
Suche in Prolog 1

Problemlösende Agenten

• Formuliere Ziel und Problem

• Wahrnehmung des Ausgangszustandes

• Suche einer geeigneten Handlungsfolge, um zum Ziel zu kommen
Wahrnehmung des Zustands
Ziel erreicht?

• Bewertung der Handlungsfolge

Suche in Prolog 2

Suche

Suchproblem:
Anfangszustand (Anfangsknoten)
Zielzustand (Zielknoten)
Zustandsübergänge (Operatoren)

Problemraum:
Knoten und Operatoren
Operator expandiert einen Knoten n, d.h. erzeugt Nachfolge- knoten

zum Knoten n.
Kriterien :

kürzesten, billigsten, schnellsten, ... Pfad finden
wann ist eine Lösung gefunden? (Abbruchkriterium)

Strategien:
Tiefen-/Breitensuche, heuristische Suche, A*

Suche in Prolog 3

Freiburger Staubsaugerwelt

Knoten:

2 Zimmer, (¬) Schmutz

Operatoren:

ins linke Zimmer,
ins rechte Zimmer,
saugen

Ziel:

¬ Schmutz in den Zimmern Köhler/Nebel
Suche in Prolog 4

Einzustandsproblem
staubsaugen:
operator (1, 3). operator (5, 6).
operator (2, 4). operator (7, 8).

rechts:
operator (1, 5). operator (2, 6).
operator (3, 7). operator (4, 8).

links:
operator (5, 1). operator (6, 2).
operator (7, 3). operator (8, 4).

1

2

3

4

5

6

7

8

Suche in Prolog 5

Problemraum

1 5

3 7 2 6

4 8

Suche in Prolog 6

Einfache rekursive Suche
start(1).
operator (1, 3). operator (3, 7). operator (7, 8).
operator (2, 4). operator (4, 8).
operator (5, 6). operator (6, 2). operator (1, 5).
operator (2, 6). operator (5, 1). operator (7, 3). operator (8, 4).

suche (Ziel):-
start (Start),
pfad (Start, Ziel).

pfad (Zustand, Zustand). %Zustand gleich, also Erfolg!
pfad (Start, Ziel):-

operator (Start, Zwischen), write (Zwischen), nl,
pfad (Zwischen, Ziel).

Suche in Prolog 7

Ergebnis

Aufruf:
suche (8).

Ergebnis:
3
7
8

Achtung:

Reihenfolge der Operator-

Fakten bestimmt den Pfad!

suche (4).

3
7
8
4

Wir haben den Pfad nur ausgedruckt,
nicht repräsentiert!

Suche in Prolog 8

Mehrzustandsproblem

Operatoren verwenden mehrere Zustände
operator(saug, a, schmutz, DreckB, a, sauber, DreckB).
operator(links, b, DreckA, DreckB, a, DreckA, DreckB).

in Prolog ganz einfach!

saug

links

Suche in Prolog 9

Zustände und Operatoren in Prolog

%Zustand: Ort, Dreck in Raum A, Dreck in Raum B
start(a, schmutz, schmutz).

%operator(Name,+Ort,+DreckA, +DreckB, -NeuOrt, -NeuA, -NeuB)
operator(saug, a, schmutz, DreckB, a, sauber, DreckB).
operator(saug, b, DreckA, schmutz, b, DreckA, sauber).
operator(rechts, a, DreckA, DreckB, b, DreckA, DreckB).
operator(links, b, DreckA, DreckB, a, DreckA, DreckB).

Suche in Prolog 10

Einfache rekursive Suche

suche (ZielO, ZielA, ZielB):-
start (StartO, StartA, StartB),
pfad (StartO, StartA, StartB, ZielO, ZielA, ZielB).

pfad (Ort, A, B, Ort, A, B). %Start = Ziel, also Erfolg!
pfad (StartO, StartA, StartB, ZielO, ZielA, ZielB):-

operator (Name, StartO, StartA, StartB, NeuO, NeuA, NeuB),
write (Name),
pfad (NeuO, NeuA, NeuB, ZielO, ZielA, ZielB).

Suche in Prolog 11

Suchen
Aufruf:

suche (X, sauber,sauber). suche (a, sauber, sauber)

Ergebnis:

saug saug

rechts rechts
saug saug

 links

• Reihenfolge der Operator-Fakten wichtig!

