
Heuristische Suche 1

Heuristische Suche

• Kosten von Expansionen (Kanten, Übergängen) können
unterschiedlich sein.

• Einige Expansionen (Kanten, Übergänge) sind
vielversprechender als andere.

• Information über den Sachbereich soll ausgenutzt
werden! (Bisher: uninformierte Suche.)

Heuristische Suche 2

Kosten

Start

K

Ziel

...

bisheriger Pfad g

künftiger Pfad h

Lösung f

Gleichmäßige Kosten bei jeder Expansion:
• Länge des Pfades zur Lösung ergibt die Kosten
• Länge des Gesamtpfades ergibt sich aus bisherigem und
 zukünftigem Pfad
Wie schätzt man die Länge des künftigen Pfades ab?

Heuristische Suche 3

Informierte Suche

Luftlinie:
HH - Do 290 km
HB - Do 200 km
Os - Do 100 km
H - Do 190 km
Bi - Do 90 km
Ka - Do 180 km

Luftlinie unterschätzt tatsächliche Entfernung.

HH

HB

H
Os

Bi Ka

Do

110 175

105
100

115

110
100

110

195

Heuristische Suche 4

Bergsteigen

• Die Nachfolgeknoten werden nach ihrer Entfernung vom Ziel
angeordnet:
je näher ein Zustand dem Ziel, desto besser ist er.

• Manchmal muß man sich aber vom Ziel entfernen, um es zu
erreichen.
Z.B. muß man eine Person wieder zurückfahren, um das
Missionare-Kannibalen-Problem zu lösen.

• Vorgebirgsproblem: ein Knoten wird nicht expandiert, obwohl er
zum Ziel führt, weil ein anderer eine bessere Bewertung hat
(näher am Ziel ist, aber nicht zum Ziel führt).

Heuristische Suche 5

Beispiel Bergsteigen

HH

HB

H
Os

Bi Ka

Do

110 175

105
100

115

110
100

110

195

Luftlinie:
HH - Do 290 km
HB - Do 200 km
Os - Do 100 km
H - Do 190 km
Bi - Do 90 km
Ka - Do 180 km

h(HH)=290
h(HB)=200
h(H)=190
h(BI)= 90
h(Ka)=180

HH --> DO
H

BI

DO Kein guter Weg!

Heuristische Suche 6

A*

g(n) zurückgelegter Weg vom Anfang bis n
h(n) geschätzter Abstand zum Ziel
h*(n) tatsächliche Kosten
f(n) = g(n) + h(n)

 Wenn h(n) < h*(n) - Kosten zu niedrig geschätzt -
werden mehr Knoten als nötig expandiert.

 Wenn h(n) > h*(n) - Kosten zu hoch geschätzt -
werden eventuell die Knoten, die zum Ziel führen, nicht
expandiert.

 Wenn h die untere Grenze von h* trifft, heißt das Suchverfahren A*.

Heuristische Suche 7

Beispiel A*
HH

HB

H
Os

Bi Ka

Do

110 175

105
100

115

110
100

110

195

Luftlinie:
HH - Do 290 km
HB - Do 200 km
Os - Do 100 km
H - Do 190 km
Bi - Do 90 km
Ka - Do 180 km

f(HH)=g(HH)+h(HH)=0+290
f(HB)=110+200=310
f(H)=175+190=365
f(OS)= 215+100=315
f(H)=225+190=415
f(DO)=325+0=325
f*(HH) sind die tatsächlichen Kosten des Gesamtpfades: 0+h*(HH)=325

optimaler Pfad!

Heuristische Suche 8

Monotonie

Jeder Schritt von einem Knoten zum anderen kostet mindestens ε > 0.

• Die geschätzten Kosten f(n) können bei einem Nachfolgeknoten
von n nicht kleiner werden!
f(ni) ≤ f(nj), nj Nachfolger von ni

• Die Kosten des bisherigen Pfades werden nicht weniger: g(ni) ≤
g(nj), nj Nachfolger von ni

• Die geschätzen Kosten des Restpfades auch nicht!
 h(ni) ≤ h(nj), nj Nachfolger von ni

Heuristische Suche 9

Zulässigkeit

Ein Suchverfahren ist zulässig (admissible), wenn
es für jeden Graphen einen optimalen Pfad findet und dann anhält ,
falls es einen solchen Pfad gibt.

