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Gliederung

0 Lineare Modelle zur Klassifikation und Regression
o Kilassifikation und Regression
@ Lineare Modelle

e Bias-Varianz

@ Exkurs:Erwartungswert
@ Bias und Varianz bei linearen Modellen

© KNN zur Kiassifikation, Regression
@ Bias und Varianz bei kNN
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Grundlagen

Sei X = {X;,...,X,} eine Menge von Zufallsvariablen und
Y # () eine Menge.

Ein Beispiel (oder Beobachtung) i ist ein konkreter
p-dimensionaler Vektor Uiber diese Zufallsvariablen.

Eine Menge von n Beispielen X = {#, ..., Zyx} kbnnen wir
dann als (N x p)-Matrix auffassen:

.’1}171 xl’z xl,p

Z2.1
xX=| "

.’EN71 wN’Q . CUN,p
Dabei entspricht jede Zeile Z; der Matrix X einem Beispiel.
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Klassifikation und Regression

Beim dberwachten Lernen (darum geht es hier), ist zuséatzlich
zu jeder Beobachtung # ein Label (Klasse) y gegeben, d.h. wir
haben Beobachtungen (Z,y) € X x Y.

Y kann sowohl eine qualitative, als auch eine quantitative
Beschreibung von Z sein.

Flr den quantitativen Fall ist z.B. Y = R und wir versuchen fir
unbekanntes & den Wert y vorherzusagen Regression.

Im Falle qualitativer Beschreibungen ist Y eine diskrete Menge
und wir nutzen f zur Klassifikation.
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Lernen auf Trainingsdaten

Wovon gehen wir also aus? Was ist unser Ziel?

Trainingsdaten

@ Wir suchen die wahre Funktion f : X — Y mit
J@=y Y@y eXxy

@ Wir haben jedoch nur eine Teilmenge der Beobachtungen
gegeben (Trainingsdaten)
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Klassifikation und Regression

Auf Grundlage der Trainingsdaten suchen wir eine moglichst
gute Anndherung f an die wahre Funktion f.

Die Funktion f bezeichnen wir auch als das gelernte Modell.
Haben wir ein Modell f gelernt, so liefert uns dieses Modell mit
=1

fir neue Daten ¥ € X eine Vorhersage y € Y.
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Klassifikation und Regression

Im Falle der Regression lasst sich so fir zuvor unbekannte
Z € X der Wert

j=f()

mit § € R vorhersagen.

Dieses Modell f Iasst sich auch fir die Klassifikation nutzen,
bei der z.B. y € {—1,+1} vorhergesagt werden sollen:

[ 41, falls f(2) >0
—1, sonst

Hier ist 6 ein vorgegebener Schwellwert.
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Beispiel

Gegeben seien Gewicht (X;) und GréBe (X3) einiger Personen
und ein Label y € {m, w}:

L XN X |V
x1 | 91 [ 190 | m

x| 60 | 170 | w
x3 | 41 | 160 | w

Die Tabelle enthélt die zur Verfligung stehenden
Trainingsdaten, also

91 190
60 170
X=1 41 160
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Beispiel

Es wird nun eine Funktion f gesucht, die fir neue Daten Z das
Attribut Y (Geschlecht) voraussagt, also

[ m,falls f(z) >0
y= w, sonst

200 T
Klasse'm' O
Klasse'w @
190 o
L]
(0]
— 180 o
£
5
5 o
3
s .
© 170 o}
o
L]
[ ]
160 ®
L]
150
40 50 60 80 % 100 9von 53
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Lineare Modelle

Welche Art von Funktionen sind denkbar?
Lineare Funktionen als einfachste Funktionenklasse:
y = f(x) =mz +b Geradeim R?

Allerdings betrachten wir als Beispielraum den R?, d.h. wir
brauchen eine verallgemeinerte Form:
P —
y=f(@) =) Bwi+ho mitfeR,F B R (1)

i=1

Die Funktion f wird also durch /3 und 3, festgelegt und sagt uns
flr ein gegebenes ¥ das entsprechende y voraus
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Notation, Vereinbarungen

Bei genauerer Betrachtung von Formel (1) Iasst sich >°7_, g;z;
als Matrizenmultiplikation oder Skalarprodukt schreiben, also

p
y=> Biwi+po=73"B+py= <f,/§>+ﬁo
i=1

Zur einfacheren Darstellung von f, wird S, in den Vektor E
codiert, indem jedes Beispiel x = (z1, ..., z,) aufgefasst wird
als (p + 1)-dimensionaler Vektor

(1,...,2p) = (Lz1,...,2p)
Dies ermdglicht die Darstellung von f als:

y=[() =iﬁi$i =i'f = <f,§>

1=0
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Was haben wir nun gemacht?

