Pradikatenlogik erster Stufe kann vielleicht auch Vorein-
stellungen (defaults) ausdriicken, so dal wir sie dann wieder in das System
hineinnehmen kdnnen.

Wenn die begriffliche Ebene die Definition von Begriffen darstellt, kann sie
nicht die Beziehung zwischen Begriff und Instanz darstellen. Die Aussagen uUber
Objekte (Instanzen, Individuen) der Welt missen getrennt werden von Aussagen
Uber Klassen (Begriffe). Der Teil eines semantischen Netzes oder Frame-Systems,
der Begriffe definiert, heift bei Brachman terminologisch oder auch T-Box. Die
Verarbeitung innerhalb der T-Box ordnet einen definierten Begriff in die Be-
griffsstruktur ein. Der Teil, der Individuen speichert, heil3t assertional oder auch
A-Box. Die Verarbeitung innerhalb der A-Box klassifiziert (bei Termsubsumtions-
Formalismen wird das oft "realisiert” genannt) ein Grundbeispiel, eine Instanz.
Ein System, das beide Teile und ihre Verbindung verwaltet, heif3t hybrides System.

3.3.4 Termsubsumtions-Formalismen

Terminologische Wissensreprasentationsformalismen (also: eine T-Box) grinden
sich auf die Teilmengenbeziehungen ihrer Begriffe. Ein Oberbegriff subsumiert
einen Unterbegriff. Alle Instanzen des Unterbegriffs sind auch Instanzen des
Oberbegriffs. Unsere Termini sind Begriffe und Rollen. Die Subsumtion von Be-
griffen und Rollen ist der Kern des Reprasentationsformalismus. Dabei gibt esin
vielen solchen Formalismen noch eine zusatzliche Konstruktion, die so dringend
gebraucht wird, dal} sie trotz ihrer Komplexitéat einbezogen wird: die Anzahlre-
striktion oder Kardinalitdt. Eine Rolle bekommt dann neben dem Namen, dem
Ursprungsbereich und dem Wertebereich noch eine Kardinalitdét as Angabe. So
koénnen wir ausdricken, dal3 jedes Rotkehlchen genau ein Nest besitzt, jeder
Mensch genau eine Nase, zwei Augen, zwei Arme, zehn Finger. Wir kdénnen auch
Intervalle as Anzahlrestriktion angeben: ein Fahrrad hat mindestens eins und
hochstens vier Réader.

Wir konnen jetzt die Syntax und Semantik genau definieren und erhalten
damit ein wohldefiniertes System, dessen Eigenschaften wir untersuchen konnen.

3.3.4.1 Syntax eines Termsubsumtions-Formalismus'

Es werden Begriffe und Rollen jeweils nur einmal eingefihrt. Ein Begriff wird als
primitiver Begriff eingefuhrt, indem man nur den Oberbegriff dazu angibt, aber
keine weitere Rolle. Die Schreibweise ist: BegriffNeu < Coerbegriff. Ein Begriff
wird als definierter Begriff eingefihrt, indem man schreibt: BegriffNeu .=.
<Begriffsdefinition> wobe die Begriffsdefinition durch die Angabe des Ober-
begriffs und der definierenden Rollen geschieht. Alle Rollen des Oberbegriffs

werden an den Unterbegriff vererbt. Man kann auch Rollen einfihren, denn
auch Rollen befinden sich jetzt in einer Hierarchie. Sie kdnnen als primitive
Rollen eingefiihrt werden: RolleNeu < Cberrolle, oder as definierte Rolle durch
Angabe des Wertebereichs und der Anzahlrestriktion: Rol |l eNeu .=. Oberrolle.

Man kann neue Begriffe und Rollen bilden. Begriffsbildende Operationen
sind:

and fir die Begriffskonjunktion. So kann aus den Begriffen Frau und Studen-
t I n der Begriff St udenti n gebildet werden.

al | fur die Werterestriktion. Das ist die Beschrénkung des Wertebereichs, also
des Begriffs, auf den eine Rolle zeigen darf. So kann die Rolle besitzt_wer
nur mit etwas geflllt werden, was ein Besitz ist.

atl east und at most flUr die Anzahlrestriktion. So koénnen wir ausdriicken, dafld
ein Rotkehlchen at | east 1, at most 1 Besitz hat.

Wenn Begriffe vollstandig definiert sind, ist an ihnen abzulesen, ob sie dis-
junkt sind oder nicht. Bei primitiven Begriffen konnen wir die Angabe as Re-
striktion hinzufiugen, daf sie disjunkt sein sollen.

Entsprechend konnten wir auch Rollen zusammensetzen. Einige Formalismen
tun das. Hier geht es aber darum, den Kern von Termsubsumtions-Formalismen
darzustellen, nicht die vielfatigen Varianten.

Die Syntaxdefinition fur einen Termsubsumtions-Formalismus gibt Nebel
(1990: 48) in Backus-Naur-Form an:

<term nol ogy> ::= { <termintroduction> | <restriction>}*
<termintroduction> ::= <concept-introduction> | <role-introduction>
<concept-introduction> ::= <atom c-concept> .=. <concept> |

<at om c-concept > < <concept> |
<at oni c-concept > < ANYTHI NG
<rol e-introduction> ::= <atomic-role> .= <role> |
<atom c-role> < <role> |
<at om c-rol e> < ANYRELATI ON

<concept> ::= <at omi c- concept > |

(and <concept>T) |
(all <rol e> <concept>) |
(atl east <nunber> <role>) |

(at nost <nunber> <rol e>)
<role> ::= <atomic-role> | (androle <role>%)
<restriction> ::= (di sjoint <atom c-concept> <atoni c-concept >)

<nunber> ::= <non- negati ve i nteger>

<atomic-role> ::= <identifier>
<atom c-concept> ::= <identifier>

Dabei sind ANYTHI NG und ANYRELATI ON der allgemeinste Begriff bzw. die all-
gemeinste Rolle. So kann also ein neuer primitiver Begriff als Unterbegriff von
ANYTHI NG eingefuhrt werden. androl e bildet den Schnitt mehrerer Rollen, womit
jetzt auch Rollen definiert eingefuhrt werden.

Das Vogelbeispiel mit der Erganzung, dal3 ein Rotkehlchen nur genau ein
Nest besitzt, sieht in dieser Syntax so aus:

Vogel < ANYTHI NG Besitz < ANYTHI NGNest < ANYTHI NG

Nest R < Nest

besitzt _wer < ANYRELATI ON besitzt _was < ANYRELATI ON

BesitzR .=. (and Besitz (all besitzt_was NestR)
(atleast 1 besitzt_was) (atnmost 1 besitzt_was))

Rot kehl chen .=. (and Vogel (all besitzt_wer BesitzR))

Die i sa- Relation ist nicht als Rolle notiert, sondern ergibt sich bei Primiti-
ven durch ihre Einfihrung und wird bei Definierten (wie hier Besit zR) durch die
Angabe des Oberbegriffs angeben (erste Angabe im and- Teil). Die Vererbung von
Eigenschaften entlang der Begriffshierarchie ist damit weiterhin gegeben. Bei
diesem Ausschnitt werden die Rollen nicht néher definiert, sie muiussen aber
"oberhalb" ihrer Verwendung eingefiihrt worden sein. Das besitzt_was zwischen
BesitzRund Nest Rist natirlich spezieller as das zwischen Besitz und Nest, weil
die Begriffe jeweils Oberbegriffe sind. Die Aussage ist hier, dal ein Rotkehlchen
ein Vogel ist, der etwas besitzt. So ist Rot kehl chen hier definiert. Ein anderer Name
wirde der Definition besser entsprechen, vielleicht Nest br it er.

ANYﬂﬂNG ANYRELATION
Vogel Besitz \Nest
b -+
Rotkehl — — = BesitzR — —CL - NestR

chen

Da es innerhalb einer T-Box nur um die Definition von Begriffen geht, fehlt
Cl yde in dem Netz.

3.3.4.2 Semantik eines Termsubsumtions-Formalismus

Ganz wesentlich fir den Fortschritt gegenuber urspriinglichen semantischen
Netzen und Frames war die logische Interpretation. Wir geben also jedem verwen-
deten epistemischen Primitiv sowie allen Mdoglichkeiten, sie zusammenzusetzen,
eine wohldefinierte Bedeutung. Dann kénnen wir Eigenschaften des Formalismus
untersuchen und erkennen, welche unterschiedlich aussehenden Formalismen
eigentlich gleich sind, und welche nicht.

