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Modellselektion Heiliees

Funktionsapproximation

@ Die beiden vorgestellten Verfahren zu maschinellem
Lernen, lineare Modelle und k-nachste Nachbarn, sind
Instanzen der Funktionsapproximation.

@ Gegeben sind die Trainingsbeispiele 7, gesucht ist eine
Funktion

K
fo(@) = hi(@)6s
k=1

o Dabei gibt es Parameter ¢, die abzuschatzen sind, bei den
linearen Modellen ist dies 5.

@ Dariber hinaus kénnen die Daten transformiert werden in
einen Raum, der fir das Lernen besser geeignet ist: hy(Z).

@ Optimiert wird ein Qualitatskriterium, z.B. wird eine
Verlustfunktion minimiert oder die Wahrscheinlichkeit

maximiert.
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Modellselektion HiEiimes

Wege der Funktionsapproximation

Verlustfunkiion: Fehler minimieren als Abstand zwischen
wahrem Wert und Ergebnis der gelernten
Funktion, z.B. RSS(#) minimieren. Das haben wir
bisher gesehen.

Likelihood: Wahrscheinlichkeit der wahren Werte maximieren!
Das schauen wir uns jetzt an.
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Maximum Likelihood

Gegeben eine Verteilung Pry(y) und eine Stichprobe dieser
Verteilung y1, ...., yn, ist die logarithmierte Wahrscheinlichkeit:

N
L(0) = log Pro(y:) (1)

=1
Genau das 6, das y; am wahrscheinlichsten macht, ist gut —
L(6) maximieren!
@ Wir kébnnen dafir eine Verteilung annehmen, da wir die
wahre Verteilung nicht kennen.
@ Meist ist die Normalverteilung eine gute Annahme.
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Modellselektion itieee

Normalverteilung NV (i, o)

normalverteilt

Eine Zufallsvariable X heif3t normalverteilt mit den
Parametern p, o, wenn sie die Dichtefunktion

1 1 2
9(@) = e @

besitzt.

Normalverteilung

Die zugehdrige Wahrscheinlichkeitsverteilung X ~ N (i, 02)
hei3t Normalverteilung, der Graph ihrer Dichtefunktion wird
GauBsche Glockenkurve genannt.
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Bei linearen Modellen ist die Maximum Likelihood gleich der
Minimierung von RSS

Wir wollen 6 schatzen, so dass die richtige Auspragung von Y’
auch die wahrscheinlichste ist, gegeben X, 6. Unter der
Annahme der Normalverteilung:

PT(Y|X7 0) :N(fG(X)702)

Nun entspricht die log-likelihood der Daten gerade RSS(0):

1 1,¥i—Fo(5)\2
L(6) = l -3 (=)
0 = Stool e )
N
= Co+C1- Y (yi— fo(#)?
i=1

Wie das?
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Herleitung von L(#) = RSS(6) - C1 + C, bei Normalverteilung

i—1 oV 2
N yi—=f6(F5) 2

= Z(log( ) log(U\/ﬂ)—i-log( 2 ( ) ))
N 7.

= Z (0 —log(o) — log(V2m) — %(%—Tf&(x@))z)

N

= N -log(o) ~ log(2 —%Z e

) ::02 g :~Cl =1

= RSSO)-C1+Cy

N, o sind konstant fiir einen Datensatz. 8 von 24
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Log-likelihood bei nominalem Y ist Entropie

Cross-Entropie

Sei Y eine Zufallsvariable, die als Werte die Namen von K
verschiedenen Klassen annimmt.
Pr(Y =y X =2) =pro(@),k=1,..,. K

N
L(9) = Z log(py, 0(Z:)) (3)

Wenn man L(#) maximiert, passt 6 gut zu den Daten im Sinne
der Likelihood.
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Modellselektion

@ Wir haben zwei Modellklassen gesehen: lineare Modelle
und Né&chste Nachbarn.

@ Bei der Verallgemeinerung zur Funktionsapproximation
haben wir auBerdem Basisfunktionen zur Vorverarbeitung
gesehen, die ebenfalls Modellklassen induzieren.

