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Lineare Modelle

Wir erinnern uns: Lineare Modelle trennen positive und
negative Beispiele durch eine Funktion f(~x). Einfachster Fall:

y = f(x) = mx+ b Gerade im R2

Allerdings betrachten wir als Beispielraum den Rp, d.h. wir
brauchen eine verallgemeinerte Form:

y = f (~x) =

p∑

i=1

βixi + β0 mit β0 ∈ R, ~x, ~β ∈ Rp (1)

Die Funktion f wird also durch ~β und β0 festgelegt und sagt uns
für ein gegebenes ~x das entsprechende y voraus.
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Veranschaulichung

Bevor wir uns an die Wahl des passenden ~β machen, zunächst
einige Vorüberlegungen.

Betrachten wir dazu die binäre Klassifikation (Y = {−1,+1}):
Was passiert dabei eigentlich anschaulich?
Wie klassifiziert unser f̂ die Daten?
Wie wirkt sich die Wahl von ~β aus?
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Zur Erinnerung: Ebenengleichung

Sei V = Rp ein Vektorraum, dann ist eine Hyperebene H ein
(p− 1)-dimensionaler affiner Untervektorraum.

H lässt sich über einen Stützvektor ~a und einen
Normalenvektor ~β mit der Ebenengleichung schreiben

H =
{
x ∈ Rp |

〈
~β , ~x− ~a

〉
= 0
}
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Beispiel Ebene, Stützvektor, Normalenvektor

(Hyper-) Ebene im R3 mit Normalenvektor ~β und Stützvektor ~a.
Falls 〈~β, ~x− ~a〉 = 0, also ~β und ~x− ~a orthogonal zueinander,
befindet sich ~x auf der Ebene.
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Hesse Normalform

Multiplizieren wir die Ebenengleichung aus und setzen
β0 =

〈
~β , ~a

〉
, dann ist

〈
~β , ~x

〉
− β0 = 0

in Hesse Normalform, falls ||~β|| = 1.
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Zur Erinnerung: Skalarprodukt

Das Skalarprodukt ist
definiert durch

〈~v , ~w〉 = ~vT ~w =

p∑

i=1

viwi

~w :
4
5
6

~vT : 1 2 3 1 · 4 + 2 · 5 + 3 · 6 = 32

aber auch durch den Kosinus mit

〈~v, ~w〉 = ‖~v‖ · ‖~w‖ · cos(](~v, ~w))
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Zur Erinnerung: Euklidsche Länge

Euklidsche Länge oder Norm, auch L2-Norm

‖ ~β ‖=

√√√√
p∑

i=1

β2i =

√
~βT ~β =

√〈
~β , ~β

〉

weil ‖ ~β ‖2= x21 + ...x2p (Pythagoras)

Beispiel: ~β =




1
2
3




‖ ~β ‖=
√
12 + 22 + 32 =

√
14

Normiert heißt ein Vektor, wenn er die (Euklidsche) Länge 1
hat.
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Abstandsberechnung durch Hesse Normalform

Sei ~x0 der Vektor, dessen Länge der Abstand vom Ursprung
zur Ebene in Hesse Normalform ist. Dieser muss orthogonal
zur Ebene liegen und somit parallel zu ~β. Seien nun ~β und ~x0
gleichgerichtet, dann gilt

cos(](~β, ~x0)) = 1

und ‖β‖ = 1 und somit
〈
~β , ~x0

〉
− β0 = 0

⇔ ‖~β‖ · ‖~x0‖ · cos(](~β, ~x0)) = β0

⇔ ‖~x0‖ = β0
~x0

~β

Daraus folgt, dass β0 der Abstand der Ebene zum Ursprung ist.
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Hesse Normalform

Für die Hesse Normalform muss ‖~β‖ = 1 gelten, damit der
Abstand zum Ursprung leicht abgelesen werden kann. Wir
normieren den Normalenvektor auf die Euklidsche Länge 1

