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Gliederung

o Closed Sets

@ Web Mining
@ Finden von haufigen Subgraphen
@ Ranking von Web-Seiten nach Autoritat
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Zu viele Muster!

@ Es werden sehr viele haufige Mengen gefunden, die
redundant sind.
@ Wir missen also aus den Beispielen

o eine untere Grenze und
o eine obere Grenze konstruieren.

@ Eine Halbordnung bzgl. Teilmengenbeziehung haben wir
schon.

@ Die Grenzen haben wir auch.
o Gemerkt?
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Untere Grenze
Kleinere Mengen .
einere Menge Bzgl. der Haufigkeit

2~

GroBere Mengen

@ Wenn eine Menge haufig ist, so auch all ihre Teilmengen.
(Anti-Monotonie)
@ Beschneiden der Ausgangsmengen fur die

Kandidatengenerierung geman dieser Grenze!
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Obere Grenze

Kleinere Mengen Bzgl. der Haufigkeit

A

Bzgl. eines constraints

GréBere Mengen

@ Monotonie der Seltenheit: Wenn eine Teilmenge selten ist, so
auch jede Menge, die sie enthalt. Seltenheit ist ein constraint.

@ Beschneidung der Kandidatengenerierung nach der Monotonie.
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Beispiel mit Frequency threshold 0.3

haufig genug
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Dank an Jean-Francois Boulicaut!
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Kondensierte Reprasentationen

@ Statt Suche nach allen hdufigen Mengen: Suche nach
einer kondensierten Reprasentation,
o die kleiner ist als die urspriingliche Reprasentation und
o aus der wir alle hdufigen Mengen und ihre Haufigkeit
ableiten kénnen, ohne noch mal die Daten selbst
anzusehen.
@ Kondensierte Reprasentationen fir Assoziationsregeln:
o Closed item sets
o Free sets
@ Operator, der die Menge aller Assoziationsregeln ableitet:

o Cover operator
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Closed Item Sets

@ closure(S) ist die maximale Obermenge
(geman der Teilmengenbeziehung) von S, die
noch genauso haufig wie S vorkommt.

A B C D o ,

@ Sist ein closed item set, wenn closure(S) = S
(1) 1 :: (1) @ support(S) = support(closure(S)) (fur alle S)
1 0 1 o © BeieinemSchwellwertvon 0.1 sind alle
1 0 1 0 Transaktionen haufig genug.
1 1 1 1 o Closed sind: C, AC, BC, ABC, ABCD
11 1 0 o keine Obermenge von C' kommt auch 6 mal

vor

o A kommt 5 mal vor, aber auch die
Obermenge AC und keine Obermenge von
AC
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Kondensierte Reprasentation und Ableitung

@ Closed item sets sind eine kondensierte Reprasentation:
o Sie sind kompak.
o Wenn man die haufigen closed item sets C berechnet hat,
braucht man nicht mehr auf die Daten zuzugreifen und
kann doch alle hdufigen Mengen berechnen.

@ Ableitung:
o FUr jede Menge S priifen wir anhand von C: Ist S in einem
Element X von C enthalten?
Nein , dann ist S nicht haufig.
Ja , dann ist die Haufigkeit von S genau die der kleinsten
solchen Obermenge X.
@ Wenn es in mehreren Elementen von C vorkommt, nimm die

maximale Haufigkeit!
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Was wissen Sie jetzt?

@ Sie kennen eine Reprasentation, die weniger Elemente als
h&ufig ausgibt, aus der aber alle hdufigen Mengen
hergeleitet werden kénnen.

@ Es gibt noch viele andere Methoden, um nur interessante
Muster auszugeben, aber hier lernen Sie nur eine kennen.
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Das Web und das Internet als Graph

Webseiten sind Knoten, verbunden durch Verweise. Router und
andere Rechner sind Knoten, physikalisch verbunden.