Wir haben (bei der Beschrankung auf lineare Modelle) nun eine
Darstellung fiir das, was wir lernen wollen:

~

y=f@ =1"8

Wir haben die Zielfunktion f in Abhangigkeit von /3 geschrieben
und muassen nur noch das passende S finden.
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Beispiel: Ein mégliches 3

200 T
Klasse'm’ O
Klasse'w' @
1(x)
190 ©)
[ ]
— 180 © ©
5
£ ©)
()
S °
O 70 o
O
[ ]
160 @ °
[}
150
40 50 60 70 80 9 100
Gewicht (in kg)
. . Bo 260
f@=2T3 mitf=1| B | = 1 |6=550
Bo 1.2
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Es ist nicht garantiert, dass /3 immer passt!

200 T
Klasse'm (O
Klasse'w' @
o]
190 \
[ ]
~ 180
£
o
£
(]
<2
o
© 170 ©
(0]
[ ]
160 ®
[
150 : N
40 50 60 70 80 90 100

Gewicht (in kg)
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Modell-Anpassung

Unsere linearen Modelle sind durch /3 parametrisiert, das_
Lernen eines Modells haben wir also auf die Wahl eines 5
abgewalzt.

Das wirft eine Reihe von Fragen auf:
o Was ist ein gutes 3?
o Gibt es ein optimales 5?

@ Welche Méglichkeiten haben wir, unser Modell zu
beurteilen?

Eine Méglichkeit: Berechne den Trainingsfehler
N —
Err(8 Z i = F(@) = |y — 2 B]
i=1
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Modell-Anpassung

Haufig wird als Fehlerfunktion die quadratische Fehlersumme
(RSS) verwendet:

-,

RSS(B) = X (yi—#"p)>

— XB3)T(7 - XB)

GEMz

Wir wahlen jetzt 5 derart, dass der Fehler minimiert wird:

-,

min RSS(5) 2)
Berp

= Konvexes Minimierungsproblem!
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Minimierung von RSS(E)

=,

Um RSS(5B) zu minimieren, bilden wir die partielle Ableitung
nach s:
ORSS(B)

. .
5 = X' (y — Xp)

Notwendige Bedingung flr die Existenz eines (lokalen)
Minimums von RSS ist

=,

ORSS(B) T >
a5 X' (y—-X3)=0

Ist XTX regular, so erhalten wir
f=(xX"x)"'x"y 3)
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Reguléare Matrix

Wenn es zu einer quadratischen Matrix X eine Matrix X1 gibt
mit
XX 1t=X"1!X=1

Einheitsmatrix

1 0 .. 0
01 .. 0
I = .0
.. ... 0
00 .. 1

dann ist die Matrix X invertierbar oder regulér, sonst singulér.
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Optimales ﬁ?

Mit Hilfe der Minimierung der (quadratischen) Fehlerfunktion
RSS auf unseren Trainingsdaten haben wir ein (bzgl. RSS)

optimales /3 gefunden.

Bei einem konvexen Problem ist das lokale auch das globale
Minimum.
Damit liefert unser Modell Voraussagen  fur # € X:

p

j=f(&)=a"
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Sind wir schon fertig?

@ Schon war’s!
@ Aber drei Griinde sprechen flr weitere Arbeit:
@ Es ist nicht immer so einfach, z.B. dann nicht, wenn wir
viele Dimensionen haben (Fluch der hohen Dimension).
Q@ Vielleicht lassen sich die Beispiele nicht linear trennen!
© Nur den Fehler zu minimieren reicht nicht aus, wir suchen

noch nach weiteren Beschrankungen, die zu besseren
Lésungen fuhren.

@ Also schauen wir uns den Fehler noch einmal genauer an,
stoBen auf Bias und Varianz und merken, dass wir noch
keine perfekte Lésung haben.
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Fehler

@ Bisher haben wir mit RSS die Fehler einfach summiert.

@ Wir wollen aber einbeziehen, wie wahrscheinlich der
Fehler ist — vielleicht ist er ja ganz unwahrscheinlich! Das
machen wir Uber den Erwartungswert.

