
Termsubsumtion 1

Termsubsumtionsformalismen
(KL-ONE)

In epistemischen Primitiven Begriffe definieren. Teile der Signatur und der Interpretation sind
vorgegeben. Einige Schlussfolgerungen sind vorbereitet.

≠ logische Ebene!

Frau Studierende

Studentin

isa

role: Hauptfach
Informatik

Informatikstudierende sind Studierende,deren 
Hauptfach die Informatik ist.

Eine Studentin ist eine Frau UND eine Studierende.
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T-Box

für terminologisches Schließen

Studentin .=. (and Frau Studierende)
Informatikstudierende .=. (and Studierende (all Hauptfach Informatik))

Anything Anyrelation

Frau Studierende

Studentin

Inform.

Stud.

isaand

...

Fach

Informatik

Hauptfach
all

atleast 1

atmost ×

Nothing
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Syntax von Termsubsumtionsformalismen

<terminology> ::= {<term-introduction> | <restriction> }*

<term-introduction> ::= <concept-introduction> | <role-introduction>

<concept-introduction> ::= <atomic-concept> .=. <concept> |

     <atomic-concept> ≤  <concept> |
     <atomic-concept> ≤  ANYTHING

<role-introduction> ::= <atomic-role> .=. <role> |

                         <atomic-role> ≤  <role> |
                         <atomic-role> ≤  ANYRELATION

<concept> ::= <atomic-concept> |

            (and <concept>+) |
            (all <role> <concept>) |
            (atleast <number> <role>) |
            (atmost <number> <role>)

<role> ::= <atomic-role> |

          (androle <role>+)

<restriction> ::= (disjoint <atomic-concept> <atomic-concept>)

<number> ::= <non-negative-integer>

<atomic-role> ::= <identifier>

<atomic-concept> ::= <identifier>

Wohlgeformte, aus epistemischen Primitiven zusammengesetzte Ausdrücke
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Semantik epistemischer Primitive und
zusammengesetzter Ausdrücke

Knoten: Entscheidung über Begriffszugehörigkeit über notwendige

Eigenschaften
d.h. ∀ x  x∈ Begriff | ....

Objekte: a1, a2, a3, ...                                  D
Relationen (a1,b1),(a1,b2),(a1,b3),(a2,b1),...   D x D
ext

für alle a ≤ t sei ext(t) ⊇  ext(a)

für alle a.=. t sei ext(t) = ext(a)

ext(ANYTHING) = D
ext(ANYRELATION ) = D x D
ext( (and c1 ... cn))  = ∩ ext(ci) wobei i von 1 bis n

ext( (all r c)) = {x ∈  D | ∀  y : (x,y) ∈  ext(r) --> y ∈  ext(c) }

ext( (atleast n r)) = { x ∈  D | card ({y ∈  D | (x,y) ∈  ext(r)} ) ≥ n }
ext( (atmost n r)) = { x ∈  D | card( {y ∈  D | (x,y) ∈  ext(r)} ) ≤ n }

ext( (androle r1 ... rn)) = ∩ ext(ri) wobei i von 1 bis n

für alle (disjoint c1 c2) sei ext(c1) ∩ ext(c2) = {}

ext
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Klassifikation

• Gegeben eine TBox und eine neue Begriffsdefinition,

• finde den richtigen Platz für den neuen Begriff.

Der richtige Platz ist:

• der neue Begriff hängt unter seinem speziellsten
Oberbegriff,

• der neue Begriff subsumiert alle unter ihm hängenden
Begriffe.
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Subsumtion

• Logische Struktur (D, ext)

• t subsumiert t´, geschrieben t >> t´, gdw.
 ∀  (D, ext) von T: ext (t) ⊇  ext (t´)

• transitiv: t >> t´, t´>> t´´  dann t >> t´´

• reflexiv: t >> t
• t äquivalent t´gdw. ∀  (D, ext) von T:  ext (t) = ext (t´)

• t inkohärent in T gdw. ∀  (D, ext) von T: ext (t) = {}
(unerfüllbar, z.B. (and (atleast 1 r) (atmost 0 r))
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T

• Mit and und NOTHING ist T ein Halbverband, d.h.:

• Infimum (größter gemeinsamer Unterbegriff) gibt es
immer!

• Die partielle Ordnung ist die Subsumtion >>.

• T behandelt alle Modelle der Begriffsdefinitionen,
NICHT bestimmte Mengen von Grundbeispielen!
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Klassifikationsalgorithmus

• Definitionen glätten, d.h. die Definitionen der Begriffe,
die in einer Definition vorkommen, aufschreiben.

• bottom-up: von NOTHING ausgehend, bei jedem
Begriff feststellen, ob der neue Begriff von dem Begriff
subsumiert wird.

