
1
KI Prolog

Prolog

Idee (Kowalski 1979)
Algorithmus = Logik + Kontrolle

Logik: was ist das Problem?
Kontrolle: wie l�se ich es geschickt?

Sichtweisen:
¥ Theorembeweiser (Resolution)
¥ Datalog (Datenbankanfragesprache)
¥ Programmiersprache
Hier:
¥ Programmiersprache kennenlernen,
¥ Suchverfahren darin implementieren
¥ Hintergrund: Beweisen

2
KI Prolog

Modellieren in Prolog

Der Problembereich wird durch
¥ Fakten und
¥ Regeln ausgedr�ckt.

Ein Problem wird durch eine
¥ Frage ausgedr�ckt.

Die Kontrolle stellt das Prologsystem zur Verf�gung.
Es gibt nur wenige M�glichkeiten f�r die Programmiererin,

Kontrollstrukturen zu explizieren.

3
KI Prolog

Fakten

Ein Fakt ist ein positives Literal.
Es besteht aus
¥ einem Pr�dikatsymbol (beginnend mit Kleinbuchstaben) und
¥ Argumenten.
Die Anzahl der Argumente ist die Stelligkeit.
Dasselbe Pr�dikatsymbol bei verschiedener Stelligkeit bezeichnet

verschiedene Pr�dikate.

vater (X, maria). kinder (uta, maria, mario). kinder/3
mutter (ulf, mario). kinder (uta, [maria, mario]). kinder/2
vater (_v, anna). kinder (maria, anna). kinder/2

kinder/3 und kinder/2 sind verschiedene Pr�dikate!

4
KI Prolog

Argumente eines Prädikates

Ein Argument ist
¥ eine Variable (beginnend mit Gro§buchstaben oder _),
¥ eine Konstante (Zahl oder Buchstaben beginnend mit

Kleinbuchstaben),
¥ eine Funktion oder
¥ eine Liste.

kinder (uta, maria, mario). kinder/3
kinder (uta, [maria, mario]). kinder/2

5
KI Prolog

Funktionen und Listen

Funktionen
meist arithmetisch, wobei eine Argumentstelle f�r den Eingabewert,

die andere f�r das berechnete Ergebnis reserviert ist.
sin (X, Y) bedeutet sin (X) = Y
Um Eingabe- und Ausgabeposition zu markieren, wird in der

Dokumentation meist + und - verwendet.
% sin/2, sin (+, -)

:- ensure_loaded (library (math)).

6
KI Prolog

Listen

Listen sind intern auch Funktionen.

. (Kopf, Rest)

geschrieben als

[Kopf | Rest]

kinder (uta, [maria | X]).

7
KI Prolog

Regeln

Hornklauseln sind Klauseln mit nur einem positiven Literal.
Dies ist der Klauselkopf.

Der Klauselk�rper ist eine Disjunktion negierter Literale.
{oma (X, Y), ¬ mutter (X, Z), ¬ mutter (Z,Y)}

Hornprogramme sind eine Konjunktion von Hornklauseln.
{oma (X, Y), ¬ mutter (X, Z), ¬ mutter (Z,Y)}
{oma (X, Y), ¬ mutter (X, Z), ¬ vater (Z,Y)}

oma (X, Y) :- mutter (X,Z), mutter (Z,Y).
oma (X, Y) :- mutter (X,Z), vater (Z,Y).

Prolog-Notation

8
KI Prolog

Fragen

Fragen bestehen aus einer nicht-leeren Menge negativer Literale.
{¬ mutter(uta, maria), ¬ mutter(maria, X)}
{¬ mutter(uta, X), ¬vater (X, Y)}

Prolog-Notation

?- mutter(uta, maria), mutter(maria,X). („?-“ ist der Prompt des Interpreters)
:- mutter(uta, X), vater (X, Y). (als Befehl in Dateien)

9
KI Prolog

Beschreibung eines Problembereichs
(interpretiert)

Fakten eintragen (interaktiv im Interpreter)

?- assert(vater(ulf, maria)).
?- assert(mutter(uta, maria)).
?- assert(mutter(uta, mario)).
?- assert(mutter(maria, anna)).

Regeln eintragen
?- assert((oma(X, Y) :- mutter(X, Z), mutter(Z, Y))).
?- assert((oma(X, Y) :- mutter(X, Z), vater(Z, Y))).

10
KI Prolog

Beschreibung eines Problembereichs
(compiliert)

Fakten und Regeln in eine Datei eintragen.
emacs verwandschaft.pl

% Familie von Maria mit vater/2, mutter/2
vater(ulf, maria).
mutter(uta, maria).
mutter(uta, mario).
mutter(maria, anna).
oma(X, Y) :- mutter(X, Z), mutter(Z,Y).
oma(X, Y) :- mutter(X, Z), vater(Z,Y).

