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Jenseits des Bag of Words

Bisher haben wir Texte als Anzahl und Häufigkeit von
Wörtern repräsentiert.
Damit haben wir die Struktur der Sprache ignoriert.

Grammatik
Koreferenz
Eigennamen
Semantische Relationen

Es gibt eine ganze Reihe von Ansätzen des maschinellen
Lernens, um (sprachliche) Strukturen zu behandeln.
Wir besprechen hier nur die SVM bezogenen Ansätze.
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Lernaufgabe Named Entity Recognition

Wortfolgen, die sich auf ein individuelles Objekt beziehen,
werden Named Entities (NE) genannt.
Eigennamen, Ortsnamen, Firmennamen sind z.B. NEs.
Gegeben Beispiele von Sätzen, in denen NEs annotiert
sind, lerne die Entscheidungsfunktion, die für jedes Wort
angibt, ob es zu einer bestimmten NE gehört, oder nicht.
Beispiel:

Johann Sebastian Bach publiziert im Henle Verlag München.
Per Per Per 0 0 Org Org Place
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Anwendungen

Wenn wir in Dokumenten die NEs automatisch annotieren,
können wir sie im Text markieren, so dass die Benutzer
schneller interessante Stellen auffinden;
können wir alle Sätze zu einer Person, Firma, einem Ort
herausschreiben und so eine Zusammenfassung für einen
Text erstellen;
eine weitere Lernaufgabe aufsetzen: Relationen zwischen
NEs lernen, z.B. Fusion von Firmen fusion(Org1, Org2),
Mitglied im Aufsichtsrat aufsicht(Org, Per).

Letztlich erstellen wir eine Datenbank aus einer
Dokumentensammlung. Auf diese Datenbank wenden wir dann
unsere Lernverfahren wie gehabt an.
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Part of Speech Tagging

Unter Part-of-speech Tagging versteht man die Zuordnung
von Wörtern eines Textes zu Wortarten (engl.: part of
speech).
Beispiel:

Die Noten erscheinen bei Henle.
Det N V Prep N

6 von 37



LS 8 Informatik
Technische Universität Dortmund

Überblick Lernaufgaben Primales Problem Duales Problem Optimierung der SVMstruct Anwendungen

Full Parsing

Syntaxregeln produzieren einen Syntaxbaum für einen
Satz, dessen Wurzel das Startsymbol S ist und die Blätter
sind die Wortarten (präterminalen Knoten), denen dann
die Wörter zugeordnet sind. Full Parsing erstellt
Syntaxbäume für Sätze.
Beispiel:

S → NP, V P
V P → V,NP
NP → Det,N
NP → Prep,N
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Lernaufgaben Part of Speech Tagging, Full Parsing

Part of Speech Tagging: Gegeben eine Menge von Sätzen,
bei denen zu jedem Wort die Wortart angegeben ist, lerne
eine Entscheidungsfunktion, die bei beliebigen Sätzen
jedem Wort eine Wortart zuordnet.
Full Parsing Learning: Gegeben eine Menge von Sätzen,
eine Menge von Syntaxregeln und die Anzahl von
Regelanwendungen für jeden Satz, lerne eine
Entscheidungsfunktion, die beliebigen Sätzen die Anzahl
von Regelanwendungen zuordnet (discriminant model).
Zur Abgrenzung: Es sind
Gegeben eine Menge von syntaktisch korrekten Sätzen
(positive Beispiele) und eine Menge von synaktisch
falschen Sätzen (negative Sätze), bei denen jeweils die
Wortarten annotiert sind, lerne Syntaxregeln, die gerade
die syntaktisch korrekten Sätze produzieren (generative
model).
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Support Vector Machines für alles...

Bisher haben wir zwei Lernaufgaben für Support Vector
Machines betrachtet:

Binäre Klassifikation
SVM zur Regression

Aktuelles Übungsblatt: Mehrklassen-Problem

Jetzt: Lernen von Funktionen für beliebige strukturelle
Ausgaben (Bäume, Graphen) mit Hilfe der SVMstruct.
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SVMstruct

Strukturelle Modelle
Sei X die Menge der Beispiele. Ist die Ausgabe-Variable Y
nicht ein Skalar, sondern eine Struktur (z.B. eine Folge, ein
Baum, ein Graph), so heißt das Modell

f : X → Y

strukturelles Modell.

