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Graphische Modelle

Lernen mit einer Struktur:
Structural SVM
Hidden Markov Models (HMM)
Conditional Random Fields (CRF)
Bayes Networks
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Hidden Markov Models

λ = (Y,A,B, π,X)

Struktur gegeben durch einen Graph möglicher Zustände
y1, ..., yi, ...(versteckte Knoten) Y
Matrix A der Übergangswahrscheinlichkeit von einem
Zustand zum nächsten (Transition Features): aij = p(yi|yj)
Wahrscheinlichkeit B, im Zustand yi die Beobachtung xj
zu machen (State Features) bij = p(yi|xj)
Anfangswahrscheinlichkeit, dass yi der Startzustand ist:
π(i) = p(y1 = yi)

Menge der möglichen Beobachtungen (beobachtete
Knoten) X

4 von 35

LS 8 Informatik
Computergestützte Statistik
Technische Universität Dortmund

Einführung HMM CRF Graphische Modelle allgemein

HMM Modell

y1 y2

x1 x2

y3

x3

Eine Beobachtung xt hängt nur vom Zustand yt ab: p(xt|yt)
Ein Zustand yt hängt nur vom Vorgängerzustand ab:
p(yt|yt−1)
Die Anfangswahrscheinlichkeit schreiben wir als p(y1|y0),
so dass es von p(yt|yt−1) mit abgedeckt ist.
Die Wahrscheinlichkeit für die Zustandssequenz ~y und die
Beobachtungssequenz ~x ist

p(~y, ~x) =
T∏

t=1

p(yt|yt−1)p(xt|yt)
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Aufgaben für Algorithmen

Lernen der Wahrscheinlichkeiten aij , bij , π(i)
(Training Problem)
Annotieren einer Beobachtungssequenz durch das
(gelernte) Modell (Decoding problem)

In der Literatur gibt es noch die Evaluierungsaufgabe, die die
Wahrscheinlichkeit dafür angibt, dass eine bestimmte
Beobachtungssequenz durch eine gegebene Sequenz
versteckter Zustände zustande kommt [1]. Wir besprechen hier
zwei Algorithmen, die immer wieder vorkommen:

Forward Backward
Viterbi
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Einführung in den Forward Backward Algorithmus

Es gibt eine Illustration des Algorithmus mit
Excel-Berechnungen [1], die in den Algorithmus einführen soll.

Eiscreme und Klima (Eisner)
Im Jahr 2799 will eine Forschergruppe den Klimawandel
untersuchen. Es werden keine Aufzeichnungen des Wetters in
Baltimore gefunden, aber das Tagebuch von Jason Eisner über
33 aufeinander folgende Tage im Jahr 2001, in dem er notiert
hat, wie viele Kugeln Eis er aß: X = {1, 2, 3}.
Gesucht ist für diese Sequenz von Tagen jeweils die
verborgene Temperatur, hier nur kalt oder heiß: Y = {C,H} .
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Wahrscheinlichkeiten

State
Wahrscheinlichkeit an einem kalten Tag für eine Kugel
p(1|C) = 0, 7 und zwei p(2|C) = 0, 2 und drei p(3|C) = 0, 1.
Wahrscheinlichkeit an einem heißen Tag
p(1|H) = 0, 1 und p(2|H) = 0, 2 und p(3|H) = 0, 7.

Transition
Wahrscheinlichkeit von heiß nach kalt p(Ci+1|Hi) = 0, 1
und von kalt nach kalt p(Ci+1|Ci) = 0, 8

Wahrscheinlichkeit von kalt nach heiß p(Hi+1|Ci) = 0, 1
und von heiß nach heiß p(Hi+1|Hi) = 0, 8

Boundary
Wahrscheinlichkeit, das Tagebuch anzufangen/zu beenden
an einem kalten/heißen Tag p(C|start) = p(H|start) = 0, 5
und p(stop|C) = p(stop|H) = 0, 5
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Wetterrekonstruktion

Wahrscheinlichkeit p(Hi) angesichts des Eiskonsums [1]:
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Rechnen der Wahrscheinlichkeit von Pfaden

Wahrscheinlichkeit für start,H,H,C und 2, 3, 3
Produkt von Übergangswahrscheinlichkeit und
Zustandswahrscheinlichkeit für jeden Übergang
(0, 5 ·0, 2) · (0, 8 ·0, 7) · (0, 1 ·0, 1) = 0, 1 ·0, 56 ·0, 01 = 0, 00056

Welche der 8 Zustandsfolgen ist die wahrscheinlichste bei
der Beobachtung 2, 3, 3?
P (start,H,H,H) = 0, 1 · 0, 56 · 0, 56 = 0, 0314 – diese!
P (start,H,C,H) = 0, 1 · 0, 01 · 0, 07 = 0, 00007
P (start, C,H,H) = 0, 1 · 0, 07 · 0, 56 = 0, 0039
P (start, C,C,H) = 0, 1 · 0, 08 · 0, 007 = 0, 000056

