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@ Strukturen der CRF

@ Forward Backward Wahrscheinlichkeiten rechnen

@ Viterbi Annotation einer Sequenz von Beobachtungen
@ Bestimmen des Gewichtsvektors

0 Graphische Modelle allgemein

Technische Universitat Dortmund

Einfithrung HMM CRF Graphische Modelle allgemein

7y

2von 35

LS 8 Informatik
Computergestitzte Statistik
Technische Universitat Dortmund

technische universitat
dortmund

Einfihrung HMM CRF Graphische Modelle allgemein

Graphische Modelle

& tu

- - P LS 8 Informatik
technische universitat Computergestitzte Statistik

dortmund

Technische Universitat Dortmund

7y

Einfhrung  HMM CRF Graphische Modelle allgemein

Hidden Markov Models

Lernen mit einer Struktur:
o Structural SVM
@ Hidden Markov Models (HMM)
@ Conditional Random Fields (CRF)
o Bayes Networks
Raum-zeitliche Verhéltnisse
@ Sprache
o Handlungen
o Bilder
o Geodaten
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A= (Y,A, B, X)

@ Struktur gegeben durch einen Graph méglicher Zustande
Y1, -, Yi, -.-(versteckte Knoten) Y

o Matrix A der Ubergangswahrscheinlichkeit von einem
Zustand zum n&chsten (Transition Features): a;; = p(ys|y;)

@ Wahrscheinlichkeit B, im Zustand y; die Beobachtung z;
zu machen (State Features) b;; = p(yi|z;)

o Anfangswahrscheinlichkeit, dass y; der Startzustand ist:
m(i) = p(y1 = i)

o Menge der mdglichen Beobachtungen (beobachtete
Knoten) X

4 von 35

LS 8 Informatik
Computergestitzte Statistik
Technische Universitat Dortmund

technische universitat
dortmund

Einfihrung HMM CRF Graphische Modelle allgemein

| HMM Modell

o Eine Beobachtung z; h&ngt nur vom Zustand y; ab: p(x|y:)

@ Ein Zustand y; héngt nur vom Vorgéngerzustand ab:
P(yelye-1)

o Die Anfangswahrscheinlichkeit schreiben wir als p(y1|yo),
so dass es von p(y:|y:—1) mit abgedeckt ist.

o Die Wahrscheinlichkeit fir die Zustandssequenz ¢ und die
Beobachtungssequenz 7 ist

T

(i, %) = [ [ p(uelye—1)p(elye)

t=1
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Aufgaben fir Algorithmen

@ Lernen der Wahrscheinlichkeiten a;;, b;;, 7 (7)
(Training Problem)

@ Annotieren einer Beobachtungssequenz durch das
(gelernte) Modell (Decoding problem)

In der Literatur gibt es noch die Evaluierungsaufgabe, die die
Wabhrscheinlichkeit dafiir angibt, dass eine bestimmte
Beobachtungssequenz durch eine gegebene Sequenz
versteckter Zustande zustande kommt [1]. Wir besprechen hier
zwei Algorithmen, die immer wieder vorkommen:

o Forward Backward

o Viterbi
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Einflihrung in den Forward Backward Algorithmus
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Wabhrscheinlichkeiten

Es gibt eine lllustration des Algorithmus mit
Excel-Berechnungen [1], die in den Algorithmus einfiihren soll.

Eiscreme und Klima (Eisner)

Im Jahr 2799 will eine Forschergruppe den Klimawandel
untersuchen. Es werden keine Aufzeichnungen des Wetters in
Baltimore gefunden, aber das Tagebuch von Jason Eisner tber
33 aufeinander folgende Tage im Jahr 2001, in dem er notiert
hat, wie viele Kugeln Eis er aB: X = {1,2,3}.