@ Wir kbnnen sehr unterschiedliche Stichproben als
Beispielmenge haben. Der Fehler soll sich auf alle
maoglichen Trainingsmengen beziehen — nicht nur eine,
zufallig glinstige!
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Zur Erinnerung: Erwartungswert

Erwartungswert

Sei X eine diskrete Zufallsvariable, mit Werten x4, ..., z, und
p; die Wahrscheinlichkeit fiir ;. Der Erwartungswert von X ist

E(X) = Z«szz = szP(X = .’El)

Ist X eine stetige Zufallsvariable und f die zugehdérige
Wahrscheinlichkeitsdichtefunktion, so ist der Erwartungswert
von X

E(X) = /00 x f(x)dx

—00
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Erwartungswert (Eigenschaften)

Eigenschaften

Seien X,Y und X1, ..., X,, Zufallsvariablen, dann gilt:
@ Der Erwartungswert ist additiv, d.h. es gilt

E (Z Xi> =Y B(X;) 4)
=1 =1
0 IstY = kX + d, so gilt fir den Erwartungswert
EY)=EkX+d)=kE(X)+d (5)

@ Sind die Zufallsvariablen X; stochastisch unabhangig, gilt

E (ﬁ Xi> = ﬁE(Xi)

=1
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Varianz und Standardabweichung

Uber den Erwartungswert einer Zufallsvariablen X sind
mehrere Eigenschaften von X definiert, die helfen, X zu
charakterisieren:

Varianz

Sei X eine Zufallsvariable mit ; = E(X). Die Varianz Var(X)
ist definiert als

Var(X) = E (X — p)?).

Die Varianz wird haufig auch mit o2 bezeichnet.

Standardabweichung
Die Standardabweichung o einer Zufallsvariable X ist definiert

als
o:=+/Var(X)
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Varianz und Standardabweichung

Verschiebungssatz
Sei X eine Zufallsvariable, fir die Varianz gilt

Var(X) = E(X — E(X))? = E(X?) - (E(X))?
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Eine weitere Charakteristik, die haufig zur Beschreibung von
erwarteten Fehlern verwendet wird, ist die Verzerrung:

Verzerrung (Bias)

Sei Y eine Zufallsvariable, dann ist die Verzerrung definiert als
der erwartete Schéatzfehler fir Y

also wie im Durchschnitt die Schatzungen vom wahren
Mittelwert abweichen

Bias(j) = E(Y —9) = E(Y) —§
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Fehler der Regression

@ Fehlerfunktion L(y,#) fir gelernte Modelle f

o absolut > (v; — ¥:)
e quadratisch > (y; — 9:)?
o 0,1-Fehler > 4;, 6 =1, falls y = g, sonst 0.

@ Es geht um Y. Wir unterscheiden

o das wahre y,
o das in der Beispielmenge genannte y,
o das vom Modell vorhergesagte 7

@ Wir wollen den Erwartungswert des Fehlers minimieren.
@ Wir mitteln Uber alle méglichen Beispielmengen 7.
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Erwartungswert des Fehlers einer Regression minimieren!

Erwarteter quadratischer Vorhersagefehler: Gelernte Funktion
f:+ X — Y, der Erwartungswert ihres Fehlers ist:

EPE(f) = E(Y - f(X))? (6)

Optimierungsproblem: Wahle f so, dass der erwartete Fehler
minimiert wird!

~

f(z) = argmin.Ey x ((Y — )X =x) (7)

Lésung (Regressionsfunktion): f(z) = E(Y|X = z)
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Bias und Varianz

Zwei Aspekte machen den erwarteten Fehler aus, die
Verzerrung (Bias) und die Varianz. Wir wollen den Fehler an
einem Testpunkt zo = 0 angeben und mitteln Uber allen
Trainingsmengen 7.

@ Wir gehen davon aus, dass die Angaben in den Daten
nicht immer ganz stimmen, so dass es einen Messfehler ¢
gibt, dessen Erwartungswert aber 0 ist.

@ Der Bias ist unabhangig vom Beispielsatz und 0 bei einem
perfekten Lerner.

@ Die Varianz ist unabhangig vom wahren Wert y und 0 bei
einem Lerner, der bei allen Beispielsatzen dasselbe
ausgibt.
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MSE Dekomposition in Bias und Varianz

Wir nehmen flir unser Modell an,
dassY = f(z) + eund E(e) = 0.

