
2  Pro log

In dieser Vorlesung verwenden wir die Programmiersprache Prolog für a l l e
Übungsaufgaben. Dafür gibt es mehrere Gründe. Erstens sind P r o l o g - P r o g r a m m e
kompakt, so daß sie den Blick auf das Wesentliche nicht verstellen. Zweitens s i n d
Prolog-Programme kurz genug, um oft auf eine Folie bzw. Tafelseite zu p a s s e n .
Drittens kann man sehr schnell anfangen, in Prolog zu programmieren. Zwar gibt
es ausgesprochen schwierige Prolog-Programme und sehr raffinierte P r o g r a m -
miertricks in Prolog, aber diese müssen nicht verstanden werden, bevor man a n -
fangen kann zu programmieren. Mit den rudimentären Grundkenntnissen, die i n
diesem Kapitel vermittelt werden, können Sie sofort loslegen! Viertens sind i n
Prolog bereits einige Dinge eingebaut, die wir für die Übungsaufgaben b e n ö t i g e n .
So ist ein Parser (syntaktische Analyse im Kapitel 6) fester Bestandteil von Pro log .
Wir können also Grammatiken schreiben und brauchen dann nur den P r o l o g -
Parser aufzurufen, um sie zu testen. In einer anderen Programmiersprache m ü ß t e
zunächst der Parser implementiert werden, bevor eine kleine Grammatik g e -
schrieben werden kann.

2 .1  F o r m e n

Manchmal wird Prolog als logischer Wissensrepräsentationsformalismus b e -
trachtet. Die zugrundeliegende Logik ist die der Hornklauseln mit Resolu t ions-
beweis. Man sagt dann, daß Prolog Wissen über einen Sachbereich in Form v o n
Fakten und Regeln darstellt. Eine Aufgabe wird durch eine Anfrage ausged rück t .
Die Anfrage wird von Prolog durch seine eingebaute Beweisstrategie anhand des
Wissens beantwortet. Zusätzlich zur Logik enthält Prolog Kontrollelemente d e r
Programmierung. Ich betrachte Prolog als Programmiersprache und wir k ö n n e n
in dieser Programmiersprache Wissensrepräsentationen verschiedener Art r e a l i -
sieren. Im folgenden stelle ich zunächst die syntaktischen Formen von Prolog vor.
Dabei gebe ich die logische Notation und die Prolog-Schreibweise an.

Litera l :  Ein Litera l  ist ein positives oder negatives Prädikat mit b e s t i m m t e r
Stelligkeit (Anzahl von Argumenten).

Ein Literal ist zum Beispiel: mutter(X, Y) ein anderes ¬ vater(X, Y)

In Prolog sind zwei Prädikate mit unterschiedlicher Stelligkeit und d e m -
selben Namen unterschiedliche Prädikate. Zum Beispiel sind

kind(Kind, Vater, Mutter) und kind(Kind, Elternteil)

die beiden verschiedenen Prädikate

kind/3 und kind/2.

K l a u s e l :  Eine K l a u s e l  besteht aus Literalen, die disjunktiv (ODER) v e r -
knüpft sind.

Klausel: (L1,1 v ... v L1, n1)

In Mengenschreibweise sieht dieselbe Klausel so aus:

    {L1,1 , ... , L1, n1  }

H o r n k l a u s e l :  Eine H o r n k l a u s e l  ist eine Klausel mit höchstens einem p o -
sitiven Literal. Zum Beispiel:



{oma(X,Y), ¬ mutter(X,Z), ¬ mutter(Z,Y)}

Als Rege l  geschrieben sieht dieselbe Klausel so aus:

oma(X,Y) :- mutter(X,Z), mutter(Z,Y).

In Prolog wird also das positive Literal vor :- geschrieben, die n e g a t i -
ven dahinter.

A n f r a g e :  Eine A n f r a g e  ist eine Hornklausel ohne positives Literal. Zum
Beispiel:

{¬ mutter(X,Z), ¬ mutter(Z,Y)} oder {¬oma(X,Y)}

In der üblichen Prolog-Schreibweise sieht das so aus:

:- mutter(X,Z), mutter(Z,Y). oder :- oma(X,Y).

Fakt:  Ein Fakt  ist eine Hornklausel ohne negatives Literal. Es besteht a lso
nur aus einem positiven Literal. Zum Beispiel:

{oma(X,Y)}.

In Prolog-Notation ist dies

oma(X,Y).

P r o l o g - P r o g r a m m :  E in  Prolog-Programm entspricht einer Formel i n
konjunktiver Normalform (d.h. ge-UND-ete ODER-Ausdrücke):

Programm: (L1,1 v ... v L1, n1) & ... & (Lk,1 v ... v Lk,nk)

z.B.: (oma(X,Y) v ¬ mutter(X,Z) v ¬ mutter(Z,Y)) &

(oma(X,Y) v ¬ mutter(X,Z) v ¬ vater(Z,Y))

In Prolog wird das logische UND nicht aufgeschrieben. Es ist implizit g e -
g e b e n .

oma(X,Y) :- mutter(X,Z), mutter(Z,Y).

oma(X,Y) :- mutter(X,Z), vater(Z,Y).

T e r m e :  Argumente eines Literals heißen T e r m e . Variablen, Zahlen, K o n -
stante und Funktionen sind Terme. Das sind alle Terme. Wir schreiben Va -
riablen mit Großbuchstaben oder beginnen sie mit _. Sowohl K o n s t a n t e
und Funktionen als auch Prädikatsnamen beginnen mit kleinen Buchs t a -
b e n .

Funktionen sind meist arithmetisch und werden in einer Pro log-Bib l io thek
für mathematische Funktionen definiert. Meist wird eine Argumentstelle für d e n
Eingabewert und eine für das Ergebnis reserviert. In der Dokumentation wird das
Eingabeargument durch +, das Ausgabeargument durch - notiert. Zum Beispiel b e -
deutet die Funktion

sin(X,Y), daß Y=sin(X)

und wird in der Dokumentation angeführt als

sin(+,-)



Wenn man arithmetische Funktionen verwenden will, muß man am A n f a n g
des Programms angeben:

:-ensure_loaded(library(math)).

Listen sind intern auch Funktionen. Das Funktionssymbol ist der Punkt. Bei-
spielsweise wird die Liste a, b, c  intern so dargestellt:

.(a, .(b, .(c, []))

Die Funktion . hat die beiden Argumente Kopf  und Rest .

.(Kopf, Rest)

Dabei besteht der Rest  wieder in der Punkt-Funktion mit Kopf  und Rest . Ü b e r -
sichtlicher geschrieben werden Listen durch eckige Klammern. Wenn man d i e
ganze Liste schreiben möchte, wird sie einfach in die eckigen Klammern e i n g e -
faß t :

 [a, b, c]

Will man nur jeweils mit dem Kopf oder dem Rest etwas anfangen, s c h r e i b t
m a n :

[Kopf | Rest]

[a | Rest]

Statt wie oben für jedes Kind anzugeben, wer die Mutter ist, können wir a u c h
mit der Listenfunktion für eine Mutter alle ihre Kinder angeben:

kinder (uta, [maria,mario]).

2 .2  Arbeiten mit Prolog

Prolog kann interpretiert und compiliert verwendet werden. Wenn es i n t e r p r e -
tiert verwendet werden soll, ruft man als erstes Prolog auf.

prolog

Das Prolog-System meldet sich mit

?-

Dann kann etwas eingetragen werden. Zum Beispiel können Fakten und R e -
geln eingetragen werden. Das Eintragen von Fakten und Regeln erfolgt mit d e m
Prolog-Prädikat assert/1. Wenn etwas vorn vor die anderen Einträge a n g e f ü g t
werden soll, nimmt man asserta/1 , wenn es hinter die anderen Einträge k o m m e n
soll, nimmt man assertz/1 .

B e i s p i e l :

?- assertz(vater(ulf, maria))
?- assertz(mutter(uta, mario)).
?- assertz(mutter(uta, maria)).
?- assertz(mutter(maria,anna)).
?- assertz((oma(X,Y):- mutter(X,Z), mutter(Z,Y))).
?- assertz((oma(X,Y):- mutter(X,Z), vater(Z,Y))).



Dies Verfahren empfiehlt sich zum Ausprobieren. Ansonsten wird Prolog i n
der compilierten Version genutzt. Man öffnet mit einem Editor eine Datei (z. B. m i t
dem Befehl emacs verwandschaft.pl) und schreibt dort direkt die Fakten und R e -
geln hinein.

B e i s p i e l :

%Familie von Maria mit vater/2, mutter/2
vater(ulf,maria).
mutter(uta,mario).
mutter(uta,maria).
mutter(maria, anna).
oma(X,Y) :- mutter(X,Z), mutter(Z,Y).
oma(X,Y) :- mutter(X,Z), vater(Z,Y).

Wenn die Datei unter einem Namen mit der Extension .pl gesichert ist, r u f t
man Prolog auf und lädt die Datei mit dem Prädikat consult/1 .

?- consult(verwandschaft.pl).

Dabei löscht consult/1 alle Fakten und Regeln aus der aktuellen Da tensamm-
lung, die dasselbe Prädikat haben wie eines in der konsultierten Datei. Dies k a n n
zu zwei Arten von Problemen führen. Zum einen können Klauseln v e r s c h w i n d e n ,
die man gern behalten hätte. Nehmen wir an, ein Student und eine Studentin h a -
ben sich die Arbeit geteilt. Er hat die Familie von Ulf beschrieben, sie hat die Fa-
milie von Uta beschrieben. Er hat die Klausel für die Großmutter vä t e r l i che r se i t s ,
sie die Klausel für die Großmutter mütterlicherseits geschrieben. Ihre Datei h e i ß t
sie.pl  und seine heißt er.pl . Nun wollen sie ihre Beschreibungen z u s a m m e n w e r -
fen und rufen consult(sie.pl)  auf und dann consult(er.pl). Leider sind nun d i e
Fakten über die Familie von Uta und die Klausel über die Großmutter m ü t t e r l i c h e r -
seits fort. Entweder die Studierenden teilen sich die Arbeit, indem sie u n t e r s c h i e d -
liche Prädikate eintragen oder sie bringen ihre Beschreibungen im Editor z u -
s a m m e n .

Ein zweites Problem tritt immer wieder auf. Alles klappt prima an einem Tag,
aber am nächsten Tag oder bei jemand anderem klappt dasselbe nicht. Hierfür i s t
der Grund oft, daß dort, wo das Programm erfolgreich läuft, noch Einträge i m
Prolog-System vorhanden sind (aus einer interpretierten Fassung oder e i n e m
vorher geladenen Programm), die das konsultierte Programm ergänzen. Bei-
spielsweise könnte eine Studentin eine Datei vatermutter.pl geschrieben h a b e n ,
die nur die Fakten, nicht jedoch die Regeln enthält. Die Regeln hat sie vorher i n
der interpretierten Fassung eingetragen. Nun kann Prolog die Großmutter v o n
Anna ermitteln. Die Studentin schickt ihre Datei einem Kommilitonen. Bei i h m
kann nun Prolog nicht die Großmutter von Anna ermitteln.

Wenn wir verwandschaft.pl vollständig geladen haben, können wir A n f r a -
gen stellen:

:- oma(Oma,anna).
Oma = uta

:- mutter(uta, X).
X= mario ;
X= maria

Durch die Eingabe des Semikolons hinter X=mario wird Prolog v e r a n l a ß t ,
nach weiteren Lösungen (X=maria ) zu suchen.

Schließlich sei noch auf die Online-Hilfe in Quintus-Prolog hingewiesen. Mit
dem Prädikat help  erhält man eine kurze Bedienungsanleitung und mit dem P r ä d i -
kat manual/1  können Hilfetexte ausgewählt werden.



2 .3  B e w e i s e n

Prolog verwendet zur Beantwortung von Anfragen das Verfahren der R e s o l u t i -
o n .

Seien K1 und K2 Klauseln. Dann heißt R R e s o l v e n t  von K1 und K2, falls es e i n
Literal L  gibt mit L ∈ K1 und ¬L ∈ K2 und R  die Form hat:

R = (K1 - {L}) ∪  (K2 - {¬L})

Dabei ist ¬L  definiert als ¬A , falls L= A, und als A , falls L=¬A .

Die Resolution besteht also darin, ein positives und ein negatives Literal m i t
demselben Prädikat herauszuschneiden und die Reste der Klauseln z u s a m m e n -
zufügen (Schnittregel).

¬oma(Oma, anna)

¬mutter(uta, maria),    ¬mutter(maria, anna)

¬mutter(maria, anna)

oma(uta, anna),    ¬mutter(uta, maria),    ¬mutter(maria, anna)

mutter(uta, maria)

mutter(maria, anna)

Eine Folge von Resolutionen, die zu der leeren Klausel führt, ist ein Beweis. Die
leere Klausel (durch ein Quadrat dargestellt) ist immer falsch, so falsch wie ¬p & p.
Mit den Resolutionen wird ein Widerspruchsbeweis geführt. Indem man das Ge-
genteil von dem, was man wissen möchte, widerlegt, beweist man das, was m a n
wissen möchte. Deshalb sind Anfragen negative Literale. Es gibt bei d e m s e l b e n
Programm und derselben Anfrage oft viele mögliche Folgen von Resolutionen. Es
können auch mehrere Folgen von Resolutionen erfolgreich sein. Prolog hat e i n e
Beweisstrategie, die die Reihenfolge der Beweisversuche festlegt. Es ist eine R ü c k -
wärtsverkettung von Beweiszielen.

Kont ro l l f luß :

Prolog arbeitet von links nach rechts.

1 ) Erst wird ein positives Literal gesucht, das zu der Anfrage paßt. Damit i s t
eine Klausel gefunden. Enthält diese Klausel nur das positive L i t e r a l
(Fakt), dann ist der Beweis erfolgreich beendet. Sonst:

2 ) Es wird das am linkesten stehende negierte Literal dieser Klausel v e r -
sucht, zu beweisen. Es wird also wie eine Anfrage behandelt (Schritt 1).



2 a ) Gelingt dieser Beweis, wird das direkt rechts danebenstehende n e g i e r t e
Literal der Klausel versucht, zu beweisen. Gibt es kein weiteres n e g i e r t e s
Literal in dieser Klausel, so ist der Beweis erfolgreich beendet.

2 b ) Gelingt der Beweis nicht, so wird zum nächstliegenden linken Literal z u -
rückgegangen und ein anderer Beweis für dies Literal gesucht ( R ü c k z u g
oder back t rack ing ) .

3 ) Wenn es keine Alternativen mehr gibt für ein Literal, das nicht b e w i e -
sen werden konnte, so gelangt man schließlich zum positiven Literal d e r
Klausel zurück. Es wird dann ein anderes positives Literal gesucht, das z u
der Anfrage paßt. Wenn es eines gibt, wird mit Schritt 2) f o r t g e f a h r e n .
Wenn es kein anderes mehr gibt, ist der Beweis gescheitert. Prolog m e l -
det dann FAIL  und antwortet no .

Wenn wir den Befehl trace. eingeben, können wir den Kontrollfluß b e o b -
achten. Unser Beispiel ergibt bei der Anfrage :-oma(Oma, anna). etwa fo lgendes
Bild.

Bei Schritt 1) meldet Prolog

CALL oma(_Oma,anna)

Die erste Klausel mit dem positiven Literal oma  ist die Regel für die Großmutter
mütterlicherseits. Jetzt wird - Schritt 2) - versucht, mutter (_Oma, _V) z u
beweisen. Prolog meldet

CALL mutter (_Oma1, _V1).

Zuerst findet Prolog mutter(uta,mario). Prolog meldet

EXIT mutter(uta,mario).

Es wird dann das nächste Literal versucht zu beweisen. Prolog meldet

CALL mutter (mario, _W1).

Hier wird nichts passendes gefunden. Also wird noch einmal auf eine a n d e r e
Art versucht, das nächst links stehende Literal zu beweisen. Prolog m e l -
de t

REDO mutter(_Oma2, _V2).

Es gibt einen alternativen passenden Fakt. Prolog meldet

EXIT mutter(uta,maria).

REDO mutter (maria, _W2).

 EXIT mutter(maria,anna).

Da nun kein weiteres Literal mehr in der Klausel zu beweisen bleibt und a l l e
Teilbeweise erfolgreich waren, meldet Prolog auch

EXIT oma(uta,anna)

Das Prolog-Protokoll (trace) ist hier etwas geschönt dargestellt. Schon an d e m
einfachen Beispiel sieht man, daß neue Variablennamen (mit _ vorweg) nötig w a -
ren, um nicht mit bereits in den Klauseln verwendeten Variablennamen d u r c h -
einander zu geraten. Für jeden Beweisversuch muß ein neuer V a r i a b l e n n a m e



eingeführt werden. Da dies sehr viele werden können und Prolog die Bedeu tung
der Klauseln nicht kennt, vergibt es intern Zahlen, die an das Zeichen _ a n g e -
hängt werden.

Wie werden nun Literale, die Variable enthalten, mit anderen Literalen des -
selben Prädikat gleich gemacht? Man braucht einen Gleichmacher für A r g u -
mente eines Prädikats. In unserem Beispiel wurde _W2 durch anna substituiert, so
daß wir zwei bis auf ihr Vorzeichen gleiche Literale erhielten und s c h n e i d e n
(resolvieren) konnten.

S u b s t i t u t i o n :  Eine S u b s t i t u t i o n  ist eine endliche Menge {V 1/t1, ..., V n/tn} ,
wobei Vi ≠  Vj  für alle i≠ j. Vi/ti bedeutet, daß die Variable Vi  an den Term ti

gebunden wird. Eine Substitution anwenden, heißt, alle Vorkommen d e r
Variablen innerhalb einer Klausel     g l e i chze i t i g     durch den b e t r e f f e n d e n
Term zu ersetzen. Meist bezeichnet man eine Substitution mit σ. Die I d e n -
titätssubstitution ist die leere Menge.

oma(Oma,anna)σ = oma(uta,anna)  mit  σ:{Oma/uta}

Die Substitution macht ein Literal nie allgemeiner. Man darf also ke ine s f a l l s
für eine Konstante oder Funktion eine Variable einsetzen! Nun wollten wir a b e r
nicht irgendwelche Terme für irgendwelche Literale einsetzen, sondern m e h r e r e
Literale (bis auf ihr Vorzeichen) gleich machen. Eine gleichmachende Subs t i tu t i -
on heißt U n i f i k a t i o n .

U n i f i k a t o r :  Eine Substitution σ wird U n i f i k a t o r  genannt, wenn für e i n e
endliche Menge von Literalen L die Anwendung der Substitution e i n e
Menge mit nur einem Element ergibt. Die Literale aus L sind dann u n i f i -
z i e r b a r .

L: {vater(X,mario), vater(Y, mario), vater(ulf, Z)}

σ: {X/ulf, Y/ulf, Z/mario}

Lσ: {vater(ulf,mario)}  | Lσ | = 1

mgu: Ein Unifikator σ heißt al lgemeinster  U n i f i k a t o r  (mgu), wenn f ü r
jeden anderen Unifikator ρ eine Substitution τ  existiert, so daß ρ = στ. Mi t
anderen Worten: wenn man einen allgemeinsten Unifikator durch e i n e
weitere Substitution spezialisiert, erreicht man einen anderen, nicht a l l -
gemeinsten Unifikator.

L:   {unterhalt(ulf, maria, X),
unterhalt(Y,   maria, Z),
unterhalt(Y,   maria, alimente(Y,V))}

σ: {Y/ulf, X/alimente(ulf,V), Z/alimente(ulf,V)}

ρ: {Y/ulf, X/alimente(ulf, 1000), Z/alimente(ulf, 1000)}

τ: {V/1000}

Der klassische Unifikationsalgorithmus findet für unifizierbare Literale i m -
mer den allgemeinsten Unifikator. (Der Beweis steht in Schöning 1995).



U n i f i k a t i o n s a l g o r i t h m u s :

Eingabe: eine nicht-leere Menge L von Literalen.

σ:= {}

solange | Lσ | > 1 :

Durchsuche die Literale in Lσ von links nach rechts, bis die erste Pos i t ion
gefunden wird, wo sich mindestens zwei Literale L1 und L2 unterscheiden.

Wenn keines der beiden sich unterscheidenden Zeichen eine Variable ist ,
halte an und gebe aus "nicht unifizierbar“. Sonst:

Sei X die Variable und t der im anderen Literal beginnende Term:

Wenn X in t vorkommt, halte an und gebe aus "nicht u n i f i z i e r b a r “ .
Sonst:

σ  := σ  {X/t} ---- nacheinander σ  und {X/t} ausführen

σ  als allgemeinsten Unifikator ausgeben und anhalten.

Da Namensgleichheit nur innerhalb einer Klausel auch V a r i a b l e n g l e i c h h e i t
bedeutet (während gleichbenannte Konstante und Funktionen im gesamten P r o -
gramm gleich sind), werden in Prolog vor der Unifikation alle Variablen so u m -
benannt durch neue, noch nirgends vergebene Namen, daß gleiche V a r i a b l e n
innerhalb einer Klausel auch einen gleichen Namen erhalten, der sonst n i c h t
auftritt. Nehmen wir unser Beispiel von den Unterhaltszahlungen und gehen d a -
von aus, daß die Variablen bereits richtig behandelt wurden.

| Lσ |=3

1. Unterschied: ulf, Y

σ := σ {Y/ulf}

| Lσ |=3

2. Unterschied: X, Z, alimente(ulf,V) -- muß aufgeteilt werden in:

X, alimente(ulf,V) und Z, alimente(ulf,V)

σ := σ {X/alimente(ulf/V), Z/alimente(ulf/V)}

| Lσ |=1

σ: {Y/ulf, X/alimente(ulf,V), Z/alimente(ulf,V)}

Dies Beispiel illustriert, was mit b e g i n n e n d  gemeint war: die ganze F u n k t i o n
alimente(ulf,V) wird für die Variablen X und Z eingesetzt. Ein weiterer U n t e r -
schied besteht dann nicht mehr, so daß die Variable V erhalten bleibt und n i c h t
etwa ein speziellerer Unifikator gewählt wird.

2 .4  Prologs Kontrollstruktur als Tiefensuche in UND/ODER-Graphen

Wir können uns Prolog-Klauseln als ge-ODER-te Knoten in einem Graphen v o r -
stellen, wobei die Literale in der Prämisse ge-UND-ete Unterknoten in dem G r a -



phen darstellen. Ein Beweis in Prolog kann dann als Tiefensuche in diesem G r a -
phen dargestellt werden.4  

Ein UND-ODER-Graph ist ein Graph, bei dem auf einer Ebene alle Nach fo lge -
knoten eines Knoten mit UND verknüpft und auf der nächsten Ebene alle Nach fo l -
geknoten eines Knoten mit ODER verknüpft sind. Der Weg vom A u s g a n g s k n o t e n
zum Ziel ist ein Baum, da die durch UND miteinander verknüpften Knoten alle z u r
Lösung gehören. Ein einfacher UND-ODER-Graph sieht z.B. so aus:

a

b c

d e f g

h i

Dabei sind die Teilziele b und c alternativ, die Teilziele d und e müssen b e i d e
gezeigt werden, ebenso wie die Teilprobleme f und g beide gelöst werden m ü s s e n .
Von den Teilzielen h und i muß nur eine gezeigt werden, egal welche. Wenn h u n d
g Zielzustände ist, so gehören die Knoten a, c, f, g und h zum Lösungsbaum.

Tiefensuche durch einen UND-ODER-Graphen kann als Lösung eines P r o -
blems, das in Teilprobleme zerlegt wurde, ganz einfach folgendermaßen a u f g e f a ß t
werden (Bratko 1987:322):

Zur Lösung eines Problems - dargestellt durch einen Knoten K - benutze die f o l -
genden Regeln:

1 ) Ist K ein Zielknoten, ist das Problem gelöst.

2 ) Hat K geODERte Teilprobleme als Nachfolger, dann löse eins von i h n e n
(versuche eins nach dem anderen, bis eins gelöst ist).

3 ) Hat K geUNDete Teilprobleme als Nachfolger, dann löse sie a l l e      
(versuche eins nach dem anderen, bis alle gelöst sind).

Während dieser Problemlösung muß der Lösungsbaum mitgeschrieben w e r -
den, damit man die Lösung auch verwenden kann. Wir nennen einen Knoten, des -
sen Nachfolgeknoten geODERt sind einen ODER-Knoten und den, dessen Nach fo l -
geknoten geUNDet sind, einen UND-Knoten.

Der Lösungsbaum enthält

1 ) den Zielknoten,

2 ) für die Lösung verwendete ODER-Knoten mit dem jeweils an ihm h ä n -
genden Unterbaum,

                                                
4 ACHTUNG: in der Klausel-Notation sind die Literale einer Klausel durch ODER verknüpft, die Klauseln eines
Programms sind UND verknüpft. In der Graphen-Darstellung ist es genau anders herum!



3 ) für die Lösung verwendete UND-Knoten mit einer Liste von jeweils a n
ihm hängenden Unterbäumen.

Der Lösungsbaum des obigen Beispiels sieht so aus:

a

c

f g

h

Tatsächlich gibt Prolog nicht den Beweisbaum aus, sondern nur die in i h m
gefundenen Substitutionen für die Variablen im Zielausdruck.

2 .5  P r o g r a m m i e r e n

Die Beweisstrategie von Prolog und die Variablenbindung durch Unifikation h a t
einige Effekte, die vielleicht nicht offensichtlich sind. Deshalb gehe ich in d iesem
Abschnitt kurz darauf ein. Zum anderen gibt es zwei Methoden, wie die Beweiss-
trategie von Prolog beeinflußt werden kann. Auch diese will ich vorstellen. Al le
weiteren Programmiertricks lernt man am besten durch eigenes A u s p r o b i e r e n
und Erfahrung. Sie sind aber für die Übungsaufgaben nicht nötig.

