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@ Anwendungen

@ Web Mining
@ Information Retrieval

e Textklassifikation

@ Verwendung des Modells zur Textklassifikation far
zeitgestempelte Daten
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Fallstudie Intensivmedizin

Web Mining Textklassifikation Verwendung des Modells zur Textklassifikation fiir zeitgestempelte

Daten
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Anwendungen

Patient G.C., male, 60 years old - Hemihepatektomie right

Web Mining Textklassifikation Verwendung des Modells zur Textklassifikation fir zeitgestempelte Daten

o Stadtische Kliniken Dortmund, Intensivmedizin 16 Betten,
Prof. Dr. Michael Imhoff (Ruhr-Universitat Bochum)
@ Hamodynamisches Monitoring, minttliche Messungen
o Diastolischer, systolischer, mittlerer arterieller Druck
o Diastolischer, systolischer, mittlerer pulmonarer Druck
o Herzrate
o Zentralvendser Druck
o Therapie, Medikamente:
o Dobutamine, adrenaline, glycerol trinitrate, noradrenaline,
dopamine, nifedipine
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Wann wird Medikament gegeben?
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Beispiel: Intensivmedizin

Web Mining Textklassifikation Verwendung des Modells zur Textklassifikation fiir zeitgestempelte Daten

o Mehrklassenproblem in mehrere 2-Klassen-Probleme
umwandeln:
o Fur jedes Medikament entscheide, ob es gegeben werden
soll oder nicht.
o Positive Beispiele: alle Minuten, in denen das Medikament
gegeben wurde
o Negative Beispiele: alle Minuten, in denen das Medikament
nicht gegeben wurde
Parameter: Kosten falscher Positiver = Kosten falscher
Negativer
Ergebnis: Gewichte der Vitalwerte /3, so dass positive und
negative Beispiele maximal getrennt werden (SVM).
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[/ 0.014 artsys = 174.00
0.019 artdia = 86.00
—0.001 artmn = 121.00
—0.015 cvp = 8.00
(@ = —0.016 hr =79.00 — 4.368
0.026 papsys = 26.00
0.134 papdia = 13.00
—0.177 papmn = 15.00
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Wie wird ein Medikament dosiert ?
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Steigern von Dobutamine

Vektor f fiir p Attribute

ARTEREN: -0.05108108119
@ Mehrklassenproblem in mehrere 2 Klassenprobleme SUPRA: 0.00892807538657973
umwandeln: fiir jedes Medikament und jede Richtung DOBUTREX :  -0.100650806786886
(increase, decrease, equal), 2 Mengen von WEIGHT : -0.0393531801046265
Patienten-daten: AGE : -0.00378828681071417
o Positive Beispiele: alle Minuten, in denen die Dosierung in ARTSYS : -0.323407537252192
der betreffenden Richtung geandert wurde ARTDIA : -0.0394565333019493
° N.egaFive Beispiele: alle Miputen, in d(fnen die Dosierung ARTMN - -0.180425080906375
nicht in der betreffenden Richtung geandert wurde. HR - -0.10010405264306
PAPSY S : -0.0252641188531731
PAPDIA : 0.0454843337112765
PAPMN : 0.00429504963736522
PULS : -0.0313501236399881
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Anwendung des Gelernten fiir Dobutamin
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Steigern von Glyceroltrinitrat (nitro)

