technische universitat
dortmund

fakultat fur
informatik

PG 594: Big Data

— Zwischenbericht —

31. Marz 2016

Autoren:

Asmi, Mohamed
Bainczyk, Alexander
Bunse, Mirko
Gaidel, Dennis

May, Michael
Pfeiffer, Christian

Betreuer:

Prof. Dr. Morik, Katharina
Dr. Bockermann, Christian

Schieweck, Alexander
Schonberger, Lea
Stelzner, Karl

Sturm, David
Wiethoff, Carolin

Xu, Lili

Blom, Hendrik

Inhaltsverzeichnis

I

1

I1

Einfiihrung 1
Einleitung 3
1.1 Anwendungsfall L 3
1.2 Aufbau der Arbeit L 5
Organisation 7
2.1 Agiles Projektmanagement oL 7
2.1.1 Probleme Nicht-Agiler Verfahren 8
2.1.2 Das Agile Manifesto o 8
2.1.3 Scrum . ..o 9
2.1.4 Kanban 11

2.2 Wahl des Verfahrens o 13
2.3 Retrospektive der Umsetzung 14
2.3.1 Projekt-Initialisierungo oL 14
2.3.2 Meetings 14
2.3.3 Abschlielende Bewertung 15

Big Data Analytics 17
Einfiihrung in Big Data Systeme 19
3.1 Nutzen von BigData o L 20
3.2 Probleme mit herkémmlichen Ansétzen 20
3.3 Anforderungen an Big Data Systeme 21

ii

INHALTSVERZEICHNIS

Lambda-Architektur 23
Batch Layer 27
5.1 Apache Hadoop 27
51.1 HDFS e 28
51.2 YARN . . . e 29
5.1.3 MapReduce 29
5.2 Apache Spark 30
5.2.1 Spark Core 31
5.2.2 Spark SQL 32
5.2.3 Spark MLIib 33
Speed Layer 37
6.1 Apache Storm 37
6.1.1 Storm Topologien 38
6.1.2 Storm Cluster 38
6.2 Apache Trident 39
6.2.1 Trident Topologien 40
6.3 Spark Streaming L 41
6.4 streams-Framework L 43
Serving Layer 45
7.1 Datenbanken 45
7.1.1 MongoDB 45
7.1.2 Elasticsearch Lo 46
7.1.3 Cassandrao 47
7.1.4 PostgreSQL 49
7.2 RESTful APIs 51
7.2.1 Grundlegende Ideeo oL 51
7.2.2 HTTP e 51

7.2.3 JSON . . o 53

INHALTSVERZEICHNIS

8 Maschinelles Lernen
8.1 Ensemble Learning
8.1.1 Bagging
8.1.2 Boosting L
81.3 Fazit
8.2 Clustering und Subgruppenentdeckung
8.2.1 Clustering
8.2.2 Subgruppenentdeckung L.
8.3 Verteiltes Lerneno
8.4 Statisches und Inkrementelles Lernen
8.5 Concept Drift und Concept Shift
8.6 Learning with Imbalanced Classes
8.6.1 Einfluss auf Klassifikatoren
8.6.2 Bewertung von Klassifikatoren
8.6.3 Verbesserung von Klassifikatoren
8.7 Feature Selection
8.7.1 Vorteile
8.7.2 Problemstellung L
8.7.3 Arten von Algorithmen
8.7.4 Korrelation als Heuristik
8.7.5 CFS . . . e
8.7.6 Fast-Ensembles
8.8 Sampling und Active Learning
8.8.1 Dernaive Ansatz
8.8.2 Re-Sampling
8.8.3 VLDS-Ada’Boost
8.8.4 Active Learning Lo

IIT Anwendungsfall

9 Analyseziele

9.1 Gamma/Hadron-Klassifizierung

9.2 Energie-Abschétzung

iii

55
o7
o8
60
61
61
61
64
66
68
69
71
71
71
73
75
76
77
78
79
80
81
84
84
85
86
87

91

iv

10 Datenbeschreibung

10.1 FITS-Dateiformat
10.2 Rohdaten
10.3 Monte-Carlo-Daten
10.4 Drs-Daten

10.5 Aux-Daten

11 Analyse mit den FACT Tools

11.1 Analysekette
11.1.1 Datensammlung
11.1.2 Datenvorverarbeitung
11.1.3 Datenanalyse

11.2 Grenzen von streams

IV Architektur und Umsetzung

12 Komponenten und Architektur

13 Indexierung der Rohdaten

13.1 MongoDB oL
13.2 Elasticsearch

13.3 PostgreSQL

14 Umsetzung der RESTful API

14.1 Design
14.1.1 Endpunkte
14.1.2 Riickgabeformate
14.1.3 Dokumentation

14.2 Implementierung
14.2.1 Spring Framework

14.2.2 Filterung

INHALTSVERZEICHNIS

105

107

111

................... 111
................... 112

................... 113

115

INHALTSVERZEICHNIS

15 Erweiterung der Streams-Architektur
15.1 Verteilte Streams-Prozesse mit Spark
15.1.1 Nebenldufigkeit der Verarbeitung
15.1.2 XML-Spezifikation verteilter Prozesse
15.1.3 Verarbeitung der XML-Spezifikation
15.1.4 Ansatz unter der Spark Core-Engine
15.1.5 MultiStream-Generatoren
15.2 MLLib in Streamso
15.2.1 XML-Spezifikation von input
15.2.2 XML-Spezifikation von task & operator
15.2.3 XML-Spezifikation von pipeline Lo
15.2.4 XML-Spezifikation von stages
15.2.5 Umsetzung

V Evaluation und Ausblick

16 Vergleich mit streams
16.1 Performanzgewinn durch verteilte Prozesse

16.2 Probleme verteilter Prozesse unter Sparko 0.

17 Datenbank-Performance

17.1 Vergleich von PostgreSQL und MongoDB

18 Fazit

VI Benutzerhandbuch

19 Vorbereitung eines Clusters

20 Ausfiihrung im Cluster
20.1 Verfigbarkeit von Dependencies
20.2 Komfortable Ausfiihrung per Shell-Script

Abkiirzungsverzeichnis

125
126
126
127
128
128
132
133
133
134
135
136
137

143

145
145
147

149
149

151

153

155

157
157
158

161

vi INHALTSVERZEICHNIS

Abbildungsverzeichnis 165

Literaturverzeichnis 174

Teil 1

Einfiithrung

Kapitel 1

Einleitung

von Lea Schénberger

In der heutigen Welt wird die Verarbeitung grofier Mengen von Daten immer wichtiger.
Dabei wird eine Vielzahl von Technologien, Frameworks und Software-Losungen einge-
setzt, die explizit fiir den Big Data Bereich konzipiert wurden oder aber auf Big Data
Systeme portiert werden kénnen. Ziel dieser Projektgruppe (PG) ist der Erwerb von Ex-
pertenwissen hinsichtlich aktueller Tools und Systeme im Big Data Bereich anhand einer
realen, wissenschaftlichen Problemstellung. Vom Wintersemester 2015/2016 bis zum Ende
des Sommersemesters 2016 beschéftigt sich diese Projektgruppe mit der Verarbeitung und
Analyse der Daten des durch den Fachbereich Physik auf der Insel La Palma betriebenen
FACT Teleskops. Dieses liefert téglich Daten im Terabyte-Bereich, die mit Hilfe des Clu-
sters des Sonderforschungsbereiches 876 zunéchst indiziert und dann auf effiziente Weise
verarbeitet werden missen, sodass diese Projektgruppe im besten Falle die Tétigkeit der
Physiker mit ihren Ergebnissen unterstiitzen kann. Wie genau dies geschehen soll, sei auf
den nachfolgenden Seiten genauer beleuchtet - begonnen mit dem dezidierten Anwendungs-
fall, unter Beriicksichtigung der notwendigen fachlichen sowie technischen Grundlagen, bis

hin zu den aktuellen Ergebnissen.

1.1 Anwendungsfall

von Michael May

Ein Teilgebiet der Astrophysik ist die Untersuchung von Himmelsobjekten, welche hoch-
energetische Strahlung ausstoffen. Beim Eintritt dieser Strahlung in die Erdatmosphére
werden Lichtimpulse erzeugt, die sogenannte Cherenkov-Strahlung, welche mit Hilfe von
Teleskopen aufgezeichnet und analysiert werden kénnen. Ein Teil der Analyse umfasst
das Erstellen von Lichtkurven, welche das emittierte Licht in Relation zur Zeit stellen,
sodass Eigenschaften des beobachteten Himmelsobjektes hergeleitet werden kénnen. Mit

Hilfe solcher Kurven kénnen dann unter anderem Supernovae klassifiziert werden [24, 88].

Das in La Palma aufgebaute First G-APD Cherenkov Telescope (FACT) dient der Beob-

achtung dieser Gammastrahlung im TeV Bereich ausstoflenden Himmelsobjekte. Es setzt

3

4 KAPITEL 1. EINLEITUNG

sich aus einer mit 1440 geiger-mode avalanche photodiods (G-APD) Pixel ausgeriisteten
Kamera zusammen, welche die Cherenkov-Strahlung in der Atmosphére aufzeichnen kann.
Ein Ziel des FACT Projekts ist es, herauszufinden, ob die G-APD Technologie zur Beob-

achtung von Cherenkov-Strahlung eingesetzt werden kann [5].

Cherenkov-Strahlung entsteht, wenn energiereiche, geladene Teilchen, z.B. Gammastrah-
lung, die Erdatmosphére mit sehr hoher Geschwindigkeit durchqueren. Dabei kollidieren
diese Teilchen mit Partikeln der Atmosphére, wodurch neue geladene Teilchen aus die-
ser Kollision entstehen, welche wiederum Lichtblitze erzeugen und mit weiteren Partikeln
kollidieren kénnen. Ein solche Kaskade von Kollisionen wird unter anderem als Gamma-
Schauer bezeichnet. Die Lichtblitze kénnen dann von Teleskopen, wie dem FACT, wahr-
genommen und analysiert werden, um z.B. den Ursprung der kosmischen Teilchen zu
bestimmen (siehe Abbildung 1.1).

Air Shower
Atmosphere

Cherenkov Light

ﬁ lelescope

Camera Samples (2000 MHz)

Abbildung 1.1: Visuelle Darstellung eines Gamma-Showers (oben links), welcher von Teleskopen
aufgezeichnet wird (unten links) und in Grafiken der einzelnen Aufnahmen dargestellt werden kann
(rechts). [22]

Ein Hauptproblem in diesem Unterfangen ist dabei die Klassifizierung der aufgezeichne-
ten Lichtblitze, denn neben der Cherenkov Strahlung wird durch Hintergrundrauschen das
aufgezeichnete Bild gestort. Die Einteilung der Cherenkov Strahlung, hervorgerufen durch
die kosmische Gammastrahlung, und des Hintergrundrauschen wird zudem erschwert, da
die beiden Klassen stark ungleichméBig verteilt sind. Bockerman et al. [22] nennen hier
eine Gamma-Hadron Klassenverteilung von 1:1000 bis 1:10000. Aufgrund dieser stark un-
gleichméfligen Verteilung sind eine sehr grofle Menge von Daten fiir eine relevante Klassi-

fizierung erforderlich.

Ein wichtiges Merkmal in der Klassifizierung dieser Daten ist, dass zum Lernen Simu-
lationen der eigentlichen Beobachtungen verwendet werden miissen, da sie selbst keine
Label besitzen. Dazu wird die Cosmic Ray Simulations for Kascade (CORSIKA) [47]

Monte-Carlo-Simulation verwendet, welche fiir eine Reihe von Eingaben eine statistische

1.2. AUFBAU DER ARBEIT)

Simulation eines in die Atmosphére eintreffenden Partikel, wie unter anderem Photonen
und Protonen, berechnet. Die Ausgaben einer solchen Simulation sind dann gelabelt und

koénnen als Trainingsdaten fiir Lernmodelle verwendet werden.

1.2 Aufbau der Arbeit

von Carolin Wiethoff

Der Zwischenbericht ist in sechs Teile gegliedert. Nach dem ersten Teil mit einleitenden
Worten, Grundlagen zum Anwendungsfall und der Organisation unserer Teamarbeit folgt
der zweite Teil zum Thema Big Data Analytics. Zunichst wird in die Big Data Thematik
eingefithrt, wobei nicht nur der Begriff geklart wird, sondern auch erldutert wird, welche
Herausforderungen Big Data mit sich bringt und warum es sich lohnt, auf diese Heraus-
forderungen einzugehen. Danach folgt eine Beschreibung der Lambda-Architektur, welche
typischerweise fiir Big Data Anwendungen umgesetzt wird. In den darauf folgenden drei
Kapiteln wird néher darauf eingegangen, mit welchen Methoden und mit welcher Soft-
ware die Architektur verwirklicht werden kann. AbschlieBend zu diesem Teil folgt eine

Einfiihrung in das maschinelle Lernen.

Im dritten Teil wird der Anwendungsfall dargestellt. Neben den Analysezielen und den
bisherigen Ansédtzen der Physiker zur Erreichung dieser Ziele folgt eine Beschreibung der
involvierten Datenformate. Es wird untersucht, wie die Daten aufgebaut sind und welche
Informationen sie enthalten. Zum Schluss werden die FACT Tools vorgestellt, mit deren
Hilfe die aktuelle Analysekette durchgefithrt wird.

Der vierte Teil gibt einen Einblick in die Architektur unseres Endproduktes und die Um-
setzung derselben. Dazu wird dargestellt, wie wir die Rohdaten mit Hilfe verschiedener
Datenbanken indexieren, wie die REST-API umgesetzt wird und welche Erweiterungen

wir bisher aus welchen Griinden am streams-Framework vorgenommen haben.

Der finfte Teil widmet sich der Evaluation unserer bisherigen Ergebnisse zur Halbzeit der
Projektgruppe. Aulerdem geben wir einen Ausblick auf das kommende Semester und die

bisher geplante Arbeit.

Das Benutzerhandbuch mit Informationen zur Installation und Ausfithrung im Cluster
findet sich im letzten Teil.

Kapitel 2

Organisation

von Mirko Bunse

Das umzusetzende Projekt der BigData-Analyse auf FACT-Teleskopdaten besitzt eine
Laufzeit von zwei Semestern und wird durch uns, ein Team aus 12 Studentinnen und Stu-
denten, umgesetzt. Damit besitzt das Projekt unter Organisations-Aspekten eine gewisse
Komplexitit: Wie ldsst sich die Arbeit sinnvoll zergliedern? Wie erfiillen wir Abhéngig-
keiten zwischen den Arbeitspaketen? Wie strukturieren wir unsere Arbeit so, dass wir die

Ziele bestmoglich umsetzen kénnen?

Damit die Beantwortung solcher Fragen nicht zum Problem wird, ist es wichtig, sich bereits
im Vorhinein auf Methoden zu einigen, die sinnvolle Antworten festlegen. Vorgehensmo-
delle und andere Projektmanagement-Praktiken geben Teams solche Methoden an die
Hand.

Wir haben zu Beginn der PG eine kleine Auswahl agiler Verfahren kennengelernt, die
wir in Abschnitt 2.1 vorstellen wollen. Warum gerade agile Verfahren fiir unser Projekt
sinnvoll sind, wird in Unterabschnitt 2.1.1 angemerkt. Wir dokumentieren auflerdem, auf
welche Anwendung der Verfahren wir uns initial geeinigt haben (siehe Abschnitt 2.2) und

bewerten deren Umsetzung in der PG retrospektiv (siehe Abschnitt 2.3).

2.1 Agiles Projektmanagement

von Mirko Bunse

Agile Projektmanagement-Verfahren kénnen den Arbeitsablauf optimieren, indem sie ei-
nige der Probleme klassischer (also nicht-agiler bzw statischer) Verfahren vermeiden. Wir
diskutieren hier zunéchst einige dieser Probleme (siehe Unterabschnitt 2.1.1), und wie
das agile Manifest sie adressiert (sieche Unterabschnitt 2.1.2). Als kleine Auswahl agiler
Verfahren stellen wir Scrum und Kanban vor (siehe Unterabschnitt 2.1.3 und Unterab-
schnitt 2.1.4).

8 KAPITEL 2. ORGANISATION

2.1.1 Probleme Nicht-Agiler Verfahren

Klassische Verfahren reagieren in der Regel nur unzureichend auf Anderungen in Anfor-
derungen und Terminen, da die zugrundeliegenden Pléne fiir den gesamten Entwicklungs-
prozess erstellt werden. Da klassische Verfahren Plandnderungen nicht im Entwicklungs-
prozess vorsehen (oder fiir sie ein biirokratisch aufwéndiges Teilverfahren definieren), wird

die Notwendigkeit solcher Anderungen gerne verkannt.

Héufig stellen sich die zu Beginn des Projektes erstellten Pléine als nicht-optimal heraus,
weil sie spéter erworbene Informationen oder Anderungsbedarf nicht vorhersehen konnten.
Daher eignen sich klassische Verfahren insbesondere nicht, um Projekte zu managen, deren
Anforderungen zu Beginn unklar sind. Leider ldsst sich die Klarheit der Anforderungen

nicht immer sofort entscheiden.

Ein weiteres Problem ist, dass die in klassischen Verfahren geforderte Vielfalt an Doku-
menten oft nur pro forma erstellt wird. So gibt es Dokumente, die nur beinhalten, was
ohnehin bereits abgestimmt wurde, oder die zu einem Zeitpunkt gefordert waren, an de-
nen noch keine ideale Lésung zu finden war. Solche Dokumente werden méglicherweise nie

gelesen oder veralten, bevor sie einen Nutzen darstellen konnten.

Prominente Vertreter klassischer Projektmanagement-Verfahren sind das Wasserfallmo-
dell, sowie die Modelle V und VXT. Sie alle basieren auf dem Prinzip, zunéchst alle An-
forderungen festzulegen, basierend darauf Entwiirfe zu erstellen, und zuletzt Implemen-
tierungsarbeiten aufzunehmen. Im Wasserfallmodell werden Tests erst am Ende durch-
gefiihrt, was im V-Modell durch Testen auf jeder Entwicklungsstufe verbessert wurde.
Das VXT-Modell erweitert V durch Ausschreibungen und Einbettung in {ibergeordnete
Projekte. Durch diesen weiten Horizont entsteht aber ein enormer Umfang an Rollen und

Artefakten, wodurch Projekte auch behindert werden kénnen.

2.1.2 Das Agile Manifest

Das agile Manifest stellt die Grundprinzipien jedes agilen Projektmanagement-Verfahrens
dar. Es korrigiert dabei die Annahmen klassischer Verfahren und leitet daraus explizite

Regeln ab. Das agile Manifest lautet wie folgt [15]:

Reagieren auf Anderungen ist wichtiger, als einem Plan zu folgen. Pline fokussie-
ren die nahe Zukunft, da langfristige Planungen nur vorldufig sein kénnen und

moglicherweise notwendigen Anderungen unterliegen.

Funktionierende Software ist wichtiger, als eine umfangreiche Dokumentation. Doku-

mentation sollte nicht pro forma erstellt werden, sondern einen Zweck erfiillen.

2.1. AGILES PROJEKTMANAGEMENT 9

Daily

.

afe Sprint . product
m L my gm ¥ Increment

Team Retrospective

Abbildung 2.1: Der Sprint in Scrum

Individuen und Interaktionen ist ein hoherer Stellenwert einzurdumen, als Prozessen
und Tools. Unzureichende Interaktionen zwischen Projektbeteiligten gefihrden Pro-

jekte, egal, welche Prozesse verwendet werden.

Partizipation des Kunden bringt mehr als Vertrags-Verhandlungen. Eine enge Einbin-
dung des Kunden macht Anderungsbedarf frithzeitig erkennbar und steigert damit
den Nutzen des Produktes.

2.1.3 Scrum

Scrum [52] ist ein prominenter Vertreter agiler Projektmanagement-Verfahren. Zentral fir
Scrum ist der Sprint, ein kurzer Entwicklungszyklus (2 — 4 Wochen), welcher ein Produkt-
Inkrement erzeugt. Ein solches Inkrement sollte einen Mehrwert fiir den Kunden darstellen.
Wihrend eines Sprints diirfen sich keine Anderungen der fiir den Sprint definierten Ziele
ergeben, damit der Sprint geordnet abgearbeitet werden kann. Im schlimmsten Fall ist es

moglich, einen Sprint vorzeitig abzubrechen und einen neuen Sprint aufzusetzen.

Abbildung 2.1 stellt einen Uberblick iiber Scrum dar. Abgebildet sind die verschiedenen
Rollen und Artefakte und ihre Einbettung in den Sprint. Zudem definiert Scrum einige

Meetings. Alle diese Elemente werden im Folgenden vorgestellt.

Rollen

Der Product Owner (PO) stellt die Interessengruppen aufierhalb des Teams dar. Insbe-
sondere das Interesse des Kunden ist hier widergespiegelt, idealerweise aber auch andere,

moglicherweise widerspriichliche Interessen. Der PO soll aus diesen Interessen die Vision

10 KAPITEL 2. ORGANISATION

des Endproduktes formen und diese auf das Team tibertragen. Dazu managed er mit dem
Product Backlog eines der Artefakte.

Der Scrum Master (SM) coached das Team in der Ausfithrung von Scrum, kann dazu
die Moderation in den Meetings ibernehmen und den PO in der Priorisierung des Product
Backlog unterstiitzen. Aulerdem 16st er simtliche Probleme (Impediments), die das Team
von der Arbeit abhalten. Die Rolle des SM ist nicht gleichzusetzen mit einem Projekt-
leiter mit Entscheidungsgewalt. Sdmtliche Entscheidungen werden gemeinsam im Team

getroffen.

Das Team iibernimmt die Umsetzung eines Projektes. Dazu sollte es die Vision des End-
produktes verstehen. Es organisiert sich selbst, weshalb eine hohe Teilnahme der einzelnen
Mitglieder gefordert ist. Die Moglichkeit, durch Selbstorganisation am Projekterfolg teil-
zuhaben, kann die Mitglieder motivieren und den Projekterfolg erhéhen. Idealerweise setzt

sich das Team interdisziplinir aus 5 — 9 Personen zusammen.

Artefakte

Das vom PO verwaltete Product Backlog (PBL) soll samtliche gewiinschte Features
und Ergebnisse als User Stories vorhalten. Aufgrund sich &ndernder Anforderungen ist das

PBL aber jederzeit anpassbar.

User Stories erkliren den Nutzen des jeweiligen Features fiir einen Endnutzer. Aufgrund
dieses Nutzens lassen User Stories sich priorisieren. Auflerdem lésst sich der Umfang jeden
Features schitzen. Aufgrund von Umfang und Prioritdt lassen sich User Stories aus dem

PBL auswéhlen, um im kommenden Sprint erledigt zu werden.

Fiir einen Sprint werden Teilaufgaben (Tasks) ausgewahlter User Stories in den Sprint
Backlog (SBL) tibernommen. Fiir jeden Task ist eine Definition of Done (DoD) formu-
liert, die aussagt, wann der Task abgeschlossen ist. Das SBL stellt damit die Basis fiir
die Organisation der Arbeit durch das Team dar. Es darf wihrend eines Sprints nicht

verandert werden.

Damit der SM die Behinderungen des Teams beseitigen kann, verwaltet er ein Impedi-
ment Backlog (IBL), in welchem Teammitglieder Probleme einstellen und priorisieren
konnen. Er kann diese Behinderungen selbst auflosen, oder deren Auflosung weiterdelegie-

remn.

Meetings

Die verschiedenen Scrum-Meetings ermoglichen die Umsetzung des Verfahrens und eine
Abschéitzung des Projektfortschritts. Sie haben einen jeweils fest definierten Zweck, wo-

durch die Zeit, die fiir Meetings verwendet wird, reduziert werden soll.

2.1. AGILES PROJEKTMANAGEMENT 11

Um einen kommenden Sprint zu planen, wird jeweils ein Sprint Planning Meeting ab-
gehalten. Es beinhaltet die Schitzung (moglicherweise die Neu-Schéitzung) der Items des
PBL und eine Auswahl von Items fiir die Ubernahme in den neuen Sprint. Die Auswahl
wird auf Basis von Aufwand und Priorisierung der Elemente durch Konsens im Team ge-
troffen. Dariiber hinaus werden die Elemente des PBL in Tasks, wohldefinierte Arbeitspa-
kete, zergliedert. Tasks werden Verantwortlichen zugewiesen und in das SBL eingetragen.

Moglichst alle Termine fiir den kommenden Sprint werden festgelegt.

Um den Fortschritt des aktuellen Sprints festzustellen und Probleme (Impediments) zu
identifizieren wird ein tégliches Daily Meeting oder kurz ,Daily“, abgehalten. Es soll
dort lediglich beantwortet werden, was zuletzt getan wurde und was als néchstes getan

wird. Das Daily sollte eine Dauer von 15 Minuten nicht iiberschreiten.

Der Erfolg eines Sprints wird in einem Review und Sprint Retrospective ermittelt.
Zum Review zdhlen die Vorstellung des Produkt-Inkrements sowie die Abnahme desselben
durch den PO. In der Retrospektive wird die Qualitidt des Entwicklungsprozesses gemes-
sen. Hier soll beantwortet werden, was gut und schlecht im letzten Sprint lief, und wie
moglicherweise Verbesserungen zu erreichen sind. Wie die Qualitidt gemessen werden soll,
lasst Scrum offen. An dieser Stelle ldsst sich Scrum hervorragend mit Kanban kombinieren,

da Kanban die Messung der Prozessqualitit stark fokussiert (siehe Unterabschnitt 2.1.4).

2.1.4 Kanban

Kanban [51] ist, anders als Scrum, kein Vorgehensmodell. Es schreibt daher keinen Ent-
wicklungsprozess vor, beinhaltet aber Praktiken, welche die Qualitéit bestehender Prozesse
messen und verbessern konnen. Es wird ein Entwicklungsprozess angestrebt, der Inkremen-

te regelméfig, schnell und mit hoher Qualitdt ausliefern kann.

Das Verfahren modelliert dazu bestehende Prozesse als Kette von Arbeitsstationen, die
jedes Produktinkrement durchlaufen muss (z.B. Analyse, Implementierung, Testing,...).
Wichtig ist insbesondere, Abhéngigkeiten innerhalb des Prozesses zu identifizieren, um
Verzogerungen zu vermeiden. Dadurch lédsst sich der Durchfluss optimieren, indem Bott-

lenecks identifiziert und aufgelost werden.

Zentral fiir Kanban ist das Kanban-Board, auf dem der Prozess modelliert und sein Fort-
schritt sichtbar gemacht wird. Abbildung 2.2 zeigt einen Uberblick iiber Kanban mit dem
Board im Zentrum. Man erkennt die in Spalten angeordneten Stationen, sowie zusétzliche
Spalten fiir Prozess-Input (in naher Zukunft geplante Features) und Prozess-Output (zur

Abnahme freigegebene Features). Die Regeln von Kanban werden im Folgenden erlautert.

12 KAPITEL 2. ORGANISATION

IN |[Step1]...|Stepn| OUT
Continuous
L Optimization
o0 4 00
B IN | OUT IN, OUT]
(W N
[| O n]
m (= |
Concept Continuous
Kanban Board Integration

Quality Assessment

Abbildung 2.2: Das Kanban-Board

Regeln

Die grundlegende Regel in Kanban ist, dass die Anzahl Items in jeder Station, die Work In
Progress (WiP), streng limitiert ist. Die jeweiligen Obergrenzen sollten in jeder Spalte
des Kanban-Boards eingetragen werden. Jede Station hat einen eigenen Input und Output.
Im Input liegen aktuell bearbeitete Tickets, im Output fertige Tickets. Die Prozesskette
funktionert nach dem Pull-Prinzip. Damit kénnen Features nur weiter wandern, wenn die

nachfolgende Arbeitsstation das Feature in seinen Input ,zieht*.

Durch diese einfachen Regeln lassen sich Bottlenecks des Prozesses schnell identifizieren:
Sollte ein Flaschenhals existieren, werden davor liegende Stationen aufgrund des Limits
blockiert. Denn da die Station, die den Flaschenhals erzeugt, keine weiteren Tickets zie-
hen kann, dirfen auch frithere Stationen, wenn sie ihr Limit erreicht haben, keine weiteren
Tickets annehmen. Dann kann die Ressourcenzuteilung zu den Stationen verbessert wer-

den, sodass der Durchfluss steigt.

Damit die Anzahl der Tickets die tatsdchliche Arbeit angemessen quantisiert, sollten alle
Tickets einen dhnlichen Arbeitsaufwand erzeugen. Dies kann z.B. durch Zergliederung von

Features erreicht werden.

Optional konnen verschiedene Service-Klassen eingefiihrt werden, welche die Tickets prio-
risieren. Verbreitet ist z.B. eine Aufteilung in Standard, Expedite, Vague und Fixed.
Expedite-Tickets wird eine eigene Bahn durch den Prozess zugeordnet, die nicht zu den
Limits der Stationen zéhlt. So kénnen z.B. wichtige Bugfixes vorrangig behandelt werden
(siehe die roten Tickets in Abbildung 2.2). Vague-Tickets sollten nur durch die Kette wan-
dern, wenn Kapazititen des gesamten Prozesses frei sind. Fixed-Tickets kénnen so durch

den Prozess gefiihrt werden, dass sie zu festen Terminen fertiggestellt sind.

2.2. WAHL DES VERFAHRENS 13
Bewertung der Prozess-Qualitit

Die Prozessqualitét lasst sich zunéchst daran messen, ob Bottlenecks in der Prozesskette
existieren. Diese verringern den Durchfluss und weisen auf eine nicht-optimale Ressourcen-
verteilung hin. Wie bereits angemerkt, lassen sich Bottlenecks dadurch identifizieren, dass
sie Tickets aufstauen und es dadurch vorigen Stationen nicht erlaubt ist, weitere Tickets

anzunehmen.

Eine weitere Metrik zur Abschétzung der Qualitit ist die Zeit, die fiir einzelne Tickets seit
dem letzten Fortschritt vergangen ist. Solche Tickets sind moglicherweise blockiert, d.h. es
sind Behinderungen aus dem Weg zu schaffen, damit das Ticket erfolgreich abgearbeitet
werden kann. Weitere Metriken zur Messung des Durchflusses und dem Aufwand einzelner

Tickets existieren dariiber hinaus.

Wie Scrum verwendet auch Kanban Dailies und Reviews (siehe Unterabschnitt 2.1.3), um
den Projektfortschritt zu kommunizieren. Anders als in Scrum miissen Reviews aber nicht

regelméfig abgehalten werden.

2.2 Wahl des Verfahrens

von Mirko Bunse

Scrum und Kanban (siehe Unterabschnitt 2.1.3 und Unterabschnitt 2.1.4) stellen nur Rah-
menwerke mit vielen Optionen zur Verfiigung. Die Implementierung der Verfahren obliegt

letztendlich dem Anwender. Fiir uns stellten sich folgende Fragen:

e Welches der Verfahren wéahlen wir? Nehmen wir eine Kombination vor?
e Wie lange sollen Sprints dauern?
e Wie sind die Rollen zu besetzen?

e Welche Software konnen wir fir unser Verfahren verwenden?

Initial haben wir uns darauf geeinigt, lediglich Scrum zu verwenden und Kanban bei Bedarf
zur Prozessbewertung und -optimierung hinzuzuziehen. Auf diese Weise kénnen wir uns
auf die Arbeit konzentrieren und die uns neuen agilen Projektmanagement-Verfahren ne-
benbei erlernen. Da Kanban kein Vorgehensmodell darstellt, sondern auf die Optimierung

bestehender Prozesse abzielt, lisst sich ein solches Vorgehen gut implementieren.

Wir haben zwei Scrum-Master gewéhlt, um die Arbeit an den Impediments aufteilen zu
koénnen und bei Bedarf die Arbeit auf zwei Scrum-Teams aufzuteilen. Als Product Owner
sollten die Betreuer herhalten. Sprints sollten zunéchst eine Woche dauern, um dem hohen
Abstimmungsaufwand am Anfang des Projektes zu begegnen, spéter sollten sie langer

dauern.

14 KAPITEL 2. ORGANISATION

Um das PBL zu pflegen, verwenden wir Atlassian JIRA [13]. Uber die Kommentar-Funktio-
nen dieser Projektmanagement-Software fiir User Stories und Tasks kénnen wir Losungen

diskutieren und unseren Fortschritt dokumentieren.

2.3 Retrospektive der Umsetzung

von Mirko Bunse

Nach einem Semester Laufzeit der Projektgruppe kénnen wir eine erste Bewertung un-
serer Umsetzung agilen Projektmanagements vornehmen. Da sich insbesondere Probleme
mit der Initialisierung des Projektes erkennen lassen, wollen wir darauf gesondert in Un-
terabschnitt 2.3.1 eingehen. Wir wollen dazu aulerdem einen Blick auf unsere Meetings
werfen (siehe Unterabschnitt 2.3.2). Zusammenfassend und tber diese Themen hinausge-

hend nehmen wir eine abschlielende Bewertung vor (siehe Unterabschnitt 2.3.3).

2.3.1 Projekt-Initialisierung

Scrum fordert, dass das Team fiir die Vision des Endproduktes ein tiefgehendes Verstandnis
entwickelt. Nur dadurch ist nachvollziehbar, was Teilziele fiir den Projekterfolg bedeuten,
und umrissen, was moglicherweise im Vorhinein fiir zukiinftige Arbeitspakete zu bedenken
ist. Wir haben uns initial schwer damit getan, die Product Vision zu konkretisieren. Auch
wenn abstrakt klar war, welche Prozesse zur Analyse der Daten abzubilden sind, lag der
Weg dahin lange Zeit im Dunkeln. Ein Grund dafiir war, dass wir mit den verwendeten

Technologien nur wenig Erfahrung besaflen.

Scrum nimmt an, dass das Team die fiir das Projekt notige Expertise bereits mitbringt, im
Zweifelsfall durch im Vorhinein durchgefiihrte Schulungen. Mit dieser Expertise kann das
Projekt auch schneller initialisiert werden. Fiir Projektgruppen kann diese Annahme aller-
dings nicht vollends zutreffen, da dort grofie Teile dieser Expertise erst vermittelt werden

sollen. Uns fehlten insbesondere Erfahrungen mit Spark und dem Streams-Framework.

2.3.2 Meetings

Das Modulhandbuch des Masterstudiengangs Informatik sieht acht Semesterwochenstun-
den fiir die Projektgruppe vor [87]. Dies ist ein wesentlich geringerer Umfang, als in einem
iiblichen Arbeitsleben mit acht tédglichen Arbeitsstunden. Wir haben dadurch mit unse-
rem wochentlichen Sprint Planning Meeting einen Umfang abgedeckt, fiir den von Scrum
ein Daily Meeting angedacht ist. Durch diesen iibersichtlichen Sprint-Umfang erschien es
nicht zielfithrend, Scrum formal durchzufiihren, also ein PBL, ein SBL oder ein IBL ge-
wissenhaft zu fithren. Damit wurde aber der Grofiteil des Abstimmungsaufwandes in den

wochentlichen Meetings abgehandelt. Sie wurden ldnger als vielleicht nétig.

2.3. RETROSPEKTIVE DER UMSETZUNG 15

Zudem haben sich die meisten wochentlichen Meetings zu Arbeitsmeetings ausgewachsen,
die einzelne Probleme in einer Tiefe diskutiert haben, die nicht fiir alle Teilteams rele-
vant war. Erst spiater haben wir regelméflige Treffen der Teilteams etabliert, in denen die
Arbeit erledigt und teilthemenbezogene Abstimmung erzielt wurde. Dadurch fielen die

wochentlichen Hauptmeetings sinnvoll kiirzer aus.

Fir Sprint-Retrospektiven (,Was lief gut, wie konnen wir den Prozess verbessern?) war
eine Woche kein ausreichender Sprint-Umfang. Ein dediziertes Meeting zur Bewertung des
Prozesses wurde auch nicht abgehalten. Damit haben wir noch nicht abgestimmt, wie wir

unseren Entwicklungsprozess optimieren wollen.

2.3.3 Abschlielende Bewertung

Die angenommene Erfahrung mit verwendeten Technologien und die Annahme eines tief-
gehenden Verstédndnisses der Product Vision haben Scrum fiir die Initialisierung des Pro-
jekts nicht so recht aufgehen lassen (siehe Unterabschnitt 2.3.1). Wir sind dadurch erst
recht spéat aus dieser Findungsphase ausgetreten. Insbesondere waren einige Zeit lang keine

sinnvollen Inkremente planbar.

Die von uns gewéhlte Sprintlaufzeit von einer Woche lie eine formale Durchfithrung (PBL,
SBL, IBL) von Scrum nicht sinnvoll erscheinen. Durch die nicht von Scrum vorgesehene
Durchfihrung der Meetings haben wir wir viel Zeit in unseren Treffen verbraucht, wobei

nicht immer alle von dieser Zeit profitieren konnten (siche Unterabschnitt 2.3.2).

Da die Initialisierung des Projektes mittlerweile abgeschlossen ist und die in diesem Zwi-
schenbericht vorgestellten Ergebnisse des Projektes eine gute Basis fiir die weitere Arbeit
darstellen, haben wir jedoch eine solide Grundlage fiir das zweite Semester geschaffen.
Wir haben ein Verstédndnis der Product Vision erlangt. Zukiinftige Arbeitspakete werden
besser planbar sein, weil wir sie im Kontext bestehender Ergebnisse betrachten kénnen.

Als Team sind wir heute eingespielter als zu Beginn der Projektgruppe.

Wir kénnen im kommenden Semester an den hier genannten nicht-optimalen Punkten an-
setzen, um unseren Entwicklungsprozess zu verbessern und damit mehr Projektziele in der
uns gegebenen Zeit umzusetzen. Eine Retrospektive des bisherigen Projektmanagements

stellt einen guten Startpunkt fiir das kommende Semester dar.

Teil 11

Big Data Analytics

17

Kapitel 3

Einfiihrung in Big Data Systeme

von Alexander Bainczyk

Fir den Begriff ,Big Data“ gibt es keine allgemeingiiltige Definition, vielmehr ist er ein

Synonym fiir stetig wachsende Datenmengen geworden, die mit herkémmlichen Systemen

nicht mehr effizient verarbeitet werden kénnen. Wird nach Charakteristika von Big Data

gefragt, werden oftmals die 5 Vs [65] zitiert, die in Abbildung 3.1 veranschaulicht sind:

Volume (Menge) Die Menge an Daten, die produziert werden, steigt in einen Be-
reich, der es fiir herkdmmliche Systeme schwer macht, diese zu speichern und zu

verarbeiten und auch die Grenzen traditioneller Datenbanksysteme iiberschreitet.

Velocity (Geschwindigkeit) Die Geschwindigkeit, mit der neue Daten generiert wer-
den und sich verbreiten, steigt. Um diese (in Echtzeit) zu analysieren, benotigt es

neue Herangehensweisen.

Variety (Vielfalt) Die Daten stammen nicht mehr nur aus einer oder ein paar weni-
gen, sondern aus einer Vielzahl unterschiedlicher Quellen, wie zum Beispiel Sensoren,

Serverlogs und nutzergenerierten Inhalten und sind strukturiert oder unstrukturiert.

Veracity (Vertrauenswiirdigkeit) Bei der Menge an produzierten Daten kann es
passieren, dass sie Inkonsistenzen aufweisen, unvollstédndig oder beschédigt sind. Bei

der Analyse gilt es, diese Aspekte zu berticksichtigen.

Value (Wert) Oftmals werden so viele Daten wie moglich gesammelt, um einen
Gewinn daraus zu schlagen. Dieser kann beispielsweise finanzieller Natur sein oder
darin bestehen, neue Erkenntnisse durch Datenanalyse fiir wissenschaftliche Zwecke

71 gewinnen.

In erster Hinsicht besteht die Herausforderung nun darin, diese Masse an Daten auf ir-

gendeine Art und Weise zu speichern, verfiigbar und durchsuchbar zu machen und effizient

zu analysieren. Die folgenden Abschnitte geben daher einen kurzen Einblick in die Anwen-

dungsgebiete von Big Data, erldutern die Probleme mit herkémmlichen Ansitzen und

beschéftigen sich mit Anforderungen an Big Data Systeme.

19

20 KAPITEL 3. EINFUHRUNG IN BIG DATA SYSTEME

........l. T — ° ® 5 - . .

e o 0 0 0 O o * - ®

e e 0o 0 0 =9 =0 =@0=@ @ .
o.o.o.o.o. & & [] ° .« %% 0
e <0 =0=0 =0 O e-e © .

o o 0 0 0 Te-e e ..."o ..
e o ® @ @

Abbildung 3.1: Veranschaulichung der ersten vier Vs von Big Data. Von links nach rechts:
Volume, Velocity, Variety und Veracity (vgl. [25])

3.1 Nutzen von Big Data

von Alexander Bainczyk

Der grofie Nutzen von Big Data besteht in den Ergebnissen der Datenanalyse. Diese kénnen
etwa dazu dienen, um personalisierte Werbung anzuzeigen oder wie in unserem Anwen-
dungsfall, um neue, unbekannte Daten zu erkennen und zu klassifizieren. Eine Moglichkeit
der Analyse besteht in der Anwendung maschineller Lernverfahren, dessen Konzepte in
Kapitel 8 vorgestellt werden. Im Kern geht es dabei darum, in Datensdtzen Muster und
andere RegelméfBigkeiten zu finden. Es liegt nahe, dass je grofler die bestehende Datenmen-
ge ist, Modelle genauer trainiert werden kénnen, wenn die Daten nicht hochst verschieden
sind. Um grofle Datenmengen effizient zu analysieren, benétigt es auch hier spezielle Ver-
fahren, die vor allem in Abschnitt 8.3 angesprochen werden und entsprechende Software,

die auf die Analyse von Big Data zugeschnitten ist (s. Unterabschnitt 5.2.3).

3.2 Probleme mit herkémmlichen Ansitzen

von Alezander Bainczyk

Bei einer handelsiiblichen Festplatte mit 2 TB Speicher und einer Lesegeschwindigkeit von
im Schnitt 120 MB/s dauert alleine das Lesen der Festplatte ungefahr 4,6 Stunden. Bei
noch groBleren Datenmengen und zeitkritischen Analysen ist diese Zeitspanne jedoch nicht
akzeptabel, weshalb Ansédtze darauf abzielen, die Daten und Berechnungen auf mehrere
Server zu verteilen, um nur einen Bruchteil dieser Zeit zu bendtigen. Ein wichtiger Begriff

in diesem Zusammenhang ist die Skalierbarkeit.

Skalierbarkeit beschreibt die Fahigkeit eines Systems, bestehend aus Soft- und Hardware,
die Leistung durch das Hinzufiigen von Ressourcen moglichst linear zu steigern. Generell
unterscheidet man hierbei zwischen vertikaler und horizontaler Skalierbarkeit (s. Abbil-
dung 3.2).

Unter vertikaler Skalierung spricht man dann, wenn sich eine Leistungssteigerung eines
einzelnen Rechners durch mehr Ressourcen, in etwa durch mehr Arbeitsspeicher, Prozes-
sorleistung oder Speicher ergibt. Der grofite Nachteil dieses Verfahrens ist seine Kostspie-

ligkeit, da meistens nur die Anschaffung eines neueren, leistungsstérkeren Systems méoglich

3.3. ANFORDERUNGEN AN BIG DATA SYSTEME 21

Vertikale
Skalierung

Horizontale
Skalierung

Abbildung 3.2: Arten der Skalierung

ist, wenn das alte an seine Grenzen stofit. Fiirs Big Data Processing ist diese Art der Ska-
lierung somit eher ungeeignet, da an irgendeinem Punkt es nicht mehr moglich ist, sei
es aus technischer Sicht oder aus Griinden der Kosten, mehr Ressourcen in ein System

einzuspeisen.

Im Gegensatz dazu spricht man von horizontaler Skalierung, wenn in ein bestehendes
System weitere Rechner eingespeist werden. Fiir so einen Cluster wird meistens kostengiin-
stige Serverhardware genommen, die iiber eine schnelle Netzwerkverbindung miteinander
verbunden sind. Fin Beispiel fir eine derartige, horizontal skalierbare Architektur stellt
die A-Architektur dar, die in Kapitel 4 thematisiert ist. In Féllen von Big Data werden
horizontal skalierbare Losungen bevorzugt, da sie kostengiinstiger in der Anschaffung im
Verhéltnis zum Datenzuwachs sind und Ressourcen flexibel und je nach Bedarf hinzugefiigt
werden konnen [66, Kap. 1], [91].

3.3 Anforderungen an Big Data Systeme

von Alexander Bainczyk

Eine derartige Skalierung, wie sie im vorigen Abschnitt beschrieben ist, stellt auch neue
Anforderungen an die Datenmodellierung und an die verwendete Software. Gewiinschte

Eigenschaften von Big Data Systemen sind unter anderem:

Fehlererkennung und -toleranz In einem verteilten System muss die Annahme gel-
ten, dass zuféllig jede beliebige Komponente zu jedem beliebigen Zeitpunkt ausfallen
kann. Mit der Anzahl an Knoten in einem Cluster steigt dieses Risiko. Kann ein sol-
cher Fehler nicht zuverldssig erkannt werden, kénnen Endergebnisse verfalscht oder
nicht produziert werden. Infolgedessen miissen Big Data Systeme so konstruiert sein,
dass das Ausfallrisiko oder der Verlust von Daten mit einkalkuliert ist. Um Fehler-
toleranz zu gewihrleisten wird meistens auf eine Kombination aus Datenredundanz

und wiederholter Ausfithrung von fehlgeschlagenen Teilaufgaben gesetzt. Die Feh-

22 KAPITEL 3. EINFUHRUNG IN BIG DATA SYSTEME

lererkennung selbst geschieht zumeist auf algorithmischer Basis und soll hier nicht

weiter vertieft werden [60, Kap. 15].

Geringe Latenzen Auch bei Datenmengen im Bereich von mehreren Tera- oder Peta-
byte sollen Daten so schnell wie moglich abrufbar sein. Dies wird oft iiber Datenred-
undanzen realisiert. Motiviert von der grofien Varianz von Daten haben sich nicht-
relationale Datenbanken (s. Abschnitt 13.1, Abschnitt 13.2) etabliert, die ebenfalls

verteilt arbeiten, um geringe Latenzen zu garantieren.

Skalierbarkeit Mit steigender Datenmenge soll das System horizontal mitskalieren, in-
dem mehr Ressourcen hinzugefiigt werden. Entsprechende Software, wie Hadoop &
YARN (Unterabschnitt 5.1.2) miissen die neuen Ressourcen entsprechend verwalten
und auf Anwendungen verteilen. Eine skalierbare Architektur fiir Big Data Systeme

wird mit der A—Architektur in Kapitel 4 préasentiert.

Generalisierbarkeit Ein eigen konzipiertes Big Data System fiir jeden beliebigen An-
wendungsfall ist aus Sicht der Wartbarkeit und Interoperabilitdt nicht praktikabel.
Die A-Architektur bietet eine generelle Struktur und mit Software wie MapRedu-
ce (Unterabschnitt 5.1.3) und Spark (Abschnitt 5.2) lassen sich viele Probleme auf

einheitlicher Basis 16sen.

Bei der Datenverarbeitung in Big Data Systemen stellen sich neben den erwédhnten An-
forderungen noch weitere Herausforderungen. Etwa muss sich die Frage gestellt werden,
wie Daten in einem Cluster verteilt werden, sodass sie moglichst effizient verarbeitet wer-
den kénnen und wie sich vorhandene Ressourcen fiir diese Aufgabe moglichst gut nutzen
lassen. Dies soll jedoch nicht Gegenstand dieser Projektgruppe sein, da wir auf bereits

existierende Losungen setzen, die fiir diese Probleme Mechanismen integriert haben.

Kapitel 4

Lambda-Architektur

von Dennis Gaidel

Im vorangegangenen Kapitel 1 wurde bereits die Herausforderung motiviert: Datenmengen
in der GroBenordnung von Tera- bis Petabyte miissen indiziert, angemessen verarbeitet und
analysiert werden. Bisher wurde im Rahmen der Projektgruppe eine Teilmenge der Tele-
skopdaten auf dem verteilten Dateisystem eines Hadoop-Clusters (vgl. Kapitel 5) abgelegt
und fiir die Verarbeitung herangezogen. Big-Data- Anwendungen zeichnen sich jedoch nicht
nur dadurch aus, dass sie eine grole Menge persistierter Daten moglichst effizient vorhal-
ten, sodass Nutzeranfragen und damit verbundene Analysen zeitnah beantwortet werden
konnen. Vielmehr ist auch die Betrachtung von Datenstromen ein essentieller Bestandteil
einer solchen Anwendung, um eintreffende Daten in Echtzeit verarbeiten zu koénnen. Im
Folgenden soll verdeutlicht werden, wie eine solche Big-Data-Anwendung im Sinne der sog.

