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Lernaufgabe Clustering

Gegeben
eine Menge T = { ~x1, ..., ~xN} ⊂ X von Beobachtungen,
eine Anzahl K zu findender Gruppen C1, ..., CK ,
eine Abstandsfunktion d(~x, ~x′) und
eine Qualitätsfunktion.

Finde
Gruppen C1, ..., CK , so dass
alle ~x ∈ X einer Gruppe zugeordnet sind und
die Qualitätsfunktion optimiert wird: Der Abstand zwischen
Beobachtungen der selben Gruppe soll minimal sein; der
Abstand zwischen den Gruppen soll maximal sein.
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Bild

Der Abstand wurde zum Cluster-Zentrum gemessen. Dadurch
ergibt sich der grüne Punkt neben den roten.Elements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 14
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Figure 14.4: Simulated data in the plane, clustered

into three classes (represented by red, blue and green),

by the K-means clustering algorithm

Könnte ein besseres
Abstandsmaß den grünen
Punkt dem roten Cluster
zuweisen?
Wenn nicht nur ein Punkt
als Repräsentation eines
Clusters gewählt wird,
würde das Clustering dann
besser?
Wie kann man die Cluster
verständlich beschreiben?
Wäre K = 2 besser
gewesen?
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Die Probleme der Cluster-Analyse

1 Bestimmung des Abstandsmaßes
2 Formulierung des Optimierungsproblems
3 Repräsentation der Cluster
4 Bestimmung von K
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Ähnlichkeit – Maße

Ähnlichkeit oder Distanz sollte stets Werte in [0, 1] haben.
dist(~x1, ~x2) = 1− sim(~x1, ~x2)

Eine Metrik erfüllt die Bedingungen
1 Metrik(x, x) = 0
2 Metrik(x1, x2) = Metrik(x2, x1)
3 Metrik(x1, x3) ≤Metrik(x1, x2) + Metrik(x2, x3)
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sim: Ähnlichkeit für einzelne Attribute

Numerische Attribute: Sei maxj der höchste Wert von Xj und
minj der niedrigste, sei xi,j der Wert des j-ten
Attributs in der i-ten Beobachtung, dann ist z.B.

simj(x1,j , x2,j) = 1− |x1,j − x2,j |
maxj −minj

ein Ähnlichkeitsmaß für Xj .
Nominale Attribute: Ganz einfach:

simj(x1,j , x2,j) =

{
1 falls x1,j = x2,j
0 sonst
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Sim: Ähnlichkeit der Beispiele als Kombination der Attributähnlichkeiten

Im einfachsten Fall mitteln wir die Einzelähnlichkeiten:

Sim( ~x1, ~x2) =
1

p

p∑
j=1

sim(x1,j , x2,j)

Vielleicht sind einige Attribute wichtiger als andere?

Sim( ~x1, ~x2) =

∑p
j=1wjsim(x1,j , x2,j)∑p

j=1wj

Vielleicht ist der quadratische Abstand besser?

Sim( ~x1, ~x2) = 1−
p∑

j=1

wj(x1,j − x2,j)
2

Wie bestimmt man wj?
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Bestimmung des Abstandsmaßes

Im Allgemeinen ist der Abstand invers zur Ähnlichkeit:

D( ~x1, ~x2) = 1− Sim( ~x1, ~x2)

Man kann aber irgendeine geeignete monoton
absteigende Funktion zur Überführung der Ähnlichkeiten in
Abstände wählen.
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d: Abstand für einzelne Attribute

Numerische Attribute: Ohne Normalisierung durch
maxj −minj ist der Betrag der Differenz:

dj(xij , xi′j) =| xij − xi′j |

Der quadratische Abstand zwischen
Beobachtungen xi und x′i bezüglich des Merkmals
Xj gewichtet große Abstände stärker als kleine:

dj(xij , xi′j) = (xij − xi′j)
2 (1)

Nominale Attribute: Man kann für jede Variable Xj mit M
Attributwerten eine M ×M Abstandsmatrix
angeben oder einfach:

dj(x1j , x2j) =

{
1 falls x1j 6= x2j
0 sonst
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Sim: Ähnlichkeit der Beobachtungen als Kombination der
Attributähnlichkeiten

Im einfachsten Fall mitteln wir die Einzelähnlichkeiten:

Sim( ~x1, ~x2) =
1

p

p∑
j=1

sim(x1j , x2j)

Die Korrelation verwendet das Mittel x̄i über allen p Variablen:

Sim( ~x1, ~x2) =

∑p
j=1(x1j − x̄1)(x2j − x̄2)√∑p

j=1(x1j − x̄1)2
∑p

j=1(x2j − x̄2)2
(2)

Vielleicht sind einige Attribute wichtiger als andere?