Prolog aufrufen mit prolog
?- [verwandschaft].

11
KI Prolog

Problemlösen

Wer ist die Oma von Anna?

?- oma (Oma, anna).

Oma = uta

Wer sind die Kinder von Uta?

?- mutter(uta, X).

X = maria ;
X = mario ;
no.

12
KI Prolog

Resolution
¬ oma (Oma, anna) oma (uta, anna), ¬ mutter (uta, maria), ¬ mutter(maria, anna)

¬ mutter (uta, maria), ¬ mutter(maria, anna) mutter (uta, maria)

¬ mutter(maria, anna) mutter(maria, anna)

Klappt nur, wenn Oma mit uta

unifiziert wird.

13
KI Prolog

Substitution

Eine Substitution ist eine endliche Menge
{ V1 / t1, V2 / t2, ..., Vn / tn }, wobei Vi≠ Vj f�r alle i≠j

Vi / ti bedeutet, da§ die Variable Vi an den Term ti gebunden wird.

Eine Substitution anwenden, hei§t, alle Vorkommen der Variablen
gleichzeitig durch die betreffenden Terme zu ersetzen.

oma (Oma, anna) σ = oma (uta, anna) mit σ: { Oma / uta}

Identit�tssubstitution { }

14
KI Prolog

Unifikation

Eine Substitution σ wird Unifikator genannt, wenn
f�r eine endliche Menge von Literalen L
die Anwendung der Substitution
eine Menge mit nur einem Element ergibt.

L:
vater (X, mario).
vater (Y, mario).
vater (ulf, Z).

 σ : { X / ulf, Y / ulf, Z / mario}

Lσ : { vater (ulf, mario) }

15
KI Prolog

Allgemeinster Unifikator

Ein Unifikator σ ist der allgemeinste, wenn f�r jeden anderen
Unifikator τ eine Substitution η existiert, so dass
τ = σ η

Wenn man den allgemeinsten Unifikator durch eine weitere
Substitution spezialisiert, erreicht man einen anderen, nicht
allgemeinsten Unifikator.

unterhalt(ulf, maria, X).
unterhalt(Y, maria, Z).
unterhalt(Y, maria, alimente(Y, V)).

 σ : { Y / ulf, X / alimente(ulf, V), Z / alimente(ulf, V)}
 τ : {Y / ulf, X / alimente(ulf,1000), Z / alimente(ulf, 1000), V/1000}
 η : { V / 1000}

16
KI Prolog

Unifikationsalgorithmus

Eingabe: nicht-leere Menge L von Literalen
σ := { }

Solange L mehr als ein Literal enthält:
gehe von links nach rechts alle Literale durch
und suche nach Unterschieden.
Wenn keines der unterscheidenden Zeichen
eine Variable ist, halte an "nicht unifizierbar".

Sei X ist Variable und t der im anderen Literal
beginnende Term.

Wenn X in t vorkommt, halte an "nicht unifizierbar".
Sonst σ:= σ {X/t}

Gib aktuelles σ als allgemeinsten Unifikator aus.

17
KI Prolog

Beispiel

unterhalt(ulf, maria, X).
unterhalt(Y, maria, Z).
unterhalt(Y, maria, alimente(Y, V)).

1. Unterschied
σ:= {Y/ulf}

Lσ:
unterhalt(ulf, maria, X).
unterhalt(ulf, maria, Z).
unterhalt(ulf, maria, alimente(ulf, V)).

L:

2. Unterschied
σ:= σ {X/alimente(ulf, V), Z/alimente(ulf, V)}

18
KI Prolog

Ergebnis

2. Unterschied
σ:= σ {X/alimente(ulf, V), Z/alimente(ulf, V)}

Lσ:
unterhalt(ulf, maria, X).
unterhalt(ulf, maria, Z).
unterhalt(ulf, maria, alimente(ulf, V)).

Lσ:
unterhalt(ulf, maria, alimente(ulf ,V))

19
KI Prolog

Kontrollfluß

¥ Prolog arbeitet von links nach rechts.
¥ Erst wird ein Kopfliteral gesucht, das mit der Frage unifiziert.
¥ Dann wird das erste K�rperliteral versucht, zu beweisen.
¥ Gelingt dies, wird das n�chste K�rperliteral versucht, zu beweisen.
¥ Gelingt dies nicht, geht Prolog zum n�chstliegenden linken Literal

zur�ck und versucht einen anderen Beweis f�r dies Literal.
¥ Wenn es keine Alternativen mehr f�r ein Literal gibt, das nicht

bewiesen werden konnte, so wird folglich bis zum Kopf
zur�ckgegangen, d.h. eine andere Klausel versucht, mit der Frage zu
unifizieren.