EPE(z) = Ey7((Y — 40)?z0)
= Ey((Y — f(ajg))2 0)+ o Rauschen

E

|z
E7((f(w0) — E7(y 0)) |zo)+ Bias®
Er((ET(%0) — 90)?|z0) Varianz

Wie das?!

Haupttrick: kreatives Einfligen von Termen, +a — a, die nichts
andern, aber Umformungen erlauben.
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Herleitung der Dekomposition - 1

EPE(z) = Eyr (Y = )?lao)
= Ey7(((Y — f(z0)) + (f(x0) — ¥0))*|w0) kreativ
= BEy7((Y — f(%0))? + (f(w0) — %0)*+  binomisch
2(Y = f(@0))(f(z0) — go)|zo)
= Ey((Y — f(z0))?|zo)+ herausziehen
By, 7((f(x0) — 50)?|x0)+ s.Formel(4)
2By (Y — f(zo)|zo) Ey,7(f(20) — golzo) E(2) =2

Jetzt By (Y — f(zo)|zo) = Ey (Y|zo) — f(z0) = 0 wegen der
Modellannahme Ey (Y|zo) = f(xo).
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Herleitung der Dekomposition - 2

EPE(z¢) = By (Y = f(x0))?|xo0)+ Vare
By, 7((f(x0) — 90)*|o0)
Vare + By 7((f(z0) — 40)*|xo)
= Vare + Ey 7(((f(x0) — Ev.r(v0))+ kreativ
(By.7(%0) — 90))?|0)
=  Vare+ Ey7((f(x0) — By r(40))?+  binomisch
(Ev,7(%0) — 90)*+
2(f(zo) — Ey,7(%0)) (Ey,1(%0) — go|xo))
= Varc+ Ey7((f(z0) — Ev7(%0))?|w0)+ herausziehen
Ey7((By,7(40) — 90)*|z0)+ (4)
2By, 7 ((f(wo) — Ev,7(%0))
(Ev,1(%0) — Yo)|zo)
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Herleitung der Dekomposition - 3

Rauschen haben wir schon gefunden. Bias und Varianz auch!

EPE(xo) = Var.+ o?Rauschen
By 1((f(wo) — EY,T(?JAO))2|$0)+ Bias?
Ey1((Ey,7(%0) — ¥o)|lzo)+  Varianz
2Ey,7(f(x0) — Ev,1(%0)) Konstanten
(BEy,7(Ey,7%0 — %o|z0)) =0
= EY,T((Y - ?f0)2|330) q.e.d.

Wir betrachten den Fehler also als zusammengesetzt aus
Rauschen, Verzerrung und Varianz. Die Dekomposition des
MSE in Bias und Varianz abstrahiert so, dass wir besser Uber
Modelle nachdenken kénnen.
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Bias und Varianz bei linearen Modellen

Das lineare Modell wird an die Daten angepasst durch
fp(f) = BTf
Der Fehler ist dann fir ein beliebiges z:
Err(#) = BlY - f(a0))*|X = ] )
o2 + Var(fy (o) + [1(a%) — Bl ()] (9)

Die Anpassung des linearen Modells geht Uber alle N Beispiele
und gewichtet alle p Merkmale (s. (3)).

Diese Varianz ist von x; zu z; verschieden. Im Mittel Gber allen
# ist Var(f,) = (p/N)o?.
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Zusammenhang zwischen Anzahl der Beispiele, der Attribute und

erwartetem Fehler

Modellkomplexitat (p, N) und Varianz der Schatzungen bei
unterschiedlichen Trainingsmengen hangen bei linearen
Modellen direkt zusammen.

Gemittelt Gber alle x; ist der Trainingsfehler linearer Modelle:

NZEW r)=ot+ L Nz[ ~Ef@)] (o)

Wir haben also wieder das Rauschen, die Varianz, die die
Schwankungen der Schatzungen angibt, und den Bias, der sich
auf die Differenz von Schatzung und Wahrheit bezieht
(in-sample error).
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Fluch der hohen Dimension bei linearen Modellen

o Leider mussten wir annehmen, dass das Modell genau
passt, um den erwarteten Fehler klein zu halten.

@ Wir wissen aber nicht, welche Art von Funktion gut zu
unseren Daten passt! Modellselektion ist schwierig!

