Heuristische Suche

« Kosten von Expansionen (Kanten, Ubergangen) kénnen
unterschiedlich sein.

« Einige Expansionen (Kanten, Ubergange) sind
vielversprechender als andere.

 Information Uber den Sachbereich soll ausgenutzt
werden! (Bisher: uninformierte Suche.)

Heuristische Suche 1

Kosten

Gleichmalige Kosten bei jeder Expansion:

e Lange des Pfades zur Losung ergibt die Kosten

» Lange des Gesamtpfades ergibt sich aus bisherigem und
zukunftigem Pfad

Wie schatzt man die Lange des kiinftigen Pfades ab?

Start
A bisheriger Pfad g Lésung f
K
- kunftiger Pfad h

Ziel

Heuristische Suche 2

Informierte Suche

Luftlinie: o HH
HH - Do 290 km 175
HB - Do 200 km HB 5
Os - Do 100 km /105 g
H - Do 190 km Os 1(;9/ N{O
! Ka

Bi - Do 90 km \%‘ {00
Ka - Do 180 km ‘/ 195

Luftlinie unterschatzt tatsachliche Entfernung.

Heuristische Suche 3

Bergsteigen

» Die Nachfolgeknoten werden nach ihrer Entfernung vom Ziel
angeordnet:
je naher ein Zustand dem Ziel, desto besser ist er.

 Manchmal muf3 man sich aber vom Ziel entfernen, um es zu
erreichen.
Z.B. muld man eine Person wieder zurickfahren, um das
Missionare-Kannibalen-Problem zu l6sen.

» Vorgebirgsproblem: ein Knoten wird nicht expandiert, obwohl er
zum Ziel fuhrt, weil ein anderer eine bessere Bewertung hat
(néher am Ziel ist, aber nicht zum Ziel fuhrt).

Heuristische Suche 4

Beispiel Bergsteigen

A*

Luftlinie:
HH - Do 290 km g(n) zurickgelegter Weg vom Anfang bis n
HB - Do 200 ||(<m HH h(n) geschatzter Abstand zum Ziel
Qs - Do 100 km 110 175 h*(n) tatsachliche Kosten
Bi - Do 90 km " f(n) = g(n) + h(n)
Ka - Do 180 km 15
105 H Wenn h(n) < h*(n) - Kosten zu niedrig geschatzt -
h(HH)=290 HH -->DO Os 100 ~ 10 werden mehr Knoten als notig expandiert.
h(HB)=200 H 10 Bi Ka Wenn h(n) > h*(n) - Kosten zu hoch geschatzt -
I ‘/100 werden eventuell die Knoten, die zum Ziel fiUhren, nicht
h(H)—_190 195 expandiert.
h(BI)= 90 BI Wenn h die untere Grenze von h* trifft, heiRt das Suchverfahren A*,
h(Ka)=180
DO Kein guter Weg!
Heuristische Suche Heuristische Suche 6
Beispiel A* Monotonie
HH
110 175
Luftlinie:
HH - Do 290 km HE 15
HB - Do 200 km ‘/105 H Jeder Schritt von einem Knoten zum anderen kostet mindesteds
Os - Do 100 km Os 109/ 110 . o
H - Do 190 km o \ » Die geschatzten Kosten f(n) konnen bei einem Nachfolgeknoten
E'ﬁl: gg fgoklz?n \’{A /oo Ka von n nicht kleiner werden!
195 f(n;) < f(n;), n Nachfolger von n
f(HH)=g(HH)+h(HH)=0+290 » Die Kosten des bisherigen Pfades werden nicht wenigej:<g(n
f(HB)=110+200=310 iimaler Prad| g(n), n Nachfolger von p
f(H)=175+190=365 optimaler Fiad: « Die geschatzen Kosten des Restpfades auch nicht!

f(0S)= 215+100=315
f(H)=225+190=415
f(DO)=325+0=325

f*(HH) sind die tatsachlichen Kosten des Gesamtpfades: 0+h*(HH)=325
7

Heuristische Suche

h(n) < h(n), n Nachfolger von p

Heuristische Suche 8

Zulassigkeit

Ein Suchverfahren ist zulassig (admissible), wenn
es fur jeden Graphen einen optimalen Pfad findet und dann anhélt ,
falls es einen solchen Pfad gibt.

