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Lernaufgabe Subgruppenentdeckung

Gegeben
X der Raum möglicher Beobachtungen mit einer
Wahrscheinlichkeitsverteilung D,
S ⊆ X eine gemäß D gezogene Stichprobe,
LH der Raum möglicherweise gültiger Regeln, wobei jeder
Regel h ∈ LH eine Extension zugeordnet ist: ext(h) ⊆ X
und
eine Qualitätsfunktion

q : LH → R

finde
eine Menge H ⊆ LH , | H |= k
und es gibt keine h′ ∈ LH\H,h ∈ H, für die gilt q(h′) ≥ q(h)
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Beispiel der Subgruppenentdeckung

Es werden Gruppen beschrieben, die sich abweichend von der
Gesamtpopulation verhalten.
Es geht nicht notwendigerweise um Vorhersage, sondern um
Beschreibung! Trotzdem ist meist eine Hypothese eine
Abbildung h : X → Y .

Unter den alleinstehenden jungen Männern in ländlichen
Regionen ist der Anteil an Lebensversicherungskinden
signifikant niedriger als im gesamten Kundenbestand.
Verheiratete Männer mit Pkws der Luxusklasse machen
nur 2 Prozent der Kunden aus, erzeugen aber 14 Prozent
der Lebensversicherungsabschlusssumme.
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Ansätze zur Subgruppenentdeckung

Aufzählend: vollständige Suche im strukturierten Raum LH
mit Pruning – Garantie, dass die k besten Regeln
gefunden werden.
Explora (Klösgen 1996), Midos (Wrobel 1997)
Heuristisch: ein Entscheidungsbaumlerner wird so
verändert, dass seine Qualitätsfunktion die der
Subgruppenentdeckung wird und Beispiele ein
veränderliches Gewicht erhalten – keinerlei Garantie.
CN2-SD (Lavrac et al. 2004)
Probabilistisch: Stichproben-bezogene Fehler werden
während das Scans der Daten abgeschätzt –
probabilistische Garantie, dass die k besten Regeln
gefunden werden.
(Scheffer, Wrobel 2002)
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Modellselektion

Die Menge H der gewählten Hypothesen kann auch als
Modell betrachtet werden.
Die Subgruppenentdeckung ist dann ein Problem der
Modellselektion.
Dabei geht es immer um Gütekriterien.
Wir hatten ja schon:

Accuracy
Precision
Recall
Mittlerer quadratischer Fehler, quadratische Fehlersumme,
erwarteter quadratischer Fehler, 0-1-Verlust
Maximum Likelihood
Entropie
Bayes Information Criterion
Minimum Description Length
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Lift

Für eine Regel h = A→ Y , wobei A eine Menge von
Literalen ist und Y = {0, 1} ist

Lift(A→ Y ) =
Pr[A, Y ]

Pr[A] · Pr[Y ]
=
precision(A→ Y )

Pr[Y ]
(1)

Bei Lift(A→ Y ) = 1 sind A und Y unabhängig.
Bei Lift(A→ Y ) > 1 steigt die bedingte
Wahrscheinlichkeit für Y gegeben A.
Bei Lift(A→ Y ) < 1 sinkt die bedingte Wahrscheinlichkeit
für Y gegeben A.
Lift normalisiert die precision gegenüber einer verzerrten
Verteilung der Klassen!
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Coverage und Bias von Regeln

Die Wahrscheinlichkeit, dass der Antezedens A der Regel
auf ein Beispiel zutrifft bei einer Verteilung D der Beispiele
ist:

Cov(A→ Y ) = Pr[A]

Die Differenz zwischen der bedingten Wahrscheinlichkeit
von Y gegeben A und der a priori Wahrscheinlichkeit für Y
ist der Bias:

Bias(A→ Y ) = Pr[Y | A]−Pr[Y ] = Pr[Y ]·(Lift(A→ Y )−1)
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Weighted relative accuracy WRAcc

Man kann Bias und Coverage für eine Anwendung mit
einem Parameter α geeignet gewichten.

Vielleicht will man auf jeden Fall alles abdecken, weil man
alle Beispiele irgendwie behandeln muss. Dann gewichtet
man Coverage hoch.
Vielleicht findet man nur Abweichungen von der a priori
Wahrscheinlichkeit interessant. Dann gewichtet man Bias
hoch.
Bei gleichgewichteten Coverage und Bias α = 0, 5 erhält
man das selbe Ergebnis wie beim binominalen Test, der die
Nullhypothese (A hat keinen Einfluss) testet.

