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Gliederung

@ Hinfuhrungen zur SVM
@ Geometrie linearer Modelle: Hyperebenen
@ Einflihrung von Schélkopf/Smola

e Maximum Margin Methode
@ Lagrange-Optimierung
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Lineare Modelle
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Wir erinnern uns: Lineare Modelle trennen positive und
negative Beispiele durch eine Funktion f(Z). Einfachster Fall:

y=f(z) =

Allerdings betrachten wir als Beispielraum den R?, d.h. wir
brauchen eine verallgemeinerte Form:

mx +b Gerade im R2

Y= Zﬁm—kﬂo mit o € R, 7, 5 € R?

i=1

(1

Die Funktion f wird also durch 3 und 3, festgelegt und sagt uns
far ein gegebenes Z das entsprechende y voraus.
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Veranschaulichung

Bevor wir uns an die Wahl des passenden E machen, zunachst
einige Voriiberlegungen.

Betrachten wir dazu die binére Klassifikation (Y = {—1,+1}):
o Was passiert dabei eigentlich anschaulich?
o Wie klassifiziert unser f die Daten?
o Wie wirkt sich die Wahl von 7 aus?
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Zur Erinnerung: Ebenengleichung

Sei V = RP? ein Vektorraum, dann ist eine Hyperebene H ein
(p — 1)-dimensionaler affiner Untervektorraum.

H lasst sich Ober einen Stiitzvektor @ und einen
Normalenvektor § mit der Ebenengleichung schreiben

H:{xeRﬂ <5,f—d>:0}
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Beispiel Ebene, Stiitzvektor, Normalenvektor

)
-

F—a

81

z
(Hyper ) Ebene im R? mit Normalenvektor ﬁ und Stltzvektor a.
Falls (/J’, Z—a)=0,also fundz—a orthogonal zueinander,
befindet sich & auf der Ebene.
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Zur Erinnerung: Skalarprodukt

Hesse Normalform

Multiplizieren wir die Ebenengleichung aus und setzen
Bo = <E, a'>, dann ist

(B.7)—8y=0

in Hesse Normalform, falls ||3]| = 1.

7 von 48

Das Skalarprodukt ist
definiert durch

W
4
5
6
77:1 2 3[1-442-5+3-6=32

@ aber auch durch den Kosinus mit
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Zur Erinnerung: Euklidsche Lénge

Euklidsche Léange oder Norm, auch Ls-Norm

36 =\ = (3. 9)
=1

weil || 5 ||?= 23 + ...z2 (Pythagoras)

1
Beispiel: =1 2
3

| Bll=vIZ+22+32= V14

Normiert hei3t ein Vektor, wenn er die (Euklidsche) Lange 1
hat.
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Abstandsberechnung durch Hesse Normalform

Sei 7 der Vektor, dessen Lange der Abstand vom Ursprung

zur Ebene in Hesse Normalform ist. Dieser muss orthogonal

zur Ebene liegen und somit parallel zu 3. Seien nun £ und
gleichgerichtet, dann gilt

cos(£(B, ) = 1

und ||8]| = 1 und somit

<g7 f0> - ﬂO = 0 IB
& NIBI - 7]l - cos(£(F, %)) = Bo
- N Bo A

Daraus folgt, dass 3, der Abstand der Ebene zum Ursprung ist.
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Hesse Normalform

Fiir die Hesse Normalform muss ||3]| = 1 gelten, damit der
Abstand zum Ursprung leicht abgelesen werden kann. Wir
normieren den Normalenvektor auf die Euklidsche Lange 1

g
187

und erhalten die Ebenengleichung in Hesse Normalform

(B, 7))~ =0

g=

wobei B
o= {F,d)>0
Dann ist 5y der Abstand zum Ursprung.
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Beispiel Normalisierung

4
Seia=| 0

0
nicht in Hesse Normalform, weil ||3|| = /14 # 1. Wir
normalisieren

und 3’ = dann ist die Ebenengleichung

W N =

— _ ﬁ:,
A 18l

=
IS

1
2
3
2 = _ 1 1 1 4
<ﬁ,l‘>—,3 =0 ﬁxl‘f'ﬁlh'f‘ﬁx?) \/ﬂ_o

Jetztist gy = \;—114 der Abstand der Ebene zum Ursprung.
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Einfuhrende Literatur

