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Ausgangspunkt: Funktionsapproximation

@ Die bisher vorgestellten Lernverfahren, sind Instanzen der
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@ Die bisher vorgestellten Lernverfahren, sind Instanzen der
Funktionsapproximation.

@ Gegeben sind die Trainingsbeispiele 7, gesucht ist eine
Funktion

M
fol@) = hun(x)0m
m=1

© Dabei gibt es Parameter ¢, die abzuschatzen sind, bei den
linearen Modellen ist dies /.

@ h,,(x) ist eine Transformation der Beispiele.
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Aufteilen der Beispiele und Modellierung jeder Region

@ Lineare Modelle passen die Parameter fir den gesamten
Raum der Beispiele an, der evtl. durch eine implizite
Transformation (Kernfunktionen) oder explizite
Transformationen (Vorverarbeitung) in einen
Merkmalsraum tberfihrt wurde.
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Raum der Beispiele an, der evtl. durch eine implizite
Transformation (Kernfunktionen) oder explizite
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Aufteilen der Beispiele und Modellierung jeder Region

@ Lineare Modelle passen die Parameter fir den gesamten
Raum der Beispiele an, der evtl. durch eine implizite
Transformation (Kernfunktionen) oder explizite
Transformationen (Vorverarbeitung) in einen
Merkmalsraum tberfihrt wurde.

@ Baumlerner teilen den Merkmalsraum in Rechtecke auf
und passen in jedem ein Modell an. Dabei wird die Wahl
des Merkmals in der rekursiven Aufteilung automatisch
bestimmt.

@ kNN teilt den Raum der Beispiele bei einer Anfrage z in die
Nachbarschaft von « und den Rest auf.

4 von 34



. . o LS 8 Informatik
technische universitat Computergestiitzte Statistik
dortmund Technische Universitit Dortmund
Merkmalsauswahl
Gutemafe und Fehlerabschatzung

Klassifizieren mit Entscheidungsbaumen

Baumlerner

alkalisch

® @

[<35] [>35] [<7.5] [>75]

Bodeneignung fiir Rotbuchen:
Bodenprobe: trocken,alkalisch,7
wird als geeignet klassifiziert (+)
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Lernen aus Beispielen

" -
ID Feuchte Saure Temp | ID Feuchte Saure Temp
1 trocken basisch 7 2 feucht  neutral 8

3 trocken neutral 7 4 feucht alkal. 5

6 trocken neutral 6 5 trocken neutral 8

9 trocken alkal. 9 7 trocken neutral 11
10 trocken alkal. 8 8 trocken neutral 9
12 feucht neutral 10 11 feucht basisch 7
13 trocken basisch 6 14  feucht alkal. 7
16 trocken basisch 4 15 trocken basisch 3

Ohne weiteres Wissen kdnnen wir als Vorhersage immer -
sagen. Der Fehler ist dann 8/16.
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Aufteilen nach Bodenfeuchte

2 neutral 8 -
4 alkal. 5 -

— 11 basisch 7 -
; baS|sc|h77 > 12 neutral 10+
MY 7 = 14 alkal. 7 -

5 neutral 8 -

6 neutral 6 +

7 neutral 11 - P

8 neutral 9 - Vorhersage der haufigsten Klasse:
9 alkal.9 + 11 trocken +: Fehler &

10 alkal. 8 + 2 feucht -: Fehler 1

13 basisch 6 + Fehler

15 basisch 3 - bei Information liber Feuchte:

16 basisch 4 + 1.4 5 1_5
- 16 11 16 5 16
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Bedingte Wahrscheinlichkeit

@ Wabhrscheinlichkeit, dass ein Beispiel zu einer Klasse
gehdrt, gegeben der Merkmalswert

PY]X;) = P(Y N X;)/P(X})

8 von 34



. . o LS 8 Informatik
technische universitat Computergestiitzte Statistik
dortmund Technische Universitét Dortmund
Merkmalsauswahl

Baumlerner . -
Gutemafe und Fehlerabschatzung

Bedingte Wahrscheinlichkeit

@ Wabhrscheinlichkeit, dass ein Beispiel zu einer Klasse
gehdrt, gegeben der Merkmalswert

PY]X;) = P(Y N X;)/P(X})

@ Annaherung der Wahrscheinlichkeit Gber die Haufigkeit

8 von 34



. . o LS 8 Informatik
technische universitat Computergestiitzte Statistik
dortmund Technische Universitét Dortmund
Merkmalsauswahl

Baumlerner - -
Gutemafe und Fehlerabschatzung

Bedingte Wahrscheinlichkeit

@ Wabhrscheinlichkeit, dass ein Beispiel zu einer Klasse
gehdrt, gegeben der Merkmalswert

PY]X;) = P(Y N X;)/P(X})

