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Gliederung

0 Lernaufgabe Subgruppenentdeckung
@ Qualitatsfunktionen

e Sampling

e Knowledge Based Sampling
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Lernaufgabe Subgruppenentdeckung

@ Gegeben

o X der Raum moéglicher Beobachtungen mit einer
Wahrscheinlichkeitsverteilung D,

e S C X eine gemaf D gezogene Stichprobe,

o Ly der Raum mdglicherweise giltiger Regeln, wobei jeder
Regel h € Ly eine Extension zugeordnet ist: ext(h) C X
und

o eine Qualitatsfunktion

q:Lg —-R

o finde
o eineMenge H C Ly,| H|=k
o und es gibt keine b’ € Ly\H, h € H, fur die gilt ¢(h") > ¢(h)
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Beispiel der Subgruppenentdeckung

Es werden Gruppen beschrieben, die sich abweichend von der

Gesamtpopulation verhalten.

Es geht nicht notwendigerweise um Vorhersage, sondern um

Beschreibung! Trotzdem ist meist eine Hypothese eine

Abbildung h: X — Y.

@ Unter den alleinstehenden jungen Mannern in landlichen

Regionen ist der Anteil an Lebensversicherungskinden
signifikant niedriger als im gesamten Kundenbestand.

@ Verheiratete Manner mit Pkws der Luxusklasse machen
nur 2 Prozent der Kunden aus, erzeugen aber 14 Prozent
der Lebensversicherungsabschlusssumme.
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Ansatze zur Subgruppenentdeckung

@ Aufzahlend: vollstandige Suche im strukturierten Raum Ly
mit Pruning — Garantie, dass die k£ besten Regeln
gefunden werden.

Explora (Klésgen 1996), Midos (Wrobel 1997)

@ Heuristisch: ein Entscheidungsbaumlerner wird so
verandert, dass seine Qualitatsfunktion die der
Subgruppenentdeckung wird und Beispiele ein
veranderliches Gewicht erhalten — keinerlei Garantie.
CN2-SD (Lavrac et al. 2004)

@ Probabilistisch: Stichproben-bezogene Fehler werden
wahrend das Scans der Daten abgeschatzt —
probabilistische Garantie, dass die k& besten Regeln
gefunden werden.

(Scheffer, Wrobel 2002)
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Modellselektion

@ Die Menge H der gewahlten Hypothesen kann auch als
Modell betrachtet werden.

@ Die Subgruppenentdeckung ist dann ein Problem der
Modellselektion.

@ Dabei geht es immer um Giitekriterien.
@ Wir hatten ja schon:

o Accuracy

Precision

Recall

Mittlerer quadratischer Fehler, quadratische Fehlersumme,
erwarteter quadratischer Fehler, 0-1-Verlust

Maximum Likelihood

Entropie

Bayes Information Criterion

Minimum Description Length

6 von 33



. . e LS 8 Informatik
technische universitat Computergesttzte Statistik
dortmund Technische Universitét Dortmund

Lernaufgabe Subgruppenentdeckung Sampling Knowledge Based Sampling
Lift

@ Fir eine Regel h = A — Y, wobei A eine Menge von
Literalen istund Y = {0, 1} ist

. v
Lift(A—=Y) = Pr{AY] _ precision(A —Y)

~ Pr[A]-PrlY] PrlY] (1)

@ Bei Lift(A —Y) =1sind AundY unabhangig.

@ Bei Lift(A — Y) > 1 steigt die bedingte
Wabhrscheinlichkeit fir Y gegeben A.

@ Bei Lift(A — Y') < 1 sinkt die bedingte Wahrscheinlichkeit
fir Y gegeben A.

o Lift normalisiert die precision gegenlber einer verzerrten
Verteilung der Klassen!
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Coverage und Bias von Regeln

@ Die Wahrscheinlichkeit, dass der Antezedens A der Regel
auf ein Beispiel zutrifft bei einer Verteilung D der Beispiele
ist:

Cov(A —Y) = Pr[4]

o Die Differenz zwischen der bedingten Wahrscheinlichkeit
von Y gegeben A und der a priori Wahrscheinlichkeit fur Y
ist der Bias:

