Problemlésende Agenten

Formuliere Ziel und Problem
Wahrnehmung des Ausgangszustandes

Suche einer geeigneten Handlungsfolge, um zum Ziel zu kommen
Wahrnehmung des Zustands
Ziel erreicht?

Bewertung der Handlungsfolge

Suche in Prolog 1

Suche

Suchproblem
Anfangszustand (Anfangsknoten)
Zielzustand (Zielknoten)
Zustandsiubergdnge (Operatoren)
Problemraum:
Knoten und Operatoren

Operator expandiert einen Knoten n, d.h. erzeugt Nachfolge- knote

Kriterien :
kUrzesten, billigsten, schnellsten, ... Pfad finden

wann ist eine Lésung gefunden? (Abbruchkriterium)

Strategien
Tiefen-/Breitensuche, heuristische Suche, A*

Suche in Prolog

zum Knoten n.

Freiburger Staubsaugerwelt

Knoten: &
2 Zimmer, (=) Schmutz — =
Operatoren: /\FS

)
A

ins linke Zimmer, 1/\ HS
-

ins rechte Zimmer,

saugen
Ziel:
- Schmutz in den Zimmern Kohler/Nebel
Suche in Prolog 3

Einzustandsproblem
staubsaugen 1 e\ . BL 5
operator (1, 3). operator (5, 6). == ==
operator (2, 4). operator (7, 8). 2 1 ﬁ 6
rechts: == ==
operator (1, 5). operator (2, 6).
operator (3, 7). operator (4, 8). 3 m‘ -~ ﬁ 7
links:
operator (5, 1). operator (6, 2). 4 a ﬁ 8

operator (7, 3). operator (8, 4).

Suche in Prolog

Problemraum

Suche in Prolog 5

Einfache rekursive Suche

start(1).

operator (1, 3). operator (3, 7). operator (7, 8).

operator (2, 4). operator (4, 8).

operator (5, 6). operator (6, 2). operator (1, 5).

operator (2, 6). operator (5, 1). operator (7, 3). operator (8, 4).

suche (Ziel):-
start (Start),
pfad (Start, Ziel).

pfad (Zustand, Zustand). %Zustand gleich, also Erfolg!
pfad (Start, Ziel):-

operator (Start, Zwischen), write (Zwischen), nl,

pfad (Zwischen, Ziel).

Suche in Prolog

Ergebnis

Aufruf:
suche (8).
Ergebnis:
3

7
8

Achtung:
Reihenfolge der Operator-
Fakten bestimmt den Pfad!

suche (4).

A 00O N W

Wir haben den Pfad nur ausgedruckt,
nicht reprasentiert!

Suche in Prolog 7

Mehrzustandsproblem
A][]

A A .. A A
_ALA 4 A

Operatoren verwenden mehrere Zustande

operator(saug, a, schmutz, DreckB, a, sauber, DreckB).
operator(links, b, DreckA, DreckB, a, DreckA, DreckB).

A 4

in Prolog ganz einfach!

Suche in Prolog

Zustande und Operatoren in Prolog

%Zustand: Ort, Dreck in Raum A, Dreck in Raum B
start(a, schmutz, schmutz).

%operator(Name,+Ort,+DreckA, +DreckB, -NeuOrt, -NeuA, -NeuB)
operator(saug, a, schmutz, DreckB, a, sauber, DreckB).
operator(saug, b, DreckA, schmutz, b, DreckA, sauber).
operator(rechts, a, DreckA, DreckB, b, DreckA, DreckB).
operator(links, b, DreckA, DreckB, a, DreckA, DreckB).

Suche in Prolog

Einfache rekursive Suche

suche (ZielO, ZielA, ZielB):-
start (StartO, StartA, StartB),
pfad (StartO, StartA, StartB, ZielO, ZielA, ZielB).

pfad (Ort, A, B, Ort, A, B). %Start = Ziel, also Erfolg!

pfad (StartO, StartA, StartB, ZielO, ZielA, ZielB):-
operator (Name, StartO, StartA, StartB, NeuO, NeuA, NeuB),
write (Name),
pfad (NeuO, NeuA, NeuB, ZielO, ZielA, ZielB).

Suche in Prolog

10

Aufruf:
suche (X, sauber,sauber). suche (a, sauber, sauber)
Ergebnis:
saug saug
rechts rechts
saug saug
links

* Reihenfolge der Operator-Fakten wichtig!