o Patientwerte 0.014 artsys = 174.00 _0 Jed
: . 0.019 artdia = 86.00 edes
pat46, artmn 95, min. 2231 © Gelernte Gewichte f;: vy ol B Medikament hat
o artmn — 0,18 0015 cop = 8.00 glne_n
. _ — osierungss-
pat46, artmn 90, min. 2619 0.016 hr = 79.00 ot Fod
L 0026 popays = 26.00 Glycéroltrinitrat
_ . 0.134 papdia = 13.00 ) .
svm_calc = Z Bix; 0177 papmn = 15.00 |;t es 1, fur
=1 ; g uprarenin
|| -9.543 nifedipine = 0 prarei
decision = sign(svm_calc + Bo) T@ =1\ 047 | | noradrenatine =0 | =365 (adrenalin) 0.01.
- ~0.185 dobutamie = 0 Die Dosis wird
0.542 dopamie = 0 um einen Schritt
. —0.017 glyceroltrinitrate = 0 erhoht oder
@ sum_cale(patd6, dobutrex, up, min.2231, 39) 2391 adrenaline — 0 gesenkt.
o sum_calc(patd6, dobutrex, up, min.2619, 25) 0.033 age = 77.91 @ Vorhersage:
_ . . . . . . 0.334 emergency = 0 pred_interv
) ﬁq = —26, i.e. increase in minute 2231, not increase in 0.784 bso — 1.79 (pat9, min.32,
minute 2619. 0.015 broca = 1.02 1 nitro,1,0)
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Evaluierung

o Blind test Gber 95 noch nicht gesehener Patientendaten.
o Experte stimmte Uberein mit tats&chlichen
Medikamentengaben in 52 Féllen
o SVM Ergebnis stimmte tberein mit tatséchlichen
Medikamentengaben in 58 Fallen

Dobutamine H Actual up ‘ Actual equal ‘ Actual down ‘
Predicted up 10 (9) 12 (8) 0 (0)
Predicted equal 7(9) 35 (31) 9(9)
Predicted down 2(1) 7 (15) 13 (12)
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SVMs fir Regession

Durch Einfuhrung einer anderen Loss-Funktion |43t sich die
SVM zur Regression nutzen. Sei ¢ € R+, und

. _ 0 Jfallsy — f(#,a) <e
Li(y, f(@, @) = { (y— f(#,a) —e)* ,sonst

Die Loss-Funktion L, gibt den Abstand der Funktion f von den
Trainingsdaten an, alternativ quadratische Loss-Funktion Lo:

lineare Verlustfunktion quadratische Verlustfunktion

Q Q

f(x)-y
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| SVMs fiir Regression

Dadurch ergibt sich das Optimierungsproblem:

Regressions-SVM
Minimiere
. N N
I8P +C (Y &+ &
i=1 i=1
unter den Nebenbedingungen

<€,ﬁ)+ﬁo§y¢+e+§{-
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SVMs furr Regression

Die &; bzw. &/ geben fiir jedes Beispiel Schranken an, innerhalb
derer der vorhergesagte Funktionswert flir jedes Beispiel liegen
soll:

Bei der Lésung des Optimierungsproblems mit Lagrange flhrt
dies zu zwei a-Werten je Beispiel!
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| SVMs fiir Regression
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Beispiel: Prognose von Zeitreihen

ndung des Is zur Textklassifikation fir zei mpelte Daten

Das duale Problem enthélt fir jedes Z; je zwei a-Werte «; und
af, je einen fir & und &, d.h.

Duales Problem fir die Regressions-SVM

Maximiere
N N
Lp(a, &/) = Zyz (Ol, - az) - EZ% (a’L - a’b)
i:i ., =1
— Z i (of — o) (a; — aj) K (%5, %5)
ig=1

unter den Nebenbedingungen

0<aos0,<CVi=1,...,N

N N
und Z ol = Z o
i=1 i=1

E‘; von 70

I ln\
\\\UL

120 N i ¥
| V 2
100 AN -
Fenster Horizont
80

TYN2RL2HEESIHILLYHBB3CILRRRAREBBBSFIL S

16 von 70

technische universitat Eompuargaticts Stas Technische a ‘ﬁ)
dortmund
Anwendungen Web Mining Textklassifikation Verwendung des Modells zur Textklassifikation fiir zeitgestempelte Daten

Prognose von Zeitreihen
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@ Trend

@ Zyklen

o Besondere Ereignisse (Weihnachten, Werbung, ...)
@ Wieviel vergangene Beobachtungen?

o AusreiB3er
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Abverkauf Drogerieartikel

— Insect killers 2
— Sun milk
— Candles 1

~—— Self-tanning cream
~—Candles 2
Baby food 2
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Vorhersage Abverkauf

Gegeben Verkaufsdaten von 50 Artikeln in 20 Laden tber 104
Wochen
Vorhersage Verkaufe eines Artikels, so dass

o Die Vorhersage niemals den Verkauf unterschatzt,
o Die Vorhersage Uberschatzt weniger als eine
Faustregel.