@ Annaherung der Wahrscheinlichkeit Gber die Haufigkeit
@ Gewichtung bezlglich der Oberklasse
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Bedingte Wahrscheinlichkeit

@ Wabhrscheinlichkeit, dass ein Beispiel zu einer Klasse
gehort, gegeben der Merkmalswert

PY]X;) = P(Y N X;)/P(X})

@ Annaherung der Wahrscheinlichkeit Gber die Haufigkeit
@ Gewichtung bezlglich der Oberklasse
@ Beispiel: Y = {+, -}, X; = { feucht, trocken}

P(+|feucht) = 1/5, P(—|feucht) = 4/5 gewichtet mit 5/16

P(+|trocken) = 7/11, P(—|trocken) = 4/11 gewichtet mit 11/16

Wahl des Merkmals mit dem héchsten Wert (kleinsten
Fehler)
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Information eines Merkmals

@ Wir betrachten ein Merkmal als Information.
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Information eines Merkmals

@ Wir betrachten ein Merkmal als Information.
@ Wahrscheinlichkeit p;., dass das Beispiel der Klasse +

entstammt. I(p,p-) = (—p+logp) + (—p-logp-)
Entropie
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Information eines Merkmals

@ Wir betrachten ein Merkmal als Information.

@ Wabhrscheinlichkeit p,., dass das Beispiel der Klasse +
entstammt. I(p,p-) = (—p+logp) + (—p-logp-)
Entropie

@ Ein Merkmal X; mit k Werten teilt eine Menge von
Beispielen X in k Untermengen Xq, ..., X auf. Fir jede
dieser Mengen berechnen wir die Entropie.

In formation(X; Z||X| (p+,p-)
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Information eines Merkmals

@ Wir betrachten ein Merkmal als Information.

@ Wabhrscheinlichkeit p,., dass das Beispiel der Klasse +
entstammt. I(p,p-) = (—p+logp) + (—p-logp-)
Entropie

@ Ein Merkmal X; mit k Werten teilt eine Menge von
Beispielen X in k Untermengen X, ..., X, auf. Fir jede
dieser Mengen berechnen wir die Entropie.

Information(X Z||X| (p+,p-)

@ Der Informationsgewinn ist die Differenz zwischen der
Entropie der Beispiele mit und ohne die Aufteilung durch
X;.
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Feuchte

Gite des Attributs Feuchte mit den 2
Werten trocken und feucht:

11 5
trocken feucht
o 11 _7 o 7 B 4 o 4
- 16 11 %\1r) 11 B\
L trocken
5 1 1 4 4
— [ —="-1 - —="-1 - =-0,27
#5551 (5) -5 s (5))| =
feucht
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Gite des Attributs Feuchte mit den 2

Werten trocken und feucht:

alle 16 Beispiele

i trocken| | feucht

1 5 11 Beispiele: ] 5 Beispiele: I
7 d: 1d
- 1_6'I(+’_)1+ 1—6'1(‘1‘7—) 4 davon - 4 davon -
trocken feucht
11 7 1 7 1 4
= — _ —— -0 _— — —-lo _

16 11 %\1r) 11 B\

L trocken

5 (1 1\ 4 4
2 (—Zilog(Z)—=-log(=))| =-0,2
i (e (5) -5 me(5) | o

feucht
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Gute des Attributs Saure mit den 3
Werten basisch, neutral und alkalisch:

5 7 4
2 )+ () —

~~ ~~
basisch neutral alkalisch

I(+,-))

/

=-0,3
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Gute des Attributs Saure mit den 3
Werten basisch, neutral und alkalisch:

5 7
1_6'I(+7_)+_'I(+7_)

4
= e ()

~~ ~~
basisch neutral alkalisch

/

basisch —2 -log (£) + —2 -log (2)
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Gute des Attributs Saure mit den 3
Werten basisch, neutral und alkalisch:

5 7 4
— N L T(+ )+ — —
basisch neutral aIk;ﬁsch
=-0,3
basisch —2 -log (£) + —2 -log (2)
neutral —2 -log (2) + —2 - log (%)
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Gute des Attributs Saure mit den 3
Werten basisch, neutral und alkalisch:

- | 55 1)+ g )+ g 1)
basisch neutral alkalisch
=-0,3
vasisen —3 -log (2) + ~ -log (2
neutral —2 -log (2) + —2 - log (%)
alkalisch —2 -log (2) + —2 -log (2)
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Giite des Attributs Saure mit den 3 alle 16 Beispie-
Werten basisch, neutral und alkalisch: le
basisch [neutrlal alkalisch ]
3 davon + (|3 davon + || 2 davon +
5 I 7 I 4 7 2 davon - {4 davon - ){2 davon -
- 1_6 (+a_)+E' (+7_Z+E' (+7_))
basvisch neutral aIk;ﬁsch
=-0,3
basisch —2 -log (£) + —2 -log (2)
neutral —2 -log (2) + —2 - log (%)
alkalisch —2 .log (2) 4+ —2 -log (2)
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Temperatur

