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SVM mit Ausnahmen

@ Was passiert, wenn die Beispiele nicht komplett trennbar
sind?
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Nicht linear trennbare Daten

In der Praxis sind linear trennbare i
Daten selten: o ©® ®
@ 1. Ansatz: Entferne eine ° ®
minimale Menge von
Datenpunkten, so dass die Daten
linear trennbar werden (minimale ®
Fehlklassifikation). ® o
@ Problem: Algorithmus wird
exponentiell. oo e ® g
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SVM mit Ausnahmen

Ein anderer Ansatz basiert wieder auf einer Relaxation:

@ Punkte, die nicht am Rand oder auf der richtigen Seite der
Ebene liegen, bekommen einen Strafterm &; > 0.

@ Korrekt klassifizierte Punkte erhalten eine Variable &; = 0.
Dies fUhrt zu folgenden Minimierungsproblem

N
%HEIV +CD ¢ firein festes C € Rug (1)
j=1

Daraus folgt insbesondere

OSOQ'SC
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Weich trennende Hyperebene

Relaxiertes Optimierungsproblem

Sei C € R mit C > 0 fest. Minimiere

N
1B+ e
i=1

unter den Nebenbedingungen

#,B) + 60 > +1-¢& furgi=41

x =
(@i, B8)+ B0 < —1+& furg;=-1

Durch Umformung erhalten wir wieder Bedingungen fir die
Lagrange-Optimierung:

—

vi((ZTi,B) +Bo) >1-& Vi=1,....,N
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Bedeutung von £ und &

 e—¢=0,a=0

"(/§=0,0§a§0

1
1

S 0<¢<1,0<a<C

1

II )
§>1,a=0//‘/ ,

S1 @) =0 f(@) =+

1

f(@) =
Beispiele Z; mit «; > 0 sind Stutzvektoren.
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Wo sind wir?

@ Maximieren der Breite einer separierenden Hyperebene
(maximum margin method) ergibt eindeutige, optimale
trennende Hyperebene.

o Transformation des Datenraums durch Kernfunktion
behandelt Nichtlinearitat.

o Das kam nur einmal am Rande vor. Wir sehen es nachher
genauer.

@ Regularisierung minimiert nicht nur den Fehler, sondern
auch die Komplexitat des Modells.

o Spater!
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Nicht-lineare Daten
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Nicht-lineare Daten

@ Neue SVM-Theorie entwickeln? (Neeee!)

@ Lineare SVM benutzen?
If all you’ve got is a hammer, every problem looks

like a nail

@ Transformation in lineares Problem!
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Kernfunktionen

@ Erinnerung:
N N

Lp(a) = Zai — %Zzyiyjaiaj(@yi’w
i=1

i=1 j=1
F@) = aiyilas, &) + Bo

@ SVM hangt von Z nur liber Skalarprodukt (Z,27) ab.
@ Ersetze Transformation & und Skalarprodukt durch
Kernfunktion K (21, 23) = (®(z71), ®(23))

X\i/R

K
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Kernfunktionen I

@ Angabe von ¢ nicht nétig, einzige Bedingung: Kernmatrix
(K (73, 25))i,j=1..5 Muss positiv definit sein.

o Radial-Basisfunktion: K (7}, 7;) = exp(—v||%; — 25||?)

@ Polynom: K (&, 25) = (7}, 2;)?

@ Neuronale Netze: K (73, ©j) = tanh({az;, T;) + b)

@ Konstruktion von Spezialkernen durch Summen und

Produkte von Kernfunktionen, Multiplikation mit positiver
Zahl, Weglassen von Attributen
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Polynom-Kernfunktionen

o Ky, @) = (&, 45)"
@ Beispiel: d = 2,1}, 7 € R2.

Ko (3, 75) = (3, 75)?
= ((@iy, @4y) * (xjusz))z = (z,2j, + xi2xj2)2
, = xfl 321 + 24,14, Ty T, + wmmi
' = (a7, N2y, x4y, 1 L) * (a:?l, \/_wjla:h,x]zz)
=: (¢>($¢),¢($y‘)>
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RBF-Kernfunktion

exp(-10-x-Xgl? O
| — O &
Xo X
exXp(-1-x%,[2) @
— O
X, X
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Kernfunktionen

@ Die Kernfunktionen werden nicht als
Vorverarbeitungsschritt durchgefihrt.

@ Man muss lediglich bei der Berechnung des
Skalarprodukts die Kernfunktion berticksichtigen.

o Allerdings kann 7 jetzt nicht mehr so einfach interpretiert
werden als Bedeutung der Variablen (Merkmale) X;.
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Was wissen Sie jetzt?

