
PG 594: Big Data

– Zwischenbericht –

31. März 2016

Autoren:

Asmi, Mohamed
Bainczyk, Alexander
Bunse, Mirko
Gaidel, Dennis
May, Michael
Pfeiffer, Christian

Schieweck, Alexander
Schönberger, Lea
Stelzner, Karl
Sturm, David
Wiethoff, Carolin
Xu, Lili

Betreuer:

Prof. Dr. Morik, Katharina
Dr. Bockermann, Christian

Blom, Hendrik

Inhaltsverzeichnis

I Einführung 1

1 Einleitung 3

1.1 Anwendungsfall . 3

1.2 Aufbau der Arbeit . 5

2 Organisation 7

2.1 Agiles Projektmanagement . 7

2.1.1 Probleme Nicht-Agiler Verfahren . 8

2.1.2 Das Agile Manifest . 8

2.1.3 Scrum . 9

2.1.4 Kanban . 11

2.2 Wahl des Verfahrens . 13

2.3 Retrospektive der Umsetzung . 14

2.3.1 Projekt-Initialisierung . 14

2.3.2 Meetings . 14

2.3.3 Abschließende Bewertung . 15

II Big Data Analytics 17

3 Einführung in Big Data Systeme 19

3.1 Nutzen von Big Data . 20

3.2 Probleme mit herkömmlichen Ansätzen . 20

3.3 Anforderungen an Big Data Systeme . 21

i

ii INHALTSVERZEICHNIS

4 Lambda-Architektur 23

5 Batch Layer 27

5.1 Apache Hadoop . 27

5.1.1 HDFS . 28

5.1.2 YARN . 29

5.1.3 MapReduce . 29

5.2 Apache Spark . 30

5.2.1 Spark Core . 31

5.2.2 Spark SQL . 32

5.2.3 Spark MLlib . 33

6 Speed Layer 37

6.1 Apache Storm . 37

6.1.1 Storm Topologien . 38

6.1.2 Storm Cluster . 38

6.2 Apache Trident . 39

6.2.1 Trident Topologien . 40

6.3 Spark Streaming . 41

6.4 streams-Framework . 43

7 Serving Layer 45

7.1 Datenbanken . 45

7.1.1 MongoDB . 45

7.1.2 Elasticsearch . 46

7.1.3 Cassandra . 47

7.1.4 PostgreSQL . 49

7.2 RESTful APIs . 51

7.2.1 Grundlegende Idee . 51

7.2.2 HTTP . 51

7.2.3 JSON . 53

INHALTSVERZEICHNIS iii

8 Maschinelles Lernen 55

8.1 Ensemble Learning . 57

8.1.1 Bagging . 58

8.1.2 Boosting . 60

8.1.3 Fazit . 61

8.2 Clustering und Subgruppenentdeckung . 61

8.2.1 Clustering . 61

8.2.2 Subgruppenentdeckung . 64

8.3 Verteiltes Lernen . 66

8.4 Statisches und Inkrementelles Lernen . 68

8.5 Concept Drift und Concept Shift . 69

8.6 Learning with Imbalanced Classes . 71

8.6.1 Einfluss auf Klassifikatoren . 71

8.6.2 Bewertung von Klassifikatoren . 71

8.6.3 Verbesserung von Klassifikatoren . 73

8.7 Feature Selection . 75

8.7.1 Vorteile . 76

8.7.2 Problemstellung . 77

8.7.3 Arten von Algorithmen . 78

8.7.4 Korrelation als Heuristik . 79

8.7.5 CFS . 80

8.7.6 Fast-Ensembles . 81

8.8 Sampling und Active Learning . 84

8.8.1 Der naive Ansatz . 84

8.8.2 Re-Sampling . 85

8.8.3 VLDS-Ada2Boost . 86

8.8.4 Active Learning . 87

III Anwendungsfall 91

9 Analyseziele 93

9.1 Gamma/Hadron-Klassifizierung . 95

9.2 Energie-Abschätzung . 95

iv INHALTSVERZEICHNIS

10 Datenbeschreibung 97

10.1 FITS-Dateiformat . 97

10.2 Rohdaten . 98

10.3 Monte-Carlo-Daten . 98

10.4 Drs-Daten . 98

10.5 Aux-Daten . 99

11 Analyse mit den FACT Tools 101

11.1 Analysekette . 101

11.1.1 Datensammlung . 101

11.1.2 Datenvorverarbeitung . 102

