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Funktionsapproximation

Die beiden vorgestellten Verfahren zu maschinellem
Lernen, lineare Modelle und k-nächste Nachbarn, sind
Instanzen der Funktionsapproximation.
Gegeben sind die Trainingsbeispiele T , gesucht ist eine
Funktion

fθ(~x) =

K∑
k=1

hk(~x)θk

.
Dabei gibt es Parameter θ, die abzuschätzen sind, bei den
linearen Modellen ist dies β.
Darüber hinaus können die Daten transformiert werden in
einen Raum, der für das Lernen besser geeignet ist: hk(~x).
Optimiert wird ein Qualitätskriterium, z.B. wird eine
Verlustfunktion minimiert oder die Wahrscheinlichkeit
maximiert.
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Wege der Funktionsapproximation

Verlustfunktion: Fehler minimieren als Abstand zwischen
wahrem Wert und Ergebnis der gelernten
Funktion, z.B. RSS(θ) minimieren. Das haben wir
bisher gesehen.

Likelihood: Wahrscheinlichkeit der wahren Werte maximieren!
Das schauen wir uns jetzt an.

4 von 24



Informatik LS 8
Computergestützte Statistik
Technische Universität Dortmund

Funktionsapproximation
Modellselektion

Likelihood

Maximum Likelihood

Gegeben eine Verteilung Prθ(y) und eine Stichprobe dieser
Verteilung y1, ...., yN , ist die logarithmierte Wahrscheinlichkeit:

L(θ) =

N∑
i=1

logPrθ(yi) (1)

Genau das θ, das yi am wahrscheinlichsten macht, ist gut –
L(θ) maximieren!

Wir können dafür eine Verteilung annehmen, da wir die
wahre Verteilung nicht kennen.
Meist ist die Normalverteilung eine gute Annahme.
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Normalverteilung N (µ, σ)

normalverteilt
Eine Zufallsvariable X heißt normalverteilt mit den
Parametern µ, σ, wenn sie die Dichtefunktion

g(x) =
1

σ
√
2π
· e−

1
2
((x−µ)/σ)2 (2)

besitzt.

Normalverteilung

Die zugehörige Wahrscheinlichkeitsverteilung X ∼ N (µ, σ2)
heißt Normalverteilung, der Graph ihrer Dichtefunktion wird
Gaußsche Glockenkurve genannt.
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Bei linearen Modellen ist die Maximum Likelihood gleich der
Minimierung von RSS

Wir wollen θ schätzen, so dass die richtige Ausprägung von Y
auch die wahrscheinlichste ist, gegeben X, θ. Unter der
Annahme der Normalverteilung:

Pr(Y |X, θ) = N (fθ(X), σ2)

Nun entspricht die log-likelihood der Daten gerade RSS(θ):

L(θ) =

N∑
i=1

log(
1

σ
√
2π
e−

1
2
(
yi−fθ(~xi)

σ
)2)

= C2 + C1 ·
N∑
i=1

(yi − fθ(~xi))2

Wie das?
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Herleitung von L(θ) = RSS(θ) · C1 + C2 bei Normalverteilung

L(θ) =

N∑
i=1

log(
1

σ
√
2π
e−

1
2
(
yi−fθ(~xi)

σ
)2)

=

N∑
i=1

(
log(1)− log(σ

√
2π) + log(e−

1
2
(
yi−fθ(~xi)

σ
)2)
)

=

N∑
i=1

(
0− log(σ)− log(

√
2π)− 1

2
(
yi − fθ(~xi)

σ
)2
)

= −N · log(σ)− N

2
log(2π)︸ ︷︷ ︸

=:C2

− 1

2σ2︸ ︷︷ ︸
=:C1

N∑
i=1

(yi − fθ(~xi))2

= RSS(θ) · C1 + C2

N, σ sind konstant für einen Datensatz. 8 von 24
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Log-likelihood bei nominalem Y ist Entropie

Cross-Entropie
Sei Y eine Zufallsvariable, die als Werte die Namen von K
verschiedenen Klassen annimmt.
Pr(Y = yk|X = ~x) = pk,θ(~x), k = 1, ...,K

L(θ) =

N∑
i=1

log(pyi,θ(~xi)) (3)

Wenn man L(θ) maximiert, passt θ gut zu den Daten im Sinne
der Likelihood.
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Modellselektion

