
Apriori FP-Tree

Vorlesung
Wissensentdeckung in Datenbanken

Häufige Mengen: Apriori und FP-Growth

Kristian Kersting, (Katharina Morik), Claus Weihs

LS 8 Informatik
Computergestützte Statistik

Technische Universität Dortmund

17.4.2014

1 von 46

Apriori FP-Tree

Was geschah in der letzten Vorlesung?

Wir haben SQL wiederholt und sind insbesondere auf
Aggregation eingegangen
Sie haben den Data Cube kennengelernt: Aggregation über p
Dimensionen
Sie haben gesehen, wie mit mit seiner Hilfe exploratives Data
Mining betreiben kann: OLAP (Online Analytical Processing)
Wir haben gesehen, dass die Berechnung eine Data Cubes ein
interessantes Optimierungsproblem ist. Fragestellungen des Data
Mining, der Datenbanktheorie und der Architektur gehen oft Hand
in Hand, gerade bei Big Data.

2 von 46

Apriori FP-Tree

Heute: Häufige Mengen automatisch finden

OLAP ist Benutzer bezogen: muss man wissen, wonach man
“sucht”
Wenn viele Relationen vorliegen, kann es schwierig sein, den
Überblick zu behalten

Wie finden wir automatisch Muster in einer Datenbank,
von denen wir vielleicht nicht einmal geträumt haben ?

Häufige Mengen
Assoziationsregeln

3 von 46

Apriori FP-Tree

Gliederung

1 Apriori

2 FP-Tree

4 von 46

Apriori FP-Tree

Lernen von Assoziationsregeln

Gegeben:
R eine Menge von Objekten, die binäre Werte haben
t eine Transaktion, t ⊆ R
r eine Menge von Transaktionen
smin ∈ [0,1] die minimale Unterstützung (support),
confmin ∈ [0,1] die minimale Konfidenz (confidence)

Finde alle Regeln c der Form X → Y , wobei X ⊆ R, Y ⊆ R,
X ∩ Y = {}

Unterstützung s(r , c) =
|{t ∈ r | X ∪ Y ⊆ t}|

|r |
≥ smin (1)

Konfidenz conf (r , c) =
|{t ∈ r | X ∪ Y ⊆ t}|
|{t ∈ r | X ⊆ r}|

≥ confmin (2)

5 von 46

Apriori FP-Tree

Binäre Datenbanken

Sei R eine Menge von Objekten, die binäre Werte haben, und r eine
Menge von Transaktionen, dann ist t ∈ r eine Transaktion und die
Objekte mit dem Wert 1 sind eine Teilmenge aller Objekte.

R = {A,B,C}

t = {B,C} ⊆ R

A B C ID
0 1 1 1
1 1 0 2
0 1 1 3
1 0 0 4

6 von 46

Apriori FP-Tree

Warenkorbanalyse (Market Basket Analysis)

Aftershave Bier Chips EinkaufsID
0 1 1 1
1 1 0 2
0 1 1 3
1 0 0 4

{Aftershave} → {Bier} s =
1
4
, conf =

1
2

{Aftershave} → {Chips} s = 0

{Bier} → {Chips} s =
1
2
, conf =

2
3

(zusammen anbieten?)

{Chips} → {Aftershave} s = 0
{Aftershave} → {Bier, Chips} s = 0

7 von 46

Apriori FP-Tree

Verband (Lattice)

{A,B,C,D}

{A,B,D}{A,B,C} {B,C,D} {A,C,D}

{A,B} {A,C} {B,C} {B,D} {C,D} {A,D}

{A} {B} {C} {D}

{}

8 von 46

Apriori FP-Tree

Ordnungsrelation

Hier ist die Ordnungsrelation die Teilmengenbeziehung.
Eine Menge S1 ist größer als eine Menge S2, wenn S1 ⊇ S2.
Eine kleinere Menge ist allgemeiner.

9 von 46

Apriori FP-Tree

Assoziationsregeln

Achtung: Assoziationsregeln sind keine logischen Regeln!
In der Konklusion können mehrere Attribute stehen
Attribute sind immer nur binär.
Mehrere Assoziationsregeln zusammen ergeben kein Programm.

Achtung: Binärvektoren (Transaktionen)
Attribute sind eindeutig geordnet.