Large Margin Methods for Structured and Interdependent
Output Variables, I. Tsochantaridis, T. Joachims, T. Hofmann,
Y. Altun, J. of Machine Learning Research, Vol. 6, p. 1453 –
1484, 2005

Training Linear SVMs in Linear Time, Thorsten Joachims,
Proc. KDD 2006
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Lernaufgabe der SVMstruct

Lernaufgabe SVMstruct

Sei Y = Y1 × . . .× Yq eine Menge und ~y ∈ Y eine Konfiguration
in Y und

T = {(~x1, ~y1), . . . , (~xn, ~yn)} ⊂ X × Y

eine Menge von Beobachtungen.

Ziel: Finde eine Funktion f mit

f : X → Y
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SVMstruct

Es sei eine ~β-parametrisierte Schar von Funktionen

F~β : X × Y → R

gegeben, die die Ähnlichkeit zwischen ~x und ~y ausdrücken.

Gesucht ist nun ein ~β∗ derart, daß

f(x, ~β∗) = arg max
~y∈Y

F~β∗(~x, ~y)

jeweils zu einem ~x, das am besten passende ~y ∈ Y liefert.

Hinweis: In der Literatur wird für F~β(~x, ~y) meist F (x,y;w)
geschrieben.
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Wie brauchen also eine Art Kostenfunktion, die uns die
Ähnlichkeit zwischen ~x und ~y liefert. Sei dazu Ψ eine Abbildung

Ψ : X × Y → F

von (~x, ~y) auf eine gemeinsame Repräsentation Ψ(~x, ~y).

Die Abbildung Ψ hängt dabei vom konkreten Problem ab, eine
Darstellung für Parse-Trees liefert z.B.

Ψ(~x, ~y) =



1
1
1
0
...
0
1



S→ NP, VP
NP→ Det, N
NP→ Prep, N
NP→ Adj, N

...
Prep→ in
Prep→ bei
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Merkmalsabbildung am Beispiel der ParseTrees

Ψ(~x, ~y) =



1
1
1
0
...
0
1



S→ NP, VP
NP→ Det, N
NP→ Prep, N
NP→ Adj, N

...
Prep→ in
Prep→ bei

Wir nehmen im Folgenden an, daß F linear in Ψ(~x, ~y) ist, d.h.

F~β(~x, ~y) = 〈~β,Ψ(~x, ~y)〉

Wir lernen also über input-/output-Kombinationen die
Ranking-Funktion

F : X × Y → R.
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Was hat das mit SVM zu tun?

Wo ist jetzt die SVM-Idee hier?

Mit der Funktion F~β∗ haben wir eine Ordnung auf den Paaren
(~x, ~y), so daß wir jedem neuen ~x′ ein ~y′ zuordnen können:

f(~x′, ~β∗) = ~y′ = arg max
~y∈Y

F~β∗(~x
′, ~y)

Wir wählen also immer das am besten bzgl. F~β∗ passende ~y!

Lernen von ~β∗ über Optimierung mit der SVM:
Maximiere den Abstand (Margin) zwischen der besten und der
zweit-besten Lösung!
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Primales Problem

Wir suchen also eine Hyperebene, die das Beste von allen
anderen Beispielen trennt.

Dazu soll f(~xi, ~β) für ~xi ∈ T jeweils das “richtige ~yi”
vorhersagen, d.h.

∀i : max
~y∈Y \~yi

{
〈~β,Ψ(~xi, ~y)〉

}
< 〈~β,Ψ(~xi, ~yi)〉

⇒ ∀i,∀~y ∈ Y \ ~yi : 〈~β,Ψ(~xi, ~y)〉 < 〈~β,Ψ(~xi, ~yi)〉
⇒ ∀i,∀~y ∈ Y \ ~yi : 〈~β,Ψ(~xi, ~yi)−Ψ(~xi, ~y)〉 > 0
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Primales Problem

Sind die Nebenbedingungen

∀i,∀~y ∈ Y \ ~yi : 〈~β,Ψ(~xi, ~yi)−Ψ(~xi, ~y)〉 > 0

erfüllbar, führt dies typischerweise zu einer Menge optimaler
Lösungen.