Beobachtung 90% der Artikel werden weniger als 10 mal pro
Woche verkauft.

Anforderung Vorhersagehorizont von mehr als 4 Wochen.
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Verkaufsdaten — multivariate Zeitreihen

[ Shop | Week [ Item1 [ ... ] ltem50 |
Dm1 1 4 12
Dm1
Dm1 104 9 16
Dm2 1 3 19
Dm20 | 104 12 16
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Vorverarbeitung: multivariat nach univariat

Quasi-SQL:

For all shops for all
items: Create view
Univariate as

Select shop, week, [Shop_item [ Week | Sale | Week | Sale

item; Dm1_ltem1 1 4. 104 9

Where shop="dm;"

From Source: Dm1_item50 T [12..| 104 | 16

o Multiples

Dm20_ltem50 1 14... 104 16

Lernen fir alle
univariaten
Zeitreihen
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Vorverarbeitung I

o Problem: eine Zeitreihe ist nur 1 Beispiel!
o Das ist fir das Lernen zu wenig.

o Lbsung: Viele Vektoren aus einer Reihe gewinnen durch
Fenster der Breite (Anzahl Zeitpunkte) w,
bewege Fenster um m Zeitpunkte weiter.

| Shop_ltem_Window | Week | Sale | Week | Sale |

Dm1_ltem1_1 1 4. 5 7
Dm1_ltem1_2 2 4. 6 8
Dm1_ltem1_100 100 6... 104 9

Dm20_Item50_100 | 100 | 12.. | 104 | 16
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SVM im Regressionfall

o Multiples Lernen:
fir jeden Laden und jeden Artikel, wende die SVM an. Die
gelernte Regressionsfunktion wird zur Vorhersage genutzt.
@ Asymmetrische Verlustfunktion :

o Unterschatzung wird mit 20 multipliziert, d.h. 3 Verkaufe zu
wenig vorhergesagt — 60 Verlust

o Uberschéatzung z&hlt unveréndert, d.h. 3 Verkaufe zu viel
vorhergesagt — 3 Verlust

(Diplomarbeit Stefan Riiping 1999)

23 von 70

Vergleich mit Exponential Smoothing

| Horizont | SVM [ exp. smoothing |

1 56.764 52.40
2 57.044 59.04
3 57.855 65.62
4 58.670 71.21
8 60.286 88.44
13 59.475 102.24

Verlust, nicht normiert auf [0, 1]!
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World Wide Web

@ Anwendung der SVM fir die Medikamentenverordnung
o Idee der Regressions-SVM

@ Anwendung der SVM fir die Verkaufsvorhersage

o Umwandlung multivariater Zeitreihen in mehrere univariate
o Gewinnung vieler Vektoren durch gleitende Fenster
o Asymmetrische Verlustfunktion

Seit 1993 wéachst die Anzahl der Dokumente — 12,9
Milliarden Seiten (geschétzt fiir 2005)
o Standig wechselnder Inhalt ohne Kontrolle, Pflege

o Neue URLs

o Neue Inhalte

o URLs verschwinden

o Inhalte werden verschoben oder geléscht

Verweisstruktur der Seiten untereinander
Verschiedene Sprachen
Unstrukturierte Daten
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Information Retrieval
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Aufgaben

Indexierung mdglichst vieler Seiten (Google)