Ubersicht tiber die Stiitzvektormethode (SVM)

Eigenschaften der Stiitzvektormethode (SVM) (Support Vector
Machine)

@ Maximieren der Breite einer separierenden Hyperebene —
maximum margin method — ergibt eindeutige, optimale
trennende Hyperebene.

o Transformation des Datenraums durch Kernfunktion
behandelt Nichtlinearitat.

@ Regularisierung minimiert nicht nur den Fehler, sondern
auch die Komplexitat des Modells.
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o Vladimir Vapnik “The Nature of Statistical Learning Theory”
Springer Vg. 1995

o W.N. Wapnik, A. Tscherwonenkis “Theorie der
Zeichenerkennung” Akademie Vg. 1979

o Christopher Burges "A Tutorial on Support Vector
Machines for Pattern Recognition” in: Data Mining and
Knowledge Discovery 2, 1998, 121-167

Vertiefung: Bernhard Schélkopf, Alexander Smola “Learning
with Kernels”, MIT Press, 2002
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Wo trennen wir die Daten?

Probleme der Empirischen Risikominimierung

Empirische Risikominimierung: Bisher haben wir lineare
Modelle

P
Y =58+) X8
j=1
auf die Fehlerminimierung hin optimiert:

. N
RSS(B) = (v — 7 B)°

i=1
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1(x1,x2) = 0.021*x1 ~0.01*x2 - 2.656
f(x1,x2) = 0.5

Klasse 'm’ @

Kiasse w' @

2
180, 0 00
70 " "GroBe (in cm)

60 o
Gewicht (in'kg)

Problem: Mehrere Funktionen mit minimalem Fehler existieren.
Welche wéahlen?
@ 1. Schritt: Verbessertes Kriterium: maximum margin.
@ 2. Schritt: Zusétzliches Kriterium: méglichst geringe
Komplexitat des Modells (Regularisierung)
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Klassifikationsproblem
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Notationen...

Gegeben sei ein Klassifikationsproblem mit Y = {—1;+1} und
X CRP,

Sei X = C; U C_ die Menge der Trainingsbeispiele mit
Cy ={(Z,y) ly=+1}

Zur Klassifikation ist nun eine Hyperebene
H={7|p+ (7 F)=0}

gesucht, die die Mengen C';. und C_ bestmdglichst trennt

und  C- ={(7,y) |y = -1}

Fir eine gegebene Hyperebene H erfolgt die Klassifikation
dann durch

g =sign (B + (7, 7))
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Und warum jetzt <:E 5> statt 7737

Wir bewegen uns derzeit in einem R-Vektorraum der Beispiele
mit dem Standardskalarprodukt

EA- g5 -

M atrizmultiplikation

zp
~—
ImplizitesSkalarprodukt

Und warum jetzt 5, + <§:‘, E> statt <;E, E> — Bo?
Warum nicht? Vorher 8, = <E, a‘> > 0, es geht auch 3, < 0.
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Klassifikation mit Hyperebenen
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Klassifikation mit Hyperebenen

Die vorzeichenbehaftete Distanz eines Punktes & zu einer
Hyperebene H mit dem Stiitzvektor @ und Normalenvektor 3 ist

d(@,H) = (%, F) = b @)
~(2.8)- (2. 9) @
= (#-a.5) (5)
= &= | - 18]} cos(<(z — @, B) ®)
>0

Nur cos(£(Z — @, 3)) kann negativ werden und bestimmt die
Klassifizierung.
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Klassifikation mit Hyperebenen

Klassifikation mit Hyperebenen

=
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Die vorzeichenbehaftete Distanz d(Z, H) drickt aus
@ den Abstand |d(Z, H)| von Z zu Ebene H
@ die Lage von 7 relativ zur Orientierung (8) von H, d.h.

