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Kernfunktionen

Wie funktioniert der Kern-Trick?
Wann funktioniert der Kern-Trick?
Warum?
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Nicht-lineare Daten

Neue SVM-Theorie entwickeln? (Neeee!)

Lineare SVM benutzen? (,If all you‘ve got is a hammer, every
problem looks like a nail*)

Transformation in lineares Problem!

Nicht-lineare Daten
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. D(xq,%5) = (X42,X5) o
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D(X4,%9)=(X43, Xy)
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Kernfunktionen
Erinnerung: Lla)=Ya, -+ 2 E »yoa; (xl. X, )
i= i=1 721

f(x) = Zoy;(x*x)+b
SVM héangt von x nur Gber Skalarprodukt x*x‘ ab.

Ersetze Transformation ® und Skalarprodukt * durch
Kernfunktion K(x4,x5) = ®(X;)*®(x,)

X > Z >N
K
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Der Kern-Trick

K(x,x)=x*x*

O:X>H

Das Skalarprodukt der Vektoren im Merkmalsraum 7
entspricht dem Wert der Kernfunktion tber den Beispielen.
Welche Funktionen machen k(x,x‘)= ®(x)* ®(x‘) wahr?

Prof. Dr. Katharina Morik | Wissensentdeckung in Datenbanken SoSe 2008

technische universitat Fakultat fur Informatik "’
dortmund LS8

Polynome

Ein Monomial hat nur einen Term: xd

Alle Produkte von d Vektorkomponenten ergeben
Merkmalsraum g.

D, N2> 913

1B GLEREEDL)

Sei N die Anzahl der Dimensionen (Buchstaben), d Dimensionen
werden daraus verwendet (Lange d. Wortes), dann ist die Anzahl
verschiedener Monomials (Worter): (d+N—l) ) @+N-1)

d dI(N -1)!
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Der Trick

Der Merkmalsraum ist sehr grof3.

Abbildung der Beispiele in den Merkmalsraum und dann
Berechnen der Skalarprodukte zwischen den transformierten
Beispielen ist sehr ineffizient.

Eine Kernfunktion, die auf die Beispiele direkt angewandt
dasselbe Ergebnis liefert, ware effizient!

Diese Kernfunktion ist hier (x*x‘)2
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Skalarprodukt im Polynomraum

Geordnete Monomials:
D,: N2> g4

®,(0): (x].61) = GF R L ELED )

Skalarprodukt im Merkmalsraum:

©,0)*0,x) = [xFleF+lxblx e 2] [ L],

(x* ')’

Dies gilt allgemein fir alle geordneten Produkte d-ten Grades
der Komponenten von x: @4(x)* ®4(x")=(x*x")d
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Beweis
k(x,x') = O, ()= (x*x
Q,(x)*D,(x") = EE[xl [x]/d ‘[x’].l ‘...[x'],.d

- gl[xl 1, "'il[xlu Il

Ja=

- (SE1E1)
- e
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Randbemerkung

Gerade wurden Reihenfolgen unterschieden.
Ublicherweise ist @4 aber ohne Doppelte.

Eine Komponente, die Doppelte enthalten wiirde, wird durch
die Wurzel skaliert.

o, = GI B2 D)

Die genaue Form von @, ist aber egal: beide ergeben
dieselbe Kernfunktion k(x,x')=(x*x‘)d
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Verallgemeinerung

Die Gram Matrix K fiir eine Funktion k:X2>% und Beobachtungen

Eine (reellwertige) positiv definite Matrix ist eine mxm Matrix K, fur
die fur alle c; in & gilt

EC’CIK’Y =0

[

Einfaches Beispiel: 1) gelingt nicht, 2) gelingt

0 -1 1 -1
K = ci, cj=1 K= ci,cj=1
(_1 0) (—1 1)
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Kernfunktion Definition

Eine Funktion k Gber XxX, die sich flr alle x; in X als positiv
definite Gram Matrix mit symmetrischer Funktion k darstellen
lasst, heilt Kernfunktion oder reproduzierender Kern oder
Kovarianzfunktion.