Wir haben zwei Modellklassen gesehen: lineare Modelle
und Nächste Nachbarn.
Bei der Verallgemeinerung zur Funktionsapproximation
haben wir außerdem Basisfunktionen zur Vorverarbeitung
gesehen, die ebenfalls Modellklassen induzieren.
Wie wählen wir nun Modelle aus?
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Verfahren zur Modellselektion

Kreuzvalidierung für verschiedene Modelle – das mit dem
geringsten durchschnittlichen Fehler nehmen!
(Minimierung der Verlustfunktion jetzt auf der Ebene der
Modelle)
Direkt anhand der a posteriori Wahrscheinlichkeit Modelle
vergleichen. (Maximierung der Wahrscheinlichkeit jetzt auf
der Ebene der Modelle)

Bayes Information Criterion
Minimum Description Length
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Kreuzvalidierung zur Modellselektion

Gegeben eine Klasse von Modellen f(~x, α), wobei α ein Modell
der Klasse indiziert, eine Verlustfunktion L(y, f(~x, α)), N
Beispiele und eine Aufteilung der Beispiele in K Partitionen mit
der Indexfunktion κ : {1, ..., N} → {1, ...,K}, die für jede
Beobachtung die zugehörige Partition angibt.

Kreuzvalidierung für alle Modelle:

Lasse die κ(i)-te Partition aus,
lerne das α-te Modell: f̂−κ(i)(~x, α).
rechne den Fehler aus:

CV (α) =
1

N

N∑
i=1

L(yi, f̂
−κ(i)(~xi, α))

Minimiere CV (α), wähle also das Modell mit dem
geringsten Verlust. 12 von 24
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Modellselektion über Kreuzvalidierung praktisch

In RapidMiner wird die Kreuzvalidierungsschleife schon
angeboten.

Es geht aber auch anders...
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Bayes Statistik

A posteriori Wahrscheinlichkeit
Gegeben eine beliebige Einteilung von X in Klassen
y1, y2, ..., yK und eine Beobachtung ~x ∈ X. Die
Wahrscheinlichkeit von yj unter der Bedingung, dass ~x
beobachtet wird, ist

Pr(yj |~x) =
Pr(yj)Pr(~x|yj)

Pr(~x)
(4)

Pr(yj) ist die a priori Wahrscheinlichkeit der Klasse. Pr(yj |~x)
ist die a posteriori Wahrscheinlichkeit der Klasse.
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Bayes Modellselektion

Gegeben eine Menge von ModellenMm,m = 1, ...,M mit
entsprechenden Parametern θm, Trainingsdaten T und eine
Verteilung Pr(θm|Mm), dann ist die a posteriori
Wahrscheinlichkeit eines Modells

Pr(Mm|T ) ∼ Pr(Mm) · Pr(T |Mm)

Gegeben dass Pr(Ml|T ) 6= 0, Pr(T |Ml) 6= 0, Pr(Ml) 6= 0:

Zum Vergleich zweier ModelleMj ,Ml berechnen wir den
Quotienten:

Pr(Mm|T )
Pr(Ml|T )

=
Pr(Mm)

Pr(Ml)
· Pr(T |Mm)

Pr(T |Ml)

Ist das Ergebnis > 1, nehmen wirMm, sonstMl.
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Approximieren der a posteriori Wahrscheinlichkeit

Wenn alle Modelle a priori gleich wahrscheinlich sind, müssen
wir nur Pr(T |Mi) approximieren.

Mit Maximum Likelihood schätzen wir θ̂i.
Die Anzahl freier Parameter inMi nennen wir di. Das ist
z.B. die Dimension der Beispiele, kann aber wegen hk(~x)
oder einiger Eigenschaften des Lernverfahrens auch etwas
anderes sein.
Als Wahrscheinlichkeit nähern wir an:

log Pr(T |Mi) = log Pr(T |θ̂i,Mi)−
di
2
· log N +O(1) (5)
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Maximale a posteriori Wahrscheinlichkeit und BIC

Bayes Informationskriterium
Sei d die Anzahl der Parameter eines Modells und N die Anzahl
der Beispiele, dann ist das Bayes Informationskriterium BIC

BIC = −2 loglik + (log N) · d (6)

Dabei ist loglik =
∑N

i=1 logPrθ̂(yi).

