
1
KI Prolog

Prolog

Idee (Kowalski 1979)
Algorithmus = Logik + Kontrolle

Logik: was ist das Problem?
Kontrolle: wie l�se ich es geschickt?

Sichtweisen:
¥ Theorembeweiser (Resolution)
¥ Datalog (Datenbankanfragesprache)
¥ Programmiersprache
Hier:
¥ Programmiersprache kennenlernen,
¥ Suchverfahren darin implementieren
¥ Hintergrund: Beweisen
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Modellieren in Prolog

Der Problembereich wird durch
¥ Fakten und
¥ Regeln  ausgedr�ckt.

Ein Problem wird durch eine
¥ Frage ausgedr�ckt.

Die Kontrolle stellt das Prologsystem zur Verf�gung.
Es gibt nur wenige M�glichkeiten f�r die Programmiererin,

Kontrollstrukturen zu explizieren.
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Fakten

Ein Fakt ist ein positives Literal.
Es besteht aus
¥ einem Pr�dikatsymbol (beginnend mit Kleinbuchstaben) und
¥ Argumenten.
Die Anzahl der Argumente ist die Stelligkeit.
Dasselbe Pr�dikatsymbol bei verschiedener Stelligkeit bezeichnet

verschiedene Pr�dikate.

vater ( X, maria).          kinder (uta, maria, mario).       kinder/3
mutter ( ulf, mario).     kinder (uta, [maria, mario]).     kinder/2
vater (_v, anna).          kinder (maria, anna).                kinder/2

kinder/3  und kinder/2  sind verschiedene Pr�dikate!
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Argumente eines Prädikates

Ein Argument ist
¥ eine Variable (beginnend mit Gro§buchstaben oder _),
¥ eine Konstante (Zahl oder Buchstaben beginnend mit

Kleinbuchstaben),
¥ eine Funktion oder
¥ eine Liste.

kinder (uta, maria, mario).       kinder/3
kinder (uta, [maria, mario]).     kinder/2
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Funktionen und Listen

Funktionen
meist arithmetisch, wobei eine Argumentstelle f�r den Eingabewert,

die andere f�r das berechnete Ergebnis reserviert ist.
sin (X, Y)   bedeutet  sin (X) = Y
Um Eingabe- und Ausgabeposition zu markieren, wird in der

Dokumentation meist + und - verwendet.
% sin/2, sin (+, -)

:- ensure_loaded (library (math)).
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Listen

Listen sind intern auch Funktionen.

. (Kopf, Rest)

geschrieben als

[Kopf | Rest]

kinder (uta, [maria | X]).
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Regeln

Hornklauseln sind Klauseln mit nur einem positiven Literal.
Dies ist der Klauselkopf.

Der Klauselk�rper ist eine Disjunktion negierter Literale.
{oma (X, Y), ¬ mutter (X, Z), ¬ mutter (Z,Y)}

Hornprogramme sind eine Konjunktion von Hornklauseln.
{oma (X, Y), ¬ mutter (X, Z), ¬ mutter (Z,Y)}
{oma (X, Y), ¬ mutter (X, Z), ¬ vater (Z,Y)}

oma (X, Y) :- mutter (X,Z), mutter (Z,Y).
oma (X, Y) :- mutter (X,Z), vater (Z,Y).

Prolog-Notation
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Fragen

Fragen bestehen aus einer nicht-leeren Menge negativer Literale.
{¬ mutter(uta, maria), ¬ mutter(maria, X)}
{¬ mutter(uta, X), ¬vater (X, Y)}

Prolog-Notation

?- mutter(uta, maria), mutter(maria,X).  ( „?-“ ist der Prompt des Interpreters)
:- mutter(uta, X), vater (X, Y).                  (als Befehl in Dateien)
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Beschreibung eines Problembereichs
(interpretiert)

Fakten eintragen (interaktiv im Interpreter)

?- assert( vater( ulf, maria)).
?- assert( mutter( uta, maria)).
?- assert( mutter( uta, mario)).
?- assert( mutter( maria, anna)).

Regeln eintragen
?- assert( ( oma( X, Y) :- mutter( X, Z), mutter( Z, Y) ) ).
?- assert( ( oma( X, Y) :- mutter( X, Z), vater( Z, Y) ) ).

10
KI Prolog

Beschreibung eines Problembereichs
(compiliert)

Fakten und Regeln in eine Datei eintragen.
emacs verwandschaft.pl

% Familie von Maria mit vater/2, mutter/2
vater( ulf, maria).
mutter( uta, maria).
mutter( uta, mario).
mutter( maria, anna).
oma( X, Y) :- mutter( X, Z), mutter( Z,Y).
oma( X, Y) :- mutter( X, Z), vater( Z,Y).