• Der Klassifikationsalgorithmus beruht also auf der
Subsumtionsentscheidung.
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Beispiel

frau stud

studentin

frau ≤ mensch
stud.=.(and mensch

     (all studiert fach))
studentin.=. (and frau

            (and mensch
          (all studiert fach)))

informatikstudentin.=.
(and (and frau

 (and mensch
          (all studiert fach))
         (all studiert informatik))

mensch

fach

informatikinformatikstudentin

frau >> studentin?
ja, weil
studentin.=. (and s1 s2)
und
s1= frau
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Subsumtion

             t
u

androle t1...tn

and t1...tn

primitiv all rt ct atleast nt rt almost nt rt

NOTHING wahr wahr wahr wahr wahr

primitiv ∀ i, 1≤i≤n:
subsumes (ti, u)

t = u falsch falsch falsch

all ru cu ∀ i, 1≤i≤n:
subsumes (ti, u)

falsch subsumes (ct,cu)
∧
subsumes (ru, rt)

falsch falsch

atmost 0 ru ∀ i, 1≤i≤n:
subsumes (ti, u)

falsch subsumes (ru, rt) falsch subsumes (ru, rt)
∧  0 ≤ nt

and u1...un

androle u1...un

∀ i, 1≤i≤n:
subsumes (ti, u)

∃ i,1≤i≤n:
t = ui

∃ i: 1≤i≤n:
subsumes (t, ui)

∃ i: 1≤i≤n:
subsumes (t, ui)

∃ i: 1≤i≤n:
subsumes (t, ui)

atleast nu ru ∀ i, 1≤i≤n:
subsumes (ti ,u)

falsch falsch subsumes (rt, ru)
∧  nt ≤ nu

falsch

atmost nu ru ∀ i, 1≤i≤n:
subsumes (ti, u)

falsch subsumes (ru, rt)
bei nu=0
sonst falsch

falsch subsumes (ru, rt)
∧  nu ≤ nt

subsumes(t,u) ?
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Subsumtionsalgorithmus

korrekt: wenn wahr für t >> u ausgegeben wird,
          gilt ext(t) ⊇  ext(u).

vollständig: wenn ext(t) ⊇  ext(u) gilt,

           wird wahr für t >> u ausgegeben.

Subsumtion ist entscheidbar, wenn Zyklen ausgeschlossen
sind.

Subsumtionsentscheidung ist polynomiell in der Länge der
Definitionen t und u, falls die Rollen primitiv bleiben.
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Unvollständigkeit KL-One

t: (atleast 3 r1)
u: (and (all (androle r1 r2) A)

  (all (androle r1 r3) B)
  (disjoint A B)
  (atleast 2 (androle r1 r2))
  (atleast 1 (androle r1 r3))

A

B

atleast 3
r1

r2

r3r3(K1, b3)
r3(K2, b3)
     ...

r1(K1, a1)
   (K1, a2)
   (K1, b3)
   (K2, a1)
   (K2, a2)
   (K2, b3)
       ...

r2(K1, a1)
r2(K1, a2)
r2(K2, a1)
r2(K2, a2)
    ...

Schon androle macht die Subsumtion
unvollständig! disjoint wird von
subsumes nicht berücksichtigt.

Es wäre möglich, disjoint zu berücksichtigen,
aber aufwendig! Nicht immer, wenn wahr
ausgegeben werden müßte, wird es ausgegeben.
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Prinzip

Brachman, Levesque (87):

Handhabbarkeit vs. Ausdrucksfähigkeit eines
Wissensrepräsentationsformalismus´.

Man lebt mit polynomieller unvollständiger Subsumtion.
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T-Box

Das war die T-Box für

• terminologisches Schließen

• über allen Modellen ohne Grundbeispiele.

Jetzt kommt die A-Box für Assertionen, Grundformeln.
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A-Box

Syntax:
<world-description>::=(<obj descr> <rel descr>)

<obj descr>::=(<atomic concept><obj>)

    <rel descr>::=(<atomic role><obj><obj>)
     (<atomic role><obj> (atleast<nr.>))

     (<atomic role><obj> (atmost<nr.>))
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Semantik der A-Box

D Objekte

Funktion int 2D       Begriffe

2DxD    Rollen

Interpretation (D,int) erfüllt δ
δ = (c o) ist erfüllt gwd. int(o) ∈  int(c)

      (r o p) (int(o), int(p)) ∈  int(r)

      (r o (atleast n))  {(int(o),x) ∈  int(r)} ≥  n

      (r o (atmost n))  {(int(o),x) ∈  int(r)} ≤  n

Wenn eine Interpretation int alle δi ∈  A-Box erfüllt, ist sie ein
Modell der A-Box. Wenn δj in allen Modellen der A-Box erfüllt
ist, gilt: A-Box  = δj
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Beispiel

Mann

T-Box

A-Box

Stud

Student

Informatik

Fach

Beschäfti-
gungen

(Stud Hans)
(beschäftigt_sich Hans (atmost 1))
(beschäftigt_sich Hans Informatik)
(Mann Hans)

instance_of

beschäftigt_sich

studiert
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Beziehung zwischen
T-Box und A-Box

Was studiert Hans?

Was ist der speziellste Begriff für Hans?
(and Stud Mann)

Der allerspeziellste Begriff ist konstruierbar.