Bias(A —-Y) = PrlY | A|-Pr[Y] = Pr[Y]-(Lift(A —Y)-1)
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Weighted relative accuracy WRAcc

@ Man kann Bias und Coverage fiir eine Anwendung mit
einem Parameter « geeignet gewichten.

o Vielleicht will man auf jeden Fall alles abdecken, weil man
alle Beispiele irgendwie behandeln muss. Dann gewichtet
man Coverage hoch.

o Vielleicht findet man nur Abweichungen von der a priori
Wahrscheinlichkeit interessant. Dann gewichtet man Bias
hoch.

o Bei gleichgewichteten Coverage und Bias a = 0,5 erhélt
man das selbe Ergebnis wie beim binominalen Test, der die
Nullhypothese (A hat keinen Einfluss) testet.

@ Fur eine Regel h und eine Gewichtung « € [0, 1] ist

W RAcc(a, h) = Cov(h) - Bias(h)
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Woflir die MaRBe?

o Jetzt wissen wir, wie wir Regeln auswahlen kénnen.

@ Wir wollen aber auch noch wissen, wie gut das Modell,
also die gesamten Regeln, ist.

@ Dann kénnen wir die Regelmenge auswahlen, die am
besten ist.

10 von 33



LS 8 Informatik

technische universitat Computargotitzte Statist
dortmund Technische Universitét Dortmund

Lernaufgabe Subgruppenentdeckung Sampling Knowledge Based Sampling

Sensitivitat und Spezifitdt — ROC

@ Sensitivitat (Recall): Wahrscheinlichkeit, dass ein positives
Beispiel auch als positiv erkannt wird. (TP: true positives)

@ Spezifizitat: Wahrscheinlichkeit, dass ein negatives
Beispiel auch als negativ erkannt wird. (TN: true negatives)

@ Die Receiver Operator Characteristic (ROC) Kurve setzt
Sensitivitdt und Spezifizitét in Beziehung fir verschiedene
Parameter. Je nach Benutzerinteresse (TP wichtiger? TF
wichtiger? Beides?) wird das Modell gewahlt.
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Beispiel

Tabelle: y = 1 fir Spam, Fehler insgesamt 9%

Predicted
True | email | spam
email | 57,3 4,0
spam | 5,3 33,4

Sensitivitat: 434
100 - ————— =286, 3
33,4+5,3 3%
Spezifizitat:
57,3
1 _ 4
00~ 57,34+4,0 = 93,4%
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ROC im Bild

Lernaufgabe Subgruppenentdeckung Sampling Knowledge Based Sampling

Ein Parameter wurde zwischen 0,1 und 10 variiert.

o |
C—
@ |
o
o |
z ° ——  Tree (0.95)
2 —— GAM (0.98)
g ——  Weighted Tree (0.90)
® o«
S
o
S
=
o
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0.0 0.2 0.4 06 0.8 1.0
Specificity

Figure 9.6: ROC curves for the classification rules fit

to the spam data. Curves that are closer to the north-
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Area Under the Curve

AUC

Firh: X —-Y,Y €{0,1}und D: X xY — R* ist die Area
Under the ROC Curve (AUC) die Wahrscheinlichkeit

AUC(h) = Pr{h(Z) 24 h(&) |y = 1,4/ = 0]

dass ein zufallig gezogenes positives Beispiel hbher bewertet
wird geman einer Qualitatsfunktion ¢ als ein zuféllig gezogenes
negatives Beispiel.

AUC ist invariant gegenuber monotonen Transformationen von
h.
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Idee eines Algorithmus’, der AUC berechnet

@ Schatze fur jedes Beispiel in S die Wahrscheinlichkeit, ein
positives zu sein.

@ Ordne die Beispiele nach dieser Wahrscheinlichkeit
(ranking).

@ Bewerte ein Lernergebnis nach der Anzahl A(h, S) der
notwendigen Vertauschungen der Reihenfolge (des
rankings).

@ Sei S, die Menge der positiven Beispiele, S_ die Menge
der negativen, dann ist

A(h, S
ATC5) = [T
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Abhéngigkeit des Lernergebnisses von S

@ Eigentlich wollen wir ja ein optimales (oder wenigstens
angenahert optimales) Lernergebnis auch fir noch nicht
gesehene Beispiele haben.