11.1.3 Datenanalyse . 102

11.2 Grenzen von streams . 103

IV Architektur und Umsetzung 105

12 Komponenten und Architektur 107

13 Indexierung der Rohdaten 111

13.1 MongoDB . 111

13.2 Elasticsearch . 112

13.3 PostgreSQL . 113

14 Umsetzung der RESTful API 115

14.1 Design . 115

14.1.1 Endpunkte . 115

14.1.2 Rückgabeformate . 116

14.1.3 Dokumentation . 117

14.2 Implementierung . 117

14.2.1 Spring Framework . 117

14.2.2 Filterung . 119

INHALTSVERZEICHNIS v

15 Erweiterung der Streams-Architektur 125

15.1 Verteilte Streams-Prozesse mit Spark . 126

15.1.1 Nebenläufigkeit der Verarbeitung . 126

15.1.2 XML-Spezifikation verteilter Prozesse 127

15.1.3 Verarbeitung der XML-Spezifikation 128

15.1.4 Ansatz unter der Spark Core-Engine 128

15.1.5 MultiStream-Generatoren . 132

15.2 MLLib in Streams . 133

15.2.1 XML-Spezifikation von input . 133

15.2.2 XML-Spezifikation von task & operator 134

15.2.3 XML-Spezifikation von pipeline . 135

15.2.4 XML-Spezifikation von stages . 136

15.2.5 Umsetzung . 137

V Evaluation und Ausblick 143

16 Vergleich mit streams 145

16.1 Performanzgewinn durch verteilte Prozesse 145

16.2 Probleme verteilter Prozesse unter Spark . 147

17 Datenbank-Performance 149

17.1 Vergleich von PostgreSQL und MongoDB 149

18 Fazit 151

VI Benutzerhandbuch 153

19 Vorbereitung eines Clusters 155

20 Ausführung im Cluster 157

20.1 Verfügbarkeit von Dependencies . 157

20.2 Komfortable Ausführung per Shell-Script 158

Abkürzungsverzeichnis 161

vi INHALTSVERZEICHNIS

Abbildungsverzeichnis 165

Literaturverzeichnis 174

Teil I

Einführung

1

Kapitel 1

Einleitung

von Lea Schönberger

In der heutigen Welt wird die Verarbeitung großer Mengen von Daten immer wichtiger.
Dabei wird eine Vielzahl von Technologien, Frameworks und Software-Lösungen einge-
setzt, die explizit für den Big Data Bereich konzipiert wurden oder aber auf Big Data
Systeme portiert werden können. Ziel dieser Projektgruppe (PG) ist der Erwerb von Ex-
pertenwissen hinsichtlich aktueller Tools und Systeme im Big Data Bereich anhand einer
realen, wissenschaftlichen Problemstellung. Vom Wintersemester 2015/2016 bis zum Ende
des Sommersemesters 2016 beschäftigt sich diese Projektgruppe mit der Verarbeitung und
Analyse der Daten des durch den Fachbereich Physik auf der Insel La Palma betriebenen
FACT Teleskops. Dieses liefert täglich Daten im Terabyte-Bereich, die mit Hilfe des Clu-
sters des Sonderforschungsbereiches 876 zunächst indiziert und dann auf effiziente Weise
verarbeitet werden müssen, sodass diese Projektgruppe im besten Falle die Tätigkeit der
Physiker mit ihren Ergebnissen unterstützen kann. Wie genau dies geschehen soll, sei auf
den nachfolgenden Seiten genauer beleuchtet - begonnen mit dem dezidierten Anwendungs-
fall, unter Berücksichtigung der notwendigen fachlichen sowie technischen Grundlagen, bis
hin zu den aktuellen Ergebnissen.