α: Summe der Wahrscheinlichkeiten aller Pfade von start
bis t, z.B. yt = H
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Forward Variable α

Pfad vom Anfang bis Position T , wo der Zustand irgendein
festes yi ist:

αt(i) = P (x1, ..., xT , Yt = yi|λ)

Anfang: π mal Wahrscheinlichkeit für erste Beobachtung

α1(i) = P (x1, yi|λ) = πibi(x1)

Rekursion für 1 < t ≤ T :

αt(j) = P (x1, ..., xt, yj |λ) =

|Y |∑

i=1

αt−1(i)aijbj(xt)

Ende:

P (x1, ..., xt, yi|λ) =

|Y |∑

i=1

αn(i)
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Rechnen des Beispiels

Eisners Excel-Tabelle hat die Wahrscheinlichkeiten in den
Matritzen A (Übergang) und B (Zustand) sowie Randverteilung
bereits gegeben.
Schauen Sie sich die Propagierung einmal an.
Spielen Sie mit der Excel-Implementierung!
http : //cs.jhu.edu/ ∼ jason/papers/]eisner − 2002− tnlp

Danach betrachten wir CRFs und den Forward Backward
Algorithmus für CRFs.
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Was wissen Sie jetzt?

Sie haben eine Formulierung für Sequenzen
kennengelernt: HMM.
Wir sind ein Beispiel durchgegangen, bei dem alle
Wahrscheinlichkeiten schon gegeben waren.
Sie wissen noch nicht, wie man diese
Wahrscheinlichkeiten aus Daten heraus schätzt!
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Conditional Random Fields

CRF=(X,Y,A,B)
Die Struktur ist (wie bei HMMs) durch die multivariaten
Zufallsvariablen X und Y gegeben, aber ungerichtet.
Zustandsübergänge ai,j,k in A als transition features
gewichtet: λkfk(yt−1, yt, xt) wobei λ ∈ [0, 1],
yt−1 = yi, yt = yj , xt = xk.
Zustandsmerkmale bi,k in B als state features gewichtet:
λkfk(yt, xt) wobei yt = yi, xt = xk.
Gewichtung von Start- und Endzuständen für y0 = start
bzw. yT+1 = stop sind ebenfalls in A und B enthalten.
Wir vereinigen die Merkmale und erhalten den
Gewichtungsvektor Θ für die k = 1, ...,K Merkmale.

Die Beobachtungen müssen NICHT voneinander unabhängig
sein!
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Beispiel

Lexikon X = {Udo, goes, comes, to, from,Unna}
Zustände (Kategorien) Y = {Pos, Per, ∅}
Beobachtung: x1 = Udo, x2 = goes, x3 = to, x4 = Unna
|X| Matritzen der Form |Y | × |Y | Hier nur Feld 2 angegeben.

MUdo Pos Per ∅ 2:
Pos 1 2 3 exp[λ1f1(Pos, Per, Udo)+
Per 4 5 6 λ2f2(Per, Udo)+
∅ 7 8 9 λ3f3(Per, capitalletter)]

Mx = exp[
∑K

k λkfk(yt−1, yt, xt) +
∑K

k λkfk(yt, xt)]

Potenzialfunktion rechnen: Für jedes xt der beobachteten
Sequenz die gesamte Matrix Mx ausrechnen!
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CRF vs. HMM

HMM:

p(y,x) =
∏3
t=1 p(yt|yt−1)p(xt|yt)

y1 y2

x1 x2

y3

x3

CRF:

p(y|x) =
Z(x)−1

∏3
t=1 exp

[
ayt−1,yt,xt + byt,xt

]

y1 y2

x1 x2

y3

x3

Bemerkung: y0 = start, p(y|start) = π(y)
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CRF Modell

Normalisieren, wenn wir Wahrscheinlichkeit wollen, etwa:
Z(x) = M1(x) · ... ·MT (x)

Z(x) =

|Y |∑

y

exp[

K∑

k

λkfk(yt−1, yt, xt)]

1

Z(x)

T∏

t=1

exp[

K∑

k

λkfk(yt−1, yt, xt) +

K∑

k

λkfk(yt, xt)]

Warum Exponenzialfunktion?
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Exponenzialfunktionen

Hammersley Clifford 1990
Eine lokale Verteilung mit Markov-Eigenschaft hat auch global
die Markov Eigenschaft.
Eine Wahrscheinlichkeitsverteilung hat die Markov-Eigenschaft,
gdw.