» Anwendbarkeit des Operators wird durch die +Argumente bestimmt.

» Pfad wird per Rickzug gefunden.
» Pfad ist nicht reprasentiert!

Suche in Prolog

Reprasentation von Graphen - Fakten

a

b/\
N

Y% if&

nachf(a,b). nachf(a,c). ziel(j). ziel(f).
nachf(b,d). nachf(b,e).

nachf(e,i). nachf(e,j).

nachf(d,h).

nachf(c,f). nachf(c,g).

nachf(f,k).

C

Y
&
\k

Suche in Prolog

12

Graphen als Knoten mit Liste der
Nachfolger

T

b c
e
k

A i/b

nachf(a, [b,c]). ziel(j). ziel(f).
nachf(b, [d,e]).

nachf(e, [j.j])-

nachf(d, [h]).

nachf(c, [f,q]).

nachf(f, [k]).

Suche in Prolog 13

Von Fakten zu Listen -- Rekursion

a

b/\
N

% /65

sammeln(Knoten, Pfad):- ziel(Knoten), write(Pfad).
sammeln(Knoten, Pfad):-
nachf(Knoten, Nachfolger),
sammeln(Nachfolger, [Knoten|Pfad]).

C

J/
&
\k

sammeln(a, []) ergibt:fe, b, a] _
Suche in Prolog 14

Von Fakten zu Listen 2

findall(Element, Problem, Ergebnisse):-

call (Problem), % finde eine Lésung
assertz (stack(Element)), % trage sie ein
fail % suche nach weiteren Lésungen
; assertz (stack(ende)), % markiere das Ende der Losungen
sammle (Ergebnisse). % sammle die Eintrage

Aufruf zum Beispiel:

?- findall (X, nachf (a, X), Nachfolger).
Nachfolger = [b, c]

Suche in Prolog 15

Behandlung von Listen

[a, b, c, d]

member(Element, [Element | Rest]). %Abbruchbedingung zuerst!

member (Element, [Erst|Rest]):-

member (Element,Rest). % rekursiver Abstieg Uber die Liste

eingebautes Pradikat der Basisbibliothek
?- [library (basics)].

member(Element, Liste).

Suche in Prolog 16

Suche mit Listen

OFFEN: Liste der noch nicht expandierten Knoten
GESCHLOSSEN: Liste der expandierten Knoten

Reihenfolge der Knoten in OFFEN bestimmt Suchstrategie:

* Nachfolgeknoten vorn in die Liste --> Tiefensuche
* Nachfolger hinten in die Liste --> Breitensuche
» bester Nachfolger vorn in die Liste --> Bestensuche

Suche in Prolog 17

Tiefensuche mit Zyklenerkennung

/\

; b c
% tiefensuche(P, K, L)
% P - bisherigen Pfad merken! \ / \
% K - aktueller Knoten € @ g
% L - Gesamtpfad konstruieren! _ ' EI A ’
i
h

tiefensuche (Pfad, K, [K|Pfad]) :- ziel(K).

tiefensuche (Pfad, K, L):-
nachf (K, K1), % aktuellen Knoten expandieren
\+ member(K1, Pfad), %Nachfolger nicht im bisherigen Pfad!
tiefensuche ([K|Pfad], K1, L). % bisherigen Pfad aktualisieren

?- tiefensuche ([], a, L).
L=1j, e, b,a];L=[f, c,a];no

Suche in Prolog 18

Breitensuche

% breitensuche ([[aktuellOffen] | Offen], Loesung)
% K aktueller Knoten
% Nneu alle Nachfolger eines Knotens

breitensuche ([[K| P]|_], [K|P)]) :- ziel(K). % Erfolg
breitensuche ([[K| P] |Offen], Loesung):-
findall ([K1, K| P],
(nachf(K, K1), \+ member(K1, [K|P])), % nichtzyklische Expansion
Nneu),
append (Offen, Nneu, NeuOffen), !,
breitensuche (NeuOffen, Loesung)
; breitensuche (Offen, Loesung).

% Nachfolger hinten anhéngen!
% rekursiver Aufruf NeuOffen
% rekursiver Aufruf Offen

% (keine Nachfolger)

Suche in Prolog 19

Ergebnis

a

b/\c
d/\e f/\
h/ I/E \k

breitensuche([[a]], Geschl).

