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Grundlagen

Sei X = {Xy,...,X,} eine Menge von Zufallsvariablen und
Y # 0 eine Menge.

Ein Beispiel (oder Beobachtung) Z ist ein konkreter
p-dimensionaler Vektor tber diese Zufallsvariablen.

Eine Menge von n Beispielen X = {#, .
dann als (N x p)-Matrix auffassen:

.., &n} kbénnen wir

Tl r12 ... Tlp

" .
X = 2,1

TNl IN2 --- INp

Dabei entspricht jede Zeile Z; der Matrix X einem Beispiel.
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Klassifikation und Regression

Beim (berwachten Lernen (darum geht es hier), ist zusétzlich
zu jeder Beobachtung 7 ein Label (Klasse) y gegeben, d.h. wir
haben Beobachtungen (Z,y) € X x Y.

Y kann sowohl eine qualitative, als auch eine quantitative
Beschreibung von Z sein.

Flr den quantitativen Fall ist z.B. Y = R und wir versuchen fir
unbekanntes Z den Wert y vorherzusagen Regression.

Im Falle qualitativer Beschreibungen ist Y eine diskrete Menge
und wir nutzen f zur Klassifikation.
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Klassifikation und Regression

Wovon gehen wir also aus? Was ist unser Ziel?

c‘nanngmaten

@ Wir suchen die wahre Funktion f : X — Y mit

f@) =y Y@y eXxY

@ Wir haben jedoch nur eine Teilmenge der Beobachtungen
gegeben (Trainingsdaten)
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Auf Grundlage der Trainingsdaten suchen wir eine mdglichst
gute Anndherung f an die wahre Funktion f.

Die Funktion f bezeichnen wir auch als das gelernte Modell.
Haben wir ein Modell f gelernt, so liefert uns dieses Modell mit
§=1@

flr neue Daten € X eine Vorhersage y € Y.
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Beispiel

Im Falle der Regression lasst sich so fir zuvor unbekannte
Z € X der Wert R
§=171@)

mit § € R vorhersagen.

Dieses Modell f lasst sich auch fiir die Klassifikation nutzen,
bei der z.B. §y € {—1,+1} vorhergesagt werden sollen:

41, falls f(2) >0
v= —1, sonst

Hier ist 6 ein vorgegebener Schwellwert.
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Gegeben seien Gewicht (X;) und GréBe (X3) einiger Personen
und ein Label y € {m,w}:

L [N [X% V]
1 [ 91 [ 190 | m
x2 | 60 | 170 | w
x3 | 41160 | w

Die Tabelle enthélt die zur Verfligung stehenden
Trainingsdaten, also

91 190
60 170
X=1 41 160
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Beispiel

Es wird nun eine Funktion f gesucht, die fir neue Daten & das
Attribut Y (Geschlecht) voraussagt, also

. m,falls f(z) >0
¥= w, sonst
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Lineare Modelle

Welche Art von Funktionen sind denkbar?
Lineare Funktionen als einfachste Funktionenklasse:
y= f(z) =mz+b Gerade im R?

Allerdings betrachten wir als Beispielraum den R?, d.h. wir
brauchen eine verallgemeinerte Form:
p —
y=f(&) =) Pwi+po mith€R,FecR (1)
i=1

Die Funktion f wird also durch Bund By festgelegt und sagt uns
flr ein gegebenes 7 das entsprechende y voraus
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Was haben wir nun gemacht?

Bei genauerer Betrachtung von Formel (1) lasst sich Y7, 8;z;
als Matrizenmultiplikation oder Skalarprodukt schreiben, also

p
y=>" B+ fo ="+ 6o = (7.5) + o
i=1

Zur einfacheren Darstellung von f, wird 3, in den Vektor g
codiert, indem jedes Beispiel z = (z1, ..., z,) aufgefasst wird
als (p + 1)-dimensionaler Vektor

(z1,...,2p) — (L,21,...,2p)

Dies ermdglicht die Darstellung von f als:

y=f() :Zﬁﬂz‘:ng: <f,5>
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Wir haben (bei der Beschrankung auf lineare Modelle) nun eine
Darstellung flr das, was wir lernen wollen:

y=f@ =8

Wir haben die Zielfunktion f in Abhéngigkeit von Egeschrieben
und missen nur noch das passende g finden.
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Es ist nicht garantiert, dass 3 immer passt!
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Modell-Anpassung

Modell-Anpassung

Unsere linearen Modelle sind durch & parametrisiert, das_
Lernen eines Modells haben wir also auf die Wahl eines 3
abgewalzt.