~β =
~β′

‖~β′‖

und erhalten die Ebenengleichung in Hesse Normalform
〈
~β , ~x

〉
− β0 = 0 (2)

wobei
β0 =

〈
~β , ~a

〉
> 0

Dann ist β0 der Abstand zum Ursprung.
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Beispiel Normalisierung

Sei ~a =




4
0
0


 und ~β′ =




1
2
3


 dann ist die Ebenengleichung

nicht in Hesse Normalform, weil ‖~β′‖ =
√
14 6= 1. Wir

normalisieren

~β =
~β′

‖~β′‖
1√
14




1
2
3




〈
~β , ~x

〉
− β0 = 0 1√

14
x1 +

1√
14
x2 +

1√
14
x3 − 4√

14
= 0

Jetzt ist β0 = −4√
14

der Abstand der Ebene zum Ursprung.
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Übersicht über die Stützvektormethode (SVM)

Eigenschaften der Stützvektormethode (SVM) (Support Vector
Machine)

Maximieren der Breite einer separierenden Hyperebene –
maximum margin method – ergibt eindeutige, optimale
trennende Hyperebene.
Transformation des Datenraums durch Kernfunktion
behandelt Nichtlinearität.
Regularisierung minimiert nicht nur den Fehler, sondern
auch die Komplexität des Modells.
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Probleme der Empirischen Risikominimierung

Empirische Risikominimierung: Bisher haben wir lineare
Modelle

Ŷ = β̂0 +

p∑

j=1

Xj β̂j

auf die Fehlerminimierung hin optimiert:

RSS(~̂β) =

N∑

i=1

(yi − ~xTi β̂)2
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Wo trennen wir die Daten?

Problem: Mehrere Funktionen mit minimalem Fehler existieren.
Welche wählen?

1. Schritt: Verbessertes Kriterium: maximum margin.
2. Schritt: Zusätzliches Kriterium: möglichst geringe
Komplexität des Modells (Regularisierung)
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Klassifikationsproblem

Gegeben sei ein Klassifikationsproblem mit Y = {−1;+1} und
X ⊆ Rp.

Sei X = C+ ∪̇ C− die Menge der Trainingsbeispiele mit

C+ = {(~x, y) | y = +1} und C− = {(~x, y) | y = −1}

Zur Klassifikation ist nun eine Hyperebene

H =
{
~x | β0 +

〈
~x , ~β

〉
= 0

}

gesucht, die die Mengen C+ und C− bestmöglichst trennt

Für eine gegebene Hyperebene H erfolgt die Klassifikation
dann durch

ŷ = sign
(
β0 +

〈
~x , ~β

〉)
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Notationen...

Und warum jetzt
〈
~x , ~β

〉
statt ~xT ~β?

Wir bewegen uns derzeit in einem R-Vektorraum der Beispiele
mit dem Standardskalarprodukt

〈
~x , ~β

〉
= ~xT ~β︸︷︷︸

Matrixmultiplikation

= ~x~β︸︷︷︸
ImplizitesSkalarprodukt

Und warum jetzt β0 +
〈
~x , ~β

〉
statt

〈
~x , ~β

〉
− β0?

Warum nicht? Vorher β0 =
〈
~β , ~a

〉
> 0, es geht auch β0 < 0.
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Klassifikation mit Hyperebenen

Die vorzeichenbehaftete Distanz eines Punktes ~x zu einer
Hyperebene H mit dem Stützvektor ~a und Normalenvektor ~β ist

d(~x,H) =
〈
~x , ~β

〉
− β0 (3)

=
〈
~x , ~β

〉
−
〈
~a , ~β

〉
(4)

=
〈
~x− ~a , ~β

〉
(5)

= ‖~x− ~a‖ · ‖~β‖·︸ ︷︷ ︸
>0

cos(](~x− ~a, ~β)) (6)

Nur cos(](~x− ~a, ~β)) kann negativ werden und bestimmt die
Klassifizierung.
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Klassifikation mit Hyperebenen