Entwicklung von Offen
Offen: NeuOffen:

I [[b, a], [c, a]]
[[c, al] [[c, a], [d, b, &], [e, b, a]]
[[d, b, a],[e,b,a]] [[d,b,a] [e b, allfc, a] g c,al

Suche in Prolog 20

Eigenschaften der Breitensuche

Vollstandig: findet eine Losung, wenn es sie gibt
Optimal: findet den kirzesten Pfad

Aufwendig: Anzahl der Knoten, die expandiert werden
b: maximaler Verzweigungsfaktor

d: Tiefe eines Losungspfades

O(bd) dies ist auch der Platzbedarf

Suche in Prolog 21

Suche mit speziellen Operatoren

Start

A p
WA

A A
216

3 Missionare und 3 Kannibalen sind an einem Flussufer. Alle wollen
ans andere Ufer. Sie haben ein Boot, das bis zu 2 Personen
befordern kann. Wenn an einem Ufer mehr Kannibalen als
Missionare sind, werden die Missionare verspeist. Wie kommen alle
Personen heil ans andere Ufer?

Suche in Prolog 22

Reprasentation

Nur ein Ufer darstellen -- das andere ist komplementar!

Argumentstellen ausnutzen:

Anzahl Missionare,

Anzahl Kannibalen,

An-Abwesenheit des Bootes

Operator:

Anwendbarkeitsbedingung (legal move)
Ubersetzen

Bedingung an beiden Ufern prifen

Suche in Prolog 23

... In Prolog

Anfangszustand z(3,3,1)
Zielzustand z(0,0,0)
10 spezielle Operatoren:

% nachf(+aktuellerKnoten, -Nachfolger)

nachf(z(M,K,1), z(Mneu, K,0)):- %ein Missionar setzt tiber
M >0, %Anwendbarkeit
Mneu is M - 1, %Ubersetzen
(K £ Mneu; Mneu =0), %Bedingung am Anfangsufer
Flis 3-K, %Ankommen
F2 is 3-Mneu,

(F1<F2; F2=0). %Bedingungen am Zielufer

Suche in Prolog 24

Problemraum

/ 3’3’15\
31Q 3,2,0 $2,2,0
7 3,2,1%

3,0,0
""3,11
1,1,0T
2,2,1
.. 020 Breitensuche
,.0311
v O,l,OT

0,2,1‘<\} 8'(1)’(1) A 111

v

Suche in Prolog 25

allgemeines Suchprogramm

suche(Offen, Geschl, Ziel):-
member (Ziel, Offen),
write(Geschl).

% positiver Abbruch

suche(Offen, Geschl, Ziel):-
best(Offen, Best, RestOffen), %Sortierung von Offen bestimmt Strategie
findall(Nachf,
nachf(Best, Nachf), %alle Nachfolger des besten Knotens
AlleNachf),
verteile(AlleNachf,RestOffen, [Best| Geschl], NeuOffen),
%keine Doppelten in NeuOffen!
suche(NeuOffen, [Best|Geschl], Ziel).

Suche in Prolog 26

Verteilung der Nachfolger

%verteile(+AlleNachf,+RestOffen,+Geschlossen,-NeuOffen)
verteile([], Offen, Geschl, Offen). %keine Nachfolger -- fertig!
%Offen wird das Ergebnis
verteile(JAK|Rest], Offen, Geschl, NeuOffen):-
member(AK, Offen), !,
verteile(Rest, Offen, Geschl, NeuOffen).
verteile(JAK|Rest], Offen, Geschl, NeuOffen):-
member(AK, Geschl), !,
verteile(Rest, Offen, Geschl, NeuOffen).
verteile(JAK|Rest], Offen, Geschl, NeuOffen):-
verteile(Rest, [AK|Offen], Geschl, NeuOffen). % Nachfolger in Offen
%einfligen

%Nachfolger in Offen ---
%restliche Nachfolger

%Nachfolger in Geschl ---
%restliche Nachfolger

Suche in Prolog 27

Plazierung der Nachfolger in Offen

* Tiefensuche, Breitensuche, Heuristik iber das Pradikat best

explizieren!
Welches Element aus der Offen-Liste wird genommen?
%best(+Offen, -Best, -RestOffen)

best([Erst|Rest], Erst, Rest). %Triviale Losung, die die Sortierung %von

Offen tbernimmt,
%ergibt Breiten- oder Tiefensuche.

Suche in Prolog 28

