
Wissensrepräsentation

Zur Problemlösung benötigt man immer eine Repräsentation.

Wir haben kennen gelernt:

Operatoren zur Problemlösung als Suche

Produktionen zur Problemlösung als Suche in UND-ODER Bäumen

Formeln zur Problemlösung als Erfüllbarkeitsbeweis

Wissenrepräsentations-

formalismus entspricht Kalkül

sprache entspricht Signatur

system unterstützt jede Signatur im Kalkül

und bietet bestimmte Kontrollstrukturen

Semantische Netze

Zugriff auf zusammenhängende Begriffe

spreading activation: gemeinsam erreichbar über Pfad, der von zwei Knoten ausgeht.
Das Gemeinsame von Vogel und Nest ist Rotkehlchen Nest oder Clyde Nest

Vogel Besitz Nest

Rotkehlchen Rotkehlchen Besitz Rotkehlchen_Nest

Clyde Clyde_Besitz Clyde_Nest

Unterscheidung von Kantentypen

Oberbegriff - Unterbegriff

Vererbung der Eigenschaften des Oberbegriffs
auf den Unterbegriff

Klassifizierung des Unterbegriffs aufgrund der

Eigenschaften

Instanz - Begriff
Realisierung der Instanz als Mitglied der Klasse,

die durch den Begriff angegeben ist, anhand der
Eigenschaften

Vogel

isa

Rotkehlchen

Clyde

Rotkehlchen

Eigenschaften

Relation zwischen Vogel und Nest

Eigenschaft des Vogels, dass das,
was er besitzt, ein Nest ist.

Vererbung mit Beschränkung
Ein Rotkehlchen ist ein Vogel,

dessen Besitz eine bestimmte Art
 von einem Nest ist.

Das R_Nest ist geschlossen
(nicht struppig oder ausgefranst)

Vogel
besitzt

Nest

Rotkehlchen besitzt R_Nest

R_Nest
geformt

geschlossen

isa

Form

Implementation
Repräsentationssprache:

isa(rotkehlchen,vogel). isa(r_nest,nest). isa(geschlossen,form).

isa(vogel,tier). isa(nest,behausung).
role(besitzt,tier,behausung). role(geformt,r_nest,geschlossen).
role(besitzt,vogel,nest).

role(besitzt,rotkehlchen,r_nest).

Repräsentationssystem:
ask_isa(isa(X,Y)):-isa(X,Y). ask_role(role(R,C,VC)):-role(R,C,VC).
ask_isa(isa(X,Y)):-isaX,Z), ask_role(role(R,C,VC)):-isa(C,X),

 ask_isa(Z,Y)),!. role(R,X,VC).

Verwendung:
Ist das R. einTier? ?-ask_isa(isa(rotkehlchen,tier)). yes
Was besitzt das R.? ?-ask_role(role(besitzt,rotkehlchen,X)). X=r_nest

etwas komplizierter
Welcher Vogel ist das,

der etwas besitzt,
was eine geschlossene Form aufweist?

?- ask_complex(and_complex
(isa(X,vogel),
 and_complex(role(besitzut,X,Y),

 role(geformt,Y,geschlossen)))).
X = rotkehlchen
Y = r_nest

ask_complex(Form):- Form = isa(X,Y), ask_isa(isa(X,Y)).
ask_complex(Form):- Form = role(X,Y,Z), ask_role(role(X,Y,Z)).
ask_complex(Form):- Form = and_complex(A,B), ask_complex(A),

 ask_complex(B).

Unterschied zu Logik

∃ X | isa(X,vogel) & besitzt(X,Y) & geformt(Y,geschlossen)

Für die Signatur eines neuen Sachbereich muss jedes Prädikat definiert werden.

Hier gibt es nun vordefinierte Prädikate, mit deren Hilfe Relationen für einen

neuen Sachbereich angegeben werden: isa, role.

Statt die Relation selbst als Prädikat zu wählen (besitzt, geformt),

wird der Relationsname als erstes Argument des allgemeinen Prädikats role
angegeben.