Das wirft eine Reihe von Fragen auf:
o Was ist ein gutes 3?
o Gibt es ein optimales 3?
o Welche Méglichkeiten haben wir, unser Modell zu
beurteilen?
Eine Mdglichkeit: Berechne den Trainingsfehler

N N

Err(B) = lyi— f@)| = lvi — ! B]

i=1 i=1
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Haufig wird als Fehlerfunktion die quadratische Fehlersumme
(RSS) verwendet:

-

RSS(F) =

Wir wahlen jetzt 7 derart, dass der Fehler minimiert wird:

min RSS(5) ©)
Berp

= Konvexes Minimierungsproblem!
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Regulare Matrix
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Um R§S(ﬁ) zu minimieren, bilden wir die partielle Ableitung
nach g:
ORSS(B)
B

Notwendige Bedingung firr die Existenz eines (lokalen)
Minimums von RSS ist

=X"(y - Xp)

-

ORSS(B) — XT(y-xX3) =0

B

Ist XTX regulér, so erhalten wir

F= (xx)"'X"y 3)
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Wenn es zu einer quadratischen Matrix X eine Matrix X~ gibt

mit
XX 1=Xx"1X=1

Einheitsmatrix

10 .. 0
01 .0
I= .0
.. .. 0
00 .1

dann ist die Matrix X invertierbar oder regulér, sonst singulér.
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Optimales 3?
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Sind wir schon fertig?

Mit Hilfe der Minimierung der (quadratischen) Fehlerfunktion
RSS auf unseren Trainingsdaten haben wir ein (bzgl. RSS)

optimales 5 gefunden.
Bei einem konvexen Problem ist das lokale auch das globale

Minimum.
Damit liefert unser Modell Voraussagen g fir # € X:

j=f@=aTh
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@ Schoén war’s!
o Aber drei Griinde sprechen fiir weitere Arbeit:
@ Es ist nicht immer so einfach, z.B. dann nicht, wenn wir
viele Dimensionen haben (Fluch der hohen Dimension).
@ Vielleicht lassen sich die Beispiele nicht linear trennen!
© Nur den Fehler zu minimieren reicht nicht aus, wir suchen
noch nach weiteren Beschrankungen, die zu besseren
Lésungen fihren.
@ Also schauen wir uns den Fehler noch einmal genauer an,
stoBen auf Bias und Varianz und merken, dass wir noch
keine perfekte Lésung haben.
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Zur Erinnerung: Erwartungswert

o Bisher haben wir mit RSS die Fehler einfach summiert.

@ Wir wollen aber einbeziehen, wie wahrscheinlich der
Fehler ist — vielleicht ist er ja ganz unwahrscheinlich! Das
machen wir (ber den Erwartungswert.

@ Wir kdnnen sehr unterschiedliche Stichproben als
Beispielmenge haben. Der Fehler soll sich auf alle
moglichen Trainingsmengen beziehen — nicht nur eine,
zuféllig glinstige!
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Erwartungswert

Sei X eine diskrete Zufallsvariable, mit Werten z, ..., z;,, und
p; die Wahrscheinlichkeit fir x;. Der Erwartungswert von X ist

E(X) = Zl'@pl = Z«’L'ZP(X = mz)

Ist X eine stetige Zufallsvariable und f die zugehérige
Wabhrscheinlichkeitsdichtefunktion, so ist der Erwartungswert
von X