WORLD-WIDE WEB

ﬂ

e

INTERNET

Reka Albert, Albert-Laszlo Barabasi: Statistical Mechanics of Complex Networks, arXiv, 2006
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Eigenschaften des World Wide Web (WWW)

Die Struktur des Webs wurde schon frih untersucht
(http://arxiv.org/pdf/cond-mat/0106096v1.pdf)

@ Small Worlds: Der Pfad zwischen zwei Knoten hat nur
wenige Knoten. In einem Ausschnitt des WWW mit 200
Mio. Seiten fanden Broder at al (2000) durchschnittliche
Pfadlangen von 16 Knoten.
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Eigenschaften des World Wide Web (WWW)

@ Clustering Coefficient C: Bei den meisten Knoten i sind
nicht alle ihre direkten Nachfolger k; miteinander
verbunden, sondern es gibt nur E; Kanten zwischen ihnen.
Wenn die Nachfolger streng zusammenhangend waren,
gébe es k;(k; — 1)/2 Kanten zwischen ihnen.

2E;
ki(k; —1)
Auf das WWW angewandt ignoriert man die Richtung der
Kanten. Adamic (1999) fand bei 153.127 Web-Sites
C=0,1078, bei einem Zufallsgraphen der selben GréRe nur
C’=0,00023.

Ci =
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Eigenschaften des World Wide Web (WWW)

@ Exponenzialverteilung: Die Wahrscheinlichkeit, dass ein
Knoten k Kanten hat, folgt einer Exponenzialverteilung:
P(X =k)~k™"

Die bedingte Wahrscheinlichkeit hdngt dann nicht von der
GroBe ab (scale-free): P(X > k|X > m) = P(X > k)

Mit hoher Wahrscheinlichkeit gehen nur wenige Kanten ab,
kommen nur wenige Kanten an.

10 O@ T T
10° % @
10" @

_O;
5
P(k)

0
10° 10° 10° 10° 10° 10 10’ 10° 10" 10°
k K

Verteilungen der Anzahl von Kanten:
(a) ausgehende (b) eingehende.
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Web Mining

Das WWW hat zu einer Menge interessanter
Forschungsaufgaben gefiihrt. Unter anderem gibt es:

@ Indexieren von Web-Seiten fiir die Suche — machen wir
hier nicht

@ Analysieren von Klick-Strémen — web usage mining kommt
spéter

@ Co-Citation networks — machen wir hier nicht

@ Finden haufiger Muster in vernetzten Informationsquellen

@ Ranking von Web-Seiten nach Autoritat
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Finden h&ufiger Muster in Graphen

@ Wir betrachten Web-Sites als Graphen.

o Jede Web-Seite ist ein Knoten und die Knoten sind
verbunden: das Klicken auf einer Seite fihrt zu einer
anderen Seite.

o Alternativ: die HTML-Struktur wird als Graph aufgefasst.

@ Die Beobachtungsmenge beinhaltet viele Graphen und
Muster sollen in vielen davon vorkommen.

@ Alternativ: Ein Muster soll haufig in einem Graphen
vorkommen.
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Apriori-artiges Finden von Mustern

@ Wir betrachten Web-Sites als Graphen. Jede Web-Seite ist
ein Knoten und die Knoten sind verbunden: das Klicken auf
einer Seite flhrt zu einer anderen Seite.

@ Die Beobachtungsmenge beinhaltet viele Graphen und die
Muster sollen in vielen davon vorkommen.

@ Analog zu Apriori werden haufige Subgraphen erweitert
zur Kandidatengenerierung.
@ Die Erweiterung ist jetzt etwas komplizierter.

@ AGM-Algorithmus: A. Inokuchi, T. Washio, H. Motoda: An
Apriori-based Algorithm for Mining Frequent Substructures
from Graph Data. PKDD Conference 2000.
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Beispiel fir Subgraphen

ol olliags

Die beiden linken 5-groBen Graphen haben einen 4-groen

Graphen gemeinsam.
Die beiden rechten 6-groBen Graphen sind die Kandidaten.

Hong Cheng, Xifeng Yan, Jiawei Han: Mining Gaph Patterns. In: Charu Agharwal, Haixun Wang (eds): Managing

and Mining Graph Data 2010
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Apriori-artiges Finden von Mustern: Notation

@ V(g) sind die Knoten eines Graphen g;
@ E(g) sind die Kanten eines Graphen g;

@ Annotation [ bildet ein Label auf einen Knoten oder eine
Kante ab.