@ Numerische Merkmalswerte werden nach Schwellwerten
eingeteilt.
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@ Numerische Merkmalswerte werden nach Schwellwerten
eingeteilt.
o 9 verschiedene Werte in der Beispielmenge, also 8
Méglichkeiten zu trennen.
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@ Numerische Merkmalswerte werden nach Schwellwerten
eingeteilt.
o 9 verschiedene Werte in der Beispielmenge, also 8
Méglichkeiten zu trennen.
o Wert mit der kleinsten Fehlerrate bei Vorhersage der
Mehrheitsklasse liegt bei 7.
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Temperatur

@ Numerische Merkmalswerte werden nach Schwellwerten
eingeteilt.

o 9 verschiedene Werte in der Beispielmenge, also 8
Méglichkeiten zu trennen.

o Wert mit der kleinsten Fehlerrate bei Vorhersage der
Mehrheitsklasse liegt bei 7.

o 5 Beispiele mit Temp < 7, davon 3 in +,
11 Beispiele Temp > 7, davon 6 in -.
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Temperatur

@ Numerische Merkmalswerte werden nach Schwellwerten
eingeteilt.

o 9 verschiedene Werte in der Beispielmenge, also 8
Méglichkeiten zu trennen.

o Wert mit der kleinsten Fehlerrate bei Vorhersage der
Mehrheitsklasse liegt bei 7.

o 5 Beispiele mit Temp < 7, davon 3 in +,
11 Beispiele Temp > 7, davon 6 in -.

@ Die Gute der Temperatur als Merkmal ist —0, 29.
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Merkmalsauswahl

@ Gewahlt wird das Merkmal X;, dessen Werte am besten in
(Unter-)mengen X; aufteilen, die geordnet sind.
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@ Gewahlt wird das Merkmal X;, dessen Werte am besten in
(Unter-)mengen X; aufteilen, die geordnet sind.

o Das Gutekriterium Information (Entropie) bestimmt die
Ordnung der Mengen.
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Merkmalsauswahl

@ Gewahlt wird das Merkmal X;, dessen Werte am besten in
(Unter-)mengen X; aufteilen, die geordnet sind.

o Das Gutekriterium Information (Entropie) bestimmt die
Ordnung der Mengen.

@ Im Beispiel hat Feuchte den héchsten Gltewert.

13 von 34



. . o LS 8 Informatik
technische universitat Computergestiitzte Statistik
dortmund Technische Universitét Dortmund

Merkmalsauswahl
Gutemafe und Fehlerabschatzung

Baumlerner

Algorithmus Top Down Induction of Decision Trees (TDIDT, hier: ID3)
am Beispiel

1 basisch 7 + 2 neutral 8 -
3 neutral 7 + 4 alkal. 5 -

5 neutral 8 - 11 basisch 7 -
6 neutral 6 + 12 neutral 10
7 neutral 11 - +

8 neutral 9 - 14 alkal. 7 -

9 alkal.9 +

10 alkal. 8 +

13 basisch 6 +
15 basisch 3 -
16 basisch 4 +
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Saure

neu@

3 neutral 7 +
5 neutral 8 -
6 neutral 6 +
7 neutral 11 -
8 neutral 9 -

1 basisch 7 +

13 basisch 6 +
15 basisch 3 -
16 basisch 4 +

9 alkal. 9 +
10 alkal. 8 +

LS 8 Informatik
Computergestiitzte Statistik
Technische Universitat Dortmund

Merkmalsauswahl
Gutemafe und Fehlerabschatzung

Algorithmus TDIDT (ID3) am Beispiel

2 neutral 8 -
4 alkal. 5 -

11 basisch 7 -
12 neutral 10
+

14 alkal. 7 -
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Algorithmus TDIDT (ID3) am Beispiel

2 neutral 8 -
4 alkal. 5 -
11 basisch 7 -

alkalisch 12 neutral 10
n

1 basisch 7 + 14 alkal. 7 -

13 basisch 6 + 9 alkal. 9 +
15 basisch 3 - 10 alkal. 8 +

16 basisch 4 +
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Algorithmus TDIDT (ID3) am Beispiel

Baumlerner

2 neutral 8 -
4 alkal. 5 -
11 basisch 7 -
neutral [alkalisch] 12 neutral 10
+

14 alkal. 7 -

3 neutral 7 +
6 neutral 6 +
1 basisch 7 +

13 basisch 6 +
16 basisch 4 +

5 neutral 8 -
7 neutral 11 -
8 neutral 9 -

(15 basisch 3 - )
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Algorithmus ID3 (TDIDT)

Rekursive Aufteilung der Beispielmenge nach
Merkmalsauswahl:

@ TDIDT(X,{X1,..X,})
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Rekursive Aufteilung der Beispielmenge nach
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Q@ TDIDT(X,{X1,..Xp})
Q X enthalt nur Beispiele einer Klasse — fertig
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Q@ TDIDT(X,{X1,..Xp})
Q X enthalt nur Beispiele einer Klasse — fertig
Q@ X enthalt Beispiele verschiedener Klassen:
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Algorithmus ID3 (TDIDT)

Rekursive Aufteilung der Beispielmenge nach
Merkmalsauswahl:

Q@ TDIDT(X,{X1,..Xp})
Q X enthalt nur Beispiele einer Klasse — fertig

Q@ X enthalt Beispiele verschiedener Klassen:
o Giite(X1, .., Xp, X)

18 von 34
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Algorithmus ID3 (TDIDT)

Rekursive Aufteilung der Beispielmenge nach
Merkmalsauswahl:
Q@ TDIDT(X,{X1,..Xp})
Q X enthalt nur Beispiele einer Klasse — fertig
Q@ X enthalt Beispiele verschiedener Klassen:

o Giite(X1,.., Xp, X)
o Wahl des besten Merkmals X; mit £ Werten
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Algorithmus ID3 (TDIDT)

Rekursive Aufteilung der Beispielmenge nach
Merkmalsauswabhl:
Q TDIDT(X,{Xy,..X,})
Q X enthalt nur Beispiele einer Klasse — fertig
Q@ X enthalt Beispiele verschiedener Klassen:
o Giute(Xq,..,Xp, X)
o Wahl des besten Merkmals X; mit £ Werten
o Aufteilung von X in X1, Xo, ..., X
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Algorithmus ID3 (TDIDT)

Rekursive Aufteilung der Beispielmenge nach
Merkmalsauswabhl:
Q@ TDIDT(X,{Xy,..X,})
Q X enthalt nur Beispiele einer Klasse — fertig
Q@ X enthalt Beispiele verschiedener Klassen:
o Giute(Xq,..,Xp, X)
o Wahl des besten Merkmals X; mit k£ Werten

o Aufteilung von X in X1, Xo, ..., X
o firi=1,... k:
TDIDT (X, {X1, ..., Xp }\X;)
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Algorithmus ID3 (TDIDT)

Rekursive Aufteilung der Beispielmenge nach
Merkmalsauswabhl:
Q@ TDIDT(X,{Xy,..X,})
Q X enthalt nur Beispiele einer Klasse — fertig
Q@ X enthalt Beispiele verschiedener Klassen:
o Giute(Xq,..,Xp, X)
o Wahl des besten Merkmals X; mit k£ Werten

o Aufteilung von X in X1, Xo, ..., X
o firi=1,... k:
TDIDT (X, {X1, ..., Xp }\X;)

o Resultat ist aktueller Knoten mit den Teilbdumen T, ..., T}
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die Komplexitat O(pN log N)
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Rekursive Aufteilung der Beispielmenge nach
Merkmalsauswahl:
@ Bei p (nicht-numerischen) Merkmalen und N Beispielen ist
die Komplexitat O(pN log N)
o Die Tiefe des Baums sei in O(log N).
o O(Nlog N) alle Beispiele mussen “in die Tiefe verteilt”
werden, also: O(N log N) fur ein Merkmal.
o p mal bei p Merkmalen!

19 von 34



. . o LS 8 Informatik
technische universitat Computergestiitzte Statistik %
dortmund Technische Universitit Dortmund

Dl ey GutemaBe und Fehlerabschatzung

Stutzen

20 von 34



. . o LS 8 Informatik
technische universitat Computergestiitzte Statistik %
dortmund Technische Universitit Dortmund

Dl ey GutemaBe und Fehlerabschatzung

Stutzen

20 von 34



. . o LS 8 Informatik

technische universitat Computergestiitzte Statistik @

dortmund Technische Universitit Dortmund
Merkmalsauswahl

Dl ey GutemaBe und Fehlerabschatzung

Stutzen

o Uberanpassung des
Baums an die
Trainingsdaten verringern!

20 von 34



. . o LS 8 Informatik
technische universitat Computergestitzte Statistik %
dortmund Technische Universitit Dortmund
Merkmalsauswahl

Senel GutemaBe und Fehlerabschatzung

Stutzen

o Uberanpassung des
Baums an die
Trainingsdaten verringern!

o Verstandlichkeit erhéhen!

20 von 34



. . o LS 8 Informatik
technische universitat Computergestitzte Statistik %
dortmund Technische Universitit Dortmund
Merkmalsauswahl

Senel GutemaBe und Fehlerabschatzung

Stutzen

o Uberanpassung des
Baums an die
Trainingsdaten verringern!

@ Verstandlichkeit erhéhen!