Aufgabe:
Aus häufigen Mengen Assoziationsregeln herstellen

10 von 46

Apriori FP-Tree

Apriori Algorithmus
(Agrawal, Mannila, Srikant, Toivonen, Verkamo 1996)

Häufige Mengen Lk = X ∪ Y mit k Objekten (frequent itemsets)
(X und Y beziehen sich hier auf die Assoziationregeln!)

Wenn eine Menge häufig ist, so auch all ihre Teilmengen.
(Anti-Monotonie)
Wenn eine Menge selten ist, so auch all ihre Obermengen.
(Monotonie)
Wenn X in Lk+1 ist, dann sind alle Si ⊆ X in Lk (Anti-Monotonie)
Alle Mengen Lk , die k − 1 Objekte gemeinsam haben, werden
vereinigt zu Ck+1. Das ist die Menge der Kandidaten für Lk+1.

Dies ist der Kern des Algorithmus, die Kandidatengenerierung.

11 von 46

Apriori FP-Tree

Beispiel

· · ·

{A,B,C}

{A,B} {A,C} {B,C}

· · · · · · · · ·

Wenn {A,B,C} häufig ist,
dann sind auch {A,B}, {A,C},
{B,C} häufig.
Das bedeutet, daß{A,B},
{A,C}, {B,C} (k = 2) häufig
sein müssen, damit {A,B,C}
(k + 1 = 3) häufig sein kann.
Also ergeben die häufigen
Mengen aus Lk die
Kandidaten Ck+1

Wir können häufige Mengen level-weise
berechnen.

12 von 46

Apriori FP-Tree

Beispiele

Gesucht werden Kandidaten mit k + 1 = 5

L4 = {{ABCD}, {ABCE}, {ABDE}, {ACDE}, {BCDE}}
k − 1 Stellen gemeinsam vereinigen zu: l = {ABCDE}
Sind alle k langen Teilmengen von l in L4?
{ABCD}{ABCE}{ABDE}{ACDE}{BCDE} - ja!
Dann wird l Kandidat C5.

L4 = {{ABCD}, {ABCE}}
l = {ABCDE}

Sind alle Teilmengen von l in L4?
{ABCD}{ABCE}{ABDE}{ACDE}{BCDE} - nein!
Dann wird l nicht zum Kandidaten.

13 von 46

Apriori FP-Tree

Kandidatengenerierung

Erzeuge-Kandidaten(Lk)
Ck+1 := {}
Für alle l1, l2 in Lk , so dass

l1 = {i1, · · · , ik−1, ik} und

l2 = {i1, · · · , ik−1, i ′k} mit i ′k < ik

l := {i1, · · · , ik−1, ik , i ′k}
falls alle k -elementigen Teilmengen von l in Lk sind, dann

Ck+1 := Ck+1 ∪ {l}

return Ck+1

Prune(Ck+1, r) vergleicht Häufigkeit von Kandidaten mit smin.

14 von 46

Apriori FP-Tree

Häufige Mengen

Häufige-Mengen(R, r , smin)
C1 := ∪i∈R i ,
Setze k = 1
L1 := Prune(C1)
while Lk 6= {}

Ck+1 := Erzeuge-Kandidaten(Lk)
Lk+1 := Prune(Ck+1, r)
k := k + 1
return ∪k

j=2Lj

15 von 46

Apriori FP-Tree

APRIORI

Apriori(R, r , smin, confmin)
L :=Häufige-Mengen(R, r , smin)
c :=Regeln (L, confmin)
return c

Aber wie werden die Regeln generiert?

16 von 46

Apriori FP-Tree

Regelgenerierung

Aus den häufigen Mengen werden Regeln geformt. Wenn die
Konklusion länger wird, kann die Konfidenz sinken. Die Ordnung der
Attribute wird ausgenutzt:

l1 = {i1, · · · , ik−1, ik} c1 = {i1, · · · , ik−1} → {ik} conf1
l1 = {i1, · · · , ik−1, ik} c2 = {i1, · · · } → {ik−1, ik} conf2
· · · · · · · · ·
l1 = {i1, · · · , ik−1, ik} ck = {i1} → {· · · , ik−1, ik} confk

conf1 ≥ conf2 ≥ · · · ≥ confk

17 von 46

Apriori FP-Tree

Implementierung: Präfixbaum

Die Zahl der Vergleiche zur Berechnung der Unterstützung kann
sehr groß werden !
Daher brauchen wir effizientere Strukturen, um die Zahl der
Vergleiche zu reduzieren: Hash-Tree oder Präfixbaum (Trie), der
sich aus der Ordnung der Elemente in den Mengen ergibt.
An jedem Knoten werden die Schlüssel und/oder Häufigkeit
gespeichert.
Dynamischer Aufbau