Für eine Regel h und eine Gewichtung α ∈ [0, 1] ist

WRAcc(α, h) = Cov(h) ·Bias(h)
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Wofür die Maße?

Jetzt wissen wir, wie wir Regeln auswählen können.
Wir wollen aber auch noch wissen, wie gut das Modell,
also die gesamten Regeln, ist.
Dann können wir die Regelmenge auswählen, die am
besten ist.

10 von 33



LS 8 Informatik
Computergestützte Statistik
Technische Universität Dortmund

Lernaufgabe Subgruppenentdeckung Sampling Knowledge Based Sampling

Sensitivität und Spezifität – ROC

Sensitivität (Recall): Wahrscheinlichkeit, dass ein positives
Beispiel auch als positiv erkannt wird. (TP: true positives)
Spezifizität: Wahrscheinlichkeit, dass ein negatives
Beispiel auch als negativ erkannt wird. (TN: true negatives)
Die Receiver Operator Characteristic (ROC) Kurve setzt
Sensitivität und Spezifizität in Beziehung für verschiedene
Parameter. Je nach Benutzerinteresse (TP wichtiger? TF
wichtiger? Beides?) wird das Modell gewählt.
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Beispiel

Tabelle: y = 1 für Spam, Fehler insgesamt 9%

Predicted
True email spam
email 57,3 4,0
spam 5,3 33,4

Sensitivität:
100 · 33, 4

33, 4 + 5, 3
= 86, 3%

Spezifizität:

100 · 57, 3

57, 3 + 4, 0
= 93, 4%
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ROC im Bild

Ein Parameter wurde zwischen 0,1 und 10 variiert.
Elements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 9

Specificity

S
e

n
s
it
iv

it
y

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0 • •

•
• •

•

•

•

••

•

•

•
• • • • • ••••••••••••••••••••••••••••••••••••••

•

•
•

•

•

•

•

•
•

•••

•

•

•

•

•

Tree (0.95)
GAM (0.98)
Weighted Tree (0.90)

Figure 9.6: ROC curves for the classification rules fit

to the spam data. Curves that are closer to the north-

east corner represent better classifiers. In this case the

GAM classifier dominates the trees. The weighted tree

achieves better sensitivity for higher specificity than the

unweighted tree. The numbers in the legend represent

the area under the curve.

13 von 33



LS 8 Informatik
Computergestützte Statistik
Technische Universität Dortmund

Lernaufgabe Subgruppenentdeckung Sampling Knowledge Based Sampling

Area Under the Curve

AUC
Für h : X → Y, Y ∈ {0, 1} und D : X × Y → R+ ist die Area
Under the ROC Curve (AUC) die Wahrscheinlichkeit

AUC(h) = Pr[h(~x) ≥q h(~x′) | y = 1, y′ = 0]

dass ein zufällig gezogenes positives Beispiel höher bewertet
wird gemäß einer Qualitätsfunktion q als ein zufällig gezogenes
negatives Beispiel.
AUC ist invariant gegenüber monotonen Transformationen von
h.
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Idee eines Algorithmus’, der AUC berechnet

Schätze für jedes Beispiel in S die Wahrscheinlichkeit, ein
positives zu sein.
Ordne die Beispiele nach dieser Wahrscheinlichkeit
(ranking).
Bewerte ein Lernergebnis nach der Anzahl Λ(h, S) der
notwendigen Vertauschungen der Reihenfolge (des
rankings).
Sei S+ die Menge der positiven Beispiele, S− die Menge
der negativen, dann ist

AUC(h, S) =
Λ(h, S)

| S+ | · | S− |

15 von 33



LS 8 Informatik
Computergestützte Statistik
Technische Universität Dortmund

Lernaufgabe Subgruppenentdeckung Sampling Knowledge Based Sampling

Abhängigkeit des Lernergebnisses von S

Eigentlich wollen wir ja ein optimales (oder wenigstens
angenähert optimales) Lernergebnis auch für noch nicht
gesehene Beispiele haben.
Die ROC Kurve bezieht sich wie auch AUC nur auf die
Stichprobe S.
Meist sind die Datenmengen so groß, dass wir nur eine
Stichprobe behandeln können.
Wir wollen jetzt eine Stichprobe ziehen, die ungefähr so
verteilt ist wie die Gesamtmenge.
Leider haben wir keine Ahnung, was die wahre Verteilung
ist!
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i.i.d. erhaltende Stichprobe

Die Daten insgesamt, X, und die Stichprobe S sollen i.i.d.
verteilt sein.
Folgen von Zufallsvariablen, die sowohl unabhängig als
auch identisch verteilt sind werden üblicherweise mit i.i.d.
(für independent and identically distributed) bezeichnet.