@ Stutzen (Pruning):

20 von 34



. . o LS 8 Informatik
technische universitat Computergestiitzte Statistik
dortmund Technische Universitit Dortmund
Merkmalsauswahl

(SRS GutemaBe und Fehlerabschatzung

Stutzen

o Uberanpassung des
Baums an die
Trainingsdaten verringern!

@ Verstandlichkeit erhéhen!

@ Stutzen (Pruning):

a) Knoten an Stelle eines
Teilbaums setzen

20 von 34



. . o LS 8 Informatik
technische universitat Computergestiitzte Statistik
dortmund Technische Universitit Dortmund
Merkmalsauswahl

Senel GutemaBe und Fehlerabschatzung

Stutzen

o Uberanpassung des
Baums an die
Trainingsdaten verringern!

o Verstandlichkeit erhéhen!

@ Stutzen (Pruning):

a) Knoten an Stelle eines
Teilbaums setzen

b) Einen Teilbaum eine
Ebene hdher ziehen

20 von 34



. . o LS 8 Informatik

technische universitat Computergestiitzte Statistik

dortmund Technische Universitit Dortmund
Merkmalsauswahl

(SRS GutemaBe und Fehlerabschatzung

Stutzen

o Uberanpassung des
Baums an die
Trainingsdaten verringern!

@ Verstandlichkeit erhdhen!

@ Stutzen (Pruning):

a) Knoten an Stelle eines
Teilbaums setzen

b) Einen Teilbaum eine
Ebene hdher ziehen

@ Schéatzen, wie sich der
wahre Fehler beim Stutzen
entwickelt.

20 von 34



technische universitat
dortmund

Baumlerner

Stutzen

LS 8 Informatik
Computergestitzte Statistik
Technische Universitat Dortmund
Merkmalsauswahl
GutemaBe und Fehlerabschatzung

o Uberanpassung des
Baums an die
Trainingsdaten verringern!

@ Verstandlichkeit erhdhen!

@ Stutzen (Pruning):

a) Knoten an Stelle eines
Teilbaums setzen

b) Einen Teilbaum eine
Ebene hdher ziehen

@ Schéatzen, wie sich der
wahre Fehler beim Stutzen
entwickelt.

20 von 34



. . o LS 8 Informatik
technische universitat Computergestiitzte Statistik
dortmund Technische Universitit Dortmund

Merkmalsauswahl

Baumlerner  3iemaBe und Fehlerabschatzung
Stutzen
o Uberanpassung des
Baums an die )
Trainingsdaten verringern! /\ \ '/ \'
o Verstandlichkeit erhdhen! ® 7 N
@ Stutzen (Pruning): @ @

a) Knoten an Stelle eines
Teilbaums setzen
b) Einen Teilbaum eine
Ebene hdher ziehen
@ Schéatzen, wie sich der
wahre Fehler beim Stutzen
entwickelt.

20 von 34



technische universitat
dortmund

Baumlerner

Stutzen

o Uberanpassung des
Baums an die
Trainingsdaten verringern!

@ Verstandlichkeit erhdhen!

@ Stutzen (Pruning):

a) Knoten an Stelle eines
Teilbaums setzen

b) Einen Teilbaum eine
Ebene hdher ziehen

@ Schéatzen, wie sich der
wahre Fehler beim Stutzen
entwickelt.

LS 8 Informatik
Computergestiitzte Statistik

Technische Universitat Dortmund

Merkmalsauswahl
GutemaBe und Fehlerabschatzung

20 von 34



. . o LS 8 Informatik
technische universitat Computergestiitzte Statistik
dortmund Technische Universitit Dortmund
Merkmalsauswahl

(SRS GutemaBe und Fehlerabschatzung

Stutzen durch Fehlerschatzen

@ Wenn der Fehler eines Knotens kleiner ist als die Summe
der Fehler seiner Unterknoten, kébnnen die Unterknoten
weggestutzt werden.

21 von 34



. . o LS 8 Informatik
technische universitat Computergestiitzte Statistik
dortmund Technische Universitit Dortmund
Merkmalsauswahl

(SRS GutemaBe und Fehlerabschatzung

Stutzen durch Fehlerschatzen

@ Wenn der Fehler eines Knotens kleiner ist als die Summe
der Fehler seiner Unterknoten, kébnnen die Unterknoten
weggestutzt werden.

@ Dazu mussen wir (bottom-up) die Fehler an allen Knoten
schatzen.

21 von 34



. . o LS 8 Informatik
technische universitat Computergestiitzte Statistik
dortmund Technische Universitit Dortmund
Merkmalsauswahl

Dl ey GutemaBe und Fehlerabschatzung

Stutzen durch Fehlerschatzen

@ Wenn der Fehler eines Knotens kleiner ist als die Summe
der Fehler seiner Unterknoten, kébnnen die Unterknoten
weggestutzt werden.