P (X) ∝ exp(
∑

Q(C,X))

wobei C die Menge aller Cliquen im Graph ist und Q irgendeine
reellwertige Funktion, die die Likelihood für bestimmte
Ausprägungen der Zufallsvariablen im Graph ausdrückt.

Die Exponenzialfunktion liefert immer einen Wert > 0.
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Aufgaben für Algorithmen

Training:
Wie oft kam to in den Trainingsdaten mit y = ∅ vor?
Forward Backward Algorithmus für linear chain CRF (i.e. yt
sind linear verbunden)
Gewichte lernen (parameter estimate) Θ = (λ1, ..., λK)
Maximum Likelihood
Annotierung einer Beobachtungssequenz durch das
gelernte Modell
Viterbi Algorithmus für die wahrscheinlichste Annotation
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Forward Backward Algorithmus

Sequenz 1, ..., t, ..., T und festes yt = yi

forward Wahrscheinlichkeit αt(i) für Sequenz 1, ..., t

backward Wahrscheinlichkeit βt(i) für Sequenz t, ..., T

Anfang:
α1(i) = P (y0 = start, y1 = yi, x1)
βT (i) = P (yT+1 = stop, yT = yi, xT )

Rekursion für 1 < t < T:
αt(x) = αt−1 ·Mt(x) =
αt−1(x) · exp[∑K

k λkfk(yt−1, yt, xt) +
∑K

k λkfk(yt, xt)]
βt(x) = βt+1(x) ·Mt+1(x) =
βt+1(x) · exp[∑K

k λkfk(yt, yt+1t, xt) +
∑K

k λkfk(yt+1, xt)]
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Algorithmus

Für alle Beobachtungen t=1 bis T
für alle Label i=1 bis |Y |

berechne Forward αt(yi|x)
berechne Z(x)
Für alle Beobachtungen t=T bis 1

für alle Label i=1 bis |Y |
berechne Backward βt(yi|x)

O(T |Y |2)
Für jeden Schritt (Beobachtung) |Y | Nachrichten (α, β) rechnen
und jede Nachricht summiert über |Y | Terme.
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Annotation einer Sequenz

Wir wollen die Sequenz der Label als Vektor erhalten, ~yt.
Forward α wurde eben als Summe von Übergangs- und
Zustandswahrscheinlichkeiten gerechnet.

Jetzt wird das maximale Label y vorwärts propagiert!
α∗(y|x) =
αt−1 ·maxyexp[

∑K
k λkfk(yt−1, yt, xt) +

∑K
k λkfk(yt, xt)]

dabei der wahrscheinlichste Vorgänger bestimmt:
δt(y|x) =
αt−1 ·maxyexp[

∑K
k λkfk(yt−1, yt, xt) +

∑K
k λkfk(yt, xt)]

Vom maximal wahrscheinlichen Label für den letzten
Knoten δT (y|x) rechnet man rekursiv zurück und erhält die
Sequenz.
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Viterbi Algorithmus

Für alle Beobachtungen t=1 bis T
für alle Label i=1 bis |Y |

berechne MaxForward α∗t (yi|x)
berechne wahrscheinlichsten Vorgänger: δt(y|x)

~yT = maxyα
∗
t (yi|x)

Für alle Beobachtungen t=T-1 bis 1
~yt = δt(y|x, ~yt+1)
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Bestimmen der Gewichte Θ

Gegeben: Trainingsmenge T

max
A,B
L (A,B|T ) ≈ max

A,B

∏

(x,y)∈T
p(y,x), HMM

max
A,B
L (A,B|T ) ≈ max

A,B

∏

(x,y)∈T
p(y|x), CRF

Zielfunktion ist konvex
⇒ Maximierung mit Gradientenabstieg oder Newton-Verfahren
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Maximierung der Likelihood

Sei T (Xt = x) die Menge aller Trainingsbeispiele die an der
t-ten Stelle der Sequenz die Beobachtung x enthalten.
Sei 1Yt−1=y′,Yt=y eine Indikatorfunktion die den Wert 1 annimmt
gdw. die Sequenz an Position t im Zustand y und an Position
t− 1 im Zustand y′ ist.

a
(t+1)
y′,y,x = a

(t)
y′,y,x + η(t)

∑

(x,y)∈T (Xt=x)

[
1Yt−1=y′,Yt=y − p

(
y′, y |x

)]

η(t) ist eine Schrittweite.
Die Optimierung konvergiert für η(t) = O

(
1√
t

)

Update für bi,k analog.
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Was wissen Sie jetzt?

