Prolog

Idee (Kowalski 1979)

Algorithmus = Logik + Kontrolle
Logik: was ist das Problem?
Kontrolle: wie 16se ich es geschickt?

Sichtweisen:

» Theorembeweiser (Resolution)

+ Datalog (Datenbankanfragesprache)
* Programmiersprache

Hier:

* Programmiersprache kennenlernen,
» Suchverfahren darin implementieren
* Hintergrund: Beweisen

KI Prolog

Modellieren in Prolog

Der Problembereich wird durch
e Fakten und
* Regeln ausgedriickt.

Ein Problem wird durch eine
* Frage ausgedriickt.

Die Kontrolle stellt das Prologsystem zur Verfiigung.
Es gibt nur wenige Moglichkeiten fiir die Programmiererin,

Kontrollstrukturen zu explizieren.

Kl Prolog

Fakten

Ein Fakt ist ein positives Literal.

Es besteht aus

+ einem Priadikatsymbol (beginnend mit Kleinbuchstaben) und

* Argumenten.

Die Anzahl der Argumente ist die Stelligkeit.

Dasselbe Pradikatsymbol bei verschiedener Stelligkeit bezeichnet
verschiedene Pradikate.

vater (X, maria). kinder (uta, maria, mario). kinder/3
mutter (ulf, mario). kinder (uta, [maria, mario]). kinder/2
vater (_v, anna). kinder (maria, anna). kinder/2

kinder/3 und kinder/2 sind verschiedene Pradikate!

Kl Prolog

Argumente eines Pradikates

Ein Argument ist

* eine Variable (beginnend mit GroBbuchstaben oder),

+ eine Konstante (Zahl oder Buchstaben beginnend mit
Kleinbuchstaben),

* eine Funktion oder

* eine Liste.

kinder (uta, maria, mario). kinder/3
kinder (uta, [maria, mario]). kinder/2

KI Prolog

Funktionen und Listen

Funktionen

meist arithmetisch, wobei eine Argumentstelle fiir den Eingabewert,
die andere fiir das berechnete Ergebnis reserviert ist.

sin (X, Y) bedeutet sin (X)=Y

Um Eingabe- und Ausgabeposition zu markieren, wird in der
Dokumentation meist + und - verwendet.

% sin/2, sin (+, -)

:- ensure_loaded (library (math)).

KI Prolog

Listen

Listen sind intern auch Funktionen.

. (Kopf, Rest)

geschrieben als
[Kopf | Rest]

kinder (uta, [maria | X]).

Kl Prolog

Regeln

Hornklauseln sind Klauseln mit nur einem positiven Literal.
Dies ist der Klauselkopf.

Der Klauselkorper ist eine Disjunktion negierter Literale.
{oma (X, Y), = mutter (X, Z), - mutter (Z,Y)}

Hornprogramme sind eine Konjunktion von Hornklauseln.
{oma (X, Y), =~ mutter (X, Z), =~ mutter (Z,Y)}
{oma (X, Y), - mutter (X, Z), -~ vater (Z,Y)}

Prolog-Notation

oma (X, Y) :- mutter (X,Z), mutter (Z,Y).
oma (X, Y) :- mutter (X,Z), vater (Z,Y).
Kl Prolog

Fragen

Fragen bestehen aus einer nicht-leeren Menge negativer Literale.
{= mutter(uta, maria), - mutter(maria, X)}
{= mutter(uta, X), -vater (X, Y)}

Prolog-Notation

?- mutter(uta, maria), mutter(maria,X). (,?-ist der Prompt des Interpreters)
- mutter(uta, X), vater (X, Y). (als Befehl in Dateien)

KI Prolog

Beschreibung eines Problembereichs
(interpretiert)

Fakten eintragen (interaktiv im Interpreter)

- assert(vater(ulf, maria)).

- assert(mutter(uta, maria)).

- assert(mutter(uta, mario)).

- assert(mutter(maria, anna)).

N)))

Regeln eintragen
?- assert((oma(X, Y) :- mutter(X, Z), mutter(Z, Y))).
?- assert((oma(X, Y) :- mutter(X, Z), vater(Z, Y))).

Beschreibung eines Problembereichs
(compiliert)

Fakten und Regeln in eine Datei eintragen.
emacs verwandschaft.pl

% Familie von Maria mit vater/2, mutter/2
vater(ulf, maria).

mutter(uta, maria).

mutter(uta, mario).

mutter(maria, anna).

oma(X, Y) :- mutter(X, Z), mutter(Z,Y).
oma(X, Y) :- mutter(X, Z), vater(Z,Y).