@ Dazu mussen wir (bottom-up) die Fehler an allen Knoten
schatzen.

@ Obendrein sollten wir berticksichtigen, wie genau unsere
Schatzung ist. Dazu bestimmen wir ein Konfidenzintervall.

21 von 34



. . o LS 8 Informatik

technische universitat Computergestiitzte Statistik

dortmund Technische Universitit Dortmund
Merkmalsauswahl

Dl ey GutemaBe und Fehlerabschatzung

Stutzen durch Fehlerschatzen

@ Wenn der Fehler eines Knotens kleiner ist als die Summe
der Fehler seiner Unterknoten, kébnnen die Unterknoten
weggestutzt werden.

@ Dazu mussen wir (bottom-up) die Fehler an allen Knoten
schatzen.

@ Obendrein sollten wir berticksichtigen, wie genau unsere
Schatzung ist. Dazu bestimmen wir ein Konfidenzintervall.

@ Wenn die obere Schranke der Konfidenz in den Fehler
beim oberen Knoten kleiner ist als bei allen Unterknoten
zusammen, werden die Unterknoten gestutzt.
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Was ist ein Konfidenzintervall?

Konfidenzintervall

Vorgegeben eine tolerierte Irrtumswahrscheinlichkeit a, gibt
das Konfidenzintervall

Pu<X<o)=1—-a

an, dass X mit der Wahrscheinlichkeit 1 — a. im Intervall [u, 0]
liegt und mit der Wahrscheinlichkeit « nicht in [u, o] liegt.

Meist wird das Konfidenzintervall fir den Erwartungswert
gebildet. Beispiel o = 0, 1: Mit 90% iger Wahrscheinlichkeit liegt
der Mittelwert X im Intervall [u, o], nur 10% der Beobachtungen
liefern einen Wert auBBerhalb des Intervalls.
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z-Transformation in eine standard-normalverteilte Zufallsvariable

Die Zufallsvariable X wird bezlglich ihres Mittelwerts X
standardisiert unter der Annahme einer Normalverteilung:

X —p

Z = ~ N(0;1)
TN
Die Wahrscheinlichkeit daflir, dass der Mittelwert im Intervall
liegt, ist nun:
« X - 7] a
— — )< < . =1-
P z (1 2) <S—F— <2 (1 2) 11—«

VN
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Verteiluna mit z-Werten
Flache unter der Glocke in

[-z,2]=¢

@ P(—z < X <2z)=1- «aKonfidenzniveau
Wahrscheinlichkeit, dass X mit Mittelwert 0 im Intervall der
Breite 2z liegtist 1 — a.
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Baumlerner

Verteiluna mit z-Werten
Flache unter der Glocke in

[-z,2]=¢

@ P(—z < X <z)=1- aKonfidenzniveau
Wahrscheinlichkeit, dass X mit Mittelwert 0 im Intervall der
Breite 2z liegtist 1 — a.

@ z kann nachgeschlagen werden (z.B. Bronstein), wobei
wegen Symmetrie nur angegeben ist: P(X > z)
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@ P(X>—2)P(X <z)istdann (1-10,8)/2=0,1.
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Wir wollen ein bestimmtes Konfidenzniveau erreichen, z.B. 0,8.
@ P(X>—2)P(X <z)istdann (1-10,8)/2=0,1.
@ Der 2-Wert, fiir den die Flache der Glockenkurve zwischen
—zund z genau 1 — o = 0, 8 betragt, ist das (1 — §)-Quantil
der Standardnormalverteilung, hier: 1,28 (nachschlagen).
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Rechnung fur reellwertige Beobachtungen und Mittelwert

Wir wollen ein bestimmtes Konfidenzniveau erreichen, z.B. 0,8.

@ P(X>—2)P(X <z)istdann (1-10,8)/2=0,1.

@ Der 2-Wert, fiir den die Flache der Glockenkurve zwischen
—zund z genau 1 — o = 0, 8 betragt, ist das (1 — §)-Quantil
der Standardnormalverteilung, hier: 1,28 (nachschlagen).

o Das standardisierte Stichprobenmittel liegt mit der
Wahrscheinlichkeit 0,8 zwischen -1,28 und +1,28.

0,8 = P(-1,28< XL_” < 1,28)
N
- P(—1,28\;LN <X-pu< 1,28LN)
- P(X—1,28\/O—N gng—l,QS\/O—N)
Das Intervall ist [X — 1, 287 X +1, 28\/Lﬁ]'
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Fehler oder Erfolg schatzen

@ Bei den Entscheidungsbdaumen beobachten wir nur zwei
Werte Y € {+,-}.
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Fehler oder Erfolg schatzen

@ Bei den Entscheidungsbdaumen beobachten wir nur zwei
Werte Y € {+,-}.