Lambda-Architektur umgesetzt wird.

Motivation Die Problematik besteht in der Vereinigung der persistierten Datenmenge
und der Daten des eintreffenden Datenstroms, der in Echtzeit verarbeitet werden soll.
Auch beansprucht die Beantwortung von Anfragen auf den wachsenden Datenmengen

zunehmend viel Zeit, sodass klassische Architekturansitze an ihre Grenzen kommen.

Bei der Ausfiihrung von Transaktionen sperren relationale Datenbanken bspw. betroffene
Tabellenzeilen oder die komplette Datenbank wiahrend der Aktualisierung der Daten, wo-
durch die Performanz und Verfiigbarkeit eines Systems voriibergehend reduziert wird. Der

Einfluss dieses Flaschenhalses kann mit Hilfe von Shardingansétzen reduziert werden.

Sharding beschreibt die horizontale Partitionierung der Daten einer Datenbank, sodass
alle Partitionen auf verschiedenen Serverinstanzen (z.B. innerhalb eines Clusters) verteilt
werden, um die Last zu verteilen. Die Eintrége einer Tabelle werden somit zeilenweise
auf separate Knoten ausgelagert, wodurch die Indexgrofie reduziert und die Performanz
deutlich gesteigert werden kann. Allerdings ist diese Methode auch mit Nachteilen ver-
bunden. Durch den Verbund der einzelnen Knoten zu einem Cluster ergibt sich eine starke

Abhéngigkeit zwischen den einzelnen Servern. Die Latenzzeit wird ggf. erhoht, sobald die

23

24 KAPITEL 4. LAMBDA-ARCHITEKTUR

Anfrage an mehr als einen Knoten im Rahmen einer Query gestellt werden muss. Insge-
samt leidet die Konsistenz bzw. die Strapazierfihigkeit des Systems, da die Komplexitét

des Systems steigt und somit auch die Anfélligkeit gegeniiber Fehlern.

Bisher wurde auf den Einsatz von Sharding verzichtet, obwohl die eingesetzten Datenbank-
systeme (vgl. Kapitel 13) diese Methode unterstiitzen, da die persistierten und indizierten
Event-Daten und die zugehorige Metadaten noch keine kritische Gréfe erreicht hatten. Im
Hinblick auf das zweite Semester und wachsenden Datenmengen (vgl. Kapitel 18) konnte

die Umsetzung dieses Ansatzes vorteilhaft sein.

Daraus resultierend ergibt sich die Notwendigkeit einer alternativen Architektur bei der

Verarbeitung von besonders groflen Datenmengen im Big-Data-Umfeld.

Architektur Um dem Anspruch der simultanen Verarbeitung von Echtzeitdaten und
der historischen bzw. persistierten Daten gerecht zu werden, hat Nathan Marz die Lambda-
Architektur [67] eingefiihrt, die einen hybriden Ansatz verfolgt: Es werden sowohl Metho-
den zum Verarbeiten von Batches (also den historischen Daten, vgl. Kapitel 5), als auch
zum Verarbeiten von Streams (Echtzeitdaten, vgl. Kapitel 6) miteinander kombiniert.
Durch die Anwendung von geeigneten Methoden fiir den entsprechenden Datensatz wird
eine Ausgewogenheit zwischen der Latenzzeit (latency), dem Durchsatz (throughput) und

der Fehlertoleranz (fault-tolerance) erreicht.

Der Unterschied zu klassischen Ansétzen beginnt bereits beim Datenmodell, welches sich
durch eine unverénderliche Datenquelle auszeichnet, die lediglich durch das Hinzufiigen
neuer Eintridge erweitert werden kann. Im vorliegenden Fall werden die Events aus den
Teleskopdaten bzw. den FACT-Dateien extrahiert (vgl. Kapitel 10), in die Datenbank
tiberfithrt und indiziert (vgl. Kapitel 13).

Allgemein besteht die Lambda-Architektur (Abbildung 4.1) aus drei Komponenten: Batch
Layer (Kapitel 5), Speed Layer (Kapitel 6) und Serving Layer (Kapitel 7).

Der Batch Layer enthélt die dauerhaft gespeicherten Daten in ihrer Gesamtform. Dies
sind zum einen die auf dem Dateisystem vorliegenden Rohdaten im FITS-Format, so-
wie die extrahierten Events und ihre zugehorigen Metadaten. Durch die grofle Menge
an Daten, die durch diesen Layer verwaltet werden, steigen die Latenzzeiten, sodass die
Performanz dieses Layers nicht besonders hoch ist. Wiahrend eine Berechnung auf die-
sem Datenbestand durchgefiihrt wird, werden neu hinzugefiigte Daten bei der Berechnung
nicht betrachtet. Auch werden entsprechende Ansichten auf den Datenbestand iiber diese
Schicht erstellt und zur Verfiigung gestellt. Wurden neue Daten hinzugefiigt, so werden

auch die entsprechenden Views aktualisiert bzw. neu berechnet.

Der Speed Layer verarbeitet Datenstrome in Echtzeit und vernachléssigt den Anspruch
des Batch Layers hinsichtlich der Vollstandigkeit und Korrektheit der Ansichten auf die
aktuell verarbeiteten Daten, die von dieser Schicht bereitgestellt werden. Die neu ein-

gelesenen Daten werden temporar zwischengespeichert und stehen zur Ausfithrung von

25

Storage Processing Serving
e S,
—— eS| —
Historic
Data Batch Batch
Store Write
— o
Data Que
ry
e
~— Q\\ <
Queue Speed Random
Write
e e

Abbildung 4.1: Lambda-Architektur [3]

Berechnungen bereit. Sobald die temporér gespeicherten Daten des Speed Layers auch im

Batch Layer zur Verfiigung stehen, werden diese aus dem Speed Layer entfernt.

Die Komplexitit des Speed Layers entsteht durch die Aufgabe, die temporér zwischenge-
speicherten Daten aus dem Datenstrom mit dem bereits persistierten Datenbestand des

Batch Layers zusammenzufiihren.

Werden neue Teleskopdaten an den Cluster iibergeben, so sollen die Events in Echtzeit
eingelesen und der Prozesskette hinzugefiigt werden, um in den anstehenden Analysen

(vgl. Kapitel 11) bereitzustehen.

Der Serving Layer dient als Schnittstelle fiir Abfragen, die nach erfolgter Berechnung ein
Ergebnis zur Folge haben. Diese Ergebnisse werden auf Grund der hohen Latenz des Batch
Layers zwischengespeichert, um das Ergebnis bei erneuter Abfrage schneller ausliefern zu
kénnen. Dabei werden die ausgewerteten Daten sowohl von Speed- als auch Batch-Layer

indiziert, um die Abfragen zu beantworten.

Eine abgeschlossene Berechnung fithrt schlielich dazu, dass alle Daten im Serving Layer
mit dem neuberechneten ersetzt werden. Dadurch entfallen unnétig komplexe Updateme-

chanismen und die Robustheit gegeniiber fehlerhaften Implementierungen werden erhéht.

Um die Events geméfl bestimmten Kriterien bereitzustellen und analysieren zu kénnen,
wird eine REST-Schnittstelle (vgl. Abschnitt 7.2) zur Verfiigung gestellt, iiber die die

Anwendung u.a. auch von auflerhalb angesprochen werden kann.

Kapitel 5

Batch Layer

von Alexander Bainczyk

Wie im vorigen Kapitel 4 beschrieben, werden im Batch-Layer mit Hilfe eines verteilten
Systems grofie Mengen an Daten verarbeitet. In diesem Zusammenhang sind wiahrend der
initialen Seminarphase verschiedene Technologien vorgestellt und evaluiert worden. Im
Folgenden werden daher das Okosystem um Apache Hadoop und Apache Spark vorgestellt,
dessen Konzepte veranschaulicht, Vor- und Nachteile besprochen und die Wahl der spéter

genutzten Software begriindet.

5.1 Apache Hadoop

von Alexander Bainczyk

Bei dem Apache Hadoop Projekt! handelt es sich um ein Open Source Framework, das
Anwendern ermoglicht, schnell eine verteilte Umgebung bereitzustellen, mit der sich Hard-
ware Ressourcen in einem Rechen-Cluster verwalten und grofie Mengen an Daten speichern

und verteilt verarbeiten lassen.

MapReduce Others
(data processing) (data processing)
_J w
YARN

(cluster resource management)

Abbildung 5.1: Architektur des Apache Hadoop Projekts. Quelle: [50]

"http://hadoop.apache.org/

27

http://hadoop.apache.org/

28 KAPITEL 5. BATCH LAYER

Wie in Abbildung 5.1 zu sehen ist, setzt sich das Projekt aus drei modularen Komponenten
zusammen, dessen Konzepte und Nutzen fiir unseren Anwendungsfall in den folgenden

Abschnitten thematisiert werden.

5.1.1 HDFS

von Alexander Bainczyk

Fiir den Storage-Layer in einem Rechnercluster zeichnet sich das Hadoop Distributed File
System (HDF'S) verantwortlich und basiert auf dem Google File System [42]. Dieses eignet
sich insbesondere fiir den Bereich des Data Warehousing, also Einsatzzwecke, wo es darauf
ankommt, eine grofle Menge an Daten iiber eine lange Zeit hinweg hoch verfiighar und

ausfallsicher vorzuhalten.

Metadata (Name, replicas, ...):
Metadat/alops" /home/foo/data, 3, ...

Block ops
Read Datanodes Datanodes
J \ |
OO 8 = Replication @ e =
o = J Blocks
o | — —
Rack 1 Wite Rack 2

Abbildung 5.2: Funktionsweise eines HDFS Clusters. Quelle: [35]

Der Aufbau eines HDFS Clusters ist in Abbildung 5.2 illustriert. Wie zu erkennen ist,
werden Daten auf sogenannten Datanodes in gleich groflien Blocks gespeichert. Um Aus-
fallsicherheit zu garantieren, besitzt das System einen Replikationsmechanismus, bei dem
Blocks bei Bedarf mehrfach redundant (bestimmt durch einen Replikationsfaktor) auf ver-
schiedenen Datanodes und Racks gespeichert werden. Im Falle eines Ausfalls kann so der
Replikationsfaktor von betroffenen Blocken durch Neuverteilung im Cluster wiederherge-

stellt werden, vorausgesetzt die notigen Kapazitaten sind vorhanden.

Beim Namenode handelt es sich um eine dedizierte Einheit, auf der keine Daten gespeichert
werden. Dieser enthélt Informationen tiber den Zustand des Systems, was das Wissen iiber
den Aufenthaltsort von Blécken und dessen Replikationen im Cluster beinhaltet. Durch
einen periodisch ausgefithrten Heartbeat werden alle Datanodes kontaktiert und aufge-
fordert, einen Zustandsbericht iiber gespeicherte Daten zu senden. Schlagt ein Heartbeat

mehrmals fehl, gilt der Zielknoten als tot und der beschriebene Replikationsmechanismus

5.1. APACHE HADOOP 29

greift ein. Dariiber hinaus kann der Namenode selbst repliziert werden, da er sonst einen

single-point-of-failure in diesem System darstellt.

Der Zugriff auf Daten von einem Klienten geschieht je nach dem, welche Operation aus-
gefithrt werden soll. Bei Leseoperationen einer Datei wird zunédchst der Namenode ange-
fragt, da dieser iiber ein Verzeichnis iiber alle Daten im Cluster verfiigt. Dieser gibt dann
den Ort der angefragten Datei an. Schreiboperationen werden typischerweise direkt auf
den Datanodes durchgefithrt. Mittels der Heartbeats wird der Namenode schliefllich von
den Anderungen informiert und veranlasst die Replikation der neu geschriebenen Daten.
Weiterhin wird fiir Klienten eine einfache Programmierschnittstelle angeboten, die die
Verteilung der Daten nach auflen hin abstrahiert und somit wie ein einziges Dateisystem
wirkt [35].

Fiir die Projektgruppe wurde zu Anfang ein aus sechs Rechnern bestehendes Hadoop Clu-
ster mit dem HDFS zur Verfiigung gestellt. Das Dateisystem kommt in unserem Anwen-
dungsfall hauptsichlich fiir die Persistenz der in Kapitel 10 beschriebenen Teleskopdaten
zum Einsatz. Das verteilte Dateisystem erwies sich bereits als sehr zuverldssig in Bezug
auf Ausfallsicherheit [42] und wird in Produktivsystemen zum Speichern und Verarbeiten
mehrerer Petabyte genutzt?, womit es eine solide Grundlage fiir den Anwendungszweck
darstellt.

5.1.2 YARN

von Alexander Bainczyk

Yet Another Resource Allocator (YARN) wirkt als Mittelsmann zwischen dem Ressourcen-
management im Cluster und den Anwendungen, die gegebene Ressourcen fiir Berechnun-
gen nutzen moéchten. Die Architektur setzt sich aus einem dedizierten RessourceManager
(RM) und mehreren NodeManager (NM) zusammen, wobei auf jedem Rechner im Cluster
ein NM lauft. Der RM stellt Anwendungen Ressourcen als sogenannte Container, also logi-
sche, auf einen Rechner bezogene Recheneinheiten zur Verfiigung, die den Anforderungen
der Anwendung, wenn moglich, entsprechen. Ein von der Anwendung eingereichter Job
wird dann im Container verarbeitet. Nach Beendigung gibt der RM die Ressourcen wieder

frei.

Aufgrund dieser offenen Struktur sind Ressourcen in einem Hadoop Cluster nicht nur
fiir Software aus dem selben Okosystem zuginglich, sondern kénnen auch von Dritt-

Programmen wie Apache Spark und Apache Storm reserviert und genutzt werden [89].

5.1.3 MapReduce

von Alexander Bainczyk

Bei Hadoop MapReduce handelt es sich um eine YARN-basierte Umgebung zum parallelen

http://wiki.apache.org/hadoop/Powered By

http://wiki.apache.org/hadoop/PoweredBy

30 KAPITEL 5. BATCH LAYER

Verarbeiten von Datenmengen in einem Hadoop-Cluster. Die Idee basiert auf einem Ver-
fahren aus der funktionalen Programmierung, bei der es eine map und eine reduce Funktion
gibt. Erstere wird auf jedes Element einer Menge unabhéngig voneinander durchgefiihrt,
die errechneten Ergebnisse mit letzterer Funktion zusammengefiihrt. MapReduce macht
sich insbesondere die Unabhéingigkeit der Daten zu Nutze, um beide Funktionen massiv

parallel auszufithren, sodass sich folgendes Verfahren ergibt:

group reduce

(k1,v1) =2 list(ky, vg) 2B (ky, list(vg)) === list(vg).

Um das Prinzip zu veranschaulichen, kann das Zéhlen von Events pro Nacht benutzt wer-
den. Rechner, die einen map-Job ausfithren (Mapper) erhalten als Eingabe jeweils eine fits-
Datei (s. Kapitel 10), zéhlen die Events und speichern jeweils eine Liste list(night, 1) als
Zwischenergebnis ab. MapReduce gruppiert die Zwischenergebnisse aller Mapper, was zu
einer Menge von (night;, list(1,1,...)) fithren wiirde. Rechner, die fiir den reduce-Funktion
ausgewéhlt worden sind (Reducer) wiirden die Zwischenergebnisse zusammenfiithren und
Daten der Form (night;,n;) abspeichern, wobei n; die Anzahl aufgenommener Events der
Nacht night; beschreibt. Es ist anzumerken, dass selbst wenn einer der Jobs fehlschla-
gen sollte, der gesamte Prozess nicht abgebrochen, sondern der entsprechende Job ggf.
auf einem anderen Rechner erneut ausgefithrt wird. Die Erkennung eines toten Knotens
geschieht durch stdndige Statusanfragen des Masters an Mapper und Reducer. In Experi-
menten zeigte sich, dass dieses Prinzip eine hohe Wahrscheinlichkeit fiir die Terminierung
aufweist [29].

Hadoop MapReduce hat bislang in der Projektgruppe noch keine Anwendung gefunden,
wofiir sich zwei Griinde angeben lassen. Zum einen haben direkte Vergleiche gezeigt, dass
andere Frameworks wie Apache Spark Vorteile bezogen auf die Performance haben, was
auch darauf zuriickzufithren ist, dass bei MapReduce viele Lese- und Schreibzugriffe auf
das Speichermedium ausgefiihrt werden, anstatt Daten im Arbeitsspeicher vorzuhalten.
Weiterhin gestaltet sich die Suche nach einem MapReduce basiertem Framework zum
verteilten, maschinellen Lernen als schwierig. Zwar existiert mit Apache Mahout? eine
entsprechende, ausgereifte Losung, nach Angaben der Entwickler wird die Entwicklung des

Frameworks sich jedoch aus Griinden der Performance auf Apache Spark konzentrieren.

5.2 Apache Spark

von Dennis Gaidel

Bei Apache Spark handelt es sich um ein Cluster Computing Framework, mit dessen Hilfe
Aufgaben auf mehrere Knoten eines Clusters (Rechnerverbunds) verteilt und somit parallel

verarbeitet werden konnen. Dies hat einen deutlichen Geschwindigkeitsvorteil gegeniiber

3http://mahout.apache.org/

http://mahout.apache.org/

5.2. APACHE SPARK 31

der Berechnung auf einem einzelnen Knoten zur Folge, was insbesonders bei der Verarbei-
tung grofler Datenmengen deutlich wird. Im Gegensatz zu Apache Hadoop setzt Apache
Spark auf die Vorhaltung und Verarbeitung der Daten im Hauptspeicher und erzielt so
einen Perfomancevorteil, durch den Berechnungen bis zu 100 mal schneller durchgefiihrt

werden koénnen [92].

Das Framework setzt sich grundlegend aus vier Komponenten zusammen: Spark Core,
Spark SQL, Spark Streaming, GraphX, sowie der MLIlib Machine Learning Library. Mit
diesen Komponenten werden somit die essentielle Bestandteile des Projekts (Clustering,
Querying, Streaming und Datenanalyse) prinzipiell abgedeckt, sodass Apache Spark eine
besonders interessante Option als Systemgrundlage darstellt. Ebenso wird eine Vielzahl
an verteilten Dateisystemen unterstiitzt, wodurch die Anbindung des Frameworks an ver-

schiedene Datenquellen erheblich vereinfacht wird.

5.2.1 Spark Core

Spark Core bildet die Grundlage von Apache Spark und ist mitunter fir die folgenden
Aufgaben verantwortlich: Speichermanagement, Fehlerbeseitigung, Verteilung der Aufga-
ben an die einzelnen Knoten, das Prozessscheduling und die Interaktion mit verteilten

Dateisystemen.

Ferner definiert Spark Core die Programmierschnittstelle, um auf dem Cluster zu arbei-
ten und Aufgaben zu definieren. Dabei handelt es sich um sog. resilient distributed da-
tasets (kurz: RDDs), die wiederum Listen von einzelnen Elementen représentieren, deren
Partitionen auf die einzelnen Knoten verteilt und parallel auf allen Knoten manipuliert
werden konnen, wie es in Abbildung 5.3 ersichtlich wird. Die Verteilung und die parallele
Ausfiihrung der Operationen wird dabei vom Framework selbst ibernommen. Dies ist ein
weiterer Vorteil von Apache Spark: Urspriinglich komplexe Aufgaben, wie das Verteilen
und parallele Ausfithren von Prozessen auf mehreren Knoten, wird durch das Framework

vollkommen abstrahiert und somit stark vereinfacht.

Die Daten kénnen zum einen, wie bereits erwahnt, aus statischen Dateien eines (verteilten)
Dateisystems bezogen werden oder aber auch aus anderen Datenquellen wie Datenbanken

(MongoDB, HBase, ...) und Suchmaschinen wie Elasticsearch.

Es wird zwischen zwei Arten von Operationen unterschieden, die auf den RDDs ausgefiihrt
werden konnen. Transformationen (wie das Filtern von Elementen) haben ein neues RDD
zur Folge, auf dem weitere Operationen ausgefiihrt werden. Transformationen werden je-
doch aus Griinden der Performanz nicht direkt ausgefiihrt, sondern erst wenn das finale
Ergebnisse nach einer Reihe von Transformationen ausgegeben werden soll. Diese Technik
wird Lazy Evaluation genannt und bietet den Vorteil, dass die Kette von Transformatio-

nen zunéchst einmal vom Framework sinnvoll gruppiert werden kann, um die Scans des

32 KAPITEL 5. BATCH LAYER

Node A Node B Node C Node D
RDD 1 RDD 1 RDD 1 RDD 1

Partition 1 Partition 2 Partition 3
RDD 2 RDD 2

FEE Partition 1 Partition 3
RDD 3 RDD 3 RDD 3 RDD 3 RDD 3

Partition 1 Partition 2 Partition 3 Partition 4

Abbildung 5.3: Verteilung der Partitionen eines RDDs auf unterschiedliche Knoten [1]

Datensatzes zu reduzieren. Aktionen berechnen (wie das Zahlen der Elemente in einem
RDD) ein Ergebnis und liefern dieses an den Master Node zuriick oder halten es in einer

Datei auf einem verteilten Dateisystem fest.

5.2.2 Spark SQL

von Dennis Gaidel

Spark SQL unterstiitzt die Verarbeitung von SQL Anfragen, um sowohl die Daten der
RDDs, als auch die externer Quellen in strukturierter Form zu manipulieren. Dadurch
wird nicht nur die Kombinationen von internen und externen Datenquellen (JSON, Apa-
che Hive, Parquet, JDBC (und somit u.a. MySQL und PostgreSQL), Cassandra, Elastic-
Search, HBase, u.v.m.) erleichtert, sondern ebenfalls die Persistierung von Ergebnissen,
Parquet Dateien oder Hive Tabellen und somit die Zusammenfithrung mit anderen Daten

ermoglicht.

Eine zentrale Komponente ist das DataFrame, welches an das data frame Konzept aus der
Programmiersprache R anlehnt und die Daten wie in einer relationalen Datenbank in einer
Tabelle bestehend aus Spalten und Zeilen représentiert. Dabei wird dieses DataFrame,
analog zu den RDDs, dezentral auf die bereitstehenden Knoten verteilt. Analog zu den
RDDs konnen auf den DataFrames Transformationen, wie map () und filter () aufgerufen
werden, um die Daten zu manipulieren. Technisch gesehen besteht ein DataFrame auf
mehreren Row-Objekten, die zusédtzliche Schemainformationen, wie z.B. die verwendeten

Datentypen fir jede Spalte, enthalten.

Hinsichtlich der Performance schickt sich Spark SQL an, auf Grund der hoheren Abstrak-

tion durch SQL und den zusétzlichen Typinformationen, besonders effizient zu sein.

5.2. APACHE SPARK 33

5.2.3 Spark MLIlib

von Dennis Gaidel, Carolin Wiethoff

Da Apache Spark nicht nur zum Ziel hat, Daten effizient zu verteilen, sondern diese auch
zu analysieren, existiert die Bibliothek MLIib als weitere Komponente, um Algorithmen
des maschinellen Lernens auf die eingelesenen Daten ausfithren zu kénnen. Dabei werden

prinzipiell nur Algorithmen angeboten, die auch dafiir ausgelegt sind verteilt zu arbeiten.

Allgemein existieren mehrere Arten von Lernproblemen, wie Klassifikation, Regression
oder Clustering, deren Losungen verschiedene Ziele verfolgen. Alle Algorithmen bendtigen
eine Menge an Merkmalen fiir jedes Element, das dem Lernalgorithmus zugefithrt wird.
Betrachtet man beispielsweise das Problem der Identifizierung von Spamnachrichten, das
eine neue Nachricht als Spam oder Nicht-Spam klassifizieren soll, so konnte ein Merkmal
z.B. der Server sein, von dem die Nachricht versandt wurde, die Farbe des Texts und wie

oft bestimmte Worter verwendet wurden.

Die meisten Algorithmen sind darauf ausgelegt lediglich numerische Merkmale zu betrach-
ten, sodass die Merkmale in entsprechende numerische Werte iibersetzt beziehungsweise

in entsprechende Vektoren transformiert werden miissen.

Mit Hilfe dieser Vektoren und einer mathematischen Funktion wird schlussendlich ein Mo-
dell berechnet, um neue Daten zu klassifizieren. Zum Trainieren des Modells wird der
bestehende und bereits klassifizierte Datensatz in einen Trainings- und Testdatensatz auf-
geteilt. Mit ersterem wird das Modell trainiert und mit letzterem schliellich die Vorhersage

evaluiert, wie es in Abbildung 5.4 dargestellt wird.

! rradal
featurization training " g ®
spam evaluation /
fro0 money now! -
e
iy this maney - .
free savings 55§ g ®
<
NOn-GPam % - 5
how ane you? *
that Spark job .
r 0
that Spark job = |
Training Data Feature Veclors Maodal Bast Mode!

Abbildung 5.4: Maschinelles Lernen mit Spark MLIib [2]

Mit Hilfe der von MLIlib bereitgestellten Klassen kénnen die Schritte zum Ldsen eines Lern-
problems in einer Apache Spark Applikation nachvollzogen werden und die Algorithmen
darauf trainiert werden. Auch zur Evaluierung der Vorhersage stellt MLIlib entsprechende

Methoden zur Verfiigung.

34 KAPITEL 5. BATCH LAYER

Pipeline [.] [.] Logistic
(Estimator) Tokenizer | ™ | HashingTF | =p Regression

Logistic
. = . = - = Regression

Pipeline.fit Model
P fitl) Raw Words Feature

text vectors

Abbildung 5.5: Pipeline-Struktur von Spark ML [9]

Die MLIib Bibliothek gliedert sich in zwei Pakete: spark.mllib ist das urspriingliche Paket,
welches auf Basis der zuvor vorgestellten RDDs arbeitet. Es wird nicht mehr weiterent-
wickelt, allerdings noch unterstiitzt. spark.ml ist die neue Version, die aktuell weiterent-
wickelt wird. Das Paket arbeitet auf Basis von den in Spark SQL eingefiihrten DataFrames.
Auflerdem werden alle Arbeitsschritte in einer Pipeline zusammengefasst. Fine solche Pi-
peline besteht aus Stages, welche sequentiell ausgefithrt werden. Daten werden also von
Stage zu Stage gereicht. FKine Stage kann ein Transformer oder ein Estimator sein. Ein
Transformer implementiert die transform()-Methode, welche einen gegebenen Datak-
rame verdndert. Beispiele fiir typische Transformer ist die Merkmalsselektion oder die
Klassifikation. Ein Estimator implementiert die £it ()-Methode, welche ein Modell auf
Basis eines DataFrames trainiert. Ein Beispiel fiir eine solche Pipeline ist in Abbildung 5.5
zu sehen. Ein Dokument soll in Worte zerlegt werden, welche dann in numerische Merk-
male iiberfiihrt werden. Anschlieflend soll ein Modell mit Hilfe der logistischen Regression

trainiert werden. Die Transformer sind blau umrandet, der Estimator rot.

Spark ML vs. MLIlib Im Folgenden soll ndher betrachtet werden, welches Paket aus
Spark MLIib fiir unsere Projektgruppe das bessere ist. Dabei soll genauer auf die Unter-

schiede eingegangen werden.

In einer zweiwochigen Experimentierphase zu Beginn der Projektgruppe beschéftigten wir
uns mit der Frage, welches Paket der Spark MLIlib Bibliothek besser fiir unsere Zwecke
geeignet sein wiirde, entweder die dltere Version MLIlib oder die neuere ML, welche auch
noch aktiv weiterentwickelt wird. Zunéchst wéihlten wir einige Datenséitze aus dem UC
Irvine Machine Learning Repository [63] aus, anhand welcher die Modelle trainiert und
evaluiert werden sollten. Diese Datensétze waren leicht zu beschaffen und sollten eine
erste Basis fiir die Experimente darstellen. Im spéateren Verlauf der Experimentierphase
verwendeten wir auflerdem einen Ausschnitt der Monte-Carlo-Simulationsdaten, welche
auch im Endprodukt den Trainingsdatensatz bilden werden. Einen guten Einstieg bildet
der Spark Machine Learning Library Guide [9], welcher nicht nur jedes einzelne Verfahren
detailliert erklédrt, sondern auch die Grundlagen der Spark MLIlib Bibliothek darstellt und
einige Beispielimplementierungen liefert. Dank dieser erzielten wir recht schnell Ergebnisse,

stiefen jedoch auch auf einige Probleme, die im Folgenden kurz geschildert werden sollen.

5.2. APACHE SPARK 35

Zuerst informierten wir uns, welche Algorithmen von den einzelnen Paketen implementiert
werden. Unsere Ergebnisse sind in der nachfolgenden Tabelle zu sehen und entsprechen
dem Stand von Apache Spark 1.6.0 (4. Januar 2016):

MLLib | ML
Feature Extraction, Transformation and Selection v
Lineare SVM v
Entscheidungsbaum v v
RandomForest v v
GradientBoosted Trees v v
Logistische Regression v v
Naive Bayes v
Methode kleinster Quadrate v
Lasso Regression v v
Ridge Regression v v
Isotonic Regression v
Neuronales Netzwerk v

Die von den Physikern bereits genutzten Entscheidungsbdume und Zufallswéalder sind in
beiden Paketen enthalten. Dennoch fillt in der Ubersicht auf, dass ML einen entscheiden-
den Vorteil bietet, ndmlich die Moglichkeiten zur Merkmalsselektion, -transformation und
-extraktion. Dies ist fiir unseren Anwendungsfall wichtig, da eine Aufgabe unter anderem

darin besteht, die fir das Training und die Klassifikation besten Merkmale zu finden.

Bei der Implementierung war es zunédchst problematisch Datensétze einzulesen, welche
nicht dem des MLLib-Paketes bevorzugten Einleseformat LIBSVM entsprachen. Dement-

sprechend sollten die Daten wie folgt organisiert sein:
label featurel:valuel feature2:value2 ...

Die dem Repository entnommenen Datensétzen entsprachen leider nicht dem gewiinschten
Format, sodass wir Methoden schreiben mussten, die die von uns ausgewéhlten Dateien
analysierten und in JavaRDDs konvertierten. Generell kann zwar jedes beliebige Dateifor-
mat eingelesen werden, doch das Parsen muss bei Verwendung des Pakets MLLib selbst
iibernommen werden. Das Paket ML hingegen arbeitet auf Grundlage von DataFrames.
Diese koénnen unter anderem aus Datenbanken oder JSON-Dateien gelesen werden. Da
uns das streams-Framework bereits die Moglichkeit zum JSON-Export bot, konnten wir
einfach einen Ausschnitt der Monte-Carlo-Simulationsdaten als JSON-Datei exportieren
und in unseren Tests als DataFrame importieren. Dies ist ein entscheidender Vorteil des
ML-Paketes.

36 KAPITEL 5. BATCH LAYER

Auf ein weiteres Problem stieflen wir bei dem Versuch ein Modell mit Daten zu trainieren,
deren Attribute nicht ausschlieSlich numerischer Natur waren. Bei Nutzung des MLLib-
Paketes gingen die Algorithmen von Daten in Form eines LabeledPoint aus. Dieser besteht
aus einem numerischen Label und einem Vektor numerischer Features. Nutzt man die
Methoden aus dem Paket ML gibt es zwar beim Ablegen von nominalen Attributen in
einem DataFrame keine Probleme, jedoch gibt es Klassifikationsalgorithmen, welche nur
mit numerischen Merkmalen trainieren und klassifizieren kénnen. Das Problem der Trans-
formation blieb also bestehen. Das Paket MLLib bietet keine Moglichkeiten, um diese

Transformation durchzufithren, bei ML fanden wir sehr schnell die benétigten Methoden.

Auch die Label unterliegen einer Einschréankung. Sie sollen beginnend von Null durchnum-
meriert werden, sollen also nicht nominal sein oder mit +1 und -1 gekennzeichnet sein, wie
es bei bindren Klassifikationen oft der Fall ist. Es stellte sich ebenfalls heraus, dass ML
uns Arbeit durch Bereitstellung geeigneter Methoden abnehmen konnte, MLLib jedoch
nicht.

Fiir unseren Anwendungsfall ist es wichtig, dass sich Modelle abspeichern, im HDFS hin-
terlegen und nach Belieben wieder laden lassen. Aulerdem sollen gespeicherte Modelle
gestreamt werden konnen. Das Paket ML bietet bereits einige Methoden, um Pipelines
abzuspeichern. Dabei muss darauf geachtet werden, dass in der Pipeline ein Modell trai-
niert oder genutzt wird, fiir welches diese Speichermethoden bereits funktionieren. Generell
scheint es jedoch kein Problem zu sein Modelle abzulegen und wiederzuverwenden, was
ein grofler Vorteil des ML-Paketes ist.

Insgesamt stellte sich heraus, dass die Spark MLIib Bibliothek sehr konkrete Annahmen
iiber Eingabeformate und die Formatierung der Daten macht. Nutzt man das Paket ML
treten dabei jedoch keine Nachteile auf. Wir wollen primér aus Datenbanken lesen oder
die Trainingsdaten, welche als JSON-Datei vorliegen, importieren. Fiir die Vorbereitung
und Formatierung der Daten fiir den Trainings- und Klassifikationsablauf stellt das Paket
ML viele Methoden bereit. Es scheint nicht nur komfortabler primér auf das Paket ML zu
setzen, die Nutzung wird von Apache sogar ausdriicklich empfohlen, da das Paket MLLib
gar nicht mehr weiterentwickelt wird. Obwohl es auch noch unterstiitzt wird, haben wir
uns daher entschieden, auf die Pipeline-Struktur von ML aufzubauen und die in diesem
Paket enthaltenen Methoden zur Vorverarbeitung und Klassifikation unserer Daten zu
nutzen. Auflerdem funktioniert das Speichern und Laden von Modellen, welche wir dann

problemlos streamen konnen.

Kapitel 6

Speed Layer

Im Unterschied zum Batch Layer wird mit einem Speed Layer versucht die Liicke der
echtzeitlichen Datenanalyse zu schliefen. Neu eintreffende Daten sollen dabei direkt ver-

arbeitet und an den Klienten weitergeleitet werden.

Im Umfang dieser Projektgruppe wurden Informationen zu gingigen Werkzeugen, die fiir
die realzeitliche Verarbeitung von Datenstrome in Frage kommen, gesammelt. Derzeit
findet sich allerdings noch keine Anwendung fiir einige diese Tools, da zundchst die Verar-
beitung von Batches im Vordergrund stand. Die Erarbeitung des Speed Layers fallt daher
in die zweite Phase der Projektgruppe.

6.1 Apache Storm

von Lili Xu, Michael May

Apache Storm [10] ist ein Tool, welches zur realzeitlichen Analyse von Daten genutzt

werden kann. Es ist als Open-Source Produkt verfiigbar.

=

@
/.

=

/\
©

©—0

Abbildung 6.1: Beispiel einer Storm Topologie als DAG. Zu sehen sind Spouts (links, erste
Ebene) und Bolts (rechts, ab zweite Ebene). Quelle: [73]

37

38 KAPITEL 6. SPEED LAYER

Abbildung 6.1 zeigt eine Ubersicht der in Storm vorhandenen Komponenten: Spouts und
Bolts. Storm Aufgaben werden {iber gerichtete, azyklische Graphen spezifiziert. Dabei
werden die Spouts und Bolts als Knoten realisiert und die Kanten als Datenstreams

zwischen den Knoten. Solche Aufgaben werden in Storm als Topologie bezeichnet.

6.1.1 Storm Topologien

Wie bereits erwahnt sind Topologien die Spezifikationen fiir Storm Aufgaben in Graphen-
form. Sie bestehen aus zwei Knotentypen und eine Menge von Kante, die als Datenstreams
zu verstehen sind und eine endlose Sequenz von Tupeln darstellen. Abbildung 6.1 zeigt ei-
ne solche Beispiel-Topologie. In diesen Abschnitt werden die Komponenten nochmal nidher
betrachtet.

Spout FEine Spout realisiert eine Quelle fiir die Datenstreams und lesen im wesentlichen
Eingaben ein und geben diese im Anschluss an die folgenden Knoten, in Form von Daten-
streams, weiter. Spouts konnen als reliable oder unreliable markiert werden, welche das
Verfahren fiir ein Lesefehler festlegen. Wie in Abbildung 6.1 zu sehen ist, kann eine Spout

auch mehr als einen Stream erzeugen.

Bolt Ein Bolt Knoten dient zur Verarbeitung der Daten in Storm. Ahnlich zum Map-
Reduce Ansatz konnen tiiber Bolts Filterung, Funktionen, Aggregationen, Joins usw.

durchgefithrt werden. Bolts kénnen mehrere Streams einlesen, aber auch ausgeben.

6.1.2 Storm Cluster

Ein Storm Cluster ist dhnlich zu einem Hadoop Cluster (siehe Abschnitt 5.1), unterscheidet
sich aber in der Ausfithrung. Auf Hadoop werden MapReduce Aufgaben verarbeitet, wo-
hingegen in Storm Topologien ausfithrt werden. Die Konzepte unterscheiden sich vor allem
darin, dass MapReduce Aufgaben irgendwann enden miissen. Storm Topologien werden

solange ausgefiihrt, bis von auen ein ,Stopp“ (kill) gesendet wird.

Knoten im Cluster Innerhalb eines Storm-Clusters existieren zwei Typen von Knoten:
Master Node und Worker Node. Abbildung 6.2 stellt den Aufbau eines solchen Clusters

dar.

Master Node DieMaster Node ist verantwortlich fiir die Verteilung des Codes, die Feh-
leriiberwachung und die Aufgabenverteilung. Dafiir l4uft im Hintergrund ein Programm

namens Nimbus.

6.2. APACHE TRIDENT 39

Supervisor
Zookeeper Supervisor
Nimbus Zookeeper Supervisor
" —
Zookeeper
Supervisor
Supervisor

Abbildung 6.2: Aufbau eines Storm Clusters [73]

Worker Knoten Die Worker Nodes fithren die eigentliche Arbeit aus. Worker sind ver-
teilt auf mehrere Maschinen und fithren immer Teile einer Topologie aus. Auf diese Weise
kann eine Topologie auf mehreren Worker verteilt abgearbeitet werden. Auf jedem Worker

Node lduft ein Supervisor Daemon.

Zookeeper Zwischen Master Knoten und Worker Knoten gibt es einen Koordinator, der
Zookeeper genannt wird. Alle Zustandsinformationen werden im Zookeeper gespeichert,
sodass es moglich ist, einen laufenden Nimbus oder Supervisor zu stoppen, ohne dass
das ganze Programm angehalten werden muss. Gleichzeitig kénnen die Daemons erneut

gestartet werden und mit ihrer Arbeit von Neuem beginnen.

6.2 Apache Trident

von Michael May, Lili Xu

Trident ist eine High-Level-Abstraktion auf Basis von Storm und kann als Alternative
zum Storm Interface verwendet werden. Es ermoglicht die Verarbeitung von vielen Daten
sowie die Verwendung von zustandsbasierter Datenstreambearbeitung. Im Unterschied zu
Storm erlaubt Trident eine exactly-once Verarbeitung, transaktionale Datenpersistenz und
eine Reihe von verbreiteten Operationen auf Datenstreams, welche sich in 5 Kategorien

unterteilen lassen:

e lokale Operationen ohne Netzwerkbelastung

e Repartitionierung der Daten iiber das Netzwerk

40 KAPITEL 6. SPEED LAYER

o Aggregation als Teil einer Operation mit Netzwerkbelastung
e Gruppierung

e Merges und Joins

6.2.1 Trident Topologien

Trident Topologien werden iiber einen Compiler in optimale Storm Topologien kompiliert.
Abbildung 6.3 zeigt eine Trident Topologie, welche mit zwei Datenstreams, also bereits
aus Storm bekannte Spouts, initialisiert wird. Diese werden iiber lokale Operationen (hier
each) bearbeitet und anschlieBend gruppiert, bzw. partitioniert. Der obere Stream wird
anschlieBend in einen Zustand persistiert, sodass der untere Stream aus Queries Informa-
tionen des oberen erhalten und mitverarbeiten kann. Zudem ist zu sehen, dass mehrere

Streams iiber den join Operator miteinander kombiniert werden koénnen.

group by persistentAggregate TridentState

.\. partition
b:-'

Abbildung 6.3: Beispielhafte Trident Topologie. Quelle: [74]

. T group by state quer'_.r

Abbildung 6.4 stellt die kompilierte Storm Topologie dar. Dabei werden die Datenstreams
wieder als die bekannten Spouts initialisiert. Damit die kompilierte Topologie maximal op-
timiert wird, miissen Dateniibertragungen nur stattfinden, wenn Daten {iber das Netzwerk
iibertragen werden. Aufgrund dessen wurden lokale Operationen in Bolts zusammenge-
fasst. Die Gruppierung und die Partitionierung der Daten sind daher als Teil der Kanten

in der Storm Topologie und daher als Datenstrome zu interpretieren.

6.3. SPARK STREAMING 41

_____________________________ it
.
X 1
|
1

1

1
! i |
g I group by persistentAggregate TridentState
| 1

1
| 1
Spout h Bolt |

1 Bolt

I
= i @
e —————— . »

Bolt

Abbildung 6.4: Abbildung 6.3 als kompilierte Storm Topologie. Quelle: [74]

6.3 Spark Streaming

von Dennis Gaidel

Als Datenstrom wird ein kontinuierlicher Fluss von Datenséitzen bezeichnet, dessen En-
de nicht abzusehen ist. Die Daten werden verarbeitet, sobald sie eintreffen, wobei die
Grofle der Menge an Datensédtzen, die pro Zeiteinheit verarbeitet wird, nicht festgelegt ist.
Datenstrome unterscheiden sich von statischen Daten insofern, als dass die Daten in fe-
ster, zeitlich vorgegebener Reihenfolge eintreffen und nicht an beliebiger Stelle manipuliert
werden konnen. Die Datenstrome werden also nur Satz fiir Satz fortlaufend (sequentiell)

verarbeitet und lediglich bei ihrem Eintreffen um neue Informationen erweitert.

Mit Spark Streaming steht eine Komponente zur Verarbeitung innerhalb des Apache Spark
Frameworks bereit, die eine Micro-Batch Architektur implementiert: Streams werden als
eine kontinuierliche Folge von Batchberechnungen aufgefasst, wie es in Abbildung 6.5
dargestellt wird. Neue Batches werden immer in regelméafliigen Abstdnden erstellt und alle
Daten, die innerhalb eines solchen Intervalls ankommen, werden dem Batch hinzugefiigt.
Bei den Batches handelt es sich um die bereits im Abschnitt 5.2 eingefithrten RDDs.

Spark Streaming unterstiitzt verschiedenste Eingangsquellen (z.B. Flume, Kafka, HDFS),
fiir die sog. receiver gestartet werden, die die Daten von diesen Eingangsquellen sammeln
und in RDDs speichern. Im Sinne der Fehlertoleranz wird das RDD im Anschluss auf einen
weiteren Knoten repliziert und die Daten werden im Speicher des Knotens zwischengespei-
chert, wie es auch bei gewohnlichen RDDs der Fall ist. In periodischen Abstdnden wird
schliefllich ein Spark Job gestartet, um diese RDDs zu verarbeiten und mit den vorange-

gangenen RDDs zu konkatenieren.

42 KAPITEL 6. SPEED LAYER

batches
records (RDDs)

-~ 11

ﬁﬁ batches
- processed
with tasks
Abbildung 6.5: Verarbeitung von Datenstromen zZu Batches (Quelle:

https://databricks.com/blog/2015/07/30/diving-into-spark-streamings-execution-model.html)

Auf technischer Ebene baut Spark Streaming auf dem Datentyp DStream auf, der eine
Folge von RDDs {iiber einen bestimmten Zeitraum kapselt, wie es in der Abbildung 6.6
veranschaulicht wird. Ahnlich wie bei den RDDs kénnen DStreams transformiert werden,
woraus neue DStream Instanzen entstehen. Oder es werden die bereitstehenden Ausgabe-

operationen genutzt, um die Daten zu persistieren.

Abbildung 6.6: DStream als Datentyp zur Kapselungen von RDDs (Quelle:
http://www.slideshare.net/frodriguezolivera/apache-spark-streaming)

Um die eingegangenen Daten zu verarbeiten, stehen zwei Arten von Transformationen
zur Verfiigung. Mit den zustandslosen Transformationen werden die iiblichen Transforma-
tionen, wie Mapping oder Filtern, bezeichnet. Diese Transformationen werden auf jedem
RDD ausgefiihrt, das von dem betreffenden DStream gekapselt wird. Die zustandlose
Transformierung ist unahéngig von dem vorangegangen Batch, wodurch sie sich von der
zustandbehafteten Transformierung unterscheidet. Die zustandsbehaftete Transformati-
on hingegen baut auf den Daten des vorangegangenen Batches auf, um die Ergebnisse
des aktuellen Batches zu berechnen. Es wird zwischen zwei Typen von Transformationen

unterschieden: Windowed Transformations und UpdateStateByKey Transformation.

Bei den Windowed Transformations wird ein Zeitintervall betrachtet, das tiber die zeitliche
Lénge eines Batches hinausgeht. Es wird also ein Fenster festgelegt, das eine gewisse
Anzahl an Batches umfasst, sodass die entsprechende Berechnung auf den Batches in
diesem Fenster ausgefiihrt wird. Dieses Fenster wiederum wird immer um ein bestimmtes

Verschiebungsintervall verschoben und die Berechnung erneut ausgefiihrt.

6.4. STREAMS-FRAMEWORK 43

Die UpdateStateByKey Transformation dient dazu, einen Zustand iiber mehrere Batches
hinweg zu erhalten. Ist ein DStream bestehend aus (Schliissel,Event) Tupeln gegeben, so
kann mit dieser Transformation ein DStream bestehend aus (Schliissel,Zustand) Tupeln
erzeugt werden. Dabei wird, dhnlich wie bei der ReduceByKey Operation, eine Funktion
iibergeben, die definiert, wie der Zustand fiir jeden Schliissel aktualisiert wird, wenn ein

neues Event eintritt.

Ein Beispiel hierfiir wiren Seitenbesuche als Events und eine Session- oder Nutzer-ID als
Schliissel, {iber den die Seitenbesuche aggregiert werden. Die resultierende Liste bestiinde
aus den jeweiligen Zustédnden fiir jeden Nutzer, die wiederum die Anzahl der besuchten

Seiten reflektieren wiirden.

Spark Streaming stellt demnach ein méchtiges Tool zur Verarbeitung von Datenstrémen
dar und integriert sich nahtlos in eine bestehende Apache Spark Applikation. Durch
die Unterstiitzung verschiedenster Datenquellen, insbesondere dem verteilten Dateisystem
HDEFS, bietet es sich insbesondere zur Verarbeitung von eingehenden Events in Echtzeit

an.

6.4 streams-Framework

von Michael May

Das streams-Framework [21, 20] ist eine in Java entwickelte Bibliothek, welche eingesetzt
werden kann, um Datenstréome zu verarbeiten. Die Verarbeitung der Daten wird iiber Pro-
zesse geregelt, welche unter anderem fiir das Klassifizieren von den Daten eingesetzt werden
koénnen. Dafiir wurde das existierende Softwarepaket Massive Online Analysis (MOA) [17]
integriert und ein Plugin fiir RapidMiner [77] entwickelt.

Prozesse werden in streams iiber eine XML Datei spezifiziert. Es kénnen auch eigene Pro-
zesse in Java geschrieben und fiir die Verarbeitung verwendet werden. Die grundlegenden

Elemente von streams sind <container>, <stream>, <process> und <service>.

Der Container ist der Vater aller weiteren Elemente und definiert den eigentlichen stream

Prozess. Nur Elemente innerhalb eines Container werden ausgefiihrt.

Der Stream wird genutzt, um die Quellen der Daten zu definieren. Ein Stream liest einen

Strom von Daten, welcher dann beispielsweise an Prozesse weitergegeben werden kann.

Das Process Element besteht aus einer Reihe von Prozessoren, welche den Strom von
Daten abarbeiten. Dafiir wird der Strom in Datenpakte aufgeteilt, welche nacheinander
durch Prozessoren geschoben werden. Prozessoren kénnen die einzelnen Datenpakte lesen,

verdndern oder komplett neue erstellen und an die néchsten Prozessoren weitergeben.

Service Elemente erlauben das Abrufen von Funktionen in jeder Phase der Verarbeitung.
Ein Service kann so z.B. dafiir eingesetzt werden, um innerhalb eines Prozessors Daten-

bankanfragen zu stellen.

