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0 Hinflihrungen zur SVM

@ Geometrie linearer Modelle: Hyperebenen
@ Einflhrung von Schélkopf/Smola

@ Maximum Margin Methode
@ Lagrange-Optimierung
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Lineare Modelle

Wir erinnern uns: Lineare Modelle trennen positive und
negative Beispiele durch eine Funktion f(Z). Einfachster Fall:

y = f(x) =mz +b Gerade im R?

Allerdings betrachten wir als Beispielraum den R?, d.h. wir
brauchen eine verallgemeinerte Form:

p
y=f(&)=> Bwi+B mitf) R T, [ecR (1)
=1

Die Funktion f wird also durch 5 und 5, festgelegt und sagt uns
flr ein gegebenes ¥ das entsprechende y voraus.
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Veranschaulichung

Bevor wir uns an die Wahl des passenden 5 machen, zunachst
einige Voruberlegungen.

Betrachten wir dazu die bindre Klassifikation (Y = {—1,+1}):
@ Was passiert dabei eigentlich anschaulich?
o Wie klassifiziert unser f die Daten?
@ Wie wirkt sich die Wahl von j aus?
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Zur Erinnerung: Ebenengleichung

Sei V = RP? ein Vektorraum, dann ist eine Hyperebene H ein
(p — 1)-dimensionaler affiner Untervektorraum.

H lasst sich Uber einen Stltzvektor @ und einen
Normalenvektor 8 mit der Ebenengleichung schreiben

H:{xepr <E,a?—a>:0}
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Beispiel Ebene, Stutzvektor, Normalenvektor

Y]

z
(Hyper-) Ebene im R3 mit Normalenvektor /3 und Stiitzvektor a.
Falls (3, — @) = 0, also 5 und Z — @ orthogonal zueinander,
befindet sich & auf der Ebene.
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Hesse Normalform

Multiplizieren wir die Ebenengleichung aus und setzen

By = <ﬁ, c‘i>, dann ist

(B, &)~ o=0

in Hesse Normalform, falls ||3]| = 1.
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Zur Erinnerung: Skalarprodukt

Das Skalarprodukt ist w
definiert durch 4
(@, @) = '@
; 77:1 2 3[1-44+2-5+3-6=232

aber auch durch den Kosinus mit
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Zur Erinnerung: Euklidsche Lange

Euklidsche Lange oder Norm, auch Ly-Norm

weil || 5 ||?= 23 + ...22 (Pythagoras)

1
Beispiel: f=1| 2
3

16 =v12+22+32 =14

Normiert heil3t ein Vektor, wenn er die (Euklidsche) Lange 1
hat.
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Abstandsberechnung durch Hesse Normalform

Sei 7y der Vektor, dessen Léange der Abstand vom Ursprung

zur Ebene in Hesse Normalform ist. Dieser muss orthogonal

zur Ebene liegen und somit parallel zu /. Seien nun 3 und &,
gleichgerichtet, dann gilt

cos(é(ﬁ, To)) =1

und || ]| = 1 und somit

™

<ga fo> - /80 = 0
& Bl - |Zoll - cos(£(B, 7o) = Bo
& Il - % PN

Daraus folgt, dass /3y der Abstand der Ebene zum Ursprung ist.
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Hesse Normalform

Fiir die Hesse Normalform muss ||3]| = 1 gelten, damit der
Abstand zum Ursprung leicht abgelesen werden kann. Wir
normieren den Normalenvektor auf die Euklidsche Lange 1

L g
i1
red
und erhalten die Ebenengleichung in Hesse Normalform
(B, &)~ By=0 (@)

wobei _
bo= (3, d)>0
Dann ist gy der Abstand zum Ursprung.
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Beispiel Normalisierung

4 1
Seig=| 0 |und @ = | 2 | dannistdie Ebenengleichung
0 3
nicht in Hesse Normalform, weil ||3|| = v/14 # 1. Wir
normalisieren

IS
[N

=

||/3’||

w
O

/\

> 60:0 \/Lx1+\/7x2+\/7

Jetztist By = \7—% der Abstand der Ebene zum Ursprung.
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Ubersicht Giber die Stiitzvektormethode (SVM)

Eigenschaften der Stlitzvektormethode (SVM) (Support Vector
Machine)

@ Maximieren der Breite einer separierenden Hyperebene —
maximum margin method — ergibt eindeutige, optimale
trennende Hyperebene.

o Transformation des Datenraums durch Kernfunktion
behandelt Nichtlinearitat.