Sim( ~x1, ~x2) =

∑p
j=1wjsim(x1,j , x2,j)∑p

j=1wj

Wie bestimmt man wj?
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Abstandsmaß

Verwendet wird eine N ×N Matrix D für die N
Beobachtungen, wobei d12 der Eintrag für D( ~x1, ~x2) ist.
Die Matrix hat keine negativen Einträge.
Die Diagonale der Matrix: dii = 0

Der Abstand soll symmetrisch sein – falls nicht:
(D + DT )/2.
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D: Abstand der Beobachtungen als Kombination der Attributabstände

Gewichteter Durchschnitt:

D( ~x1, ~x2) =

p∑
j=1

wjdj(x1j , x2j);

p∑
j=1

wj = 1 (3)

Bei quadratischem Abstand d12 ergibt sich:

D( ~x1, ~x2) =

p∑
j=1

wj(x1j − x2j)
2 (4)

Man kann die Korrelation (Gleichung 2) verwenden:

1− Sim( ~x1, ~x2) (5)
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Einfluss einer Variablen auf das Clustering

Wenn für alle Variablen wj = 1 wäre, hätten doch nicht alle
Variablen den gleichen Einfluss auf das Clustering!
Der Einfluss einer Variable Xj richtet sich vielmehr nach
ihrer durchschnittlichen Unähnlichkeit:

d̄j =
1

N2

N∑
i=1

N∑
i′=1

dj(xij , xi′j) (6)

Beim gewichteten quadratischen Abstand

d̄j =
1

N2

N∑
i=1

N∑
i′=1

(xij − xi′j)
2 = 2 · varj (7)

wobei varj die anhand der Beobachtungmenge T
geschätzte Varianz von Xj ist.
Der Einfluss einer Variablen auf das Clustering richtet sich
also nach der Varianz! Der relative Einfluss ist wj d̄j .
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Beispiel für Nachteil gleichen Einflusses der VariablenElements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 14
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Figure 14.5: Simulated data: on the left, K-means

clustering (with K=2) has been applied to the raw data.

The two colors indicate the cluster memberships. One

the right, the features were first standardized before

clustering. This is equivalent to using feature weights

1/[2 · var(Xj)]. The standardization has obscured the

two well-separated groups. Note that each plot uses the

same units in the horizontal and vertical axes.

Alle Variablen haben
den selben Einfluss
auf das Clustering,
wenn wj ∼ 1/d̄j .
Wenn als Gewichte
wj = 1

2·varj gewählt
wird, hat man den
Einfluss der Varianz
ausgeschaltet und
erhält manchmal
keine gute
Separierung mehr.
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Es hängt von der Anwendung ab, wie man wj wählt!

Für eine Anwendung kann man vor dem Clustern
1 gar nichts tun, d.h. die Rohdaten ohne Gewichtung und

ohne Normalisierung clustern,
2 die Rohdaten normalisieren (Werte im selben

Wertebereich, z.B. [0, 1], oder jeweils maxj −minj in den
Abständen),

3 d̄j für jedes Merkmal berechnen (Varianz-Gleichung 7),
4 die Rohdaten standardisieren, so dass alle Variablen den

gleichen Einfuss haben,
5 Gewichte wj , die dem Sachbereich entsprechen könnten

oder dem Clustering-Ziel, direkt auf die Daten als
Transformation der Eingabe anzuwenden. (Implizites wj !)

