
MOBAL 1

Inferenzmaschine

• 4-wertige Logik:
w -- eingetragen oder abgeleitet,
f -- negiert eingetragen oder negiertes Fakt ableitbar,
widersprüchlich -- sowohl w als auch f eingetragen oder ableitbar,
unbekannt -- weder w noch f eingetragen oder ableitbar

• explizite Negation

• Buchhaltung bei Fakten:
Eingabe durch Benutzer, Ableitungspfad

• Vorwärtsinferenz mit Tiefenbeschränkung -- alle
anwendbaren Regeln

• Rückwärtsinferenz mit Tiefenbeschränkung -- gezielter
Beweis eines Faktes

MOBAL 2

Sorten

• Angabe von Sorten bei der Prädikatsdeklaration
owner(<person>, <thing>)

• Angabe einer Sortentaxonomie mit Relation :<
reflexiv, transitiv, antisymmetrisch
woman:<person, female
person:<living_thing
NIL:=female, male (leere Schnittmenge)

• Zuordnung von Konstanten zu Sorten -- automatisch
owner(morik, car3)
ext(arg_sort(1, owner))={morik}
ext(arg_sort(2, owner))={car3}

MOBAL 3

ext

ext: Sortennamen --> Potenzmenge der Konstanten

Fakten p(t1, ..., ti, ... tn), not (p(t1, ..., ti, ... tn))

ti in ext(arg_sort(i, p) gdw.
 p(t1, ..., ti, ... tn) oder not (p(t1, ..., ti, ... tn)) in Faktenbasis

Fakten: { p(a,b), p(b,c), not(p(c,a)), r(a,b), not(r(a,d)) }
Sortennamen:{A, B, C, D}
ergibt: {a, b, c, d}

{a, b, c} {a,b,d} {a,c,d} {b,c,d}

{a,b} {a,c} {a,d} {b,c} {b,d} {c,d}

{a} {b} {c} {d}

A
B
C
D

MOBAL 4

Äquivalenzklassen von Sorten:
cext

• Zwei Sorten s1, s2 sind äquivalent, wenn ihre Extensionen
gleich sind.

• Jede Äquivalenzklasse bekommt einen eindeutigen
Namen.

• Alle Klassen haben mindestens eine Sorte, die zu der
Klasse gehört.

• cext: Klassennamen --> Potenzmenge der Konstanten

MOBAL 5

Sortenkorrektheit

• Ein Fakt ist sortenkorrekt, wenn die Konstanten an
Argumentposition kompatibel mit der Sortendeklaration
des Prädikats sind.

• cext induziert eine partielle Ordnung über der
Potenzmenge der Konstanten.
 c1 ≤ c2 gdw. cext(c2) ⊇ cext(c1)

• Unterklasse: c1 ≤ c2 und ¬ (c2 ≤ c1)

• subsort von c1: {c | c ≤ c1 und c ≠ c1}

• supersort von c1: {c | c1 ≤ c und c ≠ c1}

• Eine Konstante ist sortenkorrekt, wenn sie aus der ange-
gebenen Sorte oder einer Untersorte stammt.

MOBAL 6

Verband der Äquivalenzklassen

Schnittklassen bilden
inters: Klassen --> Potenzmenge der Klassen

inters(c) = {c1 in Klassen | {c, c1} in IS}
IS = {{c1, c2} ⊆ Klassen | ¬ (c1 ≤ c2), ¬ (c2≤c1),
¬(cext(c1) ∩ cext(c2) = {}) }

Die Sorten zusammen mit den Schnittsorten bilden einen
Verband. Die entsprechenden Klassen bilden wiederum
einen Verband.

MOBAL 7

Automatisches Bilden des
Verbands

• Berechnen der Extensionen an Argumentstellen

• Erstellen der Schnittsorten

• Berechnen des Verbands der Äquivalenzklassen.

• Der Platz von c im Verband wird durch
supers(c), subs(c), inters(c) und disjoint(c) festgelegt.

• Bei neuen Eintragen in die Faktenbasis:
Sorten erweitern oder
Eintrag ablehnen, falls nicht sortenkorrekt.

• Entspricht unüberwachtem Lernen in Aussagenlogik.

MOBAL 8

Sortenkorrekte Inferenz

• Jeder Variablen in einer Regel ist eine Menge von Sorten
zugeordnet.

• Substitutionen müssen sortenkorrekt sein, d.h. eine
Variable kann nur durch eine Konstante aus der Extension
der Schnittmenge der Sorten dieser Variablen ersetzt
werden.

• var_sort: Variablen --> Potenzmenge der Sorten

• sort_correct({V1/t1, ..., Vn/tn}) gdw.
für alle i1...n: ti ∈ cext(class(var_sort(Vi)))

MOBAL 9

Beispiel

contains (A, W) & affect (W, K) --> affect (A, K)

Aσ in ext(arg_sort(1, contains)) ∩ ext(arg_sort(1, affect))

Wσ in ext(arg_sort(2, contains)) ∩ ext(arg_sort(1, affect))

Unterschied zwischen falsch und unsinnig:
not(trinkt(paul, hustensaft1)) trinkt(<tier>, <fluessiges>)
trinkt(paul, stein1)
not(trinkt(paul,stein))

gleichermaßen unsinnig

MOBAL 10

Vorteile von Sorten

Für das Beweisen bzw. Vorwärtsinferenz:

• weniger Regeln anwendbar,

• weniger Fakten heranzuziehen,

• weniger Substitutionsmöglichkeiten,

• nur sinnvolle Ableitungen.