Geben wir nun also die formale Semantik fir eine T-Box so an, wie sie von
Bernhard Nebel (1990) fur den Kern von Termsubsumtions-Formalismen ausgear-
beitet wurde. Der Grundgedanke dieser Formalismen war ja, Begriffe zu subsumie-

ren, d.h. Mengen mdoglicher Instanzen in Teilmengenbeziehungen zu setzen. Die
Interpretation von Begriffen ist also der Verweis auf ihre mdglichen Instanzen.
Dain der T-Box keine konkreten Instanzen angegeben sind, mu man auf not-
wendige Beziehungen aller Instanzen verweisen. Wenn etwa Vogel ein Oberbe-
griff von Rotkehlchen (oder Nestbriter) ist, so interpretieren wir das as. O X
rot kehl chen(X) --> vogel (X).Fur die formale Notation nehmen wir eine Extensi-
onsfunktion ext an, die Begriffe auf Mengen von Objekten (eben:Instanzen) ab-
bildet, und Rollen auf Teilmengen des kartesischen Produktes der Objekte (also
Objekt-Tupel)18. Die Funktion ext interpretiert uns aso die Ausdriicke unserer
Signatur, indem sie auf logische Strukturen abbildet. D sei die Menge von Objek-
ten, ¢ sei ein Begriff, r sei eine Rolle, a sei ein atomarer Begriff oder eine atomare
Rolle, t irgendein Begriff oder irgendeine Rolle. Die Extensionsfunktion tut nun
folgendes:

ext

far alle a < t sei ext(t) Oext(a)

far alle a .=. t sei ext(t) = ext(a)

ext(ANYTHING = D

ext (ANYRELATION) = D x D

ext((and c1 ... cn)) = n ext(ci) wobei i von 1 bis n

ext((all r ¢)) ={x OD]| Oy : (x,y) Oext(r) -->y O ext (c)}

ext((atleast nr)) ={ x OD]| card ({y OD]| (x,y) Oext (r)}) 2n}
ext((atmost nr)) ={x OD]| card ({y OD| (x,y) Oext (r)}) <n}
ext((androle rl ... rn)) = n ext(ri) wobei i von 1 bis n

far alle (disjoint cl1 c2) sei ext(cl) n ext(c2) = {}

Dabei liefert card die Kardinalitdt der Menge. Diese Interpretations-
vorschriften sind fast schon in Ordnung. Sie lassen allerdings noch zyklische De-
finitionen zu. Das sind Definitionen von Begriffen, die den Begriff selbst in seiner
Definition direkt oder indirekt verwenden. Tatsachlich geschieht es leicht, dal ein
indirekter Zyklus vom Benutzer eingegeben wird: ein Nestbriter hat einen Besitz,

der ein Nest ist und ein Nest ist der Brutort eines Nestbriters. Die meisten Term-
subsumtions-Formalismen verbieten definitorische Zyklenl9.

Wir konnen jetzt die Termsubsumtion definieren, wobei wir auf die logi-
sche Struktur, die durch die Menge der Objekte D und die Extensionsfunktion ext
gegeben ist, verweisen. Wir machen Aussagen Uber alle logischen Strukturen,
weil wir ja notwendige Beziehungen zwischen allen mdglichen Mengen von In-
stanzen angeben.

t subsumiert t' in einer T-Box T , geschrieben t » t', gdw.

fur jede logische Struktur (D, ext) von T gilt ext(t) O ext(t).

18 "Objekte" wird hier wiein der Logik als Elemente des universe of discourse verstanden.

19 Nebel (90) gibt allerdings auch fiir eingeschrankte Zyklen eine Semantik an, so daf3 sie dann verarbeitet werden
kénnen; s. auch Baader (90).

Subsumtion ist eine transitive (d.h. wenn t » t' und t' » t* dann t »t") und re-
flexive (d.h. t » t) Beziehung, so da® man eine partielle Ordnung aller Begriffe und
Rollen einer T-Box mithilfe der Aquivalenzrelation von Begriffen sowie Rollen
hinbekommt. Die Aquivalenzrelation fur eine T-Box T heif’t, daR fir zwei Begriffe
oder zwei Rollen t und t' gilt:

t aquivalent t' gdw. in jeder Ilogischen Struktur (D, ext) von T gilt
ext(t) = ext(t).

Schlieflich kénnen wir noch die Inkohdrenz eines Begriffs t in einer T-Box T
feststellen:

t ist inkohdarent in T, gdw. fir jede logische Struktur gilt: ext(t) = {}

Inkohérente Begriffe sind also in sich selbst widersprichlich und nicht nur
in einer speziellen Struktur falsch.

(and (atl east 1r) (at nost 0r))

ist ganz sicher inkohérent. Wir kdnnen NOTHI NGals speziellsten Term in die
T-Box einfuhren. NOTHI NG entspricht der leeren Menge. Mit den Schnittmengen
(and) und NOTHI NG bildet die T-Box einen Halbverband, bei dem wir immer das I n-
fimum bestimmen konnen.20

Fiur die Einordnung von Begriffen in einer T-Box kénnen wir alle einge-
schachtelten Definitionen glétten, indem wir fur jeden definierten Begriff seine
Definition einsetzen, wo immer er vorkommt. Das klappt, wenn wir keine Zyklen
in den Definitionen haben. Die gegléatteten Ausdricke enthalten nur noch primi-
tive Begriffe. Beim Glétten werden inkohdrente Ausdricke durch NOTH NG ersetzt.
Bei geglatteten Ausdricken koénnen wir dann feststellen, welcher Ausdruck von
welchem subsumiert wird. Ein Algorithmus, der Begriffe in eine T-Box einordnet,
heit Klassifikationsalgorithmus (classifier). Schluf3folgerungen in der T-
Box sind stets Klassifikationen. Da alle Begriffe gleich bei ihrem Eintrag in die T-
Box klassifiziert (an die richtige Stelle im Begriffsnetz eingefiigt) werden, kann
eine Anfrage nach der Klassifikation eines Begriffes durch einfaches Traversie-
ren schnell erfolgen. Ein Begriff wird in eine T-Box eingefiigt durch die folgende
Prozedur:

classify(c)

1) Die Begriffsdefinition wird in eine Form gebracht, die auf oberster Ebe-
ne einen and-Ausdruck hat, in den keine weiteren and-Ausdriicke einge-
bettet sind. Jeder verwendete Begriff in dem Ausdruck wird durch seine
Definition ersetzt.

2) In der Begriffsbeschreibung werden inkonsistente Ausdricke durch
NOTHI NG ersetzt.

3) Wenn die Begriffsbeschreibung eine Werterestriktion ist (al r c), wird
ein anonymer Begriff erzeugt, der gerade durch diese Wertebeschrén-
kung definiert ist.

4) Die Definitionsbestandteile werden Kklassifiziert, d.h. classify wird re-
kursiv angewandt.

20 Das heif:, fiir jede zwei Begriffeist ihr groRter gemeinsamer Unterbegriff angebbar: wenn sie keinen Schnitt
haben, ist esdie leere Menge, NOTHI NG,

5) Die T-Box wird traversiert, um den Platz zu finden, an den der Begriff
gehort: unter alle direkten Oberbegriffe und Uber alle direkten Unter-
begriffe. Wir suchen aso die Begriffe super-c;, fur die gilt: subsunes
(super-c;, c). AuBerdem suchen wir die Begriffe sub-c;, fur die gilt:
subsunmes(c, sub-c;). Dabei verwenden wir die bereits aufgebaute Ord-
nung von Begriffen, missen aso nicht bei jedem Vergleich die Regeln
von subsumes anwenden.

6) Der Begriff wird an dem in Schritt 5) bestimmten Platz eingefugt. Falls
dort bereits ein Begriff eingeordnet ist, die beiden Begriffe also aquiva-
lent sind, so fallen sie zu einem Begriff zusammen.

Die Traversierung (Schritt 5) kann gleichzeitig von den Bléttern nach oben
und von ANYTHI NG nach unten erfolgen. Der Kern des Klassifikationsalgorithmus'
ist die Prozedur subsumes, die fir zwei beliebige Begriffe t und u wahr oder fal sch
liefert, je nachdem ob t u unmittelbar subsumiert, oder nicht2l,

subsumes(t, u)

Wenn u = NOTHING dann liefere wahr .

Wenn t= (and t; ... t,) oder t=(andr ol e t; ... t,), dann liefere wahr , wenn fir allei
von 1 bisn subsumes(t;, u) wahr liefert -- sonst liefere f al sch.

Wenn t primitiv ist, dann
falls u primitiv ist, liefere wahr , wenn t=u -- sonst liefere f al sch.

falsu = (and u, ... u,) oder u=(androlet, ..t,), liefere wahr,wenn es ein u;
gibt, so da3t = u;, 1< i <n -- sonst liefere f al sch.

sonst liefere f al sch.
Wenn t = (al | r c), dann

fals u=(all r, c), liefere wahr, wenn sowohl subsumes (c c) as auch
subsumes (r, r) wahr sind -- sonst liefere f al sch.

falsu = (at most Or), liefere wahr, wenn subsumes (r, r) gilt -- sonst lie-
fere f al sch.

falls u = (and u; .. u,), liefere wahr, wenn es ein u; gibt, so daR
subsumes (t, u;) fur 1< i <n gilt -- sonst liefere f al sch.

sonst liefere f al sch.

Wenn t = (at | east n r), dann

fals u =(atleast n r), liefere wahr, wenn sowohl subsumes (r, r) als
auch n < n gilt -- sonst liefere f al sch.

falsu = (and u, ... u,), liefere wahr, wenn es ein u; gibt, so dal gilt subsu-
mes (t, u), 1< i<n -- sonst liefere f al sch.

21 Auch der Kern des classifier ist - leicht modifiziert - Nebel (90:76f) entnommen. Er basiert auf dem BACK -
System, das an der TU Berlin entwickelt wurde (v.Luck et a. 87).

sonst liefere f al sch.

Wenn t = (at most n r), dann

falls u
auch n,

falsu =

< N, gilt -- sonst liefere f al sch.

(and u, ...

mes (t, u;), 1< i<n -- sonst liefere f al sch.

sonst liefere f al sch.