Suche nach Dokumenten, ranking der Ergebnisse z.B.
nach Haufigkeit der Verweise auf das Dokument (PageLink
— Google)

o Kategorisierung (Klassifikation) der Seiten manuell
(Yahoo), automatisch

Strukturierung von Dokumentkollektionen (Clustering)
Personalisierung:

o Navigation durch das Web an Benutzer anpassen
o Ranking der Suchergebnisse an Benutzer anpassen

o Extraktion von Fakten aus Texten

27 von 70

o Ein Dokument besteht aus einer Menge von Termen
(Wértern)
o Bag of words: Vektor, dessen Komponenten die Haufigkeit
eines Wortes im Dokument angeben.
o Fir alle Dokumente gibt es eine Termliste mit Verweis auf
die Dokumente.
o Anzahl der Dokumente, in denen das Wort vorkommt.
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Beispiel zur Klassifikation
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Texte als Daten

To: rueping@Is8.cs.uni- .»| 1 [astonishing
dortmund.de 3 [free
Subject: Astonishing, -~ 2 |in
Guaranteed XXX Pictures  .17,-" :

FREE! Gao N 2 |pictures
In the next 2 minutes ygua’re/l 1_|porn
going to learn how to,gét acéess 0 [SVM

to totally FREE xxx pictures. 5 [to

Let me show youi the secrets | 0 [university
have learngdto get FREE porn 2 [XXX
passwords. Indeed, with this in

mind lets take a quick look

below to see what you get, ok?
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- TFIDF

@ Term Frequenz: wie haufig kommt ein Wort w; in einem
Dokument d vor? T'F(w;, d)

o Dokumentenfrequenz: in wie vielen Dokumenten einer
Kollektion D kommt ein Wort w; vor? DF(w;)

@ Inverse Dokumentenfrequenz:

N D]
IDF(D,w;) = log DF(w)
o Bewahrte Reprasentation:
TF(w;,d)IDF(w;, D)

TFIDF(w;, D)

- \/2]. [TF(w;,d)IDF (w;, D))?
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Textklassifikation

o Thorsten Joachims “The Maximum-Margin Approach to
Learning Text Classifiers”, Kluwer, 2001

@ Modell der Textklassifikation TCat
@ Verbindung zur SVM-Theorie

— theoretisch begriindete Performanzabschitzung
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Eigenschaften der Textklassifikation 1

@ Hochdimensionaler Merkmalsraum

o Reuters Datensatz mit 9603 Dokumenten: verschiedene
Worter
V = 27658

o Heapes Gesetz: Anzahl aller Wérter

(s)V = ks?
o Beispiel:
o Konkatenieren von 10 000 Dokumenten mit je 50 Wértern zu
einem,

o k=15und3=0,5
@ ergibt V = 35000 — stimmt!
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Eigenschaften der Textklassifikation 2

o Heterogener Wortgebrauch

o Dokumente der selben Klasse haben manchmal nur
Stoppworter gemeinsam!

o Es gibt keine relevanten Terme, die in allen positiven
Beispielen vorkommen.

o Familienahnlichkeit (Wittgenstein): A und B haben &hnliche
Nasen, B und C haben &hnliche Ohren und Stirn, A und C
haben ahnliche Augen.
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Eigenschaften der Textklassifikation 4
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o Redundanz der Merkmale

o Ein Dokument enthélt mehrere die Klasse anzeigende
Woérter.
o Experiment:
@ Ranking der Wérter nach ihrer Korrelation mit der Klasse.
@ Trainieren von Naive Bayes fir Merkmale von Rang
1-200 (90% precision/recall)
201 - 500 (75%)
601-1000  (63%)
1001- 2000 (59%)
2001- 4000 (57%)
) —

4001- 9947  (51%) — zuféllige Klassifikation (22%)
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o Diinn besetzte Vektoren
o Reuters Dokumente durchschnittlich 152 Wérter lang

o mit 74 verschiedenen Wortern
o also meist bei etwa 78 Wértern 0

o Euklidsche Lénge der Vektoren klein!
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Eigenschaften der Textklassifikation 5
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Plausibilitat guter Textklassifikation durch SVM

o Zipfs Gesetz: Verteilung von Wortern in
Dokumentkollektionen ist ziemlich stabil.
o Ranking der Wérter nach Haufigkeit (r)
o Haufigkeit des haufigsten Wortes (max)
° %max haufig kommt ein Wort des Rangs r vor.
o Generalisierte Verteilung von Haufigkeit nach Rang
(Mandelbrot): v ist Gré3e der Dokumentkollektion in