Ist A* zulässig?
Beweis in 4 Schritten:
1) Lemma: jeder Knoten des optimalen Pfads ist mal in Offen.
2) A* hält nicht an, bevor das Ziel erreicht ist.
3) A* hält an.
4) Der Pfad, den A* findet, ist optimal.

Heuristische Suche 10

Lemma

Wenn h(n) ≤ h*(n) für alle Knoten n,
dann gibt es immer für jeden optimalen Pfad einen Knoten n‘ dieses

Pfades in OFFEN und
es gilt f(n‘) ≤ f*(n‘).

Vorüberlegungen:
h ≤ h* , also wird jeder relevante Knoten (und einige mehr)
betrachtet.
Für jeden optimalen Pfad gibt es einen Knoten n' in Offen mit
f(n') ≤ f*(s).
Kein Knoten aus Offen kostet mehr als der Gesamtpfad, weil
h(n) ≈ f*(s) - g*(n), h also wirklich den Restpfad schätzt.

Heuristische Suche 11

Beweis

Sei n0 , n1, ... , nk ein optimaler Pfad von n0 nach nk .

Sei n‘ ein Knoten in Offen. Es muss einen Knoten in Offen geben,
wenn es einen optimalen Pfad gibt und nk noch nicht in
Geschlossen ist, so dass der Algorithmus anhält.

Wenn n‘ der erste Knoten in Offen ist, sind alle Vorgänger von n‘in
Geschlossen und g(n‘)=g*(n‘).

Also gilt: f(n‘) = g*(n‘) + h(n‘) ≤ g*(n‘) + h*(n‘) = f*(n‘)

Heuristische Suche 12

Theorem A* ist zulässig

Wenn h(n) ≤ h*(n) für alle Knoten n und das Suchproblem ist
monoton,

dann ist A* zulässig.

Vorüberlegung:

fieser Fall 1: A* hält an, bevor das Ziel erreicht ist.

fieser Fall 2: A* hält nie an.

fieser Fall 3: A* findet einen Lösungspfad, der nicht optimal ist.

Heuristische Suche 13

Beweis -- FF1

Wenn A* anhält, bevor das Ziel erreicht ist, dann muss Offen leer
sein.
A* hält nur an, wenn Offen leer ist oder das Ziel erreicht ist.

Unser Lemma sagt, dass Offen immer einen Knoten enthält, der auf
dem optimalen Pfad liegt bis das Ziel erreicht ist.

Der Fall kann nicht vorkommen.

Heuristische Suche 14

Beweis -- FF2

A* hält an, weil nur endlich viele Knoten expandiert werden und
nur endlich viele Pfade zu diesen durchlaufen werden, bis der
optimale Pfad gefunden ist.

Knoten, die mehr als f*(s) / ε Schritte vom Start entfernt sind,
werden nie geöffnet. Sie wären teurer als irgendein Knoten n‘ in
Offen, der auf dem optimalen Pfad liegt.

Knoten in Geschlossen werden nie wieder betrachtet.

Somit hält A* immer nach endlich vielen Schritten an.

Heuristische Suche 15

Beweis -- FF3

Was wäre, wenn A* einen Lösungspfad findet, der nicht optimal
ist?

 Der hätte höhere Kosten als der optimale:

f*(t) = g(t) > f*(s)

Laut Lemma muss es vorm anhalten einen Knoten n‘ in Offen
gegeben haben, so dass

f(n‘) ≤ f*(s) ≤ f(t).

Dann wählt A* den Knoten n‘ und nicht t.

q.e.d.
Heuristische Suche 16

A* in Prolog

astern(Start,Ziel,Pfad,Weglaenge):-
suche([Start],[],Ziel,Pfad,Weglaenge).

%% suche(+Offen, +Geschlossen, +Ziel, -Pfad, -Wert)
suche([], _Geschl, _Ziel, _N, _W):- % Misserfolg

write('Schade'), nl,
!,
fail.

suche(Offen, Geschl, Ziel, N, W):-
best(Offen, Best, RestOffen), % Offen sortieren, besten Knoten zuerst
(Best = Ziel -> % Erfolg
 f(Ziel, N, W) % optimaler Pfad
; % weitersuchen
 findall(Succ, nachf(Best,Succ), AllSuccs), % Besten expandieren
 verteile(AllSuccs, RestOffen, [Best | Geschl], NeuOffen),

 % Nachfolger in Offen ohne Doppelte
 suche(NeuOffen, [Best | Geschl], Ziel, N, W)
).