Gesucht ist fiir diese Sequenz von Tagen jeweils die
verborgene Temperatur, hier nur kalt oder hei3: Y = {C,H} .
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State
@ Wahrscheinlichkeit an einem kalten Tag fiir eine Kugel
p(1|C) = 0,7 und zwei p(2|C) = 0,2 und drei p(3|C) = 0, 1.
o Wahrscheinlichkeit an einem hei3en Tag
p(1|H) =0,1und p(2|H) = 0,2 und p(3|H) =0, 7.
Transition
@ Wahrscheinlichkeit von heif3 nach kalt p(C;41|H;) = 0,1
und von kalt nach kalt p(Ci4+1|C;) = 0,8
o Wahrscheinlichkeit von kalt nach hei3 p(H;11|C;) = 0,1
und von heif3 nach heiB3 p(H;11|H;) = 0,8
Boundary

@ Wahrscheinlichkeit, das Tagebuch anzufangen/zu beenden
an einem Kkalten/heiBen Tag p(C|start) = p(H|start) = 0,5
und p(stop|C) = p(stop|H) = 0,5
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Wetterrekonstruktion
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Rechnen der Wahrscheinlichkeit von Pfaden

Wahrscheinlichkeit p( H;) angesichts des Eiskonsums [1]:

Weather States that Best Explain Ice Cream Consumption
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Diary Day

@ Wahrscheinlichkeit fir start, H, H,C und 2,3,3
Produkt von Ubergangswahrscheinlichkeit und
Zustandswahrscheinlichkeit fir jeden Ubergang
(0,5-0,2)-(0,8-0,7)-(0,1-0,1) = 0,1-0,56-0,01 = 0,00056

@ Welche der 8 Zustandsfolgen ist die wahrscheinlichste bei
der Beobachtung 2, 3,37
P(start, H,H, H) = 0,1-0,56 - 0,56 = 0,0314 — diese!
P(start,H,C,H)=10,1-0,01-0,07 = 0,00007
P(start,C,H,H)=10,1-0,07-0,56 = 0,0039
P(start,C,C,H) =0,1-0,08-0,007 = 0,000056

@ «: Summe der Wahrscheinlichkeiten aller Pfade von start
bist,z.B.y. = H
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Forward Variable «

Pfad vom Anfang bis Position 7", wo der Zustand irgendein
festes y; ist:

ai(i) = P(x1, ..., x7, Yy = yi|A)

@ Anfang: = mal Wahrscheinlichkeit fir erste Beobachtung
ai(i) = P21, 3| A) = mibi(@1)
@ Rekursionfir1 <t <T:

Y|
a(j) = P(w1, oo, yi1N) = Y 1 (Db ()
i1
o Ende:
Y|
P(xly ceey Tty yl|)\) =

> anli)
i=1
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Rechnen des Beispiels

Eisners Excel-Tabelle hat die Wahrscheinlichkeiten in den
Matritzen A (Ubergang) und B (Zustand) sowie Randverteilung
bereits gegeben.

Schauen Sie sich die Propagierung einmal an.

Spielen Sie mit der Excel-Implementierung!

hitp : //cs.jhu.edu/ ~ jason/papers/eisner — 2002 — tnlp

Danach betrachten wir CRFs und den Forward Backward
Algorithmus flir CRFs.
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Conditional Random Fields

| Was wissen Sie jetzt?

@ Sie haben eine Formulierung fir Sequenzen
kennengelernt: HMM.

@ Wir sind ein Beispiel durchgegangen, bei dem alle
Wahrscheinlichkeiten schon gegeben waren.

@ Sie wissen noch nicht, wie man diese
Wahrscheinlichkeiten aus Daten heraus schatzt!
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CRF=(X,Y,A,B)
o Die Struktur ist (wie bei HMMs) durch die multivariaten
Zufallsvariablen X und Y gegeben, aber ungerichtet.
@ Zustandsibergange «a; ;1. in A als transition features
gewichtet: Ay fi (yi—1, v, x1) wobei X € [0, 1],
Yt—1 = Yis Yt = Y5, Tt = Tk-
@ Zustandsmerkmale b; ,, in B als state features gewichtet:
e fr (e, ) wobei yr = y;, ¢ = xp,.
@ Gewichtung von Start- und Endzustanden fiir yo = start
bzw. yr11 = stop sind ebenfalls in A und B enthalten.
o Wir vereinigen die Merkmale und erhalten den
Gewichtungsvektor © flr die k = 1, ..., K Merkmale.
Die Beobachtungen missen NICHT voneinander unabhangig
sein!
14 von 35