{A,B,C}
{A,B,D}

B

{A,C,D}

C

A

{B,C,D}

C

{B,D}

B

{C,D}

C

{D}

D

18 von 46

Apriori FP-Tree

Implementierung: Hash-Tree

Nehmen wir mal an, dass wir
{1,4,5}, {1,2,4}, {4,5,7}, {1,2,5}, {4,5,8}, {1,5,9}, {1,3,6} ,
{2,3,4}, {5,6,7}, {3,4,5}, {3,5,6}, {3,5,7}, {6,8,9} ,
{3,6,7}, {3,6,8} hätten.
Die Hash-Funktion bildet jetzt jeden Wert auf 0,1,2 ab, also z.B.
f (x) = x mod 3. 1 steht für "links", 2 für "mitte" und 0 für "rechts.

19 von 46

Apriori FP-Tree

Was wissen Sie jetzt?

Assoziationsregeln sind keine logischen Regeln.

Anti-Monotonie der Häufigkeit: Wenn eine Menge häufig ist, so
auch all ihre Teilmengen.
Man erzeugt häufige Mengen, indem man häufige Teilmengen zu
einer Menge hinzufügt und diese Mengen dann auf Häufigkeit
testet. Bottom-up Suche im Verband der Mengen.(Generierung
der Kandidaten)

Monotonie der Seltenheit: Wenn eine Teilmenge selten ist, so
auch jede Menge, die sie enthält.
Man beschneidet die Suche, indem Mengen mit einer seltenen
Teilmenge nicht weiter betrachtet werden. (Pruning)

20 von 46

Apriori FP-Tree

Probleme von Apriori

Im schlimmsten Fall ist Apriori exponentiell in R, weil womöglich
alle Teilmengen gebildet würden. In der Praxis sind die
Transaktionen aber spärlich besetzt. Die Beschneidung durch
smin und confmin reicht bei der Warenkorbanalyse meist aus.
Apriori liefert unglaublich viele Regeln.
Die Regeln sind höchst redundant.
Die Regeln können irreführend sein, weil die Kriterien die a priori
Wahrscheinlichkeit nicht berücksichtigen. Wenn sowieso alle
Cornflakes essen, dann essen auch hinreichend viele Fußballer
Cornflakes.

21 von 46

Apriori FP-Tree

Prinzipien für Regelbewertungen

1 RI(A→ B) = 0, wenn |A→ B| = (|A||B|)
|r |

A und B sind unabhängig.
2 RI(A→ B) steigt monoton mit |A→ B|.
3 RI(A→ B) fällt monoton mit |A| oder |B|.

Also:
RI > 0, wenn |A→ B| > (|A||B|)

|r | , d.h. wenn A positiv mit B
korreliert ist.
RI < 0, wenn |A→ B| < (|A||B|)

|r | , d.h. wenn A negativ mit B
korreliert ist.

Wir wissen, dass immer |A→ B| ≤ |A| ≤ |B| gilt, also
RImin, wenn |A→ B| = |A| oder |A| = |B|
RImax , wenn |A→ B| = |A| = |B|

Piatetsky-Shapiro 1991

22 von 46

Apriori FP-Tree

Konfidenz

Die Konfidenz erfüllt die Prinzipien nicht! (Nur das 2.) Auch
unabhängige Mengen A und B werden als hoch-konfident
bewertet.
Die USA-Census-Daten liefern die Regel

aktiv-militär→ kein-Dienst-in-Vietnam

mit 90% Konfidenz. Tatsächlich ist
s(kein-Dienst-in-Vietnam) = 95% Es wird also wahrscheinlicher,
wenn aktiv-militär gegeben ist!
Gegeben eine Umfrage unter 2000 Schülern, von denen 60%
Basketball spielen, 75% Cornflakes essen. Die Regel

Basketball→ Cornflakes

hat Konfidenz 66% Tatsächlich senkt aber Basketball die
Cornflakes Häufigkeit!

