Termsubsumtionsformalismen
(KL-ONE)

In epistemischen Primitiven Begriffe definieren. Teile der Signatur und der Interpretation sind
vorgegeben. Einige Schlussfolgerungen sind vorbereitet.
# logische Ebene!

role: Hauptfach

Studierende » Informatik

Informatikstudierende sind Studierende,deren
Hauptfach die Informatik ist.

Eine Studentin ist eine Frau UND eine Studierende.

Termsubsumtion

T-Box
fur terminologisches Schlie3en

Anything

/

A all

@ Studierende Hauptfach X @

atleast 1

Anyrelation

) atmost x
and isa

‘\\ Nothlng

Studentin .=. (and Frau Studierende_? )
. . Termsubsumtion .
Informatikstudierende .=. (and Studierende (all Hauptfach Informatik))
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Syntax von Termsubsumtionsformalismen

<terminology> ::= {<term-introduction> | <restriction> }*
<term-introduction> ::= <concept-introduction> | <role-introduction>
<concept-introduction> ::= <atomic-concept> .=. <concept> |
<atomic-concept> < <concept> |
<atomic-concept> < ANYTHING
<role-introduction> ::= <atomic-role> .=. <role> |
<atomic-role> < <role> |
<atomic-role> < ANYRELATION
<concept> ::= <atomic-concept> |
(and <concept>+) |
(all <role> <concept>) |
(atleast <number> <role>) |
(atmost <number> <role>)
<role> ::= <atomic-role> |
(androle <role>+)
<restriction> ::= (disjoint <atomic-concept> <atomic-concept>)
<number> ::= <non-negative-integer>
<atomic-role> ::= <identifier>

<atomic-concept> ::= <identifier>

Wohlgeformte, aus epistemischen Primitiven zusammengesetzte Ausdriicke

Termsubsumtion

Semantik epistemischer Primitive und
zusammengesetzter Ausdriicke

Knoten: Entscheidung iber Begriffszugehdérigkeit tiber notwendige
Eigenschaften
d.h. Ox xOBegriff | ...

ext
Objekte: al, a2, a3, ... D
Relationen (al,b1),(a1,b2),(a1,b3),(a2,bl),... DxD
ext

fur alle a < t sei ext(t) O ext(a)

fur alle a.=. t sei ext(t) = ext(a)

ext(ANYTHING) =D

ext(ANYRELATION) =D x D

ext((and cl ... cn)) = n ext(ci) wobeiivon 1 bis n
ext((alrc)) ={xOD| 0Oy :(xy) Oext(r) -->y Oext(c) }
ext((atleastnr))={x0OD|card {y OD|(xy) Oext(n})=n}
ext((atmostnr))={x OD |card({y OD | (x,y) Oext(})<n}
ext( (androle r1 ... rn)) = n ext(ri) wobei i von 1 bis n

fur alle (disjoint c1 c2) sei ext(cl) n ext(c2) = {}
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Klassifikation

« Gegeben eine TBox und eine neue Begriffsdefinition,
« finde den richtigen Platz flr den neuen Begriff.

Der richtige Platz ist:

» der neue Begriff hangt unter seinem speziellsten
Oberbegriff,

» der neue Begriff subsumiert alle unter ihm hangenden

Begriffe.
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Subsumtion

Logische Struktur (D, ext)

t subsumiertt’, geschriebent >>t", gdw.

[ (D, ext) von T: ext (tp ext (t")

transitiv: t >>t", t'>>t" dannt>>t"

reflexiv: t >>t

t aquivalent t"gdwl] (D, ext) von T: ext (t) = ext (1)
t inkoharent in T gdwid (D, ext) von T: ext (t) = {}
(unerfillbar, z.B. (and (atleast 1 r) (atmost O r))
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T

 Mit and und NOTHING ist T ein Halbverband, d.h.:

 Infimum (grof3ter gemeinsamer Unterbegriff) gibt es
immer!

* Die partielle Ordnung ist die Subsumtion >>.

» T behandelalle Modelle der Begriffsdefinitionen,
NICHT bestimmte Mengen von Grundbeispielen!

Termsubsumtion 7

Klassifikationsalgorithmus

Definitionen glatten, d.h. die Definitionen der Begriffe,
die in einer Definition vorkommen, aufschreiben.

bottom-up: von NOTHING ausgehend, bei jedem
Begriff feststellen, ob der neue Begriff von dem Begriff
subsumiert wird.

Der Klassifikationsalgorithmus beruht also auf der
Subsumtionsentscheidung.
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Beispiel Subsumtion

subsumes(t,u) ?

frau >> studentin?