Wortvorkommen v

FTP
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o R sei Radius des Balles, der die Daten enthalt. Dokumente
werden auf einheitliche Lange normiert, so dass R = 1

@ Margin sei ¢, so dass groBes § kleinem ?—; entspricht.

Reuters B I>r ¢|[Reuters | T [0 ¢
Earn 1143 | 0 trade 869 |9
acquisition | 1848 | 0 interest | 2082 | 33
money-fx | 1489 | 27 ship 458 | 0

grain 585 | 0 wheat 405 |2
crude 810 | 4 corn 378 |0
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TCat Modell — Prototyp
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TCat im Bild

LS 8 Informatik ”—
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@ Hochdimensionaler Raum: V' = 11100 Wérter im Lexikon

o Dinn besetzt: Jedes Dokument hat nur 50 Woérter, also
mindestens 11050 Nullen

o Redundanz: Es gibt 4 mittelhdufige und 9 seltene Wérter,
die die Klasse anzeigen

o Verteilung der Worth&ufigkeit nach Zipf/Mandelbrot.
o Linear separierbar mit 5y = 0, 3°;11% 8,2
0,23  fur mittelhdufige Wérter in POS,

@ 20 aus 100 Stoppwértern, 5 aus 600 mittelhaufigen und 10
aus seltenen Woértern kommen in POS- und
N EG-Dokumenten vor;
4 aus 200 mittelhaufigen Wortern in POS, 1 in NEG, 9
aus 3000 seltenen Wértern in POS, 1 in NEG (Es missen
nicht immer die selben Wérter sein!)

positive Dokumente

—0,23 far mittelhaufige Worter in NEG, >
Bi =< 0,04 flr seltene Worter in POS, 10
—0,04 far seltene Worter in NEG, negative Dokumente
0 sonst
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| TCat

The TCat concept
TCat([p1:mn1: f1],.- -, [ps i ns 2 fs])

describes a binary classification task with s sets of
disjoint features. The i-th set includes f; features. Each
positive example contains p; occurences of features
from the respective set and each negative example
contains n; occurrences. The same feature can occur
multiple times in one document. (Joachims 2002)
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TCat zum Bild

7 disjunkte Wortmengen; bei einem zur Klasse gehérigen
Dokument kommt 20 mal eines der 100 Wérter der ersten
Wortmenge vor, 4 mal eines der 200 Wérter der zweiten
Wortmenge, ...; bei einem nicht zur Klasse gehdérigen
Dokument gibt es 20 Auftreten von Wértern aus der ersten
Wortmenge,... Es sind also nicht bestimmte Woérter, die die
Klassenzugehdrigkeit anzeigen!

TCat([20 : 20 : 100]
N————
sehr haufig

[4:1:200][1:4:200][5:5:600]
mittel haufig

91 1:3000][1 : 9 : 3000][10 : 10 : 4000])

selten
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Lernbarkeit von TCat durch SVM

(Joachims 2002) Der erwartete Fehler einer SVM ist
nach oben beschrankt durch:

R? a+2b+c
n+1 ac— b2

r ist der Rang, es gibt [ Worter, s

2

a= 3 I}* Merkmalsmengen, fir einige i: p; # n;
by pin; und die Termhéufigkeit befolgt Zipfs

it f Gesetz, k, ¢ schatzen. Wihle d so,
o= Vi dass:

= o ()

43 von 70

Schatzen der Mandelbrot-Verteilung

Fir die Schatzung nimmt man gebréauchliche Methoden wie
Maximum Likelihood.