Prolog aufrufen mit prolog
?- [verwandschaft].

Kl Prol Kl Prol
rolog 9 rolog 10
Probleml6sen
Resolution
Wer ist die Oma von Anna? . .
- oma(Oma, anna) oma (uta, anna), -~ mutter (uta, maria), - mutter(maria, anna)
?- oma (Oma, anna).
Oma = uta
- mutter (uta, maria), - mutter(maria, anna) mutter (uta, maria)
Wer sind die Kinder von Uta?
?- mutter(uta, X). \
X = mar?a ; - mutter(maria, anna) mutter(maria, anna)
X =mario ;
no. \/
O
Kl Prolog 1 Klappt nur, wenn Oma mit uta Kl Prolog 1

unifiziert wird.

Substitution

Eine Substitution ist eine endliche Menge
{Vvi/t1,Vv2/t2,..,vn/tn}, wobei Viz Vj fir alle iz
vi/ti bedeutet, da3 die Variable vi an den Term ti gebunden wird.

Eine Substitution anwenden, heilt, alle Vorkommen der Variablen
gleichzeitig durch die betreffenden Terme zu ersetzen.

oma (Oma, anna) o = oma (uta, anna) mit o: { Oma/ uta}

Identitdtssubstitution {}

KI Prolog
13

Unifikation

Eine Substitution o wird Unifikator genannt, wenn
fiir eine endliche Menge von Literalen L

die Anwendung der Substitution

eine Menge mit nur einem Element ergibt.

L:

vater (X, mario).

vater (Y, mario).

vater (ulf, Z).

o { X/ ulf, Y /ulf, Z / mario}

Lo : { vater (ulf, mario) }

Kl Prolog

14

Allgemeinster Unifikator

Ein Unifikator o ist der allgemeinste, wenn fiir jeden anderen
Unifikator t eine Substitution n existiert, so dass
T=0n

Wenn man den allgemeinsten Unifikator durch eine weitere
Substitution spezialisiert, erreicht man einen anderen, nicht
allgemeinsten Unifikator.

unterhalt(ulf, maria, X).
unterhalt(Y, maria, Z).
unterhalt(Y, maria, alimente(Y, V)).

o : { Y /ulf, X/ alimente(ulf, V), Z / alimente(ulf, V)}
T: {Y/ulf, X/ alimente(ulf,1000), Z / alimente(ulf, 1000), VV/1000}

n: {Vv/1000} KI Prolog 15

Unifikationsalgorithmus

Eingabe: nicht-leere Menge L von Literalen

o:={}

Solange L mehr als ein Literal enthalt:
gehe von links nach rechts alle Literale durch
und suche nach Unterschieden.
Wenn keines der unterscheidenden Zeichen
eine Variable ist, halte an "nicht unifizierbar".

Sei X ist Variable und t der im anderen Literal
beginnende Term.

Wenn X in t vorkommt, halte an "nicht unifizierbar".

Sonst o:= o {X/t}

Gib aktuelles o als allgemeinsten Unifikator aus.
KI Prolog

16

Beispiel

L:

unterhalt(ulf, maria, X).
unterhalt(Y, maria, Z).

unterhalt(Y, maria, alimente(Y, V)).

T

1. Unterschied
a:= {Y/ulf}

Lo:

unterhalt(ulf, maria, X).

unterhalt(ulf, maria, Z).

unterhalt(ulf, maria, alimente(ulf, V)).

I

2. Unterschied
g=g {X/al|mente(uKllfPr\ngZ/al|mente(ulf, V)}

17

Ergebnis

Lo:

unterhalt(ulf, maria, X).

unterhalt(ulf, maria, Z).

unterhalt(ulf, maria, alimente(ulf, V)).

I

2. Unterschied
o:= o {X/alimente(ulf, V), Z/alimente(ulf, V)}

Lo:
unterhalt(ulf, maria, alimente(ulf ,V))

Kl Prolog
18

Kontrollfluf3

* Prolog arbeitet von links nach rechts.

* Erst wird ein Kopfliteral gesucht, das mit der Frage unifiziert.

* Dann wird das erste Korperliteral versucht, zu beweisen.

* Gelingt dies, wird das nichste Korperliteral versucht, zu beweisen.

* Gelingt dies nicht, geht Prolog zum néchstliegenden linken Literal
zuriick und versucht einen anderen Beweis fiir dies Literal.

* Wenn es keine Alternativen mehr fiir ein Literal gibt, das nicht
bewiesen werden konnte, so wird folglich bis zum Kopf
zuriickgegangen, d.h. eine andere Klausel versucht, mit der Frage zu
unifizieren.