Ein wichtiger Effekt der Prolog-Strategie ist, daß dasselbe Prädikat zum Testen
und zum Generieren benutzt werden kann, je nachdem, wo die Variablen s t e h e n .
Nehmen wir für das Aneinanderhängen von Listen ein dreistelliges Prädikat a n ,
dessen erste beiden Argumente die aneinanderzuhängenden Listen und das d r i t t e
Argument das Ergebnis darstellt.

append([1,2],[3,4],X)

liefert uns wie erwartet

X=[1,2,3,4]

Wir können aber auch eine Zerlegung suchen, indem wir

append(X, Y, [1,2,3,4])

aufrufen. Wir erhalten

X=[], Y=[1,2,3,4] ;
X=[1], Y=[2,3,4] ;
X=[1,2], Y=[3,4] ;
X=[1,2,3], Y=[4] ;
X=[1,2,3,4], Y=[]

Natürlich können wir auch

append(X,Y,Z)

aufrufen -- Prolog garantiert nicht, daß es anhält! Es ist die Aufgabe der P r o -
grammiererin oder des Programmierers, sich zu überlegen, was sie bzw. e r



schreibt. Normalerweise hält Prolog aber nach der ersten gefundenen Lösung a n :
es wurde ein Beweis gefunden. Will man alle möglichen Beweise sehen, muß m a n
einfach behaupten, der Beweis wäre nicht gelungen. Wenn ein Beweis nicht g e -
lungen ist, sucht Prolog nach einer Alternative. Man teilt Prolog das F e h l s c h l a g e n
eines Beweises durch fail mit. Wer also unbedingt Rechenzeit v e r b r a u c h e n
möchte, erreicht dies durch das folgende kleine Programm:

endlos :- append (X, Y, Z), fail.

Nun werden alle Listen erzeugt, weil nach jeder erfolgreichen Substitution d e r
Variablen durch eine Liste der Beweis als gescheitert erklärt wird und P r o l o g
nach einer Alternative sucht. Wenn der Wertebereich nicht unendlich ist wie d i e
Menge aller Listen, so kann dies Vorgehen durchaus sinnvoll sein, um alle L ö s u n -
gen zu finden. Wollen wir zum Beispiel alle Kinder von maria  finden, so s c h r e i b e n
w i r :

alle_kinder(X,Y):-mutter(X,Y),write(‘Kind=‘),write(Y),fail.

Dies würde auch alle Mütter liefern, falls es mehrere gäbe. Am Beispiel u n s e r e r
kleinen Datei in Abschnitt 2.1 liefert der Aufruf

alle_kinder(uta,X).

Kind=mario Kind=maria

no

Manchmal will man den Kontrollfluß aber auch dahingehend verändern, d a ß
keine weiteren Alternativen ausprobiert werden. Wenn man schon weiß, daß e s
maximal einen Beweis für ein Teilziel geben kann, setzt man hinter dieses Teilziel
ein Ausrufezeichen (cut). Solange das Ausrufezeichen nicht von links n a c h
rechts überschritten wurde, wird nach Alternativen gesucht. Danach werden m i t
der gefundenen Belegung die weiter rechts stehenden Teilziele versucht zu bewei-
sen. Gelingt dies nicht, wird für den Beweis vor dem Ausrufezeichen keine A l t e r -
native gesucht, sondern abgebrochen. Dadurch werden Programme s c h n e l l e r .
Diese Strategiemodifikation will sehr gut überlegt sein! Wenn wir be isp ie lsweise
s c h r e i b e n

oma(X,Y):- mutter(X,Z),!,mutter(Z,Y).

weil wir uns dachten, daß eine Frau ohne Kind nicht Oma sein kann (richtig), so
probieren wir in unserem Beispiel leider nicht mehr aus, ob Maria ein Kind h a t .
Nachdem die Belegung mario für Z gefunden wurde, beendet Prolog den Beweis
erfolglos. Fälschlicherweise haben wir angenommen, daß das zuerst g e f u n d e n e
Kind auch Mutter ist, wenn überhaupt ein Kind Mutter ist. Oft ist man sich s o l c h e r
impliziten Annahmen aber nicht bewußt. Also, Vorsicht mit dem Ausrufezeichen!

Abschließend noch ein Absatz zur Rekursion. Dies ist das wichtigste Konzept
bei der Programmierung in Prolog. Man muß dabei aber beachten, daß Prolog v o n
links nach rechts arbeitet. Der Rekursionsaufruf sollte also hinten in der Klausel
s e i n .

liste_bearbeiten([Kopf|Rest], [Ergebnis|Ergebnis_rest]):-
bearbeiten(Kopf,Ergebnis),
liste_bearbeiten(Rest, Ergebnis_rest).

Wir haben jetzt sichergestellt, daß bei jedem Durchlauf der Klausel die Liste des
Aufrufs verkürzt wird. Gleichzeitig bauen wir die Ergebnisliste auf. Leider h a b e n
wir davon noch nichts, wenn wir nicht eine Abbruchsbedingung schreiben. U m
Rechenzeit zu sparen, berücksichtigen wir, daß Prolog die Klauseln von o b e n
nach unten durchgeht. Wir schreiben also immer als erste Klausel für ein P r ä d i -
kat den Zustand auf, den wir erreichen wollen. Wann ist das Problem gelöst? Was
wollen wir mit der Lösung tun?



liste_bearbeiten([], Ergebnis):- write(Ergebnis).

Hier wollen wir, daß die zu bearbeitende Liste leer ist. Dann ist alles bearbeitet u n d
das Problem ist gelöst. Die Lösung wollen wir ausgegeben haben, deshalb l a s s e n
wir sie ausgeben. Wir schreiben diese Klausel vor die andere. Prolog schreibt das
Ergebnis jetzt in eine Zeile. Wenn wir jedes Teilergebnis in einer eigenen Zeile
haben wollen schreiben wir:

liste_bearbeiten([], _). % Ergebnis interessiert uns hier
% nicht mehr.

liste_bearbeiten([Kopf|Rest], [Ergebnis|Ergebnis_rest]) :-
bearbeiten(Kopf,Ergebnis),
write(Ergebnis), nl, % jedes Teilergebnis wird

% ausgegeben und danach eine neue
% Zeile angefangen.

liste_bearbeiten(Rest, Ergebnis_rest).
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3  W i s s e n s r e p r ä s e n t a t i o n

Die Wissensrepräsentation ist sicherlich das Kernstück der KI. Wir wollen Wissen
über einen Sachbereich formalisieren und die Formalisierung zur Lösung v o n
Problemen nutzen. Wenn man Prolog als Wissensrepräsentationsformalismus a u f -
faßt ( was wir nicht tun ), so haben wir bereits einen solchen Formalismus u n d
seinen Einsatz zur Problemlösung kennengelernt:  Resolutionsbeweis bzw. S u c h e
in UND-ODER-Graphen. Wir haben dabei gesehen, daß sowohl das Paradigma d e r
Suche als auch das des Beweisens gute Möglichkeiten darstellen, Problemlösung z u
beschreiben. In diesem Kapitel werden nun Repräsentationen und ihre N u t z u n g
zum Problemlösen beschrieben. Prolog verwenden wir lediglich zur P r o g r a m m i e -
rung dieser Formalismen und ihrer Interpreter.

Über Definitionen von Wissen und die Wissensebene wurde bereits im e r s t e n
Kapitel Newells Zuschreibung von Wissen aufgrund des Rationalitätsprinzips d i s -
kutiert. Hier soll nun noch ein weiteres Zitat angeführt werden, das d e u t l i c h
macht, warum ich nicht nur "Hornklauseln" oder "logische Formeln" als Wissens-
repräsentation angeführt habe, sondern "Hornklauseln mit Resolutionsbeweis":

"We can say metaphorically, that a book is a source of knowledge, but without t h e
reader, the book is just ink on paper. Similarly, we often talk about the list and
pointer data structures in an AI database as knowledge per se when we really mean
that they represent facts or rules when used by a certain program to behave in a
knowledgeable way." (Barr, Davidson 79)

Wie immer Wissen im einzelnen definiert ist, Wissensrepräsenta t ion  i s t
dessen operationale Darstellung. Dabei wird eine Wis sens r epäsen t a t i ons sp rache
verwendet, um das Wissen über einen Sachbereich auszudrücken. In diesem Skript
wie auch in der Literatur zum maschinellen Lernen ist die Wis sens rep rä sen t a t i -
onssprache verschieden vom Wissensrepräsentations formalismus. In a n d e r e n
Artikeln wird oft Repräsentationssprache und Repräsentationsformalismus s y n -
onym gebraucht.

Die W i s s e n s r e p r ä s e n t a t i o n s s p r a c h e  entspricht der Signatur in der l o g i -
schen Terminologie. Sie enthält also bereits die konkreten Prädikate oder K n o t e n -
und Kantennamen oder Operatornamen, die für die Darstellung des S a c h b e r e i c h s
bzw. Problems verwendet werden.

Der Wissensrepräsentationsformalismus entspricht dem Kalkül in der l o g i -
schen Terminologie. Ein W i s s e n s r e p r ä s e n t a t i o n s f o r m a l i s m u s  legt also fes t ,
was wohlgeformte Ausdrücke sind und wie sie verarbeitet werden.

Schließlich ist ein W i s s e n s r e p r ä s e n t a t i o n s s y s t e m  ein P r o g r a m m s y s t e m ,
das die Repräsentation und Verarbeitung von Wissen unterstützt. Ein Wissens re -
präsentationssystem ist sachbereichsunabhängig.  Es unterstützt den Aufbau u n d
die Wartung aller Wissensbasen für Sachbereiche, die sich in dem e n t s p r e c h e n -
den Formalismus ausdrücken lassen.

3 .1  Vol lständige Operatoren und Suchverfahren

Die meisten Probleme, die mit KI-Verfahren gelöst werden, lassen sich als S u c h e
im Problemraum beschreiben. Ein Suchproblem ist durch einen Anfangszus t and ,
einen Zielzustand und Übergänge zwischen Zuständen beschrieben. Dadurch i s t
der Problemraum gegeben. Der P r o b l e m r a u m  soll alle möglichen Lösungen e n t -
halten. Ist die Lösung gar nicht in dem Problemraum vorhanden, kann sie d u r c h
kein Suchverfahren gefunden werden. Der Problemraum soll nicht einfach e i n e



ungeordnete Ansammlung aller für eine Klasse von Problemen möglichen L ö s u n -
gen sein. Als abschreckendes Beispiel zu einem chaotischen aber v o l l s t ä n d i g e n
Problemraum gibt es die Geschichte von hundert Affen, die jeder wahllos auf e i -
ner Schreibmaschine tippen. Wenn sie lange genug tippen und  zu fä l l ige rweise
die entsprechenden Tasten in der entsprechenden Reihenfolge drücken, k ö n n t e n
sie alle Bücher des britischen Museums produzieren. Ein Algorithmus, der b l i n d
alle Möglichkeiten produziert, heißt deshalb "british museum algorithm". Damit
ein günstiges Suchverfahren angegeben werden kann, strukturiert man den P r o -
blemraum, so daß die Zustandsübergänge die Zustände geeignet anordnen. Die Zu-
standsübergänge werden als Operatoren realisiert, die angeben, wie zu e i n e m
Knoten Nachfolger produziert werden. Man sagt, die Operatoren expandieren d e n
Knoten. Vor der Expansion heißt ein Knoten "offen", danach "geschlossen". Meist
werden Abbruchbedingungen bereits in die Operatoren einbezogen, so daß n u r
Nachfolgezustände erzeugt werden, die "legal" sind. Daher werden die Ope ra to r en
auch "legal move generator" genannt. Wir stellen uns den Problemraum als g e -
richteten Graphen vor, bei dem die Knoten die Zustände und die Kanten die Zu-
standsübergänge darstellen, die so gerichtet sind, daß sie von A n f a n g s z u s t ä n d e n
zu Zielzuständen führen.

Das S u c h v e r f a h r e n  soll mit möglichst wenig Aufwand  die Lösung finden.
Das heißt, es soll möglichst schnell auf die Lösung stoßen, sie als solche e r k e n n e n
und dann enden. Es soll möglichst nicht den gesamten Problemraum d u r c h s u c h e n
und als letztes erst die Lösung finden. Es soll auch möglichst nicht dieselben Be-
reiche des Problemraums mehrmals durchsuchen. Der Lösungsweg selbst sol l
möglichst kurz, minimal, sein. Das heißt, das Suchverfahren soll von einem S t a r t -
knoten den minimalen P f a d  zum Zielknoten finden. Zusätzlich können mit e i -
ner Kante von einem Knoten zu einem anderen Kosten verbunden sein. Das S u c h -
verfahren soll dann nicht nur den kürzesten Pfad finden, sondern obendrein d e n
billigsten Pfad. Wenn die Kanten keine unterschiedlichen Kosten haben, ist d e r
kürzeste auch der billigste Pfad. Wenn wir also ein Problem als Suche fo rma l i s i e -
ren wollen, müssen wir uns um die folgenden Punkte kümmern:

• P r o b l e m r a u m :
Was sind die Knoten, was sind die Kanten? Gibt es Zyklen in dem G r a p h e n ?
Oder ist es ein Baum?

Wie ist der Problemraum strukturiert, gibt es eine (partielle) Ordnung?

• S u c h v e r f a h r e n :
Sollen zunächst alle Lösungsansätze gefunden werden (Breitensuche) o d e r
erst ein Lösungsansatz zuende durchgegangen werden (Tiefensuche) o d e r
soll jeweils vom meistversprechenden Knoten aus weitergesucht w e r d e n
(heuristische Suche)?

Wie kann man abschätzen, wie vielversprechend ein Knoten für das Wei-
tersuchen ist?

• Abbruch der Suche:

Unter welcher Bedingung ist eine Lösung gefunden (Zielzustand)?
Unter welcher Bedingung kann die Suche abgebrochen werden, weil e s
(von diesem Knoten aus) keine Lösung mehr geben kann?

Knoten im Problemraum können mögliche Lösungen sein oder Z w i s c h e n e r -
gebnisse oder Zustände oder Problembeschreibungen.  Entsprechend sind d i e
Kanten Operatoren, die neue Knoten erzeugen, zusätzliche Hypothesen, e l e m e n t a -
re Handlungen oder Zusammenhänge. Diese verschiedenen inhaltlichen I n t e r -
pretationen ändern nichts an den Suchverfahren. Sie bedeuten aber ein u n t e r -
schiedliches Interesse: während man bei Knoten, die mögliche Lösungen r e p r ä -



sentieren, nur an dem einen Ergebnisknoten interessiert ist, ist bei Z w i s c h e n e r -
gebnissen und Zuständen das Interesse auf den Pfad gerichtet. Bei Graphen, d i e
Zusammenhänge widergeben, z.B. Probleme in Teilprobleme zerlegen, ist ein Teil-
graph interessant.

Das bekannte Problem der Missionare und Kannibalen soll als S u c h p r o b l e m
formuliert werden:

Drei Missionare und drei Kannibalen befinden sich an einem F lußu fe r .
Alle wollen auf die andere Seite des Flusses. Sie haben ein Boot, das e i n
oder zwei Personen befördern kann. Wenn an einem Ufer mehr K a n n i -
balen als Missionare sind, werden die Missionare verspeist. Wie b e k o m m t
man     a l l e     Personen auf die andere Seite des Flusses?

Der Anfangszustand ist also, daß alle Personen auf einer Seite des Flusses sind.
Der Zielzustand ist, daß alle Personen auf der anderen Seite des Flusses sind. Die
Zustandsübergänge sind Fahrten von einer Seite zur anderen mit ein oder zwei
Personen. Der Zielzustand wird direkt erkannt. Operatoren, die die Personen e i n e r
Überfahrt vom einen Ufer abziehen und sie zu den Personen am anderen U f e r
hinzufügen, erzeugen uns den Problemraum. Zustände, bei denen es mehr K a n n i -
balen als Missionare gibt, werden nicht erzeugt. Das gewünschte Ergebnis ist d e r
Pfad vom Ausgangszustand zum Zielzustand. Um die Operatoren etwas a n s c h a u l i -
cher zu machen, seien einige in Prolog-Notation hier aufgeführt. Dabei geht d i e
formale Repräsentation davon aus, daß nur ein Ufer explizit dargestellt w e r d e n
muß. Ein Zustand wird dann repräsentiert durch die Anzahl der Missionare und die
Anzahl der Kannibalen am Ausgangsufer sowie einen binären Wert, der gleich 0
ist, wenn das Boot nicht am Ausgangsufer ist, und gleich 1 ist, wenn das Boot d o r t
ist. Der Anfangszustand ist dann

z(3,3,1)

- alle 3 Missionare und alle 3 Kannibalen und das Boot sind am Anfangsufer

Und der Zielzustand ist

z(0,0,X)

- kein Missionar und kein Kannibale sind am Anfangsufer. (Wir wissen auch, d a ß
X=0 sein wird, da das Boot nicht von selbst an das andere Ufer gelangt -- dies i s t
jedoch keine Bedingung.)

Die Operatoren geben die Fälle an, daß ein oder zwei Missionare vom A n -
fangsufer wegfahren oder dort ankommen, daß ein oder zwei Kannibalen vom An-
fangsufer wegfahren oder dort ankommen, sowie daß ein Missionar und ein K a n -
nibale vom Anfangsufer wegfahren oder ankommen. Es gibt also 10 spezielle Ope-
ratoren. Der Operator für die Überfahrt eines Missionars vom Ausgangsufer z u m
anderen könnte so aussehen:

o(z(M,K,1), z(Mneu, K, 0)):-
M > 0,
Mneu is M - 1,
(K ≤ Mneu ; Mneu = 0),
F1 is 3 - K,
F2 is 3 - Mneu,
(F1 ≤ F2 ; F2 = 0).

Der Operator für die Überfahrt von zwei Kannibalen zum Anfangsufer sieht so
aus :

o(z(M,K,0), z(M, Kneu, 1)):-
K < 3 - 1,



Kneu is K + 2,
(Kneu ≤ M ; M = 0),
F1 is 3 - Kneu,
F2 is 3 - M,
(F1 ≤ F2 ; F2 = 0).

Dabei ist das erste Argument des Operators der aktuelle Zustand und das zwei te
Argument der direkte Nachfolgezustand. Die erste Bedingung entscheidet über d i e
Anwendbarkeit des Operators: es können nicht mehr Kannibalen oder Miss iona re
wegfahren, als da sind. In der dritten und den folgenden Zeilen werden die Bed in -
gungen dafür angegeben, daß kein Missionar verspeist wird. Zunächst wird es f ü r
das Ausgangsufer, dann komplementär für das andere Ufer abgeprüft. Das ";" b e -
deutet ein lokales ODER. "is" überträgt das Ergebnis der nachfolgenden R e c h n u n g
auf die vorn stehende Variable. Wenn alle Bedingungen erfüllt sind, ist der Folge-
zustand erzeugt. Ein Suchverfahren verwendet die Operatoren, um die Nach fo lge -
zustände zu erzeugen.

3 .1 .1  T i e f e n s u c h e

Bei einer Tiefensuche wird der Graph so durchsucht, daß zunächst eine ganze Fol-
ge von Überfahrten bis zum Abbruch verfolgt wird . Es wird stets nur ein Pfad z u r
Zeit gespeichert und verfolgt. Um endlose Schleifen zu vermeiden, markiert m a n
die Knoten, die bereits durchsucht worden sind. Obendrein muß man sich m e r k e n ,
welche Kante von diesem Knoten aus beschritten wurde, damit man sie nicht n o c h
einmal wählt. Beim R ü c k z i e h v e r f a h r e n  ( b a c k t r a c k i n g ) wird der a k t u e l l e
Pfad markiert und gespeichert, so daß beim Abbruch an einem Knoten, der n i c h t
die Lösung darstellt, zum letzten Knoten zurückgesprungen werden kann. Vom
letzten Knoten aus wird dann eine andere Kante als die zuvor gewählte verfolgt.

Die folgende Prozedur führt eine Tiefensuche durch5:

1. Bilde eine einelementige Liste, die den Wurzelknoten mit dem Sta r tzu-
stand enthält.

2. Bis die Liste leer ist, nimm das erste Element der Liste.

a) prüfe, ob das Element der Zielknoten ist;

wenn ja, halte an und melde Erfolg; wenn nein, geht es weiter.

b) wenn das Element Nachfolger hat, entferne es aus der Liste und setze 
seine Nachfolgeknoten als Elemente vorn in die Liste ein.

3. Wenn der Zielknoten gefunden wurde, melde Erfolg, sonst Mißerfolg.

In Prolog können wir dies folgendermaßen realisieren:

[library(basics)]. %damit ist member(X,Y) verfügbar, das  
%prüft, ob X Element der Liste Y ist.

%%% tiefensuche (-bisheriger Pfad, +aktueller Knoten, -Gesamtpfad) %%%

tiefensuche(P, K, [K|P]):- ziel(K). %Abbruchbedingung Erfolg; 
 %ziel(K) muß  definiert sein.

                                                
5 Die einfachen Prozeduren für Tiefen-, Breitensuche und Bergsteigen sind an Pat Winstons Darstellung in Win-
ston (1987) angelehnt.



tiefensuche(P, K, L):-
nachf(K, K1), % nachf ist der Operator, muß 

% definiert sein
\+ member(K1, P), % \+ drückt die Negation aus,

% Zyklen vermeiden
tiefensuche([K|P], K1, L).

3 .1 .2  B r e i t e n s u c h e

Die Breitensuche (breadth-first search) expandiert alle Knoten auf einer Ebene .
Für alle so erreichten Knoten werden dann alle Nachfolgerknoten erzeugt. Die
Breitensuche garantiert, daß die Lösung gefunden wird. Allerdings kann sie r e c h t
spät gefunden werden. Es ist also ein Suchverfahren, das wir anwenden, wenn w i r
nicht schätzen können, was vielversprechend ist, und was nicht.

Die folgende Prozedur führt eine Breitensuche durch:

1. Bilde eine einelementige Liste, die den Wurzelknoten mit dem Sta r tzu-
stand enthält.

2. Bis die Liste leer ist, nimm das erste Element der Liste.

a) prüfe, ob das Element der Zielknoten ist;

wenn ja, halte an und melde Erfolg; wenn nein, geht es weiter.

b) wenn das Element Nachfolger hat, entferne es aus der Liste und setze 
die Nachfolger hinten in die Liste ein.

3. Wenn der Zielknoten gefunden wurde, melde Erfolg, sonst Mißerfolg.

Dadurch daß die Nachfolger hinten in der Liste gespeichert werden, statt w i e
bei der Tiefensuche vorn, treten alle Knoten einer Ebene in der Liste auf, statt w i e
bei der Tiefensuche nur diejenigen des aktuellen Pfads. Wie die Tiefensuche k a n n
auch die Breitensuche durch eine lokale Abschätzung verbessert werden. M a n
expandiert dann schlecht bewertete Knoten gar nicht, führt also die B r e i t e n s u c h e
nur mit den m besten Knoten einer Ebene fort.

Um die Breitensuche in Prolog aufzuschreiben, brauchen wir das P r ä d i k a t
findall/3. Nehmen wir wieder an, wir hätten als Operatoren Klauseln mit d e m
Prädikat nachf(+K,-L). Für einen bestimmten Knoten a liefert uns findall/3 a l l e
Nachfo lge r :

findall(X, nachf(a,X), Nachfolger). %für alle X wende das Prädikat
%nachf an und sammle dessen
%Ergebnis in der Liste Nachfolger.

Jetzt können wir die Breitensuche einfach formulieren:

breitensuche([[K|P] | _], [K|P]):- ziel(K). %Abbruchbedingung Erfolg
%ziel(K) muß definiert
%sein.

breitensuche( [[K|P] |Ps], L):-
  findall( [K1,K|P],

(nachf(K,K1), \+ member(K1, [K|P]) ), %nicht-zyklische Expansion
Pneu),

  append(Ps, Pneu,P1), !, %Nachfolger hinten anhängen.
  breitensuche(P1, L). %rekursiver Aufruf.



3 .1 .3  Al lgemeine  Suche

Zwei Dinge steuern ein Suchverfahren: die Einsortierung der N a c h f o l g e k n o t e n
und die Informationen, die wir nutzen können, um Kosten für Wege abzuschä tzen .
Als allgemeines Suchverfahren, das eine globale Schätzfunktion benutzt, k ö n n e n
wir die folgende Prozedur a n g e b e n6. Dabei sind in einer Liste OFFEN alle b i s h e r
erzeugten, aber nicht nicht expandierten Knoten enthalten. In der Liste
GESCHLOSSEN sind alle bereits abgearbeiteten Knoten enthalten.

1. Die Liste OFFEN wird mit dem Anfangszustand initialisiert.

2. Die Liste GESCHLOSSEN wird als leere Liste initialisiert.

3. Falls OFFEN leer ist, bricht die Suche ab und es wird ausgegeben:

"Zielzustand kann nicht erreicht werden."

4. Der erste Knoten n der Liste OFFEN wird aus OFFEN entfernt und der Liste
GESCHLOSSEN hinzugefügt.

5. Wenn n der Zielzustand ist, bricht die Suche ab und der Pfad, der zu n
führte, wird ausgegeben.

Wenn n nicht der Zielzustand ist, wird n expandiert, so daß eine Menge M
aller Nachfolger von n entsteht, die nicht schon Vorgänger von n s ind .
M wird als Nachfolger von n eingetragen.

6. Alle Elemente von M, die noch nicht in OFFEN oder GESCHLOSSEN v o r h a n -
den sind, werden der Liste OFFEN hinzugefügt.

7. Alle anderen Elemente aus M können dazu führen, daß Kanten u m d i r i -
giert werden müssen und dann auch die Kosten von schon e r z e u g t e n
Nachfolge-Knoten aktualisiert werden müssen.

8. Die Liste OFFEN wird entsprechend der geschätzen Kosten sortiert, so d a ß
der meistversprechende Knoten nach vorn kommt.

9. Rücksprung auf 3.

Wir können dies in Prolog so aufschreiben:

suche(Offen, Geschl, Ziel):-
member(Ziel, Offen), %Abbruchbedingung Erfolg.
write(Geschl).

suche(Offen, Geschl, Ziel):-
best(Offen, Best, RestOffen), %Sortierung von Offen; best 

 %muß definiert sein.
findall(Nachf,

  nachf(Best,Nachf),  % Nachfolger des besten
 % Knotens

  AlleNachf),
verteile(AlleNachf, RestOffen, [Best|Geschl],NeuOffen), 

 % keine Doppelten in
 % NeuOffen. verteile muß

                                                
6 Die originale, englische Beschreibung von Suchverfahren ist in Nilsson (1980:64f) zu finden.



 % definiert sein.
suche(NeuOffen, [Best|Geschl], Ziel). %rekursiver Aufruf

suche([], Geschl, Ziel):- % Abbruchbedingung Mißerfolg.
write(‘Misserfolg!’), !, fail.