Eine eindeutige Lösung läßt sich jetzt finden, indem man das
Maximum Margin-Prinzip der SVM nutzt und ~β mit ||~β|| ≤ 1 so
wählt, dass der Abstand zum nächstbesten ~β′ maximal wird,
also

~̂ iy = arg max
~y 6=~yi

〈~β,Ψ(~xi, ~y)〉
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Primales Problem

Schließlich führt das zum primalen Problem der SVMstruct:

Primales Problem
Minimiere

LP (~β) =
1

2
||~β|| (1)

unter den Nebenbedingungen

∀i,∀~y ∈ Y \ ~yi : 〈~β, δΨi(~yi)〉 ≥ 1 (2)

mit δΨi(~y) = Ψ(~xi, ~yi)−Ψ(~xi, ~y)

Die SVMstruct optimiert also unter Beachtung von n|Y | − n
Nebenbedingungen.
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SVMstruct mit Ausnahmen – slack rescaling

Ein Strafterm C für alle Beispiele ~x, bei denen die
Nebenbedingungen verletzt sind, und die Relaxierung durch ξ
führt zu dem Minimierungsproblem:

Slack Rescaling SVM

SVM1 : min~β,ξ
1
2‖~β‖

2 + C
N

∑N
i=1 ξi (3)

unter den Bedingungen
∀i,∀~y ∈ Y \~yi : 〈~β, δΨi(~y)〉 ≥ 1− ξi, ξi ≥ 0 (4)

C ist linear in den ξi.
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SVMstruct mit Ausnahmen – margin rescaling

Verletzungen der Nebenbedingungen können auch durch einen
quadratischen Term bestraft werden.

Margin rescaling SVM

SVM2 : min~β,ξ
1
2‖~β‖

2 + C
2N

∑N
i=1 ξ

2
i (5)

unter den Bedingungen
∀i,∀~y ∈ Y \~yi : 〈~β, δΨi(~y)〉 ≥ 1− ξi, ξi ≥ 0 (6)
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Empirisches Risiko und Slack Rescaling

Auch bei strukturellen Modellen geht es darum, den Fehler zu
minimieren. Der erwartete Fehler bei irgend einer
Verlustfunktion ∆ ist für eine Menge von Beispielen T

RT (f) =
1

2

N∑
i=1

∆(~yi, f(~xi)) (7)

Um die Verletzung der Nebenbedingung für ein ~y 6= ~yi bei
großem Verlust ∆(~yi, ~y) stärker zu bestrafen als bei
geringerem, passen wir die Nebenbedingungen an:

SVM1 : min~β,ξ
1
2‖~β‖

2 + C
N

∑N
i=1 ξi

∀i,∀~y ∈ Y \~yi : 〈~β, δΨi(~y)〉 ≥ 1− ξi
∆(~yi,~y) (8)

SVM2 : min~β,ξ
1
2‖~β‖

2 + C
2N

∑N
i=1 ξ

2
i

∀i,∀~y ∈ Y \~yi : 〈~β, δΨi(~y)〉 ≥ 1− ξi√
∆(~yi,~y)

(9)
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Obere Schranke des empirischen Fehlers

Satz

Seien ξ∗i (~β) die optimalen Schlupfvariablen für ein gegebenes
~β, dann ist

RT (~β) ≤ 1

N

N∑
i=1

ξ∗i
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Obere Schranke des empirischen Fehlers

Beweis:
Wir wissen:

ξ∗i = max

{
0,max

~y 6=~yi

{
∆(~yi, ~y)

[
1− 〈~β, δΨi(~y)〉

]}}
Sei ~y∗ = f(~xi, ~β), es ergeben sich zwei Fälle

1. Fall: ~y∗ = ~y : Es ist ∆(~yi, f(~xi, ~β)) = 0 ≤ ξ∗i
2. Fall: ~y∗ 6= ~y : ⇒ 〈~yi, δΨi(~y

∗)〉 ≤ 0

⇒ ξ∗i
∆(~yi,~y) ≥ 1⇔ ∆(~yi, ~y) ≤ ξ∗i

Da die Schranke für jedes Beispiel gilt, gilt sie auch für den
Durchschnitt. �
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Hinführung zum dualen Problem

Wir wollen auch hier das duale Problem formulieren.
Bisher war es:

LD(~α) =

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

yiyjαiαj〈~xi, ~xj〉

Jetzt sind ~yi, ~yj nicht mehr einfach Werte, sondern
Strukturen.
Für jedes der N Beispiele ~xi mit jedem der | Y | möglichen
~yi müssen wir feststellen, wie groß der Abstand zu allen
anderen Ψ(~xi, ~y) ist.
Wir haben also nicht mehr ein α je Beispiel in X, sondern
ein α für jedes Paar in X × Y .
Erst sehen wir uns den Raum an, in dem optimiert wird,
dann die α.
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Raum, in dem SVMstruct optimiert

Bei der klassischen SVM haben wir beim dualen Problem
für i, j = 1, ..., N das Skalarprodukt 〈~xi, ~xj〉 gerechnet.
Jetzt müssen wir für i, j = 1, ..., N rechnen
J

(i~y)(j ~y′)
≡ 〈δΨi(~y), δΨj(~y′)〉.