• Anwendbarkeit des Operators wird durch die +Argumente bestimmt.

• Pfad wird per Rückzug gefunden.

• Pfad ist nicht repräsentiert!

Suche in Prolog 12

Repräsentation von Graphen - Fakten

a

b c

d e f g

h i j k

nachf(a,b). nachf(a,c). ziel(j). ziel(f).
nachf(b,d). nachf(b,e).
nachf(e,i). nachf(e,j).
nachf(d,h).
nachf(c,f). nachf(c,g).
nachf(f,k).

Suche in Prolog 13

Graphen als Knoten mit Liste der
Nachfolger

nachf(a, [b,c]). ziel(j). ziel(f).
nachf(b, [d,e]).
nachf(e, [j,j]).
nachf(d, [h]).
nachf(c, [f,g]).
nachf(f, [k]).

a

b c

d e f g

h i j k

Suche in Prolog 14

Von Fakten zu Listen -- Rekursion

sammeln(Knoten, Pfad):- ziel(Knoten), write(Pfad).
sammeln(Knoten, Pfad):-

nachf(Knoten, Nachfolger),
sammeln(Nachfolger, [Knoten|Pfad]).

sammeln(a, []) ergibt: [e, b, a]

b c

d e f g

h i j k

a

Suche in Prolog 15

Von Fakten zu Listen 2

findall(Element, Problem, Ergebnisse):-
call (Problem), % finde eine Lösung
assertz (stack(Element)), % trage sie ein
fail % suche nach weiteren Lösungen

 ; assertz (stack(ende)), % markiere das Ende der Lösungen
sammle (Ergebnisse). % sammle die Einträge

Aufruf zum Beispiel:

?- findall (X, nachf (a, X), Nachfolger).
Nachfolger = [b, c]

Suche in Prolog 16

Behandlung von Listen

member(Element, [Element | Rest]). %Abbruchbedingung zuerst!

member (Element, [Erst|Rest]):-
member (Element,Rest). % rekursiver Abstieg über die Liste

eingebautes Prädikat der Basisbibliothek
?- [library (basics)].
member(Element, Liste).

[a, b, c, d]

a
b

c d

Suche in Prolog 17

Suche mit Listen

OFFEN: Liste der noch nicht expandierten Knoten

GESCHLOSSEN: Liste der expandierten Knoten

Reihenfolge der Knoten in OFFEN bestimmt Suchstrategie:

• Nachfolgeknoten vorn in die Liste --> Tiefensuche

• Nachfolger hinten in die Liste --> Breitensuche

• bester Nachfolger vorn in die Liste --> Bestensuche

Suche in Prolog 18

Tiefensuche mit Zyklenerkennung

% tiefensuche(P, K, L)
% P - bisherigen Pfad merken!
% K - aktueller Knoten
% L - Gesamtpfad konstruieren!

tiefensuche (Pfad, K, [K|Pfad]) :- ziel(K).
tiefensuche (Pfad, K, L):-

nachf (K, K1), % aktuellen Knoten expandieren
\+ member(K1, Pfad), %Nachfolger nicht im bisherigen Pfad!
tiefensuche ([K|Pfad], K1, L). % bisherigen Pfad aktualisieren

?- tiefensuche ([] , a, L).
L= [j, e, b, a] ; L= [f, c, a] ; no

b

d e

h
i j

a

c

f g

k

Suche in Prolog 19

Breitensuche

% breitensuche ([[aktuellOffen] | Offen], Loesung)
% K aktueller Knoten
% Nneu alle Nachfolger eines Knotens

breitensuche ([[K| P] | _], [K|P]) :- ziel(K). % Erfolg
breitensuche ([[K| P] |Offen], Loesung):-
 findall ([K1, K| P],

(nachf(K, K1), \+ member(K1, [K|P])) , % nichtzyklische Expansion
Nneu),

 append (Offen, Nneu, NeuOffen), !, % Nachfolger hinten anhängen!
 breitensuche (NeuOffen, Loesung) % rekursiver Aufruf NeuOffen
 ; breitensuche (Offen, Loesung). % rekursiver Aufruf Offen

 % (keine Nachfolger)

Suche in Prolog 20

Ergebnis

breitensuche([[a]], Geschl).