Ist A* zulassig?

Beweis in 4 Schritten:

1) Lemma: jeder Knoten des optimalen Pfads ist mal in Offen.
2) A* héalt nicht an, bevor das Ziel erreicht ist.

3) A* halt an.

4) Der Pfad, den A* findet, ist optimal.

Heuristische Suche 9

Lemma

Wenn h(nk h*(n) fur alle Knoten n,

dann gibt es immer fir jeden optimalen Pfad einen Knoten n‘ dieses
Pfades in OFFEN und
es gilt f(n) < f*(n").

Voruberlegungen
h< h*, also wird jeder relevante Knoten (und einige mehr)
betrachtet.
Fur jeden optimalen Pfad gibt es einen Knoten n' in Offen mit
f(n") < f*(s).
Kein Knoten aus Offen kostet mehr als der Gesamtpfad, weil
h(n) = f*(s) - g*(n), h also wirklich den Restpfad schatzt.

Heuristische Suche 10

Bewels

Sein, n, ..., nein optimaler Pfad vonymach p .

Sei n' ein Knoten in Offen. Es muss einen Knoten in Offen geben,
wenn es einen optimalen Pfad gibt upahach nicht in
Geschlossen ist, so dass der Algorithmus anhalt.

Wenn n* der erste Knoten in Offen ist, sind alle Vorganger von n‘in
Geschlossen und g(n‘)=g*(n").

Also gilt: f(n*) = g*(n‘) + h(n) < g*(n‘) + h*(n‘) = f*(n")

Heuristische Suche 11

TheoremA* ist zulassig

Wenn h(nk h*(n) fur alle Knoten n und das Suchproblem ist
monoton,

dann ist A* zulassig.

Voruberlegung:

fieser Fall 1: A* halt an, bevor das Ziel erreicht ist.

fieser Fall 2: A* halt nie an.

fieser Fall 3: A* findet einen Losungspfad, der nicht optimal ist.

Heuristische Suche 12

Bewels -- FF1

Wenn A* anhalt, bevor das Ziel erreicht ist, dann muss Offen leer
sein.
A* halt nur an, wenn Offen leer ist oder das Ziel erreicht ist.

Unser Lemma sagt, dass Offen immer einen Knoten enthélt, der auf
dem optimalen Pfad liegt bis das Ziel erreicht ist.

Der Fall kann nicht vorkommen.

Heuristische Suche 13

Bewels -- FF2

A* halt an, weil nur endlich viele Knoten expandiert werden und
nur endlich viele Pfade zu diesen durchlaufen werden, bis der
optimale Pfad gefunden ist.

Knoten, die mehr als f*(s)¢ Schritte vom Start entfernt sind,
werden nie gedffnet. Sie waren teurer als irgendein Knoten n‘in
Offen, der auf dem optimalen Pfad liegt.

Knoten in Geschlossen werden nie wieder betrachtet.
Somit halt A* immer nach endlich vielen Schritten an.

Heuristische Suche 14

Bewels -- FF3

Was ware, wenn A* einen Losungspfad findet, der nicht optimal
ist?

Der hatte héhere Kosten als der optimale:
f*(t) = 9(t) > f(s)
Laut Lemma muss es vorm anhalten einen Knoten n‘ in Offen
gegeben haben, so dass

f(n) < f*(s) < f(t).
Dann wéhlt A* den Knoten n‘ und nicht t.
g.e.d.

Heuristische Suche 15

A* in Prolog

astern(Start,Ziel,Pfad,Weglaenge):-
suche([Start],[],Ziel,Pfad,Weglaenge).

%% suche(+Offen, +Geschlossen, +Ziel, -Pfad, -Wert)
suche([], _Geschl, _Ziel, N, _W):- % Misserfolg
write('Schade"), nl,
I
fail.
suche(Offen, Geschl, Ziel, N, W):-
best(Offen, Best, RestOffen), % Offen sortieren, besten Knoten zuerst
(Best = Ziel -> % Erfolg
f(Ziel, N, W) % optimaler Pfad
; % weitersuchen
findall(Succ, nachf(Best,Succ), AllSuccs), % Besten expandieren
verteile(AllSuccs, RestOffen, [Best | Geschl], NeuOffen),
% Nachfolger in Offen ohne Doppelte
suche(NeuOffen, [Best | Geschl], Ziel, N, W)

).