Bei Hilbert: Eine Funktion k, die zu dem Operator T, fiihrt

dureh (T, f Jox)= [k(x,2') f (x')a
heil3t Kern von T,. )
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Kernfunktionen praktisch

Angabe von ® nicht nétig, einzige Bedingung: Kernmatrix
(K(x;,%))i j=1..n muss positiv definit sein.

Polynom: K(x,x') = (x*x‘)d

Radial-Basisfunktion: K(x,x‘) = exp(-y||x-x'|[2)

Neuronale Netze: K(x,x‘) = tanh(a-x*x"+b)

Konstruktion von Spezialkernen durch Summen und

Produkte von Kernfunktionen, Multiplikation mit positiver
Zahl, Weglassen von Attributen
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Konstruieren in 2 Richtungen

Gegeben eine Kernfunktion k, konstruiere einen
Merkmalsraum, in den ® abbildet.

Jede Kernfunktion kann als Skalarprodukt in einem anderen
Raum betrachtet werden.

Gegeben ein Merkmalsraum ® mit Skalarprodukt, konstruiere
eine Kernfunktion k(x,x)= ®(x)* ®(x’).

Gelingt, weil fir alle c; in % und x; in X gilt:

zc,.cjk(xi,xj) ZCid)(x,.)*Ecj(I)(xj)

Ec,d)(x[ f
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RBF-Kernfunktion

4

A
exp(-10-[x-xo[?) @

i = 050
e ()

Xo X
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Eigenschaften von RBF-Kernen

Allgemeine Form: k(x, x‘)=f(d(x,x"))

Funktion f kann auBer Gauss z.B. auch B-Spline sein.
Als Metrik d(x,x) wird auch gewahlt [x - x| = /G- x)* (e~ x)
Bei ||x-x||2 oder ||x-x|| ist die RBF-Kernfunktion invariant
bezuglich Drehung und Verschiebung.

Das bedeutet, dass das Lernergebnis unabhangig von dem
Koordinatensystem unserer Daten ist.
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Was wissen Sie jetzt?

Kernfunktionen berechnen das Skalarprodukt der Beobachtungen
in einem Merkmalsraum, ohne tatsachlich erst in den
Merkmalsraum abzubilden. k(x,x)= ®(x)* ®(x‘)

Polykern und RBF-Kern als Beispiele.

Der Kern-Trick: k(x,x’) I8sst sich allein aus x*x‘ berechnen.

Eine Funktion XxX , die sich fiir alle x; in X als positiv definite Gram
Matrix mit symmetrischer Funktion k darstellen Iasst, heif3t
Kernfunktion.

Die Mercer Bedingung priift, ob es sich um eine Kernfunktion
handelt, also die Matrix positiv definit ist.

Prof. Dr. Katharina Morik | Wissensentdeckung in Datenbanken SoSe 2008

technische universitat Fakultat fir Informatik ‘?’
dortmund LS 8

Mercer Bedingung
Es gibt eine Abbildung ® und eine Kernfunktion
k(x,x") = E CI)([x] ) q)([x’] )
gdw. fiir jedes g(x) mit finitem
[e&fax
gilt:

fk(x, x)g(x)g(x")dxdx'=0

Wenn die Mercer Bedingung nicht gilt, konnte die Hesse Matrix
Uber den Beispielen indefinit werden.
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Duales weiches Optimierungsproblem

Maximiere

L(a) = 2 EZyly/a,a/x, X;

m

udBedmgungenE o, =0,Vi:0sa,<C
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Optimierungsproblem mit Kern

Erst minimierten wir w, dann maximierten wir das duale
Problem, jetzt minimieren wir das duale Problem, indem wir
alles mit —1 multiplizieren...