Beispiel dreimaliges Würfeln:
X1 1. Wurf, X2 2. Wurf, X3 3. Wurf sind i.i.d. verteilt.
X4 = X1 +X2 und X5 = X2 +X3 sind zwar identisch
verteilt, aber nicht unabhängig.
X4 und X3 sind unabhängig, aber nicht identisch verteilt.

Wenn die Daten in der Datenbank in zufälliger Reihenfolge
gespeichert sind, ergibt das Ziehen der m ersten Daten
eine i.i.d. erhaltende Stichprobe.
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Ziehen der Stichprobe mit/ohne Zurücklegen

Zufällig ein Beispiel ziehen ist Ziehen mit Zurücklegen.
Dabei kann es Doppelte geben und damit eine Verzerrug
(Bias). Die Wahrscheinlichkeit für Doppelte beim Ziehen
von m Beispielen aus N ist:

pm =
N !

(N −m)! ·Nm

Also sinkt die Wahrscheinlichkeit, keine Doppelten zu
haben, 1− pm, exponentiell mit Steigen von m.
Zufällig ein Beispiel ziehen und es nicht Zurücklegen
verfälscht nicht: jedes Beispiel hat die selbe
Wahrscheinlichkeit, gezogen zu werden m/N . Leider ist
dies aufwändig: man muss prüfen, ob ein Beispiel der
Datenbank schon gezogen wurde, logarithmische Laufzeit.
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Konfidenz

Wir möchten gern wissen, bei wie vielen Beispielen wir wie
sicher sein können, uns nicht zu verschätzen.
Dazu nehmen wir einen Konfidenzwert δ und Schranken
für die Wahrscheinlichkeit.
Dann können wir nach und nach imer größere Stichproben
ziehen, bis wir uns sicher genug sind. Und dann aufhören!
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Chernoff-Schranke

Sei p die Wahrscheinlichkeit, dass ein Beispiel gezogen
wird, das von einer Regel h korrekt klassifiziert wird.
Bei i.i.d. Stichproben ist p konstant für alle Regeln.
Die Zufallsvariable Xi, mit i = 1, ...,m sei 1 für die korrekte
Klassifikation, 0 sonst.
Der Erwartungswert für Ȳ = 1/m

∑
Xi ist gerade p:

E(X̄) = p

Die Standardabweichung ist σ(Ȳ ) =

√
p(1−p)
m

Die Chernoff-Schranke sagt für beliebigen Parameter λ:

Pr[Ȳ ≥ (1 + λ)p] ≤ exp(−λ2mp/3) (2)
Pr[Ȳ ≤ (1− λ)p] ≤ exp(−λ2mp/2) (3)
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Chernoff-Schranke zur Abschätzung der geeigneten Stichprobengröße
– Beispiel

Wie wahrscheinlich ist es, dass Regeln mit der wahren
Accuracy Acc = p = 75% bei einer Stichprobe der Größe
m nicht besser als reiner Zufall abschneiden?
Sei Ȳ = Âcc der Anteil korrekter Klassifikationen und der
reine Zufall 50%. λ = 1/3, weil (1− 1/3) ·Acc = 50%.
Wegen Gleichung (2) ergibt sich:

Pr[Âcc ≤ (1− 1/3) ·Acc] ≤ exp(−(1/3)2m ·Acc/2)

⇔ Pr[Âcc ≤ 1/2] ≤ exp(−1/9m3/8) = exp(−m
24

)

Risiko ≤ δ = 5%, dass bei m ≥ 72 Beispielen ein 75%
gutes h die Hälfte falsch klassifiziert:

exp(−m
24

) ≤ δ ⇔ −m
24
≤ ln δ = −ln1

δ
⇔ m ≥ 24ln

1

δ
= 24ln20
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Hoeffding-Schranke

Die Hoeffding-Schranke ist unabhängig von Acc definiert.