@ Regularisierung minimiert nicht nur den Fehler, sondern
auch die Komplexitat des Modells.
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Probleme der Empirischen Risikominimierung

Empirische Risikominimierung: Bisher haben wir lineare
Modelle

auf die Fehlerminimierung hin optimiert:

R N

RSS(B) = (vi— & B)’

i=1
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Wo trennen wir die Daten?

f(x1,x2) = 0.021*x1 -0.01*x2 - 2.656
f(x1,x2) =0.5

Klasse' m @

Klasse w @

T 200
- e 150 190
o 5 170 ~ GroBe (in cm)
150

Problem: Mehrere Funktionen mit minimalem Fehler existieren.
Welche wahlen?
@ 1. Schritt: Verbessertes Kriterium: maximum margin.
@ 2. Schritt: Zusétzliches Kriterium: méglichst geringe
Komplexitat des Modells (Regularisierung)

60- 5
Gewicht (in'kg)
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Klassifikationsproblem

Gegeben sei ein Klassifikationsproblem mit Y = {—1; +1} und
X CRP,

Sei X = C; U C_ die Menge der Trainingsbeispiele mit
Cr ={(@y) ly=+1} und C_={(Zy)|y=—-1}
Zur Klassifikation ist nun eine Hyperebene
H={78+(z,F)=0}
gesucht, die die Mengen C', und C_ bestmdglichst trennt

Fir eine gegebene Hyperebene H erfolgt die Klassifikation
dann durch

g =sign (B + (7, 7))

17 von 48



LS 8 Informatik,

technische universitat Computergestiizte Statistik
dortmund Technische Universitét Dortmund

Hinflihrungen zur SVM  Maximum Margin Methode

Notationen...

Und warum jetzt <f , 5> statt 77 3?

Wir bewegen uns derzeit in einem R-Vektorraum der Beispiele
mit dem Standardskalarprodukt

Eh- €5 - g

M atrixmultiplikation ImplizitesSkalarprodukt

Und warum jetzt 3, + <f E> statt <9‘c’ ﬁ> — B?
Warum nicht? Vorher 8, = <5, 6> > 0, es geht auch 5, < 0.
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Klassifikation mit Hyperebenen

Die vorzeichenbehaftete Distanz eines Punktes Z zu einer B
Hyperebene H mit dem Stitzvektor @ und Normalenvektor 3 ist

a@, 1) = (7. §) - o @)
=(#.5)-(@.5) “
=(#-7.5) ®)

-,

=lz—dl- 15l 18] cos(£(& - @, ) (6)
0

=,

Nur cos(£(Z — @, §)) kann negativ werden und bestimmt die
Klassifizierung.
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Klassifikation mit Hyperebenen
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Klassifikation mit Hyperebenen

Die vorzeichenbehaftete Distanz d(z, H) driickt aus
@ den Abstand |d(Z, H)| von & zu Ebene H
@ die Lage von 7 relativ zur Orientierung (3) von H, d.h.