Minimiere L'(a.) mit
l m m m
L'(OC) = 52 EyiyjKG[vxj )Xiaj - zai
i=1 =1 i=

unter den Nebenbedingungen
O<sa,=C
Yia; = 0
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Chunking

Beispiele x; mit o; = 0 kbnnen aus der Matrix gestrichen
werden.

Finde alle diese Beispiele, I6sche sie.

Loése das Optimierungsproblem fur die verbleibenden.
Iteratives Vorgehen:

Loése das Optimierungsproblem fir die o; = 0 aus dem

vorigen Schritt und einige Beispiele, die die KKT-
Bedingungen verletzen.

Osuna, Freund, Girosi (1997): feste MatrixgrofRe.
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Algorithmus fur das Optimierungsproblem

Berechnen wir L'(a) durch Gradientensuche!
Naiver Ansatz berechnet Gradienten an einem Startpunkt
und sucht in angegebener Richtung bis kleinster Wert
gefunden ist. Dabei wird immer die Nebenbedingung
eingehalten. Bei m Beispielen hat o m Komponenten, nach
denen es optimiert werden muss. Alle Komponenten von a
auf einmal optimieren? m2 Terme!
Eine Komponente von o andern? Nebenbedingung verletzt.
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Sequential Minimal Optimization

Zwei Komponenten o, a, im Bereich[0,C]x[0,C] veréndern!
Optimieren von zwei o;
Auswahl der q;
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KKT-Bedingungen einfach

Notwendige und hinreichende Bedingungen an die Lésung
des Optimierungsproblems: fur alle i

o, =0 gdw.y;f(x)=1
o,=C  gdw.y;f(x) =1
0<a;<Cgdw.y,f(x)=1

a,=C Yi-Y2 O<a,<C
Oy - Q2 m
a, =0 o,=C Y1-Y2 Zylal.=0
(X.1+a2 =
a,=0
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SMO

Berechne a, und gib die Schnittpunkte max, min der
Diagonalen mit der Box an.

2.Ableitung von L entlang der Diagonalen

n= k(x1’x1 )+k(x23x2 )_ 2k(x1’x2)

Wenn >0, wird das Minimum fiir a, ausgerechnet, wobei E
der Fehler f(x)- y ist:

azneu =a2+y2(El _EZ)

. n . ‘
Beschneiden, so dass min < a,"®" < max
Berechnen

neu

neu'
o, =O‘1+y1)’2(az_a2 )
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o, optimieren

Maximum der Funktion L'(a) entlang der Geraden

glag)=s ay + ay mit s=y,ly,

Wenn y,=y, ist s=1, also steigt die Gerade.

Sonst s=-1, also féllt die Gerade.

Schnittpunkte der Geraden mit dem Bereich[0,C]x[0,C]:
Falls s steigt: max(0; a, + ay — C) und min(C; a, + a4 )
Sonst: max(0; a, - a4 ) und min(C; a, - a4 + C)
Optimales o, ist hdchstens max-Term,

mindestens min-Term.
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Randbemerkung

Ein nicht positives 1 kann dann auftreten, wenn
zwei Beispiele genau gleich aussehen oder
die Kernfunktion nicht der Mercer-Bedingung gehorcht.

Prof. Dr. Katharina Morik | Wissensentdeckung in Datenbanken SoSe 2008
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Algorithmus

AuRere Schleife -- o, wahlen
Alle Beispiele durchgehen:
welche verletzen KKT-Bedingungen?
Non-bound Beispiele suchen (o, weder 0 noch C ):
welche verletzen KKT-Bedingungen?
Verandern bis alle non-bound Beispiele KKT-Bedingungen
erfillen!

Goto 1

Innere Schleife -- a, wahlen
Wenn E, > 0, Beispiel mit kleinem E, suchen,
wenn E, < 0, Beispiel mit groBem E, suchen.
L*(a) ausrechnen
b ausrechnen

Prof. Dr. Katharina Morik | Wissensentdeckung in Datenbanken SoSe 2008
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Was wissen Sie jetzt?