H

+

+

+

−

−

~x

~β

~x− ~a

cos(α)︸ ︷︷ ︸
>0

α
~a
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Klassifikation mit Hyperebenen

H

+

+

~x

−

−

−

~β

~x− ~a

cos(α)︸ ︷︷ ︸
<0

α

~a
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Klassifikation mit Hyperebenen

Die vorzeichenbehaftete Distanz d(~x,H) drückt aus
1 den Abstand |d(~x,H)| von ~x zu Ebene H
2 die Lage von ~x relativ zur Orientierung (~β) von H, d.h.

sign (d(~x,H)) =

{
+1 d(~x,H) > 0, cos](~x, ~β) > 0

−1 d(~x,H) < 0, cos](~x, ~β) < 0

Auf diese Weise lassen sich die Punkte klassifizieren mit

ŷ = sign
(
β0 +

〈
~x , ~β

〉)

Bei y = −1 liegen die Punkte ~xi im Halbraum des Ursprungs.
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Einführung von Schölkopf/Smola

Gegeben eine Menge von Schafen, packe immer die ähnlichen
zusammen! Vorgehen: Schafe vergleichen!
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Einfacher Ansatz nach Schölkopf/Smola

Ein einfacher Ansatz zu einer separierenden Hyperebene zu
kommen, geht über die Zentroiden von C+ und C−:

Seien

~c+ :=
1

|C+|
∑

(~x,y)∈C+

~x und ~c− :=
1

|C−|
∑

(~x,y)∈C−
~x

Wähle nun

~a :=
~c+ + ~c−

2
und ~β := ~c+ − ~c−

als Hyperebene mit Normalenvektor ~β durch den Punkt ~x0
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Separierende Hyperebene über Zentroiden

Durch ~β und ~a ist die Hyperebene gegeben als

H̃ =
{
~x
∣∣
〈
~x− ~a , ~β

〉
= 0
}
=
{
~x |

〈
~x , ~β

〉
−
〈
~a , ~β

〉

︸ ︷︷ ︸
=:−β0

= 0
}

Damit erfolgt die Klassifikation durch

ŷ = sign
(〈
~x− ~c , ~β

〉)

= sign (〈~x , ~c+〉 − 〈~x , ~c−〉+ β0)
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Lernalgorithmus im Bild

~c−~c+
~c

~x

~x− ~c
+

+

+

+

−

− −
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Fast...

... wäre das schon die Stützvektormethode. Aber:
Einfach den Mittelpunkt der Beispiele einer Klasse zu
berechnen ist zu einfach, um ein ordentliches ~β zu
bekommen.
Man erhält so nicht die optimale Hyperebene.

27 von 48

LS 8 Informatik,
Computergestützte Statistik
Technische Universität Dortmund

Hinführungen zur SVM Maximum Margin Methode

Die optimale Hyperebene

H

+

+

+

+

+

−

− −

−

−

−

−

Eine Menge von Beispielen heißt
linear trennbar, falls es eine
Hyperebene H gibt, die die
positiven und negativen Beispiele
trennt.

5.1: Optimale Hyperebene
Eine separierende Hyperebene H
heißt optimal, wenn ihr minimaler
Abstand d zu allen Beispielen
maximal ist.

5.2: Satz (Eindeutigkeit)
Es existiert eine eindeutig
bestimmte optimale Hyperebene.
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Bild

H∗ =
{
~x
∣∣
〈
~x , ~β

〉
+ β0 = 0

}

H1

H2

+ x1

+

+

+

+

−

− −

x2

−

−

−

−

Nach 5.1 wird die optimale
Hyperebene durch die
nächstliegenden Punkte aus
C+ und C− bestimmt.