44 KAPITEL 6. SPEED LAYER

container

processor1 §
processor i
processor N

service

EX

processor N

Abbildung 6.7: Schematischer Aufbau eines Container [20]

-)

key value
id 3438993474
timestamp 123939%20
text Streams Version 1.0 available!
user 2jwallorg

Abbildung 6.8: Funktionsweise eines Stream [20]

= =

processor N

Abbildung 6.9: Arbeitsschritte eines Process [20]

Kapitel 7

Serving Layer

von Alexander Schieweck

Die letzte Schicht der im Kapitel 4 beschriebenen Lambda-Architektur ist der Serving
Layer. Wahrend der Batch Layer und der Speed Layer sich vor allem um die Verarbeitung
der Daten gekiimmert haben, iibernimmt diese Schicht die Kommunikation mit den Nut-
zern. Die zugrundeliegenden Daten werden dazu iiblicherweise indexiert und gewonnene
Ergebnisse aus den anderen Schichten werden (zwischen-)gespeichert, damit auch grofiere
Datenmengen und komplexere Anfragen den Anwendern schnell zur Verfiigung gestellt

werden konnen.

Hierzu werden in diesem Kapitel verschiedene Datenbank-Systeme présentiert, wobei ein
Schwerpunkt auf sogenannte ,Not only SQL (NoSQL)“-Systeme gelegt wird. Weiterhin
wird das Prinzip eines Service-Interfaces mithilfe einer RESTful Application Programming
Interface (API) erortert.

7.1 Datenbanken

von Christian Pfeiffer

Fiir eine spatere Anwendung, die die vom Teleskop erzeugten Daten verarbeiten soll, ist
nicht pragmatisch, jedes Mal die Daten aus den einzelnen Dateien auszulesen. Daher bietet

es sich an, die hdufig benétigten Daten in einer Datenbank zu erfassen.

Die verwendete Datenbank muss mit groflen Datenmengen zurechtkommen und idealer-

weise erlauben, den Inhalt der Datenbank auf mehrere Knoten im Netzwerk zu verteilen.

Im Folgenden werden daher einige aktuelle Datenbanksysteme vorgestellt und auf ihre

Eignung hin tuberprift.

7.1.1 MongoDB

von Christian Pfeiffer

Die MongoDB [70] z&hlt zu den dokumentenbasierten Datenbanksystemen. Im Gegensatz

zu einer relationalen Datenbank, die Tabellen mit fester Struktur und festen Datentypen

45

46 KAPITEL 7. SERVING LAYER

enthélt, verwaltet MongoDB Collections von potenziell unterschiedlich strukturierten Do-
kumenten. Dies bedeutet auch, dass Anfragen an die MongoDB nicht per SQL sondern
mit einer eigenen Anfragesprache [71] durchgefiithrt werden. Somit z&hlt MongoDB zu den
NoSQL-Datenbanksystemen.

MongoDB unterstiitzt mehrere Konzepte, die die Verfiigharkeit der Daten und die Skalier-
barkeit der Datenbank begiinstigen. Beim Sharding wird eine Collection in mehrere Teile
(Shards) partitioniert, die dann auf jeweils einem Rechner abgelegt werden. Auf diesem

Weg konnen auch groie Datenmengen gespeichert und durchsucht werden.

Dieses Konzept ist in der Datenbank-Community bereits unter dem Namen horizontale
Skalierung bekannt. Horizontale Skalierung steht der bisher oft anzutreffenden vertikalen
Skalierung entgegen, bei der ein einzelner Rechner im Falle von zu geringer Leistung durch

einen einzelnen, leistungsfahigeren Rechner ersetzt wird.

Die Replication erlaubt es, dieselben Daten auf mehreren Rechnern abzulegen. Sollte ein
Rechner nicht verfiighar sein, kénnen Lese- und Schreibanfragen dann auf den verbliebe-
nen Kopien durchgefithrt werden. Dadurch bleibt die Verfiighbarkeit der Datenbank auch
bei technischen Ausfillen von Teilen des Netzwerks oder einigen Rechnern gewéhrleistet.
Zusétzlich konnen Leseanfragen auf die verfiigbaren Kopien verteilt werden, sodass die
Latenzen und der Gesamtlesedurchsatz verbessert werden. Allerdings miissen Schreiban-
fragen auf alle Kopien dupliziert werden, sodass ein trade-off zwischen dem Lesedurchsatz
und dem Schreibdurchsatz stattfindet.

Da Sharding und Replication beliebig kombinierbar sind, muss je nach den Anforderungen

des Projekts eine zugeschnittene Feinjustierung vorgenommen werden.

7.1.2 Elasticsearch

von Lea Schénberger

Bei Elasticsearch handelt es sich um eine von Shay Bannon im Jahr 2010 entwickelte,
verteilte, hochskalierbare Such-Engine, die auf der Suchmaschine Apache Lucene basiert.
Die Speicherung der Daten erfolgt bei Elasticsearch ebenso wie bei MongoDB dokumen-
tenbasiert, daher bezeichnet man die kleinste durchsuchbare Einheit als document. Jedes
document ist von einem ganz bestimmten type und bildet gemeinsam mit vielen weiteren
documents - oder im Zweifelsfall auch allein - einen Indez. Vergleicht man diesen Aufbau
mit jenem herkémmlicher Datenbanken, so ldsst sich ein Index mit einer Datenbank, ein
type mit einer Tabelle und ein document mit einer einzelnen Tabellenzeile gleichsetzen.
Jeder Inder ldsst sich in mehrere sogenannte shards unterteilen, die, falls Elasticsearch
auf mehreren Rechenknoten betrieben wird, auf ebendiese aufgeteilt werden kénnen, um
die Geschwindigkeit sowie bei redundanter Verteilung ebenfalls die Ausfallsicherheit zu

erhohen. Jeder shard wird intern mittels eines Lucene-Index realisiert.

7.1. DATENBANKEN 47

Elasticsearch kann entweder auf einem oder auf mehreren Rechenknoten, sogenannten
Nodes, betrieben werden. Verwendet man lediglich einen einzigen Node, so bildet dieser
den gesamten Cluster. Werden hingegen mehrere Nodes verwendet, so muss ein Master-
Node spezifiziert werden, der die tibrigen Nodes koordiniert und dariiberhinaus als Erster
alle Queries entgegennimmt, um sie daraufhin an einen oder mehrere entsprechende andere

Nodes weiterzupropagieren.

Das Formulieren von Suchabfragen an Elasticsearch erfolgt mit Hilfe einer RESTful API,
an welche die jeweilige Query als JSON-Dokument gesendet wird. Die daraufthin erhalte-
ne Response befindet sich ebenfalls im JSON-Format. Fir diese RESTful API existiert
zudem eine Unterstiitzung durch Spring Data, die es ermdglicht, das Formulieren nativer
JSONs zu umgehen und das Stellen von Queries sowie die Verarbeitung der Responses zu

vereinfachen. Dies sei an spéterer Stelle genauer erldutert.

Es lasst sich also feststellen, dass Elasticsearch geradezu ideal fiir die Zwecke dieser Pro-
jektgruppe ist, da es verteilt einsetzbar und zudem hochskalierbar ist, was im Bereich
des Big Data unabdingbar ist, und da dariiberhinaus eine komfortable Java-Anbindung
gegeben ist, sodass Elasticsearch ohne groffen Aufwand in das Projekt integriert werden

kann.

7.1.3 Cassandra

von Lea Schénberger

Ein weiteres NoSQL-Datenbanksystem, das sich fiir die Zwecke dieser Projektgruppe ein-
setzen liefle, ist Apache Cassandra. Dabei handelt es sich um eine hochskalierbare, sehr
ausfallsichere, verteilte Datenbank, die zur Persistierung von Daten eine Kombination aus
Key-Value-Store und spaltenorientiertem Ansatz nutzt. Ersteres bedeutet in grundlegen-
der Form, dass zur Speicherung von Daten nicht wie bei herkémmlichen Datenbanken
Tabellen verwendet werden, sondern jedem zu speichernden Wert (value) ein eindeutiger
Schliissel (key) zugeordnet wird, mittels dessen auf den entsprechenden Datensatz zuge-
griffen werden kann. Jeder derartige Datensatz wird in einer sogenannten Spalte (column)
abgelegt und mit einem Zeitstempel versehen. Mehrere columns lassen sich - analog zu
einer Tabelle bezogen auf relationale Datenbanken - zu einer column family zusammenfas-
sen. Eine column kann dariiber hinaus als super column markiert werden, sodass sie nicht
nur mit Hilfe von Schliisselwerten, sondern auch anhand der Zeitstempel sortiert werden

kann.

Auf technischer Ebene besteht ein Cassandra-Cluster aus einer Menge von Nodes, die
mittels des Gossip Protocol kommunizieren. Dies funktioniert analog zu der dem Proto-
kollnamen entsprechenden Kommunikation im realen Leben folgendermaflen: Jeder Re-
chenknoten tauscht mit einem oder mehreren ihm bekannten Knoten sein Wissen aus,
welche wiederum auf ebendiese Weise verfahren, bis schliellich alle Nodes denselben Wis-

sensstand besitzen.

48 KAPITEL 7. SERVING LAYER

Hi mates!
This is what |
know...

Hi mates!

Hi mates!
This is what |
know...

@

Abbildung 7.1: Veranschaulichung des Gossip Protocol. Quelle:
http://blogs.atlassian.com/2013/09/do-you-know-cassandra/

Die Menge der persistierten Datensétze eines sogenannten Keyspace, also einer Menge
von Schliisselwerten, ist als Ring zu betrachten, fiir die Verwaltung dessen Teilmengen
jeweils ein Node zustdndig ist. Die Zuweisung der Zustdndigkeiten erfolgt dabei durch
einen Partitioner. Jeder Cassandra-Cluster besitzt einen oder mehrere Keyspaces, fiir die
jeweils ein sogenannter Replication Factor festgelegt wird. Dieser bestimmt die Anzahl
verschiedener Rechenknoten, auf denen die Speicherung eines Datensatzes erfolgen muss,

und dient zur Erhéhung der Redundanz und somit der Ausfallsicherheit der Datenbank.

Zur Replikation von Datensétzen existieren zwei verschiedene Ansétze, deren einfachere
Variante in der Simple Replication Strategy besteht. Geméafl dieses Verfahrens wird ein
Datensatz in jeweils einem Knoten gespeichert und daraufhin im Uhrzeigersinn durch eine
dem Replication Factor entsprechende Anzahl von Knoten repliziert. Bei der Network To-
pology Strategy handelt es sich um eine Replikationsstrategie fir groffere Cluster. In diesem
Fall gilt der Replication Factor pro Datacenter, sodass jeder Datensatz durch eine dem
Replication Factor entsprechende Zahl von Nodes eines anderen Racks, also Teilbereiches,

des Datacenters repliziert werden muss.

Waihrend zur Durchfithrung einer Read/Write-Operation in der Simple Replication Strat-
egy ein beliebiger Knoten angesprochen und die Daten unmittelbar weiterpropagiert wer-
den konnen, fungiert der in der Variante der Network Topology Strategy angesprochene
Knoten als Coordinator, der mit den sogenannten Local Coordinators der jeweiligen Data-
centers kommuniziert, welche wiederum dort fiir ein lokales Weiterpropagieren der Daten

sorgen.

Es ist moglich, das Konsistenzlevel einer Read/Write-Operation festzulegen, indem eine
Anzahl von Knoten bestimmt wird, die dem Coordinator geantwortet haben miissen, bevor
dieser eine Antwort an den die Operation ausfithrenden Client weitergeben kann. An dieser
Stelle befindet sich ein Schwachpunkt von Cassandra, da mit wachsender Konsistenz die
Geschwindigkeit, mit der eine Operation durchgefiihrt werden kann, sinkt, eine steigende

Geschwindigkeit jedoch Einbuflen in der Konsistenz zur Folge hat.

7.1. DATENBANKEN 49

7.1.4 PostgreSQL

von Karl Stelzner

Eine weitere Moglichkeit ist der Einsatz einer klassischen relationalen Datenbank. Eine

solche bietet verschiedene Vorteile:

Michtige Anfragesprache Das relationale Modell und die damit verbundene Anfrage-
sprache SQL erlaubt die Formulierung von einer Vielzahl von deklarativen Anfra-
gen. Auch komplexe Datenanalysen kénnen von einem relationalen Datenbanksystem
durchgefiihrt werden, was beispielsweise mit Cassandra auf Grund der restriktiveren

Anfragesprache im Allgemeinen nicht moglich ist.

Jahrzehntelange Optimierung Relationale Datenbanken sind seit Jahrzehnten der Stan-
dard im Datenbankbereich, und dementsprechend hoch entwickelt. Somit kénnen sie
architekturbedingte Nachteile unter Umsténden durch geschickte Optimierung wett-

machen.

Transaktionssicherer Betrieb Im Gegensatz zu anderen Systemen bieten relationale
Datenbanken eine Vielzahl von Garantien, was die Ausfall- und Transaktionssicher-

heit angeht.

Relationale Datenbanken stehen oft unter dem Ruf, dass diese Vorteile dadurch erkauft
werden, dass die Verarbeitung von sehr groflen Datenmengen nicht effizient mdoglich ist.
In der Tat haben relationale Datenbanken zwei Eigenschaften, die sie fiir den Big Data
Kontext als nicht sehr geeignet erscheinen lassen. Zum einen verfiigen sie iiber ein starres
Datenbankschema, das genau definiert, welche Typen die Eintréage in der Datenbank haben
miissen. Es ist also schwierig, mit nachtriglichen Anderungen oder schwach strukturierten
Daten umzugehen. Zum anderen sind die meisten groflen relationalen Datenbanksysteme
auf den Betrieb auf einem einzelnen Rechner ausgelegt. Dies limitiert die Skalierbarkeit

des Systems.

Data Warehousing

Es ist allerdings moglich, diese Nachteile ein Stiick weit auszugleichen, wenn die Daten-
bank so konzipiert ist, dass die Ausfithrung der vorgesehenen Analysen effizient mdoglich
ist. Dafiir bestimmte Prinzipien werden seit den 90er Jahren unter den Begriffen Data

Warehousing und Dimensional Modelling zusammengefasst [56].

Die Essenz dieser Verfahren besteht darin, dass der Fokus, anders als bei herkémmlichen,
auf Normalisierung basierenden Datenbankdesigns, nicht auf der Vermeidung von Redun-
danz, sondern auf der Minimierung des Rechenaufwands fiir Analyseanfragen liegt. Vor
allem Join Operation zwischen groflen Tabellen werden zu vermeiden versucht. Um dies
zu erreichen, wird bei dimensionaler Modellierung zwischen zwei Tabellentypen unter-

schieden: Faktentabellen, deren Eintrage zu den Ereignissen korrespondieren, die primér

50 KAPITEL 7. SERVING LAYER

analysiert werden sollen, und deutlich kleineren Dimensionstabellen, die die md&glichen
Auspriagungen dieser Ereignisse darstellen. Diese werden iiblicherweise sternférmig ange-
ordnet, sodass Joins jeweils immer nur zwischen einer Fakten- und einer Dimensionstabelle

durchgefiihrt werden miissen. Ein typisches Schema ist in Abbildung 7.2 dargestellt.

Date Dimension Daily Sales Facts Product Dimension
Date Key (FK) Date Key (PK) Product Key (PK)
Date Attributes... Product Key (FK) — | Product Attributes...
Store Key (FK)
Facts...

Store Dimension

Store Key (PK)
Store Attributes...

Abbildung 7.2: Ein typisches Datenbankschema nach dimensionaler Modellierung, hier am Bei-
spiel einer Vertriebsdatenbank [56].

Eine Konsequenz dieser Modellierung ist, dass Daten mitunter redundant gespeichert wer-
den. Beispielsweise kénnte in einer Dimensionstabelle der selbe String in verschiedenen
Tupeln wiederholt vorkommen. Dies wird in Kauf genommen, um die Analyseperformanz

zu verbessern.

PostgreSQL

PostgreSQL [75] wird gemeinhin als das am hochsten entwickelte relationale Open-Source
Datenbanksystem betrachtet [31]. Es unterstiitzt den gesamten SQL-Standard sowie das
ACID-Paradigma zur Transaktionssicherheit. Es ist somit unter den relationalen Daten-
banken die offensichtliche Wahl fiir den Einsatz in der PG.

PostgreSQL ist zudem attraktiv, weil es JSON als Datentyp unterstiitzt. JSON-Dokumente
koénnen nicht nur in relationalen Tabellen abgelegt werden, sondern auch {iber spezielle
Operatoren modifiziert und ausgewertet werden. Dies kann eingesetzt werden, um auch

weniger strukturierte Daten mit PostgreSQL zu verarbeiten.

Ein interessanter Ableger von PostgreSQL ist Postgres-XL. Hierbei handelt es sich um
ein Projekt mit dem Ziel, PostgreSQL fiir den Betrieb als verteilten Datenbankcluster
zu erweitern. Es filhrt dazu Mechanismen fiir Sharding ein, also fir das Aufspalten von
Tabellen auf mehrere Clusterknoten. Gleichzeitig bewahrt es die Vorteile von PostgreSQL,
wie zum Beispiel die ACID-Garantien. Fiir Félle, in denen die Datenmengen zu grof fiir

eine einzelne Maschine sind, stellt Postgres-XL eine mogliche Losung dar.

7.2. RESTFUL APIS o1

7.2 RESTful APIs

von Alexander Schieweck

In diesem Abschnitt soll nun gezeigt werden, wie die Indexdaten und zwischengespeicher-
ten Ergebnisse aus den Datenbanken Nutzern zur Verfiigung gestellt werden kénnen. Dazu
wird die Idee eines Service-Interfaces verdeutlicht und danach werden die Grundlagen von
RESTful APIs vorgestellt.

7.2.1 Grundlegende Idee

von Alezander Schicweck

Mit der weiteren Verbreitung von unterschiedlichen Endgerédten werden die Anforderungen
an Software-Projekte immer komplexer. Reichte es frither aus, nur eine klassische Desktop-
Anwendung bereitzustellen, wird heute auch eine Webseite, eine App, usw. gewiinscht.
Somit muss die Geschéftslogik an drei oder mehr unterschiedlichen Stellen implementiert
werden. Dies ist offensichtlich alles andere als einfach zu warten und ein Fehler in einer
Anwendung kann die Logik einer Anderen beeintrichtigen, da alle auf den selben Daten
arbeiten. Schon seit etlichen Jahren hat es sich in der Praxis als niitzlich erwiesen, wenn
die Geschéftslogik und die Anzeige der Daten getrennt voneinander implementiert werden.
Wenn man nun diese Trennung nicht nur intern in einer Anwendung beachtet, sondern die
Geschaftslogik zentral auf einem Server bereitstellt und die unterschiedlichen Anwendun-
gen als Clients darauf zugreifen ldsst, umgeht man das Problem der verteilten Logik und

kann dennoch fiir jeden Anwendungsfall die passende Darstellung erzielen.

Dartiber hinaus hat es sich in der Praxis bewéahrt, wenn solche Schnittstellen keine klassi-
schen Sitzungen pro Nutzer haben, sondern Stateless sind. Hierdurch kénnen komplizierte
Mechanismen zur Sitzungsverwaltung und die sonst ndtigen groflen Zwischenspeicher fiir
die Sessions entfallen. Somit wird die Implementierung der APIs deutlich einfacher und die
Nutzer dieser Schnittstellen kénnen von einem eindeutig definierten Verhalten pro Aufruf,

ohne Blick auf die Sitzungshistorie, vertrauen.

Dabei beschriebt Representational State Transfer (REST) keine festen Regeln oder gar
ein starres Protokoll, sondern ist mehr als eine Liste von Vorschlédgen zu verstehen, wie
man eine solche APT designen sollte. Halt man sich moglichst genau an diese Vorschlége,
ist es auch fiir Auflenstehende einfacher, sich in eine fiir sie neue API einzuarbeiten. Auch
wenn die Vorschldge die meisten Anwendungsfille abdecken, so kann es immer Situationen
geben, in denen es moglicherweise besser ist, den Standard nicht zu beachten. REST ist
somit duferst flexibel [34, 78].

7.2.2 HTTP

von Alexander Schieweck

Grundlegend fiir RESTful APIs ist hierbei die Kommunikation tiber das Hyper Text Trans-
fer Protocol (HTTP). Dies ist heutzutage moglich, denn fast alle Geréte verfiigen tiber

52 KAPITEL 7. SERVING LAYER

einen Internetanschluss, der sich als Basis fiir den Austausch zwischen dem Server und
den Client eignet. Da das HTTP umfangreich ist und sich als ein Standard-Protokoll fiir
den Austausch von Daten iiber das Internet etabliert hat, kénnen die nétigen Operatio-
nen dariiber abgewickelt werden, ohne das ein neues Protokoll designt und implementiert
werden muss. HT'TP ist dabei ein klassisches Client-Server-Protokoll, bei dem die Kom-
munikation immer vom Client aus gestartet wird. HI'TP regelt dabei die Syntax und
Semantik der gesendeten Daten und baut auf TCP/IP auf.

HTTP Anfragen

Eine Anfrage an einen HTTP Server enthélt nicht nur die IP-Adresse des Servers sondern
auch einen Server-Pfad, der die gewiinschte Ressource néher beschreibt. Diese Kombina-

tion wird auch als Uniform Resource Locator (URL) bezeichnet.

Neben der URL wird ein Header-Teil mitgeschickt, der zusétzliche Meta- und Zusatz-
Informationen enthélt. Dazu kénnen Daten zur Authentifizierung, die gewiinschten For-
matierung der Antwort oder auch die Grofie des Datenfeldes zéhlen. Eine der wichtigsten
Header-Informationen ist hierbei die gewiinschte Methode, die der Server unter der URL

ausfihren soll:

POST Driickt aus, dass die im Body des Request gesendeten Daten erstellt werden sollen.
GET Wird verwendet, wenn Daten vom Server gelesen werden sollen.

PUT Leitet ein Update von schon bestehenden Daten ein.

DELETE Bittet den Server bestimmte Daten zu léschen.

OPTIONS Fragt den Server, welche (anderen) Methoden fiir eine bestimmte URL zuléssig

sind.

Durch diese Methoden werden die grundlegenden Create, Read, Update and Delete (CRUD)

Operationen unterstiitzt.

Abschlielend kann die Anfrage auch Daten enthalten, welche aus reinem Text bestehen,
jedoch beliebig Formatiert sein kénnen. Dies ist besonders bei POST- und PUT- Aufrufen
wichtig, um dem Server die zu erstellenden bzw. zu aktualisierenden Daten mitzuteilen.
Bei GET- und DELETE-Aufrufen bleiben diese Daten zumeist leer.

HTTP Antworten

Die Antwort des Servers enthélt auch einen Header-Teil, in dem der Server bestimmte
Meta- und Zusatz-Informationen zuriickschickt. Ublicherweise zdhlen dazu das Datum

und die aktuelle Uhrzeit, die Gréfle der Antwort im Datenfeld und welches Format dieses

7.2. RESTFUL APIS 93

Code | Text Beschreibung

200 OK Driickt aus, dass die Anfrage erfolgreich war.

201 CREATED Wird oft zuriick gegeben wenn ein Datensatz
erfolgreich erstellt wurde.

400 BAD REQUEST Die Anfrage konnte nicht vom Server gelesen

werden, da sie falsch Formatiert war oder
anders als fehlerhaft erkannt wurde.

404 NOT FOUND Die Anfrage konnte nicht erfolgreich
bearbeitet werden, da die Resource nicht
gefunden wurde.

500 INTERNAL SERVER ERROR | Der Server hat intern einen
(schwerwiegenden) Fehler und kann daher
die Anfrage nicht richtig beantworten.

Tabelle 7.1: Ubersicht von geliufigen HTTP Status Codes

hat. Hierbei spielt der Status Code eine besondere Rolle, da dieser eine Antwort zu Erfolg,
Problemen und Misserfolg der Anfrage liefert (vgl. Tabelle 7.1).

Ahnlich zur Anfrage kann natiirlich auch die Antwort Daten enthalten, welche bei allen
Methoden entstehen koénnen. Auch diese Daten sind reiner Text, konnen jedoch unter-

schiedlich formatiert sein [84].

7.2.3 JSON

von Alexander Schieweck

Auch wenn es keine vorgeschriebene Art bzw. Formatierung gibt, wie Daten iiber eine
RESTful API ausgetauscht werden sollen, so wird in der Praxis hiufig die Extensible
Markup Language (XML) oder die JavaScript Object Notation (JSON) verwendet.

Da beide Optionen relativ d&hnlich in ihrer Ausdrucksstirke sind, liegt die Wahl, ob man
eine der beiden oder gar eine dritte Moglichkeit verwendet, beim Designer der Schnitt-
stelle. In fritheren APIs wurde stark auf XML gesetzt, sodass viele Anwendungen dieses
auch heute noch bevorzugen. In letzter Zeit ist jedoch ein Trend hin zu JSON zu be-
obachten. Dies liegt darin begriindet, dass viele Clients Single-Site-Webapplications sind,
die in JavaScript implementiert wurden und JSON als Teil der JavaScript-Welt so direkt
interpretiert werden kann. Somit bleibt ein aufwéndiger und langsamer Parser erspart.
JSON ist dariiber hinaus auch noch recht einfach von Menschen zu lesen, sodass auch eine

Interaktion mit der API ohne speziellen Client moglich ist.

Im Kern besteht ein JSON-Dokument aus Key-Value-Paaren, die in Objekten zusammen-
gefasst sind. Der Schiissel dieses Paares ist dabei immer ein Text, wdhrend der Wert
unterschiedlichste Typen annehmen kann. Dazu zdhlen Text, Nummern (ganzzahlig oder
mit FlieBkomma), boolsche Werte (true und false), ein Array oder wiederum ein Objekt

[85]. Ein Beispiel fiir ein solches JSON-Dokument wird in Listing 7.1 gezeigt.

o4

KAPITEL 7. SERVING LAYER

"hello": "world",
"true": false,
"array": [

1, 2, 3
1,
"kord": {

"x": 1.23,

"y": 4.56
}

Listing 7.1: Ein Beispiel fiir ein JSON Dokument

Kapitel 8

Maschinelles Lernen

von Carolin Wiethoff

Das letzte Kapitel im Teil Big Data Analytics bildet das maschinelle Lernen. Wie in Ka-
pitel 3 erldutert, besteht der Zweck des Umgangs mit den riesigen Datenmengen in der
Analyse. Das bedeutet, dass automatisch erlernt werden soll, wie sich die gegebenen Infor-
mationen verallgemeinern lassen. Dieser Schritt ist wichtig, damit das Erlernte auf neue,
bisher noch nicht betrachtete Daten angewendet werden kann und nicht nur fir die be-
reits angeschauten Daten gilt. Die gefundenen Regelméfligkeiten sollen dementsprechend
ermoglichen, dass automatisiert Erkenntnisse {iber neue Daten erlangt werden koénnen.
Zuerst soll es in diesem Kapitel um die Grundbegriffe des maschinellen Lernens und die
formalen Konzepte zur Datenanalyse gehen. Die dafiir ben6tigten Grundlagen wurden aus
[72], [94] und [37] zusammengetragen. Anschlielend folgen einige vertiefende Abschnit-
te, welche Verfahren diskutieren, die speziell auf Big Data zugeschnitten sind. SchlieB-
lich bildet die Analyse von riesigen Datenmengen neue Herausforderungen an maschinelle

Lernverfahren, wie in Kapitel 3 gezeigt wurde.

(Un-)Uberwachtes Lernen Man unterscheidet zuerst zwischen iiberwachtem und un-
iiberwachten Lernen. Beim iiberwachten Lernen liegen, zusétzlich zu den gesammelten Da-
ten, auch Informationen dariiber vor, in welche Klassen oder Kategorien man die Daten
einteilen kann. Genau diese Zuteilung soll zukiinftig fiir neu beobachtete Daten vorherge-
sagt werden. Meistens entsteht die Annotation der vorliegenden Daten mit einer passenden
Klassen durch einen Experten. Beim uniiberwachten Lernen hingegen liegen diese Klas-
seninformationen zu den gesammelten Daten nicht vor. Mit speziellen Lernverfahren wird
versucht, die vorliegenden Daten in passende Klassen einzuteilen. Die Einteilung basiert
nur auf den in den Daten gefundenen Regelméfligkeiten und geschieht automatisch. In
den nun folgenden einfithrenden Worten soll es genau um das iiberwachte Lernen gehen.

Abschnitt 8.2 beschéftigt sich schliefflich mit den Formalien beim uniiberwachten Lernen.

Die Lernaufgabe FEtwas formaler besteht die Lernaufgabe aus dem Trainieren eines

Modells, welches das gelernte Wissen repréasentieren soll, und aus der Anwendung des

95

56 KAPITEL 8. MASCHINELLES LERNEN
Modells auf neue Daten. Fiir das Training werden annotierte Trainingsdaten

T ={(@1,y1), (T2,92), ., (TN, yn)} C X XY

benotigt, wobei X fiir das gesamte Universum moglicher Daten steht und Y fiir die Men-
ge an verfligbaren Klassen. Bei einer Klassifikation sind dies endlich viele vorgegebene
Klassen, bei einer Regression sind dies die reellen Zahlen. Jedes Datum besteht aus ei-
nem Vektor @;, welcher die Attributwerte des individuellen Datums reprasentiert, und aus
einer Annotation y;. Diese steht fiir die Klasse, zu der das betrachtete Datum gehort.
Die Annotation ist essentiell fiir das iiberwachte Lernen und den Erfolg der maschinellen

Lernverfahren.

In unserer Projektgruppe féllt mit der Gamma-Hadron-Separation eine typische Klassifi-
kationsaufgabe an. Dabei bilden die durch die Monte-Carlo-Simulation erlangten Daten
den Trainingsdatensatz. Die Klassen sind in unserem Fall Y = {gamma, hadron} und sind
Annotationen solcher Aufnahmen, welche mit Hilfe der Simulation entweder als Gamma-
oder als Hadronstrahlung eingeordnet wurden. Mit diesem Trainingsdatensatz werden ma-
schinelle Lernverfahren trainiert und mit den resultierenden Modellen wollen wir versuchen
fiir Rohdaten vorherzusagen, ob in einer Aufnahme eine fiir die Physiker interessante Gam-
mastrahlung vorliegt oder nicht. Aulerdem liegt mit der anschlieSenden Energieschatzung
fiir die Partikel einer gefundenen Gammastrahlung eine Regressionsaufgabe vor, welche

ebenfalls mit maschinellen Lernverfahren gelost werden kann.

Qualitdtsmafle Es gibt etliche Lernverfahren, mit denen sich Modelle trainieren lassen.
Um das beste Modell fiir die Lernaufgabe zu finden, sollte die Generalisierungsleistung des
Modells im Auge behalten werden. Darunter versteht man die Anwendbarkeit auf neue
Daten, fiir welche die Klasse unbekannt ist. Die sogenannte Fehlklassifikationsrate kann
dazu beitragen, die Generalisierungsleistung eines Modells zu quantifizieren. Haufig werden
Modelle nicht auf dem gesamten verfiigbaren Trainingsdatensatz trainiert, sondern es wird
eine Teilmenge der Trainingsdaten zuriickgehalten. Diese bilden die Testdaten, welche von
dem trainierten Modell klassifiziert werden. Im Nachhinein kénnen vorhergesagte und
wahre Klasse verglichen werden, um die Fehler dieses Modells auf unbekannten Daten
einschétzen zu konnen. Um die Fehlklassifikationsrate zuverlissig zu bestimmen, miissten
unendlich viele Testdaten klassifiziert werden, sodass man in der Praxis auf empirische

Schitzungen wie folgende zuriickgreift:

€(h) = Exnpll(h(z) # f(2))] [94]

wobei h ein trainiertes Modell, E,p[g(z)] der Erwartungswert der Funktion g(z), wenn
x nach D verteilt ist und I(g(x)) die Indikatorfunktion (1, wenn g(z) = true und 0 sonst).

Gewahlt wird der Lerner h, welcher den Fehler e(h) minimiert.

8.1. ENSEMBLE LEARNING o7

Dieser kurzen Einfithrung in das maschinelle Lernen folgen nun Vertiefungen. Es werden
Lernverfahren und Techniken beleuchtet, welche sich in der Praxis bewiesen haben und
daher fiir unsere Projektgruppe interessant sein kénnen. Dabei wird vor allem Wert dar-
auf gelegt, dass diese Techniken fiir Big Data anwendbar sind. Grofle Datenmengen sollen
nicht nur schnell bearbeitet werden, es sollen auch die Vorteile eines Rechenclusters ausge-
nutzt werden kénnen. Es soll besonders darauf eingegangen werden, wie sich Lernverfahren
parallelisieren lassen, sodass verteilt gelernt und auch klassifiziert werden kann. Einen wei-
teren Aspekt bilden die inkrementellen Verfahren, bei welchen die Trainingsdaten nicht
zwingend komplett zu Beginn des Trainings vorliegen miissen. Da wir uns mit riesigen
Datenmengen beschéftigen, konnte es ein Vorteil sein, diese Daten nach und nach vom
Lerner unserer Wahl bearbeiten zu lassen. Ein weiteres Problem unserer Trainingsdaten
ist aulerdem, dass iiblicherweise sehr viele Hadronstrahlungen, aber nur wenige Gamma-
strahlungen vorliegen. Deswegen soll das Lernen mit nicht balancierten Klassen ebenfalls
vertieft werden. Den Abschluss dieses Kapitels bilden Techniken, mit denen die Daten vor
dem Lernen organisiert werden kénnen. Dazu gehort zum einen die Extraktion von Merk-
malen, welche besonders gut fiir die Vorhersage der Klassen geeignet ist, zum anderen
die passende Einteilung in Trainings- und Testdatensétze. SchliefSlich sollen die trainierten
Modelle zum Schluss evaluiert werden, sodass eine Aussage iiber deren Qualitdt moglich

ist.

8.1 Ensemble Learning

von Carolin Wiethoff

Die Idee des Ensemble Learnings ist, auf viele Modelle zuriickzugreifen, anstatt sich nur
auf die Vorhersagen eines Modells zu verlassen. Nach Dietterich [30] sind die drei meist-

genannten Griinde fiir das Nutzen von Ensembles die folgenden:

Statistik Ahnlich unserem realen Leben soll mehreren Expertenmeinungen anstatt nur
einer vertraut werden. Es kann schwierig sein, sich fiir genau ein Modell zu entschei-
den, welches moglicherweise nur zufillig auf dem gerade genutzten Testdatensatz
die kleinste Fehlerrate hat. Aulerdem kénnen durchaus mehrere Modelle mit einer
dhnlich akzeptablen Fehlerrate fiir den Anwender interessant sein. Im Ensemble soll

nicht strikt ein Modell ausgesucht werden, sondern eine Kombination entstehen.

Berechnung Zum Training einiger Modelle wird eine Optimierung durchgefiihrt, welche
in lokale Optima enden kann. Trainiert man Modelle von verschiedenen Startpunkten

aus und kombiniert diese, kann es zu einer Verbesserung kommen.

Reprisentierbarkeit Manchmal kann die gesuchte wahre Funktion nicht von den Mo-
dellen im Hypothesenraum reprasentiert werden. Auch hier kann eine Kombination

von Modellen dazu beitragen, den Raum darstellbarer Funktionen zu vergrofiern.

o8 KAPITEL 8. MASCHINELLES LERNEN

In dieser Einfiithrung wird davon ausgegangen, dass den Modellen dasselbe Lernverfahren
zugrunde liegt. Meist ist dieses Verfahren von recht einfacher Struktur, sodass mehrere
schwache Lerner zu einem starken Lerner durch eine gemeinsame Entscheidungsregel zur
Klassifikation neuer Daten kombiniert werden. Die einfachen Lerner sollen dabei moglichst
verschieden sein, damit eine Kombination erst sinnvoll wird. Um verschiedenartige Lerner
eines gleichen Basisalgorithmus zu erzielen, gibt es verschiedene Ansétze. Im Folgenden
stehen Bagging (insbesondere Random Forests nach [62]) und Boosting (insbesondere Ada-
Boost nach [36]) im Fokus. Neben diesen beiden Quellen wurden auch Grundlagen aus [94],
[30] und [76] iiber das Ensemble Learning entnommen und kénnen fiir weitere Informa-
tionen nachgeschlagen werden. Die Grundideen der beiden Ensemble Learning Methoden

sollen erldutert werden, sowie deren mdoglicher Einsatz in unserer Projektgruppe.

8.1.1 Bagging

Beim Bagging (Bootstrap Aggregation) werden fiir jeden Lerner Bootstrap-Stichproben
genutzt. Das bedeutet, dass fiir jeden Lerner neue Trainingsdaten generiert werden, indem
n Beispiele aus den originalen n Beobachtungen mit Zurticklegen gezogen werden. Manche
Beispiele konnen somit mehrfach in einem Trainingsdatensatz vorkommen, andere gar
nicht.

Ein prominenter Vertreter der Bagging-Methoden ist der Random Forest oder auch
Zufallswald. Der Basislerner zu einem solchen Zufallswald ist ein Entscheidungsbaum,

wie er beispielhaft in Abbildung 8.1 zu sehen ist.

2
& 2

[class 2) [class 3]

Abbildung 8.1: Beispielhafter Entscheidungsbaum

Die Blétter in einem solchen Baum entsprechen den Klassen, die inneren Knoten entspre-
chen Splits anhand von Merkmalen. Die Splits werden jeweils so gewéhlt, dass moglichst
viele Beobachtungen getrennt werden konnen. Es werden so lange neue Splits gewéhlt, bis

die aktuell betrachtete Beobachtungsmenge nur noch aus einer Klasse stammt.

8.1. ENSEMBLE LEARNING 99

Data : Trainingsdatensatz T = {(Z1, 1), (Z2,¥2), ..., (TN, yn)},

Anzahl T' der Baume im Wald,

Anzahl M der Merkmale, die fiir Splits verwendet werden sollen
Result : T trainierte Entscheidungsbédume, welche den Zufallswald bilden
Ziehe T Bootstrap-Stichproben mit Zuriicklegen;
fort=1,...,T do

Trainiere einen Baum mit der Bootstrap-Stichprobe ¢ mit folgender
Modifikation: Ziehe zufillig M Merkmale aus den Originalmerkmalen der
Beobachtungen. Fiir die Splits werden nur diese gezogenen Merkmale
betrachtet.

Entstehender Baum wird nicht gestutzt.
end
Algorithmus 1 : Konstruktion von Zufallswildern [62]

Jeder Baum im Wald wird mit einer Bootstrap-Stichprobe trainiert. Auflerdem werden
fiir Splits nicht alle Attribute des Trainingsdatensatzes genutzt, sondern nur eine zuféllige
Teilmenge. So entstehen moglichst viele verschiedene Entscheidungsbédume, welche zusam-
men den Zufallswald bilden. Die Vorgehensweise fiir die Konstruktion eines Zufallswaldes

ist in Algorithmus 1 zu sehen.

Neue Daten werden von jedem Baum klassifiziert, anschlieSend erfolgt ein Mehrheitsent-
scheid. Je mehr Baume im Wald sind, desto besser fiir die Klassifikation. Im Gegensatz zu
einem einzelnen Baum besteht das Problem des Overfittings nicht, da fiir jeden Baum eine
zufillige Teilmenge der Merkmale ausgewéhlt wird. Fithrt man dies nicht durch und nimmt
beispielsweise an, dass es zwei Merkmale mit einem sehr starken Beitrag zur Klassentren-
nung gibt, dann wiirden alle Biume im Wald genau diese Merkmale fiir ihre Splits wéhlen.
Daraus folgt eine starke Korrelation zwischen den Badumen, was genau zum Overfitting
fithrt. Wahlt man nun aber wie oben beschrieben fiir jeden Baum eine zufallige Teilmenge
an Merkmalen aus, dann taucht keine starke Korrelation auf und der Mehrheitsentscheid
ist stabil. Auflerdem sind Zufallswélder praktisch bei vielen Merkmalen, welche nur einen
kleinen Beitrag zur Klassentrennung liefern und durch diese zuféllige Merkmalsauswahl
genau die gleiche Chance, haben fiir einen Split gewéhlt zu werden wie andere Merkmale,

welche einen moglicherweise grofleren Beitrag liefern.

Fiir unsere Projektgruppe konnte auflerdem von Vorteil sein, dass sowohl Konstruktion
als auch Klassifikation mit Zufallswaldern gut parallelisierbar ist. Die Konstruktion erfolgt
unabhéngig von den anderen trainierten Badumen und die Ergebnisse vieler Bdume auf

verschiedenen Rechnern kénnen am Schluss gemeinsam ausgewertet werden.

Ein Nachteil der Zufallswélder ist allerdings, dass die Verstdndlichkeit verloren geht, die
ein entscheidender Vorteil bei der Wahl von einzelnen Entscheidungsbdumen sein kann.
Durch die grafische Darstellung erschlieit sich die Klassifikation auch Laien gut, was bei

einem Zufallswald von 100 oder mehr Baumen nicht mehr der Fall ist.

60 KAPITEL 8. MASCHINELLES LERNEN

Data : Trainingsdatensatz 7 = {(Z1,v1), (Z2,y2), ..., (Zn,yn)} mit y; € {—1,+1},
Anzahl T der Lerner und deren Basisalgorithmus

Result : H(Z) = sign (Z%F:l atht(:f)>

Di(i) = 1/N als initiale Gewichte;

fort=1,...,7 do

Trainiere Lerner h; mit Datensatz 7 und den aktuellen Gewichten in Dy;

Berechne den Fehler ¢, = Pryup, [hi(%;) # yi] 1

1 1-
Setze das Gewicht des Basislerners ¢t auf oy = 3 In Et);
€t

Dy(i) - exp(—auyihi(Z;))
Zy

Updaten der Gewichte: Dyyq(7) =

dabei wird Z; zur Normalisierung genutzt ;

end
Algorithmus 2 : AdaBoost [36]

8.1.2 Boosting

Beim Boosting werden Gewichte fiir jedes Trainingsbeispiel eingefiihrt. Initial werden
Gleichgewichte gewdhlt, im Laufe des Trainings sollen die ,schwierigen* Beispiele, wel-
che immer wieder falsch klassifiziert werden, héher gewichtet werden. Entscheidet man
sich im Vorfeld fiir ein Ensemble aus 7' einfachen Lernern, so gibt es T" Trainingsrunden,
in denen jeweils ein Lerner mit den gewichteten Beispielen trainiert wird. Nach jeder dieser
Runden erfolgt eine Evaluation und Anpassung der Gewichte. Das entstehende Ensemble

wird zugunsten der schwierigen Beobachtungen im Lerndatensatz adaptiert.

Populér ist der Ansatz AdaBoost von Freund und Schapire. Im Folgenden soll die ur-
springliche Version von 1997 fiir ein Zwei-Klassen-Problem vorgestellt werden, fiir welche

die Vorgehensweise in Algorithmus 2 abgebildet ist.

Einfache Lerner werden nach ihrer Qualitit gewichtet. Ist der Fehler €; < 0.5, so ist das Ge-
wicht ay > 0. Je kleiner der Fehler, desto grofler das Gewicht des Lerners. Beobachtungen
werden nach ihrer Schwierigkeit gewichtet. Der neue Wert hingt nach jeder Trainingsrun-
de von dem Term exp(—ayy;hi(Z;)) ab. Wenn richtig klassifiziert wurde, ist y;h(%;) = 1,
dann wird der Term exp(—a;) klein und so auch das neue Gewicht. Wenn allerdings falsch
klassifiziert wurde, ist y;hi(%;) = —1, dann wird der Term exp(«;) groB und das neue
Gewicht ebenso. Nach dem Ablauf aller Trainingsrunden erfolgt die Klassifikation neuer

Daten durch einen gewichteten Mehrheitsentscheid.

Parallelisieren lassen sich Boosting-Ansétze nur schwer, da in jeder Trainingsrunde eine
Abhéngigkeit zur vorhergehenden Runde besteht. Aulerdem wéchst das Risiko des Over-
fitting mit der Anzahl T' der Lerner. Die Lerner sollten in der Lage sein, Verteilungen der
Trainingsdaten zu beachten, ansonsten muss der Trainingsdatensatz in jeder Iteration der

Verteilung angepasst werden.

Pr = Statistische Wahrscheinlichkeit

8.2. CLUSTERING UND SUBGRUPPENENTDECKUNG 61

8.1.3 Fazit

Es gab mehrere Versuche, Bagging und Boosting miteinander zu vergleichen. Dietterich
[30] fand heraus, dass AdaBoost viel besser als Bagging-Ensembles abschnitt, sofern die
Trainingsdaten wenig bis kein Rauschen aufwiesen. Sobald jedoch 20% kiinstliches Rau-
schen hinzugefiigt wurde, schnitt AdaBoost plotzlich sehr viel schlechter ab. Quinlan [76]
experimentierte mit unterschiedlichen Lernerzahlen T'. Ist T klein, scheint AdaBoost die
bessere Wahl zu sein. Je gréfler jedoch T wird, desto schlechter wird das Ergebnis der

Boosting-Methode und desto brauchbarer werden Zufallswélder.

Die Ergebnisse lassen sich damit erkldren, dass Zufallswélder robust gegen Overfitting sind,
wohingegen AdaBoost eher anfillig dafiir ist. Beim Boosting wird zu viel Fokus auf die
schwierigen Beobachtungen gelegt, denn deren Gewicht wird nach jeder Iteration erhéht.
Nach und nach verschwinden die einfachen Beispiele, wodurch Lerner in hohen Trainings-
runden mit einem stark angepassten Trainingsdatensatz arbeiten. Die Konsequenz ist das

Overfitting fiir grofe 7.

Insgesamt lasst sich sagen, dass Ensembles das Gesamtergebnis erheblich verbessern kénn-
en. Die populérsten Verfahren Bagging und Boosting wurden mit ihren Vor- und Nachtei-
len vorgestellt. Fiir unsere Projektgruppe riicken die Zufallswélder in den Fokus. Sie sind
nicht nur gut parallelisierbar und robust gegeniiber Overfitting, sondern werden aktuell
von den Physikern fiir ihre Klassifikationen verwendet. Daher ist es essentiell fiir unsere
Anwendung, sich ebenfalls mit Zufallswildern auseinanderzusetzen und diese Moglichkeit

der Klassifikation im Endprodukt anzubieten.

8.2 Clustering und Subgruppenentdeckung

von Mohamed Asmi

In diesem Kapitel wird hauptsichlich das uniiberwachte Lernen erldutert. Dabei werden
die zwei Lernverfahrensmethoden Clustering und die Subgruppen-Entdeckung erldutert.
Wahrend beim iiberwachten Lernen Hypothesen gesucht werden, die moglichst gute Vor-
hersagen iiber bestimmte schon vorgegebene Attribute geben, wird bei uniiberwachten

Lernmethoden nach unbekannten Mustern gesucht.

8.2.1 Clustering

Clustering [53] ist eine uniiberwachte Lernmethode. Sie ist die am meisten verwendete
Methode fiir das Entdecken von Wissen aus einer groflen Datenmenge. Bei ihr geht es im
Allgemeinen darum, dass Objekte, die dhnliche Eigenschaften besitzen, in einer Gruppe
zusammengefasst werden. Dabei werden neue Klassen identifiziert. Die einzelnen Gruppen

werden Cluster genannt.

62 KAPITEL 8. MASCHINELLES LERNEN

Es gibt verschiedene Arten von Clustering-Verfahren, die sich in ihren algorithmischen

Vorgehensweisen unterscheiden. Dazu zahlen:

e Partitionierende Verfahren, z.B. der k-means Algorithmus.
e Hierarchische Verfahren, die entweder bottom-up oder top-down vorgehen.
e Dichtebasierte Verfahren, z.B. der DBSCAN Algorithmus.

e Kombinierte Verfahren, bei welchen Methoden aus den oben vorgestellten Verfahren

kombiniert werden.

Partitionierende Verfahren

Bei den partitionierenden Verfahren muss die Anzahl der gesuchten Klassen bzw. Cluster
am Anfang festgelegt werden. Die Verfahren, die dieser Methodik folgen, starten meistens
mit einem zufilligen Partitionieren der Objekte. Im Laufe der Ausfiihrung wird diese
Partitionierung schrittweise optimiert. Der k-means Algorithmus [90] gehort beispielsweise

zu diesen Verfahren und soll im Folgenden erldutert werden.

Sei ¥ = {dy,ds,...,d,} ein Vektor, der ein Objekt im Merkmalsraum représentiert. Die
Distanz zwischen zwei Vektoren # und i ist durch |7 —] = /> (w; — y;)? definiert.
Der Mittelpunkt ji einer Menge ¢; von Vektoren ist durch i = \cilll > iec; T definiert. Sei k
die Anzahl der gesuchten Cluster. Am Anfang des Algorithmus wird k entweder zufillig
oder nach der Durchfiihrung eines Optimierungsverfahren festgelegt. Aulerdem werden k
Punkte als Cluster-Zentren ausgewéhlt und die restlichen Objekte dem Cluster mit dem
nachsten Zentrum zugewiesen. Bei jedem Durchlauf des Algorithmus werden die Mittel-
punkte [neu berechnet und die Objekte wieder dem Cluster mit dem néchsten Zentrum

zugewiesen. Es wird immer weiter iteriert, bis alle Cluster stabil sind.