Das Optimierungsproblem wird durch Optimieren je zweier
Lagrange-Multiplikatoren gel6st, dulRere Schleife wahlt ersten,
innere zweiten Multiplikator.

Sei a=(a,... a,,) eine Lésung des Optimierungsproblems. Wir
wahlen zum update;

a. =a. + yz((f(x1)_y1)_(f(x2)_y2))
’ ’ K(x,x) = 2K(x;,x,) + K (x,,x,)

Optimales @, = o, + y,y,(a, - @,)

Prinzip des Optimierens: Nullsetzen der ersten Ableitung...

Der Algorithmus konvergiert, wenn vorher ein oo KKT-Bedingung
verletzte.

Prof. Dr. Katharina Morik | Wissensentdeckung in Datenbanken SoSe 2008
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Satz von Osuna

Der Algorithmus konvergiert, solange an jedem Schritt 2
Lagrange Multiplikatoren optimiert werden und mindestens
einer davon verletzte vorher die KKT-Bedingungen.

Prof. Dr. Katharina Morik | Wissensentdeckung in Datenbanken SoSe 2008
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Was ist gutes Lernen?

Fauler Botaniker:
"klar ist das ein Baum —ist ja grun."
Ubergeneralisierung
Wenig Kapazitat
Bias
Botaniker mit fotografischem Gedachtnis:
"nein, dies ist kein Baum, er hat 15 267 Blatter und kein anderer
hatte genau so viele."

Overfitting
Viel Kapazitat
Varianz

Kontrolle der Kapazitat!

Prof. Dr. Katharina Morik | Wissensentdeckung in Datenbanken SoSe 2008
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Bias-Varianz-Problem

Zu kleiner Hypothesenraum:
Zielfunktion nicht gut genug
approximierbar (Bias)

technische universitat Fakultat fur Informatik
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Zu groler Hypothesenraum: Zuviel % e of
Einfluss zuféalliger Abweichungen @
(Varianz) Yoe® SO
Lésung: Minimiere obere Schranke iy

des Fehlers: ®© S
R() =, Rgmp() + Var(a) o e

Prof. Dr. Katharina Morik | Wissensentdeckung in Datenbanken SoSe 2008
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Strukturelle Risikoschranke

Unabhangig von einer Verteilungsannahme. Alles, was die
Schranke braucht, ist, dass Trainings- und Testdaten geman
der selben Wahrscheinlichkeits- verteilung gezogen werden.
Das tatsachliche Risiko kbnnen wir nicht berechnen.

Die rechte Seite der Ungleichung kénnen wir berechnen,
sobald wir  kennen.

Gegeben eine Menge Hypothesen fir f(x,a), wahle immer die
mit dem niedrigsten Wert fir die rechte Seite der Schranke
(R, oder VC confidence niedrig).

emp

Prof. Dr. Katharina Morik | Wissensentdeckung in Datenbanken SoSe 2008

Risikoschranke nach Vapnik

Gegeben eine unbekannte Wahrscheinlichkeitsverteilung
P(x,y) nach der Daten gezogen werden. Die Abbildungen x>
f(x, o) werden dadurch gelernt, dass a bestimmt wird. Mit
einer Wahrscheinlichkeit 1-u ist das Risiko R(a) nach dem
Sehen von [ Beispielen beschrank:

R(a)<R,,

(a)+\/n(log(Zl/n)+l)—log(u/4)
l

VC confidence

Prof. Dr. Katharina Morik | Wissensentdeckung in Datenbanken SoSe 2008
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Strukturelle Risikominimierung