-,

+1 d(Z H) > 0,cos £(Z, )
zH 5

Z,5) >0
ign (d(z, H)) =
sien (@@ H) =\ 11 gz H) < 0, c0s £(7. 5) < 0

Auf diese Weise lassen sich die Punkte klassifizieren mit
§=sign (o + (7. 7))

Bei y = —1 liegen die Punkte z; im Halbraum des Ursprungs.
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Einfiihrung von Schélkopf/Smola
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Einfacher Ansatz nach Schélkopf/Smola

Gegeben eine Menge von Schafen, packe immer die ahnlichen
zusammen! Vorgehen: Schafe vergleichen!
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Ein einfacher Ansatz zu einer separierenden Hyperebene zu
kommen, geht tber die Zentroiden von C; und C_:

Seien
1 1
E+:m23?und =15 G
@yecy ! @yec-
Wabhle nun
="t und F— -

2

als Hyperebene mit Normalenvektor 5 durch den Punkt 7
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Separierende Hyperebene ber Zentroiden Lernalgorithmus im Bild

Durch 5 und @ ist die Hyperebene gegeben als

= {1 (r-a.8)=0) =1 (5. (3.7) =0

R
R C N
. . g . Ct C—
Damit erfolgt die Klassifikation durch ® Lo
xr—cC
® [ )
9§ = sign (<x—c ﬁ>) Lz
I
= s1g1’l(<(B,C+> x’c )+,30) :
I
‘
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Die optimale Hyperebene

Eine Menge von Beispielen heif3t
linear trennbar, falls es eine
Hyperebene H gibt, die die
positiven und negativen Beispiele
trennt.

5.1: Optimale Hyperebene

.. wére das schon die Stlitzvektormethode. Aber: ®
o Einfach den Mittelpunkt der Beispiele einer Klasse zu

kk;erkechnen ist zu einfach, um ein ordentliches /5 zu Eine separierende Hyperebene H
ekommen. heiBt optimal, wenn ihr minimaler
@ Man erhalt so nicht die optimale Hyperebene. Abstand d zu allen Beispielen
o n .
maximal ist.
5.2: Satz (Eindeutigkeit)
Es existiert eine eindeutig
bestimmte optimale Hyperebene.
27 von 48 28 von 48
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Abstand der Hyperebenen zum Ursprung

Nach 5.1 wird die optimale . S /e -~

Hyperebene durch die i = {z | <z’ ﬂ> + B = 0} Der Abstand der mittleren
nachstliegenden Punkte aus Ebene H* zum Ursprung
C4 und C_ bestimmt. betragt

Skalierung von 5 und By, so ® (0, 1Y) = Bo_
dass fir die néchstliegenden ’ 18]

Punkte x; zu H* gilt:
Der Abstand zwischen den

\ <5, fh> + Bl =1 Ebenen H; und H, ist

d(Hy, Hy) = Bodl _ Bod

Die Beispiele am nachsten zur ® T 1141
Hyperebene liefern die beiden _  Bo—Potltl
Hyperebenen H; und H, ”/23”

- [ED

H={z| (#,8) + 6 = (-1)'}
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Maximimum Margin

Nach Konstruktion liegt
kein Beispiel zwischen H;

und Hs, d.h.
(&) +Bo > +1VEe Cy (7)
@B+ By <—1VFeC_ (8)
Der Abstand
2
d(Hl,HQ) = —=
11511
heif3t Margin und soll
maximiert werden!
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Mit der Maximierung des Margin finden wir eine optimale
Hyperebene innerhalb der Menge der mdglichen trennenden
Hyperebenen.

Konvexes, quadratisches Optimierungsproblem:
o Es existiert eine eindeutig bestimmte, optimale

Hyperebene
H*:{f| <f,ﬁ>+ﬁo:0}

@ unter der Bedingung, dass %||E||2 minimal ist.
Das Optimierungsproblem 143t sich in Zeit O(N3) l8sen.
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Optimierungsaufgabe

Nach diesen Voriberlegungen haben wir also (nur noch) die
folgende Optimierungsaufgabe zu lésen:

Optimierungsaufgabe Hyperebene mit max margin

Minimiere :
2143112
SE

unter den Nebenbedingungen

<5,5>+ﬂ02+1 Viel,
(7,8)+M<-1 viec.