Skalierung von ~β und β0, so
dass für die nächstliegenden
Punkte xi zu H∗ gilt:

|
〈
~β , ~xi

〉
+ β0| = 1

Die Beispiele am nächsten zur
Hyperebene liefern die beiden
Hyperebenen H1 und H2

Hj =
{
~x
∣∣
〈
~x , ~β

〉
+ β0 = (−1)j

}
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Abstand der Hyperebenen zum Ursprung

H∗ =
{
~x
∣∣
〈
~x , ~β

〉
+ β0 = 0

}

H1

H2

+

+

+

+

+

−

− −

−

−

−

−

Der Abstand der mittleren
Ebene H∗ zum Ursprung
beträgt

d(~0, H∗) =
β0

‖~β‖

Der Abstand zwischen den
Ebenen H1 und H2 ist

d(H1, H2) =
β0+1

‖~β‖ −
β0−1
‖~β‖

= β0−β0+1+1

‖~β‖

= 2

‖~β‖
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Margin

H∗ =
{
~x
∣∣
〈
~x , ~β

〉
+ β0 = 0

}

H1

H2

+

+

+

+

+

−

− −

−

−

−

−

d(
H1

, H
2
)

Nach Konstruktion liegt
kein Beispiel zwischen H1

und H2, d.h.

〈~x, ~β〉+ β0 ≥ +1 ∀~x ∈ C+ (7)

〈~x, ~β〉+ β0 ≤ −1 ∀~x ∈ C− (8)

Der Abstand

d(H1, H2) =
2

||~β||

heißt Margin und soll
maximiert werden!

31 von 48

LS 8 Informatik,
Computergestützte Statistik
Technische Universität Dortmund

Hinführungen zur SVM Maximum Margin Methode

Maximimum Margin

Mit der Maximierung des Margin finden wir eine optimale
Hyperebene innerhalb der Menge der möglichen trennenden
Hyperebenen.

Konvexes, quadratisches Optimierungsproblem:
Es existiert eine eindeutig bestimmte, optimale
Hyperebene

H∗ =
{
~x
∣∣
〈
~x , ~β

〉
+ β0 = 0

}

unter der Bedingung, dass 1
2 ||~β||2 minimal ist.

Das Optimierungsproblem läßt sich in Zeit O(N3) lösen.
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Optimierungsaufgabe

Nach diesen Vorüberlegungen haben wir also (nur noch) die
folgende Optimierungsaufgabe zu lösen:

Optimierungsaufgabe Hyperebene mit max margin
Minimiere

1

2
||~β||2

unter den Nebenbedingungen
〈
~x , ~β

〉
+ β0 ≥ +1 ∀ ~x ∈ C+

〈
~x , ~β

〉
+ β0 ≤ −1 ∀ ~x ∈ C−

Die Nebenbedingungen lassen sich zusammenfassen zu

y(
〈
~x , ~β

〉
+ β0)− 1 ≥ 0 ∀(~x, y) ∈ X (9)
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Optimierung mit Nebenbedingungen

Sei die optimierende
Funktion f : R→ R
gegeben als

f(x) = (x− 1)2

unter der einzigen
Nebenbedingung

g(x) = x2 − 1,

d.h. für die möglichen
Lösungen x̃ muss gelten

x̃ ∈ {x ∈ R | g(x) ≤ 0}
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Beispiel Lagrange Multiplikatoren zur Optimierung

Gegeben: Funktion f(x, y), Nebenbedingung g(x, y) = c,
Optimierungsziel: maximiere c.
Notwendige Bedingung: f(x, y) = c und g(x, y) = c.
Lagrangefunktion

L(x, y, λ) = f(x, y) + λ(g(x, y)− c)

http://de.wikipedia.org/wiki/Lagrange-Multiplikator
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Optimierung mit Lagrange

Die Optimierung nach Lagrange formuliert die Optimierung
einer Funktion f(x) unter Nebenbedingungen um in eine
Optimierung ohne Nebenbedingungen.