E(X)= /oo z f(x)dz

22 von 53

technische universitat

LS 8 Kinstlche Intelligenz Fakultatfor Informatik ¢,
Computergestitzte Statstic “/
dortmund

Technische Universitét Dortmund
Lineare Modelle zur Klassifikation und Regression Bias-Varianz kNN zur Klassifikation, Regression

Erwartungswert (Eigenschaften)
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Varianz und Standardabweichung

Eigenschaften

Seien X,Y und X3, ..., X,, Zufallsvariablen, dann gilt:
o Der Erwartungswert ist additiv, d.h. es gilt

B> Xi| =) E(X) )
i=1 p=Il
0 IstY = kX + d, so gilt fir den Erwartungswert
EY)=EkX +d)=kE(X)+d (5)
o Sind die Zufallsvariablen X; stochastisch unabhéngig, gilt

n
E H X;
=1

n
=[[Ex)
g=il
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Uber den Erwartungswert einer Zufallsvariablen X sind
mehrere Eigenschaften von X definiert, die helfen, X zu
charakterisieren:

Varianz

Sei X eine Zufallsvariable mit . = E(X). Die Varianz Var(X)
ist definiert als

Var(X):=E ((X — ,u)z) .

Die Varianz wird h&ufig auch mit o2 bezeichnet.

Standardabweichung

Die Standardabweichung o einer Zufallsvariable X ist definiert

als
o :=+/Var(X)
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Varianz und Standardabweichung

Verschiebungssatz

Sei X eine Zufallsvariable, fur die Varianz gilt

Var(X) = E(X - E(X))* = B(X?) - (B(X))
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Eine weitere Charakteristik, die haufig zur Beschreibung von
erwarteten Fehlern verwendet wird, ist die Verzerrung:

Verzerrung (Bias)

Sei Y eine Zufallsvariable, dann ist die Verzerrung definiert als
der erwartete Schatzfehler flr Y

also wie im Durchschnitt die Schatzungen vom wahren
Mittelwert abweichen

Bias(j) = E(Y —§) = B(Y) - §
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Fehler der Regression
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Erwartungswert des Fehlers einer Regression minimieren!

o Fehlerfunktion L(y, ) fir gelernte Modelle f

o absolut 3" (v — i)
o quadratisch > (y; — 4;)?
o 0,1-Fehler 3_4;, 6 = 1, falls y = §, sonst 0.

o Es gehtum Y. Wir unterscheiden

o das wahre y,
o das in der Beispielmenge genannte y,
o das vom Modell vorhergesagte

@ Wir wollen den Erwartungswert des Fehlers minimieren.
o Wir mitteln Uber alle mdglichen Beispielmengen 7.
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Erwarteter quadratischer Vorhersagefehler: Gelernte Funktion
f X — Y, der Erwartungswert ihres Fehlers ist:

EPE(f) = E(Y - f(X))? (6)

Optimierungsproblem: Wahle f so, dass der erwartete Fehler
minimiert wird!

f(@) = argmin By x (Y —¢))|X =2)  (7)

Lésung (Regressionsfunktion): f(z) = E(Y|X = )
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Bias und Varianz
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MSE Dekomposition in Bias und Varianz

Zwei Aspekte machen den erwarteten Fehler aus, die
Verzerrung (Bias) und die Varianz. Wir wollen den Fehler an
einem Testpunkt zy = 0 angeben und mitteln Uber allen
Trainingsmengen 7.

@ Wir gehen davon aus, dass die Angaben in den Daten
nicht immer ganz stimmen, so dass es einen Messfehler ¢
gibt, dessen Erwartungswert aber 0 ist.

o Der Bias ist unabhéngig vom Beispielsatz und 0 bei einem
perfekten Lerner.

o Die Varianz ist unabhangig vom wahren Wert y und 0 bei
einem Lerner, der bei allen Beispielsatzen dasselbe
ausgibt.
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Wir nehmen fir unser Modell an,
dassY = f(z) +eund E(e) = 0.