In R gibt es dazu mittlerweile schon eine Funktion, die das
komfortabel erledigt:
http://www.oga-lab.net/RGM2/func.php?rd_id=zipfR:Inre
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| Was wissen Sie jetzt?

o Die automatische Klassifikation von Texten ist durch das
WWW besonders wichtig geworden.

o Texte kdnnen als Wortvektoren mit TFIDF dargestellt
werden. Die Formel fir TFIDF kénnen Sie auch!

o Textkollektionen haben bzgl. der Klassifikation die
Eigenschaften: hochdimensional, diinn besetzt, heterogen,
redundant, Zipfs Gesetz.

o Sie sind mit breitem margin linear trennbar.

o Das TCat-Modell kann zur Beschrankung des erwarteten
Fehlers eingesetzt werden. Die Definition von TCat kennen
Sie mindestens, besser wéare noch die Fehlerschranke zu
kennen.
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Verwendung des TCat Modells fiir zeitgestempelte Daten

Und jetzt wenden wir das Gelernte auf ein
Gebiet fernab von Texten an!
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Lokale Muster
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Zeit-gestempelte Daten

o Lokale Muster beschreiben seltene Ereignisse.
@ Gegeben ein Datensatz, fur den ein globales Modell
bestimmt wurde, weichen lokale Muster davon ab.
o Lokale Muster beschreiben Daten mit einer internen
Struktur, z.B. Redundanz, Heterogenitat
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o Zeit-gestempelte Daten kdnnen transformiert werden in:

o Eine Menge von Ereignissen,
o Zeitintervalle,
o Zeitreihen.
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Klassische Methoden
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Zeitreihenanalyse flr Vorhersage, Trend und Zyklus
Erkennung

Indexing und clustering von Zeitreihen (time warping)
Segmentierung (motif detection)

Entdeckung von Episoden

o frequent sets,
o chain logic programs (grammars)

o Regression
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Beispielreprasentation

o Die Beispielreprasentation X bestimmt die Anwendbarkeit
der Methoden: welche Variablen, was sind Beispiele?

o Bedeutung der Reprasentation lange unterschétzt.
@ Suche nach guter Reprasentation ist aufwandig.
o Transformieren der Rohdaten in die Reprasentation auch.
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Einige Reprasentationen fiir zeitgestempelte Daten

@ Schnappschuss: ignoriere Zeit, nimm nur den aktuellen
Zustand. (So war es bei der Intensivmedizin-Anwendung.)

o Ereignisse mit Zeitintervallen: aggregiere Zeitpunkte zu
Intervallen, wende frequent set mining an. (Das machen
wir in dieser Vorlesung nicht.)

o Generierte Merkmale: hier: transformiere Zeitinformation in

Haufigkeitsmerkmale fiir Zeitaspekte

o Term frequency: wie oft &nderte Attribut A seinen Wert a;
flr ein Objekt c;.

tf(ai, c;) = || {x € timepoints|a; of ¢; changed } ||

@ Document frequency: in wie vielen Objekten ¢; anderte
Attribut A seinen Wert a;.

df (a;) = || {¢; € C|a; of ¢; changed } ||

Haufigkeitsmerkmale!
o TF/IDF: icl
tfidf(ai) = tf(ai, Cj) log
df (ai)
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Fallstudie SwissLife

o Lokale Muster
o Seltenes Ereignis der Kiindigung
o Lokales Muster weicht ab vom generellen Modell
o Interne Struktur in lokalen Mustern
o Zeit-gestempelte Daten
o Schnappschuss
o Zeitintervall
o Generierte Merkmale: TFIDF
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Lokale Muster in Versicherungsdaten

@ Nur 7.7% der Vertrage enden vorzeitig (customer churn).