Varianz
Ordne die Hypothesen in
Teilmenge gemal ihrer
Komplexitat
Wabhle in jeder Teilmenge die
Hypothese mit dem geringsten
empirischen Fehler
Wahle insgesamt die
Hypothese mit minimaler
Risikoschranke Komplexitat

Schranke(a) =
Remp() + Var(a)

Prof. Dr. Katharina Morik | Wissensentdeckung in Datenbanken SoSe 2008
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Vapnik-Chervonenkis-Dimension ACHTUNG

Definition: Eine Menge H von Hypothesen Fur eine Klasse von Lernaufgaben gibt es mindestens eine
zerschmettert eine Menge E von Menge E, die zerschmettert werden kann — NICHT jede
Beispielen, wenn jede Teilmenge von E ° M E k h ttert den!

durch ein heH abgetrennt werden kann. €énge t Kann zerschmetiert werden:

Definition: Die VC-Dimension einer Zum Beweis der VC Dimension n muss man also zeigen:
Menge von Hypothesen o ° ° Es gibt eine Menge E aus n Punkten, die von H

H ist die maximale Anzahl von Beispielen zerschmettert werden kann. VCdim(H)=n

E, die von H zerschmettert wird. ) )

Eine Menge von 3 Punkten kann von Es kann keine Menge E' aus n+1 Punkten geben, die von H
geraden Linien zerschmettert werden, zerschmettert werden konnte. VCdim(H)<n

keine Menge von 4 Punkten kann von
geraden Linien zerschmettert werden.
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VC-Dimension von Hyperebenen VCdim misst Kapazitat
Satz: Die VC-Dimension der Hyperebenen im Eine Funktion mit nur 1 Parameter kann unendliche VCdim
R ist n+1. haben: H kann Mengen von n Punkten zerschmettern, egal
Beweis: @ wie grof n ist.
VCdim(R") = n+1: Wahle x, = 0 und x; = . . H kann unendliche VCdim haben und trotzdem kann ich eine
(0';--’0'1’0'---0)- Fur eine beliebige kleine Zahl von Punkten finden, die H nicht zerschmettern
Teilmenge A von (Xg,...,X,) setze y; = 1, falls kann
X € Aund y; = —1 sonst. Do ) )
Definiere w = Sy,x, und b = y,/2. Dann gilt VCdim ist also nicht grof3, wenn die Anzahl der Parameter
WXy +b = yo/2 und wx+b = y,+y,/2. Also: o bei der Klasse von Funktionen H grol} ist.

wx+b trennt A.
VCdim(R") = n+1: Zurlckfihren auf die
beiden Falle rechts.
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VC-Dim. und Anzahl der Parameter

Setze f (x) = cos(ax) und x, = 107, i=1...[; beliebiges [
Wahle y,&{-1,1}. Dann gilt fur a=w(3'/,(1-y,)10'):

o, =n(2%(1-y1‘)10i)10_k =n(2%(l_yi)10i_k)

k-1 !
=n(2%<l—y,->10""‘ +5(1-p)+ 2%(1—y,->10"-’f)

i= i=k+1

M —
0=<3...<10"+102+ ...=1/9 Vielfaches von 2

(geometrische Reihe)

Prof. Dr. Katharina Morik | Wissensentdeckung in Datenbanken SoSe 2008
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VC-Dimension der SVM

Gegeben seien Beispiele xy,...,xER" mit
[Ix|| < D fir alle i. Fir die VC-Dimension der durch den
Vektor w gegebenen optimalen Hyperebene h gilt:

VCdim(h) = min{D?2||w]|2, n}+1
Die Komplexitat einer SVM ist nicht nur durch die Struktur
der Daten beschrankt (Fluch der hohen Dimension), sondern
auch durch die Struktur der Lésung!

Prof. Dr. Katharina Morik | Wissensentdeckung in Datenbanken SoSe 2008

VC-Dim. und Anzahl der Parameter

cos(ox,)=cos(nz) mit z€[0,"/,] fur y,=1 und z€[1,1%/] fur y,=-1

Cos
]

1/, B 2n 3n

cos(ox) zerschmettert x,,...x,
cos(ax) hat unendliche VC-Dimension

Die VC-Dimension ist unabhangig von der Anzahl der Parameter!