. ) ) 41 d(# H) > 0,cos £L(T B) >
sign (d(Z,H)) = { —1 d(&,H) < 0,cos £(7, _')

Auf diese Weise lassen sich die Punkte klassifizieren mit

g =sign (B0 + (7, 5))

Bei y = —1 liegen die Punkte x; im Halbraum des Ursprungs.
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Einflhrung von Schélkopf/Smola

Gegeben eine Menge von Schafen, packe immer die dhnlichen
zusammen! Vorgehen: Schafe vergleichen!
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Einfacher Ansatz nach Schélkopf/Smola

Ein einfacher Ansatz zu einer separierenden Hyperebene zu
kommen, geht Uber die Zentroiden von C. und C_:

Seien
1 1
EJF = W Z Z und c_:= W T
t@yecs N (@y)ec_
Waéhle nun
i C+;rc‘ und Gi=é, —a

als Hyperebene mit Normalenvektor 3 durch den Punkt Z,
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Separierende Hyperebene Uber Zentroiden

Durch 5 und @ ist die Hyperebene gegeben als
= {e) (-0.5) =0} = {21 (2.9) - (8) =0}
Damit erfolgt die Klassifikation durch
§ = sign <<f— z, 5>

—

= sign ((&, &) — (&, c-) + o)
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Lernalgorithmus im Bild

oL
l

Cy < c-
® r—¢ o
®

8

Vv
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... ware das schon die Stitzvektormethode. Aber:

o Einfach den Mittelpunkt der Beispiele einer Klasse zu
berechnen ist zu einfach, um ein ordentliches S zu
bekommen.

@ Man erhalt so nicht die optimale Hyperebene.
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Eine Menge von Beispielen heif3t
linear trennbar, falls es eine
Hyperebene H gibt, die die
positiven und negativen Beispiele
trennt.
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Eine Menge von Beispielen heif3t
linear trennbar, falls es eine
Hyperebene H gibt, die die
positiven und negativen Beispiele
trennt.

5.1: Optimale Hyperebene

Eine separierende Hyperebene H
hei3t optimal, wenn ihr minimaler
Abstand d zu allen Beispielen
maximal ist.
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Die optimale Hyperebene

Eine Menge von Beispielen heif3t
linear trennbar, falls es eine
Hyperebene H gibt, die die
positiven und negativen Beispiele
trennt.

®
5.1: Optimale Hyperebene
Eine separierende Hyperebene H
heiBt optimal, wenn ihr minimaler
® Abstand d zu allen Beispielen

maximal ist.

5.2: Satz (Eindeutigkeit)

Es existiert eine eindeutig
bestimmte optimale Hyperebene.
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Bild

Nach 5.1 wird die optimale
Hyperebene durch die
néchstliegenden Punkte aus
C4 und C_ bestimmt.

Skalierung von /3 und o, so

dass fur die nachstliegenden
Punkte z; zu H* gilt:

(B, %) + ol =1
Die Beispiele am nachsten zur

Hyperebene liefern die beiden
Hyperebenen H; und H,

Hy = {@| (7, 5) + o = (-1}
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Abstand der Hyperebenen zum Ursprung

Der Abstand der mittleren
Ebene H* zum Ursprung
betragt

d(0,H*) = ”%3”

Der Abstand zwischen den
Ebenen H; und H, ist

_ Bot+l _ Bo-—1
d(Hy, Hy) = [T

Bo=Bot1+1
31l

1511
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Margin

Nach Konstruktion liegt
kein Beispiel zwischen H;
und Ho, d.h.

(@ B)+ B> +1VF e Oy (7)

-,

(#,B) +Bo < —1VF € C_ (8)

Der Abstand

2
d(H]_,HQ) - —=
181l
hei3t Margin und soll
maximiert werden!
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Maximimum Margin

Mit der Maximierung des Margin finden wir eine optimale
Hyperebene innerhalb der Menge der mdglichen trennenden
Hyperebenen.

Konvexes, quadratisches Optimierungsproblem:

o Es existiert eine eindeutig bestimmte, optimale
Hyperebene

= {z| (7. 8) + =0}

@ unter der Bedingung, dass %HEW minimal ist.
Das Optimierungsproblem 1483t sich in Zeit O(N3) l6sen.
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Optimierungsaufgabe

Nach diesen Voruberlegungen haben wir also (nur noch) die
folgende Optimierungsaufgabe zu l6sen:

Optimierungsaufgabe
Minimiere ]
2113112
SIE
unter den Nebenbedingungen
<.fz, E>+ﬂo > 41 VZeCy
<f, E>+ﬁo <_1VieC.