@ Die ROC Kurve bezieht sich wie auch AUC nur auf die
Stichprobe S.

@ Meist sind die Datenmengen so grof3, dass wir nur eine
Stichprobe behandeln kénnen.

@ Wir wollen jetzt eine Stichprobe ziehen, die ungeféhr so
verteilt ist wie die Gesamtmenge.

@ Leider haben wir keine Ahnung, was die wahre Verteilung
ist!
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i.i.d. erhaltende Stichprobe

@ Die Daten insgesamt, X, und die Stichprobe S sollen i.i.d.
verteilt sein.

@ Folgen von Zufallsvariablen, die sowohl unabhéngig als
auch identisch verteilt sind werden Ublicherweise mit i.i.d.
(fir independent and identically distributed) bezeichnet.

o Beispiel dreimaliges Wirfeln:
o X1 1. Wurf, X5 2. Wurf, X3 3. Wurf sind i.i.d. verteilt.
o X, = X1+ Xound X5 = X + X3 sind zwar identisch
verteilt, aber nicht unabhéngig.
@ X, und X3 sind unabhéangig, aber nicht identisch verteilt.

@ Wenn die Daten in der Datenbank in zufalliger Reihenfolge
gespeichert sind, ergibt das Ziehen der m ersten Daten
eine i.i.d. erhaltende Stichprobe.
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Ziehen der Stichprobe mit/ohne Zurlcklegen

o Zuféllig ein Beispiel ziehen ist Ziehen mit Zurtcklegen.
Dabei kann es Doppelte geben und damit eine Verzerrug
(Bias). Die Wahrscheinlichkeit fir Doppelte beim Ziehen
von m Beispielen aus N ist:

N
Pm =N ) Nm

Also sinkt die Wahrscheinlichkeit, keine Doppelten zu
haben, 1 — p,,, exponentiell mit Steigen von m.

o Zufallig ein Beispiel ziehen und es nicht Zurtcklegen
verfalscht nicht: jedes Beispiel hat die selbe
Wahrscheinlichkeit, gezogen zu werden m/N. Leider ist
dies aufwandig: man muss prifen, ob ein Beispiel der
Datenbank schon gezogen wurde, logarithmische Laufzeit.
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Konfidenz

@ Wir mbchten gern wissen, bei wie vielen Beispielen wir wie
sicher sein kénnen, uns nicht zu verschétzen.

@ Dazu nehmen wir einen Konfidenzwert 6 und Schranken
fir die Wahrscheinlichkeit.

@ Dann kénnen wir nach und nach imer gréBere Stichproben
ziehen, bis wir uns sicher genug sind. Und dann aufhéren!
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Chernoff-Schranke

@ Sei p die Wahrscheinlichkeit, dass ein Beispiel gezogen
wird, das von einer Regel h korrekt klassifiziert wird.

@ Bei i.i.d. Stichproben ist p konstant flr alle Regeln.

@ Die Zufallsvariable X;, mit: =1, ...,m sei 1 fir die korrekte
Klassifikation, 0 sonst.

@ Der Erwartungswert flr Y =1/m " X; ist gerade p:

E(X)=p
o Die Standardabweichung ist o(V) = /202
@ Die Chernoff-Schranke sagt fiir beliebigen Parameter A:
PrY > (1+ A\)p] < exp(=X*mp/3) (2)
Pr[y < (1= X)p] < exp(—X’mp)/2) (3)
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Chernoff-Schranke zur Abschatzung der geeigneten StichprobengréBe

— Beispiel

@ Wie wahrscheinlich ist es, dass Regeln mit der wahren
Accuracy Acc = p = 75% bei einer Stichprobe der GréBe
m nicht besser als reiner Zufall abschneiden?

@ Sei Y = Acc der Anteil korrekter Klassifikationen und der
reine Zufall 50%. A = 1/3, weil (1 — 1/3) - Acc = 50%.