Für das Modellieren:

• Prädikatsdeklaration als Merkliste fahrt(<start>, <ziel>,...)

• semantische Prüfung der Eingabe fahrt(auto1, person1)

• Strukturierung der Objekte

MOBAL 11

Vorteile der gelernten Klassen

• noch weniger Unifikationsversuche (weniger anwendbare
Regeln, verwendbare Fakten, Substitutionsmöglichkeiten)

• Betrachten des Klassenverbandes zeigt tatsächlich
modellierte Struktur der Objekte -- stimmt sie mit der
Absicht überein?

• Starke Einschränkung des Hypothesenraums für das
Lernen von Regeln!

MOBAL 12

Regelstruktur

• Große Regelmengen sind unübersichtlich!

• Wie kann eine abstrakte Struktur wie heuristische
Klassifikation in einer Regelmenge dargestellt werden?

• Kann für eine Regelmenge eine Struktur automatisch
gefunden werden?

⇒ Abstraktion über Regelmengen!

MOBAL 13

Regelgraphik
geld verantwortlich gericht

falschParken unsicherFahrzeug

parkverbot parkt abgefReifen rost beteiligt_kfz

zweitespur busspur gehweg

gehweg(X) --> parkverbot(X)
parkt(X, Y) & parkverbot(Y) --> falschParken(X)
beteiligt_ kfz(X,Y) & rost(Y) --> unsicherFahrzeug(X)
falschParken(X) --> geld(X)

MOBAL 14

Abstraktion

• Verschmelzen aller Zusammenhangskomponenten im
Regelgraph
– Zusammenhangskomponenten:

zwischen allen Knoten i und j gibt es einen gerichteten Pfad von i
nach j und zurück.

• Verschmelzen von Knoten mit identischer Menge von
Vorgängern

• Verschmelzen von Knoten mit identischer Menge von
Nachfolgern

MOBAL 15

Topologie

Urteil

Verstoß

Verpflichtungen Fahrzeug Ort Verhalten

Umstände

Ort: busspur, zweiteSpur,... Fahrzeug:abgefReifen, rost, ...
Umstände: dunkel, nebel,... Urteil:geld, gericht, punkte, ...
Verpflichtungen: lichtAn, parkverbot,...
Verstoß:unsicherFahrzeug, falschParken, ...

MOBAL 16

Verwendung der Topologie

• Inspektion der Regelmenge

• Entwurf der Regelmenge

• Fokussieren des Lernens
– Prämissen einer gelernten Regel stammen aus demselben

Topologieknoten wie die Konklusion oder aus einem
Vorgängerknoten

MOBAL 17

RDT
LE : Grundfakten
LB : Grundfakten, die aus vorhandenen Regeln und Fakten mit

Tiefenbeschränkung ableitbar sind
LH : Instanzen von Regelschemata, die bezüglich der Termsorten

und Prädikatssorten kompatibel sind.

Benutzer gibt Akzeptanzkriterium ein.
• So muß eine Regel nicht 100%ig korrekt sein, wenn der

Benutzer "Ausrutscher" in den Daten erwartet.
• So kann der Benutzer festlegen, ob er die closed-world

assumption anwenden will oder lieber eine größere
Vorhersagekraft der Regeln haben will.

• So kann der Benutzer festlegen, ob eine Regel vollständig sein
muß.

RDT lernt alle nicht-redundanten Regeln, die dem
Akzetanzkriterium entsprechen.

MOBAL 18

Hypothesenraum

Menge von Regelschemata RS

Menge von Prädikaten P

Prädikatssubstitution Σ

Menge der Hypothesen RS Σ

nach Allgemeinheit geordnete Regelschemata: RS ≥r RS' gdw. ææææssss ææææSSSS RS SSSSssss ∑∑∑∑ RS

Größe des Hypothesenraums: (r p) k: höchste Anzahl verschiedener
 Prädikatsvariablen

 in einem Regelschema

P (X) --> not (Q (X))
R (X,Y) & P (Y) --> Q (X) ...
sportscar/1 <car>, parked/2 <car, place>, ...

P/sportscar, Q/rusty
sportscar(X) --> not(rusty (X)),
parked(X,Y) & bus_lane (Y) --> parking_viol(X)

k

MOBAL 19

RDT

Regeln Fakten

Sortenverbandabstrahierter Regelgraph

Regelschemata

r(a,b)
p (b)
q (a)

r(X,Y) & p(Y) --> q(X)

--> Q(X)
P(X) --> Q(X) R(X,Y)--> Q(X)

R(X,Y) & P(Y) --> Q(X)

SSSS:
{R/r,P/p,Q/q}

ssss:
{X/a, Y/b}

(Emde, Kietz, Klingspor, Morik, Wrobel)