Die Bestimmung des vielversprechendsten Knotens wird von der hier n i c h t
angegebenen Klausel best geleistet. Wenn wir kein Kriterium finden, das u n s
hilft, nur vielversprechende Knoten zu expandieren, realisiert das S u c h v e r f a h -
ren die Breitensuche, wenn die Kosten immer 1 sind. Da die Kosten des b i s h e r i g e n
Pfades für alle Expansionen eines Knotens gleich sind, werden dann alle von d i e -
sem Knoten fortführenden Kanten verfolgt. Das Verfahren realisiert eine u n i n -
formierte Tiefensuche, wenn die Liste OFFEN von verteile einfach so sortiert is t ,
daß die neuen Nachfolger nach vorn kommen, wobei best  jeweils der erste K n o t e n
w ä h l t .

3 .1 .4  B e r g s t e i g e n

Die Reihenfolge, in der Kanten ausgewählt werden, ist entscheidend. Im i d e a l e n
Fall würden wir nur einen Pfad verfolgen: einen, der zur Lösung führt! Wir k ö n -
nen uns Kriterien überlegen, nach denen beurteilt wird, wie v i e l v e r s p r e c h e n d
ein Knoten ist -- und schreiben dann best  entsprechend. Mit anderen Worten, w i r
schätzen, ob ein Knoten zum Lösungspfad gehört, anhand bestimmter K r i t e r i e n .
Da die Kriterien Annäherungen an Gesetzmäßigkeiten sind, wird eine Suche, d i e
sich nach Kriterien richtet, heuristische Suche genannt. Ein solches K r i t e r i u m
könnte die Unterschiedlichkeit des erreichten Zustands zum Zielzustand sein. E i n
Verfahren, das nur den Abstand zum Ziel zu verringern sucht, heißt B e r g s t e i -
g e n  (hill climbing). Tatsächlich führt so ein Kriterium zu einer sinnvollen E i n -
schränkung der zu expandierenden Knoten. Es gibt aber Situationen, wo man s i c h
vom Ziel wieder entfernen muß, um es schließlich zu erreichen! Solche Si tuat io-
nen kann eine derart lokale Abschätzung nicht behandeln. Es wird ja nur j e d e r
einzelne Knoten mit dem Zielzustand verglichen. In dem M i s s i o n a r e - u n d -
Kannibalen-Beispiel müssen zum Beispiel Personen wieder zurückfahren, dami t
am Ende alle am anderen Ufer sind, ohne daß ein Missionar gefressen würde. Es
gibt Knoten, die bereits dichter am Ziel sind als der Nachfolgeknoten, der auf d e m
optimalen Pfad zum Ziel liegt. Ein solcher, sehr gut bewerteter Knoten heißt l o -
kales Maximum  und das Problem für einen Bergsteige-Algorithmus, von d iesem
nicht auf den richtigen Nachfolgeknoten zu kommen, heißt V o r g e b i r g s p r o -
b l e m .

Die folgende Prozedur führt Bergsteigen durch:

1. Bilde eine einelementige Liste, die den Wurzelknoten mit dem Sta r tzu-
stand enthält.

2. Bis die Liste leer ist, nimm das erste Element der Liste.

a) prüfe, ob das Element der Zielknoten ist;

wenn ja, halte an und melde Erfolg; wenn nein, geht es weiter.

b) wenn das Element Nachfolger hat, entferne es aus der Liste. Ordne d i e
Nachfolger nach dem geringsten Abstand zum Ziel an und füge den b e -
sten Nachfolger in die Liste ein. Die Liste enthält also nie mehr als e i n
Element .

3. Wenn der Zielknoten gefunden wurde, melde Erfolg, sonst Mißerfolg.



3 .1 .5  A *

Statt der lokalen Abschätzung können wir auch eine globale Abschätzung ü b e r
den gesamten Pfad vornehmen. Wir können ein Kriterium suchen, das uns e i n e
Abschätzung liefert, wie weit es von diesem Knoten zum Zielzustand ist, und e i n
weiteres Kriterium, das den zurückgelegten Weg vom Anfangsknoten zu d iesem
Knoten mißt oder abschätzt. Die globale Schätzfunktion für einen b e l i e b i g e n
Knoten n  ist:

f(n) = g(n) + h(n)

wobei g(n) die Kosten des Pfades vom Anfangszustand zum Knoten n angibt u n d
h(n)  die Kosten vom Knoten n zum Zielzustand. An einem Knoten n kennen wir d i e
Kosten des bisherigen Pfads, g(n). Die Kosten für den zukünftigen Pfad k e n n e n
wir nicht -- wir müssen sie schätzen. Im Gegensatz zum Bergsteigen v e r g l e i c h t
h(n)  nicht nur den Knoten n  mit dem Ziel, sondern schätzt den restlichen Pfad v o n
n  bis zum Ziel ab. Wenn wir die Kosten zu niedrig einschätzen, müssen m ö g l i c h e r -
weise sehr viele Knoten expandiert werden, bevor der minimale Pfad zur L ö s u n g
gefunden wird. Wenn wir die Kosten zu hoch einschätzen, kann der minimale Pfad
übersehen werden - er befindet sich dann in dem nicht verfolgten Teil des G r a -
phen. Wenn die Schätzfunktion h die untere Grenze der tatsächlichen Kosten h*
trifft, so heißt das Suchverfahren, das sie nutzt, A*. Dieses Verfahren findet i m -
mer einen minimalen Pfad.

Nach Nilsson (1971) ist A* ein zulässiges Verfahren. Ein Suchverfahren i s t
zu läs s ig  (admissible), wenn es für jeden Graph einen optimalen Pfad findet u n d
dann anhält, falls es einen solchen Pfad gibt. Der Beweis für die Zulässigkeit v o n
A* läßt sich folgendermaßen nachvollziehen. Wir argumentieren für den Fall, daß
es eine Lösung für das Suchproblem gibt. Wir schreiben die tatsächlichen Kos ten
für einen Pfad stets mit *, die geschätzten ohne Zusatz. Die tatsächlichen Kos ten
des Gesamtpfades werden als Kosten des Startknotens s notiert: f*(s). Für den Be-
weis der Zulässigkeit von A* betrachten wir zunächst das foldende Lemma.

L e m m a :  Wenn h(n) ≤  h*(n) für alle Knoten n, dann gibt es immer für jeden o p -
timalen Pfad zum Ziel einen Knoten n’ dieses Pfades in OFFEN und es gilt f ( n ’ )
≤  f*(n’).

Beweis: Sei n0, n1, ..., n k  ein optimaler Pfad vom Startknoten n 0  zum Zielknoten n k .
Sei n’ der erste Knoten dieses Pfades in OFFEN. Es gibt immer einen s o l c h e n
Knoten, denn sonst wäre n k  in GESCHLOSSEN und der Algorithmus t e r m i n i e r t .
Da alle Vorgänger von n’ bereits geschlossen sind, gilt g(n’)=g*(n’). Somit
gilt auch

f(n’) = g*(n’) + h(n’) ≤  g*(n’) + h*(n’) = f*(n’)

�

Theorem: Wenn h(n) ≤ h*(n) und cost(n) > î > 0 für alle Knoten n, dann ist A *
zulässig.

Beweis: Angenommen A* terminiert nicht, indem es einen optimalen Pfad f i nde t .
Dann gibt es drei Fälle:

Fall 1:Was wäre, wenn A* anhielte, bevor das Ziel gefunden ist? Dann m ü ß t e
OFFEN leer sein, denn sonst hält A* nicht an einem anderen als d e m
Zielknoten an. Von dem Lemma wissen wir aber, daß es immer e i n e n
Knoten n' in OFFEN gibt, der auf einem optimalen Pfad liegt, bevor A *
anhält. Also kann A* nicht anhalten, bevor das Ziel gefunden wurde.



Fall 2: Was wäre, wenn A* nie anhält? Knoten, die mehr als

M = f*(s)/ î

Schritte vom Start entfernt sind, werden nie geöffnet, denn sie w ä r e n
teurer als irgendein Knoten n’ in OFFEN, der auf einem optimalen P fad
liegt. Es gibt also nur endlich viele Knoten und Pfade zu diesen K n o t e n ,
die durchlaufen werden können, bis ein optimaler Pfad gefunden wi rd .
Somit terminiert A* immer in endlicher Zeit.

Fall 3: Was wäre, wenn A* einen Lösungspfad finden, der nicht optimal i s t ?
Ein solcher Pfad hätte dann ja höhere Kosten, d.h.

f*(t) = g(t) > f*(s).

Laut Lemma muß es vorm Anhalten einen Knoten n' in OFFEN g e g e b e n
haben, so daß

f(n') ≤ f*(s) ≤ f(t).

Dann aber wählt A* den Knoten n'  und nicht t.

�

Eine hinreichende Bedingung für h(n) ≤ h*(n) (und somit für die Zulässig-
keit) ist die M o n o t o n i e  von h. Unter Monotonie wird verstanden, daß die g e -
schätzten Kosten f für Nachfolger immer größer als die Kosten für V o r g ä n g e r -
knoten sind. Mit anderen Worten: Die Differenz der geschätzten Kosten für zwei
aufeinanderfolgende Knoten ist nie größer als die tatsächlichen Kosten.

h (n i) ≤  h(nj) + cost(ni,n j) wobei nj Nachfolger von ni i s t .

Zusätzlich zur Zulässigkeit von A* wollte Nilsson die Optimalität beweisen. E i n
Verfahren A ist i n f o r m i e r t e r  als ein Verfahren B, wenn hA(n) > hB(n) für a l l e
inneren Knoten n gilt. Es wird angenommen, daß für alle Knoten dieselbe Schä tz -
funktion h  verwendet wird. Nilsson argumentiert, daß A* opt ima l  ist, insofern a l s
es nie mehr Knoten expandiert als irgendein anderes zulässiges Verfahren, das
weniger informiert ist als A*. Was wäre, wenn A* Knoten öffnen würde, die A
nicht öffnet? Da A zulässig ist, muß A die Kosten solcher Knoten für teurer a l s
f*(s)  halten, denn sonst würden sie geöffnet. Also setzt A h(n) ≥ f*(s) - g*(n).
Dann wäre aber A informierter als A*, was wir anders vorausgesetzt haben. Also
ist A* optimal.  Gegen diese Argumentation wendet sich Gelperin (1977). Hier s e i
von der Diskussion nur angeführt, daß A ja Information besser nutzen könnte, z.B.
indem es die Liste GESCHLOSSEN analysiert oder indem es eine Schätzfunkt ion f
besitzt, die nicht lediglich g  und h  addiert.

3 .1 .6   Spielbäume

Der Unterschied zwischen den eben betrachteten Graphen und Spielbäumen i s t
nicht nur, daß jeder Knoten nur einen Vorgängerknoten hat, also ein Baum ist .
Wesentlich ist, daß für die Knoten einer E b e n e7 der eine Spieler die N a c h f o l g e r -
knoten bestimmt, während für die Knoten der nächsten Ebene der andere S p i e l e r
die Nachfolger bestimmt. Man geht bei Spielbäumen also von zwei g e g e n e i n a n d e r
spielenden Personen aus. Wenn der Vorteil des einen Spielers genau dem Nach te i l

                                                
7 Die Ebene wird Halbzug (ply) genannt. Die Anzahl der Halbzüge ist die Tiefe des Baums.



des anderen Spielers entspricht, spricht man von einem Nullsummenspiel, w e i l
sich Nachteile (dargestellt durch negative Zahlen) und Vorteile (dargestellt d u r c h
positive Zahlen) beider Spieler genau zu 0 addieren. In einer solchen S i tua t ion
gibt es nicht einen Zielzustand und einen optimalen Pfad, sondern für jeden Sp ie -
ler einen anderen. Die Blätter oder Endpunkte des Baumes geben Gewinn o d e r
Verlust für jeden Spieler an. Diese Information soll möglichst schon am A n f a n g
verwendet werden. Dabei kann jeder Spieler davon ausgehen, daß im für i h n
schlimmsten Fall der Gegenspieler, wenn er an der Reihe ist, den für ihn se lbs t
schlechtesten, für den Gegenspieler aber besten Nachfolgezustand wählen wird.

Ein einfaches Beispiel ist "den letzten beißen die Hunde": ein Stapel von 5
Karten liegt auf dem Tisch, von dem jeder Spieler abwechselnd entweder eine o d e r
zwei abnimmt. Wer die letzte Karte des Stapels nimmt, hat verloren. Der Sp ie lbaum
ist im folgenden so notiert, daß die Anzahl der genommenen Karten an den K a n -
ten, die Anzahl der auf dem Stapel verbleibenden an den Knoten und der Ve r lu s t
als "-" notiert ist.

  

Vom Ergebnis aus kann A den Baum analysieren und danach den ersten Zug
entscheiden. Links unten ist ein Zustand, in dem A verloren hat. Wir können d i e -
sem Zustand eine Bewertung zuordnen, die negativ ist, z.B. -10. Der Zustand l ä ß t
sich nicht vermeiden, wenn der Vorgängerzustand erreicht ist. Also kann die n e -
gative Bewertung an den Vorgängerzustand hochgereicht werden. Der V o r g ä n -
gerzustand läßt sich von A nicht vermeiden, wenn 2 Karten vorhanden sind und B
am Zug ist. Dann wird B nicht freiwillig verlieren, indem B zwei Karten n i m m t .
Das wäre eine positive Bewertung für A, die wir mit +10 notiert haben. B w ä h l t
aber immer negativ bewertete Zustände. Also bewertet A schon diesen Zustand m i t
-10 und nimmt in der Situation, wo drei Karten auf dem Stapel liegen, zwei davon .
Dann kann B nur noch verlieren, der Zustand bekommt also vom Verlust von B d i e
positive Bewertung hochgereicht. Das wird wiederum B nicht zulassen und des -
halb in der Situation mit 4 Karten nicht eine Karte nehmen. B sucht nach e i n e m
Zustand, der niedriger bewertet ist als +10. Leider führt aber das Nehmen von zwei
Karten ebenfalls zu Bs Verlust. Es gibt keinen schlechter bewerteten Nachfo lgezu-
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stand. Deshalb wird bereits die Situation mit 4 Karten auf dem Stapel mit +10 positiv
bewertet. Da A anfängt, wird A sicherlich den positiv bewerteten Zustand wählen.

Die Bewertungen der Ergebnisse werden also nach oben weitergereicht. Die
tatsächlichen Ergebnisse sind an den Blättern des Baumes aufgezeichnet. Sie b i l -
den die Suchgrenze. Wenn A am Zug ist, erhält der Knoten den Wert  des am b e s t e n
bewerteten Nachfolgeknoten. Das ist die max-Ebene. Wenn B am Zug ist, erhält d e r
Knoten den Wert des am schlechtesten bewerteten Nachfolgers. Das ist die m i n -
Ebene. Denn A wählt den für A besten, B den für A schlechtesten Zug. Dieses V e r -
fahren, Bewertungen von unteren Knoten an obere hochzureichen, heißt M i n i -
m a x - A l g o r i t h m u s , weil abwechselnd maximale und minimale Werte nach o b e n
übertragen werden. In dieser Weise werden die Werte bis zum A n f a n g s z u s t a n d
hochgereicht. Wenn wir den gesamten Baum durchgehen können, wissen wir b e -
reits am Anfang, wer gewinnt.

Wir können eine Prozedur für das Minimax-Verfahren angeben8:

1. Bestimme, ob die aktuelle Ebene Suchgrenze, eine min-Ebene oder e i n e
max-Ebene ist.

2. Wenn die Suchgrenze erreicht wurde, gib die statische Bewertung a l s
Ergebnis bekannt!

3. Wenn es eine min-Ebene ist, verwende die Minimax-Prozedur bei d e n
Nachfolgern der gegenwärtigen Stellung und gib das Minimum der E r -
gebnisse an!

4. Wenn es eine max-Ebene ist, verwende die Minimax-Prozedur bei d e n
Nachfolgern der gegenwärtigen Stellung und gib das Maximum der E r -
gebnisse an!

Dieses Verfahren setzt voraus, daß wir den gesamten Baum erzeugen o d e r
wenigstens bis zu einer Tiefe, bei der eine Bewertung der Stellungen möglich i s t
(Suchgrenze). Es handelt sich um eine Tiefensuche mit einer B e w e r t u n g s -
funktion, deren Bewertungen zurück nach oben übertragen werden. Der Baum
des Beispiels hat im schlimmsten Falle eine Tiefe d von 5 Halbzügen und eine V e r -
zweigung b an jedem Knoten (Anzahl der Nachfolger) von 2. Die Anzahl der Blät-

ter ist maximal bd, also im Beispiel 32. Die Menge der Blätter wächst e x p o n e n t i e l l

mit der Baumtiefe. Die Anzahl aller explorierten Knoten ist schlimmstenfalls bd+1-
1, im Beispiel also 63. Wir können den Baum aber beschneiden.

Tatsächlich habe ich den rechten Zweig des Baumes nicht mehr b e s c h r i e b e n ,
weil der Zustand mit 4 Karten auf dem Stapel bereits die höchste Bewertung hat -
warum sollte A dann über den anderen Zweig noch nachdenken, der nicht b e s s e r
sein kann! A kann aufhören, wenn eine neue Bewertung nicht besser wird als d i e
bisher schlechteste; B kann aufhören, wenn eine neue Bewertung nicht k l e i n e r
wird als die bisher größte Bewertung. Wir können also ein beschränkendes I n t e r -
vall einführen, dessen untere Grenze a l p h a  der minimale Wert ist, den A g a r a n -
tiert schon erreicht hat, und dessen obere Grenze b e t a  der maximale Wert ist, d e n
A erhoffen kann zu erreichen. Aus der Sicht von B ist beta der minimale Wert, d e n
B bestimmt erreichen kann. Jeder Knoten, dessen Bewertung außerhalb dieses
Intervalls liegt, ist irrelevant. Die Suche wird abgebrochen,

                                                
8 Die Darstellung entspricht der von Winston (1987).



• wenn eine Bewertung eines Knoten, an dem A am Zuge ist ,
kleiner oder gleich alpha ist,  oder

• wenn eine Bewertung eines Knoten, an dem B am Zuge ist ,
größer oder gleich beta ist.

Anders ausgedrückt, es wird nur weitergesucht, wenn A einen höheren W e r t
als alpha erreichen kann, oder wenn B einen kleineren Wert als beta e r r e i c h e n
k a n n9. Ein Verfahren, das den Minimax-Algorithmus um das Beschneiden m i t h i l f e
von alpha und beta erweitert, heißt A l p h a - B e t a - A l g o r i t h m u s .

                                                
9 Wie man am Beispiel sehen kann, ist ein kleinerer Wert gut für B, denn Bs Verlust wird mit +10 notiert, Bs
Gewinn mit -10!
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In jedem Knoten kann die Entwicklung des alpha- und beta-Wertes n a c h v o l l -
zogen werden. Auf der alpha-Seite ist jeweils über den aktuellen Werten zu m a x i -
mieren, auf der beta-Seite zu minimieren. Alpha und beta sind lokale Variablen i n
jedem Knoten, die jeweils nur von einem Vorgängerknoten an seine N a c h f o l g e r
weitergereicht werden.

Im Beispiel wird zunächst gemäß der Tiefensuche der linkeste Teilbaum a u f -
gebaut. Der linkeste unterste Knoten erhält die Bewertung -10, die h o c h g e r e i c h t
wird und als neuer alpha-Wert eingetragen wird. Der Knoten darüber erhält v o n
seinem zweiten Unterknoten den Wert +10 hochgereicht, der für beta e i n g e t r a g e n
wird. Da es sich aber um ein minimierendes Hochreichen handelt, wird -10 an d e n
Knoten darüber weitergegeben. Hier, bei Knoten c, haben wir nun auch noch vom
Schwesterknoten den Wert +10. Dies ist der höchste Wert, den A bekommen k a n n ,
also beta. Es wird dann der zweitlinkeste Pfad exploriert, bei dem 2 Karten auf d e m
Stapel liegen (Knoten g). Dieser Knoten wird zunächst so expandiert, daß A e i n e
Karte nimmt, was dazu führt, daß B die letzte Karte nehmen muß und verliert. De r
Knoten h mit einer Karte erhält als aktuelle Bewertung +10. Die zweite Expans ion
des Knoten g mit den 2 Karten muß nun nicht mehr untersucht werden, denn d i e
Bewertung von h ist bereits +10, also größer oder gleich beta. Nach der be t a -Rege l
schneiden wir also alle weiteren Expansionen ab. Dann wird der rechte Tei lbaum
exploriert. Knoten i wird expandiert, so daß der erste Nachfolgerknoten j eine Be-
wertung erhalten kann, nämlich -10. Diese Bewertung ist nicht größer als d e r
schlechteste Wert, mit dem A rechnen kann. Die Bewertung von j ist k l e i n e r
gleich alpha. Nach der alpha-Regel brauchen wir keine weiteren Expansionen des
Knoten i zu untersuchen. Der gesamte so beschnittene Baum hat nur noch 5 Blät-
ter. Dies entspricht ungefähr der Quadratwurzel aus der Anzahl der m a x i m a l e n
Blätter. Es ist etwas weniger, weil schon der unbeschnittene Baum weniger als 32
Blätter hatte.

Wir können eine Prozedur für das Alpha-Beta-Verfahren angeben10:

Bestimme, ob die Ebene die oberste Ebene ist, oder ob die Suchgrenze e r r e i c h t
wurde, oder ob es eine min-Ebene oder eine max-Ebene ist.

a ) Falls es die oberste Ebene ist, soll alpha -∞  und beta +∞  sein.

b ) Falls die Suchgrenze erreicht wurde, berechne den statischen Wert d e r
Stellung und gib ihn als Ergebnis zurück.

c ) Falls es eine min-Ebene ist, führe die folgenden Schritte durch, bis a l l e
Nachfolger durch Minimax geprüft sind oder alpha ≥ beta:

c 1 ) Beta wird das Minimum von: dem beta-Wert des Elternknotens und d e m
kleinsten bisher durch die Minimax der Nachfolger ermittelten Wert.

c 2 ) Wende Minimax auf den nächsten Nachfolger der gegenwärtigen Ste l -
lung an und ersetze das vorliegende alpha und beta durch die Ergebnis-
se dieser neuerlichen Anwendung von Minimax.

c 3 ) Liefere beta als Ergebnis.

d ) Falls es eine max-Ebene ist, führe die folgenden Schritte durch, bis a l l e
Nachfolger durch Minimax geprüft sind oder alpha ≥  beta:

                                                
10 Die Darstellung entspricht der von Winston (1987).



d1) Alpha wird das Maximum von: dem alpha-Wert des Elternknotens u n d
dem größten bisher durch Minimax der Nachfolger ermittelten Wert.

d2) Wende Minimax auf den nächsten Nachfolger der gegenwärtigen Ste l -
lung an und ersetze das vorliegende alpha und beta durch die Ergebnis-
se dieser neuerlichen Anwendung von Minimax.

d3) Liefere alpha als Ergebnis!

Im allgemeinen Fall wird die Verzweigung b eines Baumes durch den A l p h a -
Beta-Algorithmus verringert, und zwar maximal auf die Quadratwurzel von b. I m
Beispiel verringert sich die Verzweigung von 2 auf die Wurzel von 2, also 1,4. I n s -

gesamt brauchen bei gerader Tiefe (dann ist B als letzter am Zug) nur 2bd/2 - 1
Blätter statisch bewertet zu werden. In unserem Beispiel sind das 7 Blätter. Bei u n -

gerader Tiefe (A ist als letzter am Zug) werden bestenfalls nur b (d+1)/2 + b ( d - 1 ) / 2

Blätter bewertet. In unserem Beispiel sind das 4,28. Im besten Falle kann der Al -
pha-Beta-Algorithmus doppelt so tief suchen wie ein erschöpfender Min imax-
Algorithmus. Im schlechtesten Fall expandiert auch der Alpha-Be ta -Algor i thmus
alle Knoten.

Unser Beispiel hat nur zwei Bewertungen: +10 und -10. Es kann aber a u c h
Zwischenbewertungen geben wie z.B. -5, 0, +5. In diesem Falle sind die vom A l p h a -
Beta-Algorithmus hochgereichten Knoten-Bewertungen nicht exakt. Bei Zwi-
schenwerten kann die korrekte Bewertung für einen Knoten, bei dem A am Zug
ist, größer sein als vom Alpha-Beta-Algorithmus errechnet. Die Bewertung f ü r
einen Knoten, bei dem B am Zug ist, kann kleiner sein als vom Alpha-Beta-Al-
gorithmus angegeben. Wir wissen aber, daß diese Unkorrektheit für das S p i e l e n
nicht wichtig ist: A muß sich nicht überlegen, was sein oder Bs schlechtest m ö g l i -
cher Zug wäre.

Bei realistischen Spielen wie z.B. Schach kann der Wert für alpha und b e t a
nicht dadurch gefunden werden, daß man ein Endergebnis nach oben reicht. Die
Suche wird in der Tiefe beschränkt, z.B. auf 7 Halbzüge. Die Bewertung der K n o t e n
auf der Ebene 7 muß dann durch eine Bewertungsfunktion gefunden werden. Die-
se kann die Erfolgsaussichten für das Gewinnen oder Verlieren abschätzen. Dazu
werden beim Schach etwa die Wertigkeit der Figuren und bestimmte S t e l l ungs -
merkmale (z.B. Läufer am Rand) genutzt. Diese geschätzten Bewertungen w e r d e n
dann mit dem Minimax-Algorithmus nach oben gereicht, so daß alpha und b e t a
bestimmt werden können. Die Tiefenbeschränkung kann auch iterativ a n g e w a n d t
werden: zunächst wird der Alpha-Beta-Algorithmus für eine bestimmte Tiefe a n -
gewandt und dann wird die Liste der Nachfolgezustände gemäß der B e w e r t u n g
sortiert und wieder, für eine größere Tiefe, der Alpha-Beta-Algorithmus a n g e -
wandt. Dies wird fortgesetzt bis eine bestimmte Zeitgrenze erreicht ist. Die zu d e m
Zeitpunkt aktuellen Bewertungen werden für die Auswahl des nächsten Zuges g e -
nu tz t .