Der k-means Algorithmus ist fiir numerische Daten gedacht. Er ist effizient und leicht an-
zuwenden. Dagegen hat der Algorithmus gewisse Nachteile, da die Cluster stark von k und
den am Anfang ausgewéhlten Cluster-Zentren abhidngen. Dariiberhinaus zeigt der Algo-
rithmus eine Schwéche, wenn die Daten kugelférmig verteilt sind oder grofle Abweichungen

in Dichte und Grofie aufweisen.

Hierarchische Verfahren

Die beliebte Alternative zu den partitionierenden Verfahren sind die hierarchischen Ver-
fahren [28]. Bei ihnen werden die identifizierten Cluster hierarchisch angeordnet. Es wird
ein Baum erzeugt, in dem jeder Elternknoten Zweige mit seinen Teil-Clustern besitzt. Die
Wurzel représentiert den Cluster mit allen Objekten (oberste Ebene). Bei der Identifi-
zierung von Clustern unterscheidet man zwei Vorgehensweisen, ndmlich bottom-up oder

top-down.

8.2. CLUSTERING UND SUBGRUPPENENTDECKUNG 63

Top-down Clustering auch devisives Clustering genannt. Am Anfang gehéren alle
Objekte zu einem Cluster. Dieser wird schrittweise aufgeteilt, bis jeder Cluster nur noch
ein Objekt enthélt.

Bottom-up Clustering auch agglomerativ genannt. Bei diesem Verfahren enthélt jeder
Cluster am Anfang nur ein Objekt. Danach werden die Cluster im Laufe des Verfahrens

vereinigt.

Dichtebasierte Verfahren

Cluster bestehen grundsétzlich aus Objekten, die dicht aneinander sind. Die dichteba-
sierten Verfahren nutzen diese Eigenschaft aus, um Cluster aufzufinden. Der DBSCAN-

Algorithmus [18] ist ein Vertreter und soll nun genauer betrachtet werden.

Um den DBSCAN-Algorithmus zu veranschaulichen, werden zuerst einige Definitionen
eingefiihrt. Eine e-Umgebung definiert die Anzahl der Punkte in einem bestimmten Radius
€. MinPts ist die Mindestanzahl der Punkte in einer - Umgebung. Ein Kernpunkt ist
ein Punkt, der mindestens MinPts in seiner Umgebung hat. Ein Randpunkt ist ein Punkt
in der e-Umgebung, der kein Kernpunkt ist. Ein Rauschpunkt ist ein Punkt aulerhalb
der e-Umgebung. Zwei Punkte p und ¢ sind Dichte-erreichbar, wenn p ein Kernpunkt
und ¢ in der e-Umgebung von p ist. Es gibt direkte und indirekte Dichte-Erreichbarkeit.
Wenn p von p; direkt Dichte-erreichbar ist und p; ist direkt Dichte-erreichbar von ¢, dann
ist p indirekt Dichte-erreichbar von g. Aber die andere Richtung gilt nicht.

Die Parameter ¢ und MinPts werden vor der Ausfithrung des Algorithmus festgelegt. Sie
kénnen entweder zufillig gewéhlt oder durch die Anwendung heuristischer Verfahren be-
stimmt werden. Der DBSCAN-Algorithmus iteriert iiber alle Objekte in der Datenmenge
und wenn ein Objekt noch nicht klassifiziert und das Objekt ein Kernobjekt ist, dann
werden alle von diesem Punkt aus Dichte-erreichbaren Objekte (Punkte) in einem Cluster
zusammengefasst. Wenn dies nicht der Fall ist, dann wird das Objekt als Rauschpunkt

markiert. Es wird solange iteriert, bis alle Punkte betrachtet wurden.

Kombinierte Verfahren

Man kann die vorgestellten Clustering Verfahren kombinieren. Das kann niitzlich sein, um
Parameter eines anderen Verfahrens zu bestimmen. Zum Beispiel fiihrt man eine hierarchi-
sche Clusteranalyse durch, um die Anzahl k der Cluster zu bestimmen, die man spéter als
Eingabeparameter an k-means tibergibt. Das hat den Vorteil, dass eine optimale Anzahl
von Clustern ermittelt wird. Leider ist dieses Verfahren sehr speicher- und zeitaufwendig,

da zwei Verfahren immer gleichzeitig angewendet werden miissen.

64 KAPITEL 8. MASCHINELLES LERNEN

8.2.2 Subgruppenentdeckung

Die bekannteste Methode zur Erkennung von Mustern mit vorgegebenen Eigenschaften ist
die Subgruppenentdeckung. Zum ersten Mal wurde sie von Kloesgen und Wrobel [57, 58|
eingefiihrt. Die Subgruppenentdeckung [64] liegt zwischen den zwei Bereichen des maschi-
nellen Lernens, da bei der Subgruppenentdeckung die Vorhersage genutzt werden soll, um
eine Beschreibung der Daten zu liefern. Andere Data-Mining Methoden zur Erkennung

von Mustern sind in [23] zu finden.

Definition der Subgruppenentdeckung

Sei D ein Datensatz, der aus Datenitems d; besteht. Ein Datenitem d; = (,t) ist ein
Paar aus Attributen {a1, ag, ..., an, }, die mit @ bezeichnet werden, und einem Zielattribut
t. In dieser Arbeit werden die Begriffe Datenitem und Transaktion die gleiche Bedeutung
haben. Das Zielattribut definiert die eingegebene Eigenschaft, fiir die die Daten erklért
werden sollen. Das Zielattribut muss binér sein, jedoch hat jedes Attribut a,, einen Wert
aus einer Doméne dom(.A). Die Werte der Attribute kénnen binér, nominal oder numerisch
sein. Beispiele fiir Doménen sind dom(A,,) = {0,1} , |dom(A)] € Np oder dom(A,,) = R.
d; wird das i-te Datenitem genannt. Auflerdem bezeichnen @' und t den i-ten Vektor
der Attribute und das i-te Zielattribut. Die Grofle der Datenmenge wird mit N = |D|

bezeichnet.

Nun benétigt man die Definition einer Regel, um eine Subgruppe definieren zu koénnen.
Eine Regel ist eine Funktion p : P(A) x dom(A) — {0,1}, wobei P(A) die Potenzmenge
der Attribute darstellt. Mit P bezeichnet man die Menge aller Regeln. Man sagt, eine
Regel p iiberdeckt einen Datenitem di genau dann, wenn p(az) = 1 ist. Die Attribute

werden miteinander konkateniert, um @ zu konstruieren. Eine Regel hat die Form:
Bedingung — Wert der Regel.

Die Bedingung einer Regel ist die Konkatenation von Paaren (Attribut,Wert). Der Wert
der Regel wird das Zielattribut darstellen.

Definition (Subgruppe) Eine Subgruppe G, ist die Menge aller Datenitems, die von
der Regel p iiberdeckt werden.

Gy = {d; € Dlp(a") = 1}

Das Komplement einer Subgruppe G ist G und enthélt alle d_; ¢ G, d.h alle Datenitems,
die von p nicht iiberdeckt werden. Mit n und 7 wird die Anzahl der Elemente in G und G

gekennzeichnet, wobei n = N — n.

8.2. CLUSTERING UND SUBGRUPPENENTDECKUNG 65

Die Subgruppenentdeckung arbeitet in zwei Phasen, namlich dem Auffinden der Kandi-
daten der Regeln sowie dem Bewerten der Regeln. Es werden zuerst Regeln mit einer
kleineren Komplexitit (allgemeine Regeln) aufgefunden, von denen im Laufe des Sub-
gruppenentdeckungsprozesses immer komplexere (konkretere) Regeln generiert werden.
Die Komplexitéit der Regeln ist durch die Anzahl der betrachteten Attribute bedingt.

Zuerst werden Kandidaten mit der Komplexitit 1 aufgefunden. Danach werden Kandida-
ten mit hoher Komplexitidt bottom-up generiert. Mit Hilfe einer Qualitdtsfunktion werden

die Regeln bewertet.

Qualitidtsfunktion

Die Qualitatsfunktion [49, 61] spielt eine wichtige Rolle bei der Subgruppenentdeckung.

Sie bestimmt die Giite der Regeln. Damit kann man die besten Regeln ausgeben.

Definition (Qualitidtsfunktion) Eine Qualitdtsfunktion ist eine Funktion ¢: P — R,
die jeder Regel einen Wert (die Giite) zuweist.

Man kann die Auswahl der besten Regeln nach verschiedenen Kriterien treffen. Entweder
werden die Regeln nach ihrer Giite sortiert und dann die besten k& Regeln ausgegeben
oder die Ausgabe wird durch einen minimalen Wert der Qualitdtsfunktion beschrankt.
Auflerdem kann man eine minimale Menge von Regeln mit maximaler Qualitit suchen.
Diese Verfahren fiir die Auswahl der besten Regeln sollen hier nicht weiter betrachtet

werden.

Es gibt viele Qualitdtsfunktionen und es ist schwer zu sagen welche allgemein am be-
sten sind. Die Wahl der Qualitdtsfunktionen wird von den Datenanalytikern getroffen.
Entscheiden ist die aktuelle Aufgabe. Im folgenden Abschnitt wird eine Auswahl von Qua-

litdtsfunktionen présentiert.

e Coverage: liefert den Prozentanteil der Elemente der Datenmenge, die von einer Re-
gel {iberdeckt sind.
_ TP4FP
CO’U(R) =N
mit TP bezeichnet man, wie oft war eine Regel falsch war und richtig vorhergesagt
wurde. Dagegen gibt FP eine Aussage iiber, wie oft war eine Regel wahr war aber

falsch vorhergesagt wurde.

e Precision: liefert den Anteil der tatsdchlichen richtig vorhergesagten Regeln, wenn
die Regel wahr war.
Pr(R) = FPTifTP
e Recall: liefert den Anteil aller wahren Regeln, die richtig vorhergesagt wurden, von

allen wahr vorhergesagten Regeln.

66 KAPITEL 8. MASCHINELLES LERNEN

Re(R) = TijrI;N

wobei FN die Anzahl der falschen Regeln ist, die falsch vorhergesagt wurden.

e Accuracy: liefert den Anteil der richtigen vorhergesagten Regeln von allen Regeln.
_ TP4TN
ACC(R) =N
e Weighted Relative Accuracy (WRAcc) [86]: Diese Giitefunktion gibt eine Aussa-
ge iiber die Ausgewogenheit zwischen der Uberdeckung und der Genauigkeit einer

Regel. WRAcc ist die am meisten verwendete Qualitdtsfunktion bei der Subgrup-

penentdeckung.

_ TP+FN _ TP+TN
WRAcc(R) = Cov(R) (=)
wobei TN die Anzahl der falschen Regeln ist, die richtig vorhergesagt wurden. Dieses
Maf} wird verwendet, da die einzelne Betrachtung von Accuracy zu falschen Schliissen
fithren konnte.

e F1-Score [79]: das harmonische Mittel von Precision und Recall.

2xPr(R)xRe(R
Fsr(R) = W

Suchstrategien

Die Anzahl der aufgefundenen Kandidaten bei der Subgruppenentdeckung kann exponen-
tiell wachsen. Das kann beim Generieren der Regeln mit hoher Komplexitéit einen sehr
hohen Speicher- und Rechenbedarf bedeuten. Deshalb kénnen algorithmische Techniken
eingesetzt werden, die den Suchraum verkleinern. Hierbei kann eine heuristische Suche
durchgefiihrt werden, z.B. Beam-search [93]. Dariiberhinaus kann man zwei Parameter
einstellen um den Suchraum zu beschrinken oder die maximale Komplexitéit einer Regel
festlegen. Weiterhin kann man nur bestimmte Kandidaten betrachten, beispielsweise die

von einer Qualitdtsfunktion am besten bewerteten Regeln.

Fazit

In diesem Kapitel haben wir uns mit maschinellen Lernmethoden, die zu dem uniiberwach-
ten Lernen gehoren, beschéftigt. Vorgestellt wurden klassische Clustering und Subgrup-
penentdeckung Methoden. Die Methoden erzielen gute Ergebnisse auf kleinen Datenmen-
gen. Fir Big Data existieren verschiedene Anséitze, die diese Algorithmen erweitern, da-
mit sie parallel bzw. verteilt arbeiten. In den folgenden Abschnitten werden diese Ansétze

erlautert.

8.3 Verteiltes Lernen
von Christian Pfeiffer

Eine Grundannahme des maschinellen Lernens ist die vollstdndige Verfiigbarkeit des Da-

tensatzes an einem Ort. Bei grofien wissenschaftlichen Datensétzen, wie sie vom FACT-

8.3. VERTEILTES LERNEN 67

Teleskop aufgezeichnet werden, ist es aber aufgrund der schieren Gréfle nicht praktikabel,
den Datensatz auf einem einzelnen Rechner zu halten. Dies stellt eine grofie Herausforde-
rung fiir maschinelle Lernverfahren dar, weil Algorithmen, die Daten iiber das Netzwerk

statt von der eigenen Platte laden miissen, potenziell deutlich langsamer sind.

Fiir das Problem des maschinellen Lernens auf verteilten Datensétzen gibt es bereits einige
Verfahren, die in bestimmten Situationen weiterhelfen konnen. Die Suche nach verallge-

meinerbaren Losungsansétzen ist immer noch aktives Forschungsthema.

Im Folgenden werden zwei Verfahren vorgestellt, die das Problem von sehr unterschiedli-
chen Perspektiven angehen. Dies sind der Peer-to-Peer-K-Means von Bandyopadhyay et
al. [14] sowie die Modellkompression fiir Entscheidungsbdume von Kargupta und Park
[55].

Der Peer-to-Peer-K-Means. Der erste Losungsansatz liegt in dem Entwurf neuer ma-
schineller Lernverfahren, die direkt beriicksichtigen, dass die Daten sich an unterschied-
lichen Orten befinden. Der P2P-K-Means erweitert das bekannte Prinzip des K-Means
(sieche Unterabschnitt 8.2.1) insofern, dass jeder Rechenknoten im Netzwerk den K-Means-
Algorithmus auf seine lokalen Daten anwendet und nach jeder Iteration seine errechneten
Zentren an die Nachbarn im Netzwerk versendet. Diese versuchen dann, einen Mittelwert
iiber die lokalen und die empfangenen Zentren zu bilden, und nutzen diese Werte als lokale
Zentren fiir die néchste Iteration. Dies wird so lange fortgesetzt, bis sich die Zentren bis

zu einem festgelegten Abstand angendhert haben.

Allerdings zeigt sich, dass der Entwurf eines verteilten Algorithmus komplexer ist als
der eines lokalen Algorithmus. Die Spezifikation muss folgende Aspekte auf jeden Fall

umfassen:

e Rechenknoten: Gibt es verschiedene Rollen fiir die Rechenknoten? Ist ein gesonderter
Koordinator-Knoten notwendig? Gibt es ein Minimum oder Maximum fiir die Zahl

der beteiligten Rechenknoten?

e Nachrichtentypen: Welche Nachrichtentypen sind in welchen Phasen des Algorithmus
erlaubt? Wie muss ein Knoten auf eine Nachricht in Abhéngigkeit seines Zustands

reagieren?

e Anforderungen an das Nachrichtentransportsystem: Ist es zum Gelingen des Algo-

rithmus notwendig, dass Nachrichten zuverldssig ankommen?

e Konvergenz: Kann garantiert werden, dass alle Knoten ein gemeinsames Endergebnis

in endlicher Zeit erreichen?

e Terminierungserkennung: Wann ist der Algorithmus beendet? Wie erkennt ein Re-

chenknoten die Terminierung?

e Netzwerkkosten: Wie viele Nachrichten werden im Worst-Case verschickt und wie

grof} ist das Gesamtvolumen der versendeten Daten?

68 KAPITEL 8. MASCHINELLES LERNEN

Innerhalb dieser Projektgruppe werden keine eigenen, verteilten maschinellen Lernver-
fahren entworfen, sondern die Algorithmen aus der Spark ML Bibliothek erprobt. Eine
Einfithrung in Spark ML findet sich in Unterabschnitt 5.2.3.

Die Kompression von Entscheidungsbiumen. Eine andere Strategie besteht darin,
keine verteilten Lernverfahren auf die verteilten Daten anzuwenden, sondern an jedem Re-
chenknoten ein traditionelles, lokales Lernverfahren einzusetzen. Dadurch wird an jedem
Rechenknoten ein eigenes Modell trainiert. Diese Menge von Modellen kann dann wie beim
Ensemble Learning in Abschnitt 8.1 genutzt werden. Der dort vorgestellte Mehrheitsent-
scheid kann so implementiert werden, dass jeder Rechenknoten die unklassifizierten Daten
empfiangt, sein lokales Modell darauf anwendet und die resultierende Klassifizierung an
einen Koordinator schickt. Somit ist es fiir die reine Klassifizierung nicht zwingend not-

wendig, die lokalen Modelle im Netzwerk zu versenden.

Allerdings gibt es einige praktische Griinde, die das Versenden von Modellen irgendwann
notwendig machen. Dazu zédhlt beispielsweise das Klassifizieren von Datenstromen mit
hohem Datendurchsatz. Hier wiirde das Versenden der unklassifizierten Daten an die Re-
chenknoten und das Warten auf die Antwort zu hohen Latenzen fiihren, die einem hohen

Datendurchsatz entgegenstehen.

Das Kompressionsverfahren von Kargupta und Park wendet die aus der Elektrotechnik
bekannte Fouriertransformation auf einen gegebenen Entscheidungsbaum an. Dabei wird
die Klassifizierungsfunktion durch eine gewichtete Summe von Basisfunktionen dargestellt.
Der Nutzen dieses Verfahrens besteht zum Einen darin, dass die Basisfunktionen und
die Gewichte sich mit weniger Aufwand im Netzwerk versenden lassen als eine ganze
Baumtopologie. Zum Anderen lasst sich aus dem Ergebnis der Fouriertransformation leicht
ablesen, welche Basisfunktionen einen grofien Einfluss auf die Klassifizierung haben und
welche nur selten relevant sind. Dadurch kann der Nutzer entscheiden, ob Basisfunktionen
mit wenig Einfluss iiberhaupt {iber das Netzwerk iibertragen werden sollen. Der am Zielort
rekonstruierte Entscheidungsbaum ist dann zwar keine exakte Kopie des Originals, enthalt

dafiir aber nur die wichtigen Ebenen und ist in der Anwendung somit schneller.

8.4 Statisches und Inkrementelles Lernen

von Alexander Schieweck

Grundlegend fiir das statische oder auch batch genannte Lernen ist, dass die Trainings-
Daten vorher bekannt sind. Oftmals wird dies auch weiter eingeschréankt, indem ange-
nommen wird, dass die Daten komplett in den Hauptspeicher passen. Da diese Annahme

offensichtlich vieles vereinfacht, beruhen viele klassische Verfahren darauf.

Beim inkrementellen oder online Lernen kommen die Test-Daten nacheinander in der

Reihenfolge ihres Entstehens, z.B. ihres Auftretens, Messens, usw., beim Lerner an und

8.5. CONCEPT DRIFT UND CONCEPT SHIFT 69

werden dort sofort verarbeitet. Dabei wird so wenig wie moglich zwischengespeichert, was

auch als Data stream mining bezeichnet wird.

Das auffélligste Problem beim statischen Lernen ist die Annahme, dass die Daten voll-
standig in den Hauptspeicher geladen werden koénnen. Dieser ist relativ begrenzt und
besonders im Big Data-Umfeld {ibersteigen die Daten den zur Verfiigung stehenden Platz
um ein Vielfaches, z.B. umfangreiche Log-Files von grofien Webseiten, Sensordaten, In-
ternet of Things usw. Um Beschrankungen durch zu kleinen Hauptspeicher zu umgehen,
gibt es auch Algorithmen bzw. Anpassung von bestehenden Algorithmen, die Sequenzen
von der Festplatte lesen und auf diesen dann batch-artig Lernen. Diese Klasse von Al-
gorithmen sind zwar eine Mischung aus batch- und online-Lernen, werden aber meistens
zum statischen Lernen gezéhlt. Wiinschenswert wére daher ein Online-Algorithmus, dessen

Ergebnis dquivalent zu einem Ergebnisses eines Batch-Lerners wire.

8.5 Concept Drift und Concept Shift

von Alexander Schieweck

Beim kontinuierlichen Beobachten von Daten stellt man héufig fest, dass die Daten sich sy-
stematisch iiber einen bestimmten Zeitraum verdndern bzw. verschieben. Dies kann durch
Veranderungen in den Rohdaten an sich oder auch durch die Messgeréte verursacht werden,
wenn sich diese zum Beispiel im Betrieb erwédrmen und so bei gleichen Rohdaten dennoch
unterschiedliche Werte liefern. Durch dieses Verschieben kann die Qualitédt der Klassifikati-
on der angelernten Lernverfahren abnehmen, da die bisher verwendeten (Trainings-)Daten

nun nicht mehr zu den neuen Messdaten passen.

Daher wird sich in diesem Abschnitt etwas genauer mit Concept Drift bzw. Concept Shift
beschéftigt, das heifit die Auswirkungen dieser etwas néher erértert, die unterschiedlichen

Arten naher beschreiben und angesprochen, wie man das Verschieben erkennen kann [32].

Realer Drift vs. Virtueller Drift

Waéhrend sich die Daten verschieben, kann man im Wesentlichen zwei wichtige Falle un-
terscheiden: Das Verschieben beeintrichtigt unsere Klassifikation oder es ist fiir die Klas-
sifikation nicht weiter von Bedeutung. Betrachtet man alle Features iiber einer Menge
von Rohdaten, so sind nicht immer alle Features entscheidend fiir die Klassifikation durch
maschinelles Lernen. Oft sind die Algorithmen auch darauf ausgerichtet, eine moglichst
einfache Unterscheidung, das heifit mit moglichst wenigen Features, der Klassen zu finden.
Findet nun ein Drift in einem oder mehreren Features statt, die zur Klassifikation nicht
notwendigerweise gebraucht werden, ist der Drift nicht weiter relevant. In diesem Fall wird
auch vom wvirtuellen Drift gesprochen (vgl. Abbildung 8.2 links und rechts). Verschieben

sich die Daten jedoch so, dass ein zur Klassifikation nétiges Feature betroffen ist und die

70 KAPITEL 8. MASCHINELLES LERNEN

Originai data al concept drift Virtual drift

..1’60 ® e e® .. B0

L e ..T _ - ® OO0
&' [@X®] —'O OOO .:OO
,'OO O OO ..’I

¢ o o) e

Abbildung 8.2: Unterscheidung Realer Drift vs. Virtueller Drift [39]

SO (O /AT e VIR

time sudden/abrupt incremental gradual reoccuring concepts outlier (not concept drift)

data mean

Abbildung 8.3: Schematische Darstellung vom unterschiedlichen Auftreten von Concept Drift
39]

Daten die bisherigen Unterteilungskriterien nicht mehr erfiillen, spricht man von realem
Drift (vgl. Abbildung 8.2 links und Mitte). In diesem Fall muss der Lerner angepasst oder

gar neu antrainiert werden.

Auftreten von Shifts

Diese Verdnderung der Daten kann zeitlich betrachtet recht unterschiedlich passieren (vgl.
Abbildung 8.3):

Plotzlich (engl. sudden / abrupt) Ab einem bestimmten Zeitpunkt fallen die Daten ein-

fach anders aus oder zeigen andere Charakteristika.

Schleichend (engl. incremental) Dies bezeichnet den Vorgang, wenn sich die Daten lang-

sam in einen anderen Bereich verschieben.

Wiederauftretend (engl. reoccuring concepts) Die Daten alternieren zwischen zwei be-
stimmten Werten, wobei es keine festen Zeitpunkte fiir den Wechsel zwischen den

Werten geben muss.

Ausreifler (engl. outlier) Es konnen vereinzelte Datenpunkte aufierhalb des erwarteten
Bereiches liegen, dies ist jedoch kein Shift / Drift, sondern einfach eine (Mess-)
Ungenauigkeit.

Erkennen von Shift

Das Erkennen von Shift verlangt stdndiges Beobachten der Daten und Validieren der Klas-
sifikationen. Plotzlich auftretende Verdnderungen und auch Ausreiflier lassen sich noch
relativ einfach, auch durch einfache Algorithmen, erkennen. Schleichenden oder wieder-

auftretenden Shift zu erkennen erfordert dagegen komplexere statische Modelle oder Al-

8.6. LEARNING WITH IMBALANCED CLASSES 71

gorithmen. In beiden Féllen kénnen maschinelle Lernmethoden angewendet werden, um

einen moglichen Shift zu erkennen und um die Nutzer entsprechend zu informieren [39].

8.6 Learning with Imbalanced Classes

von Karl Stelzner

Bei vielen realen Klassifikationsproblemen geht es darum, seltene Ereignisse in einer Masse

aus uninteressanten Vorkommnissen zu entdecken [38]. Beispiele hierfiir sind zum Beispiel:

e Die Diagnose von seltenen Krankheiten auf Basis der Daten von gréfitenteils nicht

betroffenen Patienten
e Die Erkennung von betriigerischen Finanztransaktionen

e Die Gamma-Hadron Separation, die ein entscheidender Teil der Analysekette in der
Cherenkov Astronomie ist (siehe Abschnitt 1.1)

Fiir die Klassifikation bedeutet dies, dass ein starkes Ungleichgewicht zwischen der Hau-
figkeit des Auftretens von Vertretern der unterschiedlichen Klassen besteht. Vielfach wird
in diesem Zusammenhang auch von einer positiven, seltenen Minoritdtsklasse und einer
negativen, hdufigen Majoritdtsklasse gesprochen. Die damit verbundene Festlegung auf
nur zwei Klassen ist ohne Beschrankung der Allgemeinheit moglich, da eine Problem-
stellung mit mehr Klassen immer als Klassifikationsaufgabe zwischen einer Gruppe von
héaufigen und einer Gruppe von seltenen Klassen gesehen werden kann. Von entscheiden-
der Bedeutung ist hierbei das Verhéltnis zwischen der Héufigkeit der beiden Klassen. Dies

quantifiziert alle Aussagen, die hier getroffen werden.

8.6.1 Einfluss auf Klassifikatoren

Der Einfluss, den das Klassenungleichgewicht auf die Leistung von Klassifikatoren hat,
wurde in verschiedenen Studien empirisch untersucht [54]. Die Ergebnisse lassen sich
wie folgt zusammenfassen: Das Ungleichgewicht fithrt nicht dazu, dass Standardlerner
zwangsldufig nicht mehr funktionieren, sondern sorgt vielmehr dafiir, dass sich die Schwel-
len hinsichtlich der benétigten Menge an Trainingsdaten und der maximalen Modell-
komplexitdt verschieben. Das Problem ldsst sich also dadurch l6sen, dass einfach die
herkémmlichen Lerner mit zusétzlichen Trainingsdaten verwendet werden — ungiinstiger-

weise ist das bei vielen Anwendungen aber ohnehin der limitierende Faktor.

8.6.2 Bewertung von Klassifikatoren

Ein wichtiger Punkt, der bei stark verschobenen Klassenverhéltnissen bedacht werden

muss, ist, wie Klassifikatoren eigentlich zu bewerten und zu vergleichen sind. Ein na-

72 KAPITEL 8. MASCHINELLES LERNEN

tlirlicher Ansatz fiir die Darstellung der Performanz eines binédren Klassifikators ist eine
Wahrheitsmatrix, wie in Abbildung 8.4 dargestellt. Mit gegebenem Validationsdatensatz
lasst sich eine solche Tabelle durch simples Zahlen der Antworten des Klassifikators und
der tatsdchlichen Klassen befiillen. Offen ist aber, wie Leistungen verschiedene Lerner,

also verschiedene Tabellen dieser Art, miteinander verglichen werden koénnen.

H Positive Klasse ‘ Negative Klasse

Positive Voraussage | Richtig positiv (TP) | Falsch positiv (FP)
Negative Voraussage || Falsch negativ (FN) | Richtig negativ (TN)

Abbildung 8.4: Schematischer Aufbau einer Wahrheitsmatrix

Eine verbreitetes Vergleichskriterium ist die Fehlerrate ERR = (FP+ FN)/(TP+ FP +
FN+TN) , also der Anteil der Datenpunkte, die falsch klassifiziert wurden. Wenn die Mi-
noritdtsklasse nun aber sehr selten ist, konnen Lerner sehr geringe Fehlerraten erreichen,
indem sie einfach alle Eingaben der Majoritdatsklasse zuordnen. Da ein solcher Klassifi-
kator aber vollkommen nutzlos ist, ist dieses Vorgehen bei stark verschobenen Klassen-
verhéltnissen offensichtlich inaddquat. Dies hat damit zu tun, dass die Anzahl der falsch po-
sitiven und falsch negativen Datenpunkte in der Fehlerrate schlicht addiert werden. Da es
von der negativen Klasse aber wesentlich mehr Instanzen gibt, werden die falsch positiven
Datenpunkte die Fehlerrate hochstwahrscheinlich dominieren. Ein sinnvolles Vergleichs-
kriterium muss daher die Klassifikatorleistung auf den einzelnen Klassen unabhéngig von

der Anzahl der jeweils vorliegenden Instanzen ins Verhéltnis setzen.

Eine Moglichkeit, dies zu tun, ist, iber die richtig-positiv-Rate T'Pyqe = TP/(TP + FN)
und die richtig-negativ-Rate T'N, 4. = TN/(T'N + FP), die angeben, welcher Anteil der
jeweiligen Klassen richtig klassifiziert wurde. Um ein wirkliches Vergleichskriterium zu
erhalten, miissen diese beiden Werte aber noch geeignet ins Verhéltnis gesetzt werden.
Ein Weg, die beiden Metriken zu kombinieren, ist die Visualisierung in einer Receiver
Operating Characteristic (ROC) Grafik [33] wie in Abbildung 8.5.

Die Klassifikatorleistung kann so als ein Punkt in diesem zweidimensionalen Raum darge-
stellt werden. Hierbei bedeutet ein Punkt, der sich weiter oben und weiter links befindet,
einen strikt besseren Klassifikator. Mogliche daraus abgeleitete Metriken sind das arith-

metische und geometrische Mittel von T P,qte und T Nyqie:

TPrate + TNrate
2
Gmean = \/Tszte * TNrate

AUC =

Diese Metriken behandeln T Pry¢e und TN,z symmetrisch. In manchen Anwendungsfillen

ist die Performanz auf einer Klasse (iiblicherweise der Minoritatsklasse) aber wichtiger als

8.6. LEARNING WITH IMBALANCED CLASSES 73

100% =
#
rd
/’,
80% /’
/”
L ’/’
& 60% ’1’
2 /
é /’Random Classifier
4
E 40% //
= s
#
rd
.
20% s
/”
Il’
I/,
0%
0% 20% 40% 60% 80% 100%

False Positive Rate

Abbildung 8.5: Eine ROC Kurve [38]

auf der anderen. In diesem Fall bietet es sich an, eine asymmetrische Metrik zu verwenden,

etwa den Index of balanced accuracy (IBA) [40].
IBA = (1 + (TPTate - TNT&te)) * Gmean2

Dieser Index fithrt den Asymmetriefaktor « ein, tiber den sich steuern lasst, wie viel stéarker

die T Pyt gegeniiber der T N,qte gewichtet werden soll.

8.6.3 Verbesserung von Klassifikatoren

Zur Verbesserung der Performanz von Klassifikatoren auf unausgewogenen Trainingsdaten
gibt es verschiedene Ansétze, die in drei Kategorien eingeteilt werden konnen: interne,

externe, und auf Ensemble-Learning basierende Ansétze [38, 41].

Eine Moglichkeit besteht darin, den Lernalgorithmus selbst zu verdndern. Denkbar wére
etwa, die Kostenfunktion anzupassen, um dafiir zu sorgen, dass der Algorithmus seine
Ausgabe mit Blick auf die gewédhlte Metrik optimiert. Diese auch als intern bezeichneten
Ansétze stehen vor dem Problem, dass sie ein genaues Verstandnis des Lernalgorithmus’
und des Problems erfordern. Des Weiteren beziehen sich die vorgenommenen Anpassungen
jeweils nur auf einen Algorithmus und lassen sich in der Regel nicht auf andere Verfahren

verallgemeinern.

74 KAPITEL 8. MASCHINELLES LERNEN

Eine anderer, attraktiver Ansatz besteht daher darin, in einem Vorverarbeitungsschritt
die Trainingsdaten so zu verandern, dass das Problem der unausgeglichenen Klassen ge-
ringer wird. Diese externen Ansétze haben den Vorteil, dass sie sich mit jedem beliebigen

Klassifikator kombinieren lassen.

Over-Sampling

Eine mogliches externes Verfahren besteht darin, zusétzliche synthetische Instanzen der
Minoritétsklasse in den Trainingsdatensatz einzufiigen, um so den wenigen vorhandenen
Datenpunkten mehr Gewicht zu verleihen. Die wird Over-Sampling genannt und kann

durch verschiedene Strategien umgesetzt werden:

e Zufillig ausgewéhlte vorhandene positive Datenpunkte kénnen repliziert werden

e Es kann zwischen vorhandenen Datenpunkten interpoliert werden, um Instanzen zu

erzeugen, die neu, aber gleichzeitig konsistent mit den bisherigen Daten sind

e Andere Ansétze sind moglich, etwa kann versucht werden, Datenpunkte in der Grenz-

region der Klasse zu erzeugen

Alle diese Ansétze haben ihre Vor- und Nachteile, abhédngig davon, ob die iiber die Da-
ten getroffenen Annahmen stimmen oder nicht. Ein {ibergreifendes Problem ist aber das
Owverfitting, also das Phénomen, dass ein Klassifikator die spezifische Verteilung der Trai-
ningsdaten lernt, anstatt der dahinter liegenden Muster, und deswegen schlecht auf ande-
re Daten generalisiert. Dadurch, dass die wenigen Datenpunkte der Minoritdtsklasse beim
Oversampling vervielfacht werden, wird dieses Problem verstirkt. Ein weiterer Nachteil ist

der erh6éhte Rechenaufwand durch die kiinstliche Vergroflerung des Trainingsdatensatzes.

Under-Sampling

Das dem Over-Sampling entgegengesetzte Verfahren wird Under-Sampling genannt und
besteht darin, zuféllig Instanzen der Majoritédtsklasse aus dem Trainingsdatensatz zu
16schen. Der Effekt ist auch hier, dass das Ungleichheitsverhéltnis so kiinstlich verringert

wird. Auch hierfiir gibt es verschiedene Umsetzungsmoglichkeiten:

e Entfernen von zufélligen negativen Datenpunkten

e Entfernen von ,redundanten* Datenpunkten, also etwa solchen, in deren Néhe sich

noch andere Punkte der selben Klasse befinden

e Entfernen von Datenpunkten in der Grenzregion zur Minoritédtsklasse

Der grofle Nachteil dieser Verfahren ist, dass durch das Léschen von Datenpunkten unter

Umsténden wichtige Informationen verloren gehen, und die Klassifikatorleistung dadurch

8.7. FEATURE SELECTION 75

abnimmt. Insgesamt ldsst sich aber sagen, dass beide Resampling-Varianten in aller Re-
gel zu einer Leistungssteigerung fithren. Dank ihrer universellen Einsetzbarkeit sind diese
Verfahren daher sehr attraktiv.

Ensemble Learning

Ein weiterer Ansatz besteht darin, die in Abschnitt 8.1 vorgestellten Ensemble Learning
Verfahren zu adaptieren. Auch hierzu gibt es verschiedene Strategien, die allesamt das Ziel

haben, der Minoritétsklasse ein grofieres Gewicht zu verleihen. Einige Beispiele sind:

e Quver-/Under-Bagging. Bei dieser Variante des Bagging werden die Teildatensitze

nicht zuféllig gezogen, sondern unter Benutzung von Over-/Under-Sampling

e SMOTEBoost. Diese Variante von AdaBoost (Algorithmus 2) generiert nach jeder
Iteration durch Interpolation zusédtzliche Datenpunkte und fiigt diese in den Daten-

satz ein

e AdaCost. Diese andere Variante von AdaBoost verdndert die Updatefunktion der

Gewichte so, dass positive Datenpunkte schneller an Gewicht zunehmen als negative

Welches Verfahren das Beste ist, lasst sich letztendlich nur durch den empirischen Ver-
gleich entscheiden. Die durchgefiihrten Studien deuten aber darauf hin, dass Resampling-

Verfahren in der Regel lohnenswert sind.

8.7 Feature Selection

von Mirko Bunse

Unter einem Merkmal (engl. Feature) versteht man im maschinellen Lernen eine fiir
die Vorhersage niitzliche Gréle. Merkmale kénnen direkt physikalisch messbar oder aus
messbaren Gréflen berechenbar sein. Beispielsweise konnen fiir die Klassifizierung von
Texten die Vorkommen bestimmter Worter (direkt zdhlbar) oder das Vorkommen von

Wortstdmmen (daraus ableitbar) Merkmale darstellen.

Feature Selection (Merkmalsauswahl) versucht, moglichst geeignete Merkmale fiir ein ge-
gebenes Vorhersageproblem zu identifizieren. Als ungeeignet betrachtete Merkmale kénnen
ignoriert werden, wodurch sich die Dimensionalitdt der Daten reduzieren lasst. Dabei wird
die Auswahl nur unter den Originalmerkmalen vorgenommen (die hier nicht betrachtete
Merkmals-Extraktion hingegen erzeugt neue Merkmale, um die Datendimensionalitdt zu

reduzieren).

Die Vorteile von Dimensionsreduktion und Feature Selection insbesondere werden in Un-
terabschnitt 8.7.1 vorgestellt. Es wird eine formale Problemstellung aus den Eigenschaften
abgeleitet, die ein ,geeignetes® Merkmal erfiillen sollte (siehe Unterabschnitt 8.7.2). Eine

Ubersicht der Ansitze zur Feature Selection wird vorgestellt und Qualitétsmerkmale von

76 KAPITEL 8. MASCHINELLES LERNEN

Auswahl-Algorithmen werden identifiziert (siche Unterabschnitt 8.7.3). Als prominentes
Beispiel wird der korrelationsbasierte Algorithmus CFS (Correlation-based Feature Se-
lection) nach Hall [46] intensiv betrachtet (Unterabschnitt 8.7.5). Dessen Erweiterung zu
Fast-Ensembles wird ebenfalls vorgestellt (siche Unterabschnitt 8.7.6).

8.7.1 Vorteile

Die Reduktion der Datendimensionalitdt kann im {iberwachten Lernen sowohl die Trai-
ningszeiten, als auch die Anwendungszeiten der verwendeten Modelle reduzieren. Die trai-
nierten Modelle sind aufgrund der geringeren Dimension kompakter und damit, falls es der
Modelltyp hergibt, leichter interpretierbar. Ein besonderer Vorteil der Dimensionsreduk-
tion ist aber, dass dem Fluch der hohen Dimension entgegengewirkt werden kann. Dieser
besagt, dass hochdimensionale Modelle bei geringer Anzahl verfiigbarer Beispiele stark
{iberangepasst werden. Uberangepasste Modelle generalisieren schlecht auf unbekannten
Daten und resultieren daher in schlechter Vorhersage-Performanz. Dimensionsreduktion
schrénkt die Variabilitdt der Modelle ein, sodass der Informationsgehalt kleiner Stichpro-

ben besser reprisentiert und damit die Generalisierungsfihigkeit erhoht wird.

Besteht die Dimensionsreduktion aus der Auswahl von Originalmerkmalen, kénnen weitere
Vorteile gewonnen werden. So lassen sich Datenvisualisierungen auf wichtige Merkmale fo-
kussieren, was das Verstindnis der Daten erh6hen kann. Aufilerdem miissen bei zukiinftigen
Datenerfassungen nicht alle Merkmale erfasst werden, was die Kosten solcher Datenerfas-
sungen senken kann. Natiirlich werden auch, wenn pro Beispiel weniger zu speichern ist,

auch die Speicheranforderungen geringer ausfallen.

Uberdies hat sich Feature Selection auch als eigensténdiges bzw priméres Analysewerkzeug
etabliert: Einige Probleme sind bereits dadurch gelost, dass wichtige Merkmale identifiziert
werden. Beispielsweise sollen in der Analyse von Genexpressionsdaten fiir Krankheiten re-
levante Gene ausfindig gemacht werden. Die Auspragungen der Gene stellen Merkmale
dar. Mit Krankheiten stark korrelierte Auspriagungen konnen ein Indiz fiir einen Zusam-

menhang sein.

Im Anwendungsfall interessiert uns die Auswahl von Features, da bestehende Analysen
eine grofle Anzahl teils redundanter Merkmale extrahieren. Die Relevanz dieser Merkma-
le fir die Gamma-Hadron-Separation und die Energy Estimation ist fraglich. Wenn wir
Merkmale identifizieren konnen, die nicht weiter betrachtet werden miissen, kénnen wir
die Analyse beschleunigen, indem wir die Berechnung unwichtiger Merkmale iiberspringen.

Samtliche der oben genannten Vorteile konnen ebenfalls geltend gemacht werden.

8.7. FEATURE SELECTION 77

8.7.2 Problemstellung

Niitzliche Merkmale zeichnen sich durch zwei Eigenschaften aus: Sie sollten zum Einen fiir
das gegebene Vorhersageproblem relevant sein, also eine gewisse Vorhersagekraft besitzen.
Moglicherweise ergibt sich diese Vorhersagekraft nur durch Zusammenspiel mit anderen
Merkmalen. Zum Anderen sollte die durch das Merkmal kodierte Information sich nicht
mit der Information anderer Merkmale tiberschneiden. Selektierte Merkmale sollten also

nicht redundant zueinander sein.

Es ldsst sich daher nicht fiir jedes Merkmal isoliert entscheiden, ob es gewéhlt werden
sollte oder nicht. Wir miissen die Qualitdt von Merkmalsmengen (genauer: Teilmengen
der Original-Merkmalsmenge) abschétzen. Koller und Sahami [59] prégten die Vorstellung

einer optimalen Merkmalsmenge wie folgt:

Definition 8.1 (Optimale Merkmalsauswahl) Die minimale Teilmenge G C F der

Original-Merkmale F', so dass:
P(C |G = fg) und P(C | F = f) so dhnlich, wie mdglich

betrachten wir als optimal, wobei P die wahre Wahrscheinlichkeits- Verteilung tiber den

Klassen C, f eine Realisierung von F und fq die Projektion von f auf G.

Damit ist die optimale Merkmalsauswahl eine minimal grofle Menge, welche die (wahre)
Wahrscheinlichkeits-Verteilung iiber der Zielvariable so gut wie moglich erhélt. Es soll
also das zu l6sende Vorhersageproblem durch die Beschrinkung auf eine Teilmenge der
Merkmale nicht wesentlich verzerrt werden. Eine oft verwendete alternative Definition
beschreibt die optimale Auswahl als die minimal grofie Menge, welche die Vorhersage-
Performanz maximiert. Damit ist allerdings die wahre Verteilung ignoriert und das eigent-

liche Problem nicht korrekt wiedergegeben.

Da es bei Merkmalsauswahl um den Erhalt der wahren Verteilung geht (welche wir nicht
kennen), lésst sich das Problem im Allgemeinen nicht optimal lésen. Selbst die Verwen-
dung der alternativen Definition iiber die Vorhersageperformanz lasst Merkmalsauswahl
nicht zu einem einfachen Problem werden: Um das Zusammenspiel aller Merkmale zu
berticksichtigen, miissten wir alle moglichen Merkmalsmengen (2‘F | Moglichkeiten) auspro-
bieren, was fiir viele Probleme schlicht nicht realisierbar ist. Daher ist allen Merkmalsauswahl-
Algorithmen gemein, das sie einige Merkmalsmengen (Kandidaten) heuristisch auswerten.
Kandidaten werden dabei durch eine Such-Strategie (z.B. Vorwirts-Suche, randomisierte

Suchen, ...) im Raum der moglichen Losungen erzeugt.

78 KAPITEL 8. MASCHINELLES LERNEN
8.7.3 Arten von Algorithmen

Algorithmen zur Auswahl von Merkmalen unterscheiden sich hauptséchlich durch die von
ihnen genutzte Heuristik zur Bewertung moglicher Losungen. Oft genannte Arten von

Algorithmen sind:

Wrapper nutzen die Accuracy (Anteil korrekter Vorhersagen auf Testdaten) von Mo-
dellen, die mit der betrachteten Merkmalsmenge trainiert wurden. Es wird also in
jedem Suchschritt durch den Raum méglicher Teilmengen ein Modell eingepasst,
was einen hohen Berechnungsaufwand mit sich fithrt. Durch Wrapper ausgewéhlte
Merkmale sind allerdings nahe an der optimalen Merkmalsmenge, da die Accura-
cy auf unbekannten Daten eine gute Abschitzung fiir die Erhaltung der wahren

Verteilungsfunktion darstellt.

Eingebettete Methoden verwenden interne Informationen von Modellen, die auf der
gesamten Merkmalsmenge eingepasst werden. So kénnen beispielsweise Merkmale
gewdhlt werden, die in einem Random Forest viele oder besonders gute Splits erzeu-
gen. Eingebettete Methoden sind effektiv, da der Raum moglicher Merkmalsmengen
und Modelle zugleich durchsucht wird, verzerren die Losung aber zum verwendeten
Modell hin. Durch einen Random Forest ausgewéhlte Merkmale kénnen z.B. fiir die

Verwendung in einer SVM ungeeignet sein.

Filter agieren unabhéngig von jedem Lernalgorithmus durch explizite Verwendung von
Heuristiken, wie etwa Korrelationen zwischen Merkmalen. Sie sind daher besonders
effektiv.

Uber diese Arten hinaus existieren hybride Verfahren, die etwa Filter fiir eine Voraus-
wahl verwenden, um im Anschluss einen Wrapper die Endauswahl treffen zu lassen. Wir
wollen hier Filter fokussieren, da sie das allgemein effektivste Verfahren darstellen. Durch
Beriicksichtigung von zusammenspielenden Features konnen sie bereits sehr gute Ergeb-
nisse liefern. Die Qualitét eines Algorithmus lésst sich iiberdies an folgenden Eigenschaften

messen [81]:

Begiinstigung des Lernens Die Accuracy des trainierten Modells sollte im besten Fall

erhoht, aber zumindest nicht wesentlich gesenkt werden.

Geschwindigkeit Der Auswahl-Algorithmus sollte in der Anzahl der Originalmerkmale

skalierbar sein.

Multivarianz Das Zusammenspiel von Merkmalen (bzgl. Vorhersagerelevanz und Red-

undanz) sollte beriicksichtigt werden.

Stabilitdt Die ausgewédhlte Merkmalsmenge sollte robust gegeniiber der Varianz der ver-

8.7. FEATURE SELECTION 79

n - n -

< <

™ ™

Al Al

o o
I I I I I I I T T T T I
0 1 2 3 4 5 0 1 2 3 4 5

(a) Perfekte Korrelation (b) Hohe Korrelation

Abbildung 8.6: Korrelation als Heuristik

wendeten Daten sein. Insbesondere sollten fiir unterschiedliche Stichproben nicht
ganzlich unterschiedliche Merkmale ausgewahlt werden. Nur stabile Verfahren kénnen
ein Vertrauen in die Auswahl schaffen, das es erlaubt, Feature Selection zur Wissens-

generierung zu verwenden.

8.7.4 Korrelation als Heuristik

Bevor wir in Unterabschnitt 8.7.5 mit CFS ein korrelationsbasiertes Verfahren zur Merk-
malsauswahl kennen lernen, wollen wir zunéchst die heuristische Natur von Korrelation
zwischen Merkmalen bzw. Korrelation zwischen Merkmalen und der Zielvariablen als Maf3

fiir die Qualitat einer Merkmalsmenge untersuchen.