Die Nebenbedingungen lassen sich zusammenfassen zu

y((7,5) + Bo) =120 V(@y) €X ©)
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Optimierung mit Nebenbedingungen

Sei die optimierende
Funktion f : R — R

gegeben als ¢ ' ' ) 7/
fo) = (@—1)? |

unter der einzigen
Nebenbedingung os|

g(x) = ZEQ - 1a °
d.h. fur die méglichen -
Lésungen Z muss gelten S T
5; 6 {x E R | g(m) S 0} -1-5—115 —Il -0.5 0 (03 Il 05 I2 215
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Beispiel Lagrange Multiplikatoren zur Optimierung

Gegeben: Funktion f(z,y), Nebenbedingung g(z,vy) = ¢,
Optimierungsziel: maximiere c.

Notwendige Bedingung: f(z,y) = cund g(z,y) = c.
Lagrangefunktion

foey)

http://de.wikipedia.org/wiki/Lagrange-Multiplikator
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Optimierung mit Lagrange

Die Optimierung nach Lagrange formuliert die Optimierung
einer Funktion f(z) unter Nebenbedingungen um in eine
Optimierung ohne Nebenbedingungen.

Mit der Lagrange-Methode lassen sich Nebenbedingungen g;
und h; der Art
gl(l‘) <0 und hj($) =0

in die zu optimierende Funktion f hinzufligen, im Falle eines
Minimierungsproblems als

min f(z) + Zaigi(x) + Zujhj(:v) mit o, puj > 0 Vi, 5
( J

Die a; und ; heiBen auch Lagrange-Multiplikatoren.
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Lagrange-Funktion

Die Umformung der Nebenbedingungen (9) erlaubt nun die
Anwendung von Lagrange (nur Ungleichheitsbedingungen):

Lagrange-Funktion

|

Sei das Optimierungsproblem gegeben, () zu minimieren
unter den Nebenbedingungen g¢;(8) > 0,7 = 1,...,m dann ist
die Lagrange-Funktion:

L(B.d) = £(B)— > cigi() (10)
i=1

Dabei muss gelten «; > 0, Gleichheitsbedingungen sind nicht
gegeben.
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SVM Optimierungsfunktion als Lagrange
Die Nebenbedingungen g; sind gegeben durch
4i(B, Bo) = yi (<fz, 5> +ﬂo) —1>0Vr;eX

Die Formulierung des Optimierungsproblems nach Lagrange
wird auch als Primales Problem bezeichnet:

Primales Problem
Die Funktion

Lp (3, 5o, ) = 31811 - Zaz(i(@, B)+8)-1) (1)

soll Lp bezlglich 5 und By minimiert und bezuglich & maximiert
werden!
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Karush-Kuhn-Tucker Bedingungen

Durch die partiellen Ableitung nach 5 und j, erhalten wir

%LP(B, Bo, @) = g—z; oy und %LP B, Bo, @) Zazyz

Nullsetzen der Ableitungen und die Berucksichtigung der

Nebenbedingungen fihrt zu den KKT-Bedingungen flr eine
Lésung flr Lp:

N N
= Zaiyifi und Zaiyi =0 (12)
aiZEViZI,...,N - (13)
ai<yi(<fi,g>+ﬂo>—1>=()Vz':1,...,N (14)
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Duales Problem

Das primale Problem soll beziiglich 3 und 3, minimiert und
bezlglich & maximiert werden:

Mit den Bedingungen aus aaLé’ und G52 erhalten wir den dualen
Lagrange-Ausdruck Lp(a)
@ Der duale Lagrange-Ausdruck L(&) soll maximiert werden.