) . t androle t;...t, | primitiv all r; ¢ atleast n, r; almost n, 1,
ja, weil frau < mensch u and t,._t,
studentin.=. (and s1 s2) stud.=.(and mensch NOTHING | wahr wahr wahr wahr wahr
und (a" studiert faCh)) primitiv 0, 1<isn: t=u falsch falsch falsch
sl=frau studentin.=. (and frau subsumes (t;, u)
11, ¢y 0, 1<isn: falsch b: ,cy) | falsch falsch
(and mensch all r, ¢ . 1<i<n alsc sDu sumes (c,c,) | falsc alsc

subsumes (t;, u)

(all studiert fach)))
informatikstudentin.=.
(and (and frau
(and mensch
(all studiert fach))

subsumes (1, 1)
subsumes (r,, r;) | falsch

subsumes (1, 1)
00<n,

[0 1<i<n: 0 1<isn: 0: I1<isn:
subsumes (t, u;) | subsumes (t, ;) |subsumes (t, u;)

atmost 0 r, 0; 1<i<n: falsch
subsumes (t;, u)
and u,...u, 0 1<isn: 0, 1<isn:

androle u;...u, |subsumes (t;, u) [t=1;

(a|| studiert informatik)) atleast n, 1, 0 1<isn: falsch falsch subsumes (1, 1) | falsch
subsumes (t; ,u) On;<n,
atmost n, 1, 0 I<isn: falsch subsumes (ry, 1¢) | falsch subsumes (1, 17)
subsumes (t;, u) bei n,=0 On,<ng
sonst falsch
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Subsumtionsalgorithmus Unvollstandigkeit KL-One

t: (atleast 31,)

u: (and (all (androle r1 r2) A)
(all (androle r1r3) B)
(disjoint A B)
(atleast 2 (androle rl r2))
(atleast 1 (androle rl r3))

Schon androle macht die Subsumtion
unvollstandig! disjoint wird von
subsumes nicht bertcksichtigt.

atleast 3

korrekt: wenn wabhr fur t >> u ausgegeben wird,
gilt ext(t)0 ext(u).
vollstandig: wenn ext(th ext(u) gilt,

wird wabhr fir t >> u ausgegeben. | |
ri(K1, al)——r2(K1, al) r3(K1, b3)

Subsumtion ist entscheidbar, wenn Zyklen ausgeschlossen (K1, a2)—r2(K1,a2)  r3(K2, b3)
sind. (K1,b3) _r2(K2, al)
) . ) _ . (K2, al)%rZ(KZ, a2) " Es ware moglich, disjoint zu beriicksichtigen,
Subsumtionsentscheidung ist polynomiell in der Lange der (K2, a2) aber aufwendig! Nicht immer, wenn wahr
Definitionen t und u, falls die Rollen primitiv bleiben. (K2, b3) ausgegeben werden mufte, wird es ausgegeben.
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Prinzip

Brachman, Levesque (87):

Handhabbarkeit vs. Ausdrucksfahigkeit eines
Wissensreprasentationsformalismus’.

Man lebt mit polynomieller unvollstandiger Subsumtion.
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T-Box

Das war die T-Box fur
» terminologisches Schliel3en
» Uber allen Modellen ohne Grundbeispiele.

Jetzt kommt die A-Box fur Assertionen, Grundformeln.
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A-Box

Syntax:
<world-description>::=(<obj desci3rel descr>)
<obj descr>::=(<atomic concept><obj>)
<rel descr>::=(<atomic role><obj><obj>)
[{<atomic role><obj> (atleast<nr.>))
[{<atomic role><obj> (atmost<nr.>))
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Semantik der A-Box

D Objekte
Funktion int 2 Begriffe
20x0 - Rollen
Interpretation (D,int) erfulld
0 = (c o) ist erfullt gwd. int(o)J int(c)
(rop) (int(o), int(p)X int(r)

K(int(o),x) O int(r)} & n
{(int(0),x) O int(r)} £ n

(r o (atleast n))
(r o (atmost n))

Wenn eine Interpretation int ald] A-Box erfllt, ist sie ein
Modell der A-Box. Wenrf)j in allen Modellen der A-Box erfullt
iSt, g|lt A-Box [ 6] Termsubsumtion 16




Beispiel

beschéftigt_sich

Beschéfti-
gungen

instance_of
A-Box

(Stud Hans)

(beschéttigt_sich Hans (atmost 1))
(beschéftigt_sich Hans Informatik)
(Mann Hans)

Termsubsumtion
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Beziehung zwischen
T-Box und A-Box

Was studiert Hans?
Was ist der speziellste Begriff fir Hans?
(and Stud Mann)

Der allerspeziellste Begriff ist konstruierbar.

Vermutlich gibt es ihn nicht in T-Box.