(atmost n r), liefere wahr, wenn sowohl subsumes (r, r) als

u,), liefere wahr, wenn es ein u; gibt, so da gilt subsu-

Dieser Algorithmus laft sich in der folgenden Entscheidungstabelle Uber-
sichtlich zusammenfassen.
t androle ti...ta | primitiv all r¢ ¢ atleast n r¢ atmost n; 1;
u and t;...tn
NOTHING wahr wahr wahr wahr wahr
primitiv 0, l<ign:| t=u falsch falsch falsch
subsumes(ti,u)
all ry ¢y 0, 1<i<n:| falsch subsumes (c,c.)0| falsch falsch
subsumes(ti,u) subsumes (ry,1)
atmost 0 ry 0, l<i<n:| falsch subsumes (ry,It) falsch falsch
subsumes(ti,u)
and up.u, androle| O0; 1<i<n:| O, 1<i<n 0, I<isn:| O, 1<isn:| 0, 1<i<n:
Ul---Un subsumes(ti,u) t=uy, subsumes (t,u;) subsumes (t,u;) subsumes (t;,u)
atleast n, 1y 0. 1<i<n:| falsch falsch subsumes(r,ry) falsch
subsumes(ti,u) On< ny
atmost ny 1y 0. 1<i<n:| falsch subsumes (ru,1y) | falsch subsumes (1l
subsumes(t;,u) bei n,=0 Ony<n
sonst falsch
Das Beispiel, das sich durch das Buch von Nebel (1990) hindurchzieht, [&ft

sich folgendermaRen bildlich darstellen:

ANYTHIN

/m:nber

Team

—
/

ANYRELATION

P=-Human

(I eader ist spezieller als menber) und weil es Anzahlbeschrankungen

Small-Team

Modern-Team

atmost 5
leader

atleast 1

Woman Man

Es ist ein recht komplexes Beispiel, weil es eine Rollenspezialisierung enthalt
enthélt (ein

kleines Team hat 5 Mitarbeiter, ein modernes Team hat vier Mitarbeiter und eine
Leiterin).

Hinter der Auswertung von t = (al | rt ¢t) steht die folgende Uberlegung:
Wenn ext(ct) O ext(cy) und ext(ry) O ext(rt), dann muf3 gelten:

ext((all rrc)) O ext((all roc)) O ext((all r,c)).

Ein mit derselben Rolle definierter Begriff kann spezieller sein, wenn der
Wertebereich spezieller ist:

Seit = (all member Human) und u = (al | member Woman), dann ist
ext(Human) O ext(Woman) und ext (member) = ext (member)
woraus folgt:
ext((al I member Human)) O ext((al | member Woman)) =
ext((al I memberWoman))

Sogar ein mit einer allgemeineren Rolle definierter Begriff kann spezieller
sein, wenn nur der Wertebereich spezieller ist:

Seit = (all leader Human) und u = (al | member Woman), dann ist
ext(Human) 0O ext(Woman) und ext (member) 0O ext (leader)
woraus folgt:
ext((al I leader Human)) O ext((al | leader Woman)) O
ext((al | member Woman))

Ein nur durch eine speziellere Rolle definierter Begriff kann nicht unterge-
ordnet werden:

Sei t = (al | member Human) und u = (al | leader Woman), dann ist
ext(Human) O ext(Woman) und - (ext (leader) O ext (member))

also subsumiert t nicht u! Denn es ist ja nichts Uber den Wertebereich von
member bel u ausgesagt - der konnte groRer sein as Human. Das Mbder n- Teamist des-
halb ein Unterbegriff von Team weil es die member -Rolle genau wie Teamfillt und
zusatzlich drei Einschréankungen hat, ndmlich atnost 4 und atleast 1 leader all
| eader Woman. Ein Wolfsrudel, das von einer Frau geleitet wird, ist kein Unterbe-
griff eines Teams.

3.3.4.3 Einige Eigenschaften von Termsubsumtions-Formalismen

Der Klassifikationsalgorithmus kann wahr oder f al sch ausgeben fir jedes subsumes
(t,u) und wenn der Algorithmus wahr ausgibt, dann subsumiert t auch tatsach-
lich u. Der Algorithmus entscheidet also korrekt. Die Subsumtion in zyklusfreien
T-Boxen ist entscheidbar. Obendrein arbeitet der Algorithmus in polynomialer
Zeit Uber der Lange der beiden zu vergleichenden Terme. Dabei haben wir aller-
dings einige Konstrukte weggelassen, die in vielen Termsubsumtions-Systemen
vorhanden sind: wir haben Zyklen von vornherein ausgeschlossen und insbeson-

dere haben wir die Rollen primitiv gelassen. Esgibt also keine konstruierten Rol-
len - sobald man diese einfuhrt, wird die Subsumtion unentscheidbar. Schon bei
dem einfachen Konstrukt androle wird die Subsumtion unvollstdndig - oder
nicht mehr polynomial. So wirde der Algorithmus falsch ausgeben im folgenden
Fall:

tsei (atl east 3 member)

use (and (all (androl e member programmer) Man)
(al I (androl e member scientist) Woman)
(atl east 2 (andr ol e member programmer))
(atl east 2 (andr ol e member scientist))
(di sj oi nt Man Woman))

Wir sehen nun, dal3 bei u die Rolle member immer mindestens 4 mal vorkommt:
zweimal fir Manner und zweimal fir Frauen. Damit ist die Forderung von t, daf
die Rolle mindestens 3 ma vorkommen soll, erflllt. Also subsumiert t u. Der Algo-
rithmus merkt dies aber nicht und liefert fal sch. subsunes mifte die di sjoint-
Beschrénkung Dbertcksichtigen. Im allgemeinen Fall, wenn man nicht auf paar-
weise Disjunktheit reduziert, muf3 man dann alle Teilmengen aller Unterrollen
untersuchen. In der Kl lebt man deshalb mit unvollstdndiger Subsumtion oder be-
schrankt den Formalismus. Dies ist das berihmte Abwagen von Brachman, Leves-
que (1987): Handhabbarkeit oder Ausdrucksféhigkeit eines Repréasentationsfor-
malismus'.

3.3.4.4 Assertionen und hybride Inferenzen
Der Formalismus zur Darstellung der Instanzen, die A-Box, soll nicht mehr Defini-

tionen von Begriffen reprasentieren, sondern Dinge, die unter Begriffe fallen.
Die Syntax ist einfach (Nebel 1990:65):

<world-description> ::= (<object-description> | <relation-description>)
<object-description> ::= (<atomic-concept> <object>)
<relation-description> ::= (<atomic-role> <object> <object>) |

(<atomic-role> <object> (at | east <number>)) |
(<atomic-role> <object> (at most <number>))
Die Semantik der Assertionen, Objekt- und Relationsbeschreibungen, kann

wieder mit Bezug auf die Menge aller Objekte D angegeben werden. Eine Inter-
pretationsfunktion i nt bildet eine Menge von Objekten auf D ab, eine Menge ato-

marer Begriffe auf 2D, eine Menge von Rollen auf 2D* D. Eine Interpretation
(D,int) erflullt eine Beschreibung &:

Objektbeschreibung (¢ o) ist erfdllt, gdw. int(o) O int(c),
Relationsbeschreibung (r o p) ist erfdllt, gdw. (int(o), int(p)) O int(r)
Relationsbeschreibung (r o (atl east n)) ist erfllt, gdw.

card({X] (int(0),X) O int(r)})= n

Relationsbeschreibung (r o (at most n)) ist erfillt, gdw.
card({X]| (int(0),X) O int(r)}) < n
Wenn eine Interpretation alle Beschreibungen einer A-Box erfullt, so ist sie

ein Modell der A-Box. Eine Beschreibung folgt logisch aus einer A-Box, wenn sie
in alen Modellen der A-Box erflllt ist.

T-Box
ANYTHIN ANYRELATION
/ G\/\
-
_— -
-
Tearf member = Human
atmost 4
Small-Team Modern-Team
atmost 5
leader Woman Man
atleast 1
A-Box
] |
team_a member tom
team_a member dick
team_a member harry
team_a leader mary

Eine A-Box muB nicht alle Angaben enthalten, die gelten. Es kann auch mit-
hilfe der T-Box etwas inferiert werden. Insbesondere konnen die fir einen Be-
griff gegebenen Eigenschaften an seine Instanzen weitergegeben werden. Wenn
zum Beispiel von Mary bekannt ist, da} sie die Leiterin eines modernen Teams ist,

(Moder n- Team t eam a), (| eader team a nary)

so kann man schlielen, da? Mary eine Frau ist. Dies wird auch hybride | n-
ferenz genannt, weil sie A-Box und T-Box verbindet. Die einfachste hybride I|nfe-
renz stellt fest, ob ein Objekt eine Instanz eines Begriffs ist fur eine bestimmte T-
und A-Box.

In der Abbildung geben die Pfeile von der A- zur T-Box die ausdriicklich in
der A-Box angegebenen Instanz-Beziehungen wieder. Fir die Rolle nenber sind
tom dick und harry die Rollenfiller bzw. Objekte im Wertebereich bzw. Zielob-
jekte in der A-Box, Human der Rollenfiller bzw. Begriff im Wertebereich in der T-
Box. Moder n- Teamist der Ursprungsbegriff und team a das Ursprungsobjekt. Ge-
schrieben wird die Rolle (menber Moder n- Team Human) bzw. (nmenber teama tom.

Der Realisierungsalgorithmus (realizer) stellt fest, von welchem Begriff
ein Objekt eine Instanz ist. Dabei wird ein Trick angewandt: fur eine A-Box werden
alle speziellsten Begriffe berechnet. Sie bekommen einen kinstlichen Namen. Die
speziellsten Begriffe fir eine A-Box decken gerade die Objekt- und Rollenbe-
schreibungen ab, sind aber meist spezieller als alle schon in der T-Box definierten
Begriffe und Rollen. Der Realisierungsalgorithmus propagiert Wertebereichbe-
schréankungen von Rollen, abstrahiert Beschreibungen eines Objektes oder einer
Relation und ruft dann den Klassifikationsalgorithmus auf, der den so gewonne-
nen speziellsten Begriff in die T-Box einordnet. Der von dem Klassifikationsalgo-
rithmus gefundene Ort in der T-Box ergibt fur einen speziellsten Begriff seinen
Oberbegriff: das entsprechende A-Box-Objekt ist eine Instanz von diesem Begriff!