Vermutlich gibt es ihn nicht in T-Box.
HansBegriff .=. (and Stud

 Mann
(all beschäftigt_sich Informatik)
(atmost 1 beschäftigt_sich))

Klassifikation (HansBegriff)
subsumes(Student, HansBegriff)

Termsubsumtion 19

Hybride Inferenzen

• Inferenzen in der T-Box
Vererbung

• Inferenzen zwischen T-Box und A-Box:
a) Ist ein Objekt ein Grundbeispiel für einen Begriff?
    covers (c, o)?
b) Welcher Begriff ist der speziellste Begriff, für den 
ein Objekt ein Grundbeispiel ist?
     realize
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covers (c,o)

c ist ein Begriff (T-Box),
o ist ein Objekt beschrieben durch δ1 ... δn (A-Box)
covers(c, o)
δi ∈  A-Box  δi:(<concept> o)
x = (and δ1 ... δn)

subsumes(c, x)
• liefert wahr,   dann gilt covers (c,o)
• liefert falsch,  dann Fallunterscheidungen
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Fall 1

Wenn c eine Beschreibung enthält, die in x, der
Beschreibung von o fehlt, kann dennoch covers (c,o)
gelten. Nennen wir die fehlenden Beschreibungen in x
den Begriff b.

Wenn (r q o) ist in A-Box und
       b.=. (all r c) ist in T-Box

dann   covers(b, q)  ist wahr und damit covers (c,o)
sonst falsch

b c

q o

r

r
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Beispiel

Human ≤ Anything

Man ≤ Human

Woman ≤ Human

Set ≤ Anything

member ≤ Anyrelation

Team .=. (and Set (all member Human)
(atleast 2 member) )

leader ≤ member

Modern-Team .=. (and Team
        (atmost 4 member)
        (atleast 1 leader)
        (all leader Woman))

T-Box:

(Modern-Team team-a)

(Man dick)

(Human mary)

(member team-a dick)

(member team-a harry)

(member team-a mary)

(leader team-a mary)

(member team-a (atmost 3))

A-Box:

covers(Woman  mary)?
r: leader
Wenn team-a ein Modern-Team ist,
ist mary eine Frau.
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Fall 2
Wenn δj = (r o (atmost n)) fehlt, aber

 δi  = (ri o (atmost ni)) ist in A-Box

und ri >> r ist in T-Box,

dann sammle alle (ri o (atmost ni)) in der A-Box,

füge sie x hinzu,

subsumes(c, x´)

falls es wegen atmost-Verletzung falsch

 covers (c,o) falsch

sonst die nächsten Fälle prüfen!

ri

r

ri atmost ni
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Beispiel
o: hans
x: (Stud hans)

(beschäftigt_sich hans (atmost 1))
(beschäftigt_sich hans informatik)
(Mann hans)

c:
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Fall 3

Wenn (r o (atleast n)) fehlt, aber

(ri o (atleast ni)) in A-Box und

       ri << r in T-Box

dann zähle Werte von r,

sammle alle (ri o (atleast ni)) ,

füge sie x hinzu.

subsumes(c, x´)

   falls falsch wegen atleast ist covers(c,o) falsch

sonst weiter!
Termsubsumtion 26

Fall 4

Wenn (r o ozi) in A-Box und (all r cz) T-Box

 nicht klappte,

dann teste, ob alle ozi genannt sind

Wenn ja, für alle ozi covers(cz, ozi) prüfen,

sonst liefere falsch
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Realisierungalgorithmus
(realizer)

1.) Propagierung

2.) Abstraktion

3.) Klassifikation
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Propagierung

δ = (r o p)
• alle (ci o) sammeln,
• deren Wertebereichsbeschränkungen für r und ri >> r 

sammeln,
• alles als Beschreibung an p reichen
δ = (c o) und

es gibt (ri o p) in A-Box und c: (all ri bi) in T-Box
• sammle alle bi für ri und rj ,
• rj >> ri, als Beschreibung an p reichen.
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Abstraktion
Die Abstraktion eines Objektes o ist die Konjunktion von:

 (and c1 ... cn) für alle (ci o) in A-Box

 (atleast  n r) Einträge für
(ri o ...)  Einträge und
(ri o (atleast ni)) mit ri << r

 (atmost n r) für (ri o (atmost ni)) Einträge mit r << ri
 (all r cz) falls alle Werte pi bekannt sind für (ri o pi)

mit ri << r, Beschreibungen von
pi abstrahieren und generalisieren zu cz.
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Klassifikation

... für alle Abstraktionen aufrufen.

meist: Tiefenbeschränkung der Vorwärtsinferenzen

=> Realisierung ist auch unvollständig

T-Box

A-Box

XPS

„erklärbare Expertensysteme“
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Zusammenfassung
Sem. Netze Frames

Termsubsumptions- default Logik

formalismen

T-Box Syntax
Semantik -> ext

subsumes <- Klassifikation
A-Box Syntax

Semantik -> int
covers <- Realisierung

entscheidbar
unvollständig (falls androle)   Also: aufpassen bei falsch!
polynomial (falls kein disjoint)