BIC als Qualitätskriterium bei Likelihood Maximierung wählt
eher einfache Modelle. Unter einer Gaußschen Verteilung und
bei bekannter Varianz σ2 rechnen wir

−2 loglik ∼
∑
i

(yi − ŷi)2

σ2

Die Wahl des Modells mit kleinstem BIC entspricht der
Wahl des Modells mit größter a posteriori Wahrscheinlichkeit. 17 von 24
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Relative Qualität der Modelle per BIC

Die Wahl des Modells mit kleinstem BIC ist zuverlässig.
Gegeben eine Familie von Modellen, darunter das richtige,
konvergiert die Wahrscheinlichkeit, dass BIC das richtige
wählt, gegen 1, wenn die Anzahl der Beispiele gegen∞
konvergiert.
Wenn wir für jedes ModellMm,m = 1, ...,M den BIC
ausrechnen, können wir (wie bei Kreuzvalidierung auch)
die Modelle relativ zueinander bewerten, hier:

e−
1
2
·BICm∑M

l=1 e
− 1

2
·BICl

(7)
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Minimum Description Length

Ein Modell kodiert eine Menge von Beispielen. Wir können
Nachrichten so kodieren, dass keine Nachricht Präfix einer
anderen ist, z.B.

Nachricht z1 z2 z3 z4
Code 0 10 110 111

Wir wollen den kürzesten Code für die häufigste Nachricht. Der
Code des Beispiels ist optimal, wenn Pr(z1) = 1/2,
Pr(z2) = 1/4, Pr(z3) = 1/8, Pr(z4) = 1/8.
Wieso das?
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Shannon/Weaver Theorem

Code-Länge als Entropie

Wählen wir die Code-Länge li einer Nachricht zi als

li = −log2Pr(zi)

so ist die durchschnittliche Nachrichtenlänge

length ≥ −
∑

Pr(zi)log2(Pr(zi)) (8)

Wenn pi = A−li , wobei A die Anzahl der verwendeten Zeichen
ist, gilt sogar die Gleichheit (s. Beispiel):
Pr(z1) = 1/2 = 2−1 = A−l1 , A = 2, l1 = 1
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Minimum Description Length zur Modellselektion

Gegeben ein ModellM mit Parametern θ und Beispiele
T = (X,y), der Empfänger kennt alle X und soll die y
empfangen. Dazu müssen wir den Unterschied zwischen
Modell und wahren Werten sowie die Modellparameter
übermitteln.

Prinzip der Minimum Description Length MDL
Wähle immer das Modell mit der kürzesten Nachrichtenlänge!

length = −log Pr(y|θ,M,X)− log Pr(θ|M) (9)
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Eigenschaften von MDL

Bei normalverteilten y, θ, wenn wir X zur Einfachheit
weglassen, sehen wir den Einfluss von σ:

length = log σ +
(y − θ)2

σ2
+
θ2

2

Je kleiner σ desto kürzer die Nachricht und einfacher das
Modell!
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Bezug zwischen MDL und BIC

Wenn wir die Länge (Gleichung 9) minimieren

length = −log Pr(y|θ,M,X)− log Pr(θ|M)

maximieren wir auch die a posteriori Wahrscheinlichkeit
(vgl. Gleichung 4) Pr(y|X).
Mit Hilfe des BIC haben wir Modelle für die
Funktionsapproximation durch Maximum Likelihood
ausgewählt: das Modell mit dem kleinsten BIC entspricht
dem Modell mit größter a posteriori Wahrscheinlichkeit.
Also kann man das Modell mit der kleinsten Code-Länge
(MDL-Prinzip) auch durch die Minimierung des BIC finden.
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Was wissen Sie jetzt?

Funktionsapproximation optimiert eine Qualitätsfunktion.
Fehlerminimierung, z.B. RSS, MSE
Maximierung der Likelihood, z.B. durch Approximation der
a posteriori Wahrscheinlichkeit

Fehlerminimierung RSS entspricht Maximum Likelihood,
falls Normalverteilung gegeben (Regression).

Für die Modellselektion kann man
die Kreuzvalidierung mit Fehlerminimierung und
die Kriterien nach Bayes (BIC, MDL) nutzen.
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