CRFs können beliebige Graphen sein. Die Beobachtungen
werden unabhängig von der Reihenfolge genutzt. Gesucht
ist p(y|x).
Wir haben die Übergangswahrscheinlichkeiten in der
Matrix A und die Zustandswahrscheinlichkeiten in der
Matrix B gesehen. Übergänge und Zustände werden als
Merkmale aufgefasst.
Die Merkmale sind jeweils gewichtet. Der Vektor aller
Gewichte ist Θ und wird nach Maximum Likelihood
bestimmt.
Sie kennen die Matritzen Mx für jede Beobachtung x mit
allen Zustandsübergängen.
Der Forward Backward-Algorithmus berechnet die
Wahrscheinlichkeiten. Sie wissen auch, wie!
Der Viterbi-Algorithmus maximiert, um für eine
Beobachtungssequenz die Label-Sequenz zu finden.
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Merkmalstransformation

Wir haben bei der strukturellen SVM schon die Kodierung von
Bäumen in einen Vektor gesehen.

Nehmen wir jetzt einen
ganz einfachen Graphen
mit zwei Knoten, {1, 2},
und drei möglichen
Zuständen {A,B,C} an.
Die Transformation φ(x)
stellt die Belegung
x = (A,B) als Vektor dar.

φ(x) =




1
0
0
0
1
0
0
1
0
...




Knoten 1:A
Knoten 1:B
Knoten 1:C
Knoten 2:A
Knoten 2:B
Knoten 2:C
Kante A,A
Kante A,B

...

Das nutzen wir genau so für graphische Modelle.
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Maximum Likelihood

Gegeben eine Verteilung Prθ(x) und eine Stichprobe dieser
Verteilung x1, ...., xN , ist die logarithmierte Wahrscheinlichkeit:

L(θ) =

N∑

i=1

logPrθ(xi) (1)

Genau das θ, das xi am wahrscheinlichsten macht, ist gut –
L(θ) maximieren!

Wir können dafür eine Verteilung annehmen, da wir die
wahre Verteilung nicht kennen.
Meist ist die Normalverteilung eine gute Annahme:

Pr(X|Y, θ) = N (fθ(X), σ2)

Bei linearen Modellen ist die Maximum Likelihood gleich
der Minimierung von RSS.
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Likelihood zu einem Datensatz D maximieren

maxL(θ,D) =
N∏

i=1

p(xi) (2)

Als Wahrscheinlichkeit setzen wir die Exponenzialfamilie ein:

L(θ,D) =
N∏

i=1

1

Z(θ)
exp(< θ, φ(x) >)

Logarithmieren und durch Z normalisieren:

logL(θ,D) =

N∑

i=1

(< θ, φ(x) > −logZ(θ))

l(θ,D) =< θ,
N∑

i=1

φ(x) > −NlogZ(θ)
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Das Loglikelihood Problem

Multiplizieren mit 1
N ergibt das Loglikelihood-Problem:

< θ,
1

N

N∑

i=1

φ(x) > −logZ(θ) (3)

Wir müssen die empirische Erwartung berechnen

Ẽφ(x) =
1

N

N∑

i=1

φ(x)

und uns um Z kümmern.

Z(θ) =
∑

x∈X
exp(< θ, φ(x) >
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Optimierung von θ

Parameter θ durch Gradientenabstieg optimieren. Für ein
bestimmtes θj :

∂l(θ,D)

∂θj
= Ẽφj(x)− ∂logZ

∂θj
(4)

Regel ∂logf(x)∂x = 1
f(x)

∂f(x)
∂x

∂logZ
∂θj

= 1
Z(θ)

∂Z
∂θj

= 1
Z(θ)

∑
x∈X

1
∂θj
exp(< θ, φ(x) >)

= 1
Z(θ)

∑
x∈X exp(< θ, φ(x) >)φj(x)

=
∑

x∈X
1

Z(θ)exp(< θ, φ(x) >)φj(x)

=
∑

x∈X p(x)φj(x) = Ê(φj(x))
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Was wir berechnen müssen

Die empirische Wahrscheinlichkeit p̃j = Ẽφ(x) kann einmal
für alle Variablen j = 1, ..., N ausgerechnet werden.
Die Wahrscheinlichkeit unter der Modellannahme
p̂j = Ê(φj(x)) wird beispielsweise durch den Forward
Backward Algorithmus berechnet.
Wir erhalten die Differenz der empirischen
Wahrscheinlichkeit p̃j für die Parameterwahl θj und
die gemäß θ berechnete Wahrscheinlichkeit p̂j für θj .
Je kleiner die Differenz p̃j − p̂j für alle j, desto genauer das
Modell, desto kleiner der Fehler.
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Was wissen Sie jetzt?

Sie haben eine Herleitung von dem Originalproblem, die
Likelihood zu maximieren,

über die LogLikelihood
zu dem Optimierungsproblem, die Parameter θ
anzupassen gesehen, das
gelöst wird durch

die empirische Wahrscheinlichkeit, den Erwartungswert der
Variablen und
die Wahrscheinlichkeit gemäß der Parameter θ, den
Erwartungswert bezüglich einem θj .
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