@ Lineare SVM sind leicht zu interpretieren: o gewichtet
Beispiele, g gewichtet Merkmale.

@ Bei Kernfunktionen wissen wir fir gegebene Wert ¢(z)
nicht, welches & dahinter steht.
@ Ansatz: zu einer SVM noch eine Approximation der SVM
lernen!
o Die gelernte SVM klassifiziert mit max margin.
o Die Approximation gibt eine Vorstellung von der Funktion.
o Das Reduced Set Problem findet eine Approximation far
wenige Beispiele mit « statt g auf der Grundlage eines
gelernten Modells.

16 von 31



. . e LS 8 Informatik
technische universitat Computergestitzte Statistik
dortmund Technische Universitét Dortmund

Weich trennende SVM  Kernfunktionen Bias und Varianz bei SVM

Was ist gutes Lernen?

@ Fauler Botaniker:
“klar ist das ein Baum - ist ja grin.”
o Ubergeneralisierung
o Wenig Kapazitat
o Bias

@ Botaniker mit fotografischem Gedachtnis:
“nein, dies ist kein Baum, er hat 15 267 Blatter und kein
anderer hatte genau so viele.”
o Overfitting
o Viel Kapazitat
e Varianz

@ Kontrolle der Kapazitat!
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Bias-Varianz-Problem

@ Zu kleiner Hypothesenraum:

Zielfunktion nicht gut genug . .
approximierbar (Bias) @

@ Zu groBer Hypothesenraum: Yo y O
Zuviel Einfluss zufalliger o
Abweichungen (Varianz) RO R

@ Ldsung: Minimiere obere o e
Schranke des Fehlers: o

R(a) <y Remnp(ar) + Var(a)
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Risikoschranke nach Vapnik

Strukturelles Risiko

Gegeben eine unbekannte Wahrscheinlichkeitsverteilung
P(%,y), nach der Daten gezogen werden. Die Abbildungen

¥ — f(Z,a) werden dadurch gelernt, dass a bestimmt wird. Mit
einer Wahrscheinlichkeit 1 — . ist das Risiko R(&) nach dem
Sehen von N Beispielen beschrankt:

n (log (%) + 1) — log (%)
N

~ /

VC confidence

R(@) < Repmp(@) +

Bevor wir n ergrinden (Vapnik-Chervonenkis-Dimension), erst
einmal festhalten, was die Bedeutung dieser Schranke ist!
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Strukturelle Risikoschranke

@ Unabhangig von einer Verteilungsannahme. Alles, was die
Schranke braucht, ist, dass Trainings- und Testdaten
geman der selben Wahrscheinlichkeitsverteilung gezogen
werden.

@ Das tatsachliche Risiko kdnnen wir nicht berechnen.

@ Die rechte Seite der Ungleichung kénnen wir berechnen,
sobald wir 7 kennen, die Vapnik-Chervonenkis-Dimension.

@ Gegeben eine Menge Hypothesen fur f(#, &), wahle
immer die mit dem niedrigsten Wert fir die rechte Seite
der Schranke (R.n,, oder VC confidence niedrig).
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Strukturelle Risikominimierung

Varianz

Schranke(o) =
1. Ordne die Hypothesen in Ran(0) + Var()
Teilmengen gemaf ihrer

Komplexitat.

2. Wahle in jeder Teilmenge die
Hypothese mit dem geringsten
empirischen Fehler.

3. Wahle insgesamt die Hypothese Komplexitét

mit minimaler Risikoschranke.
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Vapnik-Chervonenkis-Dimension

@ Definition: Eine Menge H von
Hypothesen zerschmettert eine
Menge E von Beispielen, wenn
jede Teilmenge von E durch ein .
h € H abgetrennt werden kann.

@ Definition: Die VC-Dimension
einer Menge von Hypothesen H
ist die maximale Anzahl von
Beispielen E, die von H
zerschmettert wird.

@ Eine Menge von 3 Punkten kann .
von geraden Linien zerschmettert
werden, keine Menge von 4
Punkten kann von geraden Linien
zerschmettert werden.
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ACHTUNG

@ FUr eine Klasse von Lernaufgaben gibt es mindestens eine
Menge E, die zerschmettert werden kann - NICHT jede
Menge E kann zerschmettert werden!