Prolog aufrufen mit       prolog
?- [verwandschaft].
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Problemlösen

Wer ist die Oma von Anna?

?-  oma ( Oma, anna).

Oma = uta

Wer sind die Kinder von Uta?

?- mutter( uta, X).

X = maria  ;
X = mario  ;
no.
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Resolution
¬ oma (Oma, anna)      oma (uta, anna), ¬ mutter (uta, maria), ¬ mutter(maria, anna)

¬ mutter (uta, maria), ¬ mutter(maria, anna)              mutter (uta, maria)

¬ mutter(maria, anna)                                   mutter(maria, anna)

Klappt nur, wenn Oma mit uta

unifiziert wird.
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Substitution

Eine Substitution ist eine endliche Menge
{ V1 / t1, V2 / t2, ..., Vn / tn }, wobei Vi≠ Vj f�r alle i≠j

Vi / ti bedeutet, da§ die Variable Vi an den Term ti gebunden wird.

Eine Substitution anwenden, hei§t, alle Vorkommen der Variablen
gleichzeitig durch die betreffenden Terme zu ersetzen.

oma (Oma, anna)  σ  =  oma (uta, anna)  mit  σ: { Oma / uta}

Identit�tssubstitution  { }
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Unifikation

Eine Substitution σ wird Unifikator genannt, wenn
f�r eine endliche Menge von Literalen L
die Anwendung der Substitution
eine Menge mit nur einem Element ergibt.

L:
vater (X, mario).
vater (Y, mario).
vater (ulf, Z).

 σ : { X / ulf, Y / ulf, Z / mario}

Lσ : { vater (ulf, mario) }
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Allgemeinster Unifikator

Ein Unifikator σ ist der allgemeinste, wenn f�r jeden anderen
Unifikator τ  eine Substitution η  existiert, so dass
τ = σ η

Wenn man den allgemeinsten Unifikator durch eine weitere
Substitution spezialisiert, erreicht man einen anderen, nicht
allgemeinsten Unifikator.

unterhalt(ulf, maria, X).
unterhalt(Y, maria, Z).
unterhalt(Y, maria, alimente(Y, V)).

 σ : { Y / ulf, X / alimente(ulf, V), Z / alimente(ulf, V)}
 τ :  {Y / ulf, X / alimente(ulf,1000), Z / alimente(ulf, 1000), V/1000}
 η :  { V / 1000}
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Unifikationsalgorithmus

Eingabe: nicht-leere Menge L von Literalen
σ := { }

Solange L mehr als ein Literal enthält:
gehe von links nach rechts alle Literale durch
und suche nach Unterschieden.
Wenn keines der unterscheidenden Zeichen
eine Variable ist, halte an "nicht unifizierbar".

Sei X ist Variable und  t der im anderen Literal
beginnende Term.

Wenn X in  t vorkommt, halte an "nicht unifizierbar".
Sonst σ:= σ {X/t}

Gib aktuelles σ als allgemeinsten Unifikator aus.
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Beispiel

unterhalt(ulf, maria, X).
unterhalt(Y, maria, Z).
unterhalt(Y, maria, alimente(Y, V)).

1. Unterschied
σ:= {Y/ulf}

Lσ:
unterhalt(ulf, maria, X).
unterhalt(ulf, maria, Z).
unterhalt(ulf, maria, alimente(ulf, V)).

L:

2. Unterschied
σ:= σ {X/alimente(ulf, V), Z/alimente(ulf, V)}
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Ergebnis

2. Unterschied
σ:= σ {X/alimente(ulf, V), Z/alimente(ulf, V)}

Lσ:
unterhalt(ulf, maria, X).
unterhalt(ulf, maria, Z).
unterhalt(ulf, maria, alimente(ulf, V)).

Lσ:
unterhalt(ulf, maria, alimente(ulf ,V))
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Kontrollfluß

¥ Prolog arbeitet von links nach rechts.
¥ Erst wird ein Kopfliteral gesucht, das mit der Frage unifiziert.
¥ Dann wird das erste K�rperliteral versucht, zu beweisen.
¥ Gelingt dies, wird das n�chste K�rperliteral versucht, zu beweisen.
¥ Gelingt dies nicht, geht Prolog zum n�chstliegenden linken Literal

zur�ck und versucht einen anderen Beweis f�r dies Literal.
¥ Wenn es keine Alternativen mehr f�r ein Literal gibt, das nicht

bewiesen werden konnte, so wird folglich bis zum Kopf
zur�ckgegangen, d.h. eine andere Klausel versucht, mit der Frage zu
unifizieren.