23 von 46

Apriori FP-Tree

Signifikanztest

Ein einfaches Maß, das die Prinzipien erfüllt, ist:

|A→ B| − |A||B|
|r |

Die Signifikanz der Korrelation zwischen A und B ist:

|A→ B| − |A||B||r |√
|A||B|

(
1− A

r

) (
1− |B||r |

)

24 von 46

Apriori FP-Tree

Sicherheitsmaß

Shortliffe, Buchanan 1990 führten ein Sicherheitsmaß CF ein (für
Regeln in Wissensbasen)

Wenn conf (A→ B) > s(B)

CF (A→ B) = conf (A→ B)− s(B)
1−s(B)

Wenn conf (A→ B) < s(B)
CF (A→ B) = conf (A→ B)

Sonst
CF (A→ B) = 0

Das Sicherheitsmaß befolgt die Prinzipien für Regelbewertung.
Wendet man Signifikanztest oder Sicherheitsmaß an, erhält man
weniger (irrelevante, irreführende) Assoziationsregeln.

25 von 46

Apriori FP-Tree

Was wissen Sie jetzt?

Sie haben drei Prinzipien für die Regelbewertung kennengelernt:
Unabhängige Mengen sollen mit 0 bewertet werden.
Der Wert soll höher werden, wenn die Regel mehr Belege hat.
Der Wert soll niedriger werden, wenn die Mengen weniger Belege
haben.

Sie haben drei Maße kennen gelernt, die den Prinzipien genügen:

Einfaches Maß
statistisches Maß und
Sicherheitsmaß

26 von 46

Apriori FP-Tree

FP-Tree: Finden von häufige Mengen ohne Kandidatengenerierung
(Jiawei Han and Micheline Kamber, 2000)

Idee: Komprimiere die Daten in eine kompakte Datenstruktur:
Frequent-Pattern tree (FP-Tree)

sehr verdichtet, aber vollständig fürs Finden von häufigen Mengen
Vermeidet teure Scans der Daten

Basierend auf FP-Trees werden dann häufige Mengen und somit
Assoziationsregeln gefunden

Teile-und-Herrsche Ansatz: Die Data Mining Aufgaben werden in
kleinere Aufgaben aufgeteilt
Kandidatengenerierung wird vermieden, in dem nur die
"Sub-Datenbanken" getestet werden

27 von 46

Apriori FP-Tree

Konstruktion eines FP-trees aus einer DB von Transaktionen

TID Items bought (ordered) frequent items

100 {f ,a, c,d ,g, i ,m,p} {f , c,a,m,p}
200 {a,b, c, f , l ,m,o} {f , c,a,b,m}
300 {b, f ,h, j ,o} {f ,b}
400 {b, c, k , s,p} {c,b,p}
500 {a, f , c,e, l ,p,m,n} {f , c,a,m,p}

supportmin = 0.5

Item freq head
f
c
a
b
m
p

4
4
3
3
3
3

{}

f : 4

c : 3

a : 3

m : 2

p : 2

b : 1

m : 1

b : 1

c : 1

b : 1

p : 1

1 Scan die DB einmal, um die häufige
1-itemsets zu finden (single item
pattern)

2 Ordne die häufigen Mengen absteiget
nach Häufigkeit

3 Scan die DB nochmals, um den
FP-tree aufzubauen

28 von 46

Apriori FP-Tree

Was ist ein FP-Tree ?

Ein FP Tree ist nach Häufigkeiten (von oben nach unten)
geordnet.
Ein FP Tree fasst Transaktionen als Wörter auf und stellt
gemeinsame Präfixe verschiedener Wörter dar.
Für jede Transaktion lege einen Pfad im FP Tree an:

Pfade mit gemeinsamem Präfix - Häufigkeit +1, Suffix darunter
hängen.
Kein gemeinsamer Präfix vorhanden - neuen Zweig anlegen.

Header Tabelle verweist auf das Vorkommen der Items im Baum.
Auch die Tabelle ist nach Häufigkeit geordnet.
Und weil wir einen Präfix-Baum haben, verweisen wir "von links
nach rechts" auf das nächste Vorkommen des Wortes im Baum.

29 von 46

Apriori FP-Tree

Vorteile der FP-Tree Struktur

Vollständigkeit:
Alle langen Muster in Transaktionen bleiben erhalten.
Jegliche Information relevant fürs Finden der häufigen Mengen
bleibt erhalten.