1.1 Anwendungsfall
von Michael May

Ein Teilgebiet der Astrophysik ist die Untersuchung von Himmelsobjekten, welche hoch-
energetische Strahlung ausstoßen. Beim Eintritt dieser Strahlung in die Erdatmosphäre
werden Lichtimpulse erzeugt, die sogenannte Cherenkov-Strahlung, welche mit Hilfe von
Teleskopen aufgezeichnet und analysiert werden können. Ein Teil der Analyse umfasst
das Erstellen von Lichtkurven, welche das emittierte Licht in Relation zur Zeit stellen,
sodass Eigenschaften des beobachteten Himmelsobjektes hergeleitet werden können. Mit
Hilfe solcher Kurven können dann unter anderem Supernovae klassifiziert werden [24, 88].

Das in La Palma aufgebaute First G-APD Cherenkov Telescope (FACT) dient der Beob-
achtung dieser Gammastrahlung im TeV Bereich ausstoßenden Himmelsobjekte. Es setzt

3

4 KAPITEL 1. EINLEITUNG

sich aus einer mit 1440 geiger-mode avalanche photodiods (G-APD) Pixel ausgerüsteten
Kamera zusammen, welche die Cherenkov-Strahlung in der Atmosphäre aufzeichnen kann.
Ein Ziel des FACT Projekts ist es, herauszufinden, ob die G-APD Technologie zur Beob-
achtung von Cherenkov-Strahlung eingesetzt werden kann [5].

Cherenkov-Strahlung entsteht, wenn energiereiche, geladene Teilchen, z.B. Gammastrah-
lung, die Erdatmosphäre mit sehr hoher Geschwindigkeit durchqueren. Dabei kollidieren
diese Teilchen mit Partikeln der Atmosphäre, wodurch neue geladene Teilchen aus die-
ser Kollision entstehen, welche wiederum Lichtblitze erzeugen und mit weiteren Partikeln
kollidieren können. Ein solche Kaskade von Kollisionen wird unter anderem als Gamma-
Schauer bezeichnet. Die Lichtblitze können dann von Teleskopen, wie dem FACT, wahr-
genommen und analysiert werden, um z.B. den Ursprung der kosmischen Teilchen zu
bestimmen (siehe Abbildung 1.1).

Abbildung 1.1: Visuelle Darstellung eines Gamma-Showers (oben links), welcher von Teleskopen
aufgezeichnet wird (unten links) und in Grafiken der einzelnen Aufnahmen dargestellt werden kann
(rechts). [22]

Ein Hauptproblem in diesem Unterfangen ist dabei die Klassifizierung der aufgezeichne-
ten Lichtblitze, denn neben der Cherenkov Strahlung wird durch Hintergrundrauschen das
aufgezeichnete Bild gestört. Die Einteilung der Cherenkov Strahlung, hervorgerufen durch
die kosmische Gammastrahlung, und des Hintergrundrauschen wird zudem erschwert, da
die beiden Klassen stark ungleichmäßig verteilt sind. Bockerman et al. [22] nennen hier
eine Gamma-Hadron Klassenverteilung von 1:1000 bis 1:10000. Aufgrund dieser stark un-
gleichmäßigen Verteilung sind eine sehr große Menge von Daten für eine relevante Klassi-
fizierung erforderlich.

Ein wichtiges Merkmal in der Klassifizierung dieser Daten ist, dass zum Lernen Simu-
lationen der eigentlichen Beobachtungen verwendet werden müssen, da sie selbst keine
Label besitzen. Dazu wird die Cosmic Ray Simulations for Kascade (CORSIKA) [47]
Monte-Carlo-Simulation verwendet, welche für eine Reihe von Eingaben eine statistische

1.2. AUFBAU DER ARBEIT 5

Simulation eines in die Atmosphäre eintreffenden Partikel, wie unter anderem Photonen
und Protonen, berechnet. Die Ausgaben einer solchen Simulation sind dann gelabelt und
können als Trainingsdaten für Lernmodelle verwendet werden.