LS 8 Informatik
technische universitat Computergestitzte Statistik
dortmund

Einfuhrung HMM CRF Graphische Modelle allgemein

Beispiel
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CRF vs. HMM

Lexikon X = {Udo, goes, comes, to, from,Unna}

Zustande (Kategorien) Y = { Pos, Per, (0}

Beobachtung: x; = Udo, x5 = goes, x3 = to, x4 = Unna

| X| Matritzen der Form |Y'| x |Y'| Hier nur Feld 2 angegeben.

Mo | Pos | Per | 0 2:

Pos 1 2 3 exp[A1 f1(Pos, Per,Udo)+
Per 4 5 6 A2 fo(Per,Udo)+

0 7 8 |9 A3 f3(Per, capitalletter))

M, = exp[S 5 M fi (e, v, @) + S8 NS (e, 1))

Potenzialfunktion rechnen: Flr jedes x; der beobachteten
Sequenz die gesamte Matrix M, ausrechnen!
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HMM:

p(y.x) =TTy p(yelye—1)p(@elye)

CRF:

, Px) =
Z(X)71 Ht:l eXp [a’yt—lvytﬂft + by:,mt]

Bemerkung: yo = start, p(y|start) = w(y)

16 von 35

LS 8 Informati

technische universitat Computergestitzte Statistik

dortmund

CRF Modell

Einfihrung  HMM CRF Graphische Modelle allgemein

s “E t—lJ technische universitat
‘Technische Universitat Dortmund dortmund

LS 8 Informatik o
Computergestitzte Statistik )
Technische Universitat Dortmund

Einfihrung HMM CRF Graphische Modelle allgemein

Exponenzialfunktionen

Normalisieren, wenn wir Wahrscheinlichkeit wollen, etwa:
Z(x) = My(x) - ...- Mp(x)

[V K

Z(x) = Z exp[z NS (Ye—1, yt, 7))
y k

1 I K K
7@ H emp[z e fe(Ye-1, 98, 20) + Z Ak fi(ye, )]
t=1 k k

Warum Exponenzialfunktion?
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Hammersley Clifford 1990

Eine lokale Verteilung mit Markov-Eigenschaft hat auch global
die Markov Eigenschaft.

Eine Wahrscheinlichkeitsverteilung hat die Markov-Eigenschaft,
gdw.

P(X) x exp(3_ Q(C, X))

wobei C' die Menge aller Cliquen im Graph ist und @ irgendeine
reellwertige Funktion, die die Likelihood fiir bestimmte
Ausprégungen der Zufallsvariablen im Graph ausdriickt.

Die Exponenzialfunktion liefert immer einen Wert > 0.
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Aufgaben fiir Algorithmen
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Forward Backward Algorithmus

o Training:
Wie oft kam to in den Trainingsdaten mit y = () vor?
Forward Backward Algorithmus fir linear chain CRF (i.e. y;
sind linear verbunden)
Gewichte lernen (parameter estimate) © = (\y,
Maximum Likelihood

@ Annotierung einer Beobachtungssequenz durch das
gelernte Modell
Viterbi Algorithmus fir die wahrscheinlichste Annotation

s AK)
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Sequenz 1, ...,¢,...,T und festes y; = y;
forward Wahrscheinlichkeit o4 (¢) fir Sequenz 1, ..., ¢
backward Wahrscheinlichkeit 5;(i) fir Sequenz ¢, ..., T

o Anfang:
a1(i) = P(yo = start,y1 = yi,x1)
Br(i) = P(yr41 = stop,yr = yi, x1)

@ Rekursion fir1 <t<T:
o (x) = a1 - Mt( )=
ai—1(z) - efcp[Zk e S (Y-
Bi(z) = Bry1(x) - Mt+l( )
ﬂt+1(ﬂ€) €$p[zk /\kfk(

LY o) + Zk Mefr(ye, w4))]

Yep1t, T) + Zk NS (Yer1, )]
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Algorithmus
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Fir alle Beobachtungen t=1 bis T
fir alle Label i=1 bis |Y|
berechne Forward a;(y;|z)
berechne Z(x)
Fir alle Beobachtungen t=T bis 1
fir alle Label i=1 bis |Y|
berechne Backward f;(y;|z)

O(T|Y?)