EPE(x0) = Ey7((Y = 40)?|20)
= Ey((Y = f(z0))*|zo)+ o2 Rauschen
E7((f(z0) — ET(%0))?|x0)+ Bias®
Er((E7(go) — Zf0)2|330) Varianz
Wie das?!

Haupttrick: kreatives Einfliigen von Termen, +a — a, die nichts
andern, aber Umformungen erlauben.
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Herleitung der Dekomposition - 1

Herleitung der Dekomposition - 2

EPE(x) = By ((Y = f(0))?|o)+ Var,
EPE(xo) = Ey7((Y = 40)?|x0) Eyr((f (o) - 50)?|0)
= Ey7(((Y — f(20)) + (f(z0) — %0))*w0) kreativ _ Vare + Ey7((f(20) — go)?|0)
= Byg((Y — f(z0))® + (f(z0) — 40)>+  binomisch = Varc+ Ev7(((f(z0) — By 7(4o)+  kreativ
2(Y - f(l‘()))(f(lo) - yA0)|x0) (EKT(gO) _ ZJO))2|IO)
= By ((Y = f(x0))?|zo0)+ herausziehen = Vare+ Eyr((f(w0) — Ey7(40))*+  binomisch
By, 7((f(x0) = 3j0)*|0)+ s.Formel(4) (By.r (o) — o)+
2B (¥ — f(wollea) By (f(zo) ~ dolza)  E(2) =2 2(f(@0) — Byr (o)) (B (o) — tolao))
= Vare + Ev7((f(z0) — Ev.7(40))?|20)+ herauszichen
Jetzt By (Y — f(x0)|z0) = By (Y|zo) — f(x0) = 0 wegen der By 7((By,7(¥o) — ¥o0)*|z0)+ (4)
Modellannahme Ey (Y |zq) = f (o). 2By, 7((f(z0) — Ev,7(30))
(Ev,;7("0) — ¥o)|zo)
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Herleitung der Dekomposition - 3

Rauschen haben wir schon gefunden. Bias und Varianz auch!

EPE(x) = Var+ o?Rauschen
Ev,r((f(z0) — Ev7(¥0))*|zo)+ Bias?
Ey7((By7(40) — 90)*|x0)+  Varianz
2By, 7(f(x0) — By,7(40)) Konstanten
(By,7(Ey,7%0 — Yol=o)) =0
= Ey7((Y = 40)?|z0) q.e.d.

Wir betrachten den Fehler also als zusammengesetzt aus
Rauschen, Verzerrung und Varianz. Die Dekomposition des
MSE in Bias und Varianz abstrahiert so, dass wir besser Uber
Modelle nachdenken kénnen.
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Bias und Varianz bei linearen Modellen

Das lineare Modell wird an die Daten angepasst durch
Fol@) =
Der Fehler ist dann fir ein beliebiges z:
Err(@0) = E[(Y ~ fo(a0))*| X = a0 ®)
0?2 + Var(fy()) + [ (%) ~ Bfy()] )

Die Anpassung des linearen Modells geht Uber alle N Beispiele
und gewichtet alle p Merkmale (s. (3)).

Diese Varianz ist von z; zu x; verschieden. Im Mittel Uber allen
& ist Var(f,) = (p/N)o?.
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Zusammenhang zwischen Anzahl der Beispiele, der Attribute und

erwartetem Fehler
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Fluch der hohen Dimension bei linearen Modellen

Modellkomplexitat (p, N) und Varianz der Schatzungen bei
unterschiedlichen Trainingsmengen hangen bei linearen
Modellen direkt zusammen.

Gemittelt Gber alle x; ist der Trainingsfehler linearer Modelle:

ZErrxl —a +—J +NZ[
zl

Wir haben also wieder das Rauschen, die Varianz, die die
Schwankungen der Schatzungen angibt, und den Bias, der sich
auf die Differenz von Schétzung und Wahrheit bezieht
(in-sample error).

2
) - Ef@)] (10
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o Leider mussten wir annehmen, dass das Modell genau
passt, um den erwarteten Fehler klein zu halten.

o Wir wissen aber nicht, welche Art von Funktion gut zu
unseren Daten passt! Modellselektion ist schwierig!