Korrelation und Redundanz

Abbildung 8.6 zeigt zwei mégliche Verteilungen von Beispielen in R2. Mit den beiden Di-
mensionen gibt es also zwei Merkmale, von denen moglicherweise eines ausgewéhlt werden
kénnte. Wir wollen mit der Auswahl die Klasse von Beispielen vorhersagen, wobei Beispie-
le entweder aus der orangenen oder der griinen Klasse stammen. Bei perfekter Korrelation
zwischen den Merkmalen (Abbildung 8.6a) ist es egal, ob wir ein Merkmal oder beide
verwenden, die Klassen lassen sich nicht trennen. Damit sind die Merkmale redundant zu-
einander. Bei einer ,lediglich“ sehr hohen Korrelation muss es jedoch nicht sein, dass beide
Merkmale redundant zueinander sind: In Abbildung 8.6b erlaubt die Verwendung beider
Merkmale eine lineare Separation der Klassen, was mit nur einem der Merkmale nicht
moglich wére. In diesem Fall hinkt die Heuristik also. Fiir reale Probleme funktioniert

Korrelation als Heuristik aber sehr gut [45].

80 KAPITEL 8. MASCHINELLES LERNEN
Korrelation und Kausalitit

Weiterhin ist anzumerken, dass Korrelation nicht gleich Kausalitit ist: Welches zweier
Merkmale der Ausloser fiir die Auspragung des anderen Merkmals ist, kann Korrelation
nicht erfassen. Moglicherweise sind die Auspragungen beider Merkmale auch gemeinsamer
Effekt eines dritten Merkmals. Die Offenlegung (probabilistisch) kausaler Zusammenhénge
kann tiefgehende Erkenntnisse bringen, ist aber auflerhalb dieser Betrachtung von Merk-

malsauswahl (fiir weitere Informationen, siche [44]).

8.7.5 CFS

Wir wollen im Folgenden einen prominenten Vertreter von korrelationsbasierten Filter-
Verfahren zur Merkmalsselektion auf seine Qualitdt hin untersuchen, die Correlation-based
Feature Selection nach Hall [46].

Idee

Die Idee von CF'S ist recht simpel: In jedem Schritt j+ 1 wird das Merkmal f € F'\ F}; mit
dem besten Verhéaltnis von Relevanz und Redundanz zur bisherigen Auswahl F; hinzu-
genommen. Damit beschreibt CFS eine Vorwértssuche durch den Raum moglicher Merk-
malsmengen. Relevanz und Redundanz werden heuristisch ermittelt, indem die Relevanz
als Korrelation zwischen Merkmal f und Zielvariablen y und die Redundanz als Korrela-
tion zwischen Merkmal f und Merkmalen g € F; der vorherigen Auswahl F; abgeschétzt

wird:

Fjpn=F; U {arg max Corl}.y) }
feF\Fj 3 ZgEFj CO?“(f’ g)

Fiir das Mafl Cor existieren verschiedene Definitionen basierend darauf, ob die Eingabe-
Merkmale numerisch oder nominal sind (siehe [44]). Diese sollen hier aber nicht weiter

betrachtet werden.

Beispiel-Ablauf

Abbildung 8.7 zeigt einen Beispiel-Ablauf des CFS-Algorithmus: Im ersten Schritt wird fiir
jedes Merkmal dessen Korrelation mit der Zielvariablen bestimmt. Das Merkmal mit der
hochsten Korrelation (hier X2) wird gewéhlt. In den weiteren Schritten miissen zusétzlich

die Korrelationen mit zuvor gewahlten Merkmalen berechnet werden, um die Redundanz

8.7. FEATURE SELECTION 81

(X1,X2),(X3,X2), (X1,X2),(X3,X2),(X5,X2),
(Xl,Y).())((12,Y),(X3,Y).(X4,Y).(XS,Y) (X4,X2),(X5,X2) (X1,X4),(X3,X4),(X5,X4)
ot s RPN T * 12 correlations
101 e i ey ¥ { X2, X4} =>F ={X1, X2, X4}

Abbildung 8.7: Beispiel-Ausfiihrung CFS [81]

abzuschétzen. Einmal berechnete Korrelationen kénnen gecached werden, um das Verfah-
ren zu beschleunigen. Dies passiert hier mit dem Korrelationen (X1,X2), (X3,X2) und
(X5,X2). Diese miissen kein zweites Mal berechnet werden. Das Verfahren kann bei einer
festgelegten Anzahl Merkmale terminieren oder wenn keine relative Verbesserung grofier

als eine festgelegte Konstante erreicht wird.

Qualitit

Der CFS-Algorithmus ist vielversprechend: Experimente zeigen, dass sich die Accuracy von
auf den Merkmalen trainierten Modellen erhohen lésst [46]. Durch die hochstens einmalige
Berechnung der (|F| 4+ 1)? Korrelationen zwischen Merkmalen und Zielvariablen ist der
Algorithmus zudem schnell. Da er das Zusammenspiel von Merkmalen beziiglich ihrer
Redundanz beriicksichtigt, erfiillt er auch das Multivarianz-Kriterium. Ein Problem von
CFS ist allerdings, dass alle verwendeten Mafle C'or auf Varianz basieren und damit anféllig
fiir eine hohe Varianz der Stichprobe und gegeniiber Ausreilern sind. CFS ist also nicht
stabil.

8.7.6 Fast-Ensembles

Um die Stabilitdt eines Klassifikators zu erhohen, lassen sich mehrere Klassifikatoren zu
einem Ensemble zusammenfassen (siche Abschnitt 8.1). Die selbe Idee lésst sich auf Feature
Selection iibertragen, um die Stabilitit der ausgewéhlten Merkmalsmengen zu erhéhen
[80]. Dazu wird ein Merkmalsauswahl-Algorithmus auf unterschiedlichen Teilmengen der
Stichprobe trainiert, wodurch mehrere Merkmalsmengen erzeugt werden. Die aggregierte

Merkmalsauswahl ist die Merkmalsmenge, die aus hidufig selektierten Features besteht.

Problematisch bei der Anwendung von Ensembles zur Feature Selection ist, dass im
Ensemble mehrere Merkmalsmengen ausgewahlt werden miissen. Damit sind Ensembles
tiblicherweise nicht schnell. Fiir CFS-Ensembles haben Schowe und Morik [81] aber ein
Verfahren entwickelt, dass durch die Bildung eines Ensembles nahezu keine zusétzliche
Laufzeit erzeugt. Der Fast-Ensembles genannte Merkmalsselektor besitzt damit alle Vor-
teile von CFS, ist aber zudem stabil (CFS wurde bereits in Unterabschnitt 8.7.5 kennen
gelernt).

82 KAPITEL 8. MASCHINELLES LERNEN

Idee

Die Grundlegende Idee zur Beschleunigung von CFS-Ensembles ist, die Korrelations-Mafle
Cor in eine Summe aus voneinander unabhéngigen Teilsummen aufzuspalten. Die Teilsum-
men kénnen dann wiederverwendet werden, um alle im Ensemble benétigten Abschétzungen
der Korrelation zu berechnen: Dass CFS im Ensemble ausgefiihrt wird, erzeugt dann kaum
zusétzliche Laufzeit. Alle Abschéatzungen einer Korrelation kénnen wie im Single-CFS in

einem Durchlauf tiber die Stichprobe erzeugt werden.

Wir wollen beispielhaft die Zerlegung des Pearson’s Correlation Coefficient in unabhéngige
Teilsummen betrachten. Die Idee ist aber auch auf alle anderen in CFS verwendeten Mafle

fir Korrelation anwendbar.

XY
Corpe(X,Y) = Cov(X,Y)

- SVar(X) Var(Y) (Pearson’s Correlation Coefficient)

Wobei Cov(X,Y) = E[(X — E(X))(Y — E(Y))] de] E(XY)—-E(X)E(Y).

ispl. law
Wegen Var(X) = Cov(X, X) beschrianken wir unsere Betrachtungen im Folgenden auf
Cov, welches wir anhand der gegebenen Beispiele (z;,;),1 < i < n,x; € X,y; € Y

schatzen wollen:

—_
3

—
3

CAOU(X,Y) = (% leyl) - = (5 Zl'z)(* Zyz)
=1] }

1 mi mo n
=*(Z$z‘yz‘ + Z Ty +o Tt Z TiYi) — *
=1 i=mi+1 1=Me—_1+1
N—_——
51(X,Y) 52(X,Y) se(X,Y)

Wir sehen: Es lassen sich voneinander unabhingige Teilsummen s;(X,Y),1 < j < e
durch Partitionierung der Beispiele an willkiirlichen Grenzen m; erzeugen. Der mit x
bezeichnete Term wird analog zum dargestellten ersten Term in die Teilsummen s;(X)
und s;(Y) zerteilt. Bei der ebenfalls analogen Zerteilung der Varianz-Schatzungen Var

werden zusitzlich die Teilsummen s;(X?) und s;(Y2) erlangt.

Um eine Menge von e Ensemble-Schiatzungen zu erzeugen, brauchen lediglich fiir jede
Schéitzung die j-ten unabhéngigen Teilsummen weggelassen werden. Damit ist der j-te Teil
der Stichprobe im j-ten Teil des Ensembles ignoriert. Alle anderen Teilsummen werden
aufaddiert, um die Gesamtsummen zu ergeben, mit denen sich die Schétzung von Corp..
berechnen ldsst. Wir erhalten e unterschiedliche Schétzungen fiir die Korrelation zweier
Merkmale bzw. eines Merkmals mit der Zielvariablen. Abbildung 8.8 fasst die Schéitzung

der Korrelation im Ensemble zusammen.

8.7. FEATURE SELECTION 83

Training Data

'Block 1 " Block 2 " Block 3 ' Block 4 !
N2 N2 N2 N2

Sq S, S5 Sa

(not used) - Cor;

(not used) - Cor,

Abbildung 8.8: Berechnung von Ensemble-Korrelationen in Fast-Ensembles

(X1,X2),(X3,X2) (X1,X2),(X3,X2),(X5,X2),
M%MMJM&M {x4,x2),(x5,x2)1 (X1,X4),(X3,X4),(X5,X4)

* 12 correlations

— * {X2} .
—> B % { X2, X4}) => F,={X1, X2, X4}

X2,
Part 1 X3 .

X4
X5 —> ee——— L 0
(X1,X2),(X3,X2), (X1,X2),(X4,X2),(X5,X2),
(Xl'Y)'(;((lz'Y)'(X3'Y)'(X4'Y)'(XS'Y) (X4,X2),(X5,X2) (X1,X3),(X4,X3),(X5,X3)
X2 _:: X2} i —nii 2 new correlations
Part 2 iz S — ——ne—p % {X2,X3}
R e JR— —_ —rras - « =>FKL={X2, X3, X4}
RS ———— —r
[(X1,X5),(X2,X5), (X1,X5),(X2,X5),(X3,X5),
(XIY),(X2,Y),(X3.).(X4.Y).(X5.Y) (35 x5), (x4.X5) (X1,X4),(X2,X4),(X3,X4)
""" s 1 new correlation
g D 4
Part 3 —_— s
v {X4,X5} => R={X1, X4, X5}
{X5}

Abbildung 8.9: Beispiel-Ausfiihrung Fast-Ensembles [81]

Beispiel-Ausfithrung

Es werden nun, wie im Single-CFS, einmal berechnete Korrelationen gecached, sodass sie
kein zweites Mal berechnet werden miissen. Fast-Ensembles berechnen durch das oben
vorgestellte Schema jedoch nicht nur eine Ensemble-Schétzung pro Korrelation, sondern

gleich alle Schétzungen des Ensembles.

Abbildung 8.9 stellt dar, wie dadurch bei Einpassung eines Ensembles nur wenige zusétzliche
Korrelationen (im Gegensatz zum Single-CFS) berechnet werden miissen. Part 1 in der
Abbildung ist bereits aus Unterabschnitt 8.7.5 bekannt. Part 2 und 3 miissen nun ihre
Schéitzungen der Korrelationen mit der Zielvariablen nicht mehr berechnen, da diese bereits
durch Part 1 auf Basis der unabhéngigen Teilsummen mitberechnet wurden. Auch andere
Korrelationen kénnen ohne Mehraufwand wiederverwendet werden. Da die unterschiedli-
chen Schétzungen unterschiedliche Entscheidungen des Algorithmus hervorrufen kénnen,
gibt es natiirlich einige zusétzlich zu berechnende Korrelationen ((X1,X3), (X5,X3) und

84 KAPITEL 8. MASCHINELLES LERNEN

(X1,X%X5)). Im Gegensatz zu einer kompletten Neuberechnung aller Korrelationen stellt
das Verfahren aber eine enorme Beschleunigung dar. Damit erfiillen Fast-Ensembles alle

in Unterabschnitt 8.7.3 vorgestellten Qualitatskriterien.

8.8 Sampling und Active Learning

von David Sturm

Bisher haben wir uns in diesem Kapitel mit den eigentlichen Lernverfahren beschéftigt.
Zum Beispiel haben wir gelernt, was ein Modell ist, wie Merkmale ausgewéhlt werden
etc. Jetzt wollen wir zum Abschluss noch das sogenannte Sampling betrachten. Wollen
wir einen Algorithmus verwenden, um ein Modell zu lernen, stellt sich ndmlich die Frage,
welche Daten wir diesem tiiberhaupt tibergeben und auf welchen Teilen des Datensatzes
das Modell angelernt werden soll. Angenommen, wir haben einen Datensatz der Form
(1,91), -+, (Tn, yn) gegeben, wobei &; ein Merkmalsvektor und y; die Klasse des Vektors

ist. Diese Daten wollen wir nun nutzen, um unser Modell zu trainieren.

8.8.1 Der naive Ansatz

Am einfachsten, bzw. logischsten, erscheint es nun, den gesamten Datensatz zum Lernen
zu verwenden. Schliefllich bedeuten mehr Daten auch mehr Informationen und je mehr
Informationen wir dem Lernverfahren geben, desto besser sollte unser gelerntes Modell

sein.

Das Problem bei diesem Ansatz ist, dass wir nicht nur ein Modell lernen wollen, son-
dern unser gelerntes Modell auch testen miissen. Schliellich miissen wir auch herausfin-
den konnen, wie gut das Modell iiberhaupt ist, gerade wenn wir zwischen verschiedenen
entscheiden miissen. Wir brauchen also definitiv einen Datensatz, an dem wir das Ge-
lernte ausprobieren und testen konnen. Verwenden wir hierfiir ndmlich den bereits zum
Lernen verwendeten Datensatz einfach nochmal, werden unsere gelernten Modelle zwar
alle erstaunlich akkurat sein, allerdings testen wir auch nur, wie gut sie darin sind, den
Datensatz, auf dem sie basieren, zu klassifizieren. Wir lernen also nicht die ,wahre* Klas-
senverteilung, sondern nur die Testdaten auswendig. Dieses Problem wird als Quverfitting
bezeichnet. Was wir brauchen, ist ein zweiter, unabhingiger Datensatz, auf dem wir unsere
Modelle testen konnen. Ein besserer Ansatz wire daher, die gegeben Daten vor dem Ler-
nen zuféllig in Test- und Trainingsdaten zu unterteilen. Eine typische Einteilung hierfiir
wére, zwei Drittel der Daten zum Lernen zu nutzen und das gelernte Modell dann auf dem
letzten Drittel zu testen. Und tatséchlich gibt uns dieser Ansatz erstmal die Moglichkeit,
ein Modell zu lernen und es dann fair beurteilen zu kénnen. Schade ist nur, dass jetzt
ein betréchtlicher Anteil unserer Daten gar nicht zum Lernen verwendet wird und somit

Informationen ungenutzt bleiben.

8.8. SAMPLING UND ACTIVE LEARNING 85
8.8.2 Re-Sampling

Nachdem wir die Probleme dieser simpleren Ansétze betrachtet haben, iiberlegen wir nun,
wie diese vermieden werden kénnen. Dazu betrachten wir das sogenannte Re-Sampling
in Form der Methoden der k-fachen Kreuzvalidierung und des Bootstrappings, die uns
Losungen fiir diese Probleme geben koénnen. Die Idee dieser Ansétze ist, die Daten zwar

wie zuvor in Trainings- und Testdaten zu teilen, dies aber dann mehrmals zu wiederholen.

k-fache Kreuzvalidierung

Bei der k-fachen Kreuzvalidierung wird unsere Datenmenge in k Teile geteilt, von denen
dann k — 1 zum Trainieren des Klassifikators verwendet werden. Das gelernte Modell wird
dann auf dem letzten Teil getestet. Dieser Vorgang wird k£ mal durchgefiihrt, wobei jeder
Teil des Datensatzes einmal zum Testen verwendet wird. Schliefflich wird die durchschnitt-
liche Fehlerrate der einzelnen Modelle betrachtet, um die erhaltenen k Klassifikatoren zu
bewerten. Durch diese mehrfache Ausfithrung haben wir erreicht, dass wir zwar immer auf
unabhéngigen Testdaten testen konnten, aber trotzdem jeder Teil der Daten gleich starken
Einfluss auf das Modell hat.

D Validation Set

- Training Set

Round 1 Round 2 Round 3 Round 10

90% 91% 95%

Final Accuracy = Average(Round 1,Round 2, ...)

Validation

Accuracy: 93%

Abbildung 8.10: k-fache Kreuzvalidierung, Quelle: [26]

Bootstrapping

Ein alternativer Ansatz zur Kreuzvalidierung ist das sogenannte Bootstrapping. Hier wird
die Datenmenge nicht in k£ Blocke unterteilt, sondern es wird zuféllig eine Menge von
Daten mit zuriicklegen aus dem Datensatz gezogen. In der gewéahlten Menge von Daten
kénnen nun also bestimmte Daten mehrfach auftreten, alle Daten, die nie gewahlt wur-
den, werden wie zuvor zum Testen verwendet. Der Vorteil dieser Methode ist, dass sich
bessere Riickschliisse auf die Verteilung, die den Daten zugrundeliegt, machen lassen, al-
lerdings werden auch deutlich mehr Durchldufe benétigt. Bootstrapping ist also in der

Regel deutlich rechenintensiver.

86 KAPITEL 8. MASCHINELLES LERNEN

Data : Zeiger auf grofie Beispielmenge £
Grofle m der Arbeitsmenge
Anzahl der Iterationen k
Resampling Intervall R
Gewichtungsregel W : X xY xR - R

Result : Modell h: X -+ R

Initialisiere Arbeitsmenge &

Initialisiere Gewichte wq; := 1
fort=1,..k do

if t/R € N then
& := random_subset(E, m)
wp,i:=1Vie{l,..,m}
for j=1,..,t—1do
| (@i, yi) € & s wjy = wi—1 - Wi, yi, hy(24))
end
end
else
gt = gt—l
if ¢ > 1 then
| Y(xs,) € &t wii = wj—1 - W(xs, yi, he—1(24))
end
end
Trainiere neues Basismodell h; : X — Rauf&;

end

return i : X — R mit h(x) = h(h1(x), .., hi(z))

Algorithmus 3 : VLDS-Ada? Boost [48]

8.8.3 VLDS-Ada?Boost

Als niichstes betrachten wir nun den VLDS(Very Large Data Set)-Ada®Boost Algorith-
mus. Dieser ist eine Variation des AdaBoost-Algorithmus 2 aus dem Boosting Kapitel. Im
Kontext von Big Data stellt sich nun ndmlich eine vollig neue Frage. Bisher war unser
Datensatz kostbar und wir haben versucht, ihn mdéglichst effizient zu nutzen, doch was
tun wir, wenn das Gegenteil auftritt? Wie gehen wir vor, wenn unser Datensatz so grof3
ist, dass es unmoglich ist, alle Daten zum Lernen zu verwenden? Natiirlich kénnte man
einfach nur einen Teil der Daten zum Lernen nutzen und die restlichen Daten ignorie-
ren, der VLDS-Ada? Boost Algorithmus zeigt allerdings eine Moglichkeit, doch noch einen
Vorteil aus der groflen Datenmenge zu ziehen. Betrachten wir zundchst den Pseudocode
des Algorithmus aus der Diplomarbeit von Marius Helf [48]. Hierbei ist zu beachten, dass
der in dem Paper behandelte Algorithmus, der Ada?Boost Algorithmus, eine Variante des
normalen AdaBoost-Algorithmus ist. Fiir den VLDS Part des Algorithmus ist dies aber

nicht weiter relevant.

Die Idee dieser Version des Algorithmus ist es, alle R Durchlaufe einmal den kompletten

Satz an Trainingsdaten auszutauschen. Die neuen Trainingsdaten durchlaufen dann noch

8.8. SAMPLING UND ACTIVE LEARNING 87

einmal dieselben Schritte wie die alten, danach fahrt der Algorithmus fort.

Der Else-Pfad des Algorithmus entspricht deshalb dem normalen Ada?Boost-Algorithmus.
Ein schwacher Klassifikator wird trainiert, danach werden die Datenpunkte neu gewichtet,
sodass ein groflerer Fokus auf schwierige Félle gelegt werden kann. Die spéteren Klassi-
fikatoren konzentrieren sich dann hiufig auf eben diese. Am Ende wird eine gewichtete

Kombination der einzelnen Lerner zum Bilden von Modellen genutzt.

Der Unterschied zum urspriinglichen Algorithmus liegt im if-Teil. Hier wird alle R Durch-
ldufe einmal der Datensatz durch einen vollig neuen, zufilligen Datensatz aus unserer
groflen Datenmenge ersetzt. Die neuen Daten werden zunéchst wieder mit 1 gewichtet,
dann werden alle bisher verwendeten Klassifikatoren 1,...,¢ noch einmal durchlaufen, um
nacheinander die Daten neu zu gewichten. Die Klassifikatoren werden also auf die neuen
Daten angewendet, auf denen sie allerdings nicht trainiert wurden. Wichtig ist, dass die
bereits gelernten Klassifikatoren dabei nicht mehr gedndert werden, nur die Gewichte der

Beispiele werden bearbeitet und fiir den ¢ + 1-ten Klassifikator angepasst.

Der VLDS-Ada? Boost Algorithmus tauscht also regelméfig die ihm zugrunde liegenden
Daten aus und kann dadurch einen beliebig groflen Teil der vorhandenen Daten zum
Lernen verwenden. Wichtig ist, dass schon gelernte Klassifikatoren dabei immer wieder auf
neuen Daten angewendet werden, der Algorithmus ist also nicht dquivalent zum normalen
AdaBoost auf der kombinierten Datenmenge. Stattdessen testet er seine bereits gelernten
Klassifikatoren immer wieder auf neuen Daten. Somit kénnen eventuelle Tendenzen in
einzelnen Datenblocken durch Umgewichtung in spéateren Klassifikatoren korrigiert werden
und es gibt deutlich weniger Owverfitting. Auch ist es aus praktischen Griinden natiirlich

hilfreich, dass nicht der gesamte Datensatz dauerhaft im Speicher vorhanden sein muss.

8.8.4 Active Learning

Zum Schluss beschéftigen wir uns noch mit der Idee des active learnings. Bisher war es
immer unsere Aufgabe, mit einer begrenzten Menge an klassifizierten Daten einen Klas-
sifikator zu trainieren. Nun stellt sich jedoch die Frage, ob dies iiberhaupt realistisch ist.
Woher kriegen wir iiberhaupt diese perfekt klassifizierten Daten, auf denen wir lernen? Ge-
rade im Kontext von Big Data erhalten wir stattdessen héufig riesige Mengen an Daten,
die (noch) nicht klassifiziert sind. Wollen wir diese Daten nutzen, miissen wir sie also erst
selber klassifizieren. Aber war unser Ziel nicht gerade, mit den Daten einen Klassifikator

zu finden? Was nun?

Uberlegungen

Haufig gibt es auch andere Moglichkeiten, die Klasse eines Datenpunkts zu erfahren. So

konnen zum Beispiel im Fall von Diagnosen weitere Tests an einem Patienten durchgefiihrt

88 KAPITEL 8. MASCHINELLES LERNEN

learn a model

machine learning
model

labeled
training set

unlabeled pool

U

select queries
oracle (e.g., human annotator) S

Abbildung 8.11: Active learning als Kreislauf, Quelle: [82]

werden, es kann ein Experte gefragt werden oder Ahnliches. Das Problem hierbei ist nur,
dass dies héufig teuer und zeitaufwéndig ist. Wollen wir eine sehr grofle Menge Daten
klassifizieren, konnen wir nicht erwarten, dass unser Experte die Zeit hat (oder wir das Geld
haben), jeden Datenpunkt einzeln zu klassifizieren. Genau deshalb soll ja ein automatischer
Klassifikator gefunden werden. Es stellt sich nun die Frage, wie wir aus einer begrenzten
Anzahl an Beispielen, die wir dem Experten zeigen konnen, moglichst viele Informationen

fiir unseren Klassifikator erhalten konnen.

Querys und Experten

Genau mit dieser Frage, welche Daten lasse ich klassifizieren, um daraus zu lernen, be-
schéftigt sich active learning. Hierbei werden sogenannte Querys formuliert, die einem
Oracle, also dem Experten, iibergeben werden. Dabei verfolgen wir einen gierigen Ansatz,
wir fragen uns also stets nur welche Anfrage uns genau in diesem néchsten Schritt den

grofiten Informationsgewinn liefert.

Gehen wir davon aus, dass wir zu einem beliebigen Zeitpunkt ¢ bereits Querys gesendet
haben, haben wir dadurch auch eine Menge £ von klassifizierten Daten. Jetzt wahlen
wir entweder einen einzelnen Datenpunkt oder eine Gruppe von Punkten, die wir als
néchstes tibergeben. Dazu brauchen wir eine Funktion, die den niitzlichsten Datenpunkt,
gegeben irgendwelcher Kriterien und der Menge £, aussucht. Diesen Punkt lassen wir dann

klassifizieren und fiigen ihn in £ ein.

Die eigentliche Aufgabe beim active learning ist also, eine ideale Strategie fiir die Auswahl-
funktion zu finden. Hierzu werden héufig die zwei folgenden Kriterien betrachtet, andere

sind nattrlich auch denkbar.

Informativeness Wie sehr hilft der Punkt bei der Verbesserung meines Modells?

Representativeness Wie repréasentativ ist der Punkt fiir die Verteilung D, die ich suche?

8.8. SAMPLING UND ACTIVE LEARNING 89

Uncertainty Sampling

Eine Beispiel fiir eine sehr einfache Art, eine Query zu formulieren, ist das sogenannte
uncertainty sampling. Hier wird immer der Datenpunkt zur Klassifikation gewéhlt, der
fiir das Modell mit der bisherigen Punktemenge £ am schwersten vorherzusagen ist. Beim
Formulieren der Query wird also nur auf die Informativeness geachtet. Leider fithrt dieses
Vorgehen wieder zu dem bekannten Overfitting Problem, da wir unsere Klassifikatoren
nur mit Ausreiflern und Spezialfillen trainieren. Sie lernen also nur die Besonderheiten
des aktuellen Datensatzes auswendig, lernen dabei aber wenig iiber die repréisentativeren
Punkte. Dieses kurze Beispiel reicht aber, um zu zeigen, dass das Formulieren von Querys

nicht trivial ist und dass solche einfachen Ansétze keine akzeptable Losung sind.

Fazit

Wichtig ist, dass active Learning kein Gegensatz zu anderen Sampling-Strategien ist. Statt-
dessen beschéftigt es sich mit neueren Problemen, die durch die immer gréfiere Menge an
gewonnenen Daten auftreten. Active learning kann auch als eine Art Vorbereitung fiir das
eigentliche Sampeln betrachtet werden. Hier erstellen wir aus den noch nicht klassifizierten
Rohdaten einen Datensatz, auf den andere Sampling-Methoden wie die Kreuzvalidierung

angewandt werden kénnen.

Teil 111

Anwendungstfall

91

Kapitel 9

Analyseziele

von Carolin Wiethoff

Um unser Endprodukt perfekt auf die Anforderungen der Physiker abzustimmen, war es
unumginglich, sich mit den eigentlichen Analysezielen auseinanderzusetzen. In einem Tref-
fen mit einem Représentanten der Physiker konnten wir mehr iiber den Anwendungsfall
(siehe Abschnitt 1.1) erfahren und unsere Fragen dazu stellen. Im Nachhinein fassten wir
das gewonnene Wissen in User Stories zusammen, welche nicht nur einen Uberblick iiber
die Analyseziele geben, sondern auch das Entwickeln von Sprints vorbereiten sollten, so
wie sie in Kapitel 2.1.3 iiber das Projektmanagement mit SCRUM beschrieben wurden. Im
Folgenden werden die aus unserer Sicht wichtigsten Analyseziele zusammengefasst, welche

wir mit unserem Endprodukt erméglichen wollen.

Durchsuchbarkeit der Events Zuerst ist es wichtig, einen Uberblick iiber die Events
bekommen zu kénnen. Dazu soll man die Events nach ihren Metadaten durchsuchen
koénnen. Mithilfe einer REST-API (zur Beschreibung siehe Abschnitt 7.2, fiir unsere Um-
setzung siehe Kapitel 14) sollen vom Anwender Metadaten spezifiziert werden, zu denen
alle passenden Events zuriickgeliefert werden. Damit wird es einfach alle Events zu suchen,

die beispielsweise in einem kontinuierlichen Zeitintervall liegen.

Normalisierung der Rohdaten Ein weiteres Anliegen ist die Normalisierung der Roh-
daten. Wie man in Kapitel 10.4 nachlesen kann, existiert zu jeder Aufnahmedatei eine
Drs-Datei zur Kalibrierung. Es ist miithsam, zu jeder Aufnahmedatei per Hand die passen-
de Drs-Datei zu finden. Um das System so benutzerfreundlich wie moglich zu gestalten,
soll diese Kalibrierung daher selbststédndig durchgefiithrt werden, d.h., die passenden Drs-

Dateien werden automatisch gesucht und gefunden.

Gamma-Hadron-Separation Eine grofle Aufgabe bilden auflerdem die maschinellen

Lernaufgaben. Zum Einen soll die Gamma-Hadron-Separation erméglicht werden, sodass

93

94 KAPITEL 9. ANALYSEZIELE

aus den aufgezeichneten Teleskopdaten die fiir die Physiker interessanten Gammastrah-
lungen erkannt und separiert werden koénnen. Dabei ist es wieder praktisch nach Metada-
ten durchsuchen zu kénnen, um beispielsweise alle Gammastrahlungen einer bestimmten
Region oder eines bestimmten Zeitraumes anzusehen. Da es viele verschiedene Klassifi-
kationsverfahren zur (bindren) Klassifikation gibt, sollen im Endprodukt Methoden ent-
halten sein, mit denen man verschiedenen Lernverfahren einfach evaluieren kann, sodass
die Eignung der Verfahren im Bezug auf die Gamma-Hadron-Separation abgeschitzt wer-
den kann. Eine Ubersicht mit fiir uns moglicherweise interessanten Lernverfahren ist in

Kapitel 8 zu finden.

Energieschitzung Zu den Lernaufgaben gehort auflerdem die Energieschétzung, bei
welcher die Energie der gefundenen Gammastrahlungen beziehungsweise der darin invol-
vierten Partikel geschétzt wird. Dies soll iiber eine Graphical User Interface (GUI) oder
eine API einfach moglich sein, sodass die Schédtzung mit nur einem Mausklick oder einem
einfachen Aufruf angestoflen werden kann. Die dabei entstehenden Ergebnisse sollen sich

aulerdem grafisch als Lichtkurven darstellen lassen.

Realzeitliche Verarbeitung Eine grofle Rolle spielt die realzeitliche Einsetzbarkeit des
Endproduktes. Wenn die Teleskopdaten in Echtzeit gespeichert und weiterverarbeitet wer-
den, kann vor Ort iiber mogliche Gammastrahlungen in Echtzeit informiert werden, um
eventuelle weitere Arbeitsschritte auf die Daten anzuwenden, welche Gammastrahlungen
enthalten. Dazu gehort unter anderem auch realzeitliches Filtern. Dabei sollen Daten, die
offensichtlich nicht fiir die Analyse wertvoll sind und auf keinen Fall eine Gammastrah-
lung enthalten, sofort geloscht werden. Anstatt die Ressourcen zu verbrauchen, sollen diese
Daten gar nicht erst gespeichert und weiterverarbeitet werden. Fiir moglicherweise inter-
essante Daten soll eine automatische Speicherung und Indexierung erfolgen, sodass dieser
Teil der Arbeit nicht jeden Morgen nach der Aufzeichnung manuell angestoflen werden

muss. Einblicke in realzeitliches Arbeiten und Streamen gibt Kapitel 6.

Instrumenten-Monitoring Mit Hilfe der kiirzlich aufgenommenen Daten soll dariiber
hinaus Instrumenten-Monitoring betrieben werden. Es soll gepriift werden, ob alle Instru-
mente einwandfrei funktionieren oder ob es Hinweise auf ein Versagen der Technik gibt.
In diesem Fall soll das System die Nutzer vor Ort warnen, sodass eine Reparatur oder ein

Austausch der beschidigten Teile moglichst schnell erfolgen kann.

Inkrementelle Ergebnisausgabe Hinzu kommt, dass, abhéngig von der Lernaufgabe,
Teilergebnisse abgefragt werden sollen. Mochte der Nutzer nicht die komplette Laufzeit
abwarten, bis das Endergebnis komplett berechnet wurde, kann es sinnvoll sein, das Er-

gebnis wahrend des Rechenprozesses inkrementell zur Verfiigung zu stellen, sofern das

9.1. GAMMA/HADRON-KLASSIFIZIERUNG 95

Lernverfahren es zuldsst. So kénnen schon wéahrend der weiteren Verarbeitung erste Hy-
pothesen iiber die Daten angestellt werden und basierend darauf weitere Entscheidungen

zum Handling der Daten getroffen werden.

Datenexport Fiir alle Aufgaben ist es auflerdem wichtig, dass Dateien und Ergebnisse
exportiert werden kénnen. Dazu zahlt nicht nur der moglicherweise komprimierte Export
von Klassifikationsergebnissen, sondern auch der Export von Log-Dateien und Grafiken,

beispielsweise der Lichtkurven, welche bei der Schitzung der Energie entstehen koénnen.

Insgesamt werden viele Forderungen an unser Endprodukt gestellt, welche korrekt und be-
nutzerfreundlich umgesetzt werden miissen. In den folgenden beiden Unterkapiteln wird
kurz beschrieben, welche Methoden zu den Klassifikations- beziehungsweise Regressions-

aufgaben der oben aufgefithrten Analyseziele genutzt werden kénnen.

9.1 Gamma/Hadron-Klassifizierung

von Michael May

Im Gebiet des maschinellen Lernens gibt es viele unterschiedliche Ansétze zur bindren
Klassifizierung von Daten. Im Bereich der Klassifizierung von Gamma- und Hadron-Events
wurden Untersuchungen zu den wohl bekanntesten bereits durchgefiihrt. Dazu zédhlen unter

anderem

o Direct selection in the image parameters,
e Random Forest,

o Support Vector Machine (SVM) und

e Artificial Neural Network,

welche von Bock et al. [19] und Sharma et al. [83] ndher untersucht wurden, mit dem

Ergebnis, dass der Random Forest die besten Ergebnisse liefert.

Zum Vergleich der jeweiligen Methoden wurden verschiedene Qualitdtsmafle verglichen.

€
Ein wichtiges solches Ma8 ist der Qualititsfaktor Q = ——, welcher vor allem einen hi-
Ep
storischen Wert besitzt. Hierbei beschreibt e, die korrekt klassifizierten Gamma-Events

und ep die als Gamma klassifizierten Hadron-Events. Es ist vergleichbar mit der statisti-

schen Signifikanz.

9.2 Energie-Abschitzung

von Michael May

Ein weiteres Anwendungsgebiet fiir maschinelles Lernen ist die Abschitzung der Energie

von klassifizierten Gamma-Events. Da mithilfe der Energie viele physikalische Eigenschaf-

96 KAPITEL 9. ANALYSEZIELE

ten bestimmt werden konnen, besteht eine wichtige Aufgabe darin, eine korrekte Energie-

angabe zu erhalten.

Die eigentliche maschinelle Lernaufgabe ist eine typische Regression, bei der ein Modell
gefunden werden muss, welches die Energie, basierend auf einer Reihe von Features, vor-
hersagen kann. Untersuchungen von Berger et al. [16] besagen, dass bereits das Feature

size fiir eine gute Einschitzung mit Hilfe eines Random Forest geniigt.

Kapitel 10

Datenbeschreibung

von Alexander Schieweck

In diesem Kapitel werden die verwendeten Daten nédher beschrieben. Dazu zdhlt sowohl
eine Einfiithrung in das zugrundeliegende Dateiformat als auch eine etwas ausfiihrlichere

Beschreibung der logischen Struktur der Dateien und deren Inhalt.

10.1 FITS-Dateiformat

von Alexander Schieweck

Das Flexible Image Transport System (FITS)-Format [43] wurde 1981 von der National
Aeronautics and Space Administration (NASA) als Austausch- und Transportformat von
astronomischen Bilddaten entwickelt. Dabei ist dieses Format modular aufgebaut und
es gibt verschiedene Eztensions, welche die eigentliche Datenreprisentation in der Datei

vorschreiben.

Eine FITS-Datei hat zunéchst einen 2880 Byte groflien Header-Block, den sogenannten
Primary-Header, wobei dieser die weiteren Daten in der Datei beschreibt. Dazu besteht
der Header aus Key-Value-Paaren, denen ein optionaler Kommentar folgen kann. Pro
Key-Value-Paar stehen jedoch nur 80 Byte zur Verfiigung, von denen zehn dem Schliissel
zugeteilt sind und 70 Byte sich der Wert und der Kommentar teilen. Sollte der Header
nicht die kompletten 2880 Byte brauchen, so bleiben die restlichen Bytes leer. Im Primary-
Header sind bestimmte Felder vorgeschrieben, zum Beispiel eine Checksumme iiber den
Header und ob sich an den FITS-Standard gehalten wird oder nicht. Dieser Header gibt

auch Auskunft dariiber, ob Extensions in der Datei verwendet werden.
Nach dem Primary-Header folgt das erste Datenfeld, welches auch leer sein kann.

Hiernach folgt der Secondary-Header, der &hnlich zum Primary-Header aufgebaut ist, je-
doch auch angibt, welche Eztension verwendet wird und noch weitere Informationen fir
diese enthélt. Als Beispiel fiir eine solche Erweiterung sei hier die Extension ,BINTABLE®

97

98 KAPITEL 10. DATENBESCHREIBUNG

erwahnt. Dafiir wird im Secondary-Header auch angegeben, wie viele Zeilen diese Tabel-
le enthélt, wie viele Spalten es gibt, wie diese Spalten heiflen und welchen Datentyp sie

haben. Dieser Header wird auch in 2880 Byte groflen Blocks gespeichert.
Nach diesen Header-Blocks folgt dann die Datentabelle.

Dariiberhinaus werden grofie FITS-Dateien mit GZip komprimiert und diese Dateien tra-

gen die Endung .fits.gz.

10.2 Rohdaten

von Alexander Schieweck

Die Daten des FACT werden in FITS-Dateien mit der Erweiterung ,BINTABLE® gespei-
chert. Dazu schreibt das Teleskop die auftretenden Events in einer Zeitspanne von etwa
fiinf Minuten in sogenannte Runs. Diese Dateien werden in einer hierarchischen Ordner-
Struktur pro Nacht zusammen gefasst, zum Beispiel ,raw/2013/09/29/0130929_232.fits.gz"
fiir den Run mit der Nummer ,,232“ am 29.09.2013. Innerhalb eines Runs gibt es nun eine
Tabelle mit etwa 3000 Zeilen, wobei jede Zeile ein Event beschreibt. Dazu zéhlen unter
anderem die Eventnummer, der Zeitpunkt des Auftretens und die Daten der einzelnen
Pixel, ein Datenfeld aus 432000 16bit-Integern!

10.3 Monte-Carlo-Daten

von Christian Pfeiffer

Monte-Carlo-Daten werden im Gegensatz zu den anderen Daten per Simulation erzeugt.
Bei dieser Simulation trifft ein Teilchen von festgelegter Energie auf die Atmosphére und

erzeugt ein Cherenkov-Licht, das von einem simulierten Teleskop aufgenommen wird.

Der grofle Vorteil dieses Vorgehens liegt darin, dass im resultierenden Datensatz sowohl
die Features der Aufnahme als auch die Energie des verursachenden Teilchens vorliegen.
Deswegen werden die Monte-Carlo-Datensétze dazu verwendet, Modelle zu trainieren, die

anhand der Features die Energie des zugrundeliegenden Teilchens vorhersagen.

10.4 Drs-Daten

von Alexander Bainczyk

Die analogen Signale, die an den Fotodioden der Teleskopkamera gemessen werden kénnen,
werden mithilfe von Domino Ring Samplern (DRS) digitalisiert. Ohne Kalibierung sind die
Messungen jedoch, wie in Abbildung 10.1 (links) zu sehen, stark verrauscht. Dies liegt zum
einen am einfallenden Hintergrundlicht und zum anderen an temperaturbedingen Span-

nungsinderungen. Um Events besser erkennen zu kénnen, wird eine DRS-Kalibrierung

10.5. AUX-DATEN 99

durchgefiihrt. Diese wird in regelméfligen Zeitstdnden vor einem Run durchgefithrt und

dessen Ergebnisse mit den folgenden Aufnahmen verrechnet.

Die Drs-Daten, die ebenfalls im FITS-Format abgespeichert werden, beinhalten neben di-
versen Kalibrierungskonstanten zwei Aufnahmen: Ein Bild wird bei geschlossener Klappe
aufgenommen und eins wird vom Nachthimmel gemacht. Aus den Informationen dieser
Aufnahmen kann das Hintergrundrauschen fiir folgende Aufnahmen zuverldssig herausge-
rechnet werden (s. Abbildung 10.1 (rechts)).

(6], [4], [27]

TITTT
L]
o

B

Amplitude (mV)
-
o
s

-
=]
L L

-1980

1

Amplitude (ADC counts)

-2000

T

-2020

-2040

RAARR W

P I ISR | S T N S T TR N S S T N S S R N T W S |
0D 800 1000 0 200 200 600 00 1000
DRS bin (@2 GHz) DRS bin (@2 GHz)

I R R
200 400

Abbildung 10.1: Event vor (links) und nach (rechts) der DRS Kalibrierung. Die Spitzen entspre-
chen den Signalen einer einzelnen Fotodiode. Quelle: [6]

10.5 Aux-Daten

von Alexander Bainczyk

Neben den eigentlichen Rohdaten werden von verschiedenen weiteren Sensoren Daten auf-
genommen, die dabei helfen sollen, die Rohdaten besser zu interpretieren oder Anpassun-
gen an dem Messvorgang zur Laufzeit durchzufiithren. Diese Hilfsdaten (Auxiliary Data)
werden je nach Sensor in bestimmten Intervallen im FITS-Format abgespeichert und bein-
halten zum Beispiel Informationen iiber Wetter- und Sichtverhéltnisse zum Zeitpunkt einer
Aufnahmereihe. So kénnen etwa Informationen iiber die Wolkendichte oder Nebel von In-
teresse sein, da bei dichtem Himmel, schlechten Sichtverhéltnissen oder Schneefall nur
ein Bruchteil des Cherenkov-Lichts am Teleskop ankommt. Weiterhin kann beispielswei-
se Regen einen Wasserfilm auf der Kamera hinterlassen, der eingehendes Licht reflektiert
und starker Wind kann die Lage des Teleskops verédndern, sodass Anpassungen an dessen

Antriebssystem gemacht werden konnen [69].

Fiir den Anwendungsfall sind die Aux-Daten insofern interessant, als dass man durch deren
Indexierung in einer Datenbank eine genauere Eventselektion und Eventanalyse erreichen

kann. So kénnen zum Beispiel Anfragen der Art ,Finde alle Events aus Nacht n, wo die

100 KAPITEL 10. DATENBESCHREIBUNG

20130921: Humidity

0,40 0,45 0,50 0,55 0,60 0,65
Time (2013-9-21 7:3:0.0 - 2013-9-22 6:58:0.0)

20130921: Humidity

0,40 045 0,50 0,55 0,60 0,65)) k \f)) N 1,05
Time (2013-9-21 6:58:29.0 - 2013-9-22 6:58:59.0)

Abbildung 10.2: Statistik zur Luftfeuchtigkeit in der Nacht des 21.09.2013 aufgenommen von
zwel Sensoren: TNG (oben) und MAGIC (unten)

Temperatur unter y°C liegt”“ gestellt werden, um bessere Modelle fiir maschinelle Lern-
verfahren zu erzeugen. Bei Anfragen dieser Art werden geeignete Strategien benotigt, um
Event-Daten und Aux-Daten zusammenzufiithren, da nicht sichergestellt werden kann, dass
zum Zeitpunkt t. der Aufnahme eines Events e auch Sensordaten aufgezeichnet wurden.
Meistens befindet sich ¢, ndmlich irgendwo zwischen zwei aufgezeichneten AuzPoints a;
und a;, also t,, <t. <1, i In solchen Féllen wird e mit dem AuxPoint zusammengefiihrt,

dessen Aufnahme am néchsten an ¢, liegt, um moglichst genaue Informationen zu erhalten.

Fiir Analysezwecke wurde von uns ein Tool (AuzViewer) entwickelt, mit dessen Hilfe sich
Diagramme indizierter Aux-Daten fiir eine bestimmte Nacht generieren lassen. Eine bei-
spielhafte Analyse der Wetterdaten ergab, dass verschiedene Sensoren unterschiedliche
Aufnahmeintervalle haben, wie die Statistiken zur gemessenen Luftfeuchtigkeit einer Nacht
in Abbildung 10.2 zeigt. Fiir eine genauere Eventselektion gilt es also herauszufinden,
welche Sensordaten besser geeignet sind, falls verschiedene Sensoren das selbe Merkmal

aufzeichnen.

Eine stichprobenartige Uberpriifungen mehrerer Sensoren zu unterschiedlichen Néchten
zeigte weiterhin, dass die Sensoren anscheinend zuverlédssig arbeiten. Die Werte werden in
regelméafigen Abstdnden ausgelesen, Definitionsliicken durch Ausfille wurden nicht ver-
zeichnet und Sensoren, die dasselbe Merkmal aufnehmen, liefern in etwa die selben Werte
(siche z.B. Abbildung 10.2).

Kapitel 11

Analyse mit den FACT Tools

von David Sturm

Fiir die Verarbeitung von FITS-Dateien (siehe Kapitel 10), die mit Hilfe des FACT-
Teleskops aufgenommen werden, wurden die FACT-Tools implementiert. Das ist eine Er-

weiterung des streams-Frameworks.

Bei den FACT-Tools [22] wurden Inputs und Funktionalitdten fiir streams implemen-
tiert, die fiir die Verarbeitung der Rohdaten notwendig sind. Dabei wurde z.B. ein Stream
fact.io.fitsStream implementiert, der in der Lage ist eine FITS-Datei von einem In-
put zu lesen. Dariiberhinaus erméglichen die FACT-Tools, eine Datenanalyse mit allen
Schritten, die in diesem Abschnitt erldutert werden, durchzufithren. Dazu gehoéren alle

Vorverarbeitungsschritte sowie das Einbinden von Bibliotheken fiir maschinelles Lernen.

11.1 Analysekette

von Mohamed Asmi

Die von dem FACT-Teleskop erzeugten Daten werden fiir die Erforschung der Gamma-
strahlen mit verschiedenen Methoden des maschinellen Lernens analysiert. In diesem Ab-
schnitt werden wir die Analysekette der Daten von der Aufnahme der Daten bis zu den

ersten Ergebnissen der Datenanalyse betrachten.

Die Datenanalyse kann dabei in drei Schritte unterteilt werden: Datensammlung, Daten-

vorverarbeitung und Datenanalyse.

11.1.1 Datensammlung

Bei dem Eintreten eines Teilchen in die Atmosphére wird ein Schauer erzeugt. Der Schauer
entsteht durch die Interaktion des Teilchens mit Elementen in der Atmosphére. Dieser
Schauer strahlt ein Licht aus, das von den Kameras des FACT-Teleskops aufgenommen

wird. Die entstandenen Bilder werden in den FITS-Dateien gespeichert.

101

102 KAPITEL 11. ANALYSE MIT DEN FACT TOOLS

Dabei werden nicht nur die Bilder des Schauers gespeichert, sondern auch andere niitzliche
Informationen wie zum Beispiel die Rauschfaktoren, die Starke des Mondlichts und anderer
Lichtquellen etc. Diese Informationen kénnen spéter bei der Auswertung der Daten von

grofiter Wichtigkeit sein.

11.1.2 Datenvorverarbeitung

Nach der Datensammlung werden nun die Vorverarbeitungsschritte mithilfe der FACT-
Tools durchgefiihrt. Darunter fallen zum Beispiel das Imagecleaning, das Kalibrieren der

Daten sowie das Extrahieren von Features.

Unter Imagecleaning versteht man das Filtern der Rauschinformation. Es wird ermittelt,
welche Pixel der Aufnahme iiberhaupt Teil des Schauers sind. Alle anderen Pixel werden
entfernt. So wird vermieden, dass wertlose Informationen gespeichert werden, die unsere

Datenmenge noch zusétzlich vergréfiern.