Bei dem - auch psychologisch untersuchten - Schachspiel wird b e s o n d e r s
deutlich, daß die Formalisierung eines Spiels als Suchproblem zwar die     A u f g a b e    
beschreibt, nicht jedoch das menschliche Vorgehen. Je besser ein S c h a c h s p i e l e r
ist, desto weniger Stellungen überlegt er sich überhaupt. Einige 10 S t e l l u n g e n
werden sehr genau untersucht, alle anderen werden gar nicht betrachtet (De
Groot 1965). Die erfolgreichen Schachprogramme, die mit den oben b e s c h r i e b e -
nen Verfahren arbeiten und bereits Weltmeister schlagen, untersuchen Mill io-
nen (und mehr) Stellungen. Je größer die Suchtiefe, desto erfolgreicher s p i e l e n
die Programme. Allerdings verwenden sie für den Eröffnungsteil der S c h a c h p a r -
tien auch menschliches Wissen, das ihnen in Form einer E r ö f f n u n g s b i b l i o t h e k
zur Verfügung gestellt wird.
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3 .2  Problemlösung als  Beweis

Die Beschreibung von Problemen in einer Form, die die Lösung des Problems e r -
laubt, ohne daß man das Problem aus der sinnlichen Wahrnehmung heraus b e -
greifen muß, ist der Jahrhunderte alte Traum von Logikern. Schon an der F o r m
einer Aussage soll man erkennen können, ob sie wahr ist oder nicht. Wenn zwei
Formen verschieden aussehen, obwohl sie doch dasselbe bedeuten, soll man m i t -
hilfe von einfachen Manipulationen erkennen können, daß sie " e i g e n t l i c h "
gleich sind. Diese Manipulationen verändern nicht den Wahrheitsgehalt, sie s i n d
w a h r h e i t s e r h a l t e n d  und f a l s c h h e i t s e r h a l t e n d . Die Formen bestehen a u s
verabredeten (per Konvention festgelegten) Zeichen (das sind Symbole) und d e n
Möglichkeiten ihrer Anordnung. Dies ist die S y n t a x . "Syntaxis" ist das g r i e c h i -
sche Wort für Anordnung.

Die B e d e u t u n g  von Aussagen, die in einer bestimmten Anordnung von S y m b o l e n
dargestellt sind, ist ihr Wahrheitswert. Die Bedeutung eines Bezeichners (z.B.
"Baum" oder "Uta") sind die bezeichneten Objekte selbst (z.B. alle Bäume oder e i n e
Person). Es gibt Aussagen, die keinen Wahrheitswert haben. So sind H o f f n u n g e n
oder Befürchtungen nicht wahr oder falsch, sondern vielleicht berechtigt, ( u n -
)angenehm, anspornend. Der Satz "Hoffentlich komme ich heute nicht zu spät ."
hat in diesem Sinne keine Bedeutung. Aber natürlich ist es ein sinnvoller Satz.
Wir trennen Sinn von Bedeutung seit Gottlob Frege. Der Sinn eines Satzes ist u n -
abhängig von seinem Wahrheitsgehalt. Wir verstehen den Satz "Der Stuhl ist r o t "
unabhängig davon, ob er wirklich rot ist. Der Sinn eines Bezeichners hängt m i t
unserer Wahrnehmung zusammen.  Es ist seine Verankerung in unserer E r f a h -
rung. Der Sinn kann verschieden sein, wo die Bedeutung gleich ist. E i g e n t l i c h
umfaßt Semantik sowohl Sinn als auch Bedeutung. In der Logik befaßt man s i c h
meist mit der Bedeutung, wobei man sie allerdings im Sinn zu verankern sucht.

Im folgenden wird eine kurze Einführung in die Logik gegeben. Dabei b e -
handeln wir hier nur die Aussagenlogik. Die Aussagenlogik behandelt nicht d i e
einzelnen Bestandteile von Aussagen wie etwa Quantoren (alle, einige, m i n d e s t e n s
eine, genau eine, viele...), Individuen, Variablen. Stattdessen wird ein S a c h v e r h a l t
durch einen einzigen Ausdruck zusammengefaßt. Diesem Ausdruck wird e i n
Wahrheitswert zugeordnet.

3 .2 .1  S y n t a x

Die Aussagenlogik notiert komplette Sachverhalte durch Aussagensymbole. So i s t
zum Beispiel der_Stuhl_ist_rot eine Aussagensymbol. Geläufiger ist allerdings A, B,
... . Aussagensymbole sind atomare Formeln oder Atome. Sie können mit V e r k n ü p -
fungszeichen zu weiteren Formeln zusammengesetzt werden. Die S y n t a x  der Aus -
sagenlogik definieren wir induktiv:

1 ) Die Wahrheitswerte und Aussagensymbole sind Formeln.

2) Sind A und B Formeln, so auch

¬ A, A & B, A ∨  B, A → B, A ↔ B

3 ) Das sind alle Formeln.



Dirk Siefkes hat in seinem schönen Buch "Formalisieren und Beweisen"
(1990)11 das folgende Beispiel in Aussagenlogik notiert: Von vier Kindern hat e i -
nes einen Ball in ein Fenster geworfen. Anne sagt: "Emil war's." Emil sagt:"Nein,
Gustaf." Gustaf sagt:"Emil lügt." Fritz sagt:" Ich war's nicht!" Nur ein Kind sagt d i e
Wahrheit, alle anderen lügen. Für "Anne hat den Ball ins Fenster g e w o r f e n "
schreiben wir Aball, entsprechend Eball, Gball, Fball für die anderen m ö g l i -
chen Werfer. Für "Anne hat die Wahrheit gesagt" schreiben wir Awahr, e n t s p r e -
chend Ewahr, Gwahr, Fwahr für die anderen möglichen (Nicht)Lügner. Der g a n z e
Fall kann also folgendermaßen in Aussagenlogik geschrieben werden:

Awahr ↔ Eball

Ewahr ↔ Gball

Fwahr ↔ ¬ Fball

Gwahr ↔ ¬ Ewahr

Awahr → ¬ Ewahr & ¬Fwahr & ¬ Gwahr

Ewahr → ¬ Awahr & ¬ Fwahr & ¬ Gwahr nur ein Kind sagt die Wahrheit!

Fwahr → ¬ Awahr & ¬ Ewahr & ¬ Gwahr

Gwahr → ¬ Awahr & ¬ Ewahr & ¬ Fwahr

Awahr ∨  Ewahr ∨  Fwahr ∨  Gwahr eins der Kinder warf den Ball

Aball → ¬ Eball & ¬ Fball & ¬ Gball

Eball → ¬ Aball & ¬ Fball & ¬ Gball nur ein Kind warf den Ball!

Fball → ¬ Aball & ¬ Eball & ¬ Gball

Gball → ¬ Aball & ¬ Eball & ¬ Fball

Um mit diesen Aussagen arbeiten zu können, müssen wir aber auch W a h r -
heitswerte zuordnen können. Wir wollen aus diesen Formen ja ablesen können, o b
es möglich ist, daß genau ein Kind die Wahrheit sagt und genau ein Kind den Ball
ins Fenster geworfen hat, und - wenn ja - welches Kind es war.

3 .2 .2  S e m a n t i k

Die Wahrheitswerte sind nur wahr (W ) und falsch (F). Für Verknüpfungen gibt e s
Wahrheitstafeln, die die Wahrheitsfunktion (Boolesche Funktion) von W a h r h e i t s -
werten in Wahrheitswerte angeben:

                                                
11Dieser Abschnitt ist eng an dies Buch angelehnt.
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Da wir bei den Aussagen nicht von vornherein wissen, ob sie wahr oder f a l s c h
sind, belegen wir sie mit den möglichen Wahrheitswerten. Eine Belegung e i n e r
Formel ist ein Abbildung von der Menge der Aussagensymbole der Formel in d i e
Menge der Wahrheitswerte. Wir werten eine Formel unter einer Belegung aus ,
indem wir jedes Aussagensymbol durch seinen Wahrheitswert unter der B e l e g u n g
ersetzen und dann die Wahrheitstafeln anwenden. Eine Formelmenge X ist w a h r
unter einer Belegung, wenn jede Formel aus X unter der Belegung wahr ist. Die
Formelmenge ist also wie eine Konjunktion von Formeln. Die Auswertung d e r
Formel Gwahr → ¬ Awahr & ¬ Ewahr & ¬ Fwahr für eine willkürlich gewählte Be-
legung ergibt:

Gwahr            ¬ Awahr & ¬ Ewahr & ¬ Fwahr
F F F

W W

W

W

W

W

Wir können natürlich auch umgekehrt fragen, unter welchen B e l e g u n g e n
die Formel wahr wäre. Die Formel wäre wahr, wenn Gwahr falsch wäre und m i n d e -
stens eins von Awahr, Ewahr, Fwahr wahr ist; oder wenn Gwahr  wahr ist und Awahr,
Ewahr, Fwahr alle falsch sind. Wenn alle Formeln des Falls wahr sein sollen u n d
wenn Gwahr wahr sein soll, sind die möglichen Belegungen eingeschränkt. W i r
gehen die Formeln des Fenster-Falles durch und rechnen die Belegungen r ü c k -
wärts: Awahr ist bereits mit  falsch belegt. Damit die erste Formel wahr wird, m u ß
Eball mit falsch belegt werden. Ewahr ist schon mit falsch belegt; damit die zwei te
Formel wahr wird, wird Gball  mit falsch belegt. Fwahr  ist bereits mit  falsch  belegt.
Damit die dritte Formel wahr wird, muß ¬Fball falsch sein, also Fball wahr. Damit
ist das Problem gelöst, wer den Ball durch das Fenster geworfen hat. Alle w e i t e r e n
Formeln lassen sich mit Wahrheitswerten belegen.

Mit einem ähnlichen Vorgehen läßt sich auch die Frage beantworten, ob A n -
ne die Wahrheit gesagt hat. Wenn alle Formeln wahr sind und Awahr wahr ist ,
dann sind Ewahr, Fwahr, Gwahr falsch. Wenn aber Gwahr falsch ist und die v i e r t e
Formel soll wahr sein, dann muß Ewahr  wahr sein. Das ist ein Widerspruch! Es g i b t
also keine Belegung, so daß Awahr wahr ist und alle Formeln wahr sind. W e n n
Awahr  wahr ist, dann ist die Formel

Gwahr ↔ ¬ Ewahr

falsch. Anne ist mit einem Widerspruchsbeweis überführt.

3 .2 .3  Er fü l lbarke i t ,  A l lgeme ingü l t i gke i t ,  Fo lgerbarke i t

Eine Formel oder Formelmenge heißt e r f ü l l b a r , wenn es eine Belegung g ib t ,
unter der sie wahr ist. So war eben im Beispiel die Formelmenge erfüllbar, w e i l
mit der Belegung wahr  für Gwahr  verträgliche Belegungen für alle anderen Aussa-
gensymbole gefunden werden konnten.



Die Formeln des Fenster-Falles sind nicht a l l g e m e i n g ü l t i g , weil es e i n e
Belegung gibt, bei der nicht alle Formeln wahr sind. Allgemeingültig ist e i n e
Formel oder Formelmenge genau dann, wenn sie unter jeder Belegung wahr i s t
( s ind ) .

Daß Fritz den Ball geworfen hat, wurde deutlich unter der Annahme, daß a l l e
Formeln wahr sein sollen und Gustaf die Wahrheit gesagt hat. Wir brauchen d i e
zweite Annahme aber gar nicht. Tatsächlich ist es so, daß immer, wenn alle F o r -
meln wahr sind, auch Gwahr und Fball wahr sind. Gwahr und Fball sind aus d e r
Formelmenge (logisch) fo lgerbar . Eine Formel A folgt logisch aus einer Formel B
(bzw. Formelmenge)

B |= A (bzw. X |= A),

wenn unter jeder Belegung, unter der B bzw. X wahr ist, auch A wahr ist. E ine
Formelmenge Y folgt aus X, wenn jede Formel von Y aus X folgt. Die logische Folge-
rung ist

transitiv: X |= Y, Y |= Z, also X |= Z,

reflexiv:  X |= X

Auch die folgende, allgemeinere Beziehung gilt: Y ⊇ X , also Y |= X, d .h .
Formeln folgen logisch aus sich selbst und weiteren Formeln.

Aus mehr Formeln kann man mindestens gleichviel folgern:

Y ⊇ X, X |= Z, also Y |= Z.

Die Folgerung  A |= B ist auf der Metaebene wie A → B auf der Ebene d a r u n -
ter. Wenn A  →  B  wahr werden soll, muß man eine geeignete Belegung für A und B
finden. Wenn A |= B wahr werden soll,  muß es für     a l l e     Belegungen von A  und B  s o
sein. Also ist A |= B gleichbedeutend damit, daß A  → B allgemeingültig ist.

Wenn wir zeigen wollen, daß aus unseren Fenster-Formeln logisch folgt, d a ß
Gustaf die Wahrheit gesagt hat und Fritz den Ball geworfen hat, müssen wir a lso
zeigen, daß alle Belegungen, die die Formeln wahr machen, auch Gwahr und Fball
wahr machen. Woher wissen wir denn, daß wir die Annahme, daß Gwahr wahr ist ,
gar nicht hinzuzunehmen brauchen, um Fritz zu überführen?  Vielleicht gibt e s
noch viel mehr Belegungen, unter denen die Formelmenge wahr ist und n i c h t
immer ist dann auch Gwahr und Fball wahr. Wie können wir e n t s c h e i d e n , o b
Gwahr und Fball aus den Formeln folgen? Ist das überhaupt entscheidbar? Dies i s t
das Problem der Entscheidbarkei t  für die logische Folgerung. Das Problem i s t
für die Aussagenlogik zu lösen: man braucht nur alle Belegungen miteinander z u
kombinieren für alle Aussagensymbole - und das sind ja endlich viele. In D i rk
Siefkes Beispiel sind es 8. Bei zwei Wahrheitswerten haben wir also 28 Mög l i ch -
keiten zu prüfen, ob, immer wenn die Formeln wahr sind, auch Gwahr und Fball
wahr ist. Da man bereits bei kleinen Beispielen sehr viel mehr Aussagensymbole
braucht, hilft die Entscheidbarkeit nicht so viel.

Eine andere Methode, um zu zeigen, daß Fritz den Ball geworfen haben m u ß ,
ist der Widerspruchsbeweis. Um zu zeigen, daß Fball wahr sein muß, nimmt m a n
an, daß Fball falsch sei. Wenn das zu einem Widerspruch führt, heißt das, d a ß
Fball wahr sein muß, um die Formeln zu erfüllen. Daß man dies tun darf, k a n n
man mit  wahrheitserhal tenden Manipulationen beweisen. Man kann zeigen, d a ß
A |= B, indem man zeigt, daß A → B allgemeingültig ist (s.o.). Jetzt ist die Frage, o b
dies mit A & ¬ B → F gleichbedeutend ist. Dabei wenden wir nur M a n i p u l a t i o n e n
an, die unabhängig von den Belegungen von A  und B  sind:



(A → B ∨  C ) ↔ (A & ¬ B → C)

Wir nehmen als C die Formel F (für falsch): A & ¬ B → F

Der Widerspruchsbeweis ist also zulässig. Er setzt allerdings voraus, daß d i e
Formeln nicht ohnehin zu einem Widerspruch führen.

Eine Formelmenge X heißt w i d e r s p r ü c h l i c h , wenn es eine Formel A gibt, so
daß A und ¬ A logisch aus X folgen. Sonst heißt X widerspruchsfrei. Eine Fo rme l -
menge ist widersprüchlich genau dann, wenn X |= F.  Eine w i d e r s p r ü c h l i c h e
Menge von Formeln ist nicht erfüllbar.  Und aus einer widersprüchlichen F o r -
melmenge folgt jede beliebige Formel. Also wieder:

X |= A genau dann, wenn X & ¬ A widersprüchlich ist.

Schließlich sei noch der Beweis durch Kontraposit ion angeführt. A |= B
wird bewiesen durch ¬B |= ¬A. Das ist zulässig, weil A |= B mit A → B geze ig t
werden kann, was äquivalent ist mit  ¬B → ¬ A.

3 .2 .4  F o r m e n

Wenn es ein Ziel der Logik ist, an der äußeren Form die Bedeutung abzulesen, i s t
eine Normalform nützlich, bei der Gleiches immer gleich aussieht und in der s i c h
alles ausdrücken läßt. Die wahrheitserhal tenden Manipulationen sind dann dazu
nötig, in diese Form zu überführen.

Ein Literal ist ein positives Atom (P ) oder ein negatives Atom (¬P). Die dop -
pelte Negation ergibt einfach ein positives Atom ( P  statt ¬¬P ) .

Die  konjunktive  N o r m a l f o r m12 besteht aus Formeln, die W a h r h e i t s w e r t e
sind oder ein Konjunktion von Disjunktionen von Literalen.

F, W, (A1,1 ∨  ... ∨  A1,n) & ... &(Am,1 ∨  ... ∨  Am,o)

In keiner Disjunktion darf ein Atom mehrfach vorkommen, auch nicht n e -
g i e r t .

Zum Umformen in diese Form braucht man vor allem die folgenden M a n i p u -
l a t i o n e n :

A ↔  B wird zu (A → B)&(B → A)

A → B wird zu ¬A ∨  B

¬(A & B) wird zu ¬A ∨  ¬B, ¬(A ∨  B) wird zu ¬A & ¬B

¬W wird zu F, W ∨  A wird zu W, W & A wird zu A,

¬F wird zu W, F ∨  A wird zu A, F & A wird zu F,

A ∨  (B & C) wird zu (A ∨  B)&(A ∨  C).

 Man schreibt (A1,1 ∨  ... ∨  A1,n)  auch als Menge {A1,1 , ..., A1,n}.

                                                
12Die disjunktive Normalform ist dieselbe wie die konjunktive, nur & und ∨  vertauscht.



{A1,1, ..., A1,n} ist eine Klausel. Die leere Menge ist immer falsch. Stat t
mit Formeln kann man mit endlichen Mengen von Klauseln arbeiten. A l l g e m e i n -
gültige Klauseln sind von der Form {P, ¬P} und falsche von der Form {}. Ein Atom
und seine Negation dürfen jetzt in einer Klausel vorkommen.

Eine Hornklausel  ist eine Klausel mit höchstens einem positiven Literal (s. Ka -
pitel 2). Verbindet man Hornklauseln durch Konjunktion oder negiert man sie, so
kann man das Ergebnis wieder als Hornklausel schreiben. Die Disjunktion v o n
Hornformeln ist aber nicht äquivalent zu einer Menge von Hornformeln. Wie sol l
P∨ Q ausgedrückt werden? Hornformeln sind also keine Normalform, in die a l l e
Aussagen übertragen werden können. Sie stellen ein Einschränkung dar, die e s
erleichtert, über die Erfüllbarkeit zu entscheiden.

3 .2 .5  Korrekthe i t ,  Vol l s tändigke i t ,  Wider legung

Wenn wir eine Behauptung nicht durch reine Anschauung begründen w o l l e n
und wenn wir die Behauptung allgemeiner Überprüfung zugänglich m a c h e n
wollen, müssen wir festlegen, was wir als Begründungen zulassen wollen. S ieg-
fried Kanngießer (1984) zitiert aus Leonhard Eulers "Briefen an eine d e u t s c h e
Prinzessin über verschiedene Gegenstände der Physik und Philosophie" 13 ü b e r
die guten Gründe, etwas für wahr zu halten:

1) Zeugnis der Sinne,

2) richtiger Schluß, reguläre Syllogismen,

3) Bericht von glaubwürdigen Personen.

In diesem Abschnitt geht es um den richtigen Schluß, die Deduktion. Wir h a -
ben bereits in Wahrheitstafeln gegründete Verknüpfungen und die logische Fol-
gerung gesehen. Diese wurden im Ball-Beispiel dazu verwendet, eine Frage zu b e -
antworten oder die Belegung aller Aussagensymbole zu finden, die alle F o r m e l n
wahr macht.  Die Verwendung soll nun in Form von Regeln festgelegt werden. Die
Regeln sollen Formeln nur unter Betrachtung ihrer Form in andere ü b e r f ü h r e n ,
bis man das gewünschte Ergebnis hat.  Die Regeln sollen so sein, daß genau u n d
nur solche Ergebnisse herauskommen, wie man sie durch die logische F o l g e r u n g
erhielte. Die Regeln sollen also die semantische Folgerung syntaktisch r e k o n -
struieren. Die syntaktische Rekonstruktion der Folgerung heißt A b l e i t u n g .  X |-
B  heißt, daß B aus der Formelmenge X  abgeleitet wird. Man muß dazu angeben, w e l -
che Regeln die Ableitung realisieren: X |- B mit ℜ.  Formeln, Regeln und Axiome
ergeben zusammen ein Kalkül . Axiome sollen möglichst wenige Formeln sein. I n
dem Ball-Beispiel war es nicht nötig, Gwahr  als Axiom zu nehmen. Wegen der Axio-
me wird ein Kalkül auch axiomatische Theorie genannt.

Es gibt verschiedene Logikkalküle. Hier führe ich nur zwei Regeln an: d i e
positive (mit W) und die negative (mit F) Schnittregel. Sie sehen so aus:

ℜ: W→P P∧ C→D

C→D

A→P   P∧ C→F

A∧ C→F

                                                
13Die Prinzessin war Sophie Friederike Charlotte Leopoldine Louise (Brandenburg-Schwedt). Sie erhielt Privat-
unterricht von Euler, der dann schriftlich fortgeführt wurde. Nur auf diese Weise konnte sie an den philosophi-
schen Diskussionen über Leibniz' Monadenlehre und anderes teilhaben.



Wenn eine Regel aus einer Formelmenge X die Formel B ableitet und aus X
folgt B , so ist die Regel korrekt . X |- B ist also korrekt, wenn X |= B. Eine M e n g e
von Regeln ist korrekt, wenn jede ihrer Regeln korrekt ist.

W i d e r l e g u n g : eine Formelmenge X  wird widerlegt, indem F aus ihr a b g e l e i -
tet wird. Eine Formel A  wird bezüglich einer Formelmenge X  widerlegt, indem F  a u s
X,A  abgeleitet wird.

Es reicht nicht aus, daß eine Menge von Regeln korrekt ableitet. Es könnte j a
immer noch sein, daß einige logische Folgerungen nicht abgeleitet werden! Ad-
äquat ist eine Menge von Regeln erst, wenn sie korrekt und vollständig ist.

Vollständig für das Ableiten ist eine Menge von Regeln, wenn gilt: i m m e r
wenn X |= B, dann auch X |- B. Vollständig für das Widerlegen ist eine M e n g e
von Regeln, wenn gilt: immer wenn X |= F, dann auch X |- F.

ℜ ist nicht vollständig für das Ableiten, weil man aus der leeren M e n g e
nichts ableiten kann - ergo fehlen die Tautologien -, aber vollständig für das Wi-
derlegen von Hornformeln: wenn X |= F, dann X |- F. Dies kann durch e i n e n
Beweis mit Kontraposition gezeigt werden. Wir zeigen also zuerst, daß, wenn X
nicht F ableitet, F auch nicht aus X folgt. Wir nehmen an, daß X nicht F ab le i te t .
Wenn X  nicht F  ableitet, soll es erfüllbar sein. Also muß es eine Belegung β g e b e n ,
die X  wahr macht. Die konstruieren wir. Die erste Idee dazu ist: β(P) = W gdw. P ∈
X. P soll eine Formel aus X sein. Q → P enthält P aber nur als Teilformel. Die
Konstruktion gibt also noch nicht alles wieder und muß verbessert werden. Dazu
bildet man ein X* aus X vereinigt mit {P; P Atom, X |- P}. β(P) = W gdw. P ∈
X*.  Jetzt sind alle Formeln und alles Ableitbare wahr. X ist erfüllbar. Die S e m a n t i k
stimmt mit ℜ  bezüglich der Widerlegung überein. Der genaue Beweis v e r w e n d e t
nur die positive Schnittregel und steht in Siefkes (1990: 61).

3 .2 .6  L i t e r a t u r
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3 .3  Termsubsumtionssysteme und ihre Vorläufer

Im letzten Kapitel haben wir gesehen, wie man Logik zum Problemlösen b e n u t z e n
kann. In diesem Kapitel will ich zeigen, wie in der KI Logik benutzt wird, um e i -
nen Formalismus zu fundieren. Der Beschreibungsansatz der KI beschreibt e i n
Phänomen in einem Formalismus, der seinerseits Eigenschaften hat. Logik w i r d
oft deshalb als Beschreibungssprache gewählt, weil wir einige ihrer E i g e n s c h a f -
ten kennen und auf Jahrhunderte der Forschung zugreifen können. 14 Dabei i s t
aber die Logik für den Zweck der Problembeschreibung und für die I n t e r a k t i o n
mit dem Benutzer eines Systems nicht so gut geeignet. Man kann dann einen a n -
deren Formalismus konstruieren, den man wiederum in Logik beschreibt. Damit
hat der Formalismus nicht nur eine Interpretation in Form eines Programms, das
Ausdrücke des Formalismus verarbeitet, sondern auch eine Interpretation, die a u f
logische Formeln abbildet. Diese logische Fundierung macht das Verständnis e i n e s
Systems unabhängig vom Kennen des Programmes. Damit ermöglicht es eine b e s -
sere Kommunikation unter den WissenschaftlerInnen. Auch können E i g e n s c h a f -
ten des Programms eingeteilt werden in unerwünschte (von der Logik nicht v o r -
hergesagte) und erwünschte, was den SystementwicklerInnen hilft. Natürlich h a t
dies auch einen Nachteil: die Prädikatenlogik reicht nicht aus, um alles auszu -
drücken, was wir ausdrücken möchten! Weiterentwicklungen der Logik sind d a n n
nötig. Bis dahin kann man in begründeten Fällen etwas operationalisieren, das
noch nicht logisch fundiert ist.