@ Das Modell muss immer komplizierter werden, je mehr
Dimensionen es gibt.

@ Bei linearen Modellen entspricht die Komplexitat des
Modells direkt p, denn g hat so viele Komponenten wie p
bzw. p + 1.
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Lineare Modelle

Die griinen und roten Datenpunkte werden durch eine Ebene
getrennt.

Linear Regression of 0/1 Response

Figure 2.1: A classification example in two dimen-
sions. The classes are coded as a binary variable—
GREEN = 0, RED = 1—and then fit by linear regression.

The line is the decision boundary defined by =¥ = 0.5. 37 von 53
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Was wissen Sie jetzt?

o Sie haben theoretisch lineare Modelle fiir Klassifikation
und Regression kennengelernt.

@ Sie kennen das Optimierungsproblem der kleinsten
Quadrate RSS (Gleichung 2) fir lineare Modelle
(Gleichung 3).

@ Sie kennen den erwarteten Fehler EPE bei linearen
Modellen (Gleichung 6).

@ Sie kennen den Fluch der hohen Dimension bei linearen
Modellen: Komplexitat und Varianz hangen an der
Dimension! Der Bias kann sehr hoch sein, wenn die
Beispiele tatsachlich nicht linear separierbar sind.
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Bis zum nachsten Mal...

@ Gehen Sie alle Folien noch einmal in Ruhe durch.

@ Rechnen Sie mal ein Beispiel durch mit Gleichung zur
Optimierung linearer Modelle (3), der Minimierung des
Trainingsfehlers (10)...

@ Diskutieren Sie, warum Bias und Varianz so wichtig sind!
@ Probieren Sie lineare Regression in RapidMiner aus!
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Globale und lokale Modelle

@ Lineare Modelle finden eine trennende Hyperebene.

o Die durch 3 angegebene Hyperebene wurde durch alle
Beispiele bestimmt.

@ Deshalb sind lineare Modelle globale Modelle.

o Kilassifiziert man ein Beispiel nur anhand der Beispiele
seiner Umgebung, spricht man von einem lokalen Modell.

@ Nachste Nachbarn sind ein lokales Modell.
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Nachste Nachbarn

@ Das kNN-Modell betrachtet nur noch die k nachsten
Nachbarn eines Beispiel z:

fo=1 Y w (1)

@ Die Nachbarschaft Ny (#) wird durch ein Abstandsmab3,
z.B. den Euklidschen Abstand bestimmt.

o Es gibt maximal & Nachbarschaften und in jeder
bestimmen wir den Durchschnitt (11).
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Regression und Klassifikation

Gleichung (11) gibt als Regressionsfunktion den Mittelwert der

y; zurlck. .
f(f)=g >

Z; €Nk (Z)

Wir kébnnen durch einen Schwellwert aus der Regression eine
Klassifikation machen:

X {1, falls f(Z)>0,5

y= 0, sonst
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Die grinen und roten Datenpunkte werden in Nachbarschaften

gruppiert

15-Nearest Neighbor Classifier

o,
oip a

L

0

3

0
J
o]

0

Figure 2.2: The same classification example in two
dimensions as in Figure 2.1. The classes are coded as a
binary variable (GREEN = 0,RED = 1) and then fit by 15-
nearest-neighbor averaging as in (2.8). The predicted
class is hence chosen by majority vote amongst the 15-
nearest neighbors.
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Bei k=1 wird nur auswendig gelernt.

o Falls ¥ =4 — y =1y, gibt es bei k = 1 keinen
Trainingsfehler.

@ Wenn allein der Trainingsfehler das Optimierungskriterium
ist, wirden wir stets £ = 1 nehmen und nur auswendig
lernen.

@ Vermutlich ergibt das auf den Testdaten einen grof3en
Fehler!
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Overfitting

1-Nearest Neighbor Classifier

Figure 2.3: The same classification ezample in two
dimensions as in Figure 2.1. The classes are coded
as a binary variable (GREEN = 0,RED = 1), and then
predicted by 1-nearest-neighbor classification.
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Training- und Testfehler bei verschiedenen k

k- Number of Nearest Neighbors

151 8 45 25 15 9 5 3 1
P A A I AR AT R L

.o
. Linear

..\..\ ././.