Als Néchstes wird die Datenanalyse durchgefithrt. Da nicht alle Attribute gleich wichtig
sind, wird zuerst eine Feature- Extraktion durchgefithrt. Dabei wird ermittelt, welche haben
die Attributen auf die gesamten Daten. Mit den FACT-Tools ist man in der Lage, so eine

Feature-Extraktion durchzufithren.

Die FACT-Tools bieten allerdings nicht nur diese Verarbeitungsschritte an, sondern kénnen,
je nach Analyseaufgabe, auch verschiedene andere Vorverarbeitungsschritte durchfithren
[22]. Ist die Datenvorverarbeitung abgeschlossen, kann mit der eigentlichen Datenanalyse

begonnen werden.

11.1.3 Datenanalyse

Die Datenanalyse besteht in unserem Fall aus der Separation der Gamma- und Hadron-

Strahlen sowie der Energie Einschdtzung der Gammastrahlen.

Gamma- /Hadron-Separation: Durch das Anwenden von Klassifikationsverfahren,
zum Beispiel RandomForest, konnen Gamma-Strahlen von anderen Events unterschieden
werden. Die Modelle werden dabei mithilfe der simulierten Daten (Monte-Carlo-Daten)

Abschnitt 10.3 trainiert. Danach werden sie auf die ,echten” Teleskop-Daten angewendet.

Energie-Einschitzung: Mithilfe der Spektrumskurve und den aus der Datenanalyse

gewonnen Informationen kann nun die emittierte Energie vorhergesagt werden.

Der Ablauf der Analysekette wird in Abbildung 11.1 veranschaulicht.

11.2. GRENZEN VON STREAMS 103

Datensammeln ‘||- Vorverarbeitung ‘“- (laatf?andaElvse
assitikation un nergie-

fi i FACT-Tool
(Aufnehmen und speichern) | (FACT-Tools) | Einschatzung)

Abbildung 11.1: Analysekette

11.2 Grenzen von streams

von Mohamed Asmi

Das FACT-Teleskop sammelt jede Nacht neue Daten, weshalb die Grofle der gesammelten
Daten sehr schnell wichst. Die Analyse dieser Daten ist also ein Big-Data Problem und

es ist daher nicht sinnvoll sie auf einem einzelnen Rechner durchzufiihren.

Da das streams-Framework von sich aus nicht verteilt ausfithrbar ist, stofit es deshalb
bei dieser Datenmenge an seine Grenzen. Auch unsere Experimente haben gezeigt, dass
auch bei Ausfithrung der FACT-Tools auf einem Rechencluster die einzelnen Prozessoren
immer sequentiell ausgefithrt wurden. Daher wiirde eine interne verteilte Ausfithrung der
Prozessoren vom streams-Framework nicht gewéhrleistet. Deshalb scheint das streams-

Framework bzw. die FACT-Tools fiir unsere Aufgabe zunéchst ungeeignet.

Die Aufgabe der PG wird von daher sein, eine Erweiterung der FACT-Tools zu implemen-
tieren, die das Parallelisieren von Prozessen und somit das Ausfiithren der FACT-Tools
auf einem Cluster erlaubt. Dies wiirde es erlauben, die FACT-Tools zur Bearbeitung von
groflen Datenmengen zu nutzen. Eine solche Erweiterung besteht bereits fiir Apache Storm,

in dieser PG soll jedoch eine Spark-Erweiterung fiir die FACT-Tools entwickelt werden.

Der Grund dafiir ist, dass man die Ergebnisse von verschiedenens Einsétzen vergleichen

kann.

Teil IV

Architektur und Umsetzung

105

Kapitel 12

Komponenten und Architektur

von Karl Stelzner

Bei Betrachtung der zu analysierenden Daten (Kapitel 10) wird deutlich, dass zur Um-
setzung der in Kapitel 9 spezifizierten Ziele ein Big Data-System benétigt wird. Mehrere
Eigenschaften von Big Data (vgl. Kapitel 3) treffen auf die Problemstellung zu:

e Volume. Die Menge der Daten tiberschreitet mit teilweise hunderten Gigabyte pro

Tag das, was von herkdmmlichen Systemen gestemmt werden kann.

e Velocity. Das FACT-Teleskop zeichnet kontinuierlich Daten auf und diese sollen

idealerweise in Echtzeit verarbeitet werden.

e Variety. Wie in Kapitel 10 gesehen, werden von verschiedensten Sensoren Daten

gesammelt, die anschliefend in der Analyse kombiniert werden miissen.

Unser System basiert daher auf der in Kapitel 4 vorgestellten Lambda-Architektur fir
Big-Data-Systeme. Eine Ubersicht iiber die verwendeten Software-Komponenten ist in
Abbildung 12.1 dargestellt.

Den Kern des Systems bildet ein Apache Hadoop Cluster (vgl. Abschnitt 5.1). Dieser bietet
zum einen das verteilte Dateisystem HDFS, mit dem grofle Datenmengen redundant und
effizient abrufbar gespeichert werden kénnen. Auf Grund dieser Eigenschaften wird es von
uns zur Ablage der Rohdaten, also der in Kapitel 10 beschriebenen FITS-Dateien, verwen-
det. Um diese Daten und etwaige Zwischenergebnisse allerdings durchsuchbar zu machen,
miissen sie indexiert werden. Hierfiir verwenden wir verschiedene Datenbanksysteme. Da
die genaue Auspriagung der zu speichernden Daten und der zu erwartenden Anfragen noch
unklar ist, haben wir uns nicht auf ein System festgelegt, sondern verschiedene Lésungen

implementiert. Diese werden in Kapitel 13 vorgestellt.

Zum anderen bildet Hadoop auch die Grundlage fiir das verteilte Rechnen auf dem Clu-
ster, da es liber den Ressourcen-Manager YARN die Moglichkeit bietet, verschiedenartige
verteilte Rechenaufgaben auf dem Cluster auszufiihren. Fiir die Batchverarbeitung ver-
wenden wir das Cluster Computing Framework Apache Spark, welches es erlaubt, verteilte

Datensétze iiber den Hadoop Cluster zu verarbeiten (vgl. Abschnitt 5.2).

107

108 KAPITEL 12. KOMPONENTEN UND ARCHITEKTUR

Benutzer

REST-API

streams-Erw.

Verteilte ML-
Prozesse Integration

streams fact-tools

Apache Spark
DB &
vent-Index hd
S Features e M Apache Hadoop

Service Layer Batch Layer

Abbildung 12.1: Uberblick iiber die verwendeten Software-Komponenten

Um die verteilte Ausfiihrung moglichst vieler Analyseaufgaben zu ermoglichen, erweitern
wir das streams-Framework (vgl. Abschnitt 6.4) zur Ausfiihrung unter Apache Spark. Die-
ser Ansatz hat den Vorteil, dass die von streams vorgesehene XML-Schnittstelle zur Spe-
zifikation von beliebigen Analyseprozessen auch fiir die verteilte Ausfiihrung verwendet
werden kann. Insbesondere kann die Analysekette zur Vorverarbeitung der Teleskopda-
ten (siehe Unterabschnitt 11.1.2) mit geringen Anpassungen auf dem Cluster ausgefiihrt
werden. Um das zu erreichen, fithrt unsere Erweiterung die Moglichkeit ein, Prozesse
als verteilt zu definieren, sodass diese dann verteilt auf dem Cluster ausgefiihrt werden.
Zusétzlich integriert unsere Erweiterung die von Spark zur Verfiigung gestellte Bibliothek
fiir maschinelles Lernen in das streams-Framework. Damit lassen sich Lern- und Klassifika-
tionsaufgaben via XML definieren, sodass auch die ML-basierte Analyse der Teleskopdaten
(vgl. Unterabschnitt 11.1.3) tiber dieselbe Schnittstelle spezifiziert werden kann. Néheres
zur Implementierung und zu den Anderungen an der XML-Schnittstelle wird in Kapitel 15

erlautert.

Um dem Benutzer eine einheitliche Schnittstelle zu unserem System zu bieten, verwenden
wir eine REST-API (vgl. Abschnitt 7.2). Diese versteckt einerseits die unterschiedlichen
Anfragesprachen der Datenbanksysteme hinter einer gemeinsamen Schnittstelle und er-
laubt es dem Benutzer andererseits, Anfragen iiber ein Webinterface zu stellen. Details

zur Implementierung der API werden in Kapitel 14 beschrieben.

Ein Speed-Layer zur Verarbeitung von Daten in Echtzeit ist von uns bisher noch nicht

109

umgesetzt worden. Denkbar wére hierzu die Nutzung einer der in Kapitel 6 vorgestellten

Technologien. Dies wird ein Fokus unserer Arbeit im kommenden Semester sein.

Kapitel 13

Indexierung der Rohdaten

von Karl Stelzner

Der Ausgangspunkt fiir unsere Datenanalyse sind die vielen Hundert Gigabyte von Roh-
daten, die im FITS-Format vorliegen und von uns in dem verteilten Dateisystem HDFS
abgelegt wurden (vgl. Kapitel 10). Unser System soll dem Nutzer erlauben, anhand von
Suchanfragen bestimmte Teildatensétze daraus auszuwéhlen, um diese dann weiterzuver-
arbeiten. Diese Anfragen beziehen sich nicht auf die vom Teleskop gemachten Bilder selbst,
sondern auf die Metadaten zu diesen Bildern, also etwa den Zeitpunkt der Aufnahme, die

Ausrichtung des Teleskops, oder die Auflentemperatur.

Eine effiziente Bearbeitung solcher Anfragen ist nur dann mdoglich, wenn diese Daten in
einer fiir die Suche geeigneten Datenstruktur vorliegen. Andernfalls miisste fiir jede An-
frage der gesamte Datensatz durchlaufen werden. Aus diesem Grund indexieren wir die
Metadaten mit Hilfe von Datenbanksystemen. Ausgenommen sind hierbei die eigentlichen
Bilddaten, welche einen Grofiteil der Datenmenge ausmachen, jedoch fiir die Auswertung
der Suchanfragen nicht relevant sind. Zweck der Datenbanken ist es, die Menge der auf-
gezeichneten Datenpunkte (Events) zu finden, die den durch den Nutzer formulierten
Bedingungen geniigen. Anschliefend kénnen dann gezielt die zugehorigen Bilddaten aus

dem HDFS geladen und weiterverarbeitet werden.

Die drei von uns verwendeten Systeme sind die dokumentenbasierte verteilte Datenbank
MongoDB, die verteilte Suchmaschine ElasticSearch, und die relationale Datenbank Post-
greSQL. Die Art und Weise, wie wir jedes dieser Systeme auf das Problem angewendet

haben, wird im Folgenden erlautert.

13.1 MongoDB

von Christian Pfeiffer

Das Ziel, einen Index fiir die Rohdaten zu erstellen, kann in MongoDB (siehe Unter-
abschnitt 7.1.1) auf sehr unterschiedliche Art und Weise erreicht werden. Eine mogliche

Realisierung besteht in dem Anlegen einer Collection, die fiir jedes Event ein einzelnes

111

112 KAPITEL 13. INDEXIERUNG DER ROHDATEN

Dokument besitzt. Genauso gut ist es moglich, mehrere Events zu aggregieren und als ein

Dokument zu speichern. Wir gehen im Folgenden auf beide Varianten ein.

Ein Dokument pro Event. Dieser Ansatz ist sehr naheliegend und nutzt die simple
key-value-Struktur der JSON-Dokumente. Ein grofler Vorteil liegt in dem einfachen Hin-
zufiigen von zusétzlichen Attributen, wenn weitere Informationen zu den Events gespei-
chert werden sollen. Diese flache Dokumentenstruktur fithrt auch zu sehr iibersichtlichen
Suchanfragen, da eine Suchanfrage bei MongoDB ebenfalls ein JSON-Objekt ist, das die

selbe Struktur wie das Dokument besitzt.

Aggregation von mehreren Events. Ein MongoDB-Dokument darf Arrays, einge-
bettete Dokumente sowie Arrays von eingebetteten Dokumenten beinhalten. Daher ist es
moglich, mehrere Events in einem Dokument zusammenzufassen. Dabei kann die Gra-
nularitdt frei gewahlt werden. So kénnen zum Beispiel fiir jede Sekunde alle Events, die
in dieser Sekunde aufgenommen wurden, zu einem Dokument zusammengefasst werden.
Durch Aggregation sinkt die Anzahl der Dokumente in der Collection, wodurch die Grofie
der Indices sinkt. Auflerdem liegen dann die Events, die in der gleichen Sekunde aufgenom-
men wurden, in der gleichen Datei. Wenn also oft Events aus einem zusammenhéngenden
Zeitraum angefragt werden, sinkt die Anzahl der zu durchsuchenden Dokumente, was die

Performanz vermutlich erhoht. Dafiir steigt aber auch die Komplexitiat der Suchanfragen.

Beide Varianten der Indexierung wurden von uns mit Hilfe des streams Frameworks imple-
mentiert. Bei den bisher durchgefithrten Tests wurde die MongoDB bisher nur auf einem
einzelnen Knoten gestartet, weshalb noch keine abschlieende Beurteilung moglich ist. Es
hat sich insbesondere bei der Variante ,Ein Dokument pro Event* gezeigt, dass der Job
mehr Zeit in Anspruch nimmt, als es fiir das reine Auslesen der Ursprungsdateien nétig

wére. Dieses Problem koénnte durch ein verteiltes Setup der Datenbank gelost werden.

Dariiber hinaus ist es uns gelungen, die Aux-Daten in die indexierten Meta-Daten zu inte-
grieren. Dabei wurde die in Abschnitt 10.5 erlduterte Strategie zum Finden des passenden
Messwertes fiir ein Event eingesetzt. Weitere Experimente zur Performance des Indexie-
rungsvorgangs sowie zur Suchgeschwindigkeit innerhalb der Indexdatenstrukturen folgen

im zweiten PG-Semester.

13.2 Elasticsearch

von Lea Schénberger

Um die Performanz verschiedener Datenbanken hinsichtlich des Anwendungsfalles die-
ser Projektgruppe gegeneinander abwégen zu konnen, wird als zweite Persistenzlosung
Elasticsearch eingesetzt. Der Cluster pgd94-cluster gliedert sich in drei Indizes, ndmlich

metadataindex, drsinder und auxinder. Der metadatainder enthilt Dokumente des Typs

13.3. POSTGRESQL 113

metadata, in denen die Metadaten zu den jeweiligen Events abgelegt sind. Im drsindex
befinden sich die Kalibrationsdaten aus den DRS-Dateien und im auzindex in analoger
Weise die in den AUX-Dateien befindlichen Informationen. Fiir den pg594-cluster wird
Elasticsearch momentan lediglich auf einem einzigen Rechenknoten betrieben, dies soll
sich jedoch kiinftig &ndern, sodass auf jedem verfiigharen Knoten des Clusters des Son-

derforschungsbereiches 876 ein Elasticsearch-Node betrieben wird.

13.3 PostgreSQL

von Karl Stelzner

Als dritte mogliche Losung haben wir ein PostgreSQL System aufgesetzt, also ein her-
kommliches relationales Datenbankmanagementsystem (vgl. Unterabschnitt 7.1.4). Dies
ist unter anderem dadurch motiviert, dass die Grofie der Metadaten sich in Grenzen hélt.
Es ist anzunehmen, dass der verbrauchte Speicherplatz pro Event, selbst mit zusétzlichen
Aux-Daten und berechneten Features, 2 KB nicht iiberschreiten wird. Fur die zwei Mil-
lionen Events, die aktuell den Cluster fiillen, sind das gerade einmal 4 GB. Insofern ist
es durchaus realistisch, die Metadaten auch auf lange Sicht in einer monolithischen re-
lationalen Datenbank zu verwalten. Des Weiteren bietet Postgres-XL im Zweifelsfall die

Moéglichkeit, auf eine verteilte Losung umzusteigen.

Eine groflere Herausforderung stellt das Design eines Schemas dar, das alle in Zukunft
benottigten Funktionalitdten bereitstellt. Insbesondere das Abspeichern der berechneten
Features ist nicht einfach, da jederzeit neuartige Features hinzukommen kénnen. Eine
Moglichkeit, dies umzusetzen, ist, eine eins-zu-viele Relation zu verwenden, die Events
und Features verbindet. Diese wiirde allerdings dazu fiithren, dass fir viele Anfragen teu-
re Join-Operationen nétig wiren, und so die Prinzipien der dimensionalen Modellierung
verletzen (vgl. Unterabschnitt 7.1.4). Eine andere Moglichkeit ist der Einsatz des JSON-
Datentyps, den PostgreSQL anbietet. Neue Features konnten dann einfach in bestehende
Tabellenzeilen eingefiigt werden. Wie performant und skalierbar diese Losung ist, muss

noch getestet werden.

Als erstes Experiment haben wir eine Tabelle fur die Metadaten erstellt, und diese mit
dem selben Inhalt wie die MongoDB befiillt. Die Ergebnisse des Leistungsvergleichs finden
sich in Abschnitt 17.1.

Kapitel 14

Umsetzung der RESTful API

14.1 Design

von Alexander Schieweck

Zur Umsetzung der RESTful APT (vgl. Abschnitt 7.2) ist es zunéchst wichtig, diese Schnitt-
stelle zu planen. Dazu werden wir die notwendigen URLs festlegen und das Format der
Daten definieren. Weiterhin wird beschrieben, wie diese Informationen auch auflerhalb

dieses Berichts dokumentiert wurden. [68]

14.1.1 Endpunkte

von Alexander Bainczyk

Die Endpunkte der REST API sind so gewéhlt, dass der Zugriff auf indizierte Daten in den
in der PG genutzten Datenbanken (MongoDB, Elasticsearch und PostgreSQL) einheitlich
verlauft. Wie bereits im vorigen Abschnitt beschrieben, sind zum Zeitpunkt des Schreibens

noch keine Endpunkte fiir die PostgreSQL Datenbank realisiert.

URL GET-Parameter
GET /api/mg/events format, filter
GET /api/es/events format, filter

Tabelle 14.1: Schnittstellen der REST API fiir Metadaten

Die in Tabelle 14.1 aufgelisteten Schnittstellen sind fiir den Zugriff auf Metadaten von
Events konzipiert, wobei die Abkiirzung myg fir die MongoDB- und es fiir die Elasticsearch-
Datenbank steht. Die Angabe der GET-Parameter ist optional. Hierbei kann iiber format
das Riickgabeformat einer Antwort bestimmt werden (s. Unterabschnitt 14.1.2). Uber den
Parameter filter lasst sich ein Filterausdruck iibergeben, mit dem die Metadaten selektiert
werden kénnen (s. Unterabschnitt 14.2.2).

115

OO URWN -

116 KAPITEL 14. UMSETZUNG DER RESTFUL API

"EVENTNUM”: ”4”, 1 |
?TRIGGERNUM”: 747, 2 {
PNIGHT”: 7201309217, 3 ?path”: ”.../hdfs/fact/raw /2013/08/21/....fits.gz”,
4 ?eventNums”: [20, 22, 24, 50, ...]”

} 5 s

{ 6 {
"EVENTNUM”: 757, 7 ?path”: ”.../hdfs/fact/raw/2013/09/06/....fits.gz”,
"TRIGGERINUM”: 747, 8 ”eventNums”: [2, 22, 120, 121, ...]”
PNIGHT”: 7201309217, 9 1,

10
} 1
]
(a) JSON (b) Minimal

Abbildung 14.1: Die Riickgabeformate der REST API

14.1.2 Riickgabeformate

von Alexander Bainczyk

Die Ausgabe von Anfragen, die iiber die REST API gestellt werden, kénnen fiir verschie-
dene Zwecke anders formatiert werden. Das Riickgabeformat ldsst sich dabei mit dem
GET-Parameter format tiber die URL festlegen. Mogliche Werte fiir diesen Parameter
sind json und min. Falls der Formatierungsparameter nicht iibergeben wird, wird der
Wert standardméflig auf json gesetzt. Das Riickgabeformat ermoglicht so ein einheitliches
Format, sodass Anfragen unabhéngig von der angesprochenen Datenbank eine einheitli-
che Antwort erzeugen. Eine Beschreibung der unterschiedlichen Formate sowie mdogliche

Beispiele zur Benutzung und mogliche Ausgaben ist im Folgenden gegeben.

JSON Eine Anfrage, die den Parameter format=json tibergibt, bekommt als Antwort
eine Liste aller Events mit allen Attributen, wie sie in der Datenbank vorkommen, im
JSON-Format. Dadurch wird ein direkter Zugriff auf die indexierten Metadaten erméglicht.
Eine beispielhafter Request an die API kénnte wie folgt aussehen:

GET http://[...]/api/mg/events/ filter=|...]&format=json

Die Antwort wiirde in diesem Fall aussehen, wie in Abbildung 14.1a gezeigt, wobei die Fel-
der ,EVENT _NUM*“, ,TRIGGER_NUM*“ und ,NIGHT* den Namen der entsprechenden

Dokumenten in der Datenbank entsprechen.

Minimal Anstatt alle Felder der Metadaten zuriickzugeben, besteht der Sinn dieses
Parameters darin, an die eigentlichen Rohdaten zu kommen, die zu dem in der URL
gegebenen Filterausdruck passen. Wie in Abbildung 14.1b zu sehen, wird die Antwort
ebenfalls im JSON Format zuriickgegeben. Zu jedem Event, das auf den Filter zutrifft,
wird die Event-Nummer innerhalb der entsprechenden FITS-Datei in eine Liste eingefiigt.

Ein HTTP Request sollte nach folgendem Muster gestellt werden:

14.2. IMPLEMENTIERUNG 117

GET http://[...]/api/mg/events/?filter=|...|&format=min

Dieser Parameter eignet sich insbesondere fiir den Fall, zu einer gestellten Anfrage die
Rohdaten aus den fits Dateien zu erhalten, um diese anschliefend in einem Stream zu
verarbeiten. Durch der Angabe der einzelnen Event-Nummern kann im Stream innerhalb

einer fits-Datei genau nach passenden Events gesucht werden.

14.1.3 Dokumentation

von Alexander Schieweck

Da diese API nicht nur von Mitgliedern dieser PG verwendet werden soll, ist eine gute
Dokumentation unerlésslich. Natiirlich erfiillt dieser Bericht auch diese Funktion, jedoch

wére es wilnschenswert die Dokumentation niher an die Anwendung zu bringen.

Um diese Anforderungen zu erfiillen, wurde sich fiir das Swagger Projekt! entschieden.
Dort wurde eine Spezifikation, die mittlerweile von der Open API Initative? betreut wird,
entwickelt, mit der sich RESTful APIs mithilfe von JSON beschreiben lassen3. Rund um
diese Dokumentation sind unterschiedliche Tools entstanden?, z.B. ein Text-Editor, um
das JSON, welches die API beschreibt, einfacher bearbeiten zu kénnen®. Noch hilfreicher
ist jedoch die Swagger UI®, die aus der JSON-Definition eine dynamische Website gene-
riert, welche die Dokumentation iibersichtlich und mit einer modernen Oberfliche anzeigt.
Dariiber hinaus kann man die angegebenen REST-Endpunkte auch direkt ansprechen und
bekommt die Anfrage- und Antwort-Informationen detailliert prisentiert (vgl. Screens-
hot). Diese Website kann nun mit zusammen mit der eigentlichen API auf einem Server

bereitgestellt werden.

14.2 Implementierung

14.2.1 Spring Framework

Bei der Implementierung der RESTful API wurde das Spring-Framework verwendet. Dabei
handelt es sich um ein sich aus verschiedenen, separat nutzbaren Modulen bestehendes
OpenSource-Framework fiir die Java-Plattform. Fiir den Einsatz in dieser Projektgruppe
wurden aus dem vielfdltigen Angebot an Modulen des Spring-Frameworks Spring Boot
sowie Spring Data fiir Elasticsearch und MongoDB ausgewahlt, welche im Folgenden néher

erlautert werden.

Thttp://swagger.io

https://openapis.org/
3https://github.com/OAI/OpenAPI-Specification
“http://swagger.io/open-source-integrations
®http://swagger.io/swagger-editor
Shttp://swagger.io/swagger-ui

OO Uk W

=
N = O

118 KAPITEL 14. UMSETZUNG DER RESTFUL API

Spring Boot Spring Boot ermdéglicht es, auf einfache Weise und mit minimalem Kon-
figurationsaufwand Stand-Alone-Anwendungen zu entwickeln. Bei mit Spring Boot ent-
wickelten Anwendungen entfillt zum FEinen jegliche iiber die pom.xml herausgehende
XML-Konfiguration sowie zum Anderen die Notwendigkeit, die Anwendung als War-File
zu deployen, da Spring Boot bereits einen Application-Server - wahlweise Tomcat, Jetty

oder Undertow - mitliefert, sodass die Anwendung nur noch gestartet werden muss.

Zur Einbindung von Spring Boot miissen lediglich die benétigten Dependencies zur Pro-
jektkonfigurationsdatei des entsprechenden Dependency-Management-Systems hinzugefiigt

werden.

<parent>
<groupld>org.springframework.boot</groupld>
<artifactId >spring—boot—starter —parent</artifactld >
<version >1.3.3.RELEASE</version>
</parent>
<dependencies>
<dependency>
<groupld>org.springframework .boot</groupId>
<artifactId >spring—boot—starter —web</artifactId >
</dependency>
</dependencies>

Listing 14.1: Einbindung von Spring Boot mittels Maven durch Hinzufiigen der Dependencies

zur pom.xml

Das Herzstiick einer mit Spring Boot entwickelten Anwendung ist die Application-Klasse,
die im Falle der REST API folgendermaflen aussieht:

OSpringBootApplication
public class Application {
public static void main(Stringl[] args) {

SpringApplication.run(Application.class, args);

Listing 14.2: Application-Klasse bei Spring Boot

Die Annotation @QSpringBootApplication deklariert die Anwendung als Spring Boot

Application und ermoglicht den Einsatz folgender weiterer Annotationen:
e Durch die Annotation @Configuration wird eine annotierte Klasse als mogliche
Quelle fiir Bean-Definitionen im Application-Context erkannt.

e Die Annotation @QEnableAutoConfiguration ermoglicht, wie der Name bereits er-

kennen ldsst, eine automatisierte Spring-Konfiguration, im Zuge welcher Beans auf

14.2. IMPLEMENTIERUNG 119

Basis von Classpath-Settings generiert sowie diverse weitere Einstellungen vorgenom-
men werden. Das vollstindige Funktionsspektrum kann in der Online-Dokumentation”

nachgelesen werden.

e Falls von Spring Boot eine entsprechende Dependency in der Projektkonfigurations-
datei des Dependency-Management-Systems erkannt wurde, wird die Anwendung

automatisch als Web-Anwendung gekennzeichnet.

e Durch Einsatz der Annotation @QComponentScan sucht Spring Boot automatisiert

nach weiteren Komponenten, Services sowie Konfigurationsdateien.

Die main ()-Methode der Application-Klasse nutzt Spring Boots SpringApplication.run()-
Methode, um die Anwendung zu starten, welche den Application-Context und somit auch

alle automatisiert und manuell erstellten Beans zuriickgibt.

Spring Data Bei Spring Data handelt es sich um ein Modul des Spring-Frameworks,
mittels dessen Boilerplate-Code beim Datenbank-Zugriff durch Nutzung sogenannter CRUD-
Repositories reduziert werden kann. Dieses wird nachfolgend in Kapitel 1.5.2.2 ndher in

Augenschein genommen.

14.2.2 Filterung

von Dennis Gaidel

Der Ansatz der Implementierung einer Schnittstelle mit Hilfe von REST Ressourcen basiert
auf der Uberlegung bestimmte Funktionen zu kapseln und als Services bereitzustellen, die
von anderen Teilen der Anwendung oder von auflerhalb angesprochen werden kénnen, um
z.B. die Metadaten der Events bereitzustellen, die wiederum zur Selektion von Events
genutzt werden kénnen, die bestimmten Kriterien gentiigen. Im Falle der Events handelt

es sich bei den Kriterien um eine Vielzahl von Attributen, die jedes Event inne hat.

Herausforderungen Bei der Implementierung der Filterung stellen sich einem mehre-
re Herausforderungen. Die Filterung muss in der Lage sein, eine Anfragesprache (engl.
domain specific language (DSL)) verarbeiten und interpretieren zu kénnen, sodass auch
komplexere Anfragen an das System gestellt werden kénnen. Es wéire noch verhéltnisméafig
leicht gewesen, die Selektion von Events zu implementieren, deren Attribut exakt den vor-
gegebenen Werten entsprechen. Womoglich mochte der Anwender aber den Wertebereich
eines Attributs nicht auf einen bestimmten Wert, sondern auf ein Intervall eingrenzen und
womoglich sollen einige Datensétze prinzipiell ausgeschlossen werden. Und vielleicht soll
ein Wert nicht nur innerhalb eines, sondern zweier Intervalle liegen. Der Komplexitét einer

Anfrage sind je nach Anwendungsfall also keine Grenzen gesetzt und die Implementierung

"http://projects.spring.io/spring-boot/

1
2
3
4

1
2
3

© o N O

120 KAPITEL 14. UMSETZUNG DER RESTFUL API

eines geeigneten Interpreters ein anspruchsvolles Unterfangen gewesen. Es wird also eine
Anfragesprache verlangt, die zum Einen hinsichtlich der Ausdruckskraft z.B. der Daten-
banksprache SQL nahekommt und zum Anderen vom Anwender leicht anzuwenden und

somit moglichst nah an die natiirlichen Sprache angelehnt ist.

SQL (engl. Structured Query Language) ist eine Anfragesprache, die auf der relationalen
Algebra basiert und den Umgang mit den Daten eines relationalen Datenbankmanage-
mentsystems ermoglichen. Eine wichtige Komponente der SQL ist die sog. Query, die der
Beschreibung der gewiinschten Daten dient und vom Datenbanksystem interpretiert wird,
um die gewiinschten Daten bereitzustellen. Listing 14.3 stellt eine solche SQL Anfrage bei-
spielhaft dar, die den Pfad (event_path) aller Events ausgeben soll, deren Eventnummer
(event_num) entweder zwischen 5 und 10 oder zwischen 50 und 100 liegt und deren Trig-
gernummer (trigger-num) grofer als 10 ist. Bei der vorliegenden Anfrage ist die WHERE
clause von Interesse, da diese beschreibt, welche Eigenschaften die gewiinschten Events

besitzen sollen, und nach diesen Kriterien gefiltert wird.

SELECT event_path FROM events WHERE (
(event _num >= 5 AND event_num <= 10) OR
(event_num >= 50 AND event_num <= 100)

) AND trigger_num > 10

Listing 14.3: Beispiel fiir eine SQL-Anfrage

Die Ausfithrung einer tibergebenen SQL-Anfrage wére moglich, aber bringt mehrere Nach-
teile mit sich. Die Persistierungsebene wird nicht abstrahiert und der Anwender ist ge-
zwungen mit dieser insofern direkt zu interagieren, als dass er sich unnétigerweise mit
dem Aufbau des Datenbankschemas vertraut machen muss. Wie eingangs erwahnt, wer-
den mehrere Systeme zur Datenhaltung eingesetzt, die nicht allesamt auf SQL als Anfrage-
sprache setzen. MongoDB setzt ganz im Gegenteil auf ein JSON-basiertes Anfrageformat,

dessen Pendant zum o.g. SQL-Ausdruck in Listing 14.4 dargestellt wird.

{ $and: [
{ $or: [
{ event_num: { $gte: 5, $1lte: 10 }},
{ event_num: { $gte: 50, $lte: 100 }}
11,
{

trigger_num: { $gt: 10 }

14.2. IMPLEMENTIERUNG 121

Listing 14.4: Beispiel fiir eine Anfrage an eine MongoDB Datenbank

Da die REST API JSON-basiert ist und die Anfragesprache von MongoDB alle benétigten
Eigenschaften einer ausdrucksstarken Anfragesprache in Form eines JSON Dokuments
mitbringt, liegt der Gedanke nahe, diese Syntax zur Filterung der Events zu {ibernehmen.
Die Problematik bestiinde jedoch darin, diese Anfrage in das jeweilige Anfrageformat
der anderen Systeme (Elasticsearch und PostgreSQL) iibersetzen zu miissen, was einen

gewaltigen Overhead an zusétzlicher Programmierarbeit zur Folge hétte.

Es wird also eine Losung benétigt, um die Anfrage iiber den Filter moglichst automatisiert

in eine kompatible Anfrage fiir die jeweilige Engine zu tibersetzen.

Architektur Architektonisch besteht die Filterung aus drei Schichten: Schnittstelle,
Service-Layer und Persistierungs-Layer. Wie in Unterabschnitt 14.1.1 erwéhnt, steht je-
weils ein Endpunkt fiir jede Engine zur Verfiigung, der einen Filterausdruck tber die
aufgerufene URL entgegennimmt. Jeder Endpunkt bzw. jede Engine, die durch diesen
reprasentiert wird, verwendet einen eigenen Service, der die Geschéftslogik fiir die jewei-
lige Engine implementiert. Uber die Geschiftslogik der Services wird schlieflich auf den

Persistierungs-Layer zugegriffen, welcher den Zugriff auf die persistierten Daten ermoglicht.

Der Kern des Spring-Frameworks, welches in Unterabschnitt 14.2.1 eingefiihrt wurde,
kann um das Modul Spring Data JPA erweitert werden, welches auf der Java Persi-
stence API (JPA) aufbaut und die Zuordnung zwischen Java-Objekten und den persi-
stierten Daten vereinfacht. Man spricht hier auch von einem bidirektionalen Mapping, so-
dass Verdnderungen der Daten auf die korrespondierenden Java-Objekte iibertragen und
gleichzeitig Anderungen der Attribute der Java-Objekte in den Daten reflektiert werden.
Die grundlegende Idee besteht darin, sog. Repositories bereitzustellen, die als Interfaces
umgesetzt wurden und iiber die grundlegende Methoden zur Datenverarbeitung (CRUD
- Create, Read, Update, Delete) zur Verfiigung gestellt werden. Ebenso wird iiber die
Repositories der Datentyp festgelegt, der fiir das Mapping zwischen Daten und Objekten

genutzt werden soll.

Da JPA mit den verschiedensten Datenbanktreibern kompatibel ist und die Repositories
fiir alle drei Datenbankengines genutzt werden kénnen, wurde der Zugriff auf die Persi-
stierungsebene vereinheitlicht. Diese Vereinheitlichung stellt auch die Grundlage fiir eine

einheitliche Losung zur Filterung von Eventdaten dar.

Um die Events filtern zu konnen, wird das Framework QueryDSL 8 eingesetzt, das typ-
sichere, SQL-8hnliche Anfragen an unterschiedliche Datenquellen, wie JPA, MongoDB,
SQL, Java Collections u.v.m. ermdglicht. Dabei ist das Format der Anfrage unabhéngig

von der verwendeten Datenquelle und somit die Anwendung des Filters vereinheitlicht.

Shttps://github.com/querydsl/querydsl

https://github.com/querydsl/querydsl

122 KAPITEL 14. UMSETZUNG DER RESTFUL API

Implementierung Fiir jedes Datenbanksystem steht ein dedizierter Service zur Verfiigung,
der die Businesslogik kapselt. Dabei soll die Filterung der Events unabhingig vom ver-
wendeten System sein bzw. jedes System die Filterung unterstiitzen. Zu diesem Zweck
implementieren alle Services ein Interface, welches die Methode zur Filterung der Events
definiert (vgl. Listing 14.5).

public interface EventService {

Iterable<Metadata> filterEvents(String filterExpression);

Listing 14.5: Service Interface

Dem Riickgabewert der Methode filterEvents(...) ist ein Iterable des Datentyps
Metadata. Metadata ist ein sog. POJO (Plain Old Java Object), welches die Metadaten
der Events aus der Datenbank als Java-Objekt reprasentiert. Somit ist die Klasse Metadata
auch diejenige Klasse, die von QueryDSL modifiziert wird, um entsprechende Anfragen an
eine Liste mit Instanzen dieser Klasse stellen zu kénnen. Eine Anfrage konnte beispielsweise

wie in Listing 14.6 aussehen.

((
eventNum.gte (5) .and (eventNum.1lte (10))
) .or(
eventNum.gte (50) .and(eventNum.1lte (100))
)) .and(
triggerNum.gt (10)
)

Listing 14.6: Anfrage

Hier représentieren eventNum und triggerNum Attribute der Klasse Metadata, die aber in
dem POJO als Integer definiert sind und somit nicht iiber die Methoden gte (), 1te o.A.
verfiigen. Mittels eines Praprozessors wird beim Bauen des Projekts eine Klasse QMetada-
ta.class erzeugt, die die Attribute der Klasse um die entsprechenden Methoden erweitert,
die Anfragen, wie die o.g. erlauben. Ebenso wird durch das Beispiel ersichtlich, dass es
sich hierbei um Methodenaufrufe auf einem Java-Objekt handelt, jedoch der Anfrage zur

Filterung der Events als String iibergeben wird (vgl. Listing 14.5).

Der Ausdruck muss also zur Laufzeit in ausfithrbaren Java-Code iibersetzt werden, was

mittels der Ausdruckssprache MVEL 9 erreicht wird. Diese Ausdruckssprache ist an die

‘https://github.com/mvel/mvel

https://github.com/mvel/mvel

14.2. IMPLEMENTIERUNG 123

Java-Syntax angelehnt, sodass der String mit dem Filterausdruck &dquivalent zu Java-
Code ist. Um nun ein Predicate-Objekt zu erhalten, welches vom QueryDSL-Framework
benétigt wird, um die Abfrage an die Datenbank zu stellen, wird eine Java-HashMap er-
stellt, der als Schliissel giiltige Variablennamen iibergeben werden, die in dem Ausdruck
vorkommen diirfen, sowie deren entsprechendes Klassenattribut als Wert, wie man es bei-
spielhaft in Listing 14.7 nachvollziehen kann. MVEL wertet den Ausdruck aus, ordnet die
Variablen im Ausdruck denen der Zielklasse zu und erzeugt das gewiinschte Objekt, in

diesem Fall das Predicate.

public static Predicate toPredicate(final String
filterExpression){
Map<String, Object> vars = new HashMap<>();
vars.put ("eventNum", (QMetadata.metadata.eventNum) ;

vars.put ("triggerNum", (QMetadata.metadata.triggerNum);

return (Predicate) MVEL.eval(filterExpression, vars);

Listing 14.7: Evaluation der Anfrage

Nach der Erzeugung des Predicate Objekts kann dieses an das entsprechende Repository
iibergeben werden, wie es beispielsweise in Listing 14.8 umgesetzt wurde. Die Methode
findA11(...) dient der Suche aller Events (bzw. Metadaten), die dem Priadikat gentigen.

@0verride
public Iterable<Metadata> filterEvents(String
filterExpression) {
return metadataRepository.findAll (Metadata.toPredicate(

filterExpression));

Listing 14.8: Service Implementierung

Fiir gewohnlich akzeptiert diese Methode des Spring-Repositorys kein Predicate-Objekt
als Parameter. Daher muss das Repository insofern angepasst werden, als dass es ein wei-
teres Interface (QueryDslPredicateExecutor<Metadata>) implementiert, das von Que-
ryDSL bereitgestellt wird und dem Repository die Fahigkeit verleiht, Pradikate zur Fil-
terung von Datenbankeintrigen zu nutzen. Damit der QueryDslPredicateExecutor das
Pradikat fiir das jeweilige Datenbanksystem ausfithren kann, muss lediglich die entspre-

chende Maven Dependency eingebunden werden, die die nétige Logik enthélt. Eine solche

124 KAPITEL 14. UMSETZUNG DER RESTFUL API

Depedency ist fiir die populérsten Systeme vorhanden, sodass eine Integration problemlos

und schnell umgesetzt werden kann.

Ein Spring-Repository zeichnet sich dadurch aus, dass es ein Interface ist, dessen definierte
Methoden zur Ubersetzungszeit des Projekts automatisch vom Spring-Framework imple-
mentiert werden, wie dem Beispiel in Listing 14.9 zu entnehmen ist. Durch diesen Mecha-
nismus garantiert die Einbindung des QueryDs1PredicateExecutors, dass die bendtigten
Methoden wie findAll(Predicate predicate) ohne zusédtzliche Arbeit implementiert

werden.

public interface MetadataRepository extends MongoRepository<
Metadata, String>,

QueryDslPredicateExecutor <Metadata>

Listing 14.9: Metadata Repository fir die MongoDB

Fazit Mit der Kombination verschiedener Frameworks und Bibliotheken ist es gelungen,
einen Ansatz zu entwickeln, der den Zugriff auf die Persistierungsebene und die Auswer-
tung der Anfragen vereinheitlich und sich somit generisch an verschiedenste Datenbank-
systeme anpassen ldsst. Der Vorteil dieses Ansatz liegt insbesondere in der Wartbarkeit,
Anpassbarkeit und der Reduktion des Codes zur Implementierung der bendtigten Featu-
res. Im Vordergrund steht hierbei insbesondere die automatisierte Auswertung komplexerer

Anfragen zur Filterung der persistierten Daten.

Bisher wurde jedoch nur von dem Fall ausgegangen, dass der Filter korrekt angewandt
wurde. Durch eine fehlerhafte oder absichtlich boswillige Query kénnte Schadcode inji-
ziert werden, was bisher nicht tberpriift wird, sodass der aktuelle Fortschritt eher als
Proof of Concept bezeichnet werden kann. In einer weiteren Iteration miisste iiberpriift
werden, ob der iibergeben Ausdruck tatsdchlich in ein Pradikat iibersetzt werden kann
und die Eingabe auf die Pradikatausdriicke beschriankt werden. Im Fehlerfall muss mit

einer Exception o.4. reagiert werden.

Kapitel 15

Erweiterung der Streams-Architektur

von Mirko Bunse, David Sturm, Christian Pfeiffer

Analysten der FACT-Daten verwenden zurzeit das Streams-Framework [20]. Es ermog-
licht die Spezifikation einer Streaming-Applikation durch ein XML-Dokument (fir weitere
Informationen siehe Abschnitt 6.4). Da Streams den Datenanalysten bereits bekannt ist,
empfiehlt es sich, fiir die PG, auf Streams aufzubauen und die Ergebnisse als Erweiterung

des Frameworks zu konzipieren.

Mit Streams-Storm existiert bereits eine BigData-Erweiterung fiir Streams. Das dort ver-
wendete Apache Storm [10] stellt eine Infrastruktur fiir Streaming-Applikationen von
groflen Datenvolumen in Clustern dar. Wir verwenden fiir unsere Erweiterung Apache
Spark [11], welches in Hinblick auf die Geschwindigkeit ein prominenter Konkurrent von
Storm ist. Apache Spark fithrt seine Applikationen im Cluster verteilt als Batch-Jobs aus,
wobei hohe Ausfiithrungsgeschwindigkeiten durch Vorhaltung der Daten im Hauptspeicher
erreicht werden. Spark-Streaming [12] ermdoglicht dartiber hinaus Streaming- Applikationen,
indem die Daten in Ketten von Mini-Batches analysiert werden. Fiir weitere Informationen
zu Spark und Spark-Streaming siehe auch Abschnitt 5.2 und Abschnitt 6.3.

Durch die Entwicklung einer Spark-Erweiterung fiir das Streams-Framework wollen wir
feststellen, wie gut sich die beiden Ansédtze von Spark zur Analyse der FACT-Daten eignen.
Gibt es moglicherweise unterschiedliche Analysen, die durch jeweils andere Ansétze besser

abgedeckt werden?

Wir erweitern Streams um zwei Komponenten, die die Moglichkeiten von Spark ausnut-
zen. Zunéchst wollen wir eine verteilte Ausfiilhrung von Streams-Prozessen ermdoglichen.
Bisher kann ein solcher Prozess, der mehrere unabhingige Eingabestrome verarbeiten
soll, dies lediglich sequentiell tun. Es bietet sich an, diese Eingabestrome auf die Rech-
ner des Clusters zu verteilen. Zu diesem Zweck erstellen wir einen DistributedProcess
(siehe Abschnitt 15.1), welcher Spark zur Synchronisation der Ergebnisse verwendet. Er
gestaltet die verteilte Ausfithrung fiir den Autor der XML-Konfiguration weitestgehend
transparent (lediglich das distributedProcess-Tag ist statt des Streams-Tags process

zu verwenden).

125

126 KAPITEL 15. ERWEITERUNG DER STREAMS-ARCHITEKTUR

Die zweite Erweiterung von Streams zielt darauf ab, die Methoden der Machine-Learning-
Bibliothek Spark ML [9] verfiighar zu machen. Diese sind bereits fiir die Ausfithrung im
Rechencluster ausgelegt und erméglichen unter anderem das Trainieren von Vorhersage-
modellen (fiir weitere Informationen zu MLIib siche Unterabschnitt 5.2.3). Zur Anbin-
dung an MLIib stellen wir gleich mehrere neue Elemente (input, task, ...) fir XML-
Spezifikationen bereit (siehe Abschnitt 15.2). Durch diese Elemente streben wir die syn-
taktische Trennung der Batch-Algorithmen in MLIib von den bestehenden Elementen mit
Streaming-Semantik an. Unsere MLIlib-Elemente kénnen selbstverstdndlich trotzdem mit

anderen Streams-Elementen kombiniert werden.

Die Kombination der beiden Erweiterungen erlaubt es uns, innerhalb einer einzigen XML-
Konfiguration zuerst Vorverarbeitungsschritte mit verteilten Prozessen als Streams zu rea-
lisieren, als auch mit den resultierenden Features ein Modell mit MLIib einzupassen. Auf
diese Weise wird eine Basis geschaffen, mit der spater auch komplexe Abldufe modelliert

werden konnen.

15.1 Verteilte Streams-Prozesse mit Spark

von Mirko Bunse

Das fiir unsere Erweiterung verwendete Apache Spark verteilt Datenverarbeitung in Re-
chenclustern. Dieses Konzept skaliert sehr gut horizontal, d.h., die Performanz lésst sich
durch Anbindung weiterer Cluster-Knoten steigern. Da horizontale Skalierbarkeit eine
Schliisseleigenschaft von BigData-Anwendungen darstellt (siehe Abschnitt 3.3), wollen wir

die Verarbeitung der Daten im Streams-Framework geeignet mit Spark verteilen.

15.1.1 Nebenlidufigkeit der Verarbeitung

von Mirko Bunse

Im Streams-Framework werden Daten in sogenannten Prozessen verarbeitet. Ein Pro-
zess besteht dabei aus einer Kette von Prozessoren, die jeweils Datenelemente transfor-
mieren oder Seiteneffekte erzielen (wie z.B. Speicherung von Elementen oder Logging).
Jedes Datenelement durchlduft diese Verarbeitungs-Kette sequentiell. Prozessoren sind
iiblicherweise stateless, wodurch die Verarbeitung jedes Datenelementes unabhingig von

der Verarbeitung anderer Datenelemente ist (siehe Abschnitt 6.4).

Teilt man die eingehenden Datenelemente in disjunkte Teilmengen (Partitionen) auf, so
lésst sich jede dieser Partitionen unabhéngig von den anderen verarbeiten. Damit erlaubt
die Unabhéngigkeit der Datenelemente zueinander eine beliebig nebenlédufige Verarbeitung
der Daten. Mit Ausnahme der Zusammenfiihrung der Teilergebnisse ist iiberdies keine Syn-
chronisation zwischen nebenlédufigen Verarbeitungspfaden notwendig. Das Gesamtergebnis

wird durch die Vereinigung der verarbeiteten Partitionen dargestellt.

Eine verteilte Ausfithrung eines Streams-Prozess lésst sich also wie folgt umsetzen:

15.1. VERTEILTE STREAMS-PROZESSE MIT SPARK 127

e Datenelemente werden in Partitionen aufgeteilt
e Die Partitionen werden auf Worker-Nodes verteilt verarbeitet
e Die verarbeiteten Partitionen werden zum Gesamtergebnis vereinigt

Diese Erkenntnisse beschranken sich nicht auf Apache Spark. Wir werden Spark aber
verwenden, um den hier vorgestellten Ansatz der Verteilung umzusetzen (siche Unterab-
schnitt 15.1.4).

15.1.2 XML-Spezifikation verteilter Prozesse

von Mirko Bunse

Zur Spezifikation verteilter Streams-Prozesse empfiehlt es sich, moglichst nahe an iiblichen
XML-Konfigurationen fiir Streams zu bleiben. Dies erméglicht Anwendern einen schnelle-
ren Einstieg in Streams auf Spark und kann auch den Implementierungs-Aufwand senken.
Wie wir sehen werden, miissen bestehende XMIL-Konfigurationen nur minimal verdndert

werden, um unsere Erweiterung zu nutzen.