6 Dann die Ergebnisse vergleichen!
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Qualitätsfunktionen

Sei die Anzahl K der Cluster gegeben und jedes Cluster durch
eine ganze Zahl k ∈ {1, 2, ...,K} eindeutig ausgezeichnet. Die
Abbildung C(i) = k weist der i-ten Beobachtung das k-te
Cluster zu.
Innerer Abstand Within: Minimiert werden soll der Abstand

innerhalb eines Clusters C:

W (C) =
1

2

K∑
k=1

∑
C(i)=k

∑
C(i′)=k

D(~xi, ~xi′) (8)

Zwischenunähnlichkeit Between: Maximiert werden soll der
Abstand zwischen Clustern:

B(C) =
1

2

K∑
k=1

∑
C(i)=k

∑
C(i′)6=k

D(~xi, ~xi′) (9)
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Optimierungsproblem der Cluster-Analyse

Gegeben die Summe aller Abstände T = 1
2

∑N
i=1

∑N
i′=1 dii′ ,

ergänzen sich W (C) + B(C) = T , so dass die Minimierung
von W (C) der Maximierung von B(C) entspricht.
Man hat so nur ein Optimierungsproblem.
Sei x̄k = (x̄1k, ..., x̄pk) der Vektor der Mittelwerte aller
Variablen in Cluster k und Nk =

∑N
i=1 I(C(i) = k), dann ist

das Optimierungsproblem:

C∗ = minC

K∑
k=1

Nk

∑
C(i)=k

‖ ~xi − x̄k ‖2 (10)
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Iteratives Lösen des Optimierungsproblems – K-Means

Algorithmus K-Means(T ,K)

1 Wähle K Beobachtungen aus T zufällig als Mittelpunkte
~m1, ..., ~mK von Clustern aus.

2 Berechne das Clustering anhand der Mittelpunkte:

C(i) = argmin1≤k≤K ‖ ~xi − ~mk ‖2 (11)

3 Berechne die Mittelpunkte entsprechend C(i):

~mi := argminm

N∑
i=1

‖ ~xi − ~m ‖2 (12)

4 Wiederhole Schritt 2 und 3 bis die Zuweisungen sich nicht
mehr ändern. Gib zurück C(1), ..., C(K).
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K-Means im BildElements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 14
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Figure 14.6: Successive iterations of the K-means

clustering algorithm for the simulated data of Fig-

ure 14.4.
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Eigenschaften von K-Means

K-Means ist für numerische Variablen gemacht.
Als Abstandsmaß wird der quadratische Euklidsche
Abstand genutzt.

Den größten Einfluss haben Datenpunkte mit dem größten
Abstand.
Das Verfahren ist daher anfällig für Ausreißer.

Der Aufwand ist proportional zu N ·K.
Für jedes Cluster wird der Mittelpunkt berechnet anhand
der zugeordneten Beobachtungen. Ein Cluster ist also nur
durch einen Punkt repräsentiert.
Für alle Beobachtungen wird der Abstand zu den K
Mittelpunkten berechnet.

Es kann sein, dass die Lösung von K-Means nicht optimal
ist (lokales Optimum).
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Repräsentation der Cluster

K-Means repräsentiert ein Cluster durch einen errechneten
Punkt. Dies ist effizient.
K-Medoid wählt eine Beobachtung als Repräsentation
eines Clusters. Dafür muss über allen Punkten optimiert
werden – ineffizient.
Rajeev Rastogi hat vorgeschlagen einige Punkte als
Repräsentation eines Clusters zu wählen (well scattered
points).
Oft möchte man eine interpretierbare Charaktierisierung
der Cluster haben.

Aufgabe des labeling: finde eine (logische)
Charakterisierung der Cluster. Man betrachtet die Cluster
als Klassen und wendet z.B. Entscheidungsbaumlernen an.
Ryszard Michalski hat ein logisches Cluster-Verfahren
vorgeschlagen, die Star-Methode (AQ-Algorithmus), bei
dem direkt über den nominalen Werten der Beobachtungen
gearbeitet wird.
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Bestimmung der vorgegebenen Mittelpunkte

Die Lösung von K-Means hängt von den gewählten Start-
mittelpunkten ab. Dafür gibt es mindestens zwei Auswege:

Mehrfach mit zufällig gewählten Startmittelpunkten den
Algorithmus starten!
Optimierungskriterium

minC,{mk}K1

K∑
k=1

Nk

∑
C(i)=k

‖ ~xi −mk ‖2

Für k = 1, ...,K:
Wähle einen Mittelpunkt ik so, dass das Kriterium
minimiert wird gegeben i1, ..., ik−1.
Starte K-Means mit den so gefundenen K Mittelpunkten.
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Wie viele Cluster sollen gebildet werden?