Im folgenden werde ich zunächst den Hintergrund der Entwicklung von KL-
ONE angeben: semantische Netze und Frames. KL-One-artige Formalismen h e i ß e n
Termsubsumtions-Formalismen. Diese werde ich mithilfe der Logik b e s c h r e i b e n .
Das Ganze ist ein Lehrstück der KI und zeigt, wie aus einer intuitiven A n s c h a u u n g
schließlich ein logisch fundierter Formalismus wird, der für den Benutzer a b e r
immer noch die Anschaulichkeit besitzt. Das Lehrstück ist genau dokumentiert i n
Brachman & Levesque´s Sammelband (1985).

3 .3 .1  Der Hintergrund - semantische Netze

Semantische Netze wurden psychologisch motiviert eingeführt. Die A u s g a n g s b e -
obachtung war, daß Menschen bei Versprechern nicht beliebige Wörter verwech-
seln. Dies wurde nicht mehr als Freudsche Verdrängung gesehen, sondern i n f o r -
mationstheoretisch aufgefaßt: es werden solche Wörter verwechselt, deren s e -
mantische Repräsentation sich nur in wenigen bits unterscheidet. Wie soll also so
eine semantische Repräsentation aussehen? Man nehme Begriffe (die s e m a n -
tische Repräsentation von Wörtern) als Knoten und Beziehungen zwischen i h n e n
als Kanten. Der Zugriff auf einen Begriff ist ein Pfad durch einen solchen Be-
griffsgraphen. Bei nur einer Verzweigung sich zu irren, führt zu einem V e r s p r e -
cher. Das semantische Netz gibt also eine Speicherung von Begriffen an, die d i e
Ähnlichkeit von Begriffen durch die Kürze eines Pfades von einem Begriff z u m
anderen ausdrückt.15  Durch die Zusammenhänge der Knoten ergibt sich ihre Be-
deutung. Die Verarbeitung geschah zunächst mit der Methode der spreading ac t i -
vat ion : von zwei Knoten ausgehend werden alle von ihnen abgehenden Ze ige r
aktiviert. Diese aktivieren dann die Knoten, auf die sie zeigen. Von diesen K n o t e n

                                                
14 Eine andere Form der Beschreibung wählt als formale Basis, über die bereits viel bekannt ist: neuronale Netze werden
mit Differentialgleichungen beschrieben.
15 Die Doktorarbeit von Ross Quillian 1966 hieß "Semantic Memory". Sie führte semantische Netze ein. Die
Kurzfassung kam 1967 in Behavioral Science heraus und ist im Sammelband von Brachman und Levesque nach-
gedruckt.



ausgehende Zeiger werden wiederum aktiviert. Dies wird solange gemacht, b i s
man eine Verbindung zwischen den beiden Ausgangsknoten gefunden hat. Diese
Verbindung ist dann ein Knoten, der von beiden Ausgangsknoten aus a k t i v i e r t
wurde. Die jeweiligen Pfade werden ausgegeben und sind ein Vergleich z w i s c h e n
zwei Begriffen. Allerdings ist diese ungerichtete Aktivierung für praktische A n -
wendungen nicht geeignet und erlaubt nicht, bestimmte Schlußfolgerungen a u s -
z u d r ü c k e n .

In der Folge wurden dann semantische Netze verbessert:

• die Knoten werden in einer Hierarchie angeordnet, so daß eine besondere
Kante mit dem Namen isa oder ako (für "a kind of") vom Unter- z u m
Oberbegriff zeigt;

• entlang der isa -Kanten werden alle Eigenschaften (alle anderen K a n t e n )
des Oberbegriffs an seine Unterbegriffe vererbt;

• Anfragen an ein semantisches Netz werden mithilfe des partiellen A b -
gleichs beantwortet.

Eine Anfrage an ein Netz wird als Teilnetz konstruiert, das mit dem Netz a b g e -
glichen wird. Dabei erhalten alle Variablen die Werte, die sie zu einem e r f o l g r e i -
chen Abgleich brauchen. Nehmen wir z.B. das folgende semantische Netz:

Vogel

isa

Rotkehl
chen

isa

Clyde

Besitz

isa

BesitzR

Nest

isa

NestR
besitzt_wer besitzt_was

An dieses Netz können jetzt etwa folgende Anfragen gestellt werden:

1 ) Was besitzt Clyde?                                                          etwa g e s c h r i e b e n :                   
besitzt_wer (clyde , besitzt_was (X, Y))

2 ) Besitzen alle Vögel ein Nest?                                       etwa geschrieben: ∀ X |
isa (X, vogel) & besitzt_wer (X, besitzt_was (Y, Z)) & isa(Z, nest)

3) Gibt es einen Vogel, der ein Nest besitzt?                     etwa geschrieben: ∃  X |
isa (X, vogel) & besitzt_wer (X, besitzt_was (Y, Z)) & isa(Z, nest)

Zu jeder Anfrage muß jetzt für den Abgleich ein partielles Netz k o n s t r u i e r t
werden. Das sind dann etwa die folgenden:



ad 1)
Clyde

Besitz

isa

Besitz? ?

besitzt_wer besitzt_was

Zur Beantwortung muß der Abgleich mit dem Netz die Vererbung b e r ü c k -
sichtigen. Dabei wird dann X an besitzR  gebunden und Y  an nestR .  Die Antwort i s t
dann etwa: Clyde besitzt ein NestR oder besitzt_wer (clyde, besitzt_was
(besitzR, nestR)). Der Abgleich berücksichtigt also die Hierarchie und die V e r -
e r b u n g .

Die Berücksichtigung von Schlußfolgerungen beim Abgleich wird n o c h
deutlicher bei der Anfrage 2).

ad 2) 

Vogel

isa

alle X

Besitz

isa

Besitz?

Nest

isa

Nest?
besitzt_wer besitzt_was

Hier muß nicht nur die isa -Hierarchie für den Abgleich verwendet w e r d e n ,
um dann X einmal an Rotkehlchen und dann Y an besitzR und Z an nestR zu b i n -
den, sondern dies muß für alle Unterbegriffe von Vogel getan werden. Der A b -
gleichsprozeß muß also ein Verfahren enthalten, das

∀  X |  isa (X,vogel)

behandelt. In diesem Falle wäre die Antwort: ja.

Für die dritte Anfrage wird ein ähnliches Teilnetz konstruiert, nur daß d i e
Variable X diesmal nicht all- sondern existenzquantifiziert ist. Die Antwort i s t
dann: ja, Rotkehlchen. Der Abgleichsprozeß muß die verschiedenen Q u a n t o r e n
von Variablen behandeln und Schlußfolgerungen ziehen können, weil das s e -
mantische Netz mit seiner speziellen Kante isa Regeln ausdrückt. Dadurch i s t
nicht alles direkt ablesbar, was das semantische Netz ausdrückt, sondern m u ß
durch Schlußfolgerung explizit gemacht werden. Der Abgleich kann also e i n
Theorembeweiser sein.

An einer Darstellung von Begriffen und ihren Zusammenhängen sind n a -
türlich auch die Linguisten interessiert. Wenn man die Wortsemantik im Zusam-
menhang ausdrücken kann und vielleicht auch eine Satzsemantik daraus k o n -
struieren kann, kann man endlich natür l ichsprachl ichen Sätzen eine ope ra t i o -
nale Repräsentation zuordnen. Man begann also, die Semantik von Wörtern a l s
semantisches Netz darzustellen, wobei die Knoten Begriffe und die Kanten Bezie-
hungen zwischen Begriffen darstellten.

Der Gedanke einer "Normalform", eines festen Repertoires von K a n t e n -
namen, liegt dann nahe. Denn wenn man einfach an die Kante das n a t ü r l i c h -
sprachliche Wort schreibt, hat man nicht viel gewonnen. Es wurde viel über s e -
mantische Primitive geschrieben. Das sollten diejenigen Kanten sein, mit d e n e n
man alle Beziehungen zwischen Begriffen konstruieren kann. Das erste P r i m i t i v
war isa. Schank (1973) führte mit seinen conceptual dependency n e t w o r k s  s e -
mantische Primitive für Handlungen ein, aus denen sich Beschreibungen a l l e r



Handlungen zusammensetzen lassen sollten. So z.B. mtrans für "mental t r a n s f e r "
als geistiger Austausch und ptrans  für "physical transfer" als Austausch von D in -
gen (Kaufen, Verkaufen, Schenken, Geben, Nehmen, ...) oder direkte p h y s i s c h e
Einwirkung auf etwas oder jemanden.  Ein typisches Beispiel von Schank w a r
"John hurts Mary." das er dann folgendermaßen repräsentierte:

John    

Mary

DO
ptrans

Health = X-3

Health = X

Dabei steht der dicke Pfeil für ptrans, die Gesundheit wird auf einer 10-
Punkte-Skala angegeben. Den Pfeilzielen können außerdem Rollennamen m i t g e -
geben werden wie etwa Akteur (bei John),  Leidtragender/Nutznießer (bei Mary),
Gegenstand (bei Health), Handlung (bei DO). Bestimmte Kasus oder P r ä p o s i t i o n e n
im Satz werden dann diesen Rollen zugeordnet.

Das Problem bei diesen Ansätzen, semantische Netze und conceptual d e p e n -
dency ne tworks ,  ist, daß sehr unterschiedliche Dinge als Kanten a u f t r e t e n .16 So
wurde etwa nicht zwischen Ober-Unterbegriffsrelation und B e g r i f f -
Instanzrelation getrennt: isa  verband sowohl das R o t k e h l c h e n  mit dem Vogel  w i e
auch das bestimmte Rotkehlchen Clyde mit R o t k e h l c h e n  . Auch der U n t e r s c h i e d
zwischen ptrans  und mtrans  und isa  war zunächst nur an diesen Namen zu e r k e n -
nen, für die es dann jeweils eine eigene Prozedur geben mußte, die die e n t s p r e -
chende Kante verarbeitet. Diese Prozeduren waren nicht einfach m i t e i n a n d e r
vergleichbar. Deshalb kritisierte Hayes (1977) dieses Vorgehen als "pretend i t ' s
english" und Drew McDermott (1978) schlug den "G e n s y m - T e s t " vor: damit m a n
nicht durch eine natürl ichsprachliche Bezeichnung irregeleitet wird und m e h r
vermutet als durch die Prozedur realisiert wird, ersetze man alle Bezeichner d u r c h
automatisch     g e n    erierte     S y m     bole .

Ebenso unklar wie die Kanten waren die K n o t e n .17 Sollen generische B e g r i f -
fe ausgedrückt werden ("das Rotkehlchen als solches") oder alle Mitglieder des
Begriffs durch einen Knoten repräsentiert werden (extensionale B e g r i f f s r e p r ä -
sentation)?  Ist ein Unterbegriff dann eine echte Teilmenge des Oberbegriffs? Sol-
che Festlegungen konnten obendrein nur schwer diskutiert werden, weil die A u -
toren verschiedener Repräsentationssysteme über ihre Arbeiten in wilder Mi -
schung von programmiersprachl ichen,  anwendungsspezifischen, logischen u n d
kognitiven Ausdrücken berichteten.

3 .3 .2  F r a m e s

Die Idee bei einem F r a m e  war, alles Wissen, das zu einem bestimmten Objekt o d e r
einer bestimmten Situation der Welt gehört, zusammenzufassen. So sollte ein Be-
griff wie Kindergeburtstag nicht einfach als Unterbegriff von Geburtstagsfeier d e f i -

                                                
16 Der Aufsatz von William Woods "What's in a link?" erschien 1975 und ist auch im angeführten Sammelband
nachgedruckt.
17 "What's in a Concept?" fragte Ron Brachman und schrieb über den epistemologischen Status von semanti-
schen Netzen (ebenfalls nachgedruckt im Sammelband).



nier t  werden, sondern auch die typischen Ereignisse wie Topfschlagen oder Reise
nach Jerusalem, die typische Dekoration wie Luftballons, die typische K le idung
und das übliche Essen (Süßigkeiten, Kuchen mit Kerzen) sowie die Geschenke d a r -
gestellt werden. Dabei sind diese nicht wirklich zwingend. Ein Kind kann in a b g e -
rissener Jeans und ohne Geschenk auf einen Geburtstag gehen, auf dem es Ka r to f -
felsalat mit Würstchen gibt und Videos geguckt werden. Dies Ereignis wird aber als
abweichend wahrgenommen. Egal, ob definierende Eigenschaft oder t y p i s c h e s
Ereignis, das Zusammengehörige sollte auch zusammengefaßt repräsentiert w e r -
den. Ein Beispiel für den Kindergeburtstag (nach Minsky 1981):

birthday_party:

dress: sunday best

present: must please host; must be bought and gift-wrapped.

child's birthday_party:

isa: birthday_party

games: hide and seek, pin tail on donkey

decor: balloons, favors, crepe_paper

party_meal: cake, ice_cream, soda, hot_dogs

cake: candles, blow_out, wish, sing birthday song

ice_cream: standard three_flavor

Pauls's birthday_party:

instance_of: child's birthday_party

dress: Paul's blue suit

present: kite_315

ice_cream: vanilla_700

Hier ist also die Unterbegriffsrelation isa  von der Beziehung zwischen e i n e m
Begriff und seiner Instanz (instance_of ) getrennt. Die Instanz soll nur solche Ei-
genschaften haben, die Spezialisierungen der Eigenschaften des Begriffs da r s t e l -
len. Dabei kann zwischen definierenden und attributiven (auch: k o n t i n g e n t e n )
Eigenschaften unterschieden werden. Die attributiven Eigenschaften m ü s s e n
dann nicht unbedingt Spezialisierungen der Eigenschaften des Begriffs s e i n .
Minskys Beispiel hat überhaupt nur attributive Eigenschaften, denn die Def in i t i -
on des Geburtstags liegt ja in dem Geburtsdatum eines Menschen.

Ein Frame hat bestimmte Eigenschaften, die für ihn relevant sind. Sie w e r d e n
slots genannt. In einem slot steht ein Verweis auf einen anderen Frame ( n i c h t -
terminaler slot) oder direkt eine Zeichenkette (terminaler slot). Für die E i n t r ä g e
in einen slot gibt es E i n s c h r ä n k u n g e n , die bei nicht-terminalen slots d a d u r c h
gegeben sind, daß der Eintrag eine Instanz eines Frames sein muß; bei t e r m i n a l e n
s lots  ist die Einschränkung einfach durch eine Bereichsangabe gegeben  (z.B. in-
teger [10, 50] für den Wert des Geburtstagsgeschenkes). Bei attributiven slots



schränkt nur der Wertebereich die möglichen Einträge ein, auch wenn es sich u m
einen nicht-terminalen slot handelt. Man kann den Verweis auf den e n t -
sprechenden Frame als slot-Füller auch als Voreinstellung (default) auffassen, d i e
dann durch einen Wert überschrieben werden kann.

Wie bei den Kanten gab es auch bei den slots  die Frage nach einem festen R e -
pertoire von slots , also nach semantischen Primitiven. Und auch hier war w i e d e r
die Frage nicht zu beantworten, was denn eigentlich dress, present o d e r
ice_cream  bedeuten, wenn wir nicht vorgeben, daß das System englisch versteht.

An einen slot kann eine spezielle Verarbeitungsprozedur "angeheftet" w e r -
den (procedural attachment oder demon). Diese Prozeduren werden von A n f r a g e n
an oder von neuen Eintragen in ein System von Frames ausgelöst. Sie heißen d a n n
i f -needed  respektive i f-added  Prozeduren. Die i f -needed  Prozeduren b e r e c h n e n
der Wert des slots bei einer Anfrage für das spezielle, angefragte Objekt. M a n
spricht auch von question-time i n f e r e n c e s . Zum Beispiel kann man den U m f a n g
eines Kreises aus seinem Radius berechnen.

Kreis:

Radius: real

Umfang: if_needed: 2 π Radius

Es ist also eine Rückwärtsverkettung, mit der man den Wert eines slots a b l e i -
te t .

Die i f -added  Prozeduren berechnen den speziellen slot-Wert für ein neu e i n -
getragenes Objekt. Man spricht auch von read-time inferences. Zum Beispiel k a n n
man für einen speziellen Kreis beim Eintragen des Wertes für den slot Radius s o -
fort den Umfang berechnen und das Ergebnis bei Umfang  eintragen.

Kreis:

Radius: if_added: Umfang= 2 π Radius

Umfang: real

Es ist also eine Vorwärtsverkettung, mit der man den Wert eines slots ab le i te t ,
der sich aus einem anderen Wert ergibt.

Die Prozeduren durchbrechen den expliziten Charakter der Rep rä sen t a t i on .
Sie sind selbst nicht mehr durch Einträge veränderbar, sondern nur mithilfe e i -
nes Texteditors, und liegen nicht mehr so offen zutage wie die W e r t r e s t r i k t i o n e n
durch Verweis auf einen anderen Frame oder durch eine Bereichsangabe.

Die Verarbeitung, Anfragen und Einträge, geschieht mithilfe von Zugr i f f s -
prozeduren auf Frames, ihre slots und deren Werte. Im einfachsten Falle w e r d e n
die Namen von Frames und slots sowie die Werte terminaler slots abgeglichen. I m
allgemeineren Fall kann eine Struktur in der Anfrage mit Namen im F r a m e -
System abgeglichen werden, wobei die Vererbungshierarchie und die i f_needed -
Prozeduren ausgewertet werden. So kann gefragt werden, bei welchen Ge legen-
heiten Sonntags-Kleidung getragen wird. Oder auch, ob für K i n d e r g e b u r t s t a g e
Geschenke gekauft werden. Oder auch, welchen Umfang ein Kreis mit be s t immtem
Radius hat.

Frame?, dress: sunday best

child's_birthday_party, present: must be bought.



kreis_13, umfang: ?

Man kann einen Frame auch logisch beschreiben und dann e n t s p r e c h e n d
auch Anfragen und Einträge als Beweis auffassen. Für den Kindergeburtstag e r g i b t
s i c h :

∀  X | frame(child's_birthday_party, X) --> frame(birthday_party, X)

∀  X | frame(child's_birthday_party, X) --> ∃  Y1 | dress(X,Y1) & 
sunday_best(Y1)

∀ X | frame(child's_birthday_party, X) --> ∃  Y2 | games(X,Y2) & 
(hide_and_seek(Y2) v pin_tail_on_donkey(Y2))

...

Entsprechend können dann die Anfragen formuliert werden:

∃  Z | frame(Z,X), dress(X,Y1), sunday_best(Y1)

∀  X | frame(child's_birthday_party, X), present(X,must_be_bought)

frame(kreis_13, X), radius(X,12), umfang(X,Value)

Bei dem speziellen kre i s_13 ist es unsinnig, von allen Instanzen des Frames z u
sprechen, weil er bereits eine Instanz ist. Daher ist bei der letzten Anfrage k e i n
Quantor angegeben.

Die logische Beschreibung hat child's_birthday_party zu einem A r g u m e n t
von frame gemacht. Damit können Anfragen nach Frames ganz allgemein o p e r a -
tionalisiert werden. Es bleiben aber noch dress, sunday_best und present als s p e -
zielle Prädikate, deren Status unklar ist.

Bestimmte Prozeduren werten Anfragen und Einträge aus.

Die Prozeduraufrufe (in Prolog: Klauselköpfe) wären für Anfragen etwa

ask_frames(Formelliste),

 ask_truth (Formelliste),

 ask_value(Formelliste)

und die konkreten Aufrufe für die Anfragen von oben wären:

ask_frames([frame(Name, X), dress(X,Y1), sunday_best(Y1)])

ask_truth([frame(child's_birthday_party, X), present(X, must_be_bought)])

ask_value([frame(kreis_13, X), radius(X, 12), umfang(X,Value)]).

Für Einträge gäbe es beispielsweise die Prozeduren tell_frame für den E i n -
trag eines kompletten Frames, tell_slot für den Eintrag eines zusätzlichen slot ,
tell_value_restriction  für den Eintrag einer Einschränkung, tell_value  für d e n
Eintrag eines neuen Wertes für einen slot .

Die unterschiedlichen Frame-Systeme unterscheiden sich in ihren Fest le-
gungen. Entsprechend sind die Zugriffsprozeduren, d.h. die Verarbeitung u n t e r -
schiedlich. Ein Problem der Frames war ferner, daß mit den angehefteten P roze -
duren if_needed und i f_added  der explizite Charakter der Repräsentation verlassen



wurde und die Ebene der Programmierung direkt in den Formalismus e i n b e z o g e n
wurde. Wie bei den semantischen Netzen waren die Festlegungen zunächst n i c h t
genau definiert: was ist ein Frame, was ist ein slot, wie werden die möglichen E i n -
träge eingeschränkt, wie verhalten sich definierende und attributive E i g e n -
s c h a f t e n ?

3 .3 .3  Zur Beschreibung von semantischen Netzen und Frames

Im Laufe der Diskussionen und Weiterentwicklungen von semantischen Ne tzen
und Frames wurde deutlich, daß sie eigentlich nur notationelle Varianten v o n e i n -
ander sind. Man erkennt das, wenn man für beide die Bedeutung ihrer K o n s t r u k t e
(slot , Kante, Frame, Knoten) logisch formuliert. Dann sind die Festlegungen ( e t w a
Wertebeschränkungen bei slot-Werten, Wertebeschränkungen bei U r s p r u n g s -
und Zielknoten einer Kante) implementat ionsunabhängig beschrieben und d i s -
kutierbar. Das eben fehlte ja zunächst!

Es wird dann auch klar, was den unklaren Status der Einheiten des R e p r ä -
sentrationsformalismus' (Kanten, slots) ausmachte: durcheinander gingen d i e
verschiedenen Ebenen, auf denen man über dieselbe Sache sprechen kann:

die I m p l e m e n t a t i o n s e b e n e , auf der eine Kante ein Name u n d
ein(LISP)Zeiger, ein Knoten eine Liste und das Abgleichsprogramm e i n e
Sammlung von Prozeduren für verschiedene Kantentypen ist,

die logische E b e n e , auf der die Kanten Prädikate (oder Operatoren?) u n d
die Knoten Terme (oder Mengen von Konstanten?) sein können,

die begriff l iche Ebene , auf der Wort- oder Satzbedeutungen gemeint s ind ,
wobei Kanten verschiedene Rollenbeziehungen und Knoten Begriffe dar-
s t e l l en ,

die sprachl iche  E b e n e , auf der die Kanten zum Beispiel Verben und d i e
Knoten Substantive darstellen, Kantentypen vielleicht (Tiefen-)kasus z u -
geordnet sind.

Diese Ebenen können aufeinander aufbauen, wenn sie jeweils für sich w o h l
definiert sind. Die Vermittlung zwischen logischer Ebene und begrifflicher E b e n e
war zunächst nur durch die semantischen Primitive bzw. ihre Prozeduren d e f i -
niert. Um dies klarer zu fassen, führte Brachman 1979 die epistemische  E b e n e
ein (der Artikel ist ebenfalls im Sammelband von Brachman und Levesque n a c h -
gedruckt). Diese Ebene entspricht der Wissensebene von Newell. Auf dieser E b e n e
wird das begrenzte Repertoire von epistemischen Primitiven definiert. Mit d e n
epistemischen Primitiven lassen sich dann Begriffe und ihre Beziehungen d e f i -
nieren. Sie beziehen sich auf das     D e f i n i e r e n    , nicht auf das Definierte. Ta t säch l i ch
war isa  eigentlich ein epistemisches Primitiv: gibt man diesem eine klare Bedeu-
tung, nach der es von verschiedenen Abgleichsverfahren, realisiert in v e r s c h i e -
denen Programmiersprachen,  immer gleich interpretiert wird, so kann es s i n n -
voll und vergleichbar auf die Einheiten der begrifflichen Ebene angewandt w e r -
den. Da das Definieren selbst weniger vielfältig ist als all das, was man alles d e f i -
nieren mag, kann man hoffen, mit einem überschaubaren Kanon von ep i s t emi -
schen Primitiven auszukommen. Zum Beispiel kann man mit isa und role a u s -
kommen, wobei isa die Oberbegriff-Unterbegriffsrelat ion und role die d e f i n i e -
renden Eigenschaften darstellt. Eine Begriffsdefinition ist dann immer eine H i e r -
archie von Begriffen, wobei die gemeinsamen Eigenschaften aller U n t e r b e g r i f f e
beim Oberbegriff angegeben werden und die unterscheidenden Eigenschaften b e i
den jeweiligen Unterbegriffen. Dies ist das Descartesche Modell der Def ini t ion:
erst gibt man den allgemeinen Begriff, dann die unterscheidenden Eigenschaften.



Ein Beispiel zeigt die Ebenen und den Unterschied der epistemischen E b e n e
zur begrifflichen und logischen. Wir übernehmen die Aussagen aus dem R o t k e h l -
chen-Nester-Beispiel. Von derselben Sache werden jeweils u n t e r s c h i e d l i c h e
Aspekte betrachtet:

Auf der epis temischen  E b e n e  sprechen wir von Oberbegr i f f -
Unterbegriffsrelation isa, von definierenden Eigenschaften und Vererbung von E i g e n -
schaften. Zum Beispiel: Vogel ist ein Oberbegriff  von Rotkehlchen, etwas zu besitzen
ist eine Eigenschaft von Rotkehlchen. Wir legen fest, was mit den e p i s t e m i s c h e n
Primitiven gemeint ist. Zum Beispiel: Ein Begriff ist die Entscheidung, welche I n -
stanzen zu seiner Extension gehören. Die isa-Relation zwischen Begriffen d r ü c k t
aus: Ein Oberbegriff deckt mindestens alle Instanzen der Unterbegriffe ab. role
drückt definierende Eigenschaften aus, indem es zwei Begriffe verbindet. Dabei
gilt: alle Instanzen des Begriffs müssen eine Eigenschaft haben, die eine I n s t a n z
des anderen Begriffs ist.

Auf der begrifflichen Ebene  geht es um die Begriffe des Sachbereichs, d i e
wir repräsentieren. In unserem Beispiel also um Rotkehlchen, Nester, Besi tzverhäl tnis
und Clyde. Zum Beispiel: Vogel  ist ein Oberbegriff von Rotkehlchen, besitzt_was ist eine
Eigenschaft von Rotkehlchen.