Heuristische Suche 16

verteile

%% verteile(+AlleNachfolger, +OffenOhneBest, +Geschlossen, -NeuOffen)
verteile([], Offen, _Geschl, Offen). % gibt nichts mehr zu verteilen

verteile(JAK | Rest], Offen, Geschl, NeuOffen):- % Knoten ist schon in Offen
member(AK, Offen),
! % roter CUT!
verteile(Rest, Offen, Geschl, NeuOffen). % nun den Rest verteilen

verteile(JAK | Rest], Offen, Geschl, NeuOffen):- % Knoten ist schon in
% Geschlossen
member(AK,Geschl),
! % roter CUT!
verteile(Rest, Offen, Geschl, NeuOffen). % nun den Rest verteilen

verteile(JAK | Rest], Offen, Geschl, NeuOffen):- % Knoten in Offen eintragen
verteile(Rest, [AK | Offen], Geschl, NeuOffen).

Heuristische Suche 17

best

%% best(+Offen, -Best, -RestOffen)
%%
%% hier wird f = g + h berechnet

% nach Heuristik sortieren
% Heuristik ist hier f=g+h
sortiere(Liste, [BesteElem | RestListe], f).

best(Liste, BesteElem, RestListe):-

Heuristische Suche 18

sortiere (1)

%% Schnellsortierung fir Werte von g, um den minimalen Wert zu finden,
%% und fir Offen nach der A* Heuristik

%% sortiere(+ZuTun, -SortierteListe, +Vergleichskriterium)

%%

%% Rekursive Variante von Quicksort, Splitimmer auf dem ersten Element;
%% in Vergleich steht f oder min: f sortiert nach der f Heuristik von A*,

%% min sortiert Zahlen aufsteigend

sortiere([SplitElem | RestListe], SortierteListe, Vergleich):-
split(RestListe, SplitElem, Klein, Gross, Vergleich),
R %% ein gefundener Split ist genug!
%% roter Cut!
sortiere(Klein, Kleinsortiert, Vergleich),
sortiere(Gross, Grosssortiert, Vergleich),
append(Kleinsortiert, [SplitElem | Grosssortiert], SortierteListe).

sortiere([],[], _Vergleich).

Heuristische Suche 19

sortiere (2)

split([X | Xs], SplitElem, [X | KleinSortiert], GrossSortiert, f):-
f(SplitElem,_Pfad,WertY),
f(X,_P,WertX),
WertX =< WertY,
split(Xs, SplitElem, KleinSortiert, GrossSortiert, f).

split([X | Xs], SplitElem, KleinSortiert, [X | GrossSortiert], f):-
f(SplitElem,_Pfad,WertY),
f(X,_P,WertX),
WertX > WertY,
split(Xs, SplitElem, KleinSortiert, GrossSortiert, f).

split([X | Xs], SplitElem, [X | KleinSortiert], GrossSortiert, min):-
X =< SplitElem,
split(Xs, SplitElem, KleinSortiert, GrossSortiert, min).

split([X | Xs], SplitElem, KleinSortiert, [X | GrossSortiert], min):-
X > SplitElem,
split(Xs, SplitElem, KleinSortiert, GrossSortiert, min).

split([], _SplitElem, [], [I, _Vergleich). % Abbruch fuer beide Varianten

Heuristische Suche 20

f=g+h

gstern([Knoten, hh],_Knotenliste, G):- % Zusammensetzen der Pfadkosten
g([Knoten, hh], G).

gstern([Knoten, Vor | Rest],Knotenliste, Gesamt):-
g([Knoten, Vor], Weg),
\+ member(Vor,Knotenliste),
gstern([Vor | Rest],[Vor | Knotenliste], Vorweg),
Gesamt is Weg + Vorweg.
f(hh, _Pfad, 290). % Hack fuer HH
f(Knoten, [Knoten | Pfad], Wert):-
h(Knoten, _Ziel, H),
findall(G, gstern([Knoten | _P,[], G), AlleG),
sortiere(AlleG, [GMin | _], min),
Wert is H + GMin,
gstern([Knoten | Pfad],[], GMin).