@ Das Modell muss immer komplizierter werden, je mehr
Dimensionen es gibt.

@ Bei linearen Modellen entspricht die Komplexitét des
Modells direkt p, denn /3 hat so viele Komponenten wie p
bzw. p + 1.
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Lineare Modelle
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Was wissen Sie jetzt?

Die griinen und roten Datenpunkte werden durch eine Ebene
getrennt.

Linear Regression of 0/1 Response
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Figure 2.1: A classification ezample in two dimen-
sions. The classes are coded as a binary variable—
GREEN = 0, RED = 1—and then fit by linear regression.
The line is the decision boundary defined by zTﬁ =0.5.
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o Sie haben theoretisch lineare Modelle fir Klassifikation
und Regression kennengelernt.

o Sie kennen das Optimierungsproblem der kleinsten
Quadrate RSS (Gleichung 2) fur lineare Modelle
(Gleichung 3).

o Sie kennen den erwarteten Fehler EPE bei linearen
Modellen (Gleichung 6).

o Sie kennen den Fluch der hohen Dimension bei linearen
Modellen: Komplexitat und Varianz hdngen an der
Dimension! Der Bias kann sehr hoch sein, wenn die
Beispiele tats&chlich nicht linear separierbar sind.

38 von 53

LS 8 Kunstliche Intelligenz Fakultat fir Informatik £
technische universitat Computergestitzte Statistik ‘ “
dortmund Technische Universitat Dortmund

Lineare Modelle zur Klassifikation und Regression Bias-Varianz kNN zur Klassifikation, Regression

Bis zum nachsten Mal...
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Globale und lokale Modelle

@ Gehen Sie alle Folien noch einmal in Ruhe durch.

@ Rechnen Sie mal ein Beispiel durch mit Gleichung zur
Optimierung linearer Modelle (3), der Minimierung des
Trainingsfehlers (10)...

o Diskutieren Sie, warum Bias und Varianz so wichtig sind!
o Probieren Sie lineare Regression in RapidMiner aus!
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o Lineare Modelle finden eine trennende Hyperebene.

o Die durch 5 angegebene Hyperebene wurde durch alle
Beispiele bestimmt.

@ Deshalb sind lineare Modelle globale Modelle.

o Kilassifiziert man ein Beispiel nur anhand der Beispiele
seiner Umgebung, spricht man von einem lokalen Modell.

@ Nachste Nachbarn sind ein lokales Modell.
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Nachste Nachbarn
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Regression und Klassifikation

o Das kKNN-Modell betrachtet nur noch die k& nachsten
Nachbarn eines Beispiel Z:

S w (11)

T, ENR(T)
o Die Nachbarschaft N, (Z) wird durch ein AbstandsmaB,

z.B. den Euklidschen Abstand bestimmt.

o Es gibt maximal ¥ Nachbarschaften und in jeder
bestimmen wir den Durchschnitt (11).
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Gleichung (11) gibt als Regressionsfunktion den Mittelwert der

y; zurlck. .
@)= >

T;ENK(T)

Wir kdnnen durch einen Schwellwert aus der Regression eine
Klassifikation machen:
R { 1, falls f(Z)>0,5
Y= 0

sonst
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Die griinen und roten Datenpunkte werden in Nachbarschaften
gruppiert

15-Noarast Nelghbor Classifer

Figure 2.2: The same classification example in two
dimensions as in Figure 2.1. The classes are coded as a
binary variable (GREEN = 0,RED = 1) and then fit by 15-
nearest-neighbor averaging as in (2.8). The predicted
class is hence chosen by majority vote amongst the 15-
nearest neighbors.
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Bei k=1 wird nur auswendig gelernt.

o Falls #=7' — y =4/, gibt es bei k = 1 keinen
Trainingsfehler.

@ Wenn allein der Trainingsfehler das Optimierungskriterium
ist, wiirden wir stets £ = 1 nehmen und nur auswendig
lernen.