Auf der logischen Ebene  sprechen wir von Prädikaten, Termen, Quantoren u n d
Variablen. Wir können bei Prolog für die Implementierung oft die Ausdrücke d e r
logischen Ebene direkt auf die Implementierungsebene übertragen - aber n i c h t
immer!    Zum Beispiel: ∀  X | isa(X, rotkehlchen) --> isa(X,vogel). Wir b e -
schreiben die Festlegungen der epistemischen Ebene logisch. Zum Beispiel f a s s e n
wir role  als eine Funktion auf, die allen Instanzen eines Begriffs eine Instanz e i -
nes anderen Begriffs zuordnet.

Der Einfachheit halber können wir Prolog als Interpreter verwenden. Das i s t
dann die I m p l e m e n t a t i o n s e b e n e . Auf dieser Ebene reden wir von cuts und A u f -
rufen und eingebauten Prädikaten. Wir verwalten files. Daß wir hier auch von Klauseln
sprechen, liegt daran, daß Prolog zum Ziel hatte, die logische Ebene direkt zu o p e -
rationalisieren. Wir können aber auch LISP oder C oder Pascal verwenden u n d
sprechen dann von Lis t en  und Funktionen. Wir operationalisieren die F e s t l e g u n g e n
der epistemischen Ebene, indem wir für isa und role Klauseln schreiben, d i e
Netzanfragen und -einträge entsprechend auswerten. Die Klauselköpfe sind z u m
Beispiel: ask(isa(X,Y)), tell(role(Name, Range, Value)).

Wir könnten etwa folgende Einträge in einer Prolog-Basis haben, die das Vo-
gel-Nest-Netz ausdrücken:

isa(rotkehlchen, bird). isa(nestR, nest). isa(besitzR, besitz).

role(besitzt_wer, rotkehlchen, besitzR). role(besitzt_was,besitzR,nestR).

Die Instanz clyde  wäre dann

instance(clyde, rotkehlchen). role(besitzt_wer, clyde, besitzC).

Man kann dann folgern

role(besitzt_was, besitzC, instance(X,nestR)).

Das Beispiel zeigt:

• Wichtig ist, daß wir nicht geschrieben haben besitzt_wer(rotkehlchen,
besitzR), weil wir sonst für jede Kante eine eigene Klausel zur V e r a r b e i -
tung schreiben müßten. So brauchen wir nur jeweils eine für isa  und role



zu schreiben. Die Verarbeitungsprozeduren beziehen sich jetzt auf ep i s t e -
mische Primitive.

• Wichtig sind nicht die jeweiligen Festlegungen, die in dem Beispiel a n g e -
geben sind, sondern daß man sie explizit und i m p l e m e n t a t i o n s u n a b h ä n g i g
treffen kann. Dabei verschwinden Entitäten der I m p l e m e n t a t i o n s e b e n e
aus den übergeordneten Ebenen. Der Bruch, der bei den i f_needed-  u n d
i f_added-Prozeduren auftrat, geschieht nicht mehr. Allerdings sind dami t
für Einzelfälle mögliche Tricks, die man in einem Programm u n t e r b r i n -
gen, aber nicht für alle Fälle in ihrer Bedeutung definieren kann, n i c h t
mehr vorhanden. Die Transparenz kann zulasten einer punktuellen S y -
stemleistung gehen.

• Alles, was wir in Logik nicht ausdrücken können, geht nicht. So haben w i r
keine attributiven Werte (Relationen zwischen Knoten) mehr. Erst e i n e
andere als die Prädikatenlogik erster Stufe kann vielleicht auch V o r e i n -
stellungen (defaults) ausdrücken, so daß wir sie dann wieder in das Sys tem
hineinnehmen können.

Wenn die begriffliche Ebene die Definition von Begriffen darstellt, kann s i e
nicht die Beziehung zwischen Begriff und Instanz darstellen. Die Aussagen ü b e r
Objekte (Instanzen, Individuen) der Welt müssen getrennt werden von A u s s a g e n
über Klassen (Begriffe). Der Teil eines semantischen Netzes oder Frame-Systems,
der Begriffe definiert, heißt bei Brachman terminologisch oder auch T-Box . Die
Verarbeitung innerhalb der T-Box ordnet einen definierten Begriff in die Be-
griffsstruktur ein. Der Teil, der Individuen speichert, heißt assertional oder a u c h
A - B o x . Die Verarbeitung innerhalb der A-Box klassifiziert (bei Te rmsubsumt ions -
Formalismen wird das oft "realisiert" genannt) ein Grundbeispiel, eine I n s t a n z .
Ein System, das beide Teile und ihre Verbindung verwaltet, heißt hybrides System.

3 .3 .4  T e r m s u b s u m t i o n s - F o r m a l i s m e n

Terminologische Wissensrepräsentationsformalismen (also: eine T-Box) g r ü n d e n
sich auf die Teilmengenbeziehungen ihrer Begriffe. Ein Oberbegriff s u b s u m i e r t
einen Unterbegriff. Alle Instanzen des Unterbegriffs sind auch Instanzen des
Oberbegriffs. Unsere Termini sind Begr i f f e  und R o l l e n . Die Subsumtion von Be-
griffen und Rollen ist der Kern des Repräsentationsformalismus. Dabei gibt es i n
vielen solchen Formalismen noch eine zusätzliche Konstruktion, die so d r i n g e n d
gebraucht wird, daß sie trotz ihrer Komplexität einbezogen wird: die A n z a h l r e -
striktion oder Kardinalität. Eine Rolle bekommt dann neben dem Namen, d e m
Ursprungsbereich und dem Wertebereich noch eine Kardinalität als Angabe. So
können wir ausdrücken, daß jedes Rotkehlchen genau ein Nest besitzt, j e d e r
Mensch genau eine Nase, zwei Augen, zwei Arme, zehn Finger. Wir können a u c h
Intervalle als Anzahlrestriktion angeben: ein Fahrrad hat mindestens eins u n d
höchstens vier Räder.

Wir können jetzt die Syntax und Semantik genau definieren und e r h a l t e n
damit ein wohldefiniertes System, dessen Eigenschaften wir untersuchen können.

3 .3 .4 .1  Syntax  e ines  Termsubsumtions-Formal i smus'

Es werden Begriffe und Rollen jeweils nur einmal eingeführt. Ein Begriff wird a l s
primitiver Begriff eingeführt, indem man nur den Oberbegriff dazu angibt, a b e r
keine weitere Rolle. Die Schreibweise ist: BegriffNeu ≤ Oberbegriff. Ein B e g r i f f
wird als definierter Begriff eingeführt, indem man schreibt : BegriffNeu .=.
<Begriffsdefinition>, wobei die Begriffsdefinition durch die Angabe des Ober-
begriffs und der definierenden Rollen geschieht. Alle Rollen des Oberbegr i f f s



werden an den Unterbegriff vererbt. Man kann auch Rollen einführen, d e n n
auch Rollen befinden sich jetzt in einer Hierarchie. Sie können als p r i m i t i v e
Rollen eingeführt werden: RolleNeu ≤ Oberrolle, oder als definierte Rolle d u r c h
Angabe des Wertebereichs und der Anzahlrestriktion: RolleNeu .=. Oberrolle.

Man kann neue Begriffe und Rollen bilden. Begriffsbildende Opera t ionen
s ind :

and  für die Begriffskonjunktion. So kann aus den Begriffen Frau und Studen-
tIn  der Begriff Studentin  gebildet werden.

all  für die Werterestriktion. Das ist die Beschränkung des Wertebereichs, also
des Begriffs, auf den eine Rolle zeigen darf. So kann die Rolle besitzt_wer
nur mit etwas gefüllt werden, was ein Besitz ist.

atleast  und atmost  für die Anzahlrestriktion. So können wir ausdrücken, d a ß
ein Rotkehlchen atleast  1, atmost  1 Besitz hat.

Wenn Begriffe vollständig definiert sind, ist an ihnen abzulesen, ob sie d i s -
junkt sind oder nicht. Bei primitiven Begriffen können wir die Angabe als R e -
striktion hinzufügen, daß sie disjunkt sein sollen.

Entsprechend könnten wir auch Rollen zusammensetzen. Einige Formalismen
tun das. Hier geht es aber darum, den Kern von Termsubsumt ions -Formal i smen
darzustellen, nicht die vielfältigen Varianten.

Die Syntaxdefinition für einen Termsubsumtions-Formalismus gibt Nebe l
(1990: 48) in Backus-Naur-Form an:

<terminology> ::= { <term-introduction> | <restriction>}*

<term-introduction> ::= <concept-introduction> | <role-introduction>

<concept-introduction> ::= <atomic-concept> .=. <concept> |

<atomic-concept> ≤ <concept> |

<atomic-concept> ≤ ANYTHING

<role-introduction> ::= <atomic-role> .=. <role> |

<atomic-role> ≤ <role> |

<atomic-role> ≤ ANYRELATION

<concept> ::= <atomic-concept> |

(and <concept>+) |

(all <role> <concept>) |

(atleast <number> <role>) |

(atmost <number> <role>)

<role> ::= <atomic-role> | (androle <role>+)

<restriction> ::= (disjoint <atomic-concept> <atomic-concept>)

<number>  ::= <non-negative integer>



<atomic-role>  ::= <identifier>

<atomic-concept>  ::= <identifier>

Dabei sind ANYTHING und ANYRELATION der allgemeinste Begriff bzw. die a l l -
gemeinste Rolle. So kann also ein neuer primitiver Begriff als Unterbegriff v o n
ANYTHING eingeführt werden. androle bildet den Schnitt mehrerer Rollen, womi t
jetzt auch Rollen definiert eingeführt werden.

Das Vogelbeispiel mit der Ergänzung, daß ein Rotkehlchen nur genau e i n
Nest besitzt, sieht in dieser Syntax so aus:

Vogel ≤ ANYTHING Besitz ≤ ANYTHING Nest ≤ ANYTHING

NestR ≤ Nest

besitzt_wer ≤ ANYRELATION besitzt_was ≤ ANYRELATION

BesitzR .=. (and Besitz (all besitzt_was NestR)

(atleast 1 besitzt_was) (atmost 1 besitzt_was))

Rotkehlchen .=. (and Vogel (all besitzt_wer BesitzR))

Die isa-Relation ist nicht als Rolle notiert, sondern ergibt sich bei P r i m i t i -
ven durch ihre Einführung und wird bei Definierten (wie hier BesitzR ) durch d i e
Angabe des Oberbegriffs angeben (erste Angabe im and-Teil). Die Vererbung v o n
Eigenschaften entlang der Begriffshierarchie ist damit weiterhin gegeben . Bei
diesem Ausschnitt werden die Rollen nicht näher definiert, sie müssen a b e r
"oberhalb" ihrer Verwendung eingeführt worden sein. Das besitzt_was z w i s c h e n
BesitzR und NestR ist natürlich spezieller als das zwischen Besitz und Nest, w e i l
die Begriffe jeweils Oberbegriffe sind. Die Aussage ist hier, daß ein R o t k e h l c h e n
ein Vogel ist, der etwas besitzt. So ist Rotkehlchen  hier     d e f i n i e r t   . Ein anderer Name
würde der Definition besser entsprechen, vielleicht Nestbrüter .

Vogel

Rotkehl
chen

Besitz

BesitzR

Nest

NestR

ANYTHING ANYRELATION

Da es innerhalb einer T-Box nur um die Definition von Begriffen geht, f e h l t
Clyde in dem Netz.

3 .3 .4 .2  Semant ik  e ines  Termsubsumtions-Formal i smus

Ganz wesentlich für den Fortschritt gegenüber ursprünglichen s e m a n t i s c h e n
Netzen und Frames war die logische Interpretation. Wir geben also jedem v e r w e n -
deten epistemischen Primitiv sowie allen Möglichkeiten, sie zusammenzuse tzen ,
eine wohldefinierte Bedeutung. Dann können wir Eigenschaften des Formal i smus
untersuchen und erkennen, welche unterschiedlich aussehenden Fo rma l i smen
eigentlich gleich sind, und welche nicht.          

Geben wir nun also die formale Semantik für eine T-Box so an, wie sie v o n
Bernhard Nebel (1990) für den Kern von Termsubsumtions-Formalismen a u s g e a r -
beitet wurde. Der Grundgedanke dieser Formalismen war ja, Begriffe zu s u b s u m i e -



ren, d.h. Mengen möglicher Instanzen in Teilmengenbeziehungen zu setzen. Die
Interpretation von Begriffen ist also der Verweis auf ihre möglichen I n s t a n z e n .
Da in der T-Box  keine konkreten Instanzen angegeben sind, muß man auf     n o       t -   
     w e n d i g e     Beziehungen     a l l e r     Instanzen verweisen. Wenn etwa Vogel ein Oberbe-
griff von Rotkehlchen (oder Nestbrüter) ist, so interpretieren wir das als: ∀  X
rotkehlchen(X) --> vogel(X). Für die formale Notation nehmen wir eine Extensi-
onsfunktion ext an, die Begriffe auf Mengen von Objekten (eben:Instanzen) a b -
bildet, und Rollen auf Teilmengen des kartesischen Produktes der Objekte (a l so
Objekt-Tupel)18.  Die Funktion ext interpretiert uns also die Ausdrücke u n s e r e r
Signatur, indem sie auf logische Strukturen abbildet. D sei die Menge von Objek-
ten, c sei ein Begriff, r sei eine Rolle, a sei ein atomarer Begriff oder eine a t o m a r e
Rolle, t irgendein Begriff oder irgendeine Rolle. Die Extensionsfunktion tut n u n
fo lgendes :

ext

für alle a ≤  t sei ext(t)  ⊇ ext(a)

für alle a .=. t sei ext(t) = ext(a)

ext( ANYTHING) = D

ext(ANYRELATION) = D × D

ext( (and c1 ... cn)) = ∩ ext(ci) wobei i von 1 bis n

ext( (all r c)) = {x ∈  D | ∀ y : (x,y) ∈  ext(r) --> y ∈  ext (c)}

ext( (atleast n r)) = { x ∈  D | card ( {y ∈  D | (x,y) ∈  ext (r)} ) ≥ n }

ext( (atmost n r)) = {x ∈  D | card ( {y ∈  D | (x,y) ∈  ext (r)} ) ≤ n }

ext( (androle r1 ... rn)) = ∩ ext(ri) wobei i von 1 bis n

für alle (disjoint c1 c2) sei ext(c1) ∩ ext(c2) = {}

Dabei liefert card die Kardinalität der Menge. Diese I n t e r p r e t a t i o n s -
vorschriften sind fast schon in Ordnung. Sie lassen allerdings noch zyklische De-
finitionen zu. Das sind Definitionen von Begriffen, die den Begriff selbst in s e i n e r
Definition direkt oder indirekt verwenden. Tatsächlich geschieht es leicht, daß ein
indirekter Zyklus vom Benutzer eingegeben wird: ein Nestbrüter hat einen Besitz,
der ein Nest ist und ein Nest ist der Brutort eines Nestbrüters. Die meisten T e r m -
subsumtions-Formalismen verbieten definitorische Zyklen19.

Wir können jetzt die T e r m s u b s u m t i o n  definieren, wobei wir auf die l o g i -
sche Struktur, die durch die Menge der Objekte D und die Extensionsfunktion ext
gegeben ist, verweisen. Wir machen Aussagen über alle logischen S t r u k t u r e n ,
weil wir ja notwendige Beziehungen zwischen allen möglichen Mengen von I n -
stanzen angeben.

t subsumiert t' in einer T-Box T , geschrieben t » t',  gdw.

für jede logische Struktur (D, ext) von T gilt ext( t ) ⊇  ext(t').

                                                
18 "Objekte" wird hier wie in der Logik als Elemente des universe of discourse verstanden.
19 Nebel (90) gibt allerdings auch für eingeschränkte Zyklen eine Semantik an, so daß sie dann verarbeitet werden
können; s. auch Baader (90).



Subsumtion ist eine transitive ( d.h. wenn t » t' und t' » t'' dann t » t'') und r e -
flexive (d.h. t » t) Beziehung, so daß man eine partielle Ordnung aller Begriffe u n d
Rollen einer T-Box mithilfe der Äquivalenzrelation von Begriffen sowie R o l l e n
hinbekommt. Die Äquivalenzrelation für eine T-Box T heißt, daß für zwei B e g r i f f e
oder zwei Rollen t und t' gilt:

t äquivalent t' gdw. in jeder logischen Struktur (D, ext) von T g i l t
ext(t) = ext(t').

Schließlich können wir noch die Inkohärenz eines Begriffs t in einer T-Box T
fes ts te l len :

t ist inkohärent in T, gdw. für jede logische Struktur gilt: ext(t) = {}

Inkohärente Begriffe sind also in sich selbst widersprüchlich und nicht n u r
in einer speziellen Struktur falsch.

(and (atleast 1 r) (atmost 0 r))

ist ganz sicher inkohärent. Wir können NOTHING als speziellsten Term in d i e
T-Box einführen. NOTHING entspricht der leeren Menge. Mit den S c h n i t t m e n g e n
(and) und NOTHING bildet die T-Box einen Halbverband, bei dem wir immer das I n -
fimum bestimmen können.20  

Für die Einordnung von Begriffen in einer T-Box können wir alle e i n g e -
schachtelten Definitionen glätten, indem wir für jeden definierten Begriff s e i n e
Definition einsetzen, wo immer er vorkommt. Das klappt, wenn wir keine Z y k l e n
in den Definitionen haben. Die geglätteten Ausdrücke enthalten nur noch p r i m i -
tive Begriffe. Beim Glätten werden inkohärente Ausdrücke durch NOTHING e rse tz t .
Bei geglätteten Ausdrücken können wir dann feststellen, welcher Ausdruck v o n
welchem subsumiert wird. Ein Algorithmus, der Begriffe in eine T-Box e i n o r d n e t ,
heißt K l a s s i f i k a t i o n s a l g o r i t h m u s  (classifier). Schlußfolgerungen in der T-
Box sind stets Klassifikationen. Da alle Begriffe gleich bei ihrem Eintrag in die T-
Box klassifiziert (an die richtige Stelle im Begriffsnetz eingefügt) werden, k a n n
eine Anfrage nach der Klassifikation eines Begriffes durch einfaches T r a v e r s i e -
ren schnell erfolgen. Ein Begriff wird in eine T-Box eingefügt durch die f o l g e n d e
Prozedur :

c la s s i fy (c )

1) Die Begriffsdefinition wird in eine Form gebracht, die auf oberster Ebe-
ne einen and -Ausdruck hat, in den keine weiteren and-Ausdrücke e i n g e -
bettet sind. Jeder verwendete Begriff in dem Ausdruck wird durch s e i n e
Definition ersetzt.

2 ) In der Begriffsbeschreibung werden inkonsistente Ausdrücke d u r c h
NOTHING  ersetzt.

3 ) Wenn die Begriffsbeschreibung eine Werterestriktion ist (all r c), w i r d
ein anonymer Begriff erzeugt, der gerade durch diese W e r t e b e s c h r ä n -
kung definiert ist.

4 ) Die Definitionsbestandteile werden klassifiziert, d.h. classify wird r e -
kursiv angewandt.

                                                
20 Das heißt, für jede zwei Begriffe ist ihr größter gemeinsamer Unterbegriff angebbar: wenn sie keinen Schnitt
haben, ist es die leere Menge, NOTHING.



5 ) Die T-Box wird traversiert, um den Platz zu finden, an den der B e g r i f f
gehört: unter alle direkten Oberbegriffe und über alle direkten U n t e r -
begriffe. Wir suchen also die Begriffe super -c i, für die gilt: subsumes
(super-ci, c). Außerdem suchen wir die Begriffe sub-c i, für die gilt:
subsumes(c, sub-ci). Dabei verwenden wir die bereits aufgebaute Ord-
nung von Begriffen, müssen also nicht bei jedem Vergleich die R e g e l n
von subsumes  anwenden.

6 ) Der Begriff wird an dem in Schritt 5) bestimmten Platz eingefügt. Falls
dort bereits ein Begriff eingeordnet ist, die beiden Begriffe also ä q u i v a -
lent sind, so fallen sie zu einem Begriff zusammen.

Die Traversierung (Schritt 5) kann gleichzeitig von den Blättern nach o b e n
und von ANYTHING nach unten erfolgen. Der Kern des Klass i f ika t ionsa lgor i thmus '
ist die Prozedur subsumes , die für zwei beliebige Begriffe t und u  wahr oder falsch
liefert, je nachdem ob t u unmittelbar subsumiert, oder nicht21.

subsumes(t, u)

Wenn u = NOTHING dann liefere wahr.

Wenn t= (and  t1 ... tn)  oder t=(androle  t1 ... tn), dann liefere wahr , wenn für     a l l e     i
von 1 bis n subsumes(ti, u) wahr  liefert -- sonst liefere falsch .

Wenn t primitiv ist, dann

falls u primitiv ist, liefere wahr , wenn t=u -- sonst liefere falsch .

falls u = (and u1 ... un)  oder u=(androle t1 ... tn), liefere wahr, wenn es ein u i

gibt, so daß t = ui , 1≤  i ≤n -- sonst liefere falsch .

sonst liefere falsch .

Wenn t = (all  r
t
 c

t
), dann

falls u = (all r
u
 c

u
), liefere wahr, wenn sowohl subsumes (c

t
 c

u
) als a u c h

subsumes (r
u, rt ) wahr  sind -- sonst liefere falsch .

falls u = (atmost  0 r
u
), liefere wahr , wenn subsumes  (r

u, r
t ) gilt -- sonst l i e -

fere falsch.

falls u = (and u 1 ... u n), liefere wahr, wenn es ein u i gibt, so d a ß
subsumes (t, ui) für 1≤  i ≤n gilt -- sonst liefere falsch .

sonst liefere falsch .

Wenn t = (atleast  n
t
 r

t
), dann

falls u = (atleast n
u
 r

u
), liefere wahr, wenn sowohl subsumes ( r

t, r
u  ) a l s

auch n
t ≤  n u gilt -- sonst liefere falsch .

falls u = (and  u1 ... u n), liefere wahr, wenn es ein u i gibt, so daß gilt s u b s u -
mes (t, ui), 1≤  i ≤n -- sonst liefere falsch .

                                                
21 Auch der Kern des classifier ist - leicht modifiziert - Nebel (90:76f) entnommen. Er basiert auf dem BACK-
System, das an der TU Berlin entwickelt wurde (v.Luck et al. 87).



sonst liefere falsch .

Wenn t = (atmost  n
t
 r

t
), dann

falls u = (atmost n
u
 r

u
), liefere wahr, wenn sowohl subsumes ( r

u
, r

t
) a l s

auch n
u ≤  n t gilt -- sonst liefere falsch .

falls u = (and  u1 ... u n), liefere wahr, wenn es ein u i gibt, so daß gilt s u b s u -
mes (t, ui), 1≤  i ≤n -- sonst liefere falsch .

sonst liefere falsch .

Dieser Algorithmus läßt sich in der folgenden Entscheidungstabelle ü b e r -
sichtlich zusammenfassen.

                      t
u

androle t1...tn

and t1...tn

primitiv all rt ct atleast nt rt atmost nt rt

NOTHING wahr wahr wahr wahr wahr

primitiv ∀ i, 1≤i≤n:
subsumes(ti,u)

t = u falsch falsch falsch

all ru cu ∀ i, 1≤i≤n:
subsumes(ti,u)

falsch subsumes (ct,cu)∧
subsumes (ru,rt)

falsch falsch

atmost 0 ru ∀ i, 1≤i≤n:
subsumes(ti,u)

falsch subsumes (ru,rt) falsch falsch

and u1...un androle
u1...un

∀ i, 1≤i≤n:
subsumes(ti,u)

∃ i,1≤i≤n:

t = ui

∃ i, 1≤i≤n:
subsumes (t,ui)

∃ i, 1≤i≤n:
subsumes (t,ui)

∃ i, 1≤i≤n:
subsumes (t1,u)

atleast nu ru ∀ i, 1≤i≤n:
subsumes(ti,u)

falsch falsch subsumes(rt,ru)
∧  nt ≤ nu

falsch

atmost nu ru ∀ i, 1≤i≤n:
subsumes(ti,u)

falsch subsumes (ru,rt)
bei nu=0
sonst falsch

falsch subsumes (ru,rt)
∧  nu ≤ nt

Das Beispiel, das sich durch das Buch von Nebel (1990) hindurchzieht, l ä ß t
sich folgendermaßen bildlich darstellen:

Team Human

ANYTHING

Small-Team Modern-Team

Woman Man

member

atmost 5
leader
atleast 1

ANYRELATION

atmost 4

Es ist ein recht komplexes Beispiel, weil es eine Rollenspezialisierung e n t h ä l t
(leader  ist spezieller als member) und weil es Anzahlbeschränkungen enthält ( e i n



kleines Team hat 5 Mitarbeiter, ein modernes Team hat vier Mitarbeiter und e i n e
Le i t e r i n ) .

Hinter der Auswertung von t = (all  rt ct) steht die folgende Überlegung:

Wenn ext(ct) ⊇  ext(cu ) und ext(ru ) ⊇  ext(rt), dann muß gelten:

ext( (all  rt ct) ) ⊇  ext( (all  rt cu) ) ⊇  ext( (all  ru cu) ).

Ein mit derselben Rolle definierter Begriff kann spezieller sein, wenn d e r
Wertebereich spezieller ist:

Sei t = (all member Human) und u = (all  member Woman), dann ist

ext(Human) ⊇   ext(Woman)  und ext (member)  =   ext (member)

woraus folgt:

 ext((all  member Human)) ⊇   ext((all  member Woman))  =

 ext((all  memberWoman))

Sogar ein mit einer allgemeineren Rolle definierter Begriff kann spez ie l l e r
sein, wenn nur der Wertebereich spezieller ist:

Sei t = (all leader Human) und u = (all  member Woman), dann ist

ext(Human) ⊇   ext(Woman)  und ext (member)  ⊇   ext (leader)

woraus folgt:

 ext((all  leader Human)) ⊇   ext((all  leader Woman))  ⊇

ext((all  member W o m a n ) )

Ein nur durch eine speziellere Rolle definierter Begriff kann nicht u n t e r g e -
ordnet werden:

Sei t = (all  member Human) und u = (all  leader Woman), dann ist

ext(Human) ⊇   ext(Woman)  und ¬  ( ext (leader)  ⊇   ext (member))  

also subsumiert t nicht u! Denn es ist ja nichts über den Wertebereich v o n
member  bei u ausgesagt - der könnte größer sein als Human. Das Modern-Team ist des -
halb ein Unterbegriff von Team, weil es die member-Rolle genau wie Team füllt u n d
   zusä tz l ich     drei Einschränkungen hat, nämlich atmost 4 und atleast 1 leader all
leader Woman. Ein Wolfsrudel, das von einer Frau geleitet wird, ist kein U n t e r b e -
griff eines Teams.

