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SVM mit Ausnahmen

Was passiert, wenn die Beispiele nicht komplett trennbar
sind?
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Nicht linear trennbare Daten

In der Praxis sind linear trennbare
Daten selten:

1. Ansatz: Entferne eine
minimale Menge von
Datenpunkten, so dass die Daten
linear trennbar werden (minimale
Fehlklassifikation).
Problem: Algorithmus wird
exponentiell. ? +
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SVM mit Ausnahmen

Ein anderer Ansatz basiert wieder auf einer Relaxation:
Punkte, die nicht am Rand oder auf der richtigen Seite der
Ebene liegen, bekommen einen Strafterm ξj > 0.
Korrekt klassifizierte Punkte erhalten eine Variable ξj = 0.

Dies führt zu folgenden Minimierungsproblem

1

2
‖~β‖2 + C

N∑
j=1

ξj für ein festes C ∈ R>0 (1)

Daraus folgt insbesondere

0 ≤ αi ≤ C
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Weich trennende Hyperebene

Relaxiertes Optimierungsproblem

Sei C ∈ R mit C > 0 fest. Minimiere

||~β||2 + C

N∑
i=1

ξi

unter den Nebenbedingungen

〈~xi, ~β〉+ β0 ≥ +1− ξi für ~yi = +1

〈~xi, ~β〉+ β0 ≤ −1 + ξi für ~yi = −1

Durch Umformung erhalten wir wieder Bedingungen für die
Lagrange-Optimierung:

yi(〈~xi, ~β〉+ β0) ≥ 1− ξi ∀ i = 1, . . . , N
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Bedeutung von ξ und ~α

f(~x) = −1 f(~x) = 0 f(~x) = +1

ξ > 1, α = C
0 ≤ ξ ≤ 1, 0 ≤ α ≤ C

ξ = 0, 0 ≤ α ≤ C

ξ = 0, α = 0

Beispiele ~xi mit αi > 0 sind Stützvektoren.
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Wo sind wir?

Maximieren der Breite einer separierenden Hyperebene
(maximum margin method) ergibt eindeutige, optimale
trennende Hyperebene.
Transformation des Datenraums durch Kernfunktion
behandelt Nichtlinearität.

Das kam nur einmal am Rande vor. Wir sehen es nachher
genauer.

Regularisierung minimiert nicht nur den Fehler, sondern
auch die Komplexität des Modells.

Später!
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Nicht-lineare Daten
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Nicht-lineare Daten

Neue SVM-Theorie entwickeln? (Neeee!)
Lineare SVM benutzen?

If all you’ve got is a hammer, every problem looks
like a nail

Transformation in lineares Problem!
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Kernfunktionen

Erinnerung:

LD(α) =

n∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

yiyjαiαj〈~xi, ~xj〉

f(~x) =
∑

αiyi〈~xi, ~x〉+ β0

SVM hängt von ~x nur über Skalarprodukt 〈~x, ~x′〉 ab.
Ersetze Transformation Φ und Skalarprodukt durch
Kernfunktion K( ~x1, ~x2) = 〈Φ( ~x1),Φ( ~x2)〉

X Z R
Φ ∗

K
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Kernfunktionen II

Angabe von φ nicht nötig, einzige Bedingung: Kernmatrix
(K(~xi, ~xj))i,j=1...N muss positiv definit sein.
Radial-Basisfunktion: K(~xi, ~xj) = exp(−γ‖~xi − ~xj‖2)
Polynom: K(~xi, ~xj) = 〈~xi, ~xj〉d

Neuronale Netze: K(~xi, ~xj) = tanh(〈α~xi, ~xj〉+ b)

Konstruktion von Spezialkernen durch Summen und
Produkte von Kernfunktionen, Multiplikation mit positiver
Zahl, Weglassen von Attributen
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Polynom-Kernfunktionen

Kd(~xi, ~xj) = 〈~xi, ~xj〉d

Beispiel: d = 2, ~xi, ~xj ∈ R2.

K2(~xi, ~xj) = 〈~xi, ~xj〉2

= ((xi1 , xi2) ∗ (xj1 , xj2))2 = (xi1xj1 + xi2xj2)2

= x2i1x
2
j1 + 2xi1xj1xi2xj2 + x2i2x

2
j2

= (x2i1 ,
√

2xi1xi2 , x
2
i2) ∗ (x2j1 ,

√
2xj1xj2 , x

2
j2)

=: 〈φ(~xi), φ( ~xj〉
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RBF-Kernfunktion
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Kernfunktionen

Die Kernfunktionen werden nicht als
Vorverarbeitungsschritt durchgeführt.
Man muss lediglich bei der Berechnung des
Skalarprodukts die Kernfunktion berücksichtigen.
Allerdings kann ~β jetzt nicht mehr so einfach interpretiert
werden als Bedeutung der Variablen (Merkmale) Xi.
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Was wissen Sie jetzt?