Folglich: wenn das am weitesten rechts stehende Literal zu beweisen ist,
dann auch die Frage.

20
KI Prolog

Beispiel

vater (ulf, maria).
mutter (uta, maria).
mutter (uta, mario).
mutter (maria, anna).
oma (X, Y) :- mutter (X,Z), mutter (Z,Y).
oma (X, Y) :- mutter (X,Z), vater (Z,Y).

?- oma(Oma, anna) .

σ: {X/Oma, Y/anna)

oma (Oma, anna) , ¬ mutter (Oma, Z), ¬ mutter (Z, anna)

σ: {Oma/u ta, Z/maria}

oma (Oma, anna) , ¬ mutter (Oma, maria), ¬ mu tter (maria, anna)

21
KI Prolog

Zurückziehen

¥ Kann ein Literal im Klauselk�rper nicht bewiesen werden, geht
Prolog zur�ck zum links n�chsten Literal.

¥ Bereits vorgenommene Unifikationen werden zur�ckgezogen.

¥ Unifikation mit einem anderen Literal wird versucht.

22
KI Prolog

Beispiel
vater (ulf, maria).
mutter (uta, mario).
mutter (uta, maria).
mutter (maria, anna).
oma (X, Y) :- mutter (X,Z), mutter (Z,Y).
oma (X, Y) :- mutter (X,Z), vater (Z,Y).

?- oma(Oma, anna) .

σ: {X/Oma, Y/anna)

oma (Oma, anna) , ¬ mutter (Oma, Z), ¬ mutter (Z, anna)

σ: {Oma/u ta, Y/anna, Z/mario}

oma (Oma, anna) , ¬ mutter (Oma, maria), ¬ mu tter (mario, anna)

σ: {Oma/uta, Y/ anna, Z/maria }

23
KI Prolog

Rekursion
Wie immer:
¥ Abbruchbedingung (Induktionsbasis)
¥ Rekursiver Aufruf (Induktionsschritt)

edge(X, Y).
connected(X,X). % Abbruch
connected (X, Z) :- edge (X, Y), connected (Y, Z). % Aufruf

Immer Endrekursion verwenden!
Sonst keine Reduktion, sondern unendlicher Zirkel.

24
KI Prolog

In anderen Worten:

¥ Um ein Ziel zu erf�llen, wird nach einer passenden Klausel
gesucht.

¥ Ob eine Klausel passt, wird anhand des ersten Arguments des
Pr�dikats festgestellt (first argument indexing).

¥ Gibt es mehrere passende Klauseln wird ein choice point
erzeugt.

¥ Ein Pr�dikat hei§t deterministisch, wenn nach Erzeugen der
ersten L�sung kein choice point bleibt.

25
KI Prolog

Box-Modell

Call G: erster Aufruf des Zieles G

Exit S: erfolgreich bewiesen, R�ckgabe der Substitution, evtl.
verbleibt ein choice point

Fail G: Fehlschlag, G kann nicht bewiesen werden

Redo G: Sprung zur�ck zum n�chsten choice point

Klauseln
zu G

Call Exit

Fail Redo

26
KI Prolog

Debugging

trace: Beobachtung des Kontrollflusses (?- trace.)

notrace: Abschalten der Beobachtung

spy(P): Beobachtung des Pr�dikats P

nospy(P): Abschalten der Beobachtung

nospyall: Abschalten der Beobachtung aller Pr�dikate

debug: Normale Abarbeitung bis zum Erreichen des
ersten Beobachtungspunktes

27
KI Prolog

Cut !

! sorgt daf�r, dass f�r ein Ziel kein alternativer Beweis versucht
wird.

! sorgt daf�r, dass alle choice points vor dem ! gel�scht werden.

! vermeidet unn�tige Beweisversuche.

A:- B1, ..., Bk, !, Bk+1, ..., Bn

¥ Alternative L�sungen f�r B1, ..., Bk suchen.

¥ Alternative L�sungen f�r Bk+1, ..., Bn suchen.

¥ W�hrend versucht wird, Bk+1, ..., Bn zu erf�llen, werden die
choice points f�r A, B1, ..., Bk gel�scht.

¥ Kann Bk+1 nicht erf�llt werden, soll ! von rechts nach links
�berschritten werden, kann A nicht erf�llt werden.

28
KI Prolog

Fail

fail ist immer falsch,

erzwingt R�cksetzen.

student(tom). student (uta). student(paul). student(anne).

alle_studenten :- student(X), write (X), nl, fail.
alle_studenten.

29
KI Prolog

Kombination

¥ Ausschluss einer Verwendungsweise einer Klausel.

lebewesen (mensch).
lebewesen (hund).
tier (mensch) :- !, fail.
tier (X) :- lebewesen (X).