Mit der Lagrange-Methode lassen sich Nebenbedingungen gi
und hj der Art

gi(x) ≤ 0 und hj(x) = 0

in die zu optimierende Funktion f hinzufügen, im Falle eines
Minimierungsproblems als

min f(x) +
∑

i

αigi(x) +
∑

j

µjhj(x) mit αi, µj ≥ 0 ∀ i, j

Die αi und µj heißen auch Lagrange-Multiplikatoren.
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Lagrange-Funktion

Die Umformung der Nebenbedingungen (9) erlaubt nun die
Anwendung von Lagrange (nur Ungleichheitsbedingungen):

Lagrange-Funktion

Sei das Optimierungsproblem gegeben, f(~β) zu minimieren
unter den Nebenbedingungen gi(~β) ≥ 0, i = 1, ...,m dann ist
die Lagrange-Funktion:

L
(
~β, ~α

)
= f(~β)−

m∑

i=1

αigi(~β) (10)

Dabei muss gelten αi ≥ 0, Gleichheitsbedingungen sind nicht
gegeben.

37 von 48

LS 8 Informatik,
Computergestützte Statistik
Technische Universität Dortmund

Hinführungen zur SVM Maximum Margin Methode

SVM Optimierungsfunktion als Lagrange

Die Nebenbedingungen gi sind gegeben durch

gi(~β, β0) = yi

(〈
~xi , ~β

〉
+ β0

)
− 1 ≥ 0 ∀ ~xi ∈ X

Die Formulierung des Optimierungsproblems nach Lagrange
wird auch als Primales Problem bezeichnet:

Primales Problem
Die Funktion

LP (~β, β0, ~α) =
1

2
‖~β‖2 −

N∑

i=1

αi

(
yi

(〈
~xi , ~β

〉
+ β0

)
− 1
)

(11)

soll LP bezüglich ~β und β0 minimiert und bezüglich ~α maximiert
werden!
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Karush-Kuhn-Tucker Bedingungen

Durch die partiellen Ableitung nach ~β und β0 erhalten wir

∂

∂~β
LP (~β, β0, ~α) = ~β−

∑

i

αiyi~xi und
∂

∂β0
LP (~β, β0, ~α) = −

∑

i

αiyi

Nullsetzen der Ableitungen und die Berücksichtigung der
Nebenbedingungen führt zu den KKT-Bedingungen für eine
Lösung für LP :

~β =

N∑

i=1

αiyi~xi und
N∑

i=1

αiyi = 0 (12)

αi ≥ 0 ∀ i = 1, . . . , N (13)

αi

(
yi

(〈
~xi , ~β

〉
+ β0

)
− 1
)
= 0 ∀ i = 1, . . . , N (14)
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Duales Problem

Das primale Problem soll bezüglich ~β und β0 minimiert und
bezüglich ~α maximiert werden:

Mit den Bedingungen aus ∂LP

∂~β
und ∂LP

∂β0
erhalten wir den dualen

Lagrange-Ausdruck LD(~α)
Der duale Lagrange-Ausdruck L(~α) soll maximiert werden.
Das Minimum des ursprünglichen Optimierungsproblems
tritt genau bei jenen Werten von ~β,β0,~α auf wie das
Maximum des dualen Problems.
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Umformung des primalen in das duale Problem

1

2
||~β||2 −

N∑

i=1

αi

[
yi

(〈
~xi , ~β

〉
+ β0

)
− 1
]

=
1

2
||~β||2 −

N∑

i=1

αi yi

(〈
~xi , ~β

〉
+ β0

)
+

N∑

i=1

αi

=
1

2
||~β||2 −

N∑

i=1

αiyi

〈
~xi , ~β

〉
−

N∑

i=1

αiyiβ0 +

N∑

i=1

αi

(12)
=

1

2
||~β||2 −

N∑

i=1

αiyi

〈
~xi , ~β

〉
+

N∑

i=1

αi
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Umformung II

Einsetzen von ~β =
N∑
i=1

αiyi~xi führt zu

1

2
||~β||2 −

N∑

i=1

αiyi

〈
~xi , ~β

〉
+

N∑

i=1

αi

=
1

2

N∑

i=1

N∑

j=1

αiαjyiyj 〈~xi , ~xj〉 −
N∑

i=1

N∑

j=1

αiαjyiyj 〈~xi , ~xj〉 +
N∑

i=1

αi

=+
N∑

i=1

αi − 1

2

N∑

i=1

N∑

j=1

αiαjyiyj 〈~xi , ~xj〉

unter den Nebenbedingungen 0 =
N∑
i=1

αiyi und αi ≥ 0 ∀i
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SVM Optimierungsproblem (Duales Problem)