Kompaktheit:
Reduktion der irrelevanten Informationen — seltene Items sind
fallen weg
Wegen der Sortierung nach absteigende Häufigkeit werden häufige
Items gemeinsam “benutze”.
Niemals größer als die ursprüngliche DB (wenn man von
Knoten-Links und Counts absieht)
Für einige DBs ist die Kompressionsrate über 100.

OK, jetzt haben wir FP-Trees. Und wie finden wir jetzt die
Häufigen Mengen?

30 von 46

Apriori FP-Tree

Mining Häufige Muster mittels FP-Trees: FP-Growth

Generelle Idee (Teile-und-Herrsche)
Baue rekursiv “häufige Muster”-Pfade mittels des FP-Trees.

Methode
Bestimme für jedes Item seine bedingte Musterbank (conditional
pattern-base) und seinen bedingten FP-Tree.
Wiederhole rekursive dies auf den neu hinzugekommenen
bedingten FP-Trees solange,
bis der resultierende FP-Tree leer oder nur noch einen Pfad enthält.
Diese Pfad generiert all Kombinationen seiner Teilpfade, die alle
häufige Mengen/Muster sind. Diese zählt man einfach auf.

31 von 46

Apriori FP-Tree

Schritt 1: Vom FP-tree zur Bedingten Musterbank

Fange mit der Header-Tabelle als Verweise in den FP-Tree an.
Gehe den FP-Tree für alle häufigen Items durch.
Füge alle entsprechenden Präfix-Pfade in die Bedingte
Musterbank ein. Die Häufigkeiten werden von den
"Einstiegspunkten" übernommen.

Item freq head
f
c
a
b
m
p

4
4
3
3
3
3

{}

f : 4

c : 3

a : 3

m : 2

p : 2

b : 1

m : 1

b : 1

c : 1

b : 1

p : 1

Item conditional pattern base

c f : 3
a fc : 3
b fca : 1, f : 1, c : 1
m fca : 2, fcab : 1
p fcam : 2, cb : 1

32 von 46

Apriori FP-Tree

Schritt 2: Konstruktion der Bedingten (Conditional) FP-trees

Für jede Musterbank
Akkumuliere die Counts (Zählungen) für jedes Item in der Bank.
Konstruiere den FP-Tree für die häufigen Mengen in der
Musterbank.

Item freq head
f
c
a
b
m
p

4
4
3
3
3
3

{}

f : 4

c : 3

a : 3

m : 2

p : 2

b : 1

m : 1

b : 1

c : 1

b : 1

p : 1
=⇒

m-conditional
pattern base:

fca : 2, fcab : 1

m-conditional FP-tree:

{}

f : 3

c : 3

a : 3

33 von 46

Apriori FP-Tree

Von der Cond. Pattern Base zum Cond. FP Tree

Präfixpfade eines Suffixes bilden die bedingte Basis.
Diejenigen Präfixpfade, die häufiger als supportmin sind, bilden
den bedingten FP Tree.
Falls mehrere dieser Präfixpfade zu einem Suffix gleich sind (vom
Anfang bis zu einer bestimmten Stelle), wird daraus ein Pfad bis
zu dieser Stelle und die ursprünglichen Häufigkeiten werden
addiert.
Ansonsten gibt es mehrere Pfade im bedingten Baum.

34 von 46

Apriori FP-Tree

Vom m-conditional FP-tree zu den häufigen Mengen

=⇒

m-conditional
pattern base:

fca : 2, fcab : 1

m-conditional FP-tree:
{}

f : 3

c : 3

a : 3

Alle häufigen Mengen für m
m
fm, cm,am
fcm, fam, cam
fcam

35 von 46

Apriori FP-Tree

Häufige Mengen mittels Bedingten Musterbanken

Item Conditional pattern-base conditional FP-tree

p {(fcam : 2), (cb : 1)} {(c : 3)}|p
m {(fca : 2), (fcab : 1)} {(f : 3, c : 3,a : 3)}|m
b {(fca : 1), (f : 1), (c : 1)} Empty
a {(fc : 3)} {((f : 3, c : 3)}|a
c {(f : 3)} {(f : 3)}|c
f Empty Empty

36 von 46

Apriori FP-Tree

Schritt 3: Rekursive Berechnung der bedingten FP-Trees

m-conditional
FP-tree:

{}

f : 3

c : 3

a : 3

=⇒

Cond. pattern
base of

“am”: (fc : 3)

am-conditional
FP-tree:

{}

f : 3

c : 3

Cond. pattern
base of

“cm”: (f : 3)

cm-conditional
FP-tree:

{}

f : 3

Cond. pattern
base of

“cam”: (f : 3)

cam-conditional
FP-tree:

{}

f : 3

37 von 46

Apriori FP-Tree

Rekursionsabbruch: Einzelner Pfad im FP-tree

Annahme: nur ein einzige Pfad P in einem (bedingten) FP-tree T .
Alle häufigen Mengen von T können durch das Aufzählen aller
möglichen Teilpfade von P generiert werden.