Die Nebenbedingungen lassen sich zusammenfassen zu
y((7, )+ B~ 120 V(@ eX ©)
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Optimierung mit Nebenbedingungen

Sei die optimierende
Funktion f : R - R
gegeben als z T

fl@) =

unter der einzigen
Nebenbedingung os

(x-1)°

g(w) =2’ - 1,

d.h. fiir die méglichen
Lésungen & muss gelten .

Te{reR|g(z) <0} R A B R
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Beispiel Lagrange Multiplikatoren zur Optimierung

Gegeben: Funktion f(xz,y), Nebenbedingung g(z,y) = ¢,
Optimierungsziel: maximiere c.

Notwendige Bedingung: f(z,y) = cund g(z,y) = c.
Lagrangefunktion

L(wv Y, )‘) = f(I7 y) + )\(g(I7 y) - C)

Stxy)

http://de.wikipedia.org/wiki/Lagrange-Multiplikator
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Optimierung mit Lagrange

Die Optimierung nach Lagrange formuliert die Optimierung
einer Funktion f(z) unter Nebenbedingungen um in eine
Optimierung ohne Nebenbedingungen.

Mit der Lagrange-Methode lassen sich Nebenbedingungen g;
und h; der Art
gi(z) <0 und hj(z) =0

in die zu optimierende Funktion f hinzufligen, im Falle eines
Minimierungsproblems als

min f(z) + Z a;gi(z) + Zujhj(x) mit o, i > 0 V4,5
i J

Die «; und p; heiBen auch Lagrange-Multiplikatoren.
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SVM Optimierungsfunktion als Lagrange

Lagrange-Funktion

Die Umformung der Nebenbedingungen (9) erlaubt nun die
Anwendung von Lagrange (nur Ungleichheitsbedingungen):

Lagrange-Funktion

Sei das Optimierungsproblem geg;ben, f(B) zu minimieren
unter den Nebenbedingungen ¢;(8) > 0,7 = 1,...,m dann ist
die Lagrange-Funktion:

v
l |

L(B.a) = 1B - aigi(B) (10)
i=1

Dabei muss gelten «; > 0, Gleichheitsbedingungen sind nicht
gegeben.
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Die Nebenbedingungen g; sind gegeben durch
(3, Bo) = vi (<fz: ﬁ> +5o) —1>0Vz;eX

Die Formulierung des Optimierungsproblems nach Lagrange
wird auch als Primales Problem bezeichnet:

Primales Problem

Die Funktion
Lp(, B0, @) = 53] - e (v ({7, B)+40) 1) (1)
i=1

soll Lp beziglich B und 8y minimiert und bezuglich @ maximiert
werden!
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Karush-Kuhn-Tucker Bedingungen
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Duales Problem

Durch die partiellen Ableitung nach 5 und 3, erhalten wir

> = - 0
Lp(B,Bo,d) = ﬂ—; Q;y; @ und 9% ——Lp(B. Bo, @) = — ;aiyi
Nullsetzen der Ableitungen und die Beriicksichtigung der
Nebenbedingungen fihrt zu den KKT-Bedingungen fir eine
Lésung fur Lp:

N N

= Z oy und Z a;y; =0 (12)
im1 P

@ >0Vi=1,... N (13)

71) —0Vi=1,....N (14)

o (. )+ )
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Das primale Problem soll bezliglich B und 3, minimiert und
bezlglich & maximiert werden:

9Lp ynd 9Lr erhalten wir den dualen
) dBo

Lagrange-Ausdruck Lp (&)
@ Der duale Lagrange-Ausdruck L(&) soll maximiert werden.