Pr[Ȳ − p ≥ ε] ≤ exp(−2ε2m)

Pr[Ȳ − p ≤ −ε] ≤ exp(−2ε2m)

Pr[| Ȳ −−p |≥ ε] ≤ 2exp(−2ε2m) (4)

Die wahre Acc soll um nicht mehr als 10% über- oder
unterschätzt werden. Wegen Gleichung (4) ergibt sich:

Pr[| Âcc−Acc |≥ 0, 1] ≤ 2exp(−2 ·(0, 1)2m) ≤ 2exp(0, 02m)

Risiko ≤ δ = 5% dafür bei m ∼ 184 Beispielen:

2exp(−0, 02m) ≤ 0, 05⇔ −0, 02m ≤ ln 1

40
⇔ 0, 02m ≥ ln 40⇔ m ≥ 50ln 40 ∼ 184
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Stichprobengröße für Subgruppenentdeckung

Sei Konfidenzparameter δ ∈ [0, 1] und höchster geduldeter
Fehler ε ∈ R+, es sollen die k besten Regeln H ∈ LH
gemäß einer Qualitätsfunktion q so gelernt werden, dass
mit einer Wahrscheinlichkeit von mindestens 1− δ eine
i.i.d. Stichprobe | S |= m die wahre Qualität q̂ höchstens
um E(m, δ) verfälscht.
In (Scheffer, Wrobel 2002) wird für die verschiedenen
Qualitätskriterien aufgeführt, was E(m, δ) ist.
Für Acc kann man die worst case Größenordnung der
Stichprobe durch die Menge betrachteter Regeln LH
angeben:

m = O(
1

ε2
log
| LH |
δ

)
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Generic Sequential Sampling (Scheffer, Wrobel 2002)

Durchgehen der Beispiele (scan) bis höchstens
m = O( 1

ε2
log |LH |

δ ) betrachtet wurden;
1 Cov für positive und negative Beispiele bestimmen;
2 Anordnen der Regeln nach dem Qualitätskriterium

(ranking);
3 Alle Regeln aussortieren aus dem Lernergebnis H, wenn

sie häufiger als δ(2m | LH |) falsch waren; die
Wahrscheinlichkeit, eine gute Regel auszusortieren, ist
dann höchstens δ/2.

4 Wenn | H |≤ k, wird H ausgegeben und die Regeln sind
mit einer Wahrscheinlichkeit von mindestens 1− δ bis auf
eine Abweichung von höchstens ε optimal.
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Stratifizierte Stichproben

Stratifizierte Dichtefunktion
Für D : X × Y → R+ ist die stratifizierte Dichtefunktion D′

definiert als
D′(x, y) =

D(x, y)

| Y | ·Pr[y = y′]

und falls wir klassifizieren mit f : X → Y als

D′(x, y) =
D(x)

| Y | ·Pr[f(x)]

.
Es wird also die gegebene Verteilung D so geändert, dass die
Verteilung der Klassen in D′ gleich ist.
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Ergebnis von Scholz 2005

Wenn stratifizierte Stichproben gezogen, d.h. die
Verteilung ensprechend geändert wird, entspricht die
Subgruppenentdeckung mit der Qualitätsfunktion WRAcc
genau einer Klassifikation mit der Gütefunktion Acc.
Man kann also in Ruhe die Lernalgorithmen für
Klassifikation verwenden und braucht keine neuen zu
erfinden.
Allerdings muss man eine Stratifizierung, also
Veränderung der Verteilung algorithmisch formulieren.
Idee: Das tut man beim Ziehen von Stichproben.
Folge: das Lernen auch aus großen Datenmengen geht
schnell!
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Knowledge-Based Sampling for Subgroup Discovery

Wir wollen Vorwissen berücksichtigen, insbesondere nicht
redundante Regelmengen H lernen. Dabei ist die
Redundanz der Extension wichtig, nicht, dass sie durch
verschiedene Merkmale ausgedrückt werden.
Auch bereits gelernte Regeln h ∈ H sind Vorwissen.
Wir wollen wenig Beispiele bearbeiten müssen.
Wir wollen vorhandene Algorithmen nutzen.
Wir wollen diejenigen Subgruppen zurückliefern, die von
der Allgemeinheit abweichen.
Meist interessiert den Anwender die Extension einer
solchen abweichenden Gruppe.