% f mit minimalem g

Heuristische Suche 21

Wegbeispiel HH> DO

%% Der Graph

nachf(hh,hb).

nachf(hh,h).

%% Die Kosten flir die Kanten
g([hb,hh],110).

g([h,hb],115).

%% Die Schatzwerte flr die Heuristik
h(hh,do,290).

h(hb,do,200).

Heuristische Suche

22

nur g, nur h

Wir betrachtemur h,

bertcksichtigen also nicht bisher gegangenen A
Pfad -
wir erhalten Bergsteigen.

b

a und ¢ werden expandiert / / \
Wir betrachtemur g, /d e ®
berlcksichtigen also nicht den zukinftigen h ED \4

Pfad -

wir erhalten eine Breitensuche.
a, b, c, d, e, f (g) werden expandiert.

Wir expandieren immer den ersten
Nachfolger,

wir erhalten eine uninformierte Tiefensuche.
a,b, d, (h), e, i werden expandiert.

Heuristische Suche 23

Problemzerlegung

StraRenkarte mit zwei Briicken Uber den Fluf3

suche Pfad

Heuristische Suche

24

Eine Losung

suche Pfad

Heuristische Suche 25

Problemzerlegung

Statt wie bei den Missionaren und Kannibalen eine Folge
von Operatoranwendungen zu suchen, mit der der
Start- in den Zielzustand Gberfuhrt wird,

zerlegt man jetzt das Gesamtproblem in Teilprobleme, fir
die man eine L6sung sucht.

Alternative Zerlegungen werden als Entscheidungspunkte
angegeben. Man fahrt tber f ODER (ber g.

Alle Teilprobleme mussen gelost werden, damit das
Gesamtproblem geldst ist.

Man muf3 von a nach f UND von f nach z finden.

Heuristische Suche 26

Verwenden der Prologkontrolle

In Prolog kann man das Problem leichtProlog findet hier 4

codieren: Lésungen:
pfad(a,z) :- pfad(a,f), pfad(f,z), write('f).
pfad(a,z) :- pfad(a,g), pfad(g,z), write('g’). bdhf
pfad(a,f) :- pfad(a,d), pfad(d,f), write('d’). bdif
pfad(a,f) :- pfad(a,e), pfad(e,f), write('e"). cehf

pfad(a,d) :- pfad(a,b),pfad(b,d), write('b").
pfad(a,b). pfad(b,d). pfad(d,f).

ceif

pfad(a,e) :- pfad(a,c), pfad(c,e), write('c').
pfad(a,c). pfad(c,e). pfad(e,f).
pfad(f,z) :- pfad(f,h), pfad(h,z), write('h’).

pfad(f,h). pfad(h,z). .
_ _ o Klauseln sind ge-ODER-t.
pfad(f,z) :- pfad(f,i), pfad(i,z), write('i'). Literale sind ge-UND-et.
pfad(f,i). pfad(i,z).

Heuristische Suche 27

Explizite Darstellung

:- op(600, xfx, -->). %lnfixoperator /K
- 0op(500, xfx,). % Infixoperator

--> oder: [b, c].

-->und: [d, €e].

-->und: [f, g]. .
e --> oder: [h]. @ !
f --> oder: [h, i].
ziel(d).

ziel(g).
ziel(h).

)
)

Heuristische Suche 28

Tiefensuche in UND-ODER-Baumen

%loese(+Knoten, -Loesungsbaum)
%findet fir einen Startknoten einen Baum zu einem Zielknoten

loese_alle([], [])-

loese_alle ([1, [D).

loese_alle ([Knoten | Knotenl], [Baum |Baeume]) :-
loese (Knoten, Baum),
loese_alle (Knotenl, Baeume).

loese(Knoten, Knoten) :- ziel (Knoten).

loese(Knoten, Knoten --> Baum) :-
Knoten --> oder:Knoten2, %ODER-Knoten
member(Knotenl, Knoten2), %Nachfolger wahlen
loese(Knotenl, Baum).

loese(Knoten, Knoten --> und: Baeume) :-
Knoten --> und: Knoten1, %UND-Knoten
loese_alle(Knotenl, Baeume). %alle Nachfolger lésen

Heuristische Suche 29