@ Wie wahlen wir nun Modelle aus?
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Verfahren zur Modellselektion

@ Kreuzvalidierung fir verschiedene Modelle — das mit dem
geringsten durchschnittlichen Fehler nehmen!
(Minimierung der Verlustfunktion jetzt auf der Ebene der
Modelle)

@ Direkt anhand der a posteriori Wahrscheinlichkeit Modelle
vergleichen. (Maximierung der Wahrscheinlichkeit jetzt auf
der Ebene der Modelle)

o Bayes Information Criterion
o Minimum Description Length
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Kreuzvalidierung zur Modellselektion

Gegeben eine Klasse von Modellen f(Z, «), wobei « ein Modell
der Klasse indiziert, eine Verlustfunktion L(y, f(Z, «)), N
Beispiele und eine Aufteilung der Beispiele in K Partitionen mit
der Indexfunktion « : {1,..., N} — {1, ..., K'}, die fUr jede
Beobachtung die zugehdrige Partition angibt.

Kreuzvalidierung fur alle Modelle:

o Lasse die x(i)-te Partition aus,
o lerne das a-te Modell: f=*()(zZ, ).
@ rechne den Fehler aus:

1 & o
= N ZL(y%f_H(Z)(fi’a))
i=1

@ Minimiere CV («), wéhle also das Modell mit dem
aerinacten VVerliiet

-
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Modellselektion Uber Kreuzvalidierung praktisch

In RapidMiner wird die Kreuzvalidierungsschleife schon

angeboten.
Training ]
k-NN Test Evaluation
[i2Y) — mod ] modmod mod lab lab per—— ave
@ exal) thr e unl Q mod ) q per % exal) qave
=] 4 =] (]

Es geht aber auch anders...
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Bayes Statistik

A posteriori Wahrscheinlichkeit

Gegeben eine beliebige Einteilung von X in Klassen
Y1, Y2, ---, i UNd eine Beobachtung ¥ € X. Die
Wahrscheinlichkeit von y; unter der Bedingung, dass &
beobachtet wird, ist

Pr(y;)Pr(Z]y;)

Priyld) = =5

(4)

Pr(y;) ist die a priori Wahrscheinlichkeit der Klasse. Pr(y;|%)
ist die a posteriori Wahrscheinlichkeit der Klasse.
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Bayes Modellselektion

Gegeben eine Menge von Modellen M,,,,m =1, ..., M mit
entsprechenden Parametern 6,,, Trainingsdaten 7 und eine
Verteilung Pr(60,,|M,,), dann ist die a posteriori
Wabhrscheinlichkeit eines Modells

Pr(Mp,|T) ~ Pr(My,) - Pr(T|My,)

Gegeben dass Pr(M;|T) # 0, Pr(T|M;) # 0, Pr(M;) # 0O:
Zum Vergleich zweier Modelle M, M, berechnen wir den
Quotienten:

Pr(Mpu|T)  Pr(Mpy) ‘ Pr(T|My,)
Pr(M|T) — Pr(M;) Pr(TIM;)

Ist das Ergebnis > 1, nehmen wir M,,,, sonst M,.

15von 24



. R Informatik LS 8
technische universitat Computergestitzte Statstik
dortmund Technische Universitit Dortmund
Funktionsapproximation
Modellselektion

Approximieren der a posteriori Wahrscheinlichkeit

Wenn alle Modelle a priori gleich wahrscheinlich sind, missen
wir nur Pr(7|M;) approximieren.

o Mit Maximum Likelihood schatzen wir 6;.

@ Die Anzahl freier Parameter in M; nennen wir d;. Das ist
z.B. die Dimension der Beispiele, kann aber wegen h (%)
oder einiger Eigenschaften des Lernverfahrens auch etwas
anderes sein.

@ Als Wahrscheinlichkeit nahern wir an:

log Pr(TIM;) = log Pr(T16:, M;) — % log N +0(1) (5)
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Maximale a posteriori Wahrscheinlichkeit und BIC

Bayes Informationskriterium

Sei d die Anzahl der Parameter eines Modells und N die Anzahl
der Beispiele, dann ist das Bayes Informationskriterium BIC

BIC = -2 loglik + (log N) - d (6)

Dabei ist loglik = SN | log Pry(y:)-

BIC als Qualitéatskriterium bei Likelihood Maximierung wahlt
eher einfache Modelle. Unter einer GauBBschen Verteilung und
bei bekannter Varianz o2 rechnen wir
. (yi — i)
—2 loglik ~ ——
0oglt ZZ: 0_2