Somit ist die Wissensrepräsentation bereits für bestimmte Anwendungen
eingeschränkt bzw. vorbereitet.

Ebenen der Wissensrepräsentation

Implementation:

LISP oder PROLOG- Prozeduren, die den Zugriff erlauben
ask_isa, ask_role, ask_complex

Logik:

Erfüllbarkeit über allen Strukturen zu einer Signatur entscheiden
Begriffe:

bestimmte Dinge eines Sachbereichs mit ihren Eigenschaften

tier, vogel, rotkehlchen, nest , form, ...
Sprache:

Wörter, Sätze zur Beschreibung bestimmter Sachverhalte

Ein Rotkehlchen ist ein Vogel, dessen Nest geschlossen ist.
Epistemik (Wissensebene):

Primitive zum Definieren von Begriffen

Oberbegriff - Unterbegriff (isa), Eigenschaft (role)

Termsubsumtionsformalismen
(KL-ONE)

In epistemischen Primitiven Begriffe definieren. Teile der Signatur und der
Interpretation sind vorgegeben. Einige Schlussfolgerungen sind vorbereitet.

≠ logische Ebene!

Frau Studierende

Studentin

isa

role: Hauptfach
Informatik

Informatikstudierende sind Studierende,deren
Hauptfach die Informatik ist.

Eine Studentin ist eine Frau UND eine Studierende.

T-Box

für terminologisches Schließen

Studentin .=. (and Frau Studierende)

Informatikstudierende .=. (and Studierende (all Hauptfach Informatik))

Anything Anyrelation

Frau Studierende

Studentin

Inform.

Stud.

isaand

...

Fach

Informatik

Hauptfach
all

atleast 1

atmost ×

Nothing

Syntax von Termsubsumtionsformalismen

<terminology> ::= {<term-introduction> | <restriction> }*

<term-introduction> ::= <concept-introduction> | <role-introduction>

<concept-introduction> ::= <atomic-concept> .=. <concept> |

 <atomic-concept> ≤ <concept> |

 <atomic-concept> ≤ ANYTHING
<role-introduction> ::= <atomic-role> .=. <role> |

 <atomic-role> ≤ <role> |
 <atomic-role> ≤ ANYRELATION

<concept> ::= <atomic-concept> |

 (and <concept>+) |
 (all <role> <concept>) |
 (atleast <number> <role>) |
 (atmost <number> <role>)

<role> ::= <atomic-role> |

 (androle <role>+)

<restriction> ::= (disjoint <atomic-concept> <atomic-concept>)

<number> ::= <non-negative-integer>

<atomic-role> ::= <identifier>

<atomic-concept> ::= <identifier>

Wohlgeformte, aus epistemischen Primitiven zusammengesetzte Ausdrücke

Semantik epistemischer Primitive und
zusammengesetzter Ausdrücke

Knoten: Entscheidung über Begriffszugehörigkeit über notwendige
Eigenschaften
d.h. ∀ x x∈ Begriff |

Objekte: a1, a2, a3, ... D
Relationen (a1,b1),(a1,b2),(a1,b3),(a2,b1),... D x D
ext

für alle a ≤ t sei ext(t) ⊇ ext(a)

für alle a.=. t sei ext(t) = ext(a)

ext(ANYTHING) = D
ext(ANYRELATION) = D x D
ext((and c1 ... cn)) = ∩ ext(ci) wobei i von 1 bis n

ext((all r c)) = {x ∈ D | ∀ y : (x,y) ∈ ext(r) --> y ∈ ext(c) }
ext((atleast n r)) = { x ∈ D | card ({y ∈ D | (x,y) ∈ ext(r)}) ≥ n }
ext((atmost n r)) = { x ∈ D | card({y ∈ D | (x,y) ∈ ext(r)}) ≤ n }

ext((androle r1 ... rn)) = ∩ ext(ri) wobei i von 1 bis n
für alle (disjoint c1 c2) sei ext(c1) ∩ ext(c2) = {}

ext