Propagierung:

Wenn & = (r o p), dann sammle alle Objektbeschreibungen von o auf, sammle
alle Wertebereichseinschrankungen von r und propagiere diese Ein-
schrdnkungen an p.

Wenn d =(c o), dann sammle alle Wertebereichseinschrankungen aller Rol-
len von c, die in der A-Box fir o eingetragen sind (r o @), und propagiere
diese an das jeweilige Q.

Abstraktion:

Fur alle Objekte werden alle Begriffe cj aufgesammelt und konjunktiv
verknupft, die in der Beschreibung (cj o) vorkommen. Wenn der Werte-
bereich einer Rolle r eingeschrankt ist durch atleast, atnost oder all,
wird gepruft, welche Zielobjekte fir o bei r eingetragen sind, wieviele es
sind und eine entsprechende Wertebereichsbeschrankung fur (r o p)
wird explizit angegeben.

Klassifikation:

Die durch Abstraktion und Propagierung gewonnene speziellste Definiti-
on fur eine Objekt- oder Relationsbeschreibung wird in der T-Box klassi-
fiziert.

Fir team a wird ein speziellster Begriff definiert und mit dem kinstlichen
Namen uni que_1 in die T-Box eingetragen:

unigue 1 .=. (and Modern-Team (al | member unique 2)(at most 3 member)
(al I leader unique_3)(at most 1 leader)

(at |l east 1 leader))

Entsprechend ist fiar tom dick, harry, mary jeweils ein speziellster Begriff
erzeugt worden. unique 2, unique_4 und unique_5 fUr tom, dick und harry werden vom
Klassifikationsalgorithmus als voéllig gleiche Definition an dieselbe Stelle der T-
Box eingeordnet.

T-Box

ANYRELATION
/ ANYTHING\< O
_— —
_— -

Team member » Human

f

Small-Team

Modern-Team

atmost 5 leader ‘
atleast 1 Worvn Man
unique_3 _
unique_1 atmost 1 nique_2
A atmost 3
A-Box
team_a member tom\
team_a member dick
team_a member harry
team_a leader mary

Man kann den Realisierungsalgorithmus als Vorwértsverkettung von Regeln
der T-Box mit einem Grundbeispiel as Ausgangspunkt auffassen. Insofern ist der
Aufwand des Algorithmus' durch die Anzahl der Zielobjekte, die Anzahl der Objekte
im Wertebereich einer Relationsbeschreibung und die Inferenztiefe gegeben.
Deshalb wird oft eine maximale Inferenztiefe as Beschrdankung fir den Algo-
rithmus angegeben, was natirlich zu seiner Unvollstandigkeit fuhrt.

Ein hybrides System, bestehend aus einer T-Box, die Begriffsdefinitionen und
Rollen enthalt, und einer A-Box, die Beschreibungen von Objekten und Relationen
enthdlt, kann zusammengenommen als Expertensystem eingesetzt werden. Als
Standardvariante eines Termsubumtionssystems hat sich CLASSIC (Borgida et al.
1989, Borgida et al. 1992) durchgesetzt.

3.3.5 Zusammenfassung des Lehrsticks

Ausgehend von der einleuchtenden Repréasentation von Begriffen as Knoten und
Beziehungen zwischen ihnen as Kanten oder slots, begann man das Repertoire
von Knoten- und Kantentypen zu untersuchen. Zunéchst versuchte man, semanti-
sche Primitive zu finden. Das sollten bestimmte Merkmale sein, die zur Modellie-
rung in alen Weltausschnitten verwendet werden konnen. Es gelang jedoch
nicht, einen Kanon von semantischen Primitiven zu finden: einige wie isa oder
i nst ance_of kamen immer wieder vor, andere waren sachbereichsabhangig (wie
etwa dress, present). Eswar auch nicht klar, wie ein Knoten- oder Kantentyp zu
verstehen sei. Lauter spezielle Zugriffsprozeduren realisierten ihre operationale

Semantik. Erst als man die epistemische Ebene einfuhrte, liel sich ein Repertoire
aufstellen: das der epistemischen Primitive. Ein von vielen verfolgter Ansatz ist
der der Termsubsumtions-Formalismen. Die epistemischen Entitaten sind: Begriffe,
Rollen, Wertebereiche von Rollen mit ihren Restriktionen, Schnittmengenbil-
dung bei Begriffen und Rollen. Sie beziehen sich nicht mehr auf Entitdten eines
Sachbereichs, sondern auf Entitdten des Definierens von Begriffen. Fir jede epi-
stemische Einheit |a3t sich eine formale Semantik angeben, die natirlich auch
operationalisiert wird durch eine Zugriffsprozedur. Durch die formale Semantik
kénnen nun aber sehr unterschiedliche Systeme verglichen werden, ohne dafl3
man ihre Implementation kennen muR. Auch die Implementation selbst ist viel
leichter geworden, weil nur fir jede epistemische Entitdt eine Prozedur flr das
Hinzufliigen, eine fir das Ldschen und eine fir eine Anfrage geschrieben werden
muf3. Obendrein kdnnen formale Eigenschaften fur Termsubsumtions-
Formalismen angegeben werden: die Klassifikation ist korrekt und - wenn keine
Zyklen auftreten konnen - entscheidbar. Wenn auch nur die Schnittbildung bei
Rollen zugelassen wird, ist die Subsumtion unvollstandig. Damit wissen wir, daf
wir nicht jeder negativen Antwort des Systems trauen dirfen. Wenn keine Rol-
lenkomposition zugelassen wird, ist der Aufwand polynomial. Damit wissen wir
zum Beispiel, dal’ eine exponentielle Implementation hinter dem Stand der Kunst
herhinkt.

Das folgende Bild veranschaulicht die Ebenen eines Wissensrepréasentations-
systems. Dem Benutzer wird von der Benutzerschnittstelle ein bestimmtes Format
des Wissensreprasentationsformalismus' prasentiert. Zum Beispiel konnen graphi-
sche Objekte oder textuelle Einheiten dargestellt und vom Benutzer manipuliert
werden. Diesem Prasentationsformat (mit Ellipsen und Pfeilen etwa) liegt der Re-
prasentationsformalismus (mit Klassen von Objekten und Relationen) zugrunde.
Der wird realisiert mithilfe eines Programmes, das die epistemischen Einheiten
des Formalismus verarbeitet. Zum Beispiel werden neue Einheiten eingetragen,
wobei Integritatsbedingungen und vielleicht auch die Konsistenz mit vorhande-
nem Wissen geprift werden, oder es wird nach bestimmten Einheiten im Wissen
gesucht, wobei sie auch gefolgert werden konnen. Das Verarbeitungsprogramm
gibt an, was eine Einheit des Formalismus' bedeuten soll, indem es die Verarbei-
tung der Einheit vorschreibt. Das Verarbeitungsprogramm wird seinerseits auf
einer bestimmten Maschine mit einem bestimmten Betriebssystem realisiert. Dies
ist die operationale Semantik des Repréasentationsformalismus'. Der Reprasentati-
onsformalismus erhélt eine logische Beschreibung, die angibt, was die Einheiten
bedeuten sollen. Dies ist die formale Semantik des Reprasentationsformalismus'.
Sie soll lesbarer sein as das Verarbeitungsprogramm und unabhdngig von ma-
schinenspezifischen Details. Die logische Beschreibung ist auf ein logisches Kal-
kul (also Regeln wie etwa die Schnittregel und Axiome) gegrindet.

-

Benutzer }"g’

Prasentation

Reprasentation (and ...(all ...) (atleast...)(atmost ...)) logische

. ext((and ...))=...
Beschreibung ext((all...))=...

mit ext((atmost..))=..
Interpretation ext((atleast..))=..

Programmierung ask

Systementwicklerin

delete

//iz.z

3.3.5.1 Literatur

Baader, Franz (1990): Terminological cycles in KL-ONE-based knowledge re-
presentation languages. in: Proceedings of the 8th National Conference of
the American Association for Artificial Intelligence, 1990.

**Borgida, A., Brachman, R., McGuinness, D.L., Resnick, L. (1989): CLASSIC - -
A structural data model for objects, in: Procs. of SIGMOD-89, Portland.

Borgida, A., Patel-Schneider, P.F. (1992): A semantics and complete algorithm
for subsumption in the CLASSIC description logic, AT&T Technical Report.

*Brachman, Ron J. (1977): What's in a Concept - Structural Foundations for
Semantic Networks, in: Int. Journal of Man-Machine Studies, 9, 127-152

Brachman, Ron J. (1979): On the Epistemological Status of Semantic Networks,
in: Findler(ed): Associative Networks - Representation and Use of Know-
ledge by Computers, New York: Academic Press, 3-50

Brachman, Ron J, Levesque, Hector (1987): The Tractability of Subsumption
in Frame-based Description Languages, in: Procs. 4th AAAI-84, Austin,
Texas, 1987

**Brachman,Ron, Levesque, Hector (eds): Readings in Knowledge Represen-
tation, Los Altos: Morgan Kaufmann, 1985.

Hayes, Patrick J. (1977): In Defence of Logic, in: Proceedings of the fifth In-
ternational Joint Conference on Artificial Intelligence, 1977.

McDermott, Drew V. (1978): Artificial Intelligence Meets Natural Stupidity, in:
SIGART Newsletter, 57.