@ Wegen Gleichung (2) ergibt sich:

Pr[Ace < (1 —1/3) - Acc] < exp(—(1/3)%m - Acc/2)
& Pr[Ace < 1/2] < exp(—1/9m3/8) = exp(—%)

@ Risiko < § = 5%, dass bei m > 72 Beispielen ein 75%
gutes h die Halfte falsch klassifiziert:

1 1
exp(_%) <5 _;”_4 <ind =—ins & m > 24ins = 24in20
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Hoeffding-Schranke

@ Die Hoeffding-Schranke ist unabhangig von Acc definiert.
PrlY —p>¢ < exp(—2€*m)

PrlY —p < —¢

Pr|Y — —p|>¢

exp(—2€*m)

<
< 2exp(—2€2m) (4)

@ Die wahre Acc soll um nicht mehr als 10% Uber- oder
unterschéatzt werden. Wegen Gleichung (4) ergibt sich:
Pr]| Acc— Ace 1> 0,1] < 2exp(—2-(0,1)*m) < 2exp(0,02m)

@ Risiko < § = 5% daflr bei m ~ 184 Beispielen:

2exp(—0,02m) < 0,05 < —0,02m < ln%
< 0,02m > In 40 < m > 50in 40 ~ 184
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Stichprobengré3e fir Subgruppenentdeckung

o Sei Konfidenzparameter ¢ € [0, 1] und héchster geduldeter
Fehler e € R, es sollen die k besten Regeln H € Ly
geman einer Qualitétsfunktion ¢ so gelernt werden, dass
mit einer Wahrscheinlichkeit von mindestens 1 — ¢ eine
i.i.d. Stichprobe | S |= m die wahre Qualitét § héchstens
um E(m,0) verfélscht.

@ In (Scheffer, Wrobel 2002) wird fir die verschiedenen
Qualitatskriterien aufgeflhrt, was E(m, d) ist.

@ FUr Acc kann man die worst case GréBenordnung der
Stichprobe durch die Menge betrachteter Regeln Ly
angeben:
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Generic Sequential Sampling (Scheffer, Wrobel 2002)

(<) Durchgehen der Beispiele (scan) bis héchstens
m = O(%log!Z81) betrachtet wurden;

@ Cov fir positive und negative Beispiele bestimmen;

@ Anordnen der Regeln nach dem Qualitatskriterium
(ranking);

Q@ Alle Regeln aussortieren aus dem Lernergebnis H, wenn
sie haufiger als §(2m | Ly |) falsch waren; die
Wahrscheinlichkeit, eine gute Regel auszusortieren, ist
dann héchstens §/2.

©Q Wenn | H |< k, wird H ausgegeben und die Regeln sind
mit einer Wahrscheinlichkeit von mindestens 1 — § bis auf
eine Abweichung von hdchstens e optimal.
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Stratifizierte Stichproben

Stratifizierte Dichtefunktion

Fir D : X x Y — RT ist die stratifizierte Dichtefunktion D’
definiert als

D(z,y)

D@y = TPy =1

und falls wir klassifizieren mit f : X — Y als
D(x)

D -  ~ 7 @

@) = Y TP @)

Es wird also die gegebene Verteilung D so geéndert, dass die
Verteilung der Klassen in D’ gleich ist.
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Ergebnis von Scholz 2005

@ Wenn stratifizierte Stichproben gezogen, d.h. die
Verteilung ensprechend geandert wird, entspricht die
Subgruppenentdeckung mit der Qualitatsfunktion W R Acc
genau einer Klassifikation mit der Gitefunktion Acc.

@ Man kann also in Ruhe die Lernalgorithmen fir
Klassifikation verwenden und braucht keine neuen zu
erfinden.

@ Allerdings muss man eine Stratifizierung, also
Veranderung der Verteilung algorithmisch formulieren.

@ Idee: Das tut man beim Ziehen von Stichproben.

o Folge: das Lernen auch aus grof3en Datenmengen geht
schnell!
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Knowledge-Based Sampling for Subgroup Discovery

@ Wir wollen Vorwissen berlcksichtigen, insbesondere nicht
redundante Regelmengen H lernen. Dabei ist die
Redundanz der Extension wichtig, nicht, dass sie durch
verschiedene Merkmale ausgedruckt werden.