Vielleicht geht aus der Anwendung hervor, wie viele
Cluster nötig sind. Z.B. sollen Kunden so auf K
Vertriebsmitarbeiter aufgeteilt werden, dass ein Mitarbeiter
ähnliche Fälle bearbeitet.
Oft soll K∗ anhand der Daten so ermittelt werden, dass die
Clustering-Qualität optimiert wird (Gleichung 8).

W (C) =
1

2

K∑
k=1

∑
C(i)=k

∑
C(i′)=k

D(~xi, ~xi′)

Man bestimmt W1, ...,WKmax für K = 1, ...,Kmax.
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Daten-gestützte Bestimmung von K

Wenn K < K∗, dann ist meist eine Teilmenge der
Beobachtungen in einem Cluster schon richtig zugeordnet,
das Cluster müsste aber weiter aufgeteilt werden.

WK+1 << WK

Wenn K > K∗, dann ist ein ‘richtiges’ Cluster zerteilt
worden.

WK+1 < WK .
Man sucht also nach einem Knick in der Kurve der
W1, ...,WKmax-Werte und wählt als K den Wert mit dem
geringsten Abstieg WK −WK+1.

{WK −WK+1 | K < K∗} >> {WK −WK+1 | K ≥ K∗}
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Gap Heuristik

Tibshirani et al. (2001) vergleichen die Kurve der anhand
der Daten gemessenen W -Werte mit einer “normalen”.
Es werden n Mal zufällig Datenpunkte erzeugt, die
innerhalb einer Hülle um die Beobachtungen gleichmäßig
verteilt sind.
Für die simulierten Daten werden die W -Werte
ausgerechnet und der Erwartungswert bestimmt.
Die Kurven werden auf einer logarithmisierten Skala
aufgetragen und verglichen: wo der Abstand zwischen den
Kurven (gap) am größten ist, liegt das richtige K∗.
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Gap Heuristik im BildElements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 14
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Was wissen Sie jetzt?

Sie haben die Abstandsmaße kennengelernt und sich
dabei an die Ähnlichkeit bei kNN erinnert.
Sie kennen das Optimierungsproblem des Clusterings
(Gleichung 10).
Sie kennen das Qualitätskriterium des inneren Abstands
(Gleichung 8).
Die Repräsentation eines Clusters kann durch alle
zugeordneten Punkte, einige zugeordnete Punkte, einen
zentralen zugeordneten Punkt oder ein berechnetes
Zentrum sowie durch logische Formeln erfolgen.
Zur Lösung des Optimierungsproblems kennen Sie
K-Means: Euklidscher Abstand, Repräsentation durch
berechnete Mittelpunkte, iteratives Vorgehen.
Als Vorgehen zur Wahl der Anzahl K und zur Initialisierung
der K Mittelpunkte haben Sie Heuristiken gesehen.
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Hierarchisches Clustering

Die Cluster sollen nicht auf einer Ebene liegen, sondern
eine Taxonomie bilden.
Die unterste Ebene enthält einzelne Beobachtungen.
Jede Ebene enthält Cluster, die (zwei) Cluster der Ebene
darunter subsummieren.
Die oberste Ebene enthält ein Cluster mit allen
Beobachtungen.
Man unterscheidet ein Vorgehen bottom-up (agglomerativ)
und top-down (aufteilend).
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Agglomeratives Clustering

Stufenweise werden Beobachtungen zu übergeordneten
Clustern verschmolzen.
Oft wird ein binärer Baum erzeugt, d.h. immer je 2 Cluster
werden verschmolzen.
Der Benutzer sucht die aussagekräftigste Ebene aus.
Grundlage ist die Unähnlichkeit von Clustern: solche mit
geringster Unähnlichkeit werden verschmolzen.
Die Unähnlichkeit d(G,H) der Cluster G,H wird berechnet
durch den Abstand dgh = D( ~xg, ~xh), wobei ~xg ∈ G, ~xh ∈ H.
Welche Beobachtungen genutzt werden, macht den
Unterschied zwischen den 3 wichtigsten Maßen zur
Cluster-Unähnlichkeiten aus.
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Single Linkage Clustering

Die Unähnlichkeit zwischen Cluster G und H ist die
Unähnlichkeit der nächsten Punkte.