@ Fr einige Attribute weicht die likelihood in der
churn-Klasse von der globalen ab.
@ Interne Struktur:
o Uberlappung: haufige Mengen in churn Vertragen sind
auch haufig in fortgesetzten Vertragen.
o Redundanz: in jedem Vertrag gibt es mehrere Attribute, die
auf Fortsetzung oder Kiindigung hinweisen.
o Heterogenitat: Es gibt gekiindigte Vertrége, die nicht ein
einziges Attribut gemeinsam haben.
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Verwendung des Modells zur Textklassifikation fiir zeitgestempelte Daten

_TFROLID MO_TFKOMPID HO_TFKOMP. MO_WERT
TRONUMBER(17.0) NOTNULLL T, [TKIDNUMBER(17,0) NOTNULL]  THO, K UL WIDNUMBER(17,0) NOTNULL
0 70 ‘TKAENDNR NUMBER(6,0) NOT NULL WAENDNRNUMBER(G,0) NOTNULL
70 WIDNUMBER(17.0) NOTNULL
PRWIDNUMBER(17,0) ol
PRTYP NUNBER(,0) oo
PRTYPNRNUMBER(6,0)
T Wi

TRD

MO_TFROL.

= S._wo
‘TRIDNUMBER(17,0) NOT NULL N
TRAENDNRNUMBER(5,0) NOT NULL S
e

WERTD
'WID:NUMBER(17,0) NOT NULL

Contract Table

wip VVAENDNR | VVWIVON | VVWIBIS | VVAENDAT | VVAENDART
16423 1] 1946 | 1998 1946 1000
16423 2| 1998 | 1998 1998 27
16423 3| 1998 | 1998 1998 4
16423 4 | 1998 | 1998 1998 54
16423 5| 1998 | 1998 1998 4
16423 6| 1998 | 9999 1998 61

SN
0. o
MO_PART ~
'MO_PARROLID MO_PARROL

PTIC IMBER(1! NOTNL
EP‘VDE:;'N?NJ:B.Z)R(FU) N%YLNULL 'WID:NUMBER(17,0) NOT NULL 'WID:NUMBER(17,0) NOT NULL
WD NUMBER(17,0) NOTNULL PTID_, [PRTYPNUMBERGO) NoTNULL | o PRTVP NUMBER(,0) NOTNULL
PRTYPNUMBER(,0) NOTNULL PRTYPNRNUMBER(6.0) NOT NULL. PRTYPNR:NUMBER(5,0) NOT NULL.
PRTYPNR NUMBER(5,0) NOTNULL VERSNRNUMBER(5,0) NOT NULL

- WID:NUMBER(17,0) NOT NULL
—_—
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Datensatz

o Tabellen enthalten Informationen lber
o 217586 Komponenten and
o 163745 Kunden
o Attribute:
o 14 Attributes ausgewahlt
o Eines der Attribute gibt den Grund an fir einen Wechsel.
Es gibt 121 Griinde. Daraus werden 121 Boolean Attribute.
o 134 Attribute mit TFIDF Werten.
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Erste Experimente

@ Bei SwissLife wurde die Abweichung der
Wahrscheinlichkeit bestimmter Attributwerte in
gekindigten und fortgesetzten Vertragen festgestellt
anhand der Schnappschussreprasentation — keine
operationale Vorhersage.
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Calculating Term Frequency

wip ...| VSTACD | VWPRFIN | VVPRZA | VVINKZWEI | VVBEG VVEND VVINKPRL
16423 4 1 2 2 1946 | 1998 | 295.29
16423 4 1 2 2 1946 | 1998 | 295.29
16423 4 5 2 0 1946 | 2028 | O
16423 5 3 2 0 1946 | 2028 | 0O
16423 4 1 2 2 1946 | 1998 | 295.29
16423 5 3 2 0 1946 | 1998 | O

3] wsmco

4] weren

[ 0| werza

| 3| vinkawe

0] wees

2] wenn

3] vuikerL
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Experimente mit der TFIDF Représentation

@ Vergleich der originalen Reprasentation und der TFIDF
o 10fold cross validation

@ Apriori mit Konklusion ‘churn’
o Entscheidungsbaumlerner J4.8
o Naive Bayes

@ mySVM mit linearem Kern

o F-measure balanciert precision und recall gleich.