@ Wir haben eine Binomialverteilung mit wahrer
Wahrscheinlichkeit p,. fur y = + (Erfolg).

@ Beobachtung der Haufigkeit f, bei N Versuchen.

Varianz:
RN CXC S £
N
Erwartungswert:

E(py) = f+/N
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Einsetzen der Varianz

@ Wir wollen das Konfidenzintervall bestimmen, innerhalb
dessen sich p, befindet.
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Einsetzen der Varianz

@ Wir wollen das Konfidenzintervall bestimmen, innerhalb
dessen sich p, befindet.

@ Indas aIIgemeine Konfidenzintervall

[X —2(1 a/2) ;X +1,28 \/"_] setzen wir die Varianz ein

o2 — f+(1]\; f+)
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Einsetzen der Varianz

@ Wir wollen das Konfidenzintervall bestimmen, innerhalb
dessen sich p, befindet.

@ Indas aIIgemeine Konfidenzintervall
(X —2(1 —a/2) % : X +1,28-Z ] setzen wir die Varianz ein

N
o2 = M
B N
@ Wir erhalten:
fo -V IUZ I g o YOS
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Konfidenz bei Binomialverteilung

Allgemein berechnet man die obere und untere Schranke der
Konfidenz bei einer Binomialverteilung fir ein
Bernoulli-Experiment:

2 2 2
fetimEn/R - dn

b+ = 2
1+2ﬁ

Hierzu muss lediglich die Haufigkeit f,. gezahlt werden, N, z
bekannt sein.

Diese Abschatzung fur den Erfolg kénnen wir symmetrisch fur
den Fehler (p—) durchfihren.
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Anwendung zum Stutzen

@ Fir jeden Knoten nehmen wir die obere Schranke
(pessimistisch):

f_ 2

f_-|-2N+ -5 tive

- = 2
1+ %
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Anwendung zum Stutzen

@ Fir jeden Knoten nehmen wir die obere Schranke
(pessimistisch):

f, 2

f_+2N+ -5t i

p- = 2

1+ 5

@ Wenn der Schétzfehler eines Knotens kleiner ist als die
Kombination der Schatzfehler seiner Unterknoten, werden
die Unterknoten weggestutzt. Die Kombination wird
gewichtet mit der Anzahl der subsumierten Beispiele.
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o Konfusionsmatrix:

tatsachlich| Vorhergesagt Vorhergesagt
_|_ —
+ True positives | False negati- | Recall:
TP ves TP/(TP + FN)
FN
- False positives | True negati-
FP ves
TN

Precision:

TP/(TP+FP)
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Giltemale

o Konfusionsmatrix:

tatsachlich| Vorhergesagt Vorhergesagt
+ —
+ True positives | False negati- | Recall:
TP ves TP/(TP+ FN)
FN
- False positives | True negati-
FpP ves
TN
Precision:
TP/(TP+FP)

@ Accuracy: P(f(z) =y) geschétzt als (T'P + T'N) /total
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Balance von FP und FN

_ . B-recall-precision __ BT P
© F-measure: recall+precision — BT P+FP+FN

TP
500

100% S
TP

FP
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Balance von FP und FN

_ . B-recall-precision __ BT P
@ F-measure: recall+precision — BT P+FP+FN

@ Verlaufsformen:
o Lift: TP fUr verschiedene Stichprobengréf3en S

™

500

100% S

o Receiver Operating Characteristic (ROC): fir verschiedene
TP jeweils die F'P anzeigen
TP

FP
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ROC genauer

o Statt der absoluten Anzahl TP nimm die Raten von true
oder false positives — ergibt eine glatte Kurve.

1
TPrate
schén

0 ]
FPrate 1
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o Statt der absoluten Anzahl TP nimm die Raten von true
oder false positives — ergibt eine glatte Kurve.
o Fir jeden Prozentsatz von falschen Positiven nimm eine
Hypothese h, deren Extension diese Anzahl von F'P hat
und zdhle die T'P.
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ROC genauer

o Statt der absoluten Anzahl TP nimm die Raten von true
oder false positives — ergibt eine glatte Kurve.
o Fir jeden Prozentsatz von falschen Positiven nimm eine
Hypothese h, deren Extension diese Anzahl von F'P hat
und zdhle die T'P.
© TPpqte :=TP/P ~ recall bezogen auf eine Untermenge

1
TPrate
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0 ]
FPrate 4
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ROC genauer

o Statt der absoluten Anzahl TP nimm die Raten von true
oder false positives — ergibt eine glatte Kurve.

o Fir jeden Prozentsatz von falschen Positiven nimm eine
Hypothese h, deren Extension diese Anzahl von F'P hat
und zahle die T'P.