~x1 ... ~xj ... ~xN
~x1 − ... ... ... ...
... ... ... ... ... ...

~xi ... ... 〈δΨi(~y), δΨj(~y′)〉 ... ...
... ... ... ... ... ...
~xN ... ... ... ... −

Dabei ist 〈δΨj(~y), δΨi(~y′)〉 wieder eine Matrix!
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Matrix J

In der N ×N Matrix sind die Einträge 〈δΨi(~y), δΨj(~y′)〉.
Wir erinnern uns: δΨi(~y) ≡ Ψ(~xi, ~yi)−Ψ(~xi, ~y)

Statt einer einfachen Matrix haben wir einen Tensor, d.h.
der Eintrag in die N ×N Matrix ist eine | Y | × | Y | Matrix
J:

~y1 ... ~y|Y |
~y1 − ... Ψ(~x, ~y1) − Ψ(~x, ~y|Y |)
... ... ... ...
~y|Y | Ψ(~x, ~y|Y |) − Ψ(~x, ~y1) ... −

J ist eine Kernfunktion über X × Y :
J

(i~y)(j ~y′)
= 〈δΨi(~y), δΨj(~y′)〉
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αi~y und optimales β

Statt αi für ~xi, haben wir αij mit j = 1, ..., | Y | αi1
...
αim


Das optimale ~β ist

~̂β =

N∑
i=1

|Y |∑
~y 6=~yi

α(i~y)(Ψ(~xi, ~yi)−Ψ(~xi, ~y))

=

N∑
i=1

|Y |∑
~y 6=~yi

α(i~y)δΨi(~y) (10)
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Duales Problem der SVMstruct

SVMstruct bei linear separierbaren Beispielen:

LD(α) = −1

2

N∑
i,~y 6=~yi

N∑
j,~y′ 6=~yi

αi~yαj,~y′J(i~y)(j ~y′)
+

N∑
i,~y 6=~yi

αi~y (11)

Für die Slack Rescaling SVM1 mit Ausnahmen muss
zusätzlich gelten:

N∑
~y 6=~yi

αi~y ≤
C

N
,∀i = 1, ..., N

Für die Margin Rescaling SVM2 mit Ausnahmen wird
J

(i~y)(j ~y′)
unter Verwendung der Indikatorfunktion I(a, b) = 1

falls a = b, sonst 0 zu:

〈δΨi(~y), δΨj(~y′)〉+ I(i, j)
N

C

Immer soll ~α maximiert werden.
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Die SVMstruct stellt ein schwieriges Optimierungsproblem!

Bei N | Y | −N Nebenbedingungen und vermutlich sehr
großem | Y | ist normale Optimierung durch quadratische
Programmierung nicht möglich.
Es sollen nun deutlich weniger Nebenbedingungen wirklich
bearbeitet werden.
Beobachtung: Es gibt immer eine Teilmenge von
Nebenbedingungen, so dass die damit errechnete Lösung
auch alle Nebenbedingungen erfüllt mit einer
Ungenauigkeit von nur ε.
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SVMstruct: Algorithmus zum Optimieren – Idee

Für jedes Beispiel ~xi gibt es einen working set Si, in dem
die verletzten Nebenbedingungen gespeichert sind.
Zunächst sind Si leer, das Problem unbeschränkt.
Für jedes Beispiel ~xi wird die am schlimmsten verletzte
Nebenbedingung bzgl. ~y∗i festgestellt und Si hinzugefügt.
Das Problem wird zunehmend stärker beschränkt.
Optimiere α

bezüglich aller working sets gemeinsam oder
nur für ein Si, wobei die αj~y mit j 6= i eingefroren werden.