@ Auch bereits gelernte Regeln h € H sind Vorwissen.
@ Wir wollen wenig Beispiele bearbeiten mussen.
@ Wir wollen vorhandene Algorithmen nutzen.

@ Wir wollen diejenigen Subgruppen zuriickliefern, die von
der Allgemeinheit abweichen.

@ Meist interessiert den Anwender die Extension einer
solchen abweichenden Gruppe.

Martin Scholz Scalable and Accurate Knowledge Discovery in
Real-World Databases, Dissertation am LS8, TU Dortmund,
2006
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Ansatz: die Verteilung verandern

Die neue Verteilung D’ soll nichts Wesentliches veréandern:

Prp/lz | A,Y]) = Prplz | A, Y] (5)
Prpifz | A,=Y] = Prplz | A, Y] (6)
Prpfz | 2AY] = [z | 2AY] (7)
Prp/z | —A,~Y] =[x | =4, Y] (8)
Die Beschrankungen (5 — 8) bestimmen die neue Verteilung
D': X — R™T eindeutig:
Prpi(z) = Prp(x) - (Liftp(h,x)) ™! 9)
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Der Lift eines Beispiels x € X ist fur eine Regel A — Y:

Lift(A—Y), falls x € ext(A) Next(Y)
. ) Lift(A— Y), falls  z € ext(A) Next(—Y)
Lift(A = ¥, 2) = Lift(-A —=Y), falls x € ext(=A)Next(Y)
Lift(mA — YY), falls = € ext(—A) Next(Y)

Lift driickt genau aus, wie weit eine Gruppe A von der
allgemeinen Verteilung von Y abweicht.
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Knowledge-Based Sampling flr Subgruppenentdeckung

Gegeben X = {(z1,11), ..., (zn,yn)} und k, finde eine Menge
H ={hy,...,hy}
@ Stelle die a priori Verteilung w(y) fir jedes y € Y fest.
Q Stratifizieren der Verteilung: Dy (x;) = m(y;)~* fr
i=1,..,N
Q flrt =1 bis k do
® hy = RegelLernen(Dy, X)
o Kontingenzmatrix fiir h; mit Gewichten geméan D,

o Lift-Bewertung fir h; geman der Kontingenzmatrix
(4] Dt-i—l(xi) = Dt(.’ll'i) . (Liftpt(ht,x))_l firi e {1, ey N}

@ Ausgabe {hi, ..., by} mit Lift(h;) (Definition 1)
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Subgruppen flr die Vorhersage

@ Die Regeln kénnen mit ihrer Gewichtung zu einem
Ensemble zusammengefasst werden.

o LiftRatio LR:
LiTUASY) falls @ € ext(A
LR(A =Y, z) = Lgﬂ@;yyyf @
Tift(-A—-Y)’ falls x € ext(—A)
o Fir alle Regeln, wobei Dy die uniforme Verteilung tber X
ist:
A o P’I’D()[Y]

(z) = Proolot] [ ZRoil(A" = Y),2] (12)

1<i<k
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Was wissen Sie jetzt?

@ Sie haben eine neue Lernaufgabe kennengelernt:
Subgruppenentdeckung.

@ Wie bisher bei (fast) jeder Lernaufgabe, ging es gleich um
Modellselektion. Hier fir eine Menge von Hypothesen
(Regeln), nicht eine Funktion.

@ Sie haben neue Gutekriterien kennengelernt: Lift, WRAcc,
Spezifizitdt und Sensitivitat

@ Fir eine Reihe von Experimenten haben Sie ROC und
AUC kennengelernt.

@ Die Grof3e von Stichproben in Bezug auf das Risiko, dass
das Lernergebnis falsch ist, wurde mt Chernoff und
Hoeffding beschrankt.
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Und Sie wissen noch mehr!

o Zwei effiziente Ansatze zur Subgruppenentdeckung, von
Wrobel und von Scholz, beruhen darauf, dass man nicht
alle Beispiele zu betrachten braucht.

@ Sie kennen Knowledge-Based Sampling fur
Subgruppenentdeckung und wie man das Ergebnis fiir die
Klassifikation verwenden kann.
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