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Gliederung

o Closed Sets

@ Web Mining
@ Finden von haufigen Subgraphen
@ Ranking von Web-Seiten nach Autoritat
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Zu viele Muster!
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Untere Grenze

o Es werden sehr viele haufige Mengen gefunden, die
redundant sind.
o Wir mlssen also aus den Beispielen
o eine untere Grenze und
o eine obere Grenze konstruieren.
o Eine Halbordnung bzgl. Teilmengenbeziehung haben wir
schon.
@ Die Grenzen haben wir auch.

@ Gemerkt?
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Kleinere Mengen Bzg. der Haufigkeit

GroBere Mengen

@ Wenn eine Menge héufig ist, so auch all ihre Teilmengen.
(Anti-Monotonie)

@ Beschneiden der Ausgangsmengen flr die
Kandidatengenerierung geman dieser Grenze!
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Obere Grenze
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Beispiel mit Frequency threshold 0.3

Kleinere Mengen Bzgl. der Haufigkeit

Bzgl. eines constraints

GréBere Mengen

@ Monotonie der Seltenheit: Wenn eine Teilmenge selten ist, so
auch jede Menge, die sie enthalt. Seltenheit ist ein constraint.

@ Beschneidung der Kandidatengenerierung nach der Monotonie.
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Dank an Jean-Francois Boulicaut!
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Closed Item Sets

Kondensierte Reprasentationen

o Statt Suche nach allen haufigen Mengen: Suche nach
einer kondensierten Reprasentation,
o die kleiner ist als die urspriingliche Reprasentation und
o aus der wir alle haufigen Mengen und ihre Haufigkeit
ableiten kénnen, ohne noch mal die Daten selbst
anzusehen.
@ Kondensierte Reprasentationen flir Assoziationsregeln:
o Closed item sets
o Free sets
o Operator, der die Menge aller Assoziationsregeln ableitet:
o Cover operator
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@ closure(S) ist die maximale Obermenge
(geman der Teilmengenbeziehung) von S, die
noch genauso haufig wie S vorkommt.

@ S ist ein closed item set, wenn closure(S) = S

o support(S) = support(closure(S)) (fur alle S)

@ Bei einem Schwellwert von 0.1 sind alle
Transaktionen haufig genug.
o Closed sind: C, AC, BC, ABC, ABCD
o keine Obermenge von C' kommt auch 6 mal
vor
o A kommt 5 mal vor, aber auch die
Obermenge AC und keine Obermenge von
AC
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\ Kondensierte Reprasentation und Ableitung

o Closed item sets sind eine kondensierte Reprasentation:
o Sie sind kompakt.
o Wenn man die haufigen closed item sets C berechnet hat,
braucht man nicht mehr auf die Daten zuzugreifen und
kann doch alle hdufigen Mengen berechnen.

o Ableitung:
o Fur jede Menge S prifen wir anhand von C': Ist S in einem
Element X von C enthalten?
Nein , dann ist S nicht haufig.
Ja , dann ist die Haufigkeit von S genau die der kleinsten
solchen Obermenge X.
@ Wenn es in mehreren Elementen von C vorkommt, nimm die

maximale Haufigkeit!
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Was wissen Sie jetzt?

o Sie kennen eine Reprasentation, die weniger Elemente als
haufig ausgibt, aus der aber alle hdufigen Mengen
hergeleitet werden kénnen.

o Es gibt noch viele andere Methoden, um nur interessante
Muster auszugeben, aber hier lernen Sie nur eine kennen.
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Das Web und das Internet als Graph
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Eigenschaften des World Wide Web (WWW)

Webseiten sind Knoten, verbunden durch Verweise. Router und
andere Rechner sind Knoten, physikalisch verbunden.