Fir jeden Schritt (Beobachtung) |Y'| Nachrichten («, 8) rechnen
und jede Nachricht summiert Gber |Y| Terme.
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Annotation einer Sequenz

Wir wollen die Sequenz der Label als Vektor erhalten, g;.
Forward « wurde eben als Summe von Ubergangs- und
Zustandswahrscheinlichkeiten gerechnet.

o Jetzt wird das maximale Label y vorwérts propagiert!
a*(yle) =
a1 - mazyeap[ S5 MefrWi—1, v 20) + Sk Mo (e 2]

o dabei der wahrscheinlichste Vorganger bestimmt:
Si(ylz) =
a1 - mazyeap[ S MefrWi—1, v 20) + Sk Mefe(e 2]

@ Vom maximal wahrscheinlichen Label fiir den letzten
Knoten ér(y|x) rechnet man rekursiv zurlick und erhélt die
Sequenz.
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Viterbi Algorithmus

Fur alle Beobachtungen t=1 bis T
fUr alle Label i=1 bis |Y|
berechne MaxForward o; (y;|x)
berechne wahrscheinlichsten Vorganger: 4;(y|x)
ir = maz,aj (yil)
Fir alle Beobachtungen t=T-1 bis 1
bt = 0t (ylw, Gev1)
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Bestimmen der Gewichte ©

Gegeben: Trainingsmenge T

max£(A,BIT) ~ max [ »y,x), HUM
(x,y)eT

max (A, BIT) ~ max [] »vlx), CRF
(x,y)eT

Zielfunktion ist konvex
= Maximierung mit Gradientenabstieg oder Newton-Verfahren
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Maximierung der Likelihood

Sei 7 (X: = z) die Menge aller Trainingsbeispiele die an der
t-ten Stelle der Sequenz die Beobachtung x enthalten.

Sei 1y,_,—yv;—y €ine Indikatorfunktion die den Wert 1 annimmt
gdw. die Sequenz an Position ¢ im Zustand y und an Position

t — 1im Zustand ¥/ ist.

(t+1)
TNTE

a®

TR

_ +p®

>

(x,y)€T (Xt=x)

[1Yt—1:y/,Yt:y

7 ist eine Schrittweite.
Die Optimierung konvergiert fir ) = © (ﬁ)
Update flr b; ;, analog.

-p (¥, ylz)]
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Was wissen Sie jetzt?

@ CRFs kdnnen beliebige Graphen sein. Die Beobachtungen
werden unabhangig von der Reihenfolge genutzt. Gesucht
istp(yle).

@ Wir haben die Ubergangswahrscheinlichkeiten in der
Matrix A und die Zustandswahrscheinlichkeiten in der
Matrix B gesehen. Ubergange und Zustande werden als
Merkmale aufgefasst.

o Die Merkmale sind jeweils gewichtet. Der Vektor aller
Gewichte ist © und wird nach Maximum Likelihood
bestimmt.

o Sie kennen die Matritzen Mz fiir jede Beobachtung = mit
allen Zustandsuibergéngen.

o Der Forward Backward-Algorithmus berechnet die
Wahrscheinlichkeiten. Sie wissen auch, wie!

o Der Viterbi-Algorithmus maximiert, um flr eine

Beobachtungssequenz die Label-Sequenz zu finden. 25 von 35
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Merkmalstransformation
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Maximum Likelihood

Wir haben bei der strukturellen SVM schon die Kodierung von
B&umen in einen Vektor gesehen.