HansBegriff .=. (and Stud
Mann
(all beschétftigt_sich Informatik)
(atmost 1 beschéftigt_sich))

Klassifikation (HansBegriff)
subsumes(Student, HansBegriff)
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Hybride Inferenzen

e |Inferenzen in der T-Box
Vererbung

e Inferenzen zwischen T-Box und A-Box:

a) Ist ein Objekt ein Grundbeispiel fiir einen Begriff?

covers (c, 0)?

b) Welcher Begriff ist der speziellste Begriff, fir den

ein Objekt ein Grundbeispiel ist?
realize

Termsubsumtion
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covers (c,0)

c ist ein Begriff (T-Box),

o ist ein Objekt beschrieben durgh... o, (A-Box)
covers(c, 0)

o, [1 A-Box

X = (andd, ...d,)

d.:(<concept> 0)

subsumes(c, x)
* liefert wahr, dann gilt covers (c,0)
* liefert falsch, dann Fallunterscheidungen

Termsubsumtion
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Fall 1

Wenn c eine Beschreibung enthélt, die in x, der
Beschreibung von o fehlt, kann dennoch covers (c,0)
gelten. Nennen wir die fehlenden Beschreibungen in x
den Begriff b.

Wenn (r g o) ist in A-Box und

b.=. (all r ¢) istin T-Box

dann covers(b, ) ist wahr und damit covers (c,0)

sonst falsch

b— ¢

Beispiel

T-Box: A-Box:

Human < Anything (Modern-Team team-a)

Man < Human (Man dick)
Woman < Human (Human mary)
Set < Anything (member team-a dick)
member < Anyrelation (member team-a harry)

Team .=. (and Set (all member Human)
(atleast 2 member) )

(member team-a mary)

(leader team-a mary)
leader < member

(member team-a (atmost 3))

Modern-Team .=. (and Team

(atmost 4 member) covers(Woman mary)?
ﬁ ﬁ (atleast 1 leader) r: leader _ _
r (all leader Woman)) Wennteam-a ein Modern-Team ist,
qg——0 ist mary eine Frau
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Fall 2 Beispiel
fi
Wenng, = (r o (atmost n)) fehlt, aber 4 0: hans
&, =(r; o (atmost ) ist in A-Box r X: (Stud hans)
und £ >> rist in T-Box, r, atmost n, (beschaftigt_sich hans (atmost 1))

dann sammle alle,(0 (atmost J)) in der A-Box,
flge sie x hinzu,
subsumes(c, x")
falls es wegen atmost-Verletzung falsch
covers (c,0) falsch
sonst die nachsten Falle prifen!
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(beschéftigt_sich hans informatik)
(Mann hans)
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Fall 3

Wenn (r o (atleast n)) fehlt, aber
(r; o (atleast ) in A-Box und
F<<rin T-Box
dann zahle Werte vonr,
sammle alle (ro (atleast ) ,
flge sie x hinzu.
subsumes(c, x")
falls falsch wegen atleast ist covers(c,0) falsch
sonst weiter!
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Fall 4

Wenn (r o 0g in A-Box und (all r ¢) T-Box
nicht klappte,

dann teste, ob alle pgenannt sind
Wenn ja, fir alle gz covers(g, 0z) prufen,
sonst liefere falsch
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Realisierungalgorithmus
(realizer)
1.) Propagierung
2.) Abstraktion
3.) Klassifikation
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Propagierung

0= (rop)
« alle (g 0) sammeln,

» deren Wertebereichsbeschrankungen fir r ynd r
sammeln,

« alles als Beschreibung an p reichen
o =(c o) und
es gibt (ro p) in A-Box und c: (all;) in T-Box
« sammle alle bfur r, und
*1;>>1, als Beschreibung an p reichen.
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Abstraktion

Die Abstraktion eines Objektes o ist die Konjunktion von:

(and g ... ¢) fur alle (¢ 0) in A-Box
(atleast nrlintrage fur
(r, 0...) Eintrage und
(r; o (atleast ) mitr; <<r
(atmost n r) fur (ro (atmost ) Eintrage mit r <<;r
(all r c) falls alle Werte pbekannt sind fur (1o p)
mit r, << r, Beschreibungen von
p; abstrahieren und generalisieren zu c

Termsubsumtion
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Klassifikation

.. fur alle Abstraktionen aufrufen.

meist:.  Tiefenbeschrankung der Vorwartsinferenzen

=> Realisierung ist auch unvollstandig

T-Box
~erklarbare Expertensysteme*
A-Box
|
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Zusammenfassung

Sem. Netze Frames

%Wkult Logik

formalismen

T-Box Syntax
Semantik -> ext
subsumes <- Klassifikation
A-Box Syntax
Semantik -> int
covers <- Realisierung
entscheidbar
unvollstandig (falls androle) Also: aufpassenfasch!
polynomial (falls kein disjoiRénsubsumtion
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