Die Wahl des Modells mit kleinstem BIC entspricht der
Wahl des Modells mit gré3ter a posteriori Wahrscheinlichkeit. 17,0124



. P Informatik LS 8
technische universitat Computergestiitzte Statistik
dortmund Technische Universitit Dortmund

Funktionsapproximation
Modellselektion

Relative Qualitat der Modelle per BIC

@ Die Wahl des Modells mit kleinstem BIC ist zuverlassig.
Gegeben eine Familie von Modellen, darunter das richtige,
konvergiert die Wahrscheinlichkeit, dass BIC das richtige
wabhlt, gegen 1, wenn die Anzahl der Beispiele gegen oo
konvergiert.

@ Wenn wir fur jedes Modell M,,,,m =1, ..., M den BIC
ausrechnen, kénnen wir (wie bei Kreuzvalidierung auch)
die Modelle relativ zueinander bewerten, hier:

1
e~ 3BICn

(7)

1
Zi\il e_§'BICl
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Minimum Description Length

Ein Modell kodiert eine Menge von Beispielen. Wir kénnen
Nachrichten so kodieren, dass keine Nachricht Prafix einer
anderen ist, z.B.

| Nachricht || z1 | z2 | z3 | z4 |
|Code ||0|10|110|111|

Wir wollen den kirzesten Code flr die haufigste Nachricht. Der
Code des Beispiels ist optimal, wenn Pr(z1) =1/2,

Pr(z2) =1/4, Pr(z3) =1/8, Pr(z4) = 1/8.

Wieso das?
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Shannon/Weaver Theorem

Code-Lénge als Entropie
Wahlen wir die Code-Lange I; einer Nachricht z; als

l; = —loga Pr(z)

so ist die durchschnittliche Nachrichtenlange

length > = Pr(zi)loga(Pr(z)) (8)

Wenn p; = A%, wobei A die Anzahl der verwendeten Zeichen
ist, gilt sogar die Gleichheit (s. Beispiel):
Pr(z)=1/2=2"1=A"0 A=21=1
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Minimum Description Length zur Modellselektion

Gegeben ein Modell M mit Parametern 6 und Beispiele
T = (X,y), der Empfénger kennt alle X und soll die y
empfangen. Dazu missen wir den Unterschied zwischen
Modell und wahren Werten sowie die Modellparameter
dbermitteln.

Prinzip der Minimum Description Length MDL

Wahle immer das Modell mit der kiirzesten Nachrichtenlange!

length = —log Pr(y|0, M,X) — log Pr(6|M) (9)
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Eigenschaften von MDL

@ Bei normalverteilten y, 6, wenn wir X zur Einfachheit
weglassen, sehen wir den Einfluss von o:

_92 02
lengthzloga+w+—
o 2

o Je kleiner o desto kiirzer die Nachricht und einfacher das
Modell!
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Bezug zwischen MDL und BIC

@ Wenn wir die Lange (Gleichung 9) minimieren
length = —log Pr(y|0, M,X) — log Pr(0|M)

maximieren wir auch die a posteriori Wahrscheinlichkeit
(vgl. Gleichung 4) Pr(y|X).

@ Mit Hilfe des BIC haben wir Modelle fur die
Funktionsapproximation durch Maximum Likelihood
ausgewahlt: das Modell mit dem kleinsten BIC entspricht
dem Modell mit gréBter a posteriori Wahrscheinlichkeit.

@ Also kann man das Modell mit der kleinsten Code-Lange
(MDL-Prinzip) auch durch die Minimierung des BIC finden.
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Was wissen Sie jetzt?

@ Funktionsapproximation optimiert eine Qualitatstunkiion.

o Fehlerminimierung, z.B. RSS, MSE
o Maximierung der Likelihood, z.B. durch Approximation der
a posteriori Wahrscheinlichkeit

o Fehlerminimierung RSS entspricht Maximum Likelihood,
falls Normalverteilung gegeben (Regression).

o Fir die Modellselektion kann man

o die Kreuzvalidierung mit Fehlerminimierung und
o die Kriterien nach Bayes (BIC, MDL) nutzen.
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