Alle Lernalgorithmen werden besser mit der TFIDF-
Reprasentation.
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Resultate (F-measure)
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Erklarung?

Lerner TF/IDF repr. | Original repr.
Apriori 63.35 30.24 o TF/IDF stammt aus Lernen tber Texten.
J4.8 99.22 81.21 o Dazu gibt es eine Theorie — TCat.
Naive Bayes | 51.8 45.41 o Koénnen wir die auch hier einsetzen??
mySVM 97.95 16.06
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Learnability of TCat

Datenbeschreibung im TCat Modell

TCat([2:0:2],[1:4:3],
QT —
[3:1:3],[0:1:4],

[1:0:19],[0:1:64],)

low frequency
[1:1:39]))
——
rest

[1:4:3]: Aus der Menge von 3 Merkmale finden wir ein
Auftreten in positiven und 4 in negativen Beispielen.

Error bound (Joachims 2002)

R? a+2b+c
n+1 ac—b?
a=%%, % =541
=i B = 2.326
=Y = 5.952

=3 () <

Nach 1000 Beispielen erwarteter Fehler < 2.2%
Tatsachlicher Fehler 2.05%
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Experimente zu lokalen Mustern
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Lokale Muster: Verzerrte Verteilung

o Durch TCat-Konzepte Daten kiinstlich generieren.
o Lokale Muster als seltene Ereignisse mit interner Struktur.

o 10 000 Beispiele mit 100 Attributen
@ SVM runs mit 10 fold cross validation

Repr. Targetconcept : Verzerrung:
TF/IDF | 1. change of a particular attribute | 50%, 25%,
Boolean 2. frequency of changes 12.5%, 6.25%

65 von 70

66 von 70




) S 8 Informatik 3
technische universitat utergestitzte Stttk Techmische 4 4 T‘
dortmund

Anwendungen Web Mining Textklassifikation Verwendung des Modells zur Textklassifikation fiir zeitgestempelte Daten

LS 8 Informatik

technische universitat Computergestitzte Statistik Technische Universitét Dortmund ‘ (\‘ b

dortmund
Anwendungen Web Mining Textklassifikation Verwendung des Modells zur Textklassifikation fiir zeitgestempelte Daten

Resultate

| Lokale Muster: Strukturen

@ 10 000 Beispiele mit 100 Attributen

o 20 Attribute wechseln pro Beispiel (dlinn besetzt)
@ Variieren:
o Heterogenitat: £ Beispiele der selben Klasse haben kein
gemeinsames Attribut 4, 5, 10, 20
o Redundanz: % oder ’}— fur die Redundanz innerhalb einer
Klasse 0.5,0.2,0.1
o Uberlappung: einige Attribute sind haufig in beiden Klassen
0.25,0.66
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o Fr alle Kombinationen ohne Uberlappung sind die
Lernergebnisse 100% in Boolean und im TF/IDF- Format.

o Mehr Uberlappung verschlechtert das Lernen bei Boolean
auf 68.57% F-measure.

o Fiir alle Kombinationen (auch mit groBer Uberlappung)
erreicht das Lernen mit TF/IDF Daten 100% precision und
recall.
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Navigation im Raum der Beispiele

@ Zunehmende GrdBe des Datensatzes zeitgestempelter
Daten: Schnappschuss < Intervalle < Boolean < TF/IDF

o TF/IDF ist glnstig fur lokale Muster, wenn diese
Redundanz, Heterogenitét als Eigenschaft aufweisen.

@ Berechnung des TCat Modells flr gegebene Daten
implementiert — Fehlerschranke angebbar.
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Was wissen Sie jetzt?

o Lokale Muster haben manchmal die typische
TCat-Struktur.

o Sie haben gesehen, wie manche zeitgestempelte
Datenbanken in TCat-Modelle transformiert werden
kénnen.

@ Die Lernbarkeit mit linearer SVM der so transformierten
Daten kénnen Sie ausrechnen.
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