WORLD-WIDE WEB

oSBT

INTERNET

Reka Albert, Albert-Laszlo Barabasi: Statistical Mechanics of Complex Networks, arXiv, 2006
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Die Struktur des Webs wurde schon friih untersucht
(http://arxiv.org/pdf/cond-mat/0106096v1.pdf)

o Small Worlds: Der Pfad zwischen zwei Knoten hat nur
wenige Knoten. In einem Ausschnitt des WWW mit 200
Mio. Seiten fanden Broder at al (2000) durchschnittliche
Pfadlangen von 16 Knoten.
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Eigenschaften des World Wide Web (WWW)

o Exponenzialverteilung: Die Wahrscheinlichkeit, dass ein
Knoten k Kanten hat, folgt einer Exponenzialverteilung:
PX=k)~k™"

Die bedingte Wahrscheinlichkeit hdngt dann nicht von der
GroBe ab (scale-free): P(X > k|X > m) = P(X > k)

Mit hoher Wahrscheinlichkeit gehen nur wenige Kanten ab,

o Clustering Coefficient C: Bei den meisten Knoten 7 sind
nicht alle ihre direkten Nachfolger k; miteinander
verbunden, sondern es gibt nur E; Kanten zwischen ihnen.
Wenn die Nachfolger streng zusammenhangend waren,
gébe es k;(k; — 1)/2 Kanten zwischen ihnen.

c 2F; kommen nur wenige Kanten an.
v kz(kl — 1) "’: & @
Auf das WWW angewandt ignoriert man die Richtung der o %%& ?
Kanten. Adamic (1999) fand bei 153.127 Web-Sites o %% of
C=0,1078, bei einem Zufallsgraphen der selben GréBe nur 10 s

C’=0,00023.

10""102 10° 10° 10° 10° 10° 10° 10° 10° 10° .
« « Verteilungen der Anzahl von Kanten:
(a) ausgehende (b) eingehende.
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Web Mining

Finden haufiger Muster in Graphen

Das WWW hat zu einer Menge interessanter

Forschungsaufgaben gefiihrt. Unter anderem gibt es: @ Wir betrachten Web-Sites als Graphen.

o Jede Web-Seite ist ein Knoten und die Knoten sind

o Indexieren von Web-Seiten fiir die Suche — machen wir
hier nicht

@ Analysieren von Klick-Strémen — web usage mining kommt
spdter

verbunden: das Klicken auf einer Seite flihrt zu einer
anderen Seite.
o Alternativ: die HTML-Struktur wird als Graph aufgefasst.

o Die Beobachtungsmenge beinhaltet viele Graphen und

Muster sollen in vielen davon vorkommen.

o Alternativ: Ein Muster soll haufig in einem Graphen
vorkommen.

o Co-Citation networks — machen wir hier nicht
o Finden haufiger Muster in vernetzten Informationsquellen
@ Ranking von Web-Seiten nach Autoritat
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Beispiel flir Subgraphen

Apriori-artiges Finden von Mustern

o Wir betrachten Web-Sites als Graphen. Jede Web-Seite ist
ein Knoten und die Knoten sind verbunden: das Klicken auf
einer Seite flhrt zu einer anderen Seite.

o Die Beobachtungsmenge beinhaltet viele Graphen und die
Muster sollen in vielen davon vorkommen.

@ Analog zu Apriori werden haufige Subgraphen erweitert
zur Kandidatengenerierung.

o Die Erweiterung ist jetzt etwas komplizierter.

—e

Die beiden linken 5-groBen Graphen haben einen 4-gro3en

@ AGM-Algorithmus: A. Inokuchi, T. Washio, H. Motoda: An
Apriori-based Algorithm for Mining Frequent Substructures
from Graph Data. PKDD Conference 2000.
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Graphen gemeinsam.
Die beiden rechten 6-gro3en Graphen sind die Kandidaten.
Hong Cheng, Xifeng Yan, Jiawei Han: Mining Gaph Patterns. In: Charu Agharwal, Haixun Wang (eds): Managing

and Mining Graph Data 2010
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Haufige Graphen und Anti-Monotonie

Apriori-artiges Finden von Mustern: Notation

@ V(g) sind die Knoten eines Graphen g;
@ E(g) sind die Kanten eines Graphen g;

@ Annotation [ bildet ein Label auf einen Knoten oder eine
Kante ab.