© TPpqte :=TP/P ~ recall bezogen auf eine Untermenge

© FP.4.:=FP/N ~ FP/FP+ TN bezogen auf
Untermenge

1
TPrate
schon

0 ]
FPrate 1
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Kosten von Fehlern

@ Nicht immer sind FP so schlimm wie FN
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Kosten von Fehlern

@ Nicht immer sind FP so schlimm wie FN

o medizinische Anwendungen: lieber ein Alarm zu viel als
einen zu wenig!

@ Gewichtung der Beispiele:

o Wenn FN 3x so schlimm ist wie FP, dann gewichte negative
Beispiele 3x hdher als positive.
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Kosten von Fehlern

@ Nicht immer sind FP so schlimm wie FN
o medizinische Anwendungen: lieber ein Alarm zu viel als
einen zu wenig!
@ Gewichtung der Beispiele:
o Wenn FN 3x so schlimm ist wie FP, dann gewichte negative
Beispiele 3x hdher als positive.
o Wenn FP 10x so schlimm ist wie FN, dann gewichte
positive Beispiele 10x héher als negative.
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Kosten von Fehlern

@ Nicht immer sind FP so schlimm wie FN
o medizinische Anwendungen: lieber ein Alarm zu viel als
einen zu wenig!
@ Gewichtung der Beispiele:
o Wenn FN 3x so schlimm ist wie FP, dann gewichte negative
Beispiele 3x hdher als positive.
o Wenn FP 10x so schlimm ist wie FN, dann gewichte
positive Beispiele 10x héher als negative.
@ Lerne den Klassifikator mit den gewichteten Beispielen wie
Ublich. So kann jeder Lerner Kosten bertcksichtigen!
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Was wissen Sie jetzt?

@ Sie kennen den Algorithmus ID3 als Beispiel fir TDIDT.
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Was wissen Sie jetzt?

@ Sie kennen den Algorithmus ID3 als Beispiel fir TDIDT.

@ FUr das Lernen verwendet ID3 das Gitemal des
Informationsgewinns auf Basis der Entropie.
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Was wissen Sie jetzt?

@ Sie kennen den Algorithmus ID3 als Beispiel fir TDIDT.

@ FUr das Lernen verwendet ID3 das Gitemal des
Informationsgewinns auf Basis der Entropie.

@ Man kann abschatzen, wie nah das Lernergebnis der
unbekannten Wahrheit kommt — Konfidenz
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Was wissen Sie jetzt?

@ Sie kennen den Algorithmus ID3 als Beispiel fir TDIDT.

@ FUr das Lernen verwendet ID3 das Gitemal des
Informationsgewinns auf Basis der Entropie.

@ Man kann abschatzen, wie nah das Lernergebnis der
unbekannten Wahrheit kommt — Konfidenz

@ Man kann abschétzen, wie grof3 der Fehler sein wird und
dies zum Stutzen des gelernten Baums nutzen.
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Was wissen Sie jetzt?

@ Sie kennen den Algorithmus ID3 als Beispiel fir TDIDT.

@ FUr das Lernen verwendet ID3 das Gitemal des
Informationsgewinns auf Basis der Entropie.

@ Man kann abschatzen, wie nah das Lernergebnis der
unbekannten Wahrheit kommt — Konfidenz

@ Man kann abschétzen, wie grof3 der Fehler sein wird und
dies zum Stutzen des gelernten Baums nutzen.

@ Lernergebnisse werden evaluiert:

Diese Evaluationsmethoden gelten nicht nur fur
Entscheidungsbaume!
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Was wissen Sie jetzt?

@ Sie kennen den Algorithmus ID3 als Beispiel fir TDIDT.

@ Fir das Lernen verwendet ID3 das Gitemal3 des
Informationsgewinns auf Basis der Entropie.

@ Man kann abschatzen, wie nah das Lernergebnis der
unbekannten Wahrheit kommt — Konfidenz

@ Man kann abschétzen, wie grof3 der Fehler sein wird und
dies zum Stutzen des gelernten Baums nutzen.

@ Lernergebnisse werden evaluiert:
o Einzelwerte: accuracy, precision, recall, F-measure

Diese Evaluationsmethoden gelten nicht nur fur
Entscheidungsbaume!
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Was wissen Sie jetzt?

@ Sie kennen den Algorithmus ID3 als Beispiel fir TDIDT.

@ FUr das Lernen verwendet ID3 das Gitemal des
Informationsgewinns auf Basis der Entropie.

@ Man kann abschatzen, wie nah das Lernergebnis der
unbekannten Wahrheit kommt — Konfidenz

@ Man kann abschétzen, wie grof3 der Fehler sein wird und
dies zum Stutzen des gelernten Baums nutzen.

@ Lernergebnisse werden evaluiert:

o Einzelwerte: accuracy, precision, recall, F-measure
o Verlaufe: Lift, ROC

Diese Evaluationsmethoden gelten nicht nur fur
Entscheidungsbaume!
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