Folglich: wenn das am weitesten rechts stehende Literal zu beweisen ist,
dann auch die Frage.
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Beispiel

vater (ulf, maria).
mutter (uta, maria).
mutter (uta, mario).
mutter (maria, anna).
oma (X, Y) :- mutter (X,Z), mutter (Z,Y).
oma (X, Y) :- mutter (X,Z), vater (Z,Y).

?- oma( Oma, anna) .

σ: {X/Oma, Y/anna)

oma (Oma, anna) , ¬ mutter ( Oma, Z), ¬ mutter (Z, anna)

σ: {Oma/u ta, Z/maria}

oma (Oma, anna) , ¬ mutter ( Oma, maria), ¬ mu tter (maria, anna)
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Zurückziehen

¥ Kann ein Literal im Klauselk�rper nicht bewiesen werden, geht
Prolog zur�ck zum links n�chsten Literal.

¥ Bereits vorgenommene Unifikationen werden zur�ckgezogen.

¥ Unifikation mit einem anderen Literal wird versucht.
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Beispiel
vater (ulf, maria).
mutter (uta, mario).
mutter (uta, maria).
mutter (maria, anna).
oma (X, Y) :- mutter (X,Z), mutter (Z,Y).
oma (X, Y) :- mutter (X,Z), vater (Z,Y).

?- oma( Oma, anna) .

σ: {X/Oma, Y/anna)

oma (Oma, anna) , ¬ mutter ( Oma, Z), ¬ mutter (Z, anna)

σ: {Oma/u ta, Y/anna, Z/mario}

oma (Oma, anna) , ¬ mutter ( Oma, maria), ¬ mu tter (mario, anna)

σ: {Oma/uta, Y/ anna, Z/maria }
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Rekursion
Wie immer:
¥ Abbruchbedingung (Induktionsbasis)
¥ Rekursiver Aufruf (Induktionsschritt)

edge(X, Y).
connected(X,X).                                                            % Abbruch
connected (X, Z) :- edge (X, Y), connected (Y, Z).     % Aufruf

Immer Endrekursion verwenden!
Sonst keine Reduktion, sondern unendlicher Zirkel.
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In anderen Worten:

¥ Um ein Ziel zu erf�llen, wird nach einer passenden Klausel
gesucht.

¥ Ob eine Klausel passt, wird anhand des ersten Arguments des
Pr�dikats festgestellt (first argument indexing).

¥ Gibt es mehrere passende Klauseln wird ein choice point
erzeugt.

¥ Ein Pr�dikat hei§t deterministisch, wenn nach Erzeugen der
ersten L�sung kein choice point bleibt.
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Box-Modell

Call G: erster Aufruf des Zieles G

Exit S: erfolgreich bewiesen, R�ckgabe der Substitution, evtl.
verbleibt ein choice point

Fail G: Fehlschlag, G kann nicht bewiesen werden

Redo G: Sprung zur�ck zum n�chsten choice point

Klauseln 
zu G

Call Exit

Fail Redo
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Debugging

trace: Beobachtung des Kontrollflusses (?- trace. )

notrace: Abschalten der Beobachtung

spy(P): Beobachtung des Pr�dikats P

nospy(P): Abschalten der Beobachtung

nospyall: Abschalten der Beobachtung aller Pr�dikate

debug: Normale Abarbeitung bis zum Erreichen des
ersten  Beobachtungspunktes
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Cut !

! sorgt daf�r, dass f�r ein Ziel kein alternativer Beweis versucht
wird.

! sorgt daf�r, dass alle choice points vor dem ! gel�scht werden.

! vermeidet unn�tige Beweisversuche.

A:- B1, ..., Bk, !, Bk+1, ..., Bn

¥ Alternative L�sungen f�r B1, ..., Bk  suchen.

¥ Alternative L�sungen f�r Bk+1, ..., Bn suchen.

¥ W�hrend versucht wird, Bk+1, ..., Bn zu erf�llen, werden die
choice points f�r A, B1, ..., Bk gel�scht.

¥ Kann Bk+1 nicht erf�llt werden, soll ! von  rechts nach links
�berschritten werden, kann A nicht erf�llt werden.
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Fail

fail ist immer falsch,

erzwingt R�cksetzen.

student(tom). student (uta). student(paul). student(anne).

alle_studenten :- student(X), write (X), nl, fail.
alle_studenten.
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Kombination

¥ Ausschluss einer Verwendungsweise einer Klausel.

lebewesen (mensch).
lebewesen (hund).
tier (mensch) :- !, fail.
tier (X) :- lebewesen (X).