Prof. Dr. Katharina Morik | Wissensentdeckung in Datenbanken SoSe 2008
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Zusicherungen

Strukturelle Risikominimierung garantiert, dass die einfachste
Hypothese gewahlt wird, die noch an die Daten anpassbar
ist.

Strukturelle Risikominimierung kontrolliert die Kapazitat des
Lernens (weder fauler noch fotografischer Botaniker).

Die Strukturen von Klassen von Funktionen werden durch die
VCdim ausgedrlckt. GroRe VCdim - grofde VC-confidence.

Prof. Dr. Katharina Morik | Wissensentdeckung in Datenbanken SoSe 2008
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Was wissen wir jetzt? Performanzschatzer

Kernfunktionen — eine Transformation, die man nicht erst
durchfiihren und dann mit ihr rechnen muss, sondern bei der
nur das Skalarprodukt gerechnet wird.

Idee der strukturellen Risikominimierung:
obere Schranke fir das Risiko
Schrittweise Steigerung der Komplexitat
Formalisierung der Komplexitat: VC-Dimension
SRM als Prinzip der SVM
Garantie fir die Korrektheit der Lernstrategie

Welches erwartete Risiko R(a) erreicht SVM?

R(a) selbst nicht berechenbar

Trainingsfehler (zu optimistisch — Overfitting)

Obere Schranke mittels VC-Dimension (zu locker)
Kreuzvalidierung / Leave-One-Out-Schatzer (ineffizient)
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Performanzschatzer |l Performanzschatzer lll

Satz: Der Leave-One-Out-Fehler einer SVM ist beschrankt
durch Ry, =[SV|/n

Beweis: Falsch klassifizierte Beispiele werden Stltzvektoren.
Also: Nicht-Stiitzvektoren werden korrekt klassifiziert.
Weglassen eines Nicht-Stltzvektors &ndert die Hyperebene
nicht, daher wird es auch beim I10-Test richtig klassifiziert.
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Satz: Der Leave-One-Out-Fehler einer SVM ist beschrankt durch
Rijo = [{i : (2a,D?+E)=1} /n

(D = Radius des Umkreises um die Beispiele im transformierten
Raum).

Beweis: Betrachte folgende drei Falle:

e [
' '
B
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Fallstudie Intensivmedizin

Stadtische Kliniken Dortmund, Intensivmedizin 16 Betten,
Priv.-Doz. Dr. Michael Imhoff

Hamodynamisches Monitoring, mindtliche Messungen
Diastolischer, systolischer, mittlerer arterieller Druck
Diastolischer, systolischer, mittlerer pulmonarer Druck
Herzrate
Zentralvendser Druck

Therapeutie, Medikamente:

Dobutamine, adrenaline, glycerol trinitrate, noradrenaline,
dopamine, nifedipine
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Wann wird Medikament gegeben?

Mehrklassenproblem in mehrere 2Klassen-Probleme
umwandeln:

Fir jedes Medikament entscheide, ob es gegeben werden
soll oder nicht.

Positive Beispiele: alle Minuten, in denen das Medikament
gegeben wurde

Negative Beispiele: alle Minuten, in denen das Medikament
nicht gegeben wurde

Parameter: Kosten falscher Positiver = Kosten falscher
Negativer

Ergebnis: Gewichte der Vitalwerte so dass positive und
negative Beispiele maximal getrennt werden (SVM).
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Patient G.C., male, 60 years old

Hemihepatektomie right

-100 - . - v - - - - - - - - -
26:39  20:39 32:39 35:39 38:39 41:39 44:39  47:39  50:39  53:39  56:39  59:39  62:39  65:39