@ Das Minimum des urspriinglichen Optimierungsproblems
tritt genau bei jenen Werten von 3,5y, auf wie das
Maximum des dualen Problems.
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Umformung Il

Umformung des primalen in das duale Problem

LR =Y e ({2, 8+ 30) -1

1 = l]:\]l

=511 = 3o i ((

1 = l]:\]l =
=3l =3 (7.,8) -
EEE Zazyzb, 7)

N
+ Z [e%}
i=1
N
+ Z (67}
i=1
N
+ Z (67}
i=1

T, 5> +ﬁ0)

a;yiBo

i=1
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. N
Einsetzen von 8 = Y a,y;@; fihrt zu

=1
1, =0 B} al
SIE fzaly@@“ 3) +3
i=1 i=1
1 N N N N N
522"%%% (@, @) ZZ aiogyiy; (T, )+ e
i=1j=1 i=1 j=1 i=1

Il

+
8
l\')\»—\

.
Il
-

N N
ZZ oYy (T s )

N
unter den Nebenbedingungen 0 = 3" «;y; und o; > 0 Vi
i=1
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SVM Optimierungsproblem (Duales Problem)

Die Umformungen fiihren nach Einsetzen der
KKT-Bedingungen zum dualen Problem:

Duales Problem

Maximiere
N 1 N N
D(O_Z) = Zai — 5 ZZyiyjaiaj (fl, fj) (1 5)
i=1 i=1 j=1
unter den Bedingungen
N
@;>0Vi=1,...,N und Y ay; =0
i=1
43 von 48

Stlitzvektoren

des dualen Problems

N
= Z a; —

i=1
muss die KKT-Bedingungen erfillen, d.h. es gilt unter anderem

o (i ({7, 5) + 8o

a* enthalt fir jedes Beispiel Z; genau ein «; mit

Die Lésung &*
N N

% DO vy (& #)

i=1 j=1
—1):0Vi:1,...,N

, falls #; im richtigen Halbraum liegt
, falls #; auf der Hyperebene H; oder H, liegt

lli=0
a; >0

Ein Beispiel Z; mit «;; > 0 hei3t Stltzvektor.
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Optimale Hyperebene

Haben wir das optimale a* bestimmt, erhalten wir unsere

optimale Hyperebene:

Nach (12) gilt

= i
d.h. der optimale Normalenvektor 5 ist eine Linearkombination
von Stiitzvektoren.

Um Sy zu bestimmen kénnen wir

o (yi (<5c'z, /5> +5o) - 1) =0
fiir ein beliebiges i und unser berechnetes 3 nutzen.
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Berechnung der o;?

Das prinzipielle Vorgehen ist bei der SVM wie bei anderen
Lernverfahren auch:

@ Parametrisierung der Modelle, hier Gber Umwege durch &

o Festlegung eines Optimalitatskriteriums, hier: Maximum
Margin

o Formulierung als Optimierungsproblem

Das finale Optimierungsproblem 143t sich mit unterschiedlichen
Ansétzen l6sen

@ Numerische Verfahren (quadratic problem solver)
o Sequential Minimal Optimization (SMO, [J. C. Platt, 1998])
@ Evolutionare Algorithmen (EvoSVM, [I. Mierswa, 2006])
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\ Zusammenfassung der Lagrange-Optimierung fiir SVM
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Was wissen wir jetzt?

Das Lagrange-Optimierungs-Problem (11) ist definiert als:

Lo = 1A - Yoo [u (7. ) ) 1]
=1

mit den Lagrange-Multiplikatoren a; > 0.
Notwegdige Bedingung fur ein Minimum liefern die Ableitungen
nach 8 und Sy

p = & OLp <
; zxz und —— = ;Y5
or o0~ "
Diese flihren zum dualen Problem (15)

Lp = ZO@ -z Zzazaz’yzyz’ i, Zy)

7,—1 =1
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o Maximieren des Margins einer Hyperebene ergibt eine
eindeutige Festlegung der optimalen trennenden
Hyperebene.

o Dazu minimieren wir die Lange des Normalenvektors 3

o Formulierung als Lagrange-Funktion
o Formulierung als duales Optimierungsproblem

@ Das Lernergebnis ist eine Linearkombination von
Stitzvektoren.

@ Mit den Beispielen missen wir nur noch das Skalarprodukt
rechnen.
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