Minsky, Marvin (1981): A Framework for Representing Knowledge, in: Hau-
geland (ed): Mind Design, MIT Press, 1981

*Nebel, Bernhard (1990): Reasoning and Revision in Hybrid Representation
Systems, Berlin, New York: Springer

Schank, Roger (1973): Identification of Conceptualization Underlying Natural
Language, in: Schank, Colby (eds): Computer Models of Thought and Lan-
guage, San Francisco: Freeman A

von Luck, Kai, Nebel, Bernhard, Peltason, Christof , Schmiedel, Albrecht
(1987): The Anatomy of the BACK System, TU Berlin, Projektgruppe KIT,
KIT-Report 41, Januar 1987.

3.4 Produktionensysteme

Fir ein Produktionensystem der Kinstlichen Intelligenz gibt es drei Herleitun-
gen:

o dieser Formalismus sollte ein Gedéachtnismodell operationalisieren,

* es ist die konsequente Weiterentwicklung der Suche uber UND-ODER-
Graphen flUr praktische Anwendungen,

o dieser Formalismus sollte den allgemeinen Interpreter von den
speziellen Inhalten eines Sachbereichs trennen.

Wir haben hier also wieder alle drei Bestimmungen der Kl zusammen: das ko-
gnitive Verhalten des Menschen zu beschreiben, Programme menschengerechter
zu machen und expliziter und verstandlicher zu operationalisieren.

3.4.1 Produktionensysteme als Gedachtnisbeschreibung

Eine Reihe von Studien in den 60er Jahren fihrte dazu, dal3 man beim Menschen
ein Kurzzeitgedachtnis mit einer festen, kleinen Speichergrofle und ein Langzeit-
gedéchtnis mit einer flexiblen, grofen SpeichergrofRe annahm. Die Speichergrofe
des Kurzzeitgedachtnis wurde mit 7 Einheiten (chunks) angegeben (Miller 1956).
Weas einer Einheit entspricht, ist dabei unterschiedlich. Wenn wir Lesen lernen,
ist fir uns ein Buchstabe eine Einheit und wir kdnnen uns nur wenige (etwa 7)
Buchstaben merken. Wenn wir schon lesen kdnnen, ist ein ganzes Wort fur uns
eine Einheit und wir kénnen uns mehrere (etwa 7) Worter merken. Wir kdnnen
stehende Redewendungen wiederum als Einheiten, die aus Wodrtern aufgebaut
sind, begreifen. Wir koénnen uns dann 7 Redewendungen merken. Sie konnen die-
ses Prinzip leicht bei sich selbst beobachten. Die folgenden Worter in arabischen
Buchstaben sollen Sie wiedergeben:

Geht nicht? Nun, nehmen wir lediglich das erste Wort:

Schon besser? Jetzt verrate ich lhnen, dal - von rechts nach links - die 9 Buch-
staben bedeuten:

KaTaR|I NaM URI K.

So. Jetzt zeige ich die arabischen Buchstaben noch einmal mit dieser Lesung
versehen. Konnen Sie die Worter wiedergeben? Diese Folge durfte fur Sie maximal
6 Einheiten ausmachen, denn Katharina ist ein ganz normaler Name. Psychologen
haben das Gedachtnis durch Wiederholungsexperimente mit sinnhaftem und
sinnlosem Material untersucht: den Versuchspersonen wurden beispielsweise Sil-
ben prasentiert, die sie danach wiederholen sollten. Dabei traten insbesondere
zwei Effekte auf: die Menge der gelernten Silben héngt von den kognitiven Ein-

heiten (chunks) ab (bekannte Silben brauchen weniger Zeit/Platz) und die ersten
und die letzten Silben werden am besten erinnert (Positionseffekt).

Natldrlich wissen wir mehr, as mit 7 Einheiten zu kodieren wére. Das Kurz-
zeitgedachtnis ist nur der Inhalt, Uber dem aktuell Operationen ausgefiihrt wer-
den. Das Langzeitgedachtnis umfaf3t mehr. Man versuchte, das Langzeitgedachtnis
as Index und Gedéchtnisinhalt aufzufassen, wobei der Index die Zugriffspfade zu
den Inhalten darstellt. Lernen ware dann unter anderem der Aufbau eines sol-
chen Index und das Verwenden eines Index, um eine Antwort auf eine Frage zu
finden.

Feigenbaum entwickelte in seiner Dissertation ein operationales Modell des
Gedéachtnisses. Das Modell, EPAM (elementary perceiver and memorizer), besteht
in einem Baum, der durchsucht wird, um einen Gedéachtnisinhalt zu finden
(Feigenbaum, Simon 1963). Dabei sind die Kanten Tests und deren Nachfolgekno-
ten sind die Elemente, die noch im Zugriff sind, wenn der Test bestanden wurde.
Die Blatter sind die aufzufindenden Elemente, also chunks. Zum Beispiel kdnnte
ein Wort so gefunden werden: zuerst nimmt man den ersten Buchstaben und fin-
det damit einen Knoten, von dem aus nur noch die Worter mit diesem Anfangs-
buchstaben erreichbar sind; von diesem Knoten aus wahlt man die Kante mit dem
letzten Buchstaben des Wortes; von dem so gefundenen Knoten wahlt man die
Kante mit dem ersten der mittleren Buchstaben und so fort, bis man bei dem ge-
suchten Wort angekommen ist. Der Baum ist ein Diskriminationsnetz. Wenn man
dieses einfache Modell zur Beschreibung der Effekte beim Erinnern etwas weiter-
fuhrt, kann man auch Handlungen oder Problemldsungen beschreiben. Die Blat-
ter des Diskriminationsnetzes sind dann nicht mehr einfach nur Einheiten, son-
dern Bedingungs-Handlungspaare, die in bestimmten Situationen relevant sind.
Die Bedingungen geben an, wann die Handlung auszufiihren ist. Eine Regel, die
eine Menge von Bedingungen mit einer Handlung verknupft, ist eine Produk-
tionenregel. Eingefihrt wurde der Formalismus der Produktionen von Post
(1943). Sein Produktionensystem besteht aus

A: einem Alphabet bestehend aus den disjunkten Mengen terminaler und
nonterminaler Symbole,

Axiom: einem ausgezeichneten Wort, mit dem die Ableitungen beginnen,

Produktionen: W -->V mit W, V UAO (hier ist kein Suchalgorithmus ge-
meint, sondern die Konkatenationen von Symbolen aus A). Eine Produkti-
on drickt aus, dald das Teilwort W durch das Teilwort V ersetzt werden
darf.

Das Ergebnis einer Produktion wird einem Speicher hinzugefiigt, in dem an-
fangs nur das Axiom ist.

Die Psychologen griffen den Formalismus fur ihre Modellierung wieder auf. Die
Produktionen werden nun geschrieben:

| F <Bedi ngungsy, . . ., Bedi ngungn> THEN <Handl ung>

Ein Produktionensystem besteht aus einer Menge von Produktionenre-
geln, einem Kurzzeitgedachtnis (dem impliziten Speicher bei Post) und einem In-
terpreter. Das Kurzzeitgedachtnis gibt die aktuelle Situation an, weswegen es auch
"Kontext" genannt wird. Die Benennung des Kurzzeitgedachtnisses als
"Datenbasis" hat zu flrchterlichen MiRverstandnissen gefthrt, da Datenbasen
Ublicherweise grof? sind und - psychologisch betrachtet - eher dem Langzeitge-
dachtnis nahe kamen, auf gar keinen Fall dem Kurzzeitgedachtnis. Tatsachlich ist
das Kurzzeitgedachtnis lediglich eine Reprasentation der bisher abgeleiteten In-
halte. Gegen diese aktuelle Situation werden die Bedingungen der Produktionen-

regeln abgeprift. Die Aktionen der Produktionenregeln veréandern den Inhalt des
Kurzzeitgedachtnisses. Dadurch werden dann andere Regeln anwendbar, d.h. ihre
Bedingungen sind dann vielleicht erfallt. Der Interpreter hat die Aufgabe zu be-
stimmen, welche Regel als nachste angewandt werden soll. Eskann nur eine sein,
deren Bedingungsteil vom Inhalt des Kurzzeitgedachtnisses erflllt wird. Ob man
nur die erste anwendbare Regel nimmt oder alle oder welche man aus den an-
wendbaren auswahlt, ist die Interpreterstrategie. Die Ausfuhrung der Regel be-
steht darin, den Inhalt des Kurzzeitgedachtnisses zu veréndern.

Was die Psychologen an den Produktionensystemen so interessant fanden,
war, dal} Regeln erlernbar aussehen (Simon 1978). Man kann sich leichter vor-
stellen, dal3 Lernen wunter anderem der Erwerb von zusétzlichen Regeln ist, als
man sich vorstellen kann, da ein ganzes Pascal-Programm - das ja ununter-
scheidbar Daten, Kontrolle, Veranderung der Situation enthalt - durch Lernen
erworben und erweitert wird. Die Trennung der Bestandteile eines klassischen
Programms in einen allgemeinen und gleichbleibenden Interpreter, ein dynami-
sches Kurzzeitgedachtnis und eine Menge gleichférmiger, kleiner Einheiten, die
Situation und Handlung in Verbindung bringen, erméglicht die - auch automati-
sche - Veranderung einer Menge (kognitiver) Einheiten. Um das Verhalten des
gesamten Systems zu verdndern, braucht man nur eine Regel hinzuzufiigen oder
eine Regel zu loschen oder eine Regel zu modifizieren. Oder, anders ausgedrickt,
wenn sich die Regelmenge &ndert, &ndert sich auch das Verhalten des Systems. Die
Regelmenge wurde dann als "Wissen" bezeichnet, weil sie im Gegensatz zu Einga-
bedaten in ein Pascal-Programm, die ja sicherlich auch das Verhalten des Pro-
gramms bestimmen, auch Teile dessen enthalten, was im Pascal-Programm stehen
wurde. Natarlich ist die Wahl des Begriffs "Wissen" sehr problematisch (Morik
1991). Hier sollte nur skizziert werden, aus welchen Uberlegungen heraus man
Uberhaupt auf die Idee kam, Produktionenregeln als Wissen zu bezeichnen. Dies ist
ohne den Hintergrund, dal3 dieser Formalismus als Modell des menschlichen Ge-
dachtnis interpretiert wurde, wohl nicht zu verstehen.