Time (hh:mm)
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Beispiel: Intensivmedizin

0.014 \/artsys =174.00 1 = Vitalzeichen von
0.019 || artdia =86.00 Intensivpatienten
~0.001 || artmn =121.00 Hohe Genauigkeit

s o
~0015|| cyp=8.00 Verstandlichkeit?

f(x)=||-0.016 hr=79.00 [-4.368
0.026 || papsys =26.00
0.134 || papdia =13.00
-0.177 || papmn =15.00

Prof. Dr. Katharina Morik | Wissensentdeckung in Datenbanken SoSe 2008



technische universitat Fakultat fur Informatik

dortmund LS8

Wie wird Medikament dosiert ?

Mehrklassenproblem in mehrere 2Klassenprobleme
umwandeln: fir jedes Medikament und jede Richtung
(increase, decrease, equal), 2 Mengen von Patienten-daten:

Positive Beispiele: alle Minuten, in denen die Dosierung in
der betreffenden Richtung geandert wurde

Negative Beispiele: alle Minuten, in denen die Dosierung
nicht in der betreffenden Richtung geandert wurde.
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Anwendung des Gelernten

Patientwerte Gelernte Gewichte fir Dobutamin

pat46, artmn 95, min. 2231 artmn -0,18
pat46, artmn 90, min. 2619
k
svm _calc = 2 wx, decision = sign(svm _calc +b)
=
svm_calc (pat46, dobutrex, up,min.2231,39) svm_calc (pat46,

dobutrex, up,min.2619, 25)

b=-26, i.e. increase in minute 2231,
not increase in minute 2619.
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Steigern von Dobutamine

ARTEREN: -0.05108108119
SUPRA: 0.00892807538657973
DOBUTREX: -0.100650806786886
WEIGHT: -0.0393531801046265
AGE: -0.00378828681071417
ARTSYS: -0.323407537252192 Vektor w fiir k Attribute
ARTDIA: -0.0394565333019493
ARTMN: -0.180425080906375

HR: -0.10010405264306

PAPSYS: -0.0252641188531731
PAPDIA: 0.0454843337112765
PAPMN: 0.00429504963736522
PULS: -0.0313501236399881
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Steigern von Glyceroltrinitrat

0.014 artsys174.00

S| s Jedes Medikament hat einen

0015 ewps.00 Dosierungsschritt.

-0.016 hr79.00 . F :

0026 | papsys26.00 F“ur Glycerolt.rmltrat ist es 1,

0.134 || papdial3.00 far Suprarenin (adrenalin) 0.01.
B I e Die Dosis wird um einen Schritt
S8 1047 noradrenalineo 4368 erhoht Oder gesenkt

-0.185 dobutamie0

0.542 dopamieQ

—-0.017 || glyceroltrinitrateQ VO rh ersage :

2.391 adrenaline0 . . .

0033 07791 pred_interv(pat49, min.32,nitro, 1.0)

0.334 emergency(

0.784 bsal. 79

0.015 brocal .02
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Evaluierung

Blind test Gber 95 noch nicht gesehener Patientendaten.
Experte stimmte berein mit tatséachlichen Medikamentengaben in
52 Fallen
SVM Ergebnis stimmte iberein mit tatséchlichen
Medikamentengaben in 58 Fallen

Dobutamine Actual Actual Actual
up equal down

Predicted up | 10 (9) 12 (8) 0(0)

Predicted 7(9) 35 (31) 9(9)
equal

Predicted 2(1) 7 (15) 13 (12)
down
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Verlustfunktion
lineare Verlustfunktion quadratische Verlustfunktion
Q / Q
C T oy | Xy
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SVMs fur Regression
I ) C n | n ';
inimiere HWH + ZEZ + IZEI
so dass flr alle i gilt:

f(x) = w*x+b = y; +e +§ und
f(x) = wW*x+tb = y;- & - §
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Duales Optimierungsproblem