Lineare SVM sind leicht zu interpretieren: α gewichtet
Beispiele, β gewichtet Merkmale.
Bei Kernfunktionen wissen wir für gegebene Wert φ(~x)
nicht, welches ~x dahinter steht.
Ansatz: zu einer SVM noch eine Approximation der SVM
lernen!

Die gelernte SVM klassifiziert mit max margin.
Die Approximation gibt eine Vorstellung von der Funktion.
Das Reduced Set Problem findet eine Approximation für
wenige Beispiele mit γ statt β auf der Grundlage eines
gelernten Modells.
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Was ist gutes Lernen?

Fauler Botaniker:
“klar ist das ein Baum - ist ja grün.”

âĂźbergeneralisierung
Wenig Kapazität
Bias

Botaniker mit fotografischem Gedächtnis:
“nein, dies ist kein Baum, er hat 15 267 Blätter und kein
anderer hatte genau so viele.”

Overfitting
Viel Kapazität
Varianz

Kontrolle der Kapazität!
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Bias-Varianz-Problem

Zu kleiner Hypothesenraum:
Zielfunktion nicht gut genug
approximierbar (Bias)
Zu großer Hypothesenraum:
Zuviel Einfluss zufälliger
Abweichungen (Varianz)
Lösung: Minimiere obere
Schranke des Fehlers:
R(α) ≤η Remp(α) + V ar(α)
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Risikoschranke nach Vapnik

Strukturelles Risiko
Gegeben eine unbekannte Wahrscheinlichkeitsverteilung
P (~x, y), nach der Daten gezogen werden. Die Abbildungen
~x→ f(~x, ~α) werden dadurch gelernt, dass ~α bestimmt wird. Mit
einer Wahrscheinlichkeit 1− µ ist das Risiko R(~α) nach dem
Sehen von N Beispielen beschränkt:

R(~α) ≤ Remp(~α) +

√√√√η
(

log
(
2N
η

)
+ 1
)
− log

(µ
4

)
N︸ ︷︷ ︸

VC confidence

Bevor wir η ergründen (Vapnik-Chervonenkis-Dimension), erst
einmal festhalten, was die Bedeutung dieser Schranke ist!
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Strukturelle Risikoschranke

Unabhängig von einer Verteilungsannahme. Alles, was die
Schranke braucht, ist, dass Trainings- und Testdaten
gemäß der selben Wahrscheinlichkeitsverteilung gezogen
werden.
Das tatsächliche Risiko können wir nicht berechnen.
Die rechte Seite der Ungleichung können wir berechnen,
sobald wir η kennen, die Vapnik-Chervonenkis-Dimension.
Gegeben eine Menge Hypothesen für f(~x, ~α), wähle
immer die mit dem niedrigsten Wert für die rechte Seite
der Schranke (Remp oder VC confidence niedrig).
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Strukturelle Risikominimierung

1. Ordne die Hypothesen in
Teilmengen gemäß ihrer
Komplexität.

2. Wähle in jeder Teilmenge die
Hypothese mit dem geringsten
empirischen Fehler.

3. Wähle insgesamt die Hypothese
mit minimaler Risikoschranke.
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Vapnik-Chervonenkis-Dimension

Definition: Eine Menge H von
Hypothesen zerschmettert eine
Menge E von Beispielen, wenn
jede Teilmenge von E durch ein
h ∈ H abgetrennt werden kann.
Definition: Die VC-Dimension
einer Menge von Hypothesen H
ist die maximale Anzahl von
Beispielen E, die von H
zerschmettert wird.
Eine Menge von 3 Punkten kann
von geraden Linien zerschmettert
werden, keine Menge von 4
Punkten kann von geraden Linien
zerschmettert werden.
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ACHTUNG

Für eine Klasse von Lernaufgaben gibt es mindestens eine
Menge E, die zerschmettert werden kann - NICHT jede
Menge E kann zerschmettert werden!
Zum Beweis der VC Dimension n muss man also zeigen:

Es gibt eine Menge E aus n Punkten, die von H
zerschmettert werden kann. V Cdim(H) ≥ n
Es kann keine Menge E′ aus n+ 1 Punkten geben, die von
H zerschmettert werden könnte. V Cdim(H) ≤ n
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VC-Dimension von Hyperebenen

Satz: Die VC-Dimension der Hyperebenen
im Rp ist p+ 1.
Beweis:

V Cdim(Rp) ≥ p+ 1 : Wähle ~x0 = 0 und
~xi = (0, . . . , 0, 1, 0, . . . 0). Für eine
beliebige Teilmenge A von ( ~x0, . . . , ~xn)
setze yi = 1, falls ~xi ∈ A,
sonst yi = −1.
Definiere ~β =

∑
yk ~xk und β0 = y0

2 .
Dann gilt ~β ~x0 + β0 = y0

2 und
~β ~xi + β0 = yi + y0

2 .
Also: ~β~x+ β0 trennt A.
V Cdim(Rp) ≤ p+ 1 : Zurückführen auf
die beiden Fälle rechts.
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VCdim misst Kapazität

Eine Funktion mit nur 1 Parameter kann unendliche
V Cdim haben: H kann Mengen von n Punkten
zerschmettern, egal wie groß n ist.
H kann unendliche V Cdim haben und trotzdem kann ich
eine kleine Zahl von Punkten finden, die H nicht
zerschmettern kann.
V Cdim ist also nicht groß, wenn die Anzahl der Parameter
bei der Klasse von Funktionen H groß ist.
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VC-Dimension der SVM

Gegeben seien Beispiele ~x1, . . . , ~xN ∈ Rp mit ‖~xi‖ < D für
alle i. Für die VC-Dimension der durch den Vektor ~β
gegebenen optimalen Hyperebene H gilt:

V Cdim(H) ≤ min
{
D2‖~β‖2, p

}
+ 1

Die Komplexität einer SVM ist auch durch die Struktur der
Lösung begrenzt!
Die SVM minimiert nicht nur das empirische Risiko,
sondern auch das strukturelle – Regularisierung.
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Zusicherungen

Strukturelle Risikominimierung garantiert, dass die
einfachste Hypothese gewählt wird, die noch an die Daten
anpassbar ist.
Strukturelle Risikominimierung kontrolliert die Kapazität
des Lernens (weder fauler noch fotografischer Botaniker).
Die Strukturen von Klassen von Funktionen werden durch
die V Cdim ausgedrückt. Große V Cdim→ große
VC-confidence.
Wir haben nun also ein Verfahren, dass ohne zusätzlichen
Aufwand die Komplexität regularisiert, wie wir es bei der
Modellselektion für lineare und lokale Modelle mal wollten.
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Performanzschätzer

Welches erwartete Risiko R(α) erreicht SVM?
R(~α) selbst nicht berechenbar
Trainingsfehler (zu optimistisch - Overfitting)
Obere Schranke mittels VC-Dimension (zu locker)
Kreuzvalidierung / Leave-One-Out-Schätzer (ineffizient)
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Performanzschätzer II

Satz: Der Leave-One-Out-Fehler einer SVM ist beschränkt
durch Rl1o ≤ |SV |N

Beweis (Skizze):
Falsch klassifizierte Beispiele werden Stützvektoren (SV).
Also: Nicht-Stützvektoren werden korrekt klassifiziert.
Weglassen eines Nicht-Stützvektors ändert die Hyperebene
nicht, daher wird es auch beim l1o-Test richtig klassifiziert.
Nur der Anteil der Stützvektoren an den Beispielen macht
den Fehler aus.
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Performanzschätzer III

Satz: Der Leave-One-Out-Fehler einer SVM ist beschränkt
durch Rl1o ≤

|{i:(2αiD
2+ξi)≥1}|
N (D = Radius des Umkreises

um die Beispiele im transformierten Raum).
Beweis: Betrachte folgende drei Fälle:

ξ > 1, α = C
0 ≤ ξ ≤ 1, 0 ≤ α ≤ C

ξ = 0, α = 0
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Was wissen wir jetzt?

Kernfunktionen - eine Transformation, die man nicht erst
durchführen und dann mit ihr rechnen muss, sondern bei
der nur das Skalarprodukt gerechnet wird.
Idee der Regularisierung:

obere Schranke für das Risiko
Schrittweise Steigerung der Komplexität

Formalisierung der Komplexität: VC-Dimension
Regularisierung als strukturelle Risikominimierung der
SVM
Garantie für die Korrektheit der Lernstrategie
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