3 .3 .4 .3  Einige  Eigenschaften  von Termsubsumtions-Formal i smen

Der Klassifikationsalgorithmus kann wahr  oder falsch  ausgeben für jedes subsumes
(t,u) und wenn der Algorithmus wahr ausgibt, dann subsumiert t auch t a t s ä c h -
lich u. Der Algorithmus entscheidet also korrekt . Die Subsumtion in z y k l u s f r e i e n
T-Boxen ist e n t s c h e i d b a r . Obendrein arbeitet der Algorithmus in p o l y n o m i a l e r
Zeit über der Länge der beiden zu vergleichenden Terme. Dabei haben wir a l l e r -
dings einige Konstrukte weggelassen, die in vielen Termsubsumt ions -Sys temen
vorhanden sind: wir haben Zyklen von vornherein ausgeschlossen und i n s b e s o n -



dere haben wir die Rollen primitiv gelassen. Es gibt also keine konstruierten Rol -
len - sobald man diese einführt, wird die Subsumtion u n e n t s c h e i d b a r . Schon b e i
dem einfachen Konstrukt androle wird die Subsumtion u n v o l l s t ä n d i g  - o d e r
nicht mehr polynomial. So würde der Algorithmus falsch ausgeben im f o l g e n d e n
Fall:

t sei (atleast  3 member)

u sei (and  (all  (androle  member programmer) Man)

(all  (androle  member scientist) Woman)

(atleast  2 (androle  member programmer))

(atleast  2 (androle  member scientist))

(disjoint Man Woman))

Wir sehen nun, daß bei u die Rolle member  immer mindestens 4 mal vo rkommt :
zweimal für Männer und zweimal für Frauen.  Damit ist die Forderung von t, d a ß
die Rolle mindestens 3 mal vorkommen soll, erfüllt. Also subsumiert t u. Der Algo-
rithmus merkt dies aber nicht und liefert falsch. subsumes  müßte die disjoint-
Beschränkung berücksichtigen. Im allgemeinen Fall, wenn man nicht auf p a a r -
weise Disjunktheit reduziert, muß man dann alle Teilmengen aller U n t e r r o l l e n
untersuchen. In der KI lebt man deshalb mit unvollständiger Subsumtion oder b e -
schränkt den Formalismus. Dies ist das berühmte Abwägen von Brachman, Leves -
que (1987): Handhabbarkeit oder Ausdrucksfähigkeit eines R e p r ä s e n t a t i o n s f o r -
mal i smus ' .

3 .3 .4 .4  Assert ionen und hybride Inferenzen

Der Formalismus zur Darstellung der Instanzen, die A-Box, soll nicht mehr Def in i -
tionen von Begriffen repräsentieren, sondern Dinge, die unter Begriffe f a l l e n .
Die Syntax  ist einfach (Nebel 1990:65):

<world-description> ::= ( <object-description> | <relation-description> )

<object-description> ::= ( <atomic-concept> <object> )

<relation-description> ::= ( <atomic-role> <object> <object> ) |

( <atomic-role> <object> ( atleast <number> )) |

( <atomic-role> <object>  (atmost <number>))

Die S e m a n t i k  der Assertionen, Objekt- und Relationsbeschreibungen, k a n n
wieder mit Bezug auf die Menge aller Objekte D angegeben werden. Eine I n t e r -
pretationsfunktion int  bildet eine Menge von Objekten auf D ab, eine Menge a t o -
marer Begriffe auf 2D, eine Menge von Rollen auf 2D× D. Eine I n t e r p r e t a t i o n
(D,int) erfül l t  eine Beschreibung δ:

Objektbeschreibung (c o) ist erfüllt, gdw. int(o) ∈  int(c),

Relationsbeschreibung (r o p) ist erfüllt, gdw. ( int(o), int(p)) ∈  int(r)

Relationsbeschreibung (r o (atleast  n)) ist erfüllt, gdw.

card( {X| (int(o),X) ∈  int(r)} )≥ n



Relationsbeschreibung (r o (atmost  n)) ist erfüllt, gdw.

card( {X| (int(o),X) ∈  int(r)}) ≤ n

Wenn eine Interpretation alle Beschreibungen einer A-Box erfüllt, so ist s i e
ein Modell der A-Box. Eine Beschreibung folgt logisch aus einer A-Box, wenn s i e
in allen Modellen der A-Box erfüllt ist.

Team Human

ANYTHING

Small-Team Modern-Team

Woman Man

member

atmost 5
leader
atleast 1

ANYRELATION

atmost 4

T-Box

team_a         member                                     tom
team_a         member                                    dick
team_a         member                                 harry
team_a         leader                      mary          

A-Box

Eine A-Box muß nicht alle Angaben enthalten, die gelten. Es kann auch m i t -
hilfe der T-Box etwas inferiert werden. Insbesondere können die für einen Be-
griff gegebenen Eigenschaften an seine Instanzen weitergegeben werden. W e n n
zum Beispiel von Mary bekannt ist, daß sie die Leiterin eines modernen Teams ist,

(Modern-Team team_a), (leader team_a mary)

so kann man schließen, daß Mary eine Frau ist. Dies wird auch hybride I n -
ferenz  genannt, weil sie A-Box und T-Box verbindet. Die einfachste hybride I n f e -
renz stellt fest, ob ein Objekt eine Instanz eines Begriffs ist für eine bestimmte T-
und A-Box.

In der Abbildung geben die Pfeile von der A- zur T-Box die ausdrücklich i n
der A-Box angegebenen Instanz-Beziehungen wieder. Für die Rolle member s i n d
tom, dick und harry die Rollenfüller bzw. Objekte im Wertebereich bzw. Zielob-
jekte in der A-Box, Human der Rollenfüller bzw. Begriff im Wertebereich in der T-
Box. Modern-Team ist der Ursprungsbegriff und team_a das Ursprungsobjekt. Ge-
schrieben wird die Rolle (member Modern-Team Human) bzw. (member team_a tom).



Der Real i s ierungsalgor i thmus  (r e a l i z e r ) stellt fest, von welchem B e g r i f f
ein Objekt eine Instanz ist. Dabei wird ein Trick angewandt: für eine A-Box w e r d e n
alle speziellsten Begriffe berechnet. Sie bekommen einen künstlichen Namen. Die
speziellsten Begriffe für eine A-Box decken gerade die Objekt- und R o l l e n b e -
schreibungen ab, sind aber meist spezieller als alle schon in der T-Box d e f i n i e r t e n
Begriffe und Rollen. Der Realisierungsalgorithmus propagiert W e r t e b e r e i c h b e -
schränkungen von Rollen, abstrahiert Beschreibungen eines Objektes oder e i n e r
Relation und ruft dann den Klassifikationsalgorithmus auf, der den so g e w o n n e -
nen speziellsten Begriff in die T-Box einordnet. Der von dem Klass i f ikat ionsalgo-
rithmus gefundene Ort in der T-Box ergibt für einen speziellsten Begriff s e i n e n
Oberbegriff: das entsprechende A-Box-Objekt ist eine Instanz von diesem Begriff!

P r o p a g i e r u n g :

Wenn δ = (r o p), dann sammle alle Objektbeschreibungen von o auf, s a m m l e
alle Wertebere ichseinschränkungen von r und propagiere diese E i n -
schränkungen an p.

Wenn δ = (c o), dann sammle alle Wertebere ichseinschränkungen aller Rol -
len von c, die in der A-Box für o eingetragen sind (r o q), und p r o p a g i e r e
diese an das jeweilige q.

Abs t rak t ion :

Für alle Objekte werden alle Begriffe c i aufgesammelt und k o n j u n k t i v
verknüpft, die in der Beschreibung (c i o) vorkommen. Wenn der W e r t e -
bereich einer Rolle r eingeschränkt ist durch atleast, atmost oder all,
wird geprüft, welche Zielobjekte für o bei r eingetragen sind, wieviele e s
sind und eine entsprechende Wertebereichsbeschränkung für (r o p )
wird explizit angegeben.

Klassif ikat ion:

Die durch Abstraktion und Propagierung gewonnene speziellste Def in i t i -
on für eine Objekt- oder Relationsbeschreibung wird in der T-Box k lass i -
f iz ie r t .

Für team_a wird ein speziellster Begriff definiert und mit dem k ü n s t l i c h e n
Namen unique_1  in die T-Box eingetragen:

unique_1 .=. (and  Modern-Team (all  member unique_2)(atmost  3 member) 
     (all  leader unique_3)(atmost  1 leader)

 (atleast  1 leader))

Entsprechend ist für tom, dick, harry, mary jeweils ein speziellster B e g r i f f
erzeugt worden. unique_2, unique_4 und unique_5  für tom, dick und harry werden v o m
Klassifikationsalgorithmus als völlig gleiche Definition an dieselbe Stelle der T-
Box eingeordnet.



Team Human

ANYTHING

Small-Team Modern-Team

Woman Man

member

atmost 5     leader
atleast 1

ANYRELATION

atmost 4

T-Box

team_a         member                                     tom
team_a         member                                    dick
team_a         member                                 harry
team_a         leader                      mary          

A-Box

unique_1

atmost 3

atmost 1 unique_2
unique_3

Man kann den Realisierungsalgorithmus als Vorwärtsverkettung von R e g e l n
der T-Box mit einem Grundbeispiel als Ausgangspunkt auffassen. Insofern ist d e r
Aufwand des Algorithmus' durch die Anzahl der Zielobjekte, die Anzahl der Objekte
im Wertebereich einer Relationsbeschreibung und die Inferenztiefe g e g e b e n .
Deshalb wird oft eine maximale Inferenztiefe als Beschränkung für den Algo-
rithmus angegeben, was natürlich zu seiner Unvollständigkeit führt.

Ein hybrides System, bestehend aus einer T-Box, die Begriffsdefinitionen u n d
Rollen enthält, und einer A-Box, die Beschreibungen von Objekten und R e l a t i o n e n
enthält, kann zusammengenommen als Expertensystem eingesetzt werden. Als
Standardvariante eines Termsubumtionssystems hat sich CLASSIC (Borgida et a l .
1989, Borgida et al. 1992) durchgesetzt.

3 .3 .5  Zusammenfassung des  Lehrstücks

Ausgehend von der einleuchtenden Repräsentation von Begriffen als Knoten u n d
Beziehungen zwischen ihnen als Kanten oder slots, begann man das R e p e r t o i r e
von Knoten- und Kantentypen zu untersuchen. Zunächst versuchte man, s e m a n t i -
sche Primitive zu finden. Das sollten bestimmte Merkmale sein, die zur Modell ie-
rung in allen Weltausschnitten verwendet werden können. Es gelang j e d o c h
nicht, einen Kanon von semantischen Primitiven zu finden: einige wie isa o d e r
instance_of kamen immer wieder vor, andere waren sachbereichsabhängig ( w i e
etwa dress, present). Es war auch nicht klar, wie ein Knoten- oder Kantentyp z u
verstehen sei. Lauter spezielle Zugriffsprozeduren realisierten ihre o p e r a t i o n a l e



Semantik. Erst als man die epistemische Ebene einführte, ließ sich ein R e p e r t o i r e
aufstellen: das der epistemischen Primitive. Ein von vielen verfolgter Ansatz i s t
der der Termsubsumtions-Formalismen. Die epistemischen Entitäten sind: Begriffe,
Rollen, Wertebereiche von Rollen mit ihren Restriktionen, S c h n i t t m e n g e n b i l -
dung bei Begriffen und Rollen. Sie beziehen sich nicht mehr auf Entitäten e i n e s
Sachbereichs, sondern auf Entitäten des Definierens von Begriffen. Für jede e p i -
stemische Einheit läßt sich eine formale Semantik angeben, die natürlich a u c h
operationalisiert wird durch eine Zugriffsprozedur. Durch die formale S e m a n t i k
können nun aber sehr unterschiedliche Systeme verglichen werden, ohne d a ß
man ihre Implementation kennen muß. Auch die Implementation selbst ist v i e l
leichter geworden, weil nur für jede epistemische Entität eine Prozedur für das
Hinzufügen, eine für das Löschen und eine für eine Anfrage geschrieben w e r d e n
muß. Obendrein können formale Eigenschaften für Te rmsubsumt ions -
Formalismen angegeben werden: die Klassifikation ist korrekt und - wenn k e i n e
Zyklen auftreten können - entscheidbar. Wenn auch nur die Schnittbildung b e i
Rollen zugelassen wird, ist die Subsumtion unvollständig. Damit wissen wir, d a ß
wir nicht jeder negativen Antwort des Systems trauen dürfen. Wenn keine Rol -
lenkomposition zugelassen wird, ist der Aufwand polynomial. Damit wissen w i r
zum Beispiel, daß eine exponentielle Implementation hinter dem Stand der K u n s t
h e r h i n k t .

Das folgende Bild veranschaulicht die Ebenen eines Wis sens rep rä sen t a t i ons -
systems. Dem Benutzer wird von der Benutzerschnittstelle ein bestimmtes Fo rma t
des Wissensrepräsentationsformalismus' präsentiert. Zum Beispiel können graphi-
sche Objekte oder textuelle Einheiten dargestellt und vom Benutzer m a n i p u l i e r t
werden. Diesem Präsentationsformat (mit Ellipsen und Pfeilen etwa) liegt der R e -
präsentationsformalismus (mit Klassen von Objekten und Relationen) z u g r u n d e .
Der wird realisiert mithilfe eines Programmes, das die epistemischen E i n h e i t e n
des Formalismus verarbeitet. Zum Beispiel werden neue Einheiten e i n g e t r a g e n ,
wobei Integri tätsbedingungen und vielleicht auch die Konsistenz mit v o r h a n d e -
nem Wissen geprüft werden, oder es wird nach bestimmten Einheiten im Wissen
gesucht, wobei sie auch gefolgert werden können. Das V e r a r b e i t u n g s p r o g r a m m
gibt an, was eine Einheit des Formalismus' bedeuten soll, indem es die V e r a r b e i -
tung der Einheit vorschreibt. Das Verarbeitungsprogramm wird seinerseits a u f
einer bestimmten Maschine mit einem bestimmten Betriebssystem realisiert. Dies
ist die operationale Semantik des Repräsentationsformalismus'.  Der R e p r ä s e n t a t i -
onsformalismus erhält eine logische Beschreibung, die angibt, was die E i n h e i t e n
bedeuten sollen. Dies ist die formale Semantik des Repräsen ta t ions fo rmal i smus ' .
Sie soll lesbarer sein als das Verarbeitungsprogramm und unabhängig von m a -
schinenspezifischen Details. Die logische Beschreibung ist auf ein logisches Kal -
kül (also Regeln wie etwa die Schnittregel und Axiome) gegründet.



Präsentation

Repräsentation

Programmierung

logische 
Beschreibung
mit 
Interpretation

Benutzer

Systementwicklerin

ask
add
delete

(and ...(all ...) (atleast...)(atmost ...))
      . . . ext( (and ...))=...

ext( (all...))=...
ext((atmost..))=..
ext((atleast..))=..
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3 .4  P r o d u k t i o n e n s y s t e m e

Für ein Produktionensystem der Künstlichen Intelligenz gibt es drei H e r l e i t u n -
g e n :

• dieser Formalismus sollte ein Gedächtnismodell operationalisieren,

• es ist die konsequente Weiterentwicklung der Suche über UND-ODER-
Graphen für praktische Anwendungen,

• dieser Formalismus sollte den allgemeinen Interpreter von den 
speziellen Inhalten eines Sachbereichs trennen.

Wir haben hier also wieder alle drei Bestimmungen der KI zusammen: das k o -
gnitive Verhalten des Menschen zu beschreiben, Programme m e n s c h e n g e r e c h t e r
zu machen und expliziter und verständlicher zu operationalisieren.

3 .4 .1  P r o d u k t i o n e n s y s t e m e  a l s  G e d ä c h t n i s b e s c h r e i b u n g

Eine Reihe von Studien in den 60er Jahren führte dazu, daß man beim M e n s c h e n
ein Kurzzeitgedächtnis mit einer festen, kleinen Speichergröße und ein Langze i t -
gedächtnis mit einer flexiblen, großen Speichergröße annahm. Die Speichergröße
des Kurzzeitgedächtnis wurde mit 7 Einheiten (chunks) angegeben (Miller 1956).
Was einer Einheit entspricht, ist dabei unterschiedlich. Wenn wir Lesen l e r n e n ,
ist für uns ein Buchstabe eine Einheit und wir können uns nur wenige (etwa 7 )
Buchstaben merken. Wenn wir schon lesen können, ist ein ganzes Wort für u n s
eine Einheit und wir können uns mehrere (etwa 7) Wörter merken. Wir k ö n n e n
stehende Redewendungen wiederum als Einheiten, die aus Wörtern a u f g e b a u t
sind, begreifen. Wir können uns dann 7 Redewendungen merken. Sie können d i e -
ses Prinzip leicht bei sich selbst beobachten. Die folgenden Wörter in a r a b i s c h e n
Buchstaben sollen Sie wiedergeben:  

Geht nicht? Nun, nehmen wir lediglich das erste Wort:

Schon besser? Jetzt verrate ich Ihnen, daß - von rechts nach links - die 9 B u c h -
staben bedeuten:

Ka Ta R I Na M U R I K.

So. Jetzt zeige ich die arabischen Buchstaben noch einmal mit dieser L e s u n g
versehen. Können Sie die Wörter wiedergeben? Diese Folge dürfte für Sie max ima l
6 Einheiten ausmachen, denn Katharina ist ein ganz normaler Name. P s y c h o l o g e n
haben das Gedächtnis durch Wiederholungsexperimente mit sinnhaftem u n d
sinnlosem Material untersucht: den Versuchspersonen wurden beispielsweise Si l -
ben präsentiert, die sie danach wiederholen sollten. Dabei traten i n s b e s o n d e r e
zwei Effekte auf: die Menge der gelernten Silben hängt von den kognitiven E i n -



heiten (chunks) ab (bekannte Silben brauchen weniger Zeit/Platz) und die e r s t e n
und die letzten Silben werden am besten erinnert (Positionseffekt).

Natürlich wissen wir mehr, als mit 7 Einheiten zu kodieren wäre. Das K u r z -
zeitgedächtnis ist nur der Inhalt, über dem aktuell Operationen ausgeführt w e r -
den. Das Langzeitgedächtnis umfaßt mehr. Man versuchte, das Langze i tgedäch tn i s
als Index und Gedächtnisinhalt aufzufassen, wobei der Index die Zugriffspfade z u
den Inhalten darstellt. Lernen wäre dann unter anderem der Aufbau eines so l -
chen Index und das Verwenden eines Index, um eine Antwort auf eine Frage z u
f i n d e n .

Feigenbaum entwickelte in seiner Dissertation ein operationales Modell des
Gedächtnisses. Das Modell, EPAM (elementary perceiver and memorizer), b e s t e h t
in einem Baum, der durchsucht wird, um einen Gedächtnisinhalt zu f i n d e n
(Feigenbaum, Simon 1963). Dabei sind die Kanten Tests und deren N a c h f o l g e k n o -
ten sind die Elemente, die noch im Zugriff sind, wenn der Test bestanden w u r d e .
Die Blätter sind die aufzufindenden Elemente, also chunks. Zum Beispiel k ö n n t e
ein Wort so gefunden werden: zuerst nimmt man den ersten Buchstaben und f i n -
det damit einen Knoten, von dem aus nur noch die Wörter mit diesem A n f a n g s -
buchstaben erreichbar sind; von diesem Knoten aus wählt man die Kante mit d e m
letzten Buchstaben des Wortes; von dem so gefundenen Knoten wählt man d i e
Kante mit dem ersten der mittleren Buchstaben und so fort, bis man bei dem g e -
suchten Wort angekommen ist. Der Baum ist ein Diskriminationsnetz. Wenn m a n
dieses einfache Modell zur Beschreibung der Effekte beim Erinnern etwas w e i t e r -
führt, kann man auch Handlungen oder Problemlösungen beschreiben. Die Blät-
ter des Diskriminationsnetzes sind dann nicht mehr einfach nur Einheiten, s o n -
dern Bedingungs-Handlungspaare,  die in bestimmten Situationen relevant s ind .
Die Bedingungen geben an, wann die Handlung auszuführen ist. Eine Regel, d i e
eine Menge von Bedingungen mit einer Handlung verknüpft, ist eine P r o d u k -
t i o n e n r e g e l . Eingeführt wurde der Formalismus der Produktionen von Post
(1943). Sein Produktionensystem besteht aus

A: einem Alphabet bestehend aus den disjunkten Mengen terminaler u n d
nonterminaler Symbole,

A x i o m :  einem ausgezeichneten Wort, mit dem die Ableitungen beginnen,

P r o d u k t i o n e n :  W --> V mit W, V ∈ Α∗  (hier ist kein Suchalgorithmus g e -
meint, sondern die Konkatenationen von Symbolen aus A). Eine P r o d u k t i -
on drückt aus, daß das Teilwort W durch das Teilwort V ersetzt w e r d e n
d a r f .

Das Ergebnis einer Produktion wird einem Speicher hinzugefügt, in dem a n -
fangs nur das Axiom ist.

Die Psychologen griffen den Formalismus für ihre Modellierung wieder auf. Die
Produktionen werden nun geschrieben:

IF <Bedingung1,...,Bedingungn> THEN <Handlung>

Ein P r o d u k t i o n e n s y s t e m  besteht aus einer Menge von P r o d u k t i o n e n r e -
geln, einem Kurzzeitgedächtnis (dem impliziten Speicher bei Post) und einem I n -
terpreter. Das Kurzzeitgedächtnis gibt die aktuelle Situation an, weswegen es a u c h
"Kontext" genannt wird. Die Benennung des Kurzzeitgedächtnisses a l s
"Datenbasis" hat zu fürchterlichen Mißverständnissen geführt, da D a t e n b a s e n
üblicherweise groß sind und - psychologisch betrachtet - eher dem Langze i tge -
dächtnis nahe kämen, auf gar keinen Fall dem Kurzzeitgedächtnis. Tatsächlich i s t
das Kurzzeitgedächtnis lediglich eine Repräsentation der bisher abgeleiteten I n -
halte. Gegen diese aktuelle Situation werden die Bedingungen der P r o d u k t i o n e n -



regeln abgeprüft. Die Aktionen der Produktionenregeln verändern den Inhalt des
Kurzzeitgedächtnisses. Dadurch werden dann andere Regeln anwendbar, d.h. i h r e
Bedingungen sind dann vielleicht erfüllt. Der Interpreter hat die Aufgabe zu b e -
stimmen, welche Regel als nächste angewandt werden soll. Es kann nur eine s e i n ,
deren Bedingungsteil vom Inhalt des Kurzzeitgedächtnisses erfüllt wird. Ob m a n
nur die erste anwendbare Regel nimmt oder alle oder welche man aus den a n -
wendbaren auswählt, ist die Interpreterstrategie.  Die Ausführung der Regel b e -
steht darin, den Inhalt des Kurzzeitgedächtnisses zu verändern.

Was die Psychologen an den Produktionensystemen so interessant f a n d e n ,
war, daß Regeln erlernbar aussehen (Simon 1978). Man kann sich leichter v o r -
stellen, daß Lernen unter anderem der Erwerb von zusätzlichen Regeln ist, a l s
man sich vorstellen kann, daß ein ganzes Pascal-Programm - das ja u n u n t e r -
scheidbar Daten, Kontrolle, Veränderung der Situation enthält - durch L e r n e n
erworben und erweitert wird. Die Trennung der Bestandteile eines k l a s s i s c h e n
Programms in einen allgemeinen und gleichbleibenden Interpreter, ein d y n a m i -
sches Kurzzeitgedächtnis und eine Menge gleichförmiger, kleiner Einheiten, d i e
Situation und Handlung in Verbindung bringen, ermöglicht die - auch au tomat i -
sche - Veränderung einer Menge (kognitiver) Einheiten. Um das Verhalten des
gesamten Systems zu verändern, braucht man nur eine Regel hinzuzufügen o d e r
eine Regel zu löschen oder eine Regel zu modifizieren. Oder, anders ausged rück t ,
wenn sich die Regelmenge ändert, ändert sich auch das Verhalten des Systems. Die
Regelmenge wurde dann als "Wissen" bezeichnet, weil sie im Gegensatz zu E i n g a -
bedaten in ein Pascal-Programm, die ja sicherlich auch das Verhalten des P r o -
gramms bestimmen, auch Teile dessen enthalten, was im Pascal-Programm s t e h e n
würde. Natürlich ist die Wahl des Begriffs "Wissen" sehr problematisch ( M o r i k
1991). Hier sollte nur skizziert werden, aus welchen Überlegungen heraus m a n
überhaupt auf die Idee kam, Produktionenregeln als Wissen zu bezeichnen. Dies ist
ohne den Hintergrund, daß dieser Formalismus als Modell des menschlichen Ge-
dächtnis interpretiert wurde, wohl nicht zu verstehen.

3 .4 .2  P r o d u k t i o n e n s y s t e m e  t e c h n i s c h

Gerade der Ingenieursansatz der KI hat sich mit Produktionensystemen b e s c h ä f -
tigt. An einem kleinen Beispiel soll ein Produktionensystem "bei der Arbeit" g e -
zeigt werden. Wir nehmen folgende Menge von Regeln an:

R1: IF ok(Geraet) & verbunden(Geraet, Sicherung)
THEN intakt(Sicherung)

R2: IF eingeschaltet(Geraet) & arbeitet(Geraet)
THEN ok(Geraet)

R3: IF eingeschaltet(Geraet) & tutnicht(Geraet)
THEN gestoert(Geraet)

R4: IF verbunden(Geraet1, Sicherung) & verbunden(Geraet2, Sicherung)
THEN gleiche_sicherung(Geraet1, Geraet2,Sicherung)

R5: IF gestoert(Geraet) & verbunden(Geraet,Sicherung)
THEN verdacht(Geraet,Sicherung)

R6: IF gleiche_sicherung(Geraet1, Geraet2,Sicherung) &
   gestoert(Geraet1) & gestoert(Geraet2)
THEN defekt(Sicherung)

R7: IF gleiche_sicherung(Geraet1, Geraet2, Sicherung) &
   gestoert(Geraet1) & ok(Geraet2)
THEN andere_stoerung(Geraet1)



Nehmen wir an, das Kurzzeitgedächtnis bzw. der Kontext enthielte zunächst

eingeschaltet(lampe1). tutnicht(lampe1).
eingeschaltet(lampe2). tutnicht(lampe2).
verbunden(lampe1,sicherung1). verbunden(lampe2,sicherung1).