Subgraph Isomorphie

Far zwei annotierte Graphen g, ¢’ is die Subgraph Isomorphie
die Einbettung f : V(g9) — V(g’), so dass
° Vv e V(g):l(v) =1(f(v))
© V(u,v) € E(g) : (f(u), f(v)) € E(g') und
U(u, v) = V(f(w), f(v))

wobei [, !’ die Annotationen von g, ¢’ sind.
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Wir kénnen nun die Lernaufgabe definieren als das Finden aller
haufiger Graphen.

Haufiger Graph

@ Gegeben eine Menge annotierter Graphen D = Gy, ..., G,
und ein Subgraph g, dann ist support(g) = %\'l und die
Menge D, = {Gilg € G;,G; € D}.

o Finde alle Graphen g, deren support(g) nicht kleiner ist als
minsup.

Anti-Monotonie

Ein Subgraph mit £ Knoten bzw. Kanten ist nur dann haufig,
wenn alle seine Subgraphen haufig sind.
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Apriori(D, minsup, Sk)
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Closed Subgraphs

Input: Graphen D, Schwellwert minsup, k groBBe
Subgraphen Sj,
Output: Die Menge aller k + 1-groBen haufigen
Subgraphen Sy

Sk+1 = {

for g€ Sy do
for g; € Skdo
for g =9 © g;do

if support(g) > minsup, g ¢ Sk+1
then Sk+1 = Sk+1Ug
if Spr1#{} then
call  Apriori (D, minsup, Ski1)

return
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Analog zu den Closed Sets gibt es auch bei den Graphen eine
Closed Subgraph Darstellung.

Closed subgraph

A subgraph g is a closed subgraph in a graph set D, if
@ gis frequentin D and

o there exists no proper supergraph ¢’ such that g c ¢’ and
¢ is frequent in D.
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Was wissen Sie jetzt?

R A LS 8 Informatik o
technische universitat Computergestitzte Statistik 1
dortmund Technische Universitat Dortmund

Closed Sets  Web Mining

Ranking von Web-Seiten

@ Man kann eine Web-site als Graph auffassen, bei dem die
Seiten (Knoten) miteinander verbunden sind.

@ Auch bei einer Menge von Graphen kann man haufige
Muster (Teilgraphen) finden. Sie kennen den
Apriori-Algorithmus fir Graphen, der ein Muster durch
Hinzunahme eines Knotens erweitert.

@ Auch bei haufigen Mustern in Graphen gibt es eine
aggregierte Darstellung und Sie kennen die Definition.
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Was sind besonders wichtige Seiten?

o Eine Seite, von der besonders viele Links ausgehen, heif3t
expansiv.

o Eine Seite, auf die besonders viele links zeigen, heif3t
beliebt.

o Wie oft wiirde ein zufélliger Besucher auf eine Seite 4
kommen? Zufallige Besuche von einer beliebigen
Startseite aus:

o Mit der Wahrscheinlichkeit « folgt man einer Kante der
aktuellen Seite (Ubergangswahrscheinlichkeit).

o Mit der Wahrscheinlichkeit 1 — « springt man auf eine
zufallige Seite, unter der Annahme, dass die Seiten gleich
verteilt sind (Sprungwahrscheinlichkeit).

Der Rang einer Seite Page Rank(7) ist der Anteil von i an
den besuchten Knoten.
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Zufalls-Surfermodell: PageRank
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PageRank

Matrix M;; fiir Kanten von Knoten j zu Knoten 4; n(j) ist die
Anzahl der von j ausgehenden Kanten; N Knoten insgesamt.

1 N
1 0 ... Min
: M;; = 1/n(j)
N ... ... 0

Matrix N x N mit den Eintrdgen 1/N gibt die Gleichverteilung
der Knoten an (Sprungwahrscheinlichkeit).