Subgraph Isomorphie
Fir zwei annotierte Graphen g, ¢’ is die Subgraph Isomorphie
die Einbettung f : V(9) — V(¢'), so dass
o YoeV(g) :l(v)=U(f(v))
° VY(u,v) € E(g) : (f(u), f(v)) € E(g’) und
U(u,v) =V (f(u), f(v))

wobei /,!’ die Annotationen von g, ¢’ sind.
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Haufige Graphen und Anti-Monotonie

Wir kénnen nun die Lernaufgabe definieren als das Finden aller
haufiger Graphen.

o Gegeben eine Menge annotierter Graphen D = G4, ...,G,
und ein Subgraph g, dann ist support(g) = 'l—D%' und die
Menge D, = {G;|g C G;,G; € D}.

@ Finde alle Graphen g, deren support(g) nicht kleiner ist als
minsup.

Anti-Monotonie

Ein Subgraph mit £ Knoten bzw. Kanten ist nur dann haufig,
wenn alle seine Subgraphen haufig sind.
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Apriori(D, minsup, S)

Input: Graphen D, Schwellwert minsup, k gro3e
Subgraphen S
Output: Die Menge aller k + 1-grof3en haufigen
Subgraphen Sj11

Sk+1 = {

for gi€Sp do
for g; € Sido
for g=gi©® gjdo

if support(g) > minsup, g ¢ Ski+1
then Sk+1:=Sk+1Uyg
if Skpy1#{} then
call  Apriori (D, minsup, Sk+1)
return
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Closed Subgraphs

Analog zu den Closed Sets gibt es auch bei den Graphen eine
Closed Subgraph Darstellung.

Closed subgraph

A subgraph g is a closed subgraph in a graph set D, if
@ gis frequentin D and

o there exists no proper supergraph ¢’ such that g ¢ ¢’ and
¢ is frequent in D.
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Was wissen Sie jetzt?

@ Man kann eine Web-site als Graph auffassen, bei dem die
Seiten (Knoten) miteinander verbunden sind.

@ Auch bei einer Menge von Graphen kann man haufige
Muster (Teilgraphen) finden. Sie kennen den
Apriori-Algorithmus fir Graphen, der ein Muster durch
Hinzunahme eines Knotens erweitert.

@ Auch bei haufigen Mustern in Graphen gibt es eine
aggregierte Darstellung und Sie kennen die Definition.
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Ranking von Web-Seiten

Was sind besonders wichtige Seiten?

@ Eine Seite, von der besonders viele Links ausgehen, heif3t
expansiv.

@ Eine Seite, auf die besonders viele links zeigen, heift
beliebt.

@ Wie oft wirde ein zufalliger Besucher auf eine Seite i
kommen? Zuféllige Besuche von einer beliebigen
Startseite aus:

o Mit der Wahrscheinlichkeit « folgt man einer Kante der
aktuellen Seite (Ubergangswahrscheinlichkeit).

o Mit der Wahrscheinlichkeit 1 — « springt man auf eine
zuféllige Seite, unter der Annahme, dass die Seiten gleich
verteilt sind (Sprungwahrscheinlichkeit).

Der Rang einer Seite PageRank(i) ist der Anteil von i an
den besuchten Knoten.
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Zufalls-Surfermodell: PageRank

Matrix M;; fir Kanten von Knoten j zu Knoten i; n(j) ist die
Anzahl der von j ausgehenden Kanten; N Knoten insgesamt.

1 N
1 0 Min
: M;; = 1/n(j)
N ... ... 0

Matrix N x N mit den Eintrdgen 1/N gibt die Gleichverteilung
der Knoten an (Sprungwahrscheinlichkeit).