Martin Scholz Scalable and Accurate Knowledge Discovery in
Real-World Databases, Dissertation am LS8, TU Dortmund,
2006
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Ansatz: die Verteilung verändern

Die neue Verteilung D′ soll nichts Wesentliches verändern:

PrD′ [x | A, Y ] = PrD[x | A, Y ] (5)
PrD′ [x | A,¬Y ] = PrD[x | A,¬Y ] (6)

PrD′ [x | ¬A, Y ] = [x | ¬A, Y ] (7)
PrD′ [x | ¬A,¬Y ] = [x | ¬A,¬Y ] (8)

Die Beschränkungen (5 – 8) bestimmen die neue Verteilung
D′ : X → R+ eindeutig:

PrD′(x) = PrD(x) · (LiftD(h, x))−1 (9)
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Lift(h, x)

Der Lift eines Beispiels x ∈ X ist für eine Regel A→ Y :

Lift(A→ Y, x) =


Lift(A→ Y ), falls x ∈ ext(A) ∩ ext(Y )
Lift(A→ ¬Y ), falls x ∈ ext(A) ∩ ext(¬Y )
Lift(¬A→ Y ), falls x ∈ ext(¬A) ∩ ext(Y )
Lift(¬A→ ¬Y ), falls x ∈ ext(¬A) ∩ ext(¬Y )

(10)

Lift drückt genau aus, wie weit eine Gruppe A von der
allgemeinen Verteilung von Y abweicht.
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Knowledge-Based Sampling für Subgruppenentdeckung

Gegeben X = {(x1, y1), ..., (xN , yN )} und k, finde eine Menge
H = {h1, ..., hk}

1 Stelle die a priori Verteilung π(y) für jedes y ∈ Y fest.
2 Stratifizieren der Verteilung: D1(xi) = π(yi)

−1 für
i = 1, ..., N

3 für t = 1 bis k do
ht = RegelLernen(Dt, X)
Kontingenzmatrix für ht mit Gewichten gemäß Dt

Lift-Bewertung für ht gemäß der Kontingenzmatrix
Dt+1(xi) = Dt(xi) · (LiftDt(ht, x))−1 für i ∈ {1, ..., N}

4 Ausgabe {h1, ..., hk} mit Lift(hi) (Definition 1)
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Subgruppen für die Vorhersage

Die Regeln können mit ihrer Gewichtung zu einem
Ensemble zusammengefasst werden.
LiftRatio LR:

LR(A→ Y, x) =

{
Lift(A→Y )
Lift(A→¬Y ) , falls x ∈ ext(A)
Lift(¬A→Y )
Lift(¬A→¬Y ) , falls x ∈ ext(¬A)

(11)

Für alle Regeln, wobei D0 die uniforme Verteilung über X
ist:

β̂(x) =
PrD0[Y ]

PrD0[¬Y ]
·

∏
1≤i≤k

LRDi[(A
i → Y ), x] (12)
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Was wissen Sie jetzt?

Sie haben eine neue Lernaufgabe kennengelernt:
Subgruppenentdeckung.
Wie bisher bei (fast) jeder Lernaufgabe, ging es gleich um
Modellselektion. Hier für eine Menge von Hypothesen
(Regeln), nicht eine Funktion.
Sie haben neue Gütekriterien kennengelernt: Lift, WRAcc,
Spezifizität und Sensitivität
Für eine Reihe von Experimenten haben Sie ROC und
AUC kennengelernt.
Die Größe von Stichproben in Bezug auf das Risiko, dass
das Lernergebnis falsch ist, wurde mt Chernoff und
Hoeffding beschränkt.

32 von 33



LS 8 Informatik
Computergestützte Statistik
Technische Universität Dortmund

Lernaufgabe Subgruppenentdeckung Sampling Knowledge Based Sampling

Und Sie wissen noch mehr!

Zwei effiziente Ansätze zur Subgruppenentdeckung, von
Wrobel und von Scholz, beruhen darauf, dass man nicht
alle Beispiele zu betrachten braucht.
Sie kennen Knowledge-Based Sampling für
Subgruppenentdeckung und wie man das Ergebnis für die
Klassifikation verwenden kann.
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