Die Wahrscheinlichkeit, die Seite zu besuchen, ist die Summe
von Sprung- und Ubergangswahrscheinlichkeit, angegeben in
N x N Matrix M':

M =(1-a) [HJWM (1)
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Eigenvektoren von M’ geben den Rang der Knoten an.
Man kann das Gleichungssystem fiir o < 1 I6sen:

1 ..
Rang; = (1 — a) [N] +aZM ij
J
PageRank ist der rekursive Algorithmus:

1—
Rang; = Na +a Z
ViE{(i.)

Rang;
| n0)
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Alternativ: HIT — Hyperlinked-Induced Topic search

PageRank Beispiel

Mit « = 0, 85 hier ein kleines Beispiel (wikipedia). Die GréBe
der Kreise entspricht der Wahrscheinlichkeit, mit der ein Surfer
auf die Seite kommt. Seite C wird nur von einer einzigen, aber
gewichtigeren Seite verlinkt und hat also einen héheren
PageRank als Seite E, obwohl E von sechs Seiten verlinkt wird.
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Ahnlich ist eine Anfrage-orientierte Bewertung von Web-Seiten.
Statt des Zufalls-Surfers wird eine Suchanfrage gestellt und nur
die Menge G der gelieferten Seiten mit allen Seiten, die auf
diese verbunden sind, bewertet. Idee:

o Eine expansive Seite ist ein hub h. Sie soll auf beliebte
Seiten zeigen. Die Expansionsbewertung aller Seiten ist
ein Vektor £.

o Eine beliebte Seite ist eine authority a. Auf sie soll von
beliebten Seiten aus verwiesen werden. Die
Beliebtheitsbewertung aller Seiten ist ein Vektor a.

Die Matrix der Kanten M hat M;; = 1, falls es eine Kante
zwischen i und j gibt, 0 sonst.

—

h=Ma a=MTh (3)

Jon Kleinberg: A ive sources in a environment. Journal of the ACM 46(5), 1999.

Katharina Morik, Claus Weihs

LS 8 Informatik o N — LS8 Informatik
technische universitat Computergestitzte Statistik ‘ (E hJ technische universitat Computergestitzte Statistik 72
dortmund ‘Technische Universitat Dortmund

Closed Sets  Web Mining

Berechnung von , @
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k Iterationen
@ Berechne a fir alle Knoten p € G:
0 ap:=> hg
o norm:= />  qa;

o ay, = ap/norm;

o Berechne # fiir alle Knoten p € G:

0 hy =3 a,;

— 2.
o norm = /3 3
o hy = hy/norm;
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o HIT bewertet die Seiten, die eine Suchmaschine geliefert
hat, nach Beliebtheit ~ und Autoritat a.

@ Alle Suchergebnisse werden nach der Bewertung
geordnet.

o HIT liefert Seiten mit groBem h und Seiten mit groBem a.

@ Probleme:

o Wenn eine Seite verschiedene Inhalte hat, kann sie auch
ausgegeben werden, wenn sie kein guter hub fir die
Anfrage ist: viele r zu unterschiedlichen Themen!

o Wenn viele Seiten einer Web-Site auf Seite zeigen,
bekommt diese hohe Autoritat (topic hijacking), obwohl die
¢; nicht unabh&ngig voneinander waren.

@ Die Summen a,, b, sollten gewichtet werden. PageRank
tut das.
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| Was wissen Sie jetzt?

o Sie kennen jetzt die Grundlage des Ranking von
Web-Seiten und einige Probleme. Schreiben Sie den Kern
von PageRank und HIT in Matrix-Notation (Gleichungen 1,
2, 3).

@ PageRank schétzt die Wahrscheinlichkeit ab, auf die Seite
zu kommen, indem es Kanten folgt und zufallig auf Knoten
springt. Dabei verwendet es die Wahrscheinlichkeit « als
Gewicht der Ubergangswahrscheinlichkeiten und 1 — « als
Gewicht der Sprungwahrscheinlichkeit.

@ HIT summiert die Beliebtheit der abgehenden Seiten als
Wert der Expansion (hub).

HIT summiert die Expansion der eingehenden Seiten als
Wert der Beliebtheit (authority).
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