Test Error
020
L

015
L

010
L

e T T
2 2 s 8 o1 ow = 7 20

Degrees of Froedom - Nk

Figure 2.4: Misclassification curves for the simulation
example used in Figures 2.1, 2.2 and 2.3. A single
training sample of size 200 was used, and a test sample
of size 10,000. The red curves are test and the green
are training error for k-nearest-neighbor classification.
The results for linear regression are the bigger green
and red dots at three degrees of freedom. The purple
line is the optimal Bayes Error Rate.

46 von 53



. . e LS 8 Kiinstliche Intelligenz Fakultat fir Informatik B
technische universitat Computergestitzte Statistik
dortmund Technische Universitat Dortmund

Lineare Modelle zur Klassifikation und Regression Bias-Varianz kNN zur Klassifikation, Regression

Erwartungswert von Y bei £ Nachsten Nachbarn

o Der Erwartungswertvon Y, E(Y) = S_~ | y;p;, geht bei
linearen Modellen in den Fehler ein:
EPE(f) = E(Y — f(X))*.

@ kNN verwendet den Erwartungswert von Y direkt zur
Vorhersage, allerdings beschrankt auf die Nachbarschaft
E(Y)= %Z%eNk(:i') Yi-

@ Fir die Vorhersage sind wir an bedingten
Wahrscheinlichkeiten interessiert P(Y | X = 7).

@ Bei NN wird die bedingte Wahrscheinlichkeit auf die
Nachbarschaft begrenzt E(Y'|Z; € Ny (Z)).

@ Gerechnet wird dies mit Hilfe Gleichung (11).
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Asymptotisches Ergebnis zu kNN

@ Wenn k/N gegen 0und N, k gegen oo konvergieren,
konvergiert auch f(z) gegen E(Y|X = z).
(Hastie/etal/2001, S. 19)

@ Haben wir also schon (wieder) den perfekten
Lernalgorithmus gefunden?
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Fluch der hohen Dimension bei kNN

@ Die Dichte der Beispiele ist proportional zu N7,

@ Schon bei p = 10 brauchen wir 80% der mdglichen Werte
jedes Attributs X;, um wenigstens 10% der Daten in einer
Nachbarschaft gesehen zu haben!

@ Die Dichte der Datenpunkte in der Nachbarschaft ist bei
hoher Dimension furchtbar spérlich.

o N7 ist bei 100 Beispielen und p = 10 nur 100%/1° = /10.

o Wenn 100 Beispiele bei p = 1 einen dichten Raum
ergeben, muss man fir die selbe Dichte bei p = 10 schon
10019 Beispiele sammeln: 100%/! = 100, 100916 = 100
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Bias und Varianz bei kNN

@ Wenn man die richtige, dicht besetzte Nachbarschaft hat,
verzerrt kNN die Vorhersage nicht (kleiner Bias).

@ Wenn - wie bei hohen Dimensionen - die Nachbarschaft
wild variiert, schwankt auch die Gite der Vorhersage
(grof3e Varianz).
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Bias und Varianz — bildlich

k-NN - Regression Linear Model - Regression
3 3

g g
50 4 3 20 10 0 5 10 15 20
Number of Neighbors k Subset Size p
k-NN - Classification Linear Model - Classification
3 3

50 4 3 20 10 0 5 10 15 20
Number of Neighbors k Subset Size p

Figure 7.3: Prediction error (red), squared bias (green)
and variance (blue) for a simulated example. The top row
is regression with squared error loss; the bottom row is clas-
sification with 01 loss. The models are k-nearest neighbors
(left) and best subset regression of size p (right). The vari-
ance and bias curves are the same in regression and classi- 51 von 53
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Bias, Varianz und Modellkomplexitat — bildlich

High Bias Low Bias
Low Variance High Variapce

Prediction Error

Model Complexity

Figure 7.1: Behavior of test sample and training sam-
ple error as the model complezity is varied.

@ Dieser Zusammenhang von Training-/Testfehler und
Komplexitat bestimmt alle Lernverfahren.

@ Kreuzvalidierung lasst abschéatzen, wie gut das Modell zu
den Daten passt (Modellselektion).
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Was wissen Sie jetzt?

@ Sie kennen den Fluch der hohen Dimension bei kNN:
kleiner Bias, aber hohe Varianz.

@ Bei linearen Modellen war es umgekehrt: kleine Varianz,
aber hoher Bias (falls die Annahme des linearen
Zusammenhangs von X, Y nicht stimmt).
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