Nehmen wir weiterhin einen einfachen Interpreter an. Jeder I n t e r p r e t e r
eines Produktionensystems durchläuft den Zyklus:  Abgleich (match), K o n -
fliktauflösung (conflict resolution) und Anwendung (act).

Eine einfache Form sieht etwa so aus:

A b g l e i c h : Finde alle Regeln, deren Bedingungsteil sich mit dem Kontext a b -
gleichen läßt;

Markiere diese Regeln als "anwendbar";

Wenn es keine anwendbaren Regeln gibt, gib den Kontext aus und t e r m i -
n i e r e ;

K o n f l i k t a u f l ö s u n g : Wähle die erste anwendbare Regel aus;  entferne d i e
Markierung von allen anderen anwendbaren Regeln;

A n w e n d u n g : führe den Handlungsteil der ausgewählten Regel aus,  i n d e m
die neue Aussage in den Kontext geschrieben wird und die den B e d i n g u n -
gen entsprechenden Aussagen aus dem Kontext gelöscht werden;

entferne die Markierung von der Regel;

In diesem Beispiel für einen Interpreter wird vom Kontext ausgehend d i e
Menge der anwendbaren Regeln durch den Abgleich mit den Bedingungen b e -
stimmt. Diesen Modus eines Interpreters nennt man V o r w ä r t s v e r k e t t u n g . Dies
entspricht dem Vorgehen bei dem Postschen Produktionssystem.

Im ersten Zyklus des angegebenen Interpreters sind die Regeln R3 und R4
anwendbar. Die Konfliktauflösung wählt R3 aus. Die Regelanwendung fügt

gestoert(lampe1)

dem Kontext hinzu und löscht aus dem Kontext:

eingeschaltet(lampe1), tutnicht(lampe1)

Im nächsten Zyklus sind die Regeln R3, R4 und R5 anwendbar. Es wird wieder R3
ausgewählt. Dem Kontext wird hinzugefügt:

gestoert(lampe2)

Gelöscht wird aus dem Kontext:

eingeschaltet(lampe2), tutnicht(lampe2)

Im nächsten Zyklus sind die Regeln R4 und R5 anwendbar. Es wird R4 ausgewäh l t ,
so daß in den Kontext geschrieben wird:

gleiche_sicherung(lampe1, lampe2,sicherung1)

und gelöscht wird:

verbunden(lampe1, sicherung1), verbunden(lampe2, sicherung1)

Nun ist nur noch R6 anwendbar. Der Kontext wird gelöscht, und



defekt(sicherung1)

wird hineingeschrieben. Dies ist nun die einzige Aussage, die im Kontext steht. I m
nächsten Zyklus ist keine Regel anwendbar, der Inhalt des Kontextes wird a u s g e -
geben und der Lauf des Produktionensystems ist beendet. Die Regeln sind so g e -
schrieben, daß jeder mögliche letzte Kontextinhalt sinnvoll ist. Man kann a b e r
auch bestimmte Aussagen als Lösungen vorsehen. In diesem Beispiel könnten

intakt(Sicherung), defekt(Sicherung)

als mögliche Lösungen ausgewählt werden. Oder zusätzlich könnte auch

andere_stoerung(Geraet)

eine den Anwender befriedigende Lösung sein. Wenn das P r o d u k t i o n e n s y s t e m
dann bei

verdacht(Geraet, Sicherung)

terminiert, wäre der Anwender nicht zufrieden. Man könnte diese Lösung d a n n
als Sackgasse betrachten.

Wir können die V o r w ä r t s v e r k e t t u n g  für den aussagenlogischen Fall i n
Prolog etwa folgendermaßen realisieren.

:- ensure_loaded(library(basics)).

:- dynamic(context/1).

closure :-
   forward_inference(Konklusion), % wenn noch neue Fakten ableitar
   assert(context(Konklusion)),  % fuege sie zum Kontext hinzu.
   closure.

closure.

forward_inference(Attribut=Wert) :-
   rule(if:Praemissen, then: [Attribut=Wert]),
   \+ context ([Attribut= _]), % nur wenn noch nicht bekannt und
   alltrue(Praemissen). % alle Praemissen erfuellt sind.

alltrue([]).

alltrue([X|Praemissen]) :-
   context(X),
   alltrue(Praemissen).

Der andere Modus ist der der R ü c k w ä r t s v e r k e t t u n g . Dort wird von e i n e m
Ziel ausgehend die Menge der anwendbaren Regeln durch den Abgleich mit d e m
Handlungsteil bestimmt. Wenn eine Bedingung einer Regel nicht erfüllt ist, so
wird diese Bedingung als neues Ziel gesetzt und als nächstes nach einer Regel g e -
sucht, die diese Bedingung wahr macht. Dies entspricht dem Vorgehen von P r o l o g
und nicht dem der Postschen Produktionssysteme. Wir können auch in Prolog d i e
Rückwärtsverkettung für Produktionsregeln programmieren.

backward_inference(Konklusion) :-
   context(Konklusion). % Wenn in Kontext, dann erfüllt

backward_inference(Konklusion) :-
   rule(if: Praemissen, then: [Konklusion]),
   derive_all(Praemissen). % Prämissen werden zu neuen Zielen

backward_inference (Attribut=Wert) :-
   ask(Attribut, Wert). % Frage den Benutzer

derive_all([]).



derive_all([X|Praemissen]) :-
   backward_inference(X),
   derive_all(Praemissen).

ask(Attribut,Wert) :-
   can_be_asked(Attribut,Prompt, Werte),
   \+ context(Attribut= _),
   write(Attribut), write(Prompt), write(Werte), write( ´  ´),
   read(Wert1),
   assert(context(Attribut=Wert1)),
   Wert = Wert1.

3 .4 .2 .1  I n t e r p r e t e r s t r a t e g i e n

Bei Produktionensystemen ist die Reihenfolge der Regeln wichtig - was dem Ge-
danken der Trennung von Kontrolle (im Interpreter) und rein b e s c h r e i b e n d e n
Einheiten (Regeln) widerspricht. Wenn eine Regel anewandt wurde, so wird i h r e
Konklusion (bei der Vorwärtsinferenz) in den Kontext eingetragen und n i c h t
mehr zurückgezogen. Eine Interpreterstrategie ist z e r s t ö r e r i s c h  ( i r r e v o c a b l e ) ,
weil eine einmal getroffene Entscheidung für die Anwendung einer b e s t i m m t e n
Regel nicht zurückgezogen werden kann. Die alternativen anwendbaren R e g e l n
sowie der Kontextinhalt zum Zeitpunkt der Entscheidung werden nicht a u f b e -
wahrt. Für den Menschen, der die Regeln schreibt, bedeutet dies, daß er auf d i e
Unabhängigkeit der Bedingungsteile von Regeln genau achten und die R e i h e n -
folge der Regeln günstig wählen muß.

Eine t e n t a t i v e  Strategie wählt zwar auch eine Regel zur Anwendung aus ,
ermöglicht aber, daß auch später noch Alternativen betrachtet werden k ö n n e n .
Das Rückziehverfahren kehrt an den Punkt der Auswahl (Rückzugspunkt, e n g -
lisch: backtracking point) zurück und wählt eine alternative Regel aus. Eine a n -
dere tentative Strategie ist an Graphen orientiert. Sie verfolgt die A u s w i r k u n g e n
von Regelanwendungen simultan. Suchverfahren, wie sie in Kapitel 2 b e s c h r i e -
ben wurden, können verwendet werden.

Das R ü c k z i e h v e r f a h r e n  erfordert, daß die Kontextinhalte zu der j ewe i l i -
gen Regelauswahl etwa in Form einer Liste gespeichert werden. Anfangs ist n u r
der gegebene Inhalt des Kontextes Element dieser Liste. Der von einer R e g e l a n -
wendung produzierte Kontextinhalt wird vorn an die Liste angehängt. Die a n g e -
wandte Regel wird notiert. Wenn von einer ausgewählten Regel ein Kon tex t i nha l t
produziert würde, der bereits in der Liste vorkommt, so handelt es sich um e i n e
zyklische Regelfolge. Dies kann die Konfliktauflösung verwenden, um eine andere
Regel auszuwählen. Wenn eine Regelfolge nicht zu einer Lösung führt, wird i n
der Kontextliste zurückgegangen und für den dort festgehaltenen nächsten K o n -
textinhalt nach einer alternativen anwendbaren Regel gesucht. Gibt es keine a n -
dere anwendbare Regel, wird in der Kontextliste weiter zum nächsten Kon tex t in -
halt zurückgegangen und dort nach alternativen Regeln gesucht. Gibt es eine a l -
ternative anwendbare Regel, wird die Kontextliste bis zu diesem Kontextinhalt g e -
löscht. Um wirklich immer auf alternative Regeln zu stoßen, werden aus der R e -
gelliste die bereits angewandten Regeln zu dem Kontext gelöscht.

Wir können uns das Rückziehverfahren an einem Graph klarmachen, d e s s e n
Knoten Kontextinhalte und dessen Kanten Regelanwendungen sind:



Kontext 1

Kontext 2 Kontext 3

Kontext 4

R1 R2

R3

Das Rückziehverfahren könnte z.B. von Kontext 4 zu Kontext 2 z u r ü c k g e h e n
und von da aus zu Kontext 1, um dann die alternative Regel R2 auszuwählen. K o n -
text 2 und 4 wären dann weggelöscht. Da wir jetzt aber schon die R e g e l a u s w a h l
und die Kontextinhalte als Graph aufgefaßt haben, können wir auch alle b e r e i t s
behandelten Suchverfahren anwenden und damit flexiblere I n t e r p r e t e r s t r a t e -
gien erstellen.

3 .4 .2 .2  A b g l e i c h

Bei der Besprechung der Interpreterstrategien haben wir vorausgesetzt, daß R e -
geln als "anwendbar" markiert werden. In der Prolog-Implementierung h a b e n
wir die Unifikation und die Gleichheit Attribut=Wert verwendet. Der A b g l e i c h
zwischen Kontext und Regelbedingungen ist aber ein für sich interessanter P r o -
zeß. Deshalb soll er in diesem Abschnitt behandelt werden.

Der Abgleich einer Bedingung kann bereits aufwendig sein. So kann z u m
Beispiel ein Intervall von Werten statt nur ein einziger Wert von einer Regel a b -
gedeckt werden. Der konsistente Abgleich mehrerer Bedingungen fügt e i n e n
weiteren Aufwand hinzu. Zum Beispiel gleicht die folgende Bedingung einer Regel

verbunden(Geraet, Sicherung)

die folgenden möglichen Kontextinhalte ab:

verbunden(lampe1, sicherung1).

verbunden(lampe2, sicherung1).

verbunden(radio1, sicherung2).

Wenn jetzt wie in Regel R4 zwei verschiedene Variablenbindungen für Ge-
raet  und dieselbe für Sicherung  gesucht wird, so kommen nur noch die ersten b e i -
den Kontextinhalte zum Abgleich für beide Bedingungen von R4 in Frage. Der A b -
gleich verschiedener Bedingungen einer Regel ist nicht unabhängig v o n e i n a n -
d e r .

Der Abgleich, den ein Interpreter vornimmt, geht alle linken Seiten von a l -
len Regeln durch und gleicht sie mit allen Elementen des Kontextes ab. Das E r g e b -
nis ist eine Menge von geordneten Paaren

(Regelnummer, Liste der abgeglichen Kontextinhalte).

Diese Menge anwendbarer Regeln, K o n f l i k t m e n g e  genannt, wird von d e r
Konfliktauflösung verwendet. Am Anfang unseres Beispiels sähe die Konf l ik t -
menge so aus:

(R3, (eingeschaltet(Geraet), tutnicht(Geraet),
Geraet/lampe1, Geraet/lampe2))



(R4, (verbunden(Geraet1,Sicherung), verbunden(Geraet2,Sicherung), 
Geraet1/lampe1, Sicherung/sicherung1, Geraet2/lampe2))

Dabei werden zunächst die Bedingungen und dann die abgeglichenen V a r i a -
blen mit den Konstanten notiert. Bei alternativen Abgleichen wie zum Beispiel b e i
Regel R3 werden die Alternativen durch ";" getrennt. Ein solches Vorgehen b e i
jedem Zyklus des Interpreters anzuwenden, ist zu aufwendig. Tatsächlich w u r d e
festgestellt, daß ein Produktionensystem 90% seiner Zeit mit Abgleichen v e r b r i n -
gen kann (Forgy 1982). Deshalb speichert man die Konfliktmenge. Wenn e i n
Kontextinhalt gelöscht wird, muß man nicht mehr alle Regeln durchgehen, s o n -
dern lediglich eine oder mehrere Paare der Konfliktmenge löschen. Wenn e i n
Kontextinhalt neu hinzukommt, müssen die Regeln gefunden werden, d e r e n
Nummern mit diesem Kontextinhalt zusammen in die Konfliktmenge a u f g e n o m -
men werden. Aber auch das ist noch zu aufwendig. Deshalb wurde die Rege lkom-
pilierung eingeführt. Der am meisten verwendete Algorithmus zur Rege lkompi -
lierung, der auch die Konfliktmenge erstellt und wartet, ist R e t e  (Forgy 1982).

3 .4 .2 .3  R e t e

Das Rete-Verfahren optimiert den Abgleich von Bedingungen und K o n t e x t i n h a l -
ten, indem es vermeidet,

• in jedem Zyklus den Kontext durchzugehen und

• in jedem Zyklus die Regelmenge durchzugehen.

Stattdessen werden nur Änderungen des Kontextes und diese nur für Teile der
Regelmenge (die nämlich von der Änderung betroffen sind) gewartet.

Das Rete-Verfahren überführt die linken Seiten aller Regeln in ein Netz-
werk. Und zwar werden Merkmale von Bedingungen, die bei Kontextinhalten a b -
geprüft werden, aufgestellt. Solche Merkmale sind abhängig von der v e r w e n d e t e n
Sprache, in der die Bedingungen formuliert werden. Für die zweite Bedingung von
R1 in unserem Beispiel können wir die folgenden Merkmale, die für     e i n e n     K o n -
textinhalt gelten oder nicht gelten, aufstellen:

• Stelligkeit des Prädikats ist 2

• Name des Prädikats ist verbunden

• 1. Argument muß ungleich dem 2. Argument sein

• 1. Argument muß ...

Die Bedingungen für die einzelnen Argumente sind in unserem Falle n i c h t
gegeben. Es könnte aber auch in einer Regel im Bedingungsteil eine K o n s t a n t e
auftreten. Dann würde ein Merkmal sein, daß genau diese Konstante an genau d i e -
ser Argumentstelle im Kontextinhalt vorkommen muß. Die R e g e l k o m p i l i e r u n g
erstellt für jede Eigenschaft einen Knoten und verbindet die Knoten. Knoten f ü r
das Abprüfen einer Eigenschaft heißen E i n e r - K n o t e n . Andere Merkmale l a s s e n
sich aufstellen, die mehrere Bedingungen einer Regel und damit mehrere K o n -
textinhalte verknüpfen. Für die Bedingungen von R1:

• Gleichheit des 1. Arguments von ok und des 1. Arguments von verbunden

Auch für diese Eigenschaft wird ein Knoten erstellt. Diese v e r b i n d e n d e n
Knoten nehmen zwei Kanten auf, verbinden also Pfade. Diese Knoten h e i ß e n
V e r b i n d u n g s k n o t e n .



In dieser Weise werden alle Bedingungen aller Regeln einmal d u r c h g e g a n -
gen. Wenn dieselbe Bedingung in verschiedenen Regeln vorkommt, wird d e r s e l b e
Knoten mehrfach verwendet. Wenn dasselbe Prädikat in derselben Regel zweimal
vorkommt, muß dafür ein neuer Knoten eingeführt werden. Als t e r m i n a l e
K n o t e n  fügt Rete jeweils für eine Sequenz von Tests (ein Pfad) die Menge der a n -
wendbaren Regeln hinzu. Ein Anfangsknoten wird vorangestellt. Weitere K n o -
tentypen können für negierte Bedingungen und für mehrfaches Auftreten d e r -
selben Variable oder Konstante in einem Prädikat eingeführt werden. Das k l e i n e
Netzwerk für R1, R5  und R7 (linke Seiten) sieht so aus22:

einstelliges Prädikat? zweistelliges Prädikat?

Name ist ok ? Name ist  verbunden ?

1.Argument ≠ 2.Argument?

1.Arg. von ok = 
1.Arg. von verbunden ?

R1 ist anwendbar

Name ist gestoert  ?

Anfang

dreistelliges Prädikat?

Name ist
gleiche_sicherung ?

1.Arg. von gleiche_sicherung 

= 1.Arg. von gestoert  ?

2.Arg. von gleiche_sicherung  =
1. Arg. von ok ?

R7 ist anwendbar

1.Arg. von gestoert =
1.Arg. von verbunden ?

R5 ist anwendbar

Dieses Netzwerk, das fast so groß wird wie die Regelmenge (im s c h l i m m s t e n
Fall so groß wie die Menge der Bedingungsteile aller Regeln), lohnt sich n u r ,
wenn Änderungen des Kontextes durch dieses Netzwerk propagiert werden, so d a ß
die aktuelle Konfliktmenge schneller als durch Prüfen aller Regeln b e r e c h n e t
wi rd .

Kontextinhalte werden mit ihren Merkmalen in das Netzwerk e i n g e g e b e n .
Sie erhalten ein '+', wenn sie dem Kontext hinzugefügt wurden, und ein '-', w e n n
sie gelöscht wurden. Die so annotierten Merkmale von Kontextinhalten h e i ß e n
M a r k e n . Eine Marke wird für alle Nachfolgeknoten des Anfangsknotens kop i e r t .
Die Einerknoten geben eine Marke, die ihren Test besteht, an alle N a c h f o l g e r
weiter. Die Verbindungsknoten bekommen verschiedene Marken, die sie zu e i n e r
komplexeren Marke kombinieren. Wenn die aufgenommene Marke ein pos i t ives
Vorzeichen hatte, wird sie beim Verbindungsknoten in einem Z w i s c h e n s p e i c h e r
abgelegt. Wenn die aufgenommene Marke ein negatives Vorzeichen hatte, w i r d

                                                
22 Die gepunktet unterlegten Ergebnisse der Tests von Einerknoten heißen oft auch alpha-memories. Die Ergeb-
nisse von Verbindungsknoten heißen dann beta-memories.



die entsprechende Marke aus dem Zwischenspeicher gelöscht. Die t e r m i n a l e n
Knoten bekommen nur Marken, die alle Tests bestanden haben. Marken mit pos i -
tivem Vorzeichen führen dazu, daß die Liste der abgeglichenen Kontextinhalte i n
der Konfliktmenge erweitert wird. Marken mit negativem Vorzeichen führen d a -
zu, daß die Liste der abgeglichenen Kontextinhalte in der Konfliktmenge v e r k l e i -
nert wird. Das Netzwerk gibt dann die aktuelle, veränderte Konfliktmenge aus.

Nehmen wir an, die folgenden Kontextinhalte wären bereits von einem R e t e -
Netzwerk verarbeitet worden:

ok(lampe3). verbunden(lampe3,sicherung1).

gestoert(lampe1). verbunden(lampe1,sicherung1)

Dann sieht das Rete-Netz mit den Zwischenspeichern so aus:

einstelliges Prädikat? zweistelliges Prädikat?

Name ist ok ? Name ist  verbunden ?

1.Argument ≠ 2.Argument?

1.Arg. von ok = 
1.Arg. von verbunden ?

(R1(lampe3,sicherung1))

Name ist gestoert  ?

Anfang

dreistelliges Prädikat?

Name ist
gleiche_sicherung ?

1.Arg. von gleiche_sicherung 

= 1.Arg. von gestoert  ?

2.Arg. von gleiche_sicherung  
= 1. Arg. von ok ?

R7 ist anwendbar

1.Arg. von gestoert =
1.Arg. von verbunden ?

(R5(lampe1,sicherung1))

lampe3, sicherung1
lampe1, sicherung1

lampe3lampe1

lampe3, sicherung1lampe1,sicherung1

Wenn nun die neue Marke hinzukommt

+dreistellig,gleiche_sicherung,1.Arg=lampe1,2.Arg=lampe3,3.Arg=sicherung1

so wird sie drei Mal kopiert und an alle Nachfolger des Anfangsknotens ge sch i ck t .
Da es ein dreistelliges Prädikat ist, wird die Marke nur vom linkesten E i n e r k n o t e n
weitergeleitet. Der nachfolgende Verbindungsknoten, der bisher nichts w e i t e r g e -
ben konnte, kann jetzt den Test vornehmen, ob das 1. Argument mit seinem r e c h -
ten Zwischenspeicher (der ja lampe1 enthält) übereinstimmt. Da dies der Fall is t ,
reicht er die Marke weiter. Der andere nachfolgende Verbindungknoten prüft, o b
sein rechter Speicherinhalt (lampe3) mit dem neuen linken übereinstimmt. Da
auch das der Fall ist, werden alle Argumente für die Konfliktmenge zur Verfügung
gestellt. Der terminale Knoten wird zu

(R7(lampe1,lampe3,sicherung1)).



Dies ist ein neuer Eintrag in die Konfliktmenge. Die Effizienz des R e t e - V e r f a h r e n s
kommt daher, daß die irrelevanten Pfade im Netz gar nicht erst geprüft w e r d e n
(z.B. kein ein- oder zweistelliges Prädikat). Bei positiven Marken wird die K o n -
fliktmenge erweitert, ohne daß bereits geprüfte Eigenschaften noch einmal b e -
trachtet würden. Bei negativen Marken müssen alle Zwischenspeicher, die b e t r o f -
fen sind,  neu erstellt werden. Dazu müssen auch die bereits vorgenommenen V e r -
gleiche bei Verbindungsknoten erneut vorgenommen werden. Würde man z u m
Beispiel den Kontextinhalt

ok(lampe3)

wieder löschen, so müssen zwei Verbindungsknoten erneut prüfen und dann d e n
Zwischenspeicher anpassen. In diesem Falle führt das Löschen dazu, daß die V e r -
bindungsknoten eine Marke mit negativem Vorzeichen an die terminalen K n o t e n
(für R7 und für R1) weiterreichen. Die Liste der abgeglichenen Kon tex t inha l t e
wird um

(lampe1, lampe3, sicherung1) bzw. (lampe3,sicherung1)

verkürzt. Damit gibt es keine abgeglichenen Kontextinhalte mehr bei diesen R e -
geln und sie werden ganz aus der Konfliktmenge gelöscht. Dieses Propagieren n e -
gativer Marken ist also nicht so effizient, weil Vergleiche noch einmal v o r g e -
nommen werden müssen. Bei einem Vorgehen wie in unserem Beispiel oben, i n
dem dauernd aus dem Kontext gelöscht wird, ist das Rete-Verfahren nicht so e f f i z i -
ent. Neuere Verfahren optimieren gerade die Behandlung von negativen M a r k e n
und die Zwischenspeicherung bei Verbindungsknoten (Miranker 1990).

3 .4 .3  Erweiterung von Produktionensystemen durch Statist ik

Bei ungenauem Wissen kann oft nur die Evidenz für oder gegen eine A n n a h m e
gesammelt werden. Bestimmte Aussagen erhöhen oder senken die Evidenz für e i n e
Hypothese, sie determinieren sie nicht. Aus diesem Grund führte Shortliffe Evi-
denzwerte bei Aussagen ein. Ein Evidenzwert ist eine Zahl aus dem Intervall zwi -
schen 0 und 1. Diese Evidenzwerte müssen dann verrechnet werden: einmal i n -
nerhalb einer Regel und zum anderen bei verschiedenen Ableitungen d e r s e l b e n
Aussage. Innerhalb einer Regel kann zum Beispiel der höchste Evidenzwert e i n e r
Bedingung an den Handlungsteil weitergegeben werden, der niedrigste, oder e i n
Mittelwert. Wenn nun verschiedene Regeln dasselbe Ergebnis a b l e i t e n
(Mehrfachableitung) nahm Shortliffe eine Evidenzverstärkung an, die er aus d e n
Evidenzwerten der jeweiligen Handlungsteile errechnete. Bei n Ableitungen d e r -
selben Aussage mit xi als dem Evidenzwert der i-ten Ableitung der Aussage b e -
rechnet die folgende Formel den Ergebnis-Evidenzwert:

1- (1-xi)∏
i=1

n

In dem System MYCIN zur medizinischen Diagnose wurden Evidenzwer te
verwendet. Wenn z.B. drei Mal abgeleitet wurde, daß es sich bei einem Infekt u m
eine Meningitis handelt, einmal mit der Evidenz 0.2, einmal mit der Evidenz 0.3
und einmal mit der Evidenz 0.8, so ergibt sich als Evidenz für eine Meningitis:

1-(0.8 . 0.7 . 0.2) = 1- 0.112 = 0.888

Diese Evidenzverstärkung ist nur zulässig, wenn die verschiedenen Able i -
tungen voneinander unabhängig sind. Bei MYCIN-Regeln kann man das k a u m
garantieren: indirekt mögen sie sich auf dasselbe Wissen stützen, das an v e r s c h i e -
denen Stellen in die Regeln hineincodiert wurde. Mostow und Swartout (Mostow,
Swartout 1986) haben darauf hingewiesen, daß die Verknüpfung von H a n d l u n g s -



teilen explizit repräsentiert werden muß, wenn auch das Zusammenwirken v o n
Regeln unter ungenauem Wissen inspizierbar und veränderbar sein soll.
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