Dazu verwenden wir die bestehenden Tags stream, sink und processor aus dem Streams-
Framework wieder, sie verhalten sich damit komplett identisch zu den Framework-Tags.
Das einzig neue Tag zur Verteilung von Streams-Prozessen ist distributedProcess, was
sich von Default-Prozessen durch die Verteilung der Verarbeitung auf Worker-Knoten im

Cluster unterscheidet.

Damit ein Prozess verteilbar ist, erwarten wir einen MultiStream als Input. MultiStreams
sind Teil des Streams-Frameworks und werden verwendet, um mehrere innere Streams zu-
sammenzufassen, sie z.B. sequentiell abzuarbeiten. Fiir die Verteilung von Prozessen stellt
der MultiStream fiir uns die Partitionierung der Daten dar (vgl. Unterabschnitt 15.1.1).
Jeder innere Stream kann unabhéngig von den anderen inneren Streams verarbeitet wer-
den. Wird kein MultiStream als Eingang verwendet, so besteht keine verniinftige Parti-
tionierung und der Prozess wird auf dem Driver (ohne eine Verteilung vorzunehmen) als

Standard-Prozess ausgefiihrt.

Listing 15.1 stellt die Konfiguration einer verteilt ausgefithrten Streams-Applikation in
XML beispielhaft dar. Es ldsst sich gut erkennen, wie wenig sie sich von einer iiblichen
Streams-Spezifikation unterscheidet: Der Input-MultiStream, die Senke und die Prozesso-
ren sind beliebig. Insbesondere konnen sémtliche bestehenden Streams, Senken und Pro-

zessoren in einer verteilten Ausfithrung auf Spark verwendet werden!

Da es im BigData-Umfeld vorkommt, dass ausgesprochen viele Streams (z.B. zur Verarbei-
tung hunderter .fits-Dateien) zu erzeugen sind, haben wir einen MultiStream-Generator
konzipiert, der eine Menge von Streams als MultiStream erzeugt. Damit miissen nicht
alle inneren Streams miihselig aufgelistet werden. Stattdessen erlaubt eine Regular Ex-
pression iiber Datei-Pfade, alle bendtigten Streams in einer Zeile zu spezifizieren (siehe
Unterabschnitt 15.1.5).

© 0 N O U e W N

=
o

128 KAPITEL 15. ERWEITERUNG DER STREAMS-ARCHITEKTUR

<stream id="IN" class="..."> <!-- arbitrary multistream -->
<stream id="sl1" class="..." />
<stream id="s2" class="..." />

</stream>
<sink id="0UT" class="..." /> <!-- arbitrary sink -->
<distributedProcess id="PP" input="IN" output="0UT">

<!-- arbitrary processors -->
</distributedProcess>

Listing 15.1: Beispiel-XML fiir die Nutzung eines DistributedProcess

15.1.3 Verarbeitung der XML-Spezifikation

von Mirko Bunse

Damit das neue Tag distributedProcess verwendet werden kann, mussten wir einen
Handler fiir XML-Elemente dieses Tags schreiben. Der bestehende Parser erzeugt Objekte
solcher Elemente, welche dann von unserem neuen Handler verarbeitet werden konnen.

Der Handler hat eine Factory aufzurufen, die verteilte Prozesse erzeugt.

Fiir die Implementierung der Factory verteilter Prozesse reichte es aus, Methodenaufrufe
an die Default-Factory weiterzudelegieren und die Riickgaben anzupassen. Es musste also
keine Factory von Grund auf neu implementiert werden. Zunéchst erzeugt die Default-
Factory Prozess-Konfigurationen, die sich anpassen lassen. So konnten wir den Namen der
Klasse, von der ein Prozess-Objekt erzeugt werden soll, in diesen Konfigurationen &ndern.
In einem zweiten Schritt erzeugt die Default-Factory aus den (geédnderten) Konfigurationen
Prozess-Objekte. Mit den korrigierten Konfigurationen zeigt diese Erzeugung bereits das

gewiinschte Verhalten: Es werden Objekte des Typs DistributedProcess erzeugt.

Fiir die Umsetzung von Streams, Senken und Prozessoren ist weder ein Handler, noch eine
Factory erforderlich. Die Angabe des Klassennamens im XML-Element (class="...")
realisiert die Erzeugung von Objekten der genannten Klasse bereits. Dieses Verhalten

haben wir durch die komplette Wiederverwendung der Tags erzielt.

15.1.4 Ansatz unter der Spark Core-Engine

von Mirko Bunse

Als ersten Ansatz zur Verteilung von Streams-Prozessen mit Apache Spark verwenden wir
das ,reine” Spark, in Abgrenzung zu Spark-Streaming. Die Core-Engine von Spark zeich-
net sich insbesondere dadurch aus, dass sie ausschliefSlich Batch-Verarbeitung adressiert.
Diese Eigenschaft stellt sich als problematisch heraus, wenn wir mit Datenstrémen arbei-
ten wollen. Es ldsst sich jedoch bereits bei diesem Ansatz ein hoher Performanzgewinn

gegeniiber einer nicht-verteilten Ausfithrung feststellen.

15.1. VERTEILTE STREAMS-PROZESSE MIT SPARK 129

Wir diskutieren die Umsetzung von verteilten Streams-Prozessen mit der Spark Core-
Engine, evaluieren dessen Performanz und nutzen die auftretenden Probleme als Motiva-

tion fiir den Einsatz von Spark-Streaming.

Verteilung von Streams-Prozessen
von Mohamed Asmi

Nach dem ersten Experimenten unter der Verwendung von Spark wurde festgestellt, dass
die Datenstrome sequenziell verarbeitet wurden. Jedoch wurde jeder eingehende Daten-
strom parallel verarbeitet. Dadurch ist der gewilinschte Performanzgrad nicht erreicht wor-
den. Auf diesem Grund wurde die Idee von der Verteilung der gesamten Datenstromver-

arbeitung umgesetzt.

Fir die Realisierung wurde die Klasse DistributedProcess implementiert. Sie sorgt
dafiir, eine erhohte Performanz zu schaffen. Ein DistributedProcess-Objekt ist in der
Lage, zu erkennen, ob aus einer Datenstromquelle einer oder mehrere Datenstrome kom-
men. In dem Fall, in dem nur ein Datenstrom verarbeitet wird, wird ein Standardprozess
vom streams-Framework [20] durchgefiihrt. Dieser Prozess wird auf einem einzelnen Ar-

beitsknoten (auch Worker genannt) ausgefiihrt.

Anderseits, wenn mehrere Datenstrome fiir die Verarbeitung zu Verfiigung stehen, wird
die verteilte Verarbeitung ausgelost. Die Verarbeitung der einzelnen Datenstrome wird auf
die Worker verteilt. Wie die einzelnen konkret arbeiten wird in dem n#chsten Abschnitt

untersucht.

Bei der Verteilung werden nicht die Datenstrome verteilt, sondern nur deren IDs. Damit
miissen nicht die Daten immer im Netzwerk zwischen den Knoten verschickt werden. Die
Datenstrom-IDs werden in RDDs verpackt und fiir die einzelnen Workern weitergegeben.
Dariiber hinaus wird ein DistributedProcessContext-Objekt an alle Workern durch eine
Spark-Broadcast-Variable [11] geschickt. Der DistributedProcessContext besteht aus
dem XML-Dokument und der Prozess-ID. Dadurch hat jeder Worker lokal die benétigten
Ressourcen fiir die Ausfithrung des Prozesses. Um das gesamte Ergebnis am Ende der
Verarbeitung zusammenzufassen, wird ein Accumulable-Objekt von Spark verwendet. Es
dient dazu, dass die Teilergebnisse aus den einzelnen Workern gesammelt und gebunden
werden. Daher liegt am Ende das gesamte Ergebnis im Output auf dem Driver. Der Ablauf
wird in Abbildung 15.1 veranschaulicht.

Instanziierung des streams-Frameworks in den Workern
von Karl Stelzner

Die Aufgabe eines jeden Workers besteht nun darin, den Prozess fiir eine Teilmenge der
Daten auszufithren, ndmlich fiir den Eingabestream, dessen ID {ibergeben wurde. Wie
oben gesehen verfiigt der Worker iiber alle notwendigen Informationen, ndmlich das XML-
Dokument (als Objektbaum), die Prozess-ID, und die Stream-ID. Um die tatsdchliche

Ausfihrung umzusetzen, gibt es allerdings mehrere Alternativen.

130 KAPITEL 15. ERWEITERUNG DER STREAMS-ARCHITEKTUR

Z, Broad
cast
processid: "pp"

xml: [Document]
out: [Accumulablel]

streamld: "s1"

® more workers
[]
read

(once)

Abbildung 15.1: Verteilung eines Streams-Prozesses

Klar ist zunéchst, dass es vorteilhaft ist, die streams-Klassen zur Interpretation des XML-
Dokuments wiederzuverwenden. Andernfalls miissten grofle Teile des streams-Codes zur
Erzeugung der Ausfithrungsumgebung, reimplementiert werden. Irgendwie muss allerdings
gewahrleistet werden, dass nicht alle Prozesse, sondern nur der mit der gegebenen Prozess-
ID ausgefithrt wird, und dass dieser die korrekte Eingabe bekommt. Dafiir gibt es im
Wesentlichen drei Moglichkeiten:

Reimplementierung von ProcessContainer Die Klasse ProcessContainer ist bei streams
dafiir zustindig, die im XML-Dokument spezifizierten Prozesse in einer Liste zu
sammeln und ihre Ausfithrung anzustoflen. Eine Moglichkeit wére gewesen, diese
so zu reimplementieren, dass sie statt ihres aktuellen Verhaltens nur einen Prozess
ausfithren. Aufgrund des groflen Umfangs der Klasse und der Menge an Code, die

schlicht hétte kopiert werden miissen, erschien diese Option nicht ratsam.

Manipulation des XML-Dokuments Eine weitere Option wire gewesen, das XML
Dokument so zu manipulieren, dass alle Prozesse aufler dem gewiinschten geléscht
werden, und dessen Input entsprechend umgeleitet wird. Es ist allerdings schwierig,
sicherzustellen, dass dieser Ansatz fiir beliebige legale XML-Eingaben korrekt arbei-
tet. Auflerdem ist er unflexibel, fiir den Fall, dass sich die XML-Spezifikation einmal
dndern sollte. Ein weiteres Problem besteht darin, dass fiir jeden Worker ein eige-
nes XML-Dokument erstellt werden muss, was unter Umstdnden zu viel Overhead

verursacht.

Manipulation der vom ProcessContainer erstellten Objekte Wir haben uns da-
her dafiir entschieden, den reguldren ProcessContainer auf dem gegebenen XMIL-
Dokument zu initialisieren. Damit werden fir die entsprechenden Tags Prozess-,
Stream-, Prozessor-Objekte usw. erzeugt. Uber unseren ElementHandler sorgen wir
dafiir, dass der parallele Prozess hier wie ein reguldrer behandelt wird. Um die

von uns gewiinschte Semantik zu gewéhrleisten, ldsst sich der Worker dann iiber

15.1. VERTEILTE STREAMS-PROZESSE MIT SPARK 131

Accum
ulable

.>

@ (aII at o
once) ® more workers
®

item: [Datal

Abbildung 15.2: Zusammenfassung der Teilergebnisse per Accumulable

die getProcesses() Methode die Liste der erzeugten Prozesse geben und entfernt
daraus alle bis auf den gewiinschten. Dessen Eingabe wird dann von dem im XML-
Dokument spezifizierten Multistream auf den gewiinschten Substream geédndert. Dies
sorgt dafiir, dass die gewiinschte Semantik durch einen schlichten execute () Aufruf

beim ProcessContainer erreicht wird.

Zusammenfassung der Teilergebnisse

von Karl Stelzner

Der vorherige Abschnitt erldutert, wie wir dafiir gesorgt haben, dass auf jedem Worker
eine Instanz des verteilten Prozesses mit korrekter Eingabe ausgefiihrt wird. Noch offen

ist die Frage, wie der Teilergebnisse der Worker an den Driver zuriickgeschickt werden.

Eine Moglichkeit, die Spark hierfiir bietet, ist die Klasse Accumulable. Diese erlaubt es,
Daten der Workernodes in einer gemeinsamen Datenstruktur zu aggregieren. Anschlieflend
kann dann die gesamte Datenmenge auf Seite des Drivers abgerufen werden. Um die Ver-
bindung zwischen dieser Funktionalitdt und der streams-Logik herzustellen, haben wir die
Klasse AccumulableListSink geschrieben, die von Accumulable erbt und gleichzeitig das
Sink-Interface von Streams implementiert. Werden Daten iiber die Sink-Methode write
geschrieben, leitet diese Klasse sie einfach tiber die add Methode an das Accumulable

weiter.

Ein Objekt dieses Typs wird den Workern via Broadcast zu Verfiigung gestellt. Dort wird es
iiber das im vorigen Abschnitt erlduterte Verfahren als Ausgabeobjekt des auszufithrenden
Prozesses gesetzt. Dies sorgt dafiir, dass die auf dem Worker laufende streams-Instanz ihre

Ergebnisse automatisch in das als Senke getarnte Accumulable schreibt.

Nachdem alle Worker ihre Arbeit fertiggestellt haben, kann der Driver die Gesamtheit der
Ergebnisse als verkettete Liste von Datenobjekten aus dem Accumulable auslesen. Dieser
Ablauf wird durch Abbildung 15.2 verdeutlicht.

Eine alternative Vorgehensweise besteht darin, die Worker iiber die flatmap-Methode auf-

zurufen. Diese sorgt dafiir, dass deren Teilergebnisse automatisch in einer Ergebnis-RDD

W~

132 KAPITEL 15. ERWEITERUNG DER STREAMS-ARCHITEKTUR

zusammengefasst werden. Deren Inhalt kann dann durch den Driver iiber die collect-
Methode aggregiert werden. Beide Vorgehensweisen fithren im Wesentlichen zum gleichen
Verhalten und teilen die selben Schwéchen (vgl. Abschnitt 16.2). Der Unterschied liegt
lediglich darin, dass der Einsatz von Accumulables eine etwas flexiblere und allgemeinere
Zuweisung der Ergebnisse erlaubt, und daher von uns zuerst umgesetzt wurde. Die Nut-
zung von Ergebnis-RDDs ist dagegen schlanker in der Umsetzung und entspricht eher
der Spark-Designphilosophie, weshalb wir sie vermutlich fiir das Endprodukt bevorzugen

werden.

15.1.5 MultiStream-Generatoren

von Mohamed Asmi

Die verteilte Ausfithrung der Prozesse erfordert die Verfiigbarkeit von mehreren Daten-
stromen. Damit konnen die Prozesse mehrere Datenstrome gleichzeitig verteilt verarbeiten.

Dafiir wurde der MultiStreamGenerator implementiert.

Der MultistreamGenerator ist eine Erweiterung des Streams-Framework MultiStreams.
Er wird zum Erzeugen von Datenstromen fiir eine verteilte Verarbeitung verwendet. Au-
Berdem ist er auch in der Lage, mehrere Mengen von Datenstromen zu erzeugen. Da
der MultiStreamGenerator eine Erweiterung der Klasse SequentielMultiStream des
Streams-Frameworks ist, ist man so in der Lage zwischen einer lokalen (nicht verteilten)

und verteilten Datenstromverarbeitung zu unterscheiden.

Durch den MultiStreamGenerator ist es moglich, verschiedene Datenstromgeneratoren
zu implementieren, zum Beispiel wurde im Rahmen der PG ein FitsStreamGenerator
verwendet, der aus fits-Dateien Datenstrome generieren kann. Aus einer Ordnerstruktur,
die aus vielen Dateien besteht, werden verschiedene Datenstréome erzeugt. Der Vorteil ist,
dass es geniigt, den Pfad des Oberordners anzugeben. Auflerdem kann man durch die
Eingabe reguldrer Ausdriicke nicht erwiinschte Dateien filtern. Will man fiir Testzwecke
oder aufgrund von Speichermangel die Anzahl der generierten Datenstrome begrenzen, er-

laubt der FitsStreamGenerator dies durch das Setzen der Parameter streamLimits und

maxNumStreams. streamLimits definiert die Lange der einzelnen Datenstrome. maxNumStreams

setzt die Anzahl der generierten Datenstrome fest.

Durch Erweiterung von MultiStream durch den MultiStreamGenerator ist man also in

der Lage, mit einer Zeile mehrere Datenstromquellen zu definieren (siehe Listing 15.2).

<application>
<stream id="fact" class="stream.io.multi.
FitsStreamGenerator" url="${infilel}"
regex=".x\.fits\.gz" maxNumStreams="1000" />

</application>

15.2. MLLIB IN STREAMS 133

Listing 15.2: Beispiel Multistream Eingabe

Der Performanzgewinn wird in Abschnitt 16.1 diskutiert.

15.2 MULLib in Streams

von Carolin Wiethoff

Zur Arbeit des Endprodukts wird unter anderem die Gamma-Hadron-Separation und die
Energieschiatzung gehoren. Beide Aufgaben beinhalten maschinelle Lernverfahren, sodass
wir eine Moglichkeit finden mussten, die Spark MLlib Methoden, beziehungsweise die
Methoden des darin enthaltenen und von uns favorisierten Paketes ML (siehe Abschnitt
5.2.3), in streams zur Verfiigung zu stellen. Dazu gehoren nicht nur die Klassifikation
und Regression, sondern auch die Merkmalsextraktion, die Vorverarbeitung der Daten
und die Evaluation der gewéahlten Lernverfahren. Momentan werden Vorverarbeitung und
Merkmalsextraktion von den im vorherigen Abschnitt 15.1 vorgestellten DistributedProcess
durchgefithrt. Mit unserer Erweiterung soll es jedoch auch mdéglich sein, MLlib-Methoden
zu nutzen, wenn dies gewiinscht ist. Beim Design unserer Erweiterung stand vor allem
im Fokus, dass das Spark ML-Paket auf DataFrames arbeitet. Wéhrend in der Basis-
variante des streams-Frameworks die zu verarbeitenden Daten in Data-Items gestreamt
werden, mussten wir einen Weg finden, diese in DataFrames zu konvertieren oder die
Daten direkt in DataFrames zu laden, damit diese dann an die Spark MLIib Methoden
weitergegeben werden kénnen. Auflerdem spielt die Pipelinestruktur, welche im ML-Paket
von Spark MLIib verwendet wird, eine zentrale Rolle in unserer Spezifikation. Sie dhnelt
stark der Prozess-und-Prozessoren-Struktur des streams-Frameworks. Wahrend Prozesse
diverse Prozessoren enthalten konnen, durch die die Daten sequentiell durchgereicht wer-
den, kénnen die in Spark ML verwendeten Pipelines diverse Stages enthalten. Auch dort
werden die Daten sequentiell von Stage zu Stage weitergereicht. Wir entschieden uns dieses
Konzept in unsere XML-Spezifikation zu iibernehmen, schliefllich soll die Anwendung fiir
die Physiker, welche bisher nur das streams-Framework kennen, einfach zu erlernen sein.
Durch den dhnlichen Aufbau integriert sich unsere Erweiterung nicht nur optisch, sondern
auch inhaltlich gut in das Framework. Die Spezifikation und die Implementation der neu

eingefithrten Tags soll in den folgenden Unterkapiteln néher erldutert werden.

15.2.1 XMUL-Spezifikation von input

von Christian Pfeiffer

Ein input-Tag dient dazu, eine Datenquelle zu spezifizieren, die einen DataFrame (siehe
Unterabschnitt 5.2.2) zuriickgibt. Im Gegensatz zu einem <stream> miissen die Daten also

nicht zeilenweise, sondern als ganze Tabelle zuriickgegeben werden.

ot

© o N O

134 KAPITEL 15. ERWEITERUNG DER STREAMS-ARCHITEKTUR

Als Datenquelle kann jede Unterklasse von stream.io.DataFrameStream verwendet wer-
den. Jeder input muss ein Attribut id mit einem eindeutigen Wert besitzen. Ein input-
Tag muss auf der obersten Ebene eines eines Containers stehen. Ein Beispiel hierfiir findet
sich in Listing 15.3.

15.2.2 XML-Spezifikation von task & operator

von David Sturm

Das Task-Tag wird genutzt, um neue Arbeitsabldufe zu modellieren. Es befindet sich in-
nerhalb des container-Tags, zusammen mit den input-Tags. Ein Task hat die Argumente
ID=... und input=.... Letzteres erlaubt ihm, auf die vorher verwendeten input-Tags Be-
zug nehmen. Dann fiihrt er den in ihm spezifizierten Arbeitsablauf auf den im Input
angegeben Daten aus. Dazu kann der Nutzer innerhalb des Tasks eine Kombination der
Tags pipeline und operator verwenden, um die Daten zu bearbeiten, Modelle zu lernen
und anzuwenden, Ergebnisse anzuzeigen etc. Dafiir muss jeder Operator eine Unterklasse
von stream.runtime.AbstractOperator angeben, die die Arbeitsschritte auf dem Da-
taFrame enthélt. Operatoren und Pipelines werden sequentiell ausgefithrt und der jeweils

resultierende DataFrame an den Nachfolger weitergereicht.

Interessant ist hierbei, dass Task bzw. Operator genau dem Prozess bzw. den Prozesso-
ren von Streams entsprechen. Da wir allerdings die SparkML- bzw. SparkMLib-Bibliothek
verwenden wollen, miissen wir, wie bereits erwahnt, die Daten in Form von DataFrames
anstelle der von Streams verwendeten Data-Klasse speichern. Task und Operatoren tun
genau dies, sie sind also dquivalent zu den jeweiligen Streams-Klassen, arbeiten aber auf ei-
nem anderen Typ von Daten. Dies ermoglicht es uns, die Algorithmen der Spark-Bibliothek

zu verwenden, ohne dass sich an der Struktur des XMLs viel d&ndert.

Eine wirkliche Neuerung stellt also nur das Pipeline-Tag, mit dem Pipelines der Spark
Bibliotheken verwendet werden koénnen, dar. Es dient dazu, komplexere Ablaufe in der
Datenvorverarbeitung einmalig zu modellieren, die so modellierte Pipeline kann dann von

den auf sie folgenden Operatoren verwendet werden.

<container>

<input id="1" class="somelInput" />

<task id="2" input="1">

<pipeline modelName="model">

</pipeline>

<operator class="ApplyModelOperator" modelName="model" />

10
11
12

Ot W N

© o N O

10

11

15.2. MLLIB IN STREAMS 135

<operator class="PrintDataFrameOperator" />
</task>

</container>

Listing 15.3: Ein Beispiel XML - Mehr Informationen zu den einzelnen Tags sind in den folgenden
Abschnitten zu finden

15.2.3 XMUL-Spezifikation von pipeline

von Michael May, Lili Xu

Wie bereits erwdhnt, wurde das <pipeline> Tag eingefiihrt, damit die von Spark ML
bereitgestellt Pipeline-Struktur als XML-Format definiert werden kann. Dazu wird das
Tag innerhalb einer Task definiert und kann dann durch Spezifizierens eines Namens im

weiteren Verlauf verwendet werden (Listing 15.3).

<task ...>
<pipeline modelName="model">

<stage class="MyStage" />

<transformer ... />
<transformer ... />
<estimator ... />

</pipeline>

<operator class="ExportModelOperator" exportURL="..."
modelName="model" />

</task>

Listing 15.4: Beispiel-XML einer reduzierten Pipeline innerhalb einer Task

Listing 15.4 stellt beispielhaft dar, wie eine Pipeline innerhalb eines Task erstellt werden
kann, um dann spéater im ExportModelOperator wieder abgerufen zu werden. Dazu muss
lediglich der Name der zu exportierenden Pipeline im Parameter modelName angegeben
werden. Durch die Einfiihrung eines Namens wird es zeitgleich ermdglicht, mehrere defi-
nierte Pipelines innerhalb eines Task voneinander zu unterscheiden. Dabei sei allerdings
anzumerken, dass eine Pipeline iiberschrieben wird, sollte derselbe Name spéter wieder

verwendet werden.

Innerhalb einer Spark ML Pipeline existieren zwei unterschiedliche Komponenten: Estimator

und Transformer, welche im Allgemeinen als Stages bezeichnet werden. Die Beschreibung
ihrer XML-Spezifikation folgt im néchsten Unterabschnitt.

136 KAPITEL 15. ERWEITERUNG DER STREAMS-ARCHITEKTUR

15.2.4 XML-Spezifikation von stages

von Carolin Wiethoff

Nachdem der pipeline-Tag genauer ausgefithrt wurde, soll es nun um die Estimator und
Transformer gehen, deren Uberbegriff Stage ist. Sie bilden das Herzstiick der Pipeline und

legen fest, welche Arbeitsschritte in der Pipeline auf den Daten ausgefithrt werden sollen.

Ein Estimator ist eine Klasse, welche einen DataFrame bekommt und basierend auf einem
Lernalgorithmus ein Modell erzeugt. In Spark ML stehen dafiir zahlreiche Klassifikations-
und Regressionsmethoden, aber auch Methoden fiir die Mermalsextraktion und das Clu-
stering zur Verfiigung. Um diese Funktionalitédt nutzen zu kénnen, spezifizierten wir einen
estimator-Tag. Die gewiinschte Klasse soll im Parameter stage angegeben werden, danach

kénnen beliebig viele Parameter fiir genau diese Klasse folgen.

<estimator stage="RandomForestRegressor" numTrees="20"

labelCol="1abel" featuresCol="features" />

Listing 15.5: Beispiel- XML fiir die Verwendung des estimator-Tags

In Listing 15.5 wird beispielsweise ein Estimator der Klasse RandomForestRegressor er-

zeugt, wobei die Attribute numTrees, labelCol und featuresCol gesetzt werden.

Ein Transformer ist eine Klasse, welche einen DataFrame bekommt und veréndert, mei-
stens durch Anfiigen einer neuen Spalte. Damit kénnen Vorverarbeitungsschritte oder
auch eine Klassifikation, also eine Anwendung eines erlernten Modells, gemeint sein. Ana-
log zum estimator-Tag erstellten wir einen transformer-Tag, wobei im Parameter stage
die gewiinschte Klasse angegeben werden soll. Danach koénnen wiederum beliebig viele

Parameter folgen, um die gewiinschten Attribute zu setzen.

<transformer stage="Binarizer" inputCol="Length" outputCol=

"newLength" threshold="2" />

Listing 15.6: Beispiel-XML fiir die Verwendung des transformer-Tags

In Listing 15.6 wird beispielsweise ein Transformer der Klasse Binarizer erzeugt, wobei

die Attribute inputCol, outputCol und threshold gesetzt werden.

Insgesamt kann man auf diese Weise alle von Spark ML bereitgestellten Estimator und
Transformer in einer Pipeline instantiieren. Wichtig ist, dass diese beiden Tags nur in-
nerhalb einer pipeline-Umgebung stehen, denn sie werden in Spark ML immer als Teil
einer grofien Pipeline ausgefiihrt. Die Reihenfolge der Ausfiihrung wird mit der Reihenfol-
ge der Tags im XML festgelegt und die Stages werden sequentiell durchlaufen. Auflerdem

konnen pro Pipeline mehrere Modelle trainiert werden. Es ist auch moglich, dass nach

11
12

15.2. MLLIB IN STREAMS 137

einem estimator-Tag wieder transformer-Tags folgen, beispielsweise um im weiteren Ver-
lauf der Pipeline ein Modell auf Grundlage eines noch weiter verarbeiteten DataFrames
zu trainieren. Weiterhin gibt es keine Limitierung fiir die Anzahl von Stages. Nachfolgend
steht ein abschliefendes Beispiel fiir den Aufbau einer Pipeline durch Transformer und

Estimator:

<container>

<input id="1" class="stream.pgb94.example.MCInput"/>

<task id="2" input="1">
<pipeline modelName="RFRegressor">
<transformer stage="VectorAssembler" inputCols="Length
,Width ,Delta,Distance,Alpha,Disp,Size" outputCol="
features"/>
<!-- arbitrary transformers and estimators -->
<estimator stage="VectorIndexer" inputCol="features"
outputCol="indexedFeatures" maxCategories="10"/>
<estimator stage="RandomForestRegressor" numTrees="20"
labelCol="MCorsikaEvtHeaderfTotalEnergy"
featuresCol="indexedFeatures"/>
</pipeline>
</task>

</container>

Listing 15.7: Beispiel-XML fiir die Verwendung der estimator- und transformer-Tags innerhalb

einer Pipeline

15.2.5 Umsetzung

von Michael May

In diesem Abschnitt werden die Schritte der Umsetzung ndher erlautert. Dazu werden die

Klassen zur Instantiierung und Verarbeitung von Spark-ML-Aufgaben beleuchtet.

Implementierung von task & operator wvon Christian Pfeiffer

Nun wird die Implementierung der gerade beschriebenen XML-Elemente skizziert. Dabei
ist es das Ziel, die streams-Architektur zu erhalten und lediglich an einigen Stellen zu

erweitern.

Das task-Element soll wie das process-Element auf der obersten Hierarchie-Ebene eines
streams Container stehen. Deshalb muss zuerst ein TaskElementHandler beim XML-

Parser registriert werden.

138 KAPITEL 15. ERWEITERUNG DER STREAMS-ARCHITEKTUR

Aufgrund der syntaktischen Aquivalenz von task und process ist es moglich, den Code
von process wiederzuverwenden. Hierzu miissen die task-Datentypen von den process-
Datentypen erben. Auf diesem Weg entfillt das Problem, den streams Scheduler anzupas-
sen, da die task-Blocke von der streams Laufzeitumgebung automatisch wie process-Blocke

ausgefiithrt werden.

Das bedeutet aber auch, dass der Inhalt eines task-Blocks kompatibel zu den Inhalten
eines process-Blocks sein muss. Dies wird erreicht, indem der Operator-Datentyp von dem
Processor-Datentyp erbt. Dazu muss jeder Operator eine Methode Data process(Data

input) implementieren. Dies steht scheinbar im Widerspruch zum Konzept, dass je-
der Operator einen DataFrame erhélt, diesen bearbeitet und den verdnderten DataFrame

zuriickgibt.

Diese beiden Anforderungen kénnen zusammengefithrt werden, indem das Bearbeiten des
eigentlichen DataFrames in eine abstrakte Methode ausgelagert wird, die einen DataFra-
me erhélt und den verdnderten DataFrame wieder zuriickgibt. Diese abstrakte Methode
wird dann von jedem einzelnen Operator anwendungsspezifisch iiberschrieben. Hingegen
wird die Data process(Data input) fiir alle Operatoren einheitlich implementiert. Sie
liest den DataFrame aus dem gegebenen Data-Objekt aus, ldsst ihn von der operator-
spezifischen Methode bearbeiten und schreibt den verdnderten DataFrame zuriick in das
Data-Objekt. Auf diesem Weg verhélt sich ein Operator aus der Sicht von streams wie ein
Processor, bietet aber dem Nutzer die neue Schnittstelle zur Bearbeitung von DataFrames

an.

Implementierung von input wvon Michael May

Das <input> Tag wurde eingefiithrt, damit DataFrame Objekte in die bisherige streams-
Architektur eingepflegt werden konnten. Dazu wurden zwei neue Klassen entwickelt: DataFrameInput
und DataFrameStream. Abbildung 15.3 stellt die einzelnen Klassen dar, die bei der Ver-

arbeitung von Input-Elementen beteiligt sind.

Zunéchst ist anzumerken, dass fiir die Verarbeitung von DataFrame Instanzen im streams-
Framework die instantiierten Objekte an die zugehorigen Prozesse gesendet werden miissen.
Nativ wird dies vom streams-Framework ermdoglicht, sofern eine neue Klasse als Spezia-

lisierung von Source definiert wird.

Aufgrund der Ahnlichkeit zu normalen Datenstreams wurde hier eine direkte Speziali-
sierung zur Klasse AbstractStream hergestellt. Jedoch sollte vermerkt werden, dass fiir
eine bessere Abgrenzung von normalen Datenstreams eine Spezialisierung zur Schnitt-
stelle Stream hergestellt werden sollte. Dies war jedoch fiir den ersten Prototypen keine

Prioritat.

Das Interface DataFrameInput wurde erstellt, damit eine bessere Abgrenzung von nor-

malen Datenstreams ermoglicht wird. Der Vorteil einer solchen Schnittstelle findet sich

15.2. MLLIB IN STREAMS

I Source

m init() void
m read() Data
m dose() void
sPid String
I Stream
S0 SOURCE_KEY String
+P limit Long

&) abstractStream
b log Logger
£ url SourcelRL
) limit Long
f count Long
1) prefix String
fid String
flin InputStream
) dosed boolean
) seqld SequencelD I DataFrameInput
T sequencekey String :t DATAFRAME_KEY
m) getinputStream() InputStream m) nextDataFrame()
m read() Data A
m) readMext() Data i
) init() void i
m cdose() woid :
+P prefix String i
P url SourcelRL |
+P sequencekey String i
+P limit Long i
sPid String i
]
]
]
]
|
C DataFrameStream
) dataFrame DataFrame
) initf) void
m readMext() Data
m nextDataFrame() DataFrame

Abbildung 15.3:
DataFrameStream

139

Klassendiagramm mit zugehorigen Klassen fiir DataFrameInput und

140 KAPITEL 15. ERWEITERUNG DER STREAMS-ARCHITEKTUR

schnell, wenn die Instanziierung der Klassen betrachtet wird. Derzeit wird noch der vom
streams-Framework bereitgestellt StreamElementHandler genutzt, um Input Elemente zu
erstellen. Jedoch wére es angebrachter hier ein eigenstdndigen InputElementHandler zu
implementieren, welcher nur Streams erzeugt die eine Spezialisierung von DataFrameInput
darstellen, sodass eine bessere Abgrenzung zu dem bereits vorhandenen <stream> Tag

ermoglicht wird.

Die Klasse DataFrameStream bietet die Moglichkeiten eines normalen Streams und er-
weitert diesen, um die von der DataFrameInput Schnittstelle bereitgestellten Methode
nextDataFrame (). Ziel dieser Methode ist es, dem DataFrameStream zu ermoglichen eine
Reihe von DataFrame Instanzen abzuarbeiten. Dazu muss zunéchst ein EOF fiir einen
Stream von DataFrames definiert werden, sodass beim Erreichen dieses der Stream en-
det. In der readNext () Methode wird dann jedes Mal nextDataFrame () aufgerufen und
solange der Stream noch nicht den EOF Status erreicht hat, wird ein neues Data-Objekt
erstellt, welchem das néchste Dataframe hinzugefiigt wird. Auf diese Weise kénnen Dataf-
rames als Datastream im streams-Framework weitergeleitet und bearbeitet werden. Auch
hier sei anzumerken, dass der derzeitige EOF Status noch nicht vollstédndig definiert und
implementiert wurde, weshalb nur ein einziges DataFrame Objekt in einem Input Element
erzeugt wird. Dies kann allerdings durch implementieren von spezialisierten Klassen um-

gehen werden, indem die Methode nextDataFrame () iiberschrieben wird.

Implementierung von pipeline und stages von Michael May

Mithilfe von einer <pipeline> konnen die aus SparkML bereitgestellten Pipelines ge-
nutzt werden. Damit diese Klassen im erweiterten streams-Framework abgerufen werden
konnen, mussten Klassen zur Erstellung (Abb. 15.4) und Verarbeitung (Abb. 15.5) bereit-

gestellt werden.

Zur Erstellung von Spark ML Pipelines wurden im wesentlichen zwei Factories implemen-
tiert. Die PipelineFactory erzeugt AbstractPipeline Instanzen, fiir jedes spezifizierte
<pipeline> Tag. Mittels der Methode createNestedStage () werden die definierten Sta-
ges erzeugt und der Pipeline zugewiesen. Hierbei wurden ein Ansatz iiber eine Erstellung
iiber ObjectCreator gewihlt. ObjectCreator sind Bestandteile der ObjectFactory, wel-
che Teil des streams-Frameworks ist. Der ObjectFactory wird das zu erstellende XML-
Element tibergeben, welche dann innerhalb der Erstellung tiberpriift, ob ein ObjectCreator

existiert, der dieses Element bearbeitet.

Abbildung 15.5 zeigt eine Ubersicht der so erstellten Pipeline und Stage-Instanzen. Hier-
bei sei anzumerken, dass wihrend der Entwicklung des Prototypen verschiedene Ansétze

verfolgt wurden und auch die derzeitige Version einen work-in-progress darstellt.

Eine instantiierte Pipeline, wie beispielsweise eine DefaultPipeline, verarbeitet DataFra-

me Objekte, weswegen sie als Spezialisierung des AbstractOperator implementiert wur-

15.2. MLLIB IN STREAMS 141

€ PipelineFactory
g0 createPipeline(ObjectFactory, Element, Variables) AbstractPipeline
g0 createNestedStage(ObjectFactory, Element, Variables) Stage

1 ObjectCreator
m create(String, Map<String, String >, Variables) Object

LB namespace String

7y

&) StageFactory
m createParametersForPipelineStage (PipelineStage, String, Map <5tring, String =) void

© TransformerFactory C | EstimatorFactory

m create(Siring, Map<String, String =, Variables) Object m create(String, Map <String, String =, Variables) Object
m registerknownStages() HashMap<String, String= m registerknownStages() HashMap<5tring, String=
P namespace String P namespace String

Abbildung 15.4: Ubersicht der Klassen zusténdig fiir die Erstellung von Pipelines und Stages

de. Da Pipelines spezialisierte Prozessoren sind, kann die streams Implementierung ge-
nutzt werden, um Daten zu verarbeiten, und im Fall der Pipeline Dataframes. In der
DefaultPipeline wird so fiir jeden Bearbeitungsphase ein neues Model trainiert und
dem Datenstream iibergeben. Damit die erstellten Modelle weiter genutzt werden kénnen,
muss jeder Pipeline {iber den Parameter modelName ein Name zugewiesen werden, womit

die weitergegebenen Modelle identifiziert werden.

In der aktuellen Version des Prototypen wurden Klassen fiir die Pipelinestages erstellt,
welche als abstrakte Ebene zwischen den Spark-ML-Stages und streams-Stages. Allerdings
findet sich derzeit kein Nutzen in dieser Abgrenzung, weswegen eine wiinschenswertes Ziel

fir die nachste Version den Zweck einer solchen Ebene zu untersuchen.

142 KAPITEL 15.

I Processor
m) process(Data) Data
A
I StatefulProcessor
m) init(ProcessContext) void
m resetState() wvoid
m finish() wvoid
ry
"& AbstractProcessor
T context ProcessContext
m init(ProcessContext) void
m resetState() void
m finish() wvoid
A
“E AbstractOperator
m process{Data) Data
m) process(Data, DataFrame) e
"E AbstractPipeline
b log Logger
m init{ProcessContext) void
m initStages() wvoid
m finish() wvoid
m addstage(Stage) wvoid
m removeStage(Stage) void
P stages List<Stage >
(P model Model
[P pipeline Pipeline
C | DefaultPipeline
m process{Data, DataFrame) DataFrame
«P modelName String

ERWEITERUNG DER STREAMS-ARCHITEKTUR

€ stage
m init(ProcessContext) void
m) initStage (ProcessContext) void
«P stage PipelineStage
(P pipelineStage PipelineStage
C | DefaultTransformer C | DefaultEstimator
m initStage(ProcessContext) void m initStage (ProcessContext) woid

Abbildung 15.5: Ubersicht der Klassen zusténdig fiir die Verarbeitung von Pipelines und Stages

Teil V

Evaluation und Ausblick

143

Kapitel 16

Vergleich mit streams

von Mohamed Asmi

Im Rahmen dieser Projektgruppe (PG) wurde eine Spark-Erweiterung des streams-Frameworks[20)
implementiert. Dadurch wird ein verteiltes Verarbeiten der Daten durch das FACT-Tools
unterstiitzt. Durch die Eingabe von mehreren Datenquellen wird der StreamsGenerator
angeschaltet. Der Generator baut die Datenstrome ein und leitet sie fiir die verteilte Ver-
arbeitung weiter. Dabei werden die Datenstréme an verschiedene worker verschickt. Wenn

hingegen keine verteilte Verarbeitung notwendig ist, wird ein Standard-Prozess ausgefiihrt.

Das Ziel der Erweiterung ist, eine bestimmte Performanz zu erreichen. Durch die verteilte
Verarbeitung wird eine schnellere und effizientere Verarbeitung der Daten erzielt. Bei Big
Data soll es ein Vorteil sein, da es immer grofie Datenmengen verwendet. Aber man kann
nicht ausschlieflen, dass bei der Verarbeitung von grofien Datenmengen andere Probleme

auftreten konnen.

In diesem Kapitel wird der Performanzgewinn durch die Spark-Erweiterung betrachtet.
Dafiir werden Experimente durchgefiihrt, bei denen Datenmenge verschiedener Gréfle ein-

mal mit dem streams-Framework und mit deren Spark-Erweiterung verarbeitet werden.

16.1 Performanzgewinn durch verteilte Prozesse

von Mohamed Asmi

Fiir die Experimente wird die MC-Analyse in Hinblick auf die Monte-Carlo-Daten betrach-
tet, bei der die Daten fiir die Anwendung eines maschinellen Lernverfahrens bereitgestellt
werden. Dabei wird die Verarbeitungszeit von Events untersucht. Ein Event ist ein Datai-
tem, das von dem streams-Frameworkgeliefert wird. Fiir die Zeitmessung wurde eine Sinke
implementiert. Der PerformanceSink ist in der Lage, die Verarbeitungszeit eines Dateni-
tems bzw. Events zu messen. Die Messergebnisse werden in eine Datei geschrieben. Alle

Tests werden auf dem Hadoop-Cluster des Sonderforschungsbereiches 876 durchgefiihrt.

Bei den Experimenten werden zwei Félle betrachtet. Im ersten Fall wird nur ein einzelner

Datenstrom betrachtet, d.h., die Daten kommen nur aus einer Datei. Der Grund fiir diese

145

146 KAPITEL 16. VERGLEICH MIT STREAMS

Auswahl ist, dass gezeigt werden soll, dass, die streams-Erweiterung in der Lage ist,
automatisch zu erkennen, ob mehrere oder nur eine Datenquelle betrachtet wird. Auflerdem
wird als Hauptgrund die Untersuchung der Verarbeitungszeit der Events, unter die Lupe

genommen.

Fiir die Ausfithrung der Experimente werden insgesamt 6GB Arbeitsspeicher verwendet.
Also in dem Fall, in dem verteilte Prozesse betrachtet werden, werden 3 Cluster Knoten
mit jeweils 2GB verwendet. In dem anderen Fall wird 6GB Arbeitsspeicher fiir den Master-

Knoten zur Verfiigung gestellt.

Zuerst wird die MC-Analysis nur auf einem Datenstrom betrachtet. Die Ergebnisse sind
in Abbildung 16.1 zu sehen.

o]
[ab]
£
© —
=
(0
-
(o] |
=1 b
e
=
[—
<
w7 Spark-Erweiterung
— streams
= | | | |
0 500 1000 1500 2000

Awusfihrungszeit in ms

Abbildung 16.1: Vergleich von der Spark-Erweiterunf mit streams (einzel Stream)

In diesem Fall ist keine verteilte Verarbeitung notwendig. bei der Spark-Erweiterung wird
der Standard-Prozess des streams-Frameworks durchgefiihrt. Das erklidrt die gleichen

gemessenen Ausfiihrungszeiten, die in Abbildung 16.1 zu sehen sind.

Jetzt werden mehrere Dateien als Datenquellen genutzt. Verwendet werden 200 Dateien
der proton klaus, die aus der Monte-Carlo-Simulation entstanden sind. Die Ergebnisse
sind in Abbildung 16.2 zu sehen.

Bei dem Bereitstellen von mehreren Datenstromen wird die verteilte Verarbeitung an-
geschaltet. Man kann bei der Spark-Erweiterung in Abbildung 16.2 beobachten, dass am

Anfang nichts passiert und dann auf einmal alle Daten in einer konstanten Zeit verarbeitet

16.2. PROBLEME VERTEILTER PROZESSE UNTER SPARK 147

L]
[]
st
Spark-Erweiterung
g | — streams
(o]
n =
[
2 B3
Ll [=
C [ap]
o
= =]
Z 8 |
T R
[
< o
(=
L]
= | | | |
0 50000 100000 150000 200000

Ausfuhrungszeit in ms
Abbildung 16.2: Vergleich von der Spark-Erweiterunf mit streams (Multistream)

wurden. Dagegen steigt die Ausfithrungszeit linear mit der Anzahl der Events. Insgesamt
wurde bei der Verarbeitung von ungefihr 4600 Events 228 Sekunden mit dem streams-
Framework gebraucht und nur 170 Sekunden bei dem Anwenden der Spark-Erweiterung.
Je mehr Daten verarbeitet werden, desto grofler ist der Performanzgewinn. Bei der Ver-
arbeitung von ungefihr 22800 Events wurde fast 8 Minuten mit der Spark-Erweiterung

gebraucht. Dabei wurden aber insgesamt 24GB Arbeitsspeicher genutzt.

Bei der in der PG entwickelten Spark-Erweiterung des streams-Framework ist ein Perfor-
manzgewinn durch die verteilte Verarbeitung deutlich zu erkennen. Dieser Erfolg ist aber
auch von ein paar Problemen begleitet. Diese werden in dem néchsten Abschnitt disku-
tiert. Dariiber hinaus besteht der Cluster nur aus zwei Servern und die sechs Maschinen,
die man sehen kann, sind nur virtuell. Aus diesem Grund entsteht wenig Netzwerkver-
kehr, denn da das HDFS drei Replikationen verwendet, hat meistens einer der beiden
Server die gewiinschte Datei lokal liegen. Deshalb entsteht wenig Netzwerkverkehr, der
die Ausfithrungszeiten beeinflussen kann. Aus diesem Grund konnte es sein, dass bei der
Ausfihrung auf einem Cluster mit realen Knoten ldngere Verarbeitungszeiten entstehen

konnten.

16.2 Probleme verteilter Prozesse unter Spark

von Karl Stelzner

Der Einsatz von Spark zur Implementierung verteilter Prozesse geht mit einigen konzeptio-

nellen Problemen einher. Diese rithren vor allem daher, dass Spark auf Batch-Verarbeitung

148 KAPITEL 16. VERGLEICH MIT STREAMS

basiert, wihrend dem streams-Framework Datenstrome aus einzelnen Datenpunkten zu-
grunde liegen. Dies hat zum Einen zur Folge, dass verteilte Prozesse aktuell nur Eingaben
verarbeiten konnen, die zu Beginn der Ausfiihrung schon vollstdndig zur Verfiigung ste-
hen. Insbesondere ist es also nicht moglich, die Ausgabe eines anderen Prozesses verteilt
weiterzuverarbeiten. In der Zukunft liefle sich dies allerdings durch Spark-Streaming um-
setzen, da damit eintreffende Datenpunkte in regelméfligen Zeitabstdnden zu Mini-Batches

verarbeitet werden konnen.

Zum Anderen hat Spark den Nachteil, dass Ergebnisse erst dann verfiighar werden, wenn
ein Batch vollstandig abgearbeitet wurde. Dies ist sowohl bei der Nutzung von Akkumu-
latoren als auch bei der Verwendung von RDDs (via RDD.collect) der Fall. Dies verletzt
nicht nur die Design-Philosophie des streams-Frameworks, sondern kann bei sehr grofien
Datenmengen auch dafiir sorgen, dass das Driverprogramm unter der gebiindelten Daten-

last zusammenbricht.

FEine naive Moglichkeit, dieses Problem zu adressieren, ist die manuelle Partitionierung des
Eingabe-Multistreams in kleinere Mini-Batches, die sequentiell abgearbeitet werden. Dies
ist mit zwei Problemen verbunden: Zum Einen muss sichergestellt sein, dass diese Mini-
Batches grof3 genug sind, um noch sinnvoll verteilt werden zu kénnen. Zum Anderen kann
es passieren, dass Workernodes auf einander warten miissen, wenn Streams unterschiedlich
lang sind. Das liegt daran, dass der néchste Batch immer erst gestartet werden kann, wenn
alle Streams des vorherigen abgearbeitet sind. Spark Streaming hilft in diesem Fall nicht

weiter, da die Mini-Batches hier ebenfalls rein sequentiell verarbeitet werden.