Maximiere

W(a)= Eyi(al: _ai)_gz(a; +ai)_% E(az _ai)(a;' _aj)K(xiax,')
=1 =1 =1
unter 0=<a,0, < Cfurallei und
2o = 3o
Mit y;&{-1,+1}, =0 und ;=0 filir y;=1 und o;,"=0 fiir y;=-1 erhalt
man die Klassifikations-SVM!
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Beispiel: Prognose von Zeitreihen Prognose von Zeitreihen
. Trend
Zyklen

200

Besondere Ereignisse (Weihnachten, Werbung, ...)
Wieviel vergangene Beobachtungen?
Ausreil3er

180

160

140

120

/‘

||

v \
L
rensiler

¥ N©e ®me N bR T Y NO Qe @ e R ¥
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Abverkauf Drogerieartikel Vorhersage Abverkauf
e | Gegeben Verkaufsdaten von 50 Artikeln in 20 Laden {iber 104
140 T Wochen
120 | | \ — Insect kilers 2 Vorhersage Verkéufe eines Artikels, so dass
100 | | o Die Vorhersage niemals den Verkauf unterschatzt,
o ‘ ”\ _g::ztfy"f’“ Die Vorhersage Uberschatzt weniger als eine Faustregel.
L\ A x\ ' ’\ — Sweets Beobachtung: 90% der Artikel werden weniger als 10 mal pro
sy A i N VA A; || Soranning cream Woche verkauft.
40 \4\ /\11.’\\ .\ “\ | “M | \\ A‘J]ﬂ\ ‘\ fl Baby food 2 Anforderung: Vorhersagehorizont von mehr als 4 Wochen.
$ ) L l /\
T e ,.ﬁ e AL
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Verkaufsdaten
Shop Week Item1 Item50
Dml 1 4 12
Dml
Dml 104 9 16
Dm?2 1 3 19
Dm?20 104 12 16

LE pg: I: T, A, ... A,; Menge multivariater Zeitreihen
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Vorverarbeitung

Multivariat nach univariat
Leqtittyaq . teay

For all shops for all items:

Create view Univariate as Dml_Item] 1 4. 104 9
Select shop, week, item;
Where shop="dm” Dml_Item50 1 12.. 104 16

From Source;
Multiples Lernen

Dm20_Item50 1 14.. 104 16
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Vorverarbeitung

Viele Vektoren aus einer Reihe gewinnen durch Fenster

Lysitya, ... t, a,
bewege Fenster der GroRe w um m Zeitpunkte

Dml_Iteml_1 1 4. 5 1
Dml_Iteml_2 2 4. 6 8

Dml_Iteml_100 100 6... 104 9

Dm20_ems0_100 100 12.. 104 16
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SVM im Regressionfall

Multiples Lernen:
fur jeden Laden und jeden Artikel, wende die SVM an. Die
gelernte Regressionsfunktion wird zur Vorhersage genutzt.

Asymmetrische Verlustfunktion :

Unterschatzung wird mit 20 multipliziert,
d.h. 3 Verkaufe zu wenig vorhergesagt -- 60 Verlust

Uberschatzung zahlt unveréandert,
d.h. 3 Verkaufe zu viel vorhergesagt -- 3 Verlust

(Stefan Riping 1999)
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Vergleich mit Exponential Smoothing

Horizont SVM exp. smoothing

1 56.764 52.40

2 57.044 59.04

3 57.855 65.62

4 58.670 71.21

8 60.286 88.44

13 59.475 102.24
Verlust
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Was wissen wir jetzt?

Anwendung der SVM fur die Medikamentenverordnung

Idee der Regressions-SVM

Anwendung der SVM fiir die Verkaufsvorhersage
Umwandlung multivariater Zeitreihen in mehrere univariate
Gewinnung vieler Vektoren durch gleitende Fenster
Asymmetrische Verlustfunktion
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