3.4.2 Produktionensysteme technisch

Gerade der Ingenieursansatz der Kl hat sich mit Produktionensystemen beschaf-
tigt. An einem kleinen Beispiel soll ein Produktionensystem "bei der Arbeit" ge-
zeigt werden. Wir nehmen folgende Menge von Regeln an:

R1: I F ok(Geraet) & verbunden(Geraet, Sicherung)
THEN i nt akt (Si cher ung)

R2: | F eingeschaltet (Geraet) & arbeitet(Geraet)
THEN ok(Cer aet)

R3: I F eingeschal tet (CGeraet) & tutnicht(Geraet)
THEN gest oert (Geraet)

R4: | F verbunden(Geraet1l, Sicherung) & verbunden(Geraet?2, Sicherung)
THEN gl ei che_si cherung(Geraet1l, GCeraet2, Si cherung)

R5: | F gestoert(Geraet) & verbunden(Geraet, Si cherung)
THEN ver dacht (Ger aet, Si cher ung)

R6: I F gl ei che_sicherung(Geraetl, Ceraet?2, Sicherung) &
gestoert (Ceraetl) & gestoert(Geraet?2)
THEN def ekt (Si cher ung)

R7: I F gl eiche_sicherung(Geraetl, Ceraet2, Sicherung) &
gestoert(Geraetl) & ok(Geraet?2)
THEN ander e_st oerung(CGer aet 1)

Nehmen wir an, das Kurzzeitgedéchtnis bzw. der Kontext enthielte zunachst

ei ngeschal tet (|1 anpel). tutnicht (Il anpel).
ei ngeschal tet (|1 anpe2). tutnicht (|l anpe2).
ver bunden(| anpel, si cherungl). verbunden(| anpe2, si cherungl).

Nehmen wir weiterhin einen einfachen Interpreter an. Jeder Interpreter
eines Produktionensystems durchlauft den Zyklus: Abgleich (match), Kon-
fliktauflésung (conflict resolution) und Anwendung (act).

Eine einfache Form sieht etwa so aus:

Abgleich: Finde alle Regeln, deren Bedingungsteil sich mit dem Kontext ab-
gleichen [laft;

Markiere diese Regeln als "anwendbar”;

Wenn es keine anwendbaren Regeln gibt, gib den Kontext aus und termi-
niere;

Konfliktauflésung: Wahle die erste anwendbare Regel aus, entferne die
Markierung von allen anderen anwendbaren Regeln;

Anwendung: fuhre den Handlungsteil der ausgewdahlten Regel aus, indem
die neue Aussage in den Kontext geschrieben wird und die den Bedingun-
gen entsprechenden Aussagen aus dem Kontext geldscht werden;

entferne die Markierung von der Regel;

In diesem Beispiel fir einen Interpreter wird vom Kontext ausgehend die
Menge der anwendbaren Regeln durch den Abgleich mit den Bedingungen be-
stimmt. Diesen Modus eines Interpreters nennt man Vorwartsverkettung. Dies
entspricht dem Vorgehen bei dem Postschen Produktionssystem.

Im ersten Zyklus des angegebenen Interpreters sind die Regeln R3 und R4
anwendbar. Die Konfliktauflésung wahlt R3 aus. Die Regelanwendung flgt

gestoert (| anpel)
dem Kontext hinzu und l6scht aus dem Kontext:

ei ngeschal tet (| anmpel), tutnicht(lanpel)
Im nachsten Zyklus sind die Regeln R3, R4 und R5 anwendbar. Eswird wieder R3
ausgewahlt. Dem Kontext wird hinzugefugt:

gestoert (| anpe2)
Geldscht wird aus dem Kontext:

ei ngeschal tet (| anmpe2), tutnicht (Il anpe2)
Im nachsten Zyklus sind die Regeln R4 und R5 anwendbar. Eswird R4 ausgewahlt,
so dal in den Kontext geschrieben wird:

gl ei che_si cherung(l anpel, |anpe2, sicherungl)
und geléscht wird:

ver bunden(| anpel, sicherungl), verbunden(lanpe2, sicherungl)

Nun ist nur noch R6 anwendbar. Der Kontext wird geléscht, und

def ekt (si cherungl)

wird hineingeschrieben. Dies ist nun die einzige Aussage, die im Kontext steht. I m
nachsten Zyklus ist keine Regel anwendbar, der Inhalt des Kontextes wird ausge-
geben und der Lauf des Produktionensystems ist beendet. Die Regeln sind so ge-
schrieben, dal3 jeder mdogliche letzte Kontextinhalt sinnvoll ist. Man kann aber
auch bestimmte Aussagen als Losungen vorsehen. In diesem Beispiel kdnnten

i nt akt (Si cherung), defekt(Sicherung)

als mogliche Ldsungen ausgewdhlt werden. Oder zusatzlich koénnte auch

ander e_st oer ung(Ger aet)
eine den Anwender befriedigende LoOsung sein. Wenn das Produktionensystem
dann Dbei
verdacht (Geraet, Sicherung)
terminiert, ware der Anwender nicht zufrieden. Man koénnte diese Lésung dann
als Sackgasse betrachten.
Wir konnen die Vorwdartsverkettung fur den aussagenlogischen Fall in
Prolog etwa folgendermal3en realisieren.
.- ensure_| oaded(library(basics)).
;- dynamic(context/1).

closure :-
forward_i nf erence(Konkl usi on), % wenn noch neue Fakten ableitar
assert (cont ext (Konkl usi on)), % fuege sie zum Kont ext hinzu.
cl osure.

cl osure.

forward_i nference(Attribut=Wert) :-
rul e(if:Praem ssen, then: [Attribut=Wert]),
\+ context ([Attribut= _]), % nur wenn noch nicht bekannt und
al I true(Praeni ssen). % al |l e Praem ssen erfuellt sind.

alltrue([]).

al l true([X Praem ssen]) :-
cont ext (X),
al I true(Praeni ssen).

Der andere Modus ist der der Riuckwartsverkettung. Dort wird von einem
Ziel ausgehend die Menge der anwendbaren Regeln durch den Abgleich mit dem
Handlungsteil bestimmt. Wenn eine Bedingung einer Regel nicht erflllt ist, so
wird diese Bedingung als neues Ziel gesetzt und als nachstes nach einer Regel ge-
sucht, die diese Bedingung wahr macht. Dies entspricht dem Vorgehen von Prolog
und nicht dem der Postschen Produktionssysteme. Wir kénnen auch in Prolog die
Ruckwartsverkettung fur Produktionsregeln programmieren.

backwar d_i nf er ence(Konkl usi on) : -
cont ext (Konkl usi on) . % Wenn in Kontext, dann erfillt

backwar d_i nf er ence(Konkl usi on) : -
rule(if: Praenissen, then: [Konklusion]),

derive_all (Praemni ssen). % Pr am ssen werden zu neuen Ziel en
backward_i nference (Attribut=Wert) :-
ask(Attribut, Wert). % Frage den Benutzer

derive_ all ([]).

derive_all ([X] Praem ssen]) : -
backwar d_i nf erence(X),
derive_all (Praem ssen).

ask(Attribut,Wert) :-
can_be asked(Attribut, Pronpt, Wrte),
\+ context (Attribut= _),
wite(Attribut), wite(Pronpt), wite(Werte), wite(=~),
read(\Wert1l),
assert(context (Attribut=Wertl)),
Wert = Wert1l.

3.4.2.1 Interpreterstrategien

Bei Produktionensystemen ist die Reihenfolge der Regeln wichtig - was dem Ge-
danken der Trennung von Kontrolle (im Interpreter) und rein beschreibenden
Einheiten (Regeln) widerspricht. Wenn eine Regel anewandt wurde, so wird ihre
Konklusion (bei der Vorwartsinferenz) in den Kontext eingetragen und nicht
mehr zurlckgezogen. Eine Interpreterstrategie ist zerstdrerisch (irrevocable),
weil eine einmal getroffene Entscheidung fir die Anwendung einer bestimmten
Regel nicht zuriickgezogen werden kann. Die alternativen anwendbaren Regeln
sowie der Kontextinhalt zum Zeitpunkt der Entscheidung werden nicht aufbe-
wahrt. Fir den Menschen, der die Regeln schreibt, bedeutet dies, dal} er auf die
Unabhangigkeit der Bedingungsteile von Regeln genau achten und die Reihen-
folge der Regeln glnstig wahlen mulf.

Eine tentative Strategie wahlt zwar auch eine Regel zur Anwendung aus,
ermoglicht aber, dal3 auch spater noch Alternativen betrachtet werden kdnnen.
Das Rickziehverfahren kehrt an den Punkt der Auswahl (RuUckzugspunkt, eng-
lisch: backtracking point) zurick und wéhlt eine alternative Regel aus. Eine an-
dere tentative Strategie ist an Graphen orientiert. Sie verfolgt die Auswirkungen
von Regelanwendungen simultan. Suchverfahren, wie sie in Kapitel 2 beschrie-
ben wurden, konnen verwendet werden.