dSL(G,H) = min ~xg∈G, ~xh∈HD( ~xg, ~xh)

= ming∈G,h∈H dgh

Problem: Single Linkage ergibt eventuell Cluster, die nicht
kompakt sind mit großer Unähnlichkeit innerhalb eines
Clusters.
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Complete Linkage Clustering

Die Unähnlichkeit zwischen Cluster G und H ist die
Unähnlichkeit der entferntesten Punkte.

dCL(G,H) = max ~xg∈G, ~xh∈HD( ~xg, ~xh)

= maxg∈G,h∈H dgh

Problem: Complete Linkage produziert kompakte Cluster,
aber eventuell sind die Beobachtungen eines Clusters G
näher zu denen eines anderen H als zu denen in G.
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Average Linkage Clustering

Die Unähnlichkeit zwischen Cluster G und H ist die
durchschnittliche Unähnlichkeit aller Punkte in G von allen in H.

dAL(G,H) =
1

NGNH

∑
g∈G

∑
h∈H

dgh

Kompromiss zwischen Single und Complete Linkage:
relativ kompakte Cluster, die relativ weit von einander
entfernt sind.
Problem: Eine strikt monoton aufsteigende Transformation
des Abstandsmaßes h(dgh) kann das Ergebnis stark
verändern.
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Beispiel MicroArray-Daten über Krebs
Elements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 1
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Figure 1.3: DNA microarray data: expression matrix of

6830 genes (rows) and 64 samples (columns), for the human

tumor data. Only a random sample of 100 rows are shown.

The display is a heat map, ranging from bright green (nega-

tive, under expressed) to bright red (positive, over expressed).

Missing values are gray. The rows and columns are displayed

in a randomly chosen order.
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Beispiel Average Linkage bei MicroArray-Daten über Krebs
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Dendrogramme für agglomeratives Clustering der MicroArray-Daten
über Krebs mit Average, Complete, Single Linkage

Elements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 14

Average Linkage Complete Linkage Single Linkage

Figure 14.13: Dendrograms from agglomerative hier-

archical clustering of human tumor microarray data.
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Dendogramme

Monotonie: Die Unähnlichkeit steigt über die Ebenen von
unten nach oben monoton an.
Ein Dendogramm ist so angeordnet, dass die Höhe eines
Knoten (Clusters) gerade proportional zur Unähnlichkeit
zwischen den beiden Unterknoten ist.
Deshalb kann der Benutzer eine Ebene auswählen, bei der
die Unähnlichkeit zwischen Clustern einen Schwellwert
übersteigt.
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Aufteilendes Clustering durch rekursives K-Means

Die rekursive Anwendung von K-Means mit K = 2 ergibt
ein aufteilendes Verfahren.
Allerdings ist das Ergebnis dann kein Dendogramm, bei
dem die Unähnlichkeit mit den Ebenen immer monoton
ansteigt.
Deshalb gibt es ein anderes Verfahren.
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Aufteilendes Clustering durch iteratives Verringern der Unähnlichkeit in
einem Cluster

Alle Beobachtungen sind im Wurzelknoten G.
Aufteilung(G)

1 Initialisierung:
Wähle den Punkt ~xh in G, der am unähnlichsten zu allen
anderen ist. Dieser wird dem neuen Cluster H zugeordnet.

2 Teile iterativ G auf solange es ein ~xi ∈ G gibt, das im
Durchschnitt ähnlicher zu allen ~xj ∈ H ist als zu allen
~xg ∈ G:
H := H ∪ {~xi}; G := G\{~xi};

3 Wähle Cluster zur Aufteilung aus:
Solange | G |> 1 und dij > 0 für alle ~xi, ~xj ∈ G
Aufteilung(G).
Solange | H |> 1 und dij > 0 für alle ~xi, ~xj ∈ H
Aufteilung(H).
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Was wissen Sie jetzt?

Top-down Clustering kann durch rekursives K-Means
realisiert werden, ist aber aufwändig.
Optimieren der Average Linkage dAL(G,H) für alle
möglichen Aufteilungen wird angenähert durch ein
iteratives Verfahren, bei dem in jeder Iteration eine
Beobachtung von dem Ausgangscluster G dem neuen
Cluster H zugeordnet wird.
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