Folglich: wenn das am weitesten rechts stehende Literal zu beweisen ist,
dann auch die Frage.

Kl Prolos
9 19

Beispiel

?-oma(Oma, anna). vater (ulf, maria).

mutter (uta, maria).
mutter (uta, mario).
mutter (maria, anna).
o: {X/Oma, Y/anna) —» OMa (X,Y) :- mutter (X,Z), mutter (Z,Y).
oma (X, Y) :- mutter (X,Z), vater (Z,Y).

oma (Oma, anna) , - mutter (Oma, Z), -~ mutter (Z, anna)

o: {Oma/uta, Z/maria}

oma (Oma, anna) , = mutter (Oma, maria), - mutter (maria, anna)

f

Kl Prolol
9 20

Zuruckziehen

Kann ein Literal im Klauselkorper nicht bewiesen werden, geht
Prolog zuriick zum links néchsten Literal.

Bereits vorgenommene Unifikationen werden zuriickgezogen.
Unifikation mit einem anderen Literal wird versucht.

KI Prolog

21

Beispiel

vater (ulf, maria).
mutter (uta, mario).
mutter (uta, maria).
mutter (maria, anna).

?- oma(Oma, anna).

o: {X/Oma, Y/anna) —* oma (X, Y) :- mutter (X,Z), mutter (Z,Y).

oma (X, Y) :- mutter (X,2), vater (Z,Y).

oma (Oma, anna) , = mutter (Oma, Z), -~ mutter (Z, anna)

o: {Oma/uta, Y/anna, Z/mario}
oma (Oma, anna) , = mutter (Oma, maria), = mutter (mario, anna)

o: {Omaluta, Y/anna, £Apaga }

22

Rekursion

Wie immer:
* Abbruchbedingung (Induktionsbasis)
» Rekursiver Aufruf (Induktionsschritt)

edge(X, Y).
connected(X,X). % Abbruch
connected (X, Z) :- edge (X, Y), connected (Y, Z). % Aufruf

Immer Endrekursion verwenden!
Sonst keine Reduktion, sondern unendlicher Zirkel.

Kl Prolog

23

In anderen Worten:

* Um ein Ziel zu erfiillen, wird nach einer passenden Klausel
gesucht.

* Ob eine Klausel passt, wird anhand des ersten Arguments des
Pradikats festgestellt (first argument indexing).

 Gibt es mehrere passende Klauseln wird ein choice point
erzeugt.

» Ein Pradikat heil}t deterministisch, wenn nach Erzeugen der
ersten Losung kein choice point bleibt.

KI Prolog

24

Box-Modell

Call G: erster Aufruf des Zieles G

Exit S: erfolgreich bewiesen, Riickgabe der Substitution, evtl.
verbleibt ein choice point

Fail G: Fehlschlag, G kann nicht bewiesen werden
Redo G: Sprung zuriick zum néchsten choice point

Call — Klauseln [—Exit

Debugging

trace: Beobachtung des Kontrollflusses (?- trace.)
notrace: Abschalten der Beobachtung

spy(P): Beobachtung des Pradikats P

nospy(P): Abschalten der Beobachtung

nospyall: Abschalten der Beobachtung aller Pradikate

debug: Normale Abarbeitung bis zum Erreichen des
ersten Beobachtungspunktes

zu G
Fail «— «—Redo
KI Prolog 25 KI Prolog 26
Cut ! Falil

! sorgt dafiir, dass fiir ein Ziel kein alternativer Beweis versucht
wird.

! sorgt dafiir, dass alle choice points vor dem ! geldscht werden.
! vermeidet unnotige Beweisversuche.
A:-Bi1, ..., Bk, !, Bk+1, ..., Bn
 Alternative Losungen fiir B1, ..., Bk suchen.
 Alternative Losungen fiir Bk+1, ..., Bn suchen.
* Waihrend versucht wird, Bk+1, ..., Bn zu erfiillen, werden die
choice points fiir A, B, ..., Bk geloscht.

» Kann Bk+1 nicht erfiillt werden, soll ! von rechts nach links
iiberschritten werden, kann A nicht erfiillt werden.

Kl Prolos
9 27

fail ist immer falsch,

erzwingt Riicksetzen.

student(tom). student (uta). student(paul). student(anne).

alle_studenten :- student(X), write (X), nl, fail.
alle_studenten.

Kl Prolol
9 28

Kombination

» Ausschluss einer Verwendungsweise einer Klausel.

lebewesen (mensch).
lebewesen (hund).

tier (mensch) :- |, fail.
tier (X) :- lebewesen (X).

KI Prolog

29