Das Riuckziehverfahren erfordert, da die Kontextinhalte zu der jeweili-
gen Regelauswahl etwa in Form einer Liste gespeichert werden. Anfangs ist nur
der gegebene Inhalt des Kontextes Element dieser Liste. Der von einer Regelan-
wendung produzierte Kontextinhalt wird vorn an die Liste angehangt. Die ange-
wandte Regel wird notiert. Wenn von einer ausgewdhlten Regel ein Kontextinhalt
produziert wuirde, der bereits in der Liste vorkommt, so handelt es sich um eine
zyklische Regelfolge. Dies kann die Konfliktauflésung verwenden, um eine andere
Regel auszuwdhlen. Wenn eine Regelfolge nicht zu einer Loésung fldhrt, wird in
der Kontextliste zurickgegangen wund fir den dort festgehaltenen néchsten Kon-
textinhalt nach einer alternativen anwendbaren Regel gesucht. Gibt es keine an-
dere anwendbare Regel, wird in der Kontextliste weiter zum n&chsten Kontextin-
halt zuriickgegangen und dort nach alternativen Regeln gesucht. Gibt es eine al-
ternative anwendbare Regel, wird die Kontextliste bis zu diesem Kontextinhalt ge-
l6scht. Um wirklich immer auf alternative Regeln zu stoRen, werden aus der Re-
gelliste die bereits angewandten Regeln zu dem Kontext geltscht.

Wir koénnen uns das Ruckziehverfahren an einem Graph klarmachen, dessen
Knoten Kontextinhalte und dessen Kanten Regelanwendungen sind:

Kontext 1

R1 R2
Kontext 2 Kontext 3
R3
Kontext 4

Das Rickziehverfahren koénnte z.B. von Kontext 4 zu Kontext 2 zurickgehen
und von da aus zu Kontext 1, um dann die alternative Regel R2 auszuwahlen. Kon-
text 2 und 4 waren dann weggeldscht. Da wir jetzt aber schon die Regelauswahl
und die Kontextinhalte als Graph aufgefalt haben, koénnen wir auch alle bereits
behandelten Suchverfahren anwenden und damit flexiblere Interpreterstrate-
gien erstellen.

3.4.2.2 Abgleich

Bei der Besprechung der Interpreterstrategien haben wir vorausgesetzt, dal Re-
geln as "anwendbar" markiert werden. In der Prolog-Implementierung haben
wir die Unifikation und die Gleichheit Attribut=Wert verwendet. Der Abgleich
zwischen Kontext und Regelbedingungen ist aber ein fir sich interessanter Pro-
zeR. Deshalb soll er in diesem Abschnitt behandelt werden.

Der Abgleich einer Bedingung kann bereits aufwendig sein. So kann zum
Beispiel ein Intervall von Werten statt nur ein einziger Wert von einer Regel ab-
gedeckt werden. Der konsistente Abgleich mehrerer Bedingungen flgt einen
weiteren Aufwand hinzu. Zum Beispiel gleicht die folgende Bedingung einer Regel

ver bunden(CGeraet, Sicherung)

die folgenden mdoglichen Kontextinhalte ab:
ver bunden(| anpel, sicherungl).
ver bunden(| anpe2, sicherungl).
ver bunden(radi 01, sicherung2).

Wenn jetzt wie in Regel R4 zwei verschiedene Variablenbindungen fir Ge-
raet und dieselbe fir Si cherung gesucht wird, so kommen nur noch die ersten bei-
den Kontextinhalte zum Abgleich fir beide Bedingungen von R4 in Frage. Der Ab-
gleich verschiedener Bedingungen einer Regel ist nicht unabhé&ngig voneinan-
der.

Der Abgleich, den ein Interpreter vornimmt, geht alle linken Seiten von al-
len Regeln durch und gleicht sie mit allen Elementen des Kontextes ab. Das Ergeb-
nis ist eine Menge von geordneten Paaren

(Regel nummer, Liste der abgeglichen Kontextinhalte).

Diese Menge anwendbarer Regeln, Konfliktmenge genannt, wird von der
Konfliktauflésung verwendet. Am Anfang unseres Beispiels sdhe die Konflikt-
menge SO aus:

(R3, (eingeschaltet(Geraet), tutnicht(Geraet),
Ceraet /| anpel, Geraet/| anpe2))

(R4, (verbunden(Ceraetl, Sicherung), verbunden(Geraet?2, Sicherung),
Ceraet 1/ |1 ampel, Sicherung/sicherungl, Geraet?2/I|anpe2))

Dabei werden zundchst die Bedingungen und dann die abgeglichenen Varia-
blen mit den Konstanten notiert. Bei alternativen Abgleichen wie zum Beispiel bei
Regel R3 werden die Alternativen durch ";" getrennt. Ein solches Vorgehen bei
jedem Zyklus des Interpreters anzuwenden, ist zu aufwendig. Tatsachlich wurde
festgestellt, dal3 ein Produktionensystem 90% seiner Zeit mit Abgleichen verbrin-
gen kann (Forgy 1982). Deshalb speichert man die Konfliktmenge. Wenn ein
Kontextinhalt geléscht wird, mu3 man nicht mehr alle Regeln durchgehen, son-
dern lediglich eine oder mehrere Paare der Konfliktmenge Idschen. Wenn ein
Kontextinhalt neu hinzukommt, missen die Regeln gefunden werden, deren
Nummern mit diesem Kontextinhalt zusammen in die Konfliktmenge aufgenom-
men werden. Aber auch das ist noch zu aufwendig. Deshalb wurde die Regelkom-
pilierung eingefihrt. Der am meisten verwendete Algorithmus zur Regelkompi-
lierung, der auch die Konfliktmenge erstellt und wartet, ist Rete (Forgy 1982).

3.4.2.3 Rete

Das Rete-Verfahren optimiert den Abgleich von Bedingungen und Kontextinhal-
ten, indem es vermeidet,

e in jedem Zyklus den Kontext durchzugehen und
 in jedem Zyklus die Regelmenge durchzugehen.

Stattdessen werden nur Anderungen des Kontextes und diese nur fir Teile der
Regelmenge (die namlich von der Anderung betroffen sind) gewartet.

Das Rete-Verfahren Uuberfahrt die linken Seiten aller Regeln in ein Netz-
werk. Und zwar werden Merkmale von Bedingungen, die bei Kontextinhalten ab-
gepruft werden, aufgestellt. Solche Merkmale sind abhdngig von der verwendeten
Sprache, in der die Bedingungen formuliert werden. Fir die zweite Bedingung von
R1 in unserem Beispiel kdnnen wir die folgenden Merkmale, die fir einen Kon-
textinhalt gelten oder nicht gelten, aufstellen:

« Stelligkeit des Pradikats ist 2

« Name des Pradikats ist verbunden

e 1. Argument muf3 ungleich dem 2. Argument sein
e« 1. Argument mui3 ...

Die Bedingungen fir die einzelnen Argumente sind in unserem Falle nicht
gegeben. Es konnte aber auch in einer Regel im Bedingungsteil eine Konstante
auftreten. Dann wirde ein Merkmal sein, dal3 genau diese Konstante an genau die-
ser Argumentstelle im Kontextinhalt vorkommen mul3. Die Regelkompilierung
erstellt fir jede Eigenschaft einen Knoten und verbindet die Knoten. Knoten fiur
das Abprifen einer Eigenschaft heilen Einer-Knoten. Andere Merkmale lassen
sich aufstellen, die mehrere Bedingungen einer Regel und damit mehrere Kon-
textinhalte verknipfen. Fir die Bedingungen von RI1:

e Gleichheit des 1. Arguments von ok und des 1. Arguments von verbunden
Auch fur diese Eigenschaft wird ein Knoten erstellt. Diese verbindenden

Knoten nehmen zwei Kanten auf, verbinden also Pfade. Diese Knoten heilR3en
Verbindungsknoten.

In dieser Weise werden alle Bedingungen aller Regeln einmal durchgegan-
gen. Wenn dieselbe Bedingung in verschiedenen Regeln vorkommt, wird derselbe
Knoten mehrfach verwendet. Wenn dasselbe Prédikat in derselben Regel zweimal
vorkommt, mu3 dafir ein neuer Knoten eingefihrt werden. Als terminale
Knoten flgt Rete jeweils fir eine Sequenz von Tests (ein Pfad) die Menge der an-
wendbaren Regeln hinzu. Ein Anfangsknoten wird vorangestellt. Weitere Kno-
tentypen konnen fir negierte Bedingungen und fir mehrfaches Auftreten der-
selben Variable oder Konstante in einem Pradikat eingefihrt werden. Das kleine
Netzwerk fur R1, R5 und R7 (linke Seiten) sieht so aus?Z:

Anfang
dreistellifes Pradikat? einstelliges PQH(&\:? zweistelliges Pradikat?
Name Ist Name ist gestoert ? Nameist ok ? Name ist verbunden ?

leiche_sicherung ?
\ Argument # 2.Argument?

1. Arg von gleiche_sicherung))<¢

1.Arg. von gestoert ?
1.Arg. von gestoert = 1.Arg. von ok =
1.Arg. von verbunden ? 1.Arg. von verbunden ?

2.Arg. von gleiche_sicherung
1. Arg. von ok ?

Y

R7 ist anwendbar R5 ist anwendbar R1 ist anwendbar

Dieses Netzwerk, das fast so gro? wird wie die Regelmenge (im schlimmsten
Fall so gro? wie die Menge der Bedingungsteile aller Regeln), lohnt sich nur,
wenn Anderungen des Kontextes durch dieses Netzwerk propagiert werden, so dafl
die aktuelle Konfliktmenge schneller als durch Prifen aller Regeln berechnet
wird.