Entwicklung von Offen

Offen: NeuOffen:
[] [[b, a], [c, a]]
[[c, a]] [[c, a], [d, b, a], [e, b, a]]
[[d, b, a], [e, b, a]] [[d, b, a], [e, b, a], [f, c, a], [g, c, a]]

b c

d e f g

h i j k

a

Suche in Prolog 21

Eigenschaften der Breitensuche

• Vollständig: findet eine Lösung, wenn es sie gibt

• Optimal: findet den kürzesten Pfad

• Aufwendig: Anzahl der Knoten, die expandiert werden

b: maximaler Verzweigungsfaktor

d: Tiefe eines Lösungspfades

O bd() dies ist auch der Platzbedarf

Suche in Prolog 22

Suche mit speziellen Operatoren

3 Missionare und 3 Kannibalen sind an einem Flussufer. Alle wollen
ans andere Ufer. Sie haben ein Boot, das bis zu 2 Personen
befördern kann. Wenn an einem Ufer mehr Kannibalen als
Missionare sind, werden die Missionare verspeist. Wie kommen alle
Personen heil ans andere Ufer?

Suche in Prolog 23

Repräsentation

• Nur ein Ufer darstellen -- das andere ist komplementär!

• Argumentstellen ausnutzen:
Anzahl Missionare,
Anzahl Kannibalen,
An-Abwesenheit des Bootes

• Operator:
Anwendbarkeitsbedingung (legal move)
Übersetzen
Bedingung an beiden Ufern prüfen

Suche in Prolog 24

... in Prolog

Anfangszustand z(3,3,1)

Zielzustand z(0,0,0)

10 spezielle Operatoren:

% nachf(+aktuellerKnoten, -Nachfolger)
nachf(z(M,K,1), z(Mneu, K,0)):- %ein Missionar setzt über

M > 0, %Anwendbarkeit
Mneu is M - 1, %Übersetzen
(K ≤ Mneu; Mneu =0), %Bedingung am Anfangsufer
F1 is 3-K, %Ankommen
F2 is 3-Mneu,
(F1 ≤ F2; F2 = 0). %Bedingungen am Zielufer

Suche in Prolog 25

Problemraum
3,3,1
3,2,0
3,2,1
3,0,0
3,1,1
1,1,0
2,2,1
0,2,0
0,3,1
0,1,0
0,1,1
0,0,0

3,1,0 2,2,0

0,2,1 1,1,1

Breitensuche

Tiefensuche

Suche in Prolog 26

allgemeines Suchprogramm

suche(Offen, Geschl, Ziel):-
member (Ziel, Offen), % positiver Abbruch
write(Geschl).

suche(Offen, Geschl, Ziel):-
best(Offen, Best, RestOffen), %Sortierung von Offen bestimmt Strategie
 findall(Nachf,
 nachf(Best, Nachf), %alle Nachfolger des besten Knotens
 AlleNachf),
verteile(AlleNachf,RestOffen, [Best| Geschl], NeuOffen),
 %keine Doppelten in NeuOffen!
suche(NeuOffen, [Best|Geschl], Ziel).

Suche in Prolog 27

Verteilung der Nachfolger

%verteile(+AlleNachf,+RestOffen,+Geschlossen,-NeuOffen)

verteile([], Offen, Geschl, Offen). %keine Nachfolger -- fertig!
 %Offen wird das Ergebnis

verteile([AK|Rest], Offen, Geschl, NeuOffen):-
member(AK, Offen), !, %Nachfolger in Offen ---
verteile(Rest, Offen, Geschl, NeuOffen). %restliche Nachfolger

verteile([AK|Rest], Offen, Geschl, NeuOffen):-
member(AK, Geschl), !, %Nachfolger in Geschl ---
verteile(Rest, Offen, Geschl, NeuOffen). %restliche Nachfolger

verteile([AK|Rest], Offen, Geschl, NeuOffen):-
verteile(Rest, [AK|Offen], Geschl, NeuOffen). % Nachfolger in Offen

%einfügen

Suche in Prolog 28

Plazierung der Nachfolger in Offen

• Tiefensuche, Breitensuche, Heuristik über das Prädikat best
explizieren!
Welches Element aus der Offen-Liste wird genommen?

%best(+Offen, -Best, -RestOffen)
best([Erst|Rest], Erst, Rest). %Triviale Lösung, die die Sortierung %von

Offen übernimmt,
%ergibt Breiten- oder Tiefensuche.