Heuristische Suche 17

verteile

%% verteile(+AlleNachfolger, +OffenOhneBest, +Geschlossen, -NeuOffen)
verteile([], Offen, _Geschl, Offen). % gibt nichts mehr zu verteilen

verteile([AK | Rest], Offen, Geschl, NeuOffen):- % Knoten ist schon in Offen
member(AK, Offen),
!, % roter CUT!
verteile(Rest, Offen, Geschl, NeuOffen). % nun den Rest verteilen

verteile([AK | Rest], Offen, Geschl, NeuOffen):- % Knoten ist schon in
% Geschlossen

member(AK,Geschl),
!, % roter CUT!
verteile(Rest, Offen, Geschl, NeuOffen). % nun den Rest verteilen

verteile([AK | Rest], Offen, Geschl, NeuOffen):- % Knoten in Offen eintragen
verteile(Rest, [AK | Offen], Geschl, NeuOffen).

Heuristische Suche 18

best

%% best(+Offen, -Best, -RestOffen)
%%
%% hier wird f = g + h berechnet

best(Liste, BesteElem, RestListe):- % nach Heuristik sortieren
% Heuristik ist hier f=g+h

sortiere(Liste, [BesteElem | RestListe], f).

Heuristische Suche 19

sortiere (1)

%% Schnellsortierung für Werte von g, um den minimalen Wert zu finden,
%% und für Offen nach der A* Heuristik
%% sortiere(+ZuTun, -SortierteListe, +Vergleichskriterium)
%%
%% Rekursive Variante von Quicksort, Split immer auf dem ersten Element;
%% in Vergleich steht f oder min: f sortiert nach der f Heuristik von A*,
%% min sortiert Zahlen aufsteigend

sortiere([SplitElem | RestListe], SortierteListe, Vergleich):-
split(RestListe, SplitElem, Klein, Gross, Vergleich),
!, %% ein gefundener Split ist genug!

%% roter Cut!
sortiere(Klein, Kleinsortiert, Vergleich),
sortiere(Gross, Grosssortiert, Vergleich),
append(Kleinsortiert, [SplitElem | Grosssortiert], SortierteListe).

sortiere([],[], _Vergleich).

Heuristische Suche 20

sortiere (2)
split([X | Xs], SplitElem, [X | KleinSortiert], GrossSortiert, f):-

f(SplitElem,_Pfad,WertY),
f(X,_P,WertX),
WertX =< WertY,
split(Xs, SplitElem, KleinSortiert, GrossSortiert, f).

split([X | Xs], SplitElem, KleinSortiert, [X | GrossSortiert], f):-
f(SplitElem,_Pfad,WertY),
f(X,_P,WertX),
WertX > WertY,
split(Xs, SplitElem, KleinSortiert, GrossSortiert, f).

split([X | Xs], SplitElem, [X | KleinSortiert], GrossSortiert, min):-
X =< SplitElem,
split(Xs, SplitElem, KleinSortiert, GrossSortiert, min).

split([X | Xs], SplitElem, KleinSortiert, [X | GrossSortiert], min):-
X > SplitElem,
split(Xs, SplitElem, KleinSortiert, GrossSortiert, min).

split([], _SplitElem, [], [], _Vergleich). % Abbruch fuer beide Varianten

Heuristische Suche 21

f = g + h

gstern([Knoten, hh],_Knotenliste, G):- % Zusammensetzen der Pfadkosten
g([Knoten, hh], G).

gstern([Knoten, Vor | Rest],Knotenliste, Gesamt):-
g([Knoten, Vor], Weg),
\+ member(Vor,Knotenliste),
gstern([Vor | Rest],[Vor | Knotenliste], Vorweg),
Gesamt is Weg + Vorweg.

f(hh, _Pfad, 290). % Hack fuer HH

f(Knoten, [Knoten | Pfad], Wert):- % f mit minimalem g
h(Knoten, _Ziel, H),
findall(G, gstern([Knoten | _P],[], G), AlleG),
sortiere(AlleG, [GMin | _], min),
Wert is H + GMin,
gstern([Knoten | Pfad],[], GMin).

Heuristische Suche 22

Wegbeispiel HH à DO

%% Der Graph

nachf(hh,hb).
nachf(hh,h).
...