=⇒
m-conditional FP-tree:

{}

f : 3

c : 3

a : 3

Alle häufigen Mengen für m
m
fm, cm,am
fcm, fam, cam
fcam

38 von 46

Apriori FP-Tree

Alle häufigen Mengen

Die gesuchte Menge der häufigen Mengen ist die Gesamtheit
alles häufiger Muster aus allen bedingten FP Bäumen.

39 von 46

Apriori FP-Tree

Und warum funktioniert das? Das Prinzip von (Frequent Pattern) FP- Growth

Pattern-Growth Eigenschaft
Sei α eine Häufige Menge in DB, B die α’s bedingte Musterbank
und β eine Itemmenge in B. Dann ist α ∪ β eine häufige Menge in
DB gdw. β häufig in B ist.

Beispiel: “abcdef ” ist eine häufige Menge gdw.
“abcde” ist eine häufige Menge und
“f ” kommt häufig in den Transaktionen mit “abcde” vor.

40 von 46

Apriori FP-Tree

Algorithmus FP_growth

Input:
D eine Transaktionsdatenbank
supportmin ein Schwellwert der Häufigkeit

1 Scan von D, Erstellen der Menge F häufiger Items und ihrer
Häufigkeiten, Ordnen von F in absteigender Häufigkeit.

2 Wurzel des FP Trees ist Null. Für jede Transaktion Trans in D:
nach Häufigkeit gemäßF geordnete Items in Trans werden zur
Liste [p|P], wobei p das erste item und P die restlichen sind.
insert_tree([p|P],T)

3 FP_growth(FP_tree,null)

41 von 46

Apriori FP-Tree

insert_tree([p|P],T)

Wenn T ein Kind N hat mit N.item_name = p.item_name dann
erhöhe Häufigkeit von N + 1.
Sonst bilde neuen Knoten N mit Häufigkeit = 1 direkt unter T und
füge Knotenverweise zu den Knoten mit dem selben item.name
ein.
Solange P nicht {} ist, insert_tree(P,N).

42 von 46

Apriori FP-Tree

fp_growth(Tree, α)

Wenn Tree ein einziger Pfad P ist,
dann generiere für jede Kombination β von Knoten in P Muster
β ∪ α mit support = supportmin eines Items in β.

Sonst für jedes ai in header von Tree
generiere Muster β = ai ∪ α mit s = ai .s
konstruiere β cond. base und daraus β cond. FP tree Treeβ

Wenn Treeβ nicht {}, dann fp_growth(Treeβ , β)

43 von 46

Apriori FP-Tree

Warum is Frequent Pattern Growth schnell?

Empirische Untersuchungen zeigen, dass
FP-growth um eine Größenordnung schneller sein kann als Apriori.

Begründung
Keine Kandidatengenerierung, keine Kandidatentests !
Ausnutzung einer kompakten Datenstruktur.
Reduktion der vollständigen DB-Durchläufe/Scans.
Einfache Basisoperationen: zählen und FP-Tree Aufbauen.

44 von 46

Apriori FP-Tree

FP-growth vs. Apriori: Skalierung mit dem Support-Threshold

45 von 46

Apriori FP-Tree

Was wissen wir jetzt?

FP-growth als Alternative zu Apriori
Schneller, weil keine Kandidaten generiert werden
Kompaktes Speichern
Basisoperation ist einfach Zählen.

Der FP-Baum gibt Präfixbäume für ein Suffix an.
Die Ordnungsrelation ist die Häufigkeit der Items.

Der Baum wird vom häufigsten zum seltensten gebaut.
Die bedingte Basis wird vom seltensten Suffix zum häufigsten
erstellt.

Insgesamt, interessante Zusammenhänge in Transaktionen können
automatisch und effizient gefunden werden (z.B. mittels Apriori bzw.
FP-Growth).

46 von 46