Nehmen wir jetzt einen 1 Knoten 1:4
ganz einfachen Graphen 0 Knoten 1EB

. . 0 Knoten 1:C
mit zwei Kr.l-ot.en, {1,2}, 0 Knoten 2:4
und drei méglichen o) = |1 Knoten 2:B
Zusténden {4, B,C} an. 0 Knoten 2:C
Die Transformation ¢(z) 0 Kante A,A
stellt die Belegung 1 Kante A,B
x = (A, B) als Vektor dar. 0 :

Das nutzen wir genau so fir graphische Modelle.
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Gegeben eine Verteilung Pry(z) und eine Stichprobe dieser
Verteilung z1, ...., zn, ist die logarithmierte Wahrscheinlichkeit:

N
= Z log Pro(z;)

i=1

1

Genau das 6, das z; am wahrscheinlichsten macht, ist gut —
L(#) maximieren!
o Wir kdnnen daflr eine Verteilung annehmen, da wir die
wahre Verteilung nicht kennen.
@ Meist ist die Normalverteilung eine gute Annahme:

= N(fs(X),0?)

@ Beilinearen Modellen ist die Maximum Likelihood gleich
der Minimierung von RSS.

Pr(X|Y,0)
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Likelihood zu einem Datensatz D maximieren

maxL(0, D)

Hp i)

Als Wahrscheinlichkeit setzen wir d|e Exponenzialfamilie ein:

N
Lo, D)=]] %expk 0,(z) >)
i=1

Logarithmieren und durch Z normalisieren:
N
> (<0, 0(x) >
=1

N
1(0,D) =< 0,> ¢(x) > —NlogZ(0)

i=1

logL(0, D) = —logZ(0))

@)

Das Loglikelihood Problem
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Multiplizieren mit % ergibt das Loglikelihood-Problem:

NZas(x

Wir mlssen die empirische Erwartung berechnen

1 X
:N;(Mm)

~logZ(0)

und uns um Z kimmern.

= Z exp(< 0, p(x) >

reX
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Was wir berechnen miissen

Optimierung von 6

Parameter ¢ durch Gradientenabstieg optimieren. Fir ein

bestimmtes 0;: .
! @ Die empirische Wahrscheinlichkeit p; = E¢(z) kann einmal

ole,D) E¢-( - dlogZ ) fur alle Variablen j = 1,..., N ausgerechnet werden.
o0; T "o, o Die Wahrscheinlichkeit unter der Modellannahme
p; = E(¢;(x)) wird beispielsweise durch den Forward
Regel 24/ — 1 2/2) Backward Algorithmus berechnet.
SlogZ L oz o Wir erhalten die Differenz der empirischen
~o0; ~ Z(0) 00; Wahrscheinlichkeit p; fiir die Parameterwahl 6; und

die geman ¢ berechnete Wahrscheinlichkeit p; fir ;.

= 70 Laex gu;eap(< 0,6(z) >)
= @ Je kleiner die Differenz p; — p; flr alle j, desto genauer das

Z(0) ZzeX 6.73p(< 07 ¢(‘7") >)¢J(l')

= Yoex Zerp(< 0,6(z) >)o;(x) Modell, desto kleiner der Fehler.
= Tiexp(@)g;(z) = B(dj(x))
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Likelihood zu maximieren,

o Uber die LogLikelihood

@ zu dem Optimierungsproblem, die Parameter 6
anzupassen gesehen, das
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o die empirische Wahrscheinlichkeit, den Erwartungswert der
Variablen und
o die Wahrscheinlichkeit gemé&B der Parameter 6, den
Erwartungswert beziiglich einem 6;.
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Conditional Random Fields:Probabilistic models for
segmenting and labeling sequence data.

33 von 35

34 von 35

technische universitat
dortmund

LS 8 Informatik
Computergestitzte Statistik
Technische Universitat Dortmund

Einfuhrung HMM CRF  Graphische Modelle allgemein

Bibliography (2/2)

Lawrence R. Rabiner.
A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition.

Charles Sutton, Andrew McCallum.
An Introduction to Conditional Random Fields for Relational
Learning.

Martin Wainwright, Michael Jordan
Graphical Models, Exponential Families, and Variational
Inference

35 von 35