Die Wahrscheinlichkeit, die Seite zu besuchen, ist die Summe
von Sprung- und Ubergangswahrscheinlichkeit, angegeben in
N x N Matrix M':

M =(1-a) [%]—!—aM (1)
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PageRank

Eigenvektoren von M’ geben den Rang der Knoten an.
Man kann das Gleichungssystem fir a < 1 l6sen:

Rang; = (1 — «) [%] + aZM‘lz’j
J

PageRank ist der rekursive Algorithmus:

11—« Rang,
Rang; = N + o | Z () (2)
vie{(i.4)}
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PageRank Beispiel

Mit « = 0, 85 hier ein kleines Beispiel (wikipedia). Die Grée
der Kreise entspricht der Wahrscheinlichkeit, mit der ein Surfer
auf die Seite kommt. Seite C wird nur von einer einzigen, aber
gewichtigeren Seite verlinkt und hat also einen héheren
PageRank als Seite E, obwohl E von sechs Seiten verlinkt wird.

N

0.2892
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Alternativ: HIT — Hyperlinked-Induced Topic search

Ahnlich ist eine Anfrage-orientierte Bewertung von Web-Seiten.
Statt des Zufalls-Surfers wird eine Suchanfrage gestellt und nur
die Menge G der gelieferten Seiten mit allen Seiten, die auf
diese verbunden sind, bewertet. Idee:

@ Eine expansive Seite ist ein hub h. Sie soll auf beliebte
Seiten zeigen. Die Expansionsbewertung aller Seiten ist
ein Vektor .

@ Eine beliebte Seite ist eine authority a. Auf sie soll von
beliebten Seiten aus verwiesen werden. Die
Beliebtheitsbewertung aller Seiten ist ein Vektor a.

Die Matrix der Kanten M hat M;; = 1, falls es eine Kante
zwischen ¢ und j gibt, 0 sonst.

h=Mag a=MTh (3)

Jon Kleinberg: Authorative sources in a hyperlinked environment. Journal of the ACM 46(5), 1999.
Katharina Morik, Claus Weihs DMV 28/31



LS 8 Informatik
Computergestitzte Statistik

technische universitat
Technische Universitat Dortmund

dortmund
Closed Sets Web Mining
Berechnung von h, d

k lterationen

@ Berechne ¢ flr alle Knoten p € G:
0 ap:=) hg
° norm = /> cqap;
° a, = a,/norm;

@ Berechne # fir alle Knoten p € G:
0 hy:=)ay;
° norm = /> cchy;
o hy = hy,/norm;
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@ HIT bewertet die Seiten, die eine Suchmaschine geliefert
hat, nach Beliebtheit » und Autoritat a.

@ Alle Suchergebnisse werden nach der Bewertung
geordnet.

@ HIT liefert Seiten mit groBBem h und Seiten mit groBem a.

@ Probleme:

o Wenn eine Seite verschiedene Inhalte hat, kann sie auch
ausgegeben werden, wenn sie kein guter hub fiir die
Anfrage ist: viele r zu unterschiedlichen Themen!

o Wenn viele Seiten einer Web-Site auf Seite zeigen,
bekommt diese hohe Autoritat (topic hijacking), obwohl die
¢; hicht unabhangig voneinander waren.

@ Die Summen a,, h, sollten gewichtet werden. PageRank
tut das.

Katharina Morik, Claus Weihs DMV 30/31



. . e LS 8 Informatik B
technische universitat Computergestiitzte Statistik )
dortmund

Technische Universitat Dortmund

Closed Sets Web Mining
Was wissen Sie jetzt?

@ Sie kennen jetzt die Grundlage des Ranking von
Web-Seiten und einige Probleme. Schreiben Sie den Kern
von PageRank und HIT in Matrix-Notation (Gleichungen 1,
2, 3).

@ PageRank schatzt die Wahrscheinlichkeit ab, auf die Seite
zu kommen, indem es Kanten folgt und zuféllig auf Knoten
springt. Dabei verwendet es die Wahrscheinlichkeit « als
Gewicht der Ubergangswahrscheinlichkeiten und 1 — « als
Gewicht der Sprungwahrscheinlichkeit.

@ HIT summiert die Beliebtheit der abgehenden Seiten als
Wert der Expansion (hub).

HIT summiert die Expansion der eingehenden Seiten als
Wert der Beliebtheit (authority).
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