Wenn kein Si mehr verändert wurde, STOP.
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SVMstruct: Algorithmus zum Optimieren

1 Input: T = {( ~x1, ~y1), ..., ( ~xN , ~yN )}, C, ε
2 Si := {} für alle i = 1, ..., N
3 Solange ein Si sich in der Iteration ändert:
4 for i = 1, ..., N do

5 Kosten: H(~y)


1− 〈δΨi(~y), ~β〉 SVM0

(1− 〈δΨi(~y), ~β〉)∆(~yi, ~y) SVM1 (s.8)

(1− 〈δΨi(~y), ~β〉)∆(~yi, ~y) SVM2 (s.9)

wobei ~β ≡
∑

j

∑
~y′∈Sj

α
j ~y′
δΨj(~y′)

6 ~y∗ := arg max~y∈Y H(~y) – schwieriger Schritt!
7 ξi := max{0,max~y∈Si

H(~y)}
8 if H( ~y∗) > ξi + ε then
9 Si := Si ∪ { ~y∗}

10 αS :=optimiere duales Problem für S = ∪Si
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Full Parsing Learning mit SVMstruct

Probabilistische kontextfreie Grammatik: Regeln
nl[Ci → Cj , Ck], βl. Dabei gibt βl die logarithmierte
Wahrscheinlichkeit dafür an, dass ein Knoten Ci mit Regel
nl expandiert wird.
Lernaufgabe: Gegeben Paare (~x, ~y), wobei ~x = x1, ..., xp
ein Satz (Kette von Wortarten) ist und ~y ein Syntaxbaum,
lerne X → Y , wobei nur in den Beispielen vorkommende
Regeln verwendet werden.
Formuliert als Maximierungsproblem:

h(~x) = arg max
~y∈Y

P (~y|~x) = argmax~y∈Y

 ∑
nl∈rules(~y)

βl


rules(~y) ist die Menge der Regeln, die in ~y verwendet sind.
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Full Parsing Learning mit SVMstruct

Es ergibt sich: 〈~β,Ψ(~x, ~y)〉 =
∑

nl∈rules(~y) βl

Den schwierigen Schritt ~y∗ := argmax~y∈Y 〈~β,Ψ(~x, ~y)〉 löst
nun ein Parser, der sowohl den besten als auch den
zweitbesten Syntaxbaum für ~x liefert. Somit können die
Beispiele bei der Optimierung (Schritt 6) effizient
bearbeitet werden.
Das Lernergebnis ordnet bisher nicht gesehenen Sätzen ~x
die richtigen Syntaxbäume zu. Dabei erweitert es die
Fähigkeit der Grammatik – nicht die Menge der Regeln.
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Experiment

Trainingsmenge: 4098 Sätze mit maximal p = 10 Wörtern
(dargestellt durch ihre Wortart)
Testmenge: 163 Sätze mit maximal p = 10

Maximum likelihood zum Lernen ergibt: 86, 8% precision,
85, 2% recall, 86%F1 measure
SVM2 mit slack rescaling ergibt: 88, 9% precision, 88, 1%
recall, 88, 5%F1 measure
Der Unterschied des F-measures ist signifikant.
SVM2 hat in 12 Iterationen insgesamt 8043
Nebenbedingungen behandelt.
Das Lernen dauerte insgesamt 3,4 Stunden, wovon die
SVM2 10, 5% verwendete.
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Andere Anwendungen der SVMstruct

Wenn man die SVMstruct anwenden will, muss man
die Merkmalsabbildung Ψ(~x, ~y) definieren und ggf.
implementieren
die Verlustfunktion implementieren ∆(~yi, ~y)
die Selektion verletzter Bedingungen (Schritt 6 des
Algorithmus’) implementieren.

Klassifikation mit Taxonomien
Named Entity Recognition
Mehrklassen-Klassifikation
...
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Was wissen Sie jetzt?

Sie wissen, was strukturelle Modelle sind: Y kann mehr
sein als nur ein Wert.
Ψ(~x, ~y) erweitert die üblichen Beispiele so, dass nun
wieder ein Skalarprodukt 〈~β,Ψ(~x, ~y)〉 gerechnet werden
kann.
Das Problem sind die N× | Y | −N Nebenbedingungen,
weil wir jedes Beispiel mit jedem anderen nicht nur
bezüglich eines y, sondern bezüglich der | Y | möglichen ~y
vergleichen müssen.
Dabei wird dieser Vergleich als joint kernel aufgefasst:
〈δΨi(~y), δΨj(~y′)〉. Es gibt noch viele andere Arbeiten zu
string kernels, tree kernels, die Sie hier nicht kennen
gelernt haben.
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Sie wissen noch mehr!

Der Ansatz von Joachims besteht darin,
dass als margin der Abstand zwischen der besten und der
zweitbesten Lösung maximiert wird,
dass nur wenige der Nebenbedingungen wirklich behandelt
werden müssen,
dass beliebige Verlustfunktionen ∆ in den
Nebenbedingungen und in der Auswahl der am stärksten
verletzten Nebenbedingung verwendet werden können.
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