Auch wenn die Riickgabe so in kleinere Batches zerteilt werden kann, entspricht dies immer
noch nicht der streams-Semantik. Eleganter und effizienter wére es, wenn die Workernodes
ihre Ergebnisse als kontinuierlichen Datenstrom zuriickgeben wiirden. Eine solche Funk-
tionalitét ist in Spark aber nicht vorgesehen, und miisste daher von Hand implementiert

werden. Dahingehende Losungsanséitze sollen im kommenden Semester untersucht werden.

ot W

[o I =]

Kapitel 17

Datenbank-Performance

17.1 Vergleich von PostgreSQL und MongoDB

von Karl Stelzner

Als ersten Vergleich zwischen der Performance von MongoDB uns PostgreSQL haben
wir die Zeit gemessen, die fiir die Ausfilhrung verschiedener Selektionsanfragen auf einer
Kollektion bzw. Tabelle benotigt wird. Technisch ist PostgreSQL hierbei im Vorteil, da
die Eintrdge aufgrund des festen relationalen Datenmodells besser sequentiell von der

Festplatte gelesen werden kénnen. Die folgenden drei Queries wurden getestet:

SELECT COUNT (*) FROM events WHERE night=’2013-09-297;
db.metaData.count ({NIGHT :201309291}) ;

SELECT COUNT (*) FROM events WHERE event num>500 AND run id<5;
db.metaData.count ({EventNum:{$gt:500}, RUNID:{$1t:5}});

SELECT COUNT (*) FROM events WHERE event_num!=trigger_num;
db.metaData.count ({$where:"this.EventNum!=this.TriggerNum"}) ;

Listing 17.1: Drei Testanfragen, jeweils als SQL- und als MongoDB-Query

Das erste Query verwendet ein einfaches Gleichheitspradikat, und kann leicht iiber einen
Index beanwortet werden. Da die Eintrédge nur gezdhlt, und nicht ausgegeben werden,
miissen die tatséchlichen Daten noch nicht einmal geladen werden. Es handelt sich somit
um ein index only query. Ein passender Index ist auch in beiden Datenbanken vorhanden.
Das zweite Query ist eine Kombination aus zwei Rangequeries, fiir das keine (eindimensio-
nalen) Indizes verwendet werden konnen. Beide Systeme miissen daher einen vollsténdigen
Scan tiber die Tabelle bzw. Collection durchfithren. Die dritte Anfrage verwendet ein kom-

plexeres Priadikat, das zwei Felder miteinander vergleicht. Fiir dieses Query muss das

149

150 KAPITEL 17. DATENBANK-PERFORMANCE

Pradikat auf jeden Eintrag einzeln angewandt werden. Die Antwortzeiten der beiden Da-

H Query 1 ‘ Query 2 ‘ Query 3
PostgreSQL 30ms 291 ms 267ms
MongoDB 31ms 851 ms | 27545 ms

Abbildung 17.1: Antwortzeit beider Datenbanken auf die oben genannten Anfragen

tenbanken auf diese Queries ist in Abbildung 17.1 dargestellt. Aus den Ergebnissen zu
Query 1 lédsst sich ablesen, dass beide Datenbanken indexbasierte Queries sehr schnell,
und in beinahe identischer Zeit ausfithren kénnen. Man muss allerdings dazu sagen, dass
PostgreSQL bei der ersten Anfrage dieser Art ca. 160ms bendétigt, vermutlich, weil der
Index noch in den Hauptspeicher geladen werden muss. Bei Query 2 ist PostgreSQL deut-
lich schneller. Dies hat vermutlich mit den oben erwidhnten Unterschieden beziiglich des
Datenmodells zu tun. Query 3 demonstriert, wie ineffizient MongoDB bei der Auswer-
tung von komplexeren Anfragen ist. Wéahrend PostgreSQL hier in etwa genauso lange
benotigt wie bei Query 2 (in beiden Féllen wird ein full table scan durchgefiihrt), steigt
die Ausfithrungszeit bei MongoDB auf {iber 27 Sekunden an. Derartige Anfragen sind also

unbedingt zu vermeiden.

Alle drei Testanfragen korrespondieren zu moéglichen Anwendungen fiir die PG. Query 1
reprasentiert einfache Anfragen nach zum Beispiel allen Events einer bestimmten Nacht.
Query 2 steht fiir komplexere Anfragen, die verschiedene Merkmale einschliefen. Ein Bei-
spiel wére eine Anfrage nach allen Events, die von einer bestimmten Quelle stammen und
in mondlosen Néchten aufgenommen wurden. Analyseanfragen, die verschiedene Felder

miteinander in Beziehung setzen, fallen in die Kategorie von Query 3.

Da die genauen Anforderungen an die Datenbank weiterhin unklar sind, werden wir an
beiden Systemen (und ElasticSearch) weiterarbeiten. Die gewonnenen Erkenntnisse werden
aber fiir die schlussendliche Entscheidung, welche Losung fiir das Endprodukt verwendet

werden soll, hilfreich sein.

Kapitel 18

Fazit

von Lea Schénberger

Im Laufe des Wintersemesters 2015/2016 konnte die Projektgruppe nicht nur viele Fort-
schritte, sondern auch einige Erfolge verzeichnen. Uber diese sei in den nachfolgenden

Zeilen in resiimierender Weise ein kurzer Uberblick gegeben.

Zu den groBiten Errungenschaften dieses Semesters gehort die Realisierung verteilter Streams-
Prozesse mit Apache Spark (vgl. Kapitel 15.1), mittels derer zum Einen eine Steigerung
der Performanz ermoglicht wird sowie zum Anderen die Kompatibilitit zum bekann-
ten Streams-Standard gewéhrleistet wird. Zur Nutzung eines solchen verteilten Streams-
Prozesses ist lediglich der neue Tag distributedProcess in der gewohnten XML-Konfigu-
ration, der einen bereits aus Streams bekannten Multi-Stream als Input erhélt, vonnéten.
Doch dies ist nicht die einzige Erweiterung des Streams-Frameworks: Mithilfe des neu ein-
gefiihrten pipeline-Tags (vgl. Kapitel 15.2.3) ldsst sich dariiber hinaus kinderleicht die
von Spark ML bereitgestellte Pipeline via XML konfigurieren. Auf Basis dieser Pipeline ist
es nun moglich, Modelle zu trainieren, zu speichern, zu laden und anzuwenden. Im Zuge
der Integration der ML-Pipeline in das Streams-Framework wurde dieses zudem um die
XML-Tags task und operator (vgl. Kapitel 15.2.2) sowie die damit verbundenen Funk-
tionalitdten erweitert. Einen besonderen Stellenwert nimmt dabei der operator ein, der

als neue Schnittstelle zur Bearbeitung von DataFrames (vgl. Kapitel 15.2.5) fungiert.

Doch nicht nur im gerade umrissenen Bereich wurden in diesem Semester vorzeigbare Re-
sultate erzielt, sondern auch im Hinblick auf die Datenbankebene. Die durch das FACT-
Teleskop gelieferten Meta- und Kalibrationsdaten wurden in MongoDB, Elasticsearch so-
wie in PostgreSQL indiziert und dariiber hinaus mittels einer neu entwickelten REST-API
(vgl. Kapitel 14) zugénglich gemacht. Diese soll kiinftig als Schnittstelle zu den (Meta- und
Roh-)Daten und als Verbindungsglied zu auf diesen Daten aufbauenden Funktionalitidten

dienen.

Nicht zuletzt ist auch zu erwéhnen, dass die Projektgruppe in den vergangenen Monaten

nicht nur auf technischer Ebene Leistungen erbracht hat, sondern auch auf strategischer

151

152 KAPITEL 18. FAZIT

und sozialer Ebene. Wéhrend zu Beginn des Semesters die Wenigsten von uns Projekter-
fahrung hatten, sind uns nun Projektplanungsstrategien wie SCRUM (vgl. Kapitel 2.1.3)
ein Begriff. Fernab der grauen Theorie des theoretischen Studiums konnten wir selbst Hand
anlegen und im Zuge dessen unsere jeweiligen Starken, Schwéchen und Féahigkeiten, un-
ser Zeitmanagement, unsere Belastbarkeit sowie viele weitere Aspekte ausloten und haben
nun die Mdéglichkeit, im kommenden Semester darauf aufbauend gemeinsam unser Projekt

weiterzuentwickeln und zu einem erfolgreichen Abschluss zu bringen.

Teil VI

Benutzerhandbuch

153

Kapitel 19

Vorbereitung eines Clusters

von Christian Pfeiffer

Die in dieser Projektgruppe entwickelte Bibliothek arbeitet gerade dann effizient, wenn
die Berechnung in einem ganzen Cluster ausgefithrt wird. Dazu miissen die folgenden

Vorbereitungsschritte einmalig erfolgen.

1. Vernetzung. Alle Rechner des Clusters sollten so eingerichtet werden, dass sie sich

in einem gemeinsamen, lokalen Netzwerk befinden.

2. Hadoop und Ressourcenmanager einrichten. Auf jedem Rechner des Clusters
muss Hadoop 2.6 [7] installiert und eingerichtet werden. Lediglich auf einem Rech-
ner des Clusters wird ein Ressourcenmanager installiert, der zu bearbeitende Jobs
annimmt und im Cluster verteilt. Im Rahmen der Projektgruppe wurde zu diesem
Zweck YARN ([8] eingesetzt.

3. Verteiltes Dateisystem einrichten. Damit alle Knoten des Clusters Zugriff auf
alle Daten haben, empfiehlt sich die Nutzung eines verteilten Dateisystems. Hierfir
bietet sich das HDFS an, weil das Zusammenspiel mit Hadoop und Spark gut funk-
tioniert. Wie bei der zentralen Annahme der Jobs muss auch fiir das verteilte Datei-
system ein einzelner Rechner ausgewéhlt werden, der alle Anfragen entgegennimmt.
Auflerdem sollte vor dem Einspielen der Daten die Zahl der Replikationen geeignet
gewihlt werden. Eine grofle Anzahl an Replikationen fiihrt zu einem hohem Speicher-
platzbedarf, verringert aber potenziell die Bearbeitungsdauer der Jobs, weil weniger

Dateien tiber das Netzwerk gesendet werden miissen.

4. Weitere Software im Cluster installieren. Nun kénnen weitere, optionale Kom-
ponenten installiert werden. Es empfiehlt sich, ein Datenbankmanagementsystem auf
jedem Rechner des Clusters zu installieren. Das Datenbankmanagementsystem darf
seine Daten aber nicht im verteilten Dateisystem ablegen, da die Rechner des Clu-
sters sonst ihre Datenbanken gegenseitig liberschreiben! Wenn gewtinscht ist, dass
sich alle Rechner im Cluster eine Datenbank teilen, miissen die entsprechenden Funk-

tionen des Datenbankmanagementsystems verwendet werden.

155

156 KAPITEL 19. VORBEREITUNG EINES CLUSTERS

Anschlielend muss jeder Rechner auflerhalb des Clusters, der Jobs an diesen schicken soll,
ebenfalls vorbereitet werden. Hierfiir reicht es aus, Hadoop 2.6 sowie Spark 1.6 [11] zu

installieren und die jeweils genannten Einrichtungsschritte zu befolgen.

Kapitel 20

Ausfithrung im Cluster

von Mirko Bunse

Im Cluster des Lehrstuhls lauft Spark auf YARN [8], einem Tool zur Ressourcenverwaltung
in Rechenclustern. Mit dem Shell-Kommando spark-submit konnen Spark-Applikationen
YARN als Jobs iibergeben werden, sodass sie mit zu spezifizierenden Ressourcen (Anzahl

Cores, Hauptspeicher-Volumen, benétigte Dateien) ausgefithrt werden.

20.1 Verfiigbarkeit von Dependencies

von Mirko Bunse

Fiir die Erweiterung von Streams existieren einige Abhéngigkeiten zu verwendeten Biblio-

theken. Die folgenden Dependencies miissen zur Laufzeit im Cluster vorhanden sein:

Streams Die Maven-Module streams-core und streams-runtime beinhalten alle fiir die
Ausfithrung einer in XML spezifizierten Applikation nétigen Funktionen. streams-
hdfs stellt einen Handler fiir URLs des HDFS-Protokolls zur Verfiigung, was fiir das
Offnen von XML-Spezifikationen nétig ist.

FACT-Tools Das Projekt fact-tools ist eine Sammlung von Streams-Prozessoren und

weiteren Funktionen zur Analyse der FACT-Daten im Streams-Framework.

Spark spark-core stellt die Basis-Konzepte von Spark zur Verfiigung, die fiir eine ver-
teilte Ausfithrung im Cluster nétig sind. spark-mllib und spark-sql werden fiir
die Verwendung der Lernbibliothek MLIib benétigt.

Hadoop hadoop-client ist, neben streams-hdfs notig, um Dateien aus dem HDFS zu

lesen. mongo-hadoop-core ist fiir die Anbindung der MongoDB verantwortlich.

Damit nicht bei jeder Ausfithrung ein ,Uber-jar, also ein Archiv mit sdmtlichen Depen-
dencies vom Client ins Cluster kopiert werden muss, haben wir ein Maven-Projekt fiir die

Sammlung dieser Dependencies erstellt. Das aus diesem Projekt erstellte jar-Archiv kann

157

10

158 KAPITEL 20. AUSFUHRUNG IM CLUSTER

dann fiir samtliche Ausfithrungen, sofern keine Anderungen an den Abhéngigkeiten notig

sind, verwendet werden.

Wir laden dazu die Dependency-Jar ins HDF'S und iibergeben ihren Pfad bei jeder Ausfiih-
rung an spark-submit. Yarn erkennt den HDFS-Pfad und nimmt keine Kopie vom lokalen
System vor. Um einen Job auszufithren, muss damit lediglich ein kleines Archiv mit dem
aktuellen Stand unserer Streams-Erweiterung hochgeladen werden. Da die Abhéngigkeiten
in unserem Fall ein Archiv aus weit {iber 100MB ergeben, spart dieses Vorgehen eine Menge
Zeit, insbesondere wahrend der Entwicklung, wenn im Minutentakt eine neue Programm-

version getestet werden muss.

20.2 Komfortable Ausfiihrung per Shell-Script

von Mirko Bunse

Um YARN einen Spark-Job zu iibergeben, muss spark-submit mit einigen Parametern
(Ressourcen, auszufiihrende Datei, zu verwendende XML-Spezifikation) aufgerufen wer-
den. Zudem muss sichergestellt sein, dass die gewiinschte XML-Spezifikation im HDFS
vorhanden ist. Um dem Benutzer die manuelle Spezifikation dieser Parameter und das
Hochladen der XML zu ersparen, haben wir ein recht umfangreiches Shell-Script geschrie-

ben, das diese Aufgaben iibernimmt. Listing 20.1 stellt die Verwendung des Scriptes vor.

Usage: ./streams-submit.sh [options] <xml file>
Options:
--num-executors NUM Number of executors
--driver -memory NUMg GB of memory in driver
--executor —-memory NUMg GB of memory in executors
--executor -cores NUM Number of cores per executor
Example:
./streams-submit.sh --driver-memory 4g example.xml

Listing 20.1: Verwendung des Shell-Scripts zur Ausfithrung im Cluster

Das Script priift zunéchst, ob alle Systemvariablen auf der ausfithrenden Maschine korrekt
gesetzt sind. Nur so ist sichergestellt, dass spark-submit korrekt arbeitet. Dann wird ein
temporéres Verzeichnis im HDFS-Home-Directory des Hadoop-Benutzers angelegt, in wel-
ches die lokal vorliegende XML kopiert wird. In die temporére Kopie wird ein Zeitstempel

in den Dateinamen geschrieben, um Konflikte zu verhindern.

Sind alle diese Vorarbeiten erledigt, kann spark-submit aufgerufen werden. Fiir die ver-

wendeten Ressourcen bestehen niedrige Standard-Werte (2 Executor, 2GB Speicher pro

20.2. KOMFORTABLE AUSFUHRUNG PER SHELL-SCRIPT 159

Executor, ...), welche das Cluster nicht auslasten sollen. So konnen mehrere Entwickler
gleichzeitig testen. Bei nicht zu aufwéndig gestalteten Test-Konfigurationen reichen diese
Ressourcen {iiblicherweise aus. Fiir aufwéndigere Berechnungen kénnen dem Script jedoch
auch einige der spark-submit-Parameter (siche ,,Options” in Listing 20.1) iibergeben wer-

den. Es leitet diese weiter, sodass mehr Ressourcen verwendet werden.

Am Ende der Ausfithrung rdumt das Script auf. Es 16scht dazu die temporir verwendete
XML-Konfiguration aus dem HDFS.

Abkiirzungsverzeichnis

API

CRUD

DAG

DoD

FACT

FITS

GUI

HDFS

HTTP

IBA

IBL

JSON JavaScript Object Notation

Directed Acyclic Graph

Definition of Done

Graphical User Interface
Hadoop Distributed File System
Hyper Text Transfer Protocol
Index of balanced accuracy

Impediment Backlog

Application Programming Interface

Create, Read, Update and Delete

First G-APD Cherenkov Telescope

Flexible Image Transport System

NASA National Aeronautics and Space Administration

NoSQL Not only SQL

PBL

PG

PO

REST

ROC

SBL

Product Backlog
Projektgruppe
Product Owner

Representational State Transfer

Sprint Backlog

Receiver Operating Characteristic

161

162 KAPITEL 20.

SM Scrum Master

URL Uniform Resource Locator
WiP Work In Progress

XML Extensible Markup Language

YARN Yet Another Resource Negotiator

AUSFUHRUNG IM CLUSTER

Abbildungsverzeichnis

1.1

2.1
2.2

3.1

3.2

4.1

5.1
5.2
5.3
5.4
9.5

6.1

6.2
6.3
6.4
6.5
6.6

Visuelle Darstellung eines Gamma-Showers (oben links), welcher von Te-

leskopen aufgezeichnet wird (unten links) und in Grafiken der einzelnen

Aufnahmen dargestellt werden kann (rechts). [22] 4
Der Sprint in Scrum 9
Das Kanban-Board 12

Veranschaulichung der ersten vier Vs von Big Data. Von links nach rechts:

Volume, Velocity, Variety und Veracity (vgl. [25]) 20
Arten der Skalierung 21
Lambda-Architektur o 25
Architektur des Apache Hadoop Projekts. Quelle: [50] 27
Funktionsweise eines HDF'S Clusters. Quelle: [35] 28
Apache Spark Resilient Distributed Datasets 32
Maschinelles Lernen mit Spark MLlib 33
Pipeline-Struktur von Spark ML 34

Beispiel einer Storm Topologie als DAG. Zu sehen sind Spouts (links, erste

Ebene) und Bolts (rechts, ab zweite Ebene). Quelle: [73] 37
Aufbau eines Storm Clusters [73] L. 39
Beispielhafte Trident Topologie. Quelle: [74] 40
Abbildung 6.3 als kompilierte Storm Topologie. Quelle: [74] 41
Apache Spark Streaming 42
Spark Streaming - DStream L. 42

164 ABBILDUNGSVERZEICHNIS

6.7 Schematischer Aufbau eines Container [20] 44
6.8 Funktionsweise eines Stream [20] L. 44
6.9 Arbeitsschritte eines Process [20] oL oL 44

7.1 Veranschaulichung des Gossip Protocol. Quelle: http://blogs.atlassian.com/2013/09/do-

you-know-cassandra/ 48

7.2 Ein typisches Datenbankschema nach dimensionaler Modellierung, hier am

Beispiel einer Vertriebsdatenbank [56].o 50
8.1 Beispielhafter Entscheidungsbaum o8
8.2 Unterscheidung Realer Drift vs. Virtueller Drift [39] 70
8.3 Schematische Darstellung vom unterschiedlichen Auftreten von Concept

Drift [39] .« . o 70
8.4 Schematischer Aufbau einer Wahrheitsmatrix 72
85 Eine ROC Kurve [38] 73
8.6 Korrelation als Heuristik o 0oL 79
8.7 Beispiel-Ausfithrung CFS [81] 81
8.8 Berechnung von Ensemble-Korrelationen in Fast-Ensembles 83
8.9 Beispiel-Ausfithrung Fast-Ensembles [81] 83
8.10 k-fache Kreuzvalidierung, Quelle: [26] 85
8.11 Active learning als Kreislauf, Quelle: [82] 88

10.1 Event vor (links) und nach (rechts) der DRS Kalibrierung. Die Spitzen

entsprechen den Signalen einer einzelnen Fotodiode. Quelle: [6] 99

10.2 Statistik zur Luftfeuchtigkeit in der Nacht des 21.09.2013 aufgenommen von

zwei Sensoren: TNG (oben) und MAGIC (unten) 100
11.1 Analysekette e 103
12.1 Uberblick iiber die verwendeten Software-Komponenten 108
14.1 Die Riickgabeformate der REST APT 116
15.1 Verteilung eines Streams-Prozesses 130

15.2 Zusammenfassung der Teilergebnisse per Accumulable 131

ABBILDUNGSVERZEICHNIS 165

15.3 Klassendiagramm mit zugehorigen Klassen fiir DataFrameInput und DataFrameStream

15.4 Ubersicht der Klassen zusténdig fiir die Erstellung von Pipelines und Stages 141

15.5 Ubersicht der Klassen zustéindig fiir die Verarbeitung von Pipelines und

Stages 142
16.1 Vergleich von der Spark-Erweiterunf mit streams (einzel Stream) 146
16.2 Vergleich von der Spark-Erweiterunf mit streams (Multistream) 147

17.1 Antwortzeit beider Datenbanken auf die oben genannten Anfragen 150

Literaturverzeichnis

1]

Apache Spark Resilient Distributed Datasets. http://wuw.lightbend.com/
activator/template/spark-workshop. Zugriff am 1.3.2016.

Maschinelles Lernen mit Spark MLIb. http://apachesparkcentral.com/
category/mllib/. Zugriff am 1.3.2016.

Lambda Architecture Illustration. http://data-informed.com/wp-content/
uploads/2013/10/Lambda-architecture-illustration. jpg, 2013. Zugriff am
1.3.2016.

ANDERHUB, H, M BACKES, A BiLAND, V BoCCONE, I BRAUN, T BrETZ, J BUSs,
F Capoux, V CoMMICHAU, L. DjAMBAZOV, D DORNER, S EINECKE, D EI-
SENACHER, A GENDOTTI, O GRIMM, H vON GUNTEN, C HALLER, D HILDE-
BRAND, U HORISBERGER, B HUBER, K S KimM, M L KNOETIG, J H KOHNE,
T KRAHENBUHL, B KrRumMM, M LEE, E LORENZ, W LUSTERMANN, E LYARD,
K ManNNHEIM, M MEHARGA, K MEIER, T MoONTARULI, D NEISE, F NESSI-
TeEDALDI, A K OVERKEMPING, A Paravac, F Pauss, D RENKER, W RHODE,
M RiBORDY, U ROSER, J P STUCKI, J SCHNEIDER, T STEINBRING, F' TEMME,
J THAELE, S TOBLER, G VIERTEL, P VOGLER, R WALTER, K WARDA, Q WEIT-
ZEL und M ZANGLEIN: Design and operation of FACT — the first G-APD Cherenkov
telescope. Journal of Instrumentation, 8(06):P06008, 2013.

ANDERHUB, H, M BACKES, A BILAND, VITTORIO BOCCONE, I BRAUN, T BRETZ,
J Buss, FRANCK CADOUX, V COMMICHAU, L. DJAMBAZOV et al.: Design and ope-
ration of FACT-the first G-APD Cherenkov telescope. Journal of Instrumentation,
8(06):P06008, 2013.

ANDERHUB, HANS, ADRIAN BILAND, I. BRAUN, S.C. COMMICHAU, VOLKER COM-
MICHAU, O. GRIMM, HANSPETER VON GUNTEN, DOROTHEE MARIA HILDEBRAND,
URS HORISBERGER, THOMAS KRAHENBUHL, WERNER LUSTERMANN, FELICITAS
PAuss und ET AL.: Calibrating the camera for the First G-APD Cherenkov Teles-
cope (FACT). Proceedings of ICRC2011, Beijing, China, 2011. ICRC.

167

http://www.lightbend.com/activator/template/spark-workshop
http://www.lightbend.com/activator/template/spark-workshop
http://apachesparkcentral.com/category/mllib/
http://apachesparkcentral.com/category/mllib/
http://data-informed.com/wp-content/uploads/2013/10/Lambda-architecture-illustration.jpg
http://data-informed.com/wp-content/uploads/2013/10/Lambda-architecture-illustration.jpg

168

7]

8]

[15]

[16]

18]

[19]

LITERATURVERZEICHNIS

APACHE SOFTWARE FOUNDATION: Apache Hadoop. https://hadoop.apache.org/
Letzter Zugriff: 26.03.2016.

APACHE SOFTWARE FOUNDATION: Apache Hadoop NextGen MapReduce (YARN).
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/
YARN.html 17.01.16.

APACHE SOFTWARE FOUNDATION: Apache Spark Machine Learning Library Guide.
https://spark.apache.org/docs/latest/mllib-guide.html, 25.02.16.

APACHE SOFTWARE FOUNDATION: Apache Storm. http://storm.apache.org/
17.01.16.

APACHE SOFTWARE FOUNDATION: Spark - Lightning-fast cluster computing. http:
//spark.apache.org/ 17.01.16.

APACHE SOFTWARE FOUNDATION: Spark Streaming. http://spark.apache.org/
streaming/ 17.01.16.

ATLASSIAN: JIRA Software. https://de.atlassian.com/software/jira 08.02.16.

BANDYOPADHYAY, SANGHAMITRA, CHRIS GIANNELLA, UJJWAL MAULIK, HILLOL
KaArGuUPTA, KUN LIU und SOUPTIK DATTA: Clustering distributed data streams in
peer-to-peer environments. Inf. Sci., 176(14):1952-1985, 2006.

BEck, KENT et al.: Manifesto for Agile Software Development. http://www.
agilemanifesto.org/ (08.02.2016), 2001.

BERGER, K, T BRETZ, D DORNER, D HOEHNE und B RIEGEL: A robust way of
estimating the energy of a gamma ray shower detected by the magic telescope. In:
Proceedings of the 29th International Cosmic Ray Conference, Seiten 100-104, 2005.

BIFET, ALBERT, GEOFF HOLMES, RICHARD KIRKBY und BERNHARD PFAHRINGER:

Moa: Massive online analysis. The Journal of Machine Learning Research, 11:1601—
1604, 2010.

BIRANT, DERYA und ALp KuT: ST-DBSCAN: An algorithm for clustering spatial-
temporal data. Data & Knowledge Engineering, 60(1):208-221, 2007.

Bock, RK, A CHILINGARIAN, M GAuG, F HAKL, TH HENGSTEBECK, M JIRINA,
J KLASCHKA, E KOTRC, P SAVICKY, S TOWERS et al.: Methods for multidimensional
event classification: a case study using images from a Cherenkov gamma-ray telesco-
pe. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 516(2):511-528, 2004.

BOCKERMANN, CHRISTIAN: The streams Framework. https://sfb876.de/streams/
17.01.16.

https://hadoop.apache.org/
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://spark.apache.org/docs/latest/mllib-guide.html
http://storm.apache.org/
http://spark.apache.org/
http://spark.apache.org/
http://spark.apache.org/streaming/
http://spark.apache.org/streaming/
https://de.atlassian.com/software/jira
http://www.agilemanifesto.org/
http://www.agilemanifesto.org/
https://sfb876.de/streams/

LITERATURVERZEICHNIS 169

[21]

[22]

[23]

BOCKERMANN, CHRISTIAN und HENDRIK BLOM: The streams Framework. Techni-
scher Bericht 5, TU Dortmund University, 12 2012.

BOCKERMANN, CHRISTIAN, KAl BRUGGE, JENS BUss, ALEXEY EGOROV, KATHA-
RINA MORIK, WOLFGANG RHODE und TiM RUHE: Online Analysis of High-Volume
Data Streams in Astroparticle Physics. In: Machine Learning and Knowledge Disco-

very in Databases, Seiten 100-115. Springer, 2015.

BouricauT, JEAN-FRANCOIS, KATHARINA MORIK und ARNO SIEBES: Local Pattern
Detection - International Seminar Dagstuhl Castle, Germany, April 12-16, 2004, Re-
vised Selected Papers. Springer, Berlin, Heidelberg, 2005. Aufl. Auflage, 2005.

CAPPELLARO, ENRICO und MASSIMO TURATTO: Supernova types and rates. In: The
influence of binaries on stellar population studies, Seiten 199-214. Springer, 2001.

CENTRAL, DATA SIENCE: Data Veracity. http://www.datasciencecentral.com/
profiles/blogs/data-veracity, 2012. [Online; accessed 13-March-2016].

CHRIS McCorMICK: K-Fold Cross-Validation, With MATLAB Co-
der. https:\/\/chrisjmccormick.wordpress.com\/2013\/07\/31\
/k-fold-cross-validation-with-matlab-code 29.03.16.

CoOLLABORATION, FACT, T. BRETZ und ET AL.: Status of the First G-APD Cheren-
kov Telescope (FACT). In: Proceedings of ICRC 2011, Beijing, China, 2011. ICRC.

CORPET, FLORENCE: Multiple sequence alignment with hierarchical clustering.
Nucleic acids research, 16(22):10881-10890, 1988.

DEAN, JEFFREY und SANJAY GHEMAWAT: MapReduce: Simplified Data Processing
on Large Clusters. Commun. ACM, 51(1):107-113, Januar 2008.

DIETTERICH, THOMAS G: Ensemble methods in machine learning. In: Multiple clas-
sifier systems, Seiten 1-15. Springer, 2000.

Doucras, KORRY und SUSAN DOUGLAS: PostgreSQL: a comprehensive guide to

building, programming, and administering PostgreSQL databases. SAMS publishing,
2003.

Dries, ANTON und ULRICH RUCKERT: Adaptive concept drift detection. Statistical
Analysis and Data Mining, 2(5-6):311-327, 2009.

FawceTT, TOoM: An introduction to ROC analysis. Pattern recognition letters,
27(8):861-874, 2006.

FIELDING, ROy THOMAS: Architectural styles and the design of network-based soft-

ware architectures. Doktorarbeit, University of California, Irvine, 2000.

http://www.datasciencecentral.com/profiles/blogs/data-veracity
http://www.datasciencecentral.com/profiles/blogs/data-veracity
https:\/\/chrisjmccormick.wordpress.com\/2013\/07\/31\/k-fold-cross-validation-with-matlab-code
https:\/\/chrisjmccormick.wordpress.com\/2013\/07\/31\/k-fold-cross-validation-with-matlab-code

170

[35]

[38]

[41]

[42]

LITERATURVERZEICHNIS

FOUNDATION, APACHE SOFTWARE: HDFS Architecture. http://hadoop.apache.
org/docs/r2.6.4/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html, 2016.

FREUND, YO0AV; SCHAPIRE, ROBERT E.: A Short Introduction to Boosting. Journal
of Japanese Society for Artificial Intelligence, 14(5):771-780, 1999.

FRIEDMAN, JEROME, TREVOR HASTIE und ROBERT TIBSHIRANI: The Elements of

Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Sta-
tistics, Second Edition Auflage, 2001.

GALAR, MIKEL, ALBERTO FERNANDEZ, EDURNE BARRENECHEA, HUMBERTO BU-
STINCE und FRANCISCO HERRERA: A review on ensembles for the class imbalance
problem: bagging-, boosting-, and hybrid-based approaches. Systems, Man, and Cy-
bernetics, Part C: Applications and Reviews, IEEE Transactions on, 42(4):463-484,
2012.

GAMA, JOAO, INDRE ZLIOBAITE, ALBERT BIFET, MYKOLA PECHENIZKIY und AB-
DELHAMID BOUCHACHIA: A survey on concept drift adaptation. ACM Computing
Surveys (CSUR), 46(4):44, 2014.

GARCciA, VICENTE, RAMON ALBERTO MOLLINEDA und JOSE SALVADOR SANCHEZ:
Index of balanced accuracy: A performance measure for skewed class distributions. In:

Pattern Recognition and Image Analysis, Seiten 441-448. Springer, 2009.

GARCIA, VICENTE, JAVIER SALVADOR SANCHEZ und RAMON ALBERTO MOLLINE-
DA: On the effectiveness of preprocessing methods when dealing with different levels
of class imbalance. Knowledge-Based Systems, 25(1):13-21, 2012.

GHEMAWAT, SANJAY, HOWARD GOBIOFF und SHUN-TAK LEUNG: The Google File

System. In: Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, SOSP ’03, Seiten 2943, New York, NY, USA, 2003. ACM.

Groupr, FITS WORKING et al.: Definition of the flexible image transport system
(FITS). FITS Standard Version, 3, 2008.

GUYON, ISABELLE, CONSTANTIN ALIFERIS und ANDRE ELISSEEFF: Causal feature

selection. Computational methods of feature selection, Seiten 63—-86, 2007.

GUYON, ISABELLE und ANDRE ELISSEEFF: An introduction to variable and feature
selection. The Journal of Machine Learning Research, 3:1157-1182, 2003.

HarrL, MARK A: Correlation-based feature selection for machine learning. Doktorar-
beit, The University of Waikato, 1999.

Heck, DIETER, G SCHATZ, J KNAPP, T THOUW und JN CAPDEVIELLE: CORSIKA:

A Monte Carlo code to simulate extensive air showers. Technischer Bericht, 1998.

http://hadoop.apache.org/docs/r2.6.4/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
http://hadoop.apache.org/docs/r2.6.4/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

LITERATURVERZEICHNIS 171

[48]

[49]

[50]

[58]

HELF, MARIUS: Gamma-Hadron- Separation im MAGICExperiment durch vertei-
lungsgestiitztes Sampling. Diploma Thesis, Tu Dortmund, 2011.

HERRERA, FRANCISO, CRISTOBAL JOSE CARMONA, PEDRO GONZALEZ und
MARIA JOSE DEL JESUS: An overview on subgroup discovery: foundations and appli-
cations. Knowledge and information systems, 29(3):495-525, 2011.

HORTONWORKS: Apache Hadoop YARN - FEnabling Next Generati-
on Data Applications. http://de.slideshare.net/hortonworks/
apache-hadoop-yarn-enabling-nex, 2013. [Online; accessed 23-March-2016].

INTERFACE AG: Das KANBAN-Plakat. http://www.kanban-plakat.de/ 03.11.15.

INTERFACE AG, TECHNISCHE UNIVERSITAT MUNCHEN, THE INTERPRENEUR
GRroup: Das SCRUM-Plakat. http://www.scrum-plakat.de/ 03.11.15.

Jain, A. K., M. N. Murty und P. J. FLYNN: Data Clustering: A Review. ACM
Comput. Surv., 31(3):264-323, September 1999.

JAPKOWICZ, NATHALIE und SHAJU STEPHEN: The Class Imbalance Problem: A Sy-
stematic Study. Intell. Data Anal., 6(5):429-449, Oktober 2002.

KarGcuUPTA, HILLOL und BYUNG-HOON PARK: A Fourier Spectrum-Based Approach
to Represent Decision Trees for Mining Data Streams in Mobile Environments. IEEE
Trans. Knowl. Data Eng., 16(2):216-229, 2004.

KiMBALL, RALPH und MARGY Ross: The data warehouse toolkit: the complete guide
to dimensional modeling. John Wiley & Sons, 2011.

KLOESGEN, WILLL: Ezplora: a multipattern and multistrategy discovery assistant. In:
FAayyaD, UsaMA M., GREGORY PIATETSKY-SHAPIRO, PADHRAIC SMYTH und RA-
MASAMY UTHURUSAMY (Herausgeber): Advances in Knowledge Discovery and Data
Mining, Kapitel Explora: A Multipattern and Multistrategy Discovery Assistant, Sei-
ten 249-271. American Association for Artificial Intelligence, Menlo Park, CA, USA,
1996.

KLOSGEN, WILLIL: Applications and research problems of subgroup mining. In: RAS,
ZBIGNIEWW. und ANDRZEJ SKOWRON (Herausgeber): Foundations of Intelligent Sy-
stems, Band 1609 der Reihe Lecture Notes in Computer Science, Seiten 1-15. Springer
Berlin Heidelberg, 1999.

KOLLER, DAPHNE und MEHRAN SAHAMI: Toward optimal feature selection. 1996.

KSHEMKALYANI, AJAY D. und MUKESH SINGHAL: Distributed Computing: Princip-
les, Algorithms, and Systems. Cambridge University Press, Reissue Auflage, 3 2011.

http://de.slideshare.net/hortonworks/apache-hadoop-yarn-enabling-nex
http://de.slideshare.net/hortonworks/apache-hadoop-yarn-enabling-nex
http://www.kanban-plakat.de/
http://www.scrum-plakat.de/

172

[61]

[62]

[63]

[64]

[65]

[72]

[73]

[74]

LITERATURVERZEICHNIS

LAVRAC, NADA, BRANKO KAVSEK, PETER FLACH und LJuPCO TODOROVSKI: Sub-
group discovery with CN2-SD. The Journal of Machine Learning Research, 5:153-188,
2004.

Liaw, ANDY; WIENER, MATTHEW: Classification and Regression by RandomForest.
R News, 2, 2002.

LicaMAN, M.: UCI Machine Learning Repository, 2013.

MAMPAEY, MICHAEL, SIEGFRIED N1JSSEN, AD FEELDERS und ARNO KNOBBE: Ef-

ficient algorithms for finding richer subgroup descriptions in numeric and nominal
data. In: IEEE International Conference on Data Mining, Seiten 499-508, 2012.

MARR, BERNHARD: Big Data: The 5 Vs FEveryo-
ne Must Know. https://www.linkedin.com/pulse/
20140306073407-64875646-big-data-the-5-vs-everyone-must-know, 2014.

[Online; accessed 13-March-2016].

MARZ, NATHAN und JAMES WARREN: Big Data: Principles and best practices of
scalable realtime data systems. Manning Publications, 1 Auflage, 5 2015.

MARZ, NATHAN und JAMES WARREN: Big Data: Principles and best practices of

scalable realtime data systems. Manning Publications Co., 2015.
MASSE, MARK: REST API design rulebook. O’Reilly Media, Inc.”, 2011.

MEIER, KATJA J.: FACT - The First G-APD Cherenkov Telescope. http://www.
astro.uni-wuerzburg.de/en/research/fact/fact-introduction, Mai 2014. ac-
cessed: 23.02.2016.

MoNGODB, INc.: MongoDB. https://www.mongodb.org/ Letzter Zugriff:
25.03.2016.

MonGoDB, INc.: MongoDB CRUD Operations. https://docs.mongodb.org/
manual/crud/ Letzter Zugriff: 25.03.2016.

MOoRIK, KATHARINA; WEIHS, CLAUS: Wissensentdeckung in Datenbank. Folien zur
gleichnamigen Vorlesung an der TU Dortmund, 2015.

NATHAN MARzZ: A Storm is coming, Twitter Blog. https://blog.twitter.com/

2011/a-storm-is-coming-more-details-and-plans-for-release Letzter Zu-
griff: 25.03.2016.

NATHAN MARZ: Trident: a high-level abstraction for realtime
computation, Twitter Blog. https://blog.twitter.com/2012/
trident-a-high-level-abstraction-for-realtime-computation Letzter Zu-

griff: 25.03.2016.

https://www.linkedin.com/pulse/20140306073407-64875646-big-data-the-5-vs-everyone-must-know
https://www.linkedin.com/pulse/20140306073407-64875646-big-data-the-5-vs-everyone-must-know
http://www.astro.uni-wuerzburg.de/en/research/fact/fact-introduction
http://www.astro.uni-wuerzburg.de/en/research/fact/fact-introduction
https://www.mongodb.org/
https://docs.mongodb.org/manual/crud/
https://docs.mongodb.org/manual/crud/
https://blog.twitter.com/2011/a-storm-is-coming-more-details-and-plans-for-release
https://blog.twitter.com/2011/a-storm-is-coming-more-details-and-plans-for-release
https://blog.twitter.com/2012/trident-a-high-level-abstraction-for-realtime-computation
https://blog.twitter.com/2012/trident-a-high-level-abstraction-for-realtime-computation

LITERATURVERZEICHNIS 173

[75]

[76]
[77]

78]

[81]

[36]

[87]

POSTGRESQL GLOBAL DEVELOPMENT GROUP: PostgreSQL. http://wuw.
postgresql.org/ 16.02.16.

QUINLAN, J. R.:: Bagging, Boosting, and C4.5. In: AAAI-96 Proceedings, 1996.
RAPIDMINER: RapidMiner. https://rapidminer.com/ 29.02.16.

RICHARDSON, LEONARD und SAM RUBY: RESTful web services. O’Reilly Media,
Inc.”, 2008.

R1JSBERGEN, C. J. VAN: Information Retrieval. Butterworth-Heinemann, Newton,
MA, USA, 2nd Auflage, 1979.

SAEYS, YVAN, THOMAS ABEEL und YVES VAN DE PEER: Robust feature selecti-
on using ensemble feature selection techniques. In: Machine learning and knowledge

discovery in databases, Seiten 313-325. Springer, 2008.

SCHOWE, BENJAMIN und KATHARINA MORIK: Fast-ensembles of minimum redun-
dancy feature selection. In: Ensembles in Machine Learning Applications, Seiten 75—
95. Springer, 2011.

SETTLES, BURR: Active Learning Literature Survey. Computer Sciences Technical
Report, 1648.

SHARMA, MRADUL, JITADEEPA NAYAK, MAHARAJ KRISHNA KOUL, SMARAJIT BOSE
und ABHAS MITRA: Gamma/hadron segregation for a ground based imaging atmo-
spheric Cherenkov telescope using machine learning methods: Random Forest leads.
Research in Astronomy and Astrophysics, 14(11):1491, 2014.

SOCIETY, THE INTERNET: Hypertext Transfer Protocol — HTTP/1.1, 1999. http:
//tools.ietf.org/html/rfc2616.

SOCIETY, THE INTERNET: The application/json Media Type for JavaScript Object
Notation (JSON), 2006. https://tools.ietf.org/html/rfc4627.

ToODOROVSKI, LJUPCO, PETER FLACH und NADA LAVRAC: Predictive performance
of weighted relative accuracy. Springer, 2000.

TU DORTMUND, FAKULTAT FUR INFORMATIK: Modulhandbuch Master-Studiengdn-
ge Informatik und Angewandte Informatik. http://wuw.cs.tu-dortmund.de/nps/
de/Studium/Ordnungen_Handbuecher_Beschluesse/Modulhandbuecher/Master_
Inf/gesamtes_Modulhandbuch/Modulhandbuch_MSc_INF_1.pdf, Dezember 2015.

TURATTO, MASSIMO: Classification of supernovae. In: Supernovae and Gamma-Ray
Bursters, Seiten 21-36. Springer, 2003.

http://www.postgresql.org/
http://www.postgresql.org/
https://rapidminer.com/
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc4627
http://www.cs.tu-dortmund.de/nps/de/Studium/Ordnungen_Handbuecher_Beschluesse/Modulhandbuecher/Master_Inf/gesamtes_Modulhandbuch/Modulhandbuch_MSc_INF_1.pdf
http://www.cs.tu-dortmund.de/nps/de/Studium/Ordnungen_Handbuecher_Beschluesse/Modulhandbuecher/Master_Inf/gesamtes_Modulhandbuch/Modulhandbuch_MSc_INF_1.pdf
http://www.cs.tu-dortmund.de/nps/de/Studium/Ordnungen_Handbuecher_Beschluesse/Modulhandbuecher/Master_Inf/gesamtes_Modulhandbuch/Modulhandbuch_MSc_INF_1.pdf

174

[89]

[93]

[94]

LITERATURVERZEICHNIS

VAVILAPALLI, VINOD KUMAR, ARUN C. MURTHY, CHRIS DOUGLAS, SHARAD
AGARWAL, MAHADEV KONAR, ROBERT EvANS, THOMAS GRAVES, JASON LOWE,
HITESH SHAH, SIDDHARTH SETH, BIKAS SAHA, CARLO CURINO, OWEN O’MALLEY,
SANJAY RADIA, BENJAMIN REED und ERIC BALDESCHWIELER: Apache Hadoop
YARN: Yet Another Resource Negotiator. In: Proceedings of the 4th Annual Sym-
posium on Cloud Computing, SOCC 13, Seiten 5:1-5:16, New York, NY, USA, 2013.
ACM.

WAGSTAFF, KIRI, CLAIRE CARDIE, SETH ROGERS, STEFAN SCHRODL et al.: Cons-
trained k-means clustering with background knowledge. In: ICML, Band 1, Seiten
577-584, 2001.

WIKIPEDIA: Scalability. https://en.wikipedia.org/wiki/Scalability, 2016.
[Online; accessed 22-February-2016].

XIN, REYNOLD S, JOSH ROSEN, MATEI ZAHARIA, MICHAEL J FRANKLIN, SCOTT
SHENKER und ION STOICA: Shark: SQL and rich analytics at scale. In: Proceedings
of the 2013 ACM SIGMOD International Conference on Management of data, Seiten
13-24. ACM, 2013.

ZHANG, WEIXIONG: Complete Anytime Beam Search. In: Proceedings of the Fifteenth
National/Tenth Conference on Artificial Intelligence/Innovative Applications of Arti-
ficial Intelligence, AAAT *98 /TAAT 98, Seiten 425-430, Menlo Park, CA, USA, 1998.

American Association for Artificial Intelligence.

ZHOU, ZHIHUA: Ensemble Methods: Foundations and Algorithms. Chapman and
Hall/CRC, 2012.

https://en.wikipedia.org/wiki/Scalability

	I Einführung
	Einleitung
	Anwendungsfall
	Aufbau der Arbeit

	Organisation
	Agiles Projektmanagement
	Probleme Nicht-Agiler Verfahren
	Das Agile Manifest
	Scrum
	Kanban

	Wahl des Verfahrens
	Retrospektive der Umsetzung
	Projekt-Initialisierung
	Meetings
	Abschließende Bewertung

	II Big Data Analytics
	Einführung in Big Data Systeme
	Nutzen von Big Data
	Probleme mit herkömmlichen Ansätzen
	Anforderungen an Big Data Systeme

	Lambda-Architektur
	Batch Layer
	Apache Hadoop
	HDFS
	YARN
	MapReduce

	Apache Spark
	Spark Core
	Spark SQL
	Spark MLlib

	Speed Layer
	Apache Storm
	Storm Topologien
	Storm Cluster

	Apache Trident
	Trident Topologien

	Spark Streaming
	streams-Framework

	Serving Layer
	Datenbanken
	MongoDB
	Elasticsearch
	Cassandra
	PostgreSQL

	RESTful APIs
	Grundlegende Idee
	HTTP
	JSON

	Maschinelles Lernen
	Ensemble Learning
	Bagging
	Boosting
	Fazit

	Clustering und Subgruppenentdeckung
	Clustering
	Subgruppenentdeckung

	Verteiltes Lernen
	Statisches und Inkrementelles Lernen
	Concept Drift und Concept Shift
	Learning with Imbalanced Classes
	Einfluss auf Klassifikatoren
	Bewertung von Klassifikatoren
	Verbesserung von Klassifikatoren

	Feature Selection
	Vorteile
	Problemstellung
	Arten von Algorithmen
	Korrelation als Heuristik
	CFS
	Fast-Ensembles

	Sampling und Active Learning
	Der naive Ansatz
	Re-Sampling
	VLDS-Ada2Boost
	Active Learning

	III Anwendungsfall
	Analyseziele
	Gamma/Hadron-Klassifizierung
	Energie-Abschätzung

	Datenbeschreibung
	FITS-Dateiformat
	Rohdaten
	Monte-Carlo-Daten
	Drs-Daten
	Aux-Daten

	Analyse mit den FACT Tools
	Analysekette
	Datensammlung
	Datenvorverarbeitung
	Datenanalyse

	Grenzen von streams

	IV Architektur und Umsetzung
	Komponenten und Architektur
	Indexierung der Rohdaten
	MongoDB
	Elasticsearch
	PostgreSQL

	Umsetzung der RESTful API
	Design
	Endpunkte
	Rückgabeformate
	Dokumentation

	Implementierung
	Spring Framework
	Filterung

	Erweiterung der Streams-Architektur
	Verteilte Streams-Prozesse mit Spark
	Nebenläufigkeit der Verarbeitung
	XML-Spezifikation verteilter Prozesse
	Verarbeitung der XML-Spezifikation
	Ansatz unter der Spark Core-Engine
	MultiStream-Generatoren

	MLLib in Streams
	XML-Spezifikation von input
	XML-Spezifikation von task & operator
	XML-Spezifikation von pipeline
	XML-Spezifikation von stages
	Umsetzung

	V Evaluation und Ausblick
	Vergleich mit streams
	Performanzgewinn durch verteilte Prozesse
	Probleme verteilter Prozesse unter Spark

	Datenbank-Performance
	Vergleich von PostgreSQL und MongoDB

	Fazit

	VI Benutzerhandbuch
	Vorbereitung eines Clusters
	Ausführung im Cluster
	Verfügbarkeit von Dependencies
	Komfortable Ausführung per Shell-Script

	Abkürzungsverzeichnis
	Abbildungsverzeichnis
	Literaturverzeichnis