@ Das Minimum des urspringlichen Optimierungsproblems
tritt genau bei jenen Werten von g,5y,a auf wie das
Maximum des dualen Problems.
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Umformung des primalen in das duale Problem

LA - s ({2, 8) + 80) 1]
=1
i -3 e (@ B em) 4D
=1 ]

N

i=1

1 N N N
=3l =2 o (7, 8) =Y awo +3

i i=1 i=1

(12)1 9 Lo N
S[E] Zazyz@,) +3

i=1
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Umformung Il

. N
Einsetzen von 5 = > «,y;Z; fihrt zu

i=1
1 N N
5”5“2 _Zaiyi <fi,5> +Zai
i=1 i=1
(NN N N N
2522%%%%‘ (@, ) =YY aagyy; (B, 45) + > a
i=1 j=1 i=1 j=1 i=1
N (NN
=+ o - 522%0@'%% (%, )
i=1 i=1 j=1
N
unter den Nebenbedingungen 0 = > a;y; und «; > 0 Vi
i=1
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SVM Optimierungsproblem (Duales Problem)

Die Umformungen fihren nach Einsetzen der
KKT-Bedingungen zum dualen Problem:

Duales Problem
Maximiere

Zaz -3 Z Zy’byja’ta] xzv xj> (15)

lel

unter den Bedingungen

N
a; >0Vi=1,...,N und Y ;=0
=1
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Stitzvektoren

Die Lésung a* des dualen Problems

Zaz -3 Zzyly]ala] i, x])

11]1

muss die KKT-Bedingungen erfiillen, d.h. es gilt unter anderem

Q; (yz' <<fz, E>+50> —1) =0Vi=1,...,N
a* enthalt fir jedes Beispiel Z; genau ein «; mit

ozi:O

, falls Z; im richtigen Halbraum liegt
a; >0

, falls Z; auf der Hyperebene H; oder H, liegt

Ein Beispiel Z; mit «; > 0 heiBt Stutzvektor.
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Optimale Hyperebene

Haben wir das optimale &* bestimmt, erhalten wir unsere
optimale Hyperebene:

Nach (12) gilt

B=> awdi
d.h. der optimale Normalenvektor /3 ist eine Linearkombination
von Stitzvektoren.

Um 3y zu bestimmen kdénnen wir

Q; (yz <<fm 5>+ﬁo) — 1> =0

flr ein beliebiges ¢ und unser berechnetes E nutzen.
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Berechnung der «;?

Das prinzipielle Vorgehen ist bei der SVM wie bei anderen
Lernverfahren auch:

@ Parametrisierung der Modelle, hier Gber Umwege durch &

o Festlegung eines Optimalitatskriteriums, hier: Maximum
Margin

@ Formulierung als Optimierungsproblem

Das finale Optimierungsproblem &3t sich mit unterschiedlichen
Ansatzen l6sen

@ Numerische Verfahren (quadratic problem solver)
@ Sequential Minimal Optimization (SMO, [J. C. Platt, 1998])
@ Evolutionare Algorithmen (EvoSVM, [l. Mierswa, 2006])
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Zusammenfassung der Lagrange-Optimierung fir SVM

Das Lagrange-Optimierungs-Problem (11) ist definiert als:

1 = a 3
P = g IAIP =3 e [ (@ 5) + o) 1]

i=1
mit den Lagrange-Multiplikatoren &; > 0.

Notwepdige Bedingung fur ein Minimum liefern die Ableitungen
nach 8 und 5

N N
aLp - OLp

= ;% und —— = Q;Y;
o7 B— ;: Y 970 E Y

Diese fuhren zum dualen Problem (15)

Lp = ZO&Z — —Zzazawyzyz z, $z>

i=114i'=1
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Was wissen wir jetzt?

@ Maximieren des Margins einer Hyperebene ergibt eine
eindeutige Festlegung der optimalen trennenden
Hyperebene.

@ Dazu minimieren wir die Lange des Normalenvektors 3

o Formulierung als Lagrange-Funktion
o Formulierung als duales Optimierungsproblem

@ Das Lernergebnis ist eine Linearkombination von
Stutzvektoren.

@ Mit den Beispielen missen wir nur noch das Skalarprodukt
rechnen.
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