@ Vermutlich ergibt das auf den Testdaten einen groB3en
Fehler!
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Overfitting
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Training- und Testfehler bei verschiedenen k

-Nearost Neighbor Classier

Figure 2.3: The same classification example in two
dimensions as in Figure 2.1. The classes are coded
as a binary variable (GREEN = O,RED = 1), and then
predicted by 1-nearest-neighbor classification.
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K- Number of Nearest Neightors
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Figure 2.4: Miscl curves for the si
example used in Figures 2.1, 2.2 and 2.3. A single

training sample of size 200 was used, and a test sample
of size 10,000. The red curves are test and the green
are training error for k-nearest-neighbor classification.
The results for linear regression are the bigger green
and red dots at three degrees of freedom. The purple
line is the optimal Bayes Error Rate.
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Erwartungswert von Y bei k£ Nachsten Nachbarn
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Asymptotisches Ergebnis zu kNN

o Der Erwartungswertvon Y, E(Y) = Zf\; 1 Yipi, geht bei
linearen Modellen in den Fehler ein:
EPE(f) = B(Y — f(X))*.

@ kNN verwendet den Erwartungswert von Y direkt zur
Vorhersage, allerdings beschréankt auf die Nachbarschaft
E(Y) =1 3% cn Vi

o Fir die Vorhersage sind wir an bedingten
Wahrscheinlichkeiten interessiert P(Y'|X = ).

o Bei kNN wird die bedingte Wahrscheinlichkeit auf die
Nachbarschaft begrenzt E(Y|Z; € Ni(Z)).

@ Gerechnet wird dies mit Hilfe Gleichung (11).
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o Wenn k/N gegen 0 und N, k gegen co konvergieren,
konvergiert auch f(z) gegen E(Y|X = z).
(Hastie/etal/2001, S. 19)

@ Haben wir also schon (wieder) den perfekten
Lernalgorithmus gefunden?
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Fluch der hohen Dimension bei kNN
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Bias und Varianz bei kNN

o Die Dichte der Beispiele ist proportional zu N7,

@ Schon bei p = 10 brauchen wir 80% der mdglichen Werte
jedes Attributs X;, um wenigstens 10% der Daten in einer
Nachbarschaft gesehen zu haben!

o Die Dichte der Datenpunkte in der Nachbarschaft ist bei
hoher Dimension furchtbar sparlich.

o Nv ist bei 100 Beispielen und p = 10 nur 100110 = /10.

o Wenn 100 Beispiele bei p = 1 einen dichten Raum
ergeben, muss man fiir die selbe Dichte bei p = 10 schon
1001 Beispiele sammeln: 100'/! = 100,100 10 = 100
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@ Wenn man die richtige, dicht besetzte Nachbarschaft hat,
verzerrt kNN die Vorhersage nicht (kleiner Bias).

@ Wenn - wie bei hohen Dimensionen - die Nachbarschaft
wild variiert, schwankt auch die Glte der Vorhersage
(grof3e Varianz).
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Bias und Varianz — bildlich
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Figure 7.3: Prediction error (red), squared bias (green)
and variance (blue) for a simulated ezample. The top row
is regression with squared error loss; the bottom row is clas-
sification with 0-1 loss. The models are k-nearest neighbors
(left) and best subset regression of size p (right). The vari-

ance and bias curves are the same in regression and classi- 51von 53
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Bias, Varianz und Modellkomplexitét — bildlich
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Figure 7.1: Behavior of test sample and training sam-
ple error as the model complegity is varied.

o Dieser Zusammenhang von Training-/Testfehler und
Komplexitat bestimmt alle Lernverfahren.

@ Kreuzvalidierung lasst abschatzen, wie gut das Modell zu
den Daten passt (Modellselektion).
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Was wissen Sie jetzt?

@ Sie kennen den Fluch der hohen Dimension bei KNN:
kleiner Bias, aber hohe Varianz.

o Bei linearen Modellen war es umgekehrt: kleine Varianz,
aber hoher Bias (falls die Annahme des linearen
Zusammenhangs von X, Y nicht stimmt).
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