@ Zum Beweis der VC Dimension n muss man also zeigen:

o Es gibt eine Menge E aus n Punkten, die von H
zerschmettert werden kann. VCdim(H) > n

o Es kann keine Menge E’ aus n + 1 Punkten geben, die von
H zerschmettert werden kénnte. VCdim(H) < n
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VC-Dimension von Hyperebenen

Satz: Die VC-Dimension der Hyperebenen

im RP ist p + 1.
Beweis: .
@ VCdim(RP) > p+ 1: Wahle 25 = 0 und

z; =(0,...,0,1,0,...0). Fdr eine .@.
beliebige Teilmenge A von (o, ..., ;)
setze y; = 1, falls 7; € A,
sonst y; = —1.
Definiere ﬁ > ykai und fp = 2. .
Dann gilt Bz + By = 2 und
B+ Bo = yi + % .

Also: 3% + B trennt A.

@ VCdim(RP) < p+ 1: Zurtckflihren auf
die beiden Falle rechts.
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VCdim misst Kapazitat

@ Eine Funktion mit nur 1 Parameter kann unendliche
V Cdim haben: H kann Mengen von n Punkten
zerschmettern, egal wie grof3 n ist.

@ H kann unendliche VCdim haben und trotzdem kann ich
eine kleine Zahl von Punkten finden, die H nicht
zerschmettern kann.

@ VCdim ist also nicht gro3, wenn die Anzahl der Parameter
bei der Klasse von Funktionen H grof3 ist.

25 von 31



. . e LS 8 Informatik
technische universitat Computergestiitzte Statistik
dortmund Technische Universitét Dortmund

Weich trennende SVM  Kernfunktionen Bias und Varianz bei SVM

VC-Dimension der SVM

© Gegeben seien Beispiele 7, ..., 2% € RP mit ||z;]| < D far
alle ¢. Fir die VC-Dimension der durch den Vektor
gegebenen optimalen Hyperebene H gilt:

VCdim(H) < min {D2H5H2,p} +1

@ Die Komplexitat einer SVM ist auch durch die Struktur der
Lésung begrenzt!

@ Die SVM minimiert nicht nur das empirische Risiko,
sondern auch das strukturelle — Regularisierung.
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Zusicherungen

@ Strukturelle Risikominimierung garantiert, dass die
einfachste Hypothese gewahlt wird, die noch an die Daten
anpassbar ist.

@ Strukturelle Risikominimierung kontrolliert die Kapazitat
des Lernens (weder fauler noch fotografischer Botaniker).

@ Die Strukturen von Klassen von Funktionen werden durch
die VCdim ausgedrickt. GroBe VCdim — groBBe
VC-confidence.

@ Wir haben nun also ein Verfahren, dass ohne zusatzlichen
Aufwand die Komplexitét regularisiert, wie wir es bei der
Modellselektion far lineare und lokale Modelle mal wollten.
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Performanzschéatzer

@ Welches erwartete Risiko R(«) erreicht SVM?

@ R(a) selbst nicht berechenbar

@ Trainingsfehler (zu optimistisch - Overfitting)

@ Obere Schranke mittels VC-Dimension (zu locker)

@ Kreuzvalidierung / Leave-One-Out-Schétzer (ineffizient)
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Performanzschéatzer |

@ Satz: Der Leave-One-Out-Fehler einer SVM ist beschrankt
durch Ry, < 5V
@ Beweis (Sklzze).

o Falsch klassifizierte Beispiele werden Stitzvektoren (SV).

o Also: Nicht-Stltzvektoren werden korrekt klassifiziert.
Weglassen eines Nicht-Stiitzvektors andert die Hyperebene
nicht, daher wird es auch beim [10-Test richtig klassifiziert.

o Nur der Anteil der Stltzvektoren an den Beispielen macht
den Fehler aus.
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Performanzschéatzer Il

@ Satz: Der Leave—One;Out—FehIer einer SVM ist beschrankt
durch Ry, < |{“(2aiDN+&)Zl}| (D = Radius des Umkreises
um die Beispiele im transformierten Raum).

@ Beweis: Betrachte folgende drei Falle:

e T 0<¢<1.0<a<C
fx1a=C—7T / sésll0sas

1

1 1
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Was wissen wir jetzt?

o Kernfunktionen - eine Transformation, die man nicht erst
durchfiihren und dann mit ihr rechnen muss, sondern bei
der nur das Skalarprodukt gerechnet wird.

@ Idee der Regularisierung:

o obere Schranke flr das Risiko
o Schrittweise Steigerung der Komplexitat

@ Formalisierung der Komplexitat: VC-Dimension

@ Regularisierung als strukturelle Risikominimierung der
SVM

@ Garantie fir die Korrektheit der Lernstrategie
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