Kontextinhalte werden mit ihren Merkmalen in das Netzwerk eingegeben.
Sie erhalten ein '+', wenn sie dem Kontext hinzugefligt wurden, und ein '-', wenn
sie geléscht wurden. Die so annotierten Merkmale von Kontextinhalten heil3en
Marken. Eine Marke wird fur alle Nachfolgeknoten des Anfangsknotens kopiert.
Die Einerknoten geben eine Marke, die ihren Test besteht, an alle Nachfolger
weiter. Die Verbindungsknoten bekommen verschiedene Marken, die sie zu einer
komplexeren Marke kombinieren. Wenn die aufgenommene Marke ein positives
Vorzeichen hatte, wird sie beim Verbindungsknoten in einem Zwischenspeicher

abgelegt. Wenn die aufgenommene Marke ein negatives Vorzeichen hatte, wird

22 Die gepunktet unterlegten Ergebnisse der Tests von Einerknoten heifRen oft auch alpha-memories. Die Ergeb-
nisse von Verbindungsknoten heif3en dann beta-memories.

die entsprechende Marke aus dem Zwischenspeicher geléscht. Die terminalen
Knoten bekommen nur Marken, die alle Tests bestanden haben. Marken mit posi-
tivem Vorzeichen fihren dazu, dal} die Liste der abgeglichenen Kontextinhalte in
der Konfliktmenge erweitert wird. Marken mit negativem Vorzeichen fuhren da-
zu, dal3 die Liste der abgeglichenen Kontextinhalte in der Konfliktmenge verklei-
nert wird. Das Netzwerk gibt dann die aktuelle, verénderte Konfliktmenge aus.

Nehmen wir an, die folgenden Kontextinhalte wéaren bereits von einem Rete-
Netzwerk verarbeitet worden:

ok(l anpe3). verbunden(| anpe3, si cherungl).

gestoert (|l anpel). verbunden(l anpel, si cherungl)
Dann sieht das Rete-Netz mit den Zwischenspeichern so aus:

Anfan
dreistelli{qes Pradikat? einSf”ig}P%i? zweistelliies Pradikat?
Name 1St Name ist gestoert ? Name ist ok ? Name Ist verbunden ?

leiche_sicherung “ lampel lampe3

1.Argument # 2.Argument?
lampe3, sicherungl
ampel, sicherungl

1.Arg. von gleiche_sicherung \ +
= 1.Arg. von gestoert ?
1. Arg von gestoert = 1.Arg. von ok =

? ?
2. Arg. von gleiche_sicherung 1.Arg. von verbunden 1.Arg. von verbunden “

= 1. Arg. von ok ? lampel,sicherungl lampe3, sicherungl
R7 ist anwendbar (R5(lampel,sicherungl)) (R1(lampe3,sicherungl))

Wenn nun die neue Marke hinzukommt

+drei stellig,gleiche_sicherung, 1. Arg=Il anpel, 2. Ar g=I anpe3, 3. Arg=si cherungl

so wird sie drei Mal kopiert und an alle Nachfolger des Anfangsknotens geschickt.
Da es ein dreistelliges Pradikat ist, wird die Marke nur vom linkesten Einerknoten
weitergeleitet. Der nachfolgende Verbindungsknoten, der bisher nichts weiterge-
ben konnte, kann jetzt den Test vornehmen, ob das 1. Argument mit seinem rech-
ten Zwischenspeicher (der ja lampel enthé@lt) dbereinstimmt. Da dies der Fall ist,
reicht er die Marke weiter. Der andere nachfolgende Verbindungknoten prift, ob
sein rechter Speicherinhalt (lampe3) mit dem neuen linken Ubereinstimmt. Da
auch das der Fall ist, werden alle Argumente fur die Konfliktmenge zur Verfiigung
gestellt. Der terminale Knoten wird zu

(R7(1 anpel, | anpe3, si cherungl)).

Dies ist ein neuer Eintrag in die Konfliktmenge. Die Effizienz des Rete-Verfahrens
kommt daher, dal3 die irrelevanten Pfade im Netz gar nicht erst geprift werden
(z.B. kein ein- oder zweistelliges Pradikat). Bei positiven Marken wird die Kon-
fliktmenge erweitert, ohne dal3 bereits geprifte Eigenschaften noch einmal be-
trachtet wirden. Bei negativen Marken missen alle Zwischenspeicher, die betrof-
fen sind, neu erstellt werden. Dazu mussen auch die bereits vorgenommenen Ver-
gleiche bei Verbindungsknoten erneut vorgenommen werden. Wurde man zum
Beispiel den Kontextinhalt

ok(l anpe3)

wieder loschen, so missen zwei Verbindungsknoten erneut prifen und dann den
Zwischenspeicher anpassen. In diesem Falle fuhrt das Loschen dazu, dal die Ver-
bindungsknoten eine Marke mit negativem Vorzeichen an die terminalen Knoten
(fur R7 und fur R1) weiterreichen. Die Liste der abgeglichenen Kontextinhalte
wird um

(lanpel, |anpe3, sicherungl) bzw. (| anpe3, sicherungl)

verkirzt. Damit gibt es keine abgeglichenen Kontextinhalte mehr bei diesen Re-
geln und sie werden ganz aus der Konfliktmenge geléscht. Dieses Propagieren ne-
gativer Marken ist also nicht so effizient, weil Vergleiche noch einmal vorge-
nommen werden missen. Bei einem Vorgehen wie in unserem Beispiel oben, in
dem dauernd aus dem Kontext geldscht wird, ist das Rete-Verfahren nicht so effizi-
ent. Neuere Verfahren optimieren gerade die Behandlung von negativen Marken
und die Zwischenspeicherung bei Verbindungsknoten (Miranker 1990).

3.4.3 Erweiterung von Produktionensystemen durch Statistik

Bei ungenauem Wissen kann oft nur die Evidenz fir oder gegen eine Annahme
gesammelt werden. Bestimmte Aussagen erhdéhen oder senken die Evidenz fir eine
Hypothese, sie determinieren sie nicht. Aus diesem Grund flhrte Shortliffe Evi-
denzwerte bei Aussagen ein. Ein Evidenzwert ist eine Zahl aus dem Intervall zwi-
schen O und 1. Diese Evidenzwerte missen dann verrechnet werden: einmal in-
nerhalb einer Regel und zum anderen bei verschiedenen Ableitungen derselben
Aussage. Innerhalb einer Regel kann zum Beispiel der hoéchste Evidenzwert einer
Bedingung an den Handlungsteil weitergegeben werden, der niedrigste, oder ein
Mittelwert. Wenn nun verschiedene Regeln dasselbe Ergebnis ableiten
(Mehrfachableitung) nahm Shortliffe eine Evidenzverstarkung an, die er aus den
Evidenzwerten der jeweiligen Handlungsteile errechnete. Bei n Ableitungen der-
selben Aussage mit xi als dem Evidenzwert der i-ten Ableitung der Aussage be-
rechnet die folgende Formel den Ergebnis-Evidenzwert:
n

[@x)

i=1

In dem System MYCIN zur medizinischen Diagnose wurden Evidenzwerte
verwendet. Wenn z.B. drei Mal abgeleitet wurde, dal es sich bei einem Infekt um
eine Meningitis handelt, einmal mit der Evidenz 0.2, einmal mit der Evidenz 0.3
und einmal mit der Evidenz 0.8, so ergibt sich als Evidenz fur eine Meningitis:

1-(0.8-0.7-0.2) = 1- 0.112 = 0.888

Diese Evidenzverstarkung ist nur zuldssig, wenn die verschiedenen Ablei-
tungen voneinander unabhangig sind. Bei MYCIN-Regeln kann man das kaum
garantieren: indirekt mogen sie sich auf dasselbe Wissen stiitzen, das an verschie-
denen Stellen in die Regeln hineincodiert wurde. Mostow und Swartout (Mostow,
Swartout 1986) haben darauf hingewiesen, dal3 die Verknipfung von Handlungs-

teilen explizit représentiert werden muf3, wenn auch das Zusammenwirken von
Regeln unter ungenauem Wissen inspizierbar und veranderbar sein soll.

3.4.4 Literatur

Davis, R., King, JJ. (1977): An Overview of Production Systems, in: Elcock, Mi-
chie (eds): Machine Intelligence, Vol. 8, Chichester: Ellis Horwood

Feigenbaum, E.A., Simon, H.A. (1963): Elementary Perceiver and Memorizer -
Review of Experiments, in: Hoggatt, Balderston (eds): Symposion on Si-
mulation Models - Methodology and Applications to the Behavioral Scien-
ces, Cincinatti: Southwestern Publishers

Forgy, C.L.(1982): Rete: A Fast Algorithm for the Many Pattern/Many Object
Pattern Match Problem, in: Artificial Intelligence, 19, 17-37

Miller, G.A. (1956): The Magical Number 7 Plus or Minus Two - Some Limits on
our Capacity for Processing Information, Psychological Review 63, 81-97.

Miranker, D.P. (1990): TREAT: A New and Efficient Match Algorithm for Al
Production Systems, London: Pitman & San Mateo: Morgan Kaufmann

Mostow, J.,, Swartout, B. (1986): Towards Explicit Integration of Knowledge in
Expert Systems -- An Analysis of MYCIN's Therapy Selection Algorithm,
in: Procs. of AAAI-86, Philadelphia, 928-935.

Post, E.(1943): Formal Reductions of the General Combinatorial Problem, in:
American Journal of Mathematics, 65, 197-268.

Shortliffe, E. (1976): Computer-Based Medical Consultations: MYCIN, American
Elsevier

Simon, Herbert (1978): Acht Vorlesungen Uber kognitive Psychologie, ge-
halten an der Universitdt Hamburg, Fachbereich Psychologie, 1978