Die Umformungen führen nach Einsetzen der
KKT-Bedingungen zum dualen Problem:

Duales Problem
Maximiere

LD(~α) =
N∑

i=1

αi −
1

2

N∑

i=1

N∑

j=1

yiyjαiαj 〈~xi , ~xj〉 (15)

unter den Bedingungen

αi ≥ 0 ∀ i = 1, . . . , N und
N∑

i=1

αiyi = 0
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Stützvektoren

Die Lösung ~α∗ des dualen Problems

LD(~α) =

N∑

i=1

αi −
1

2

N∑

i=1

N∑

j=1

yiyjαiαj 〈~xi , ~xj〉

muss die KKT-Bedingungen erfüllen, d.h. es gilt unter anderem

αi

(
yi

(〈
~xi , ~β

〉
+ β0

)
− 1
)
= 0 ∀ i = 1, . . . , N

~α∗ enthält für jedes Beispiel ~xi genau ein αi mit

αi = 0 , falls ~xi im richtigen Halbraum liegt
αi > 0 , falls ~xi auf der Hyperebene H1 oder H2 liegt

Ein Beispiel ~xi mit αi > 0 heißt Stützvektor.
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Optimale Hyperebene

Haben wir das optimale ~α∗ bestimmt, erhalten wir unsere
optimale Hyperebene:

Nach (12) gilt
~β =

∑
αiyi~xi

d.h. der optimale Normalenvektor ~β ist eine Linearkombination
von Stützvektoren.

Um β0 zu bestimmen können wir

αi

(
yi

(〈
~xi , ~β

〉
+ β0

)
− 1
)
= 0

für ein beliebiges i und unser berechnetes ~β nutzen.
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Berechnung der αi?

Das prinzipielle Vorgehen ist bei der SVM wie bei anderen
Lernverfahren auch:

Parametrisierung der Modelle, hier über Umwege durch ~α
Festlegung eines Optimalitätskriteriums, hier: Maximum
Margin
Formulierung als Optimierungsproblem

Das finale Optimierungsproblem läßt sich mit unterschiedlichen
Ansätzen lösen

Numerische Verfahren (quadratic problem solver)
Sequential Minimal Optimization (SMO, [J. C. Platt, 1998])
Evolutionäre Algorithmen (EvoSVM, [I. Mierswa, 2006])
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Zusammenfassung der Lagrange-Optimierung für SVM

Das Lagrange-Optimierungs-Problem (11) ist definiert als:

LP =
1

2
‖~β‖2 −

N∑

i=1

αi

[
yi(
〈
~xi , ~β

〉
+ β0)− 1

]

mit den Lagrange-Multiplikatoren ~αi ≥ 0.
Notwendige Bedingung für ein Minimum liefern die Ableitungen
nach ~β und β0

∂LP

∂~β
= ~β −

N∑

i=1

αiyi~xi und
∂LP
∂β0

=
N∑

i=1

αiyi

Diese führen zum dualen Problem (15)

LD =
N∑

i=1

αi −
1

2

N∑

i=1

N∑

i′=1

αiαi′yiyi′ 〈~xi , ~xi′〉
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Was wissen wir jetzt?

Maximieren des Margins einer Hyperebene ergibt eine
eindeutige Festlegung der optimalen trennenden
Hyperebene.

Dazu minimieren wir die Länge des Normalenvektors ~β
Formulierung als Lagrange-Funktion
Formulierung als duales Optimierungsproblem

Das Lernergebnis ist eine Linearkombination von
Stützvektoren.
Mit den Beispielen müssen wir nur noch das Skalarprodukt
rechnen.
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