%% Die Kosten für die Kanten

g([hb,hh],110).
g([h,hb],115).
...

%% Die Schätzwerte für die Heuristik

h(hh,do,290).
h(hb,do,200).
...

Heuristische Suche 23

nur g, nur h

a

b c

d e f g

h i j k

Wir betrachten nur h ,
berücksichtigen also nicht bisher gegangenen

Pfad -
wir erhalten Bergsteigen.
a und c werden expandiert

Wir betrachten nur g,
berücksichtigen also nicht den zukünftigen

Pfad -
wir erhalten eine Breitensuche.
a, b, c, d, e, f (g) werden expandiert.

Wir expandieren immer den ersten
Nachfolger,

wir erhalten eine uninformierte Tiefensuche.
a, b, d, (h), e, i werden expandiert.

Heuristische Suche 24

Problemzerlegung

a

b c

d e

f
g

h

i j

k

z

Straßenkarte mit zwei Brücken über den Fluß

suche Pfad
a - z

über f über g

a - f f - z a - g g - z

 d e i h

a - d d - f a-e e - f

e c i k

a-e e-g a-c c-g

b b c b c

a-b b-d a-b b-e a-c c-e

Heuristische Suche 25

Eine Lösung

suche Pfad
a - z

über f

a - f f - z

 d h

a - d d - f

b

a-b b-d

f - h h - z

a

b c

d e

f
g

h

i j

k

z

Heuristische Suche 26

Problemzerlegung

Statt wie bei den Missionaren und Kannibalen eine Folge
von Operatoranwendungen zu suchen, mit der der
Start- in den Zielzustand überführt wird,

zerlegt man jetzt das Gesamtproblem in Teilprobleme, für
die man eine Lösung sucht.

Alternative Zerlegungen werden als Entscheidungspunkte
angegeben. Man fährt über f ODER über g.

Alle Teilprobleme müssen gelöst werden, damit das
Gesamtproblem gelöst ist.
Man muß von a nach f UND von f nach z finden.

Heuristische Suche 27

Verwenden der Prologkontrolle

In Prolog kann man das Problem leicht
codieren:

pfad(a,z) :- pfad(a,f), pfad(f,z), write('f').
pfad(a,z) :- pfad(a,g), pfad(g,z), write('g').
pfad(a,f) :- pfad(a,d), pfad(d,f), write('d').
pfad(a,f) :- pfad(a,e), pfad(e,f), write('e').
pfad(a,d) :- pfad(a,b),pfad(b,d), write('b').

pfad(a,b). pfad(b,d). pfad(d,f).

pfad(a,e) :- pfad(a,c), pfad(c,e), write('c').

pfad(a,c). pfad(c,e). pfad(e,f).

pfad(f,z) :- pfad(f,h), pfad(h,z), write('h').

pfad(f,h). pfad(h,z).

pfad(f,z) :- pfad(f,i), pfad(i,z), write('i').

pfad(f,i). pfad(i,z).

Prolog findet hier 4
Lösungen:

b d h f
b d i f
c e h f
c e i f

Klauseln sind ge-ODER-t.
Literale sind ge-UND-et.

Heuristische Suche 28

Explizite Darstellung

:- op(600, xfx, -->). %Infixoperator
:- op(500, xfx, :). % Infixoperator

a --> oder: [b, c].
b --> und: [d, e].
c --> und: [f, g].
e --> oder: [h].
f --> oder: [h, i].
ziel(d).
ziel(g).
ziel(h).

a

b c

d e f g

h i

Heuristische Suche 29

Tiefensuche in UND-ODER-Bäumen

%loese(+Knoten, -Loesungsbaum)
%findet für einen Startknoten einen Baum zu einem Zielknoten

loese_alle([], []).

loese_alle ([], []).
loese_alle ([Knoten | Knoten1], [Baum |Baeume]) :-

loese (Knoten, Baum),
loese_alle (Knoten1, Baeume).

loese(Knoten, Knoten) :- ziel (Knoten).
loese(Knoten, Knoten --> Baum) :-

Knoten --> oder:Knoten2, %ODER-Knoten
member(Knoten1, Knoten2), %Nachfolger wählen
loese(Knoten1, Baum).

loese(Knoten, Knoten --> und: Baeume) :-
Knoten --> und: Knoten1, %UND-Knoten
loese_alle(Knoten1, Baeume). %alle Nachfolger lösen