1.2 Aufbau der Arbeit
von Carolin Wiethoff

Der Zwischenbericht ist in sechs Teile gegliedert. Nach dem ersten Teil mit einleitenden
Worten, Grundlagen zum Anwendungsfall und der Organisation unserer Teamarbeit folgt
der zweite Teil zum Thema Big Data Analytics. Zunächst wird in die Big Data Thematik
eingeführt, wobei nicht nur der Begriff geklärt wird, sondern auch erläutert wird, welche
Herausforderungen Big Data mit sich bringt und warum es sich lohnt, auf diese Heraus-
forderungen einzugehen. Danach folgt eine Beschreibung der Lambda-Architektur, welche
typischerweise für Big Data Anwendungen umgesetzt wird. In den darauf folgenden drei
Kapiteln wird näher darauf eingegangen, mit welchen Methoden und mit welcher Soft-
ware die Architektur verwirklicht werden kann. Abschließend zu diesem Teil folgt eine
Einführung in das maschinelle Lernen.

Im dritten Teil wird der Anwendungsfall dargestellt. Neben den Analysezielen und den
bisherigen Ansätzen der Physiker zur Erreichung dieser Ziele folgt eine Beschreibung der
involvierten Datenformate. Es wird untersucht, wie die Daten aufgebaut sind und welche
Informationen sie enthalten. Zum Schluss werden die FACT Tools vorgestellt, mit deren
Hilfe die aktuelle Analysekette durchgeführt wird.

Der vierte Teil gibt einen Einblick in die Architektur unseres Endproduktes und die Um-
setzung derselben. Dazu wird dargestellt, wie wir die Rohdaten mit Hilfe verschiedener
Datenbanken indexieren, wie die REST-API umgesetzt wird und welche Erweiterungen
wir bisher aus welchen Gründen am streams-Framework vorgenommen haben.

Der fünfte Teil widmet sich der Evaluation unserer bisherigen Ergebnisse zur Halbzeit der
Projektgruppe. Außerdem geben wir einen Ausblick auf das kommende Semester und die
bisher geplante Arbeit.

Das Benutzerhandbuch mit Informationen zur Installation und Ausführung im Cluster
findet sich im letzten Teil.

Kapitel 2

Organisation

von Mirko Bunse

Das umzusetzende Projekt der BigData-Analyse auf FACT-Teleskopdaten besitzt eine
Laufzeit von zwei Semestern und wird durch uns, ein Team aus 12 Studentinnen und Stu-
denten, umgesetzt. Damit besitzt das Projekt unter Organisations-Aspekten eine gewisse
Komplexität: Wie lässt sich die Arbeit sinnvoll zergliedern? Wie erfüllen wir Abhängig-
keiten zwischen den Arbeitspaketen? Wie strukturieren wir unsere Arbeit so, dass wir die
Ziele bestmöglich umsetzen können?

Damit die Beantwortung solcher Fragen nicht zum Problem wird, ist es wichtig, sich bereits
im Vorhinein auf Methoden zu einigen, die sinnvolle Antworten festlegen. Vorgehensmo-
delle und andere Projektmanagement-Praktiken geben Teams solche Methoden an die
Hand.

Wir haben zu Beginn der PG eine kleine Auswahl agiler Verfahren kennengelernt, die
wir in Abschnitt 2.1 vorstellen wollen. Warum gerade agile Verfahren für unser Projekt
sinnvoll sind, wird in Unterabschnitt 2.1.1 angemerkt. Wir dokumentieren außerdem, auf
welche Anwendung der Verfahren wir uns initial geeinigt haben (siehe Abschnitt 2.2) und
bewerten deren Umsetzung in der PG retrospektiv (siehe Abschnitt 2.3).

2.1 Agiles Projektmanagement
von Mirko Bunse

Agile Projektmanagement-Verfahren können den Arbeitsablauf optimieren, indem sie ei-
nige der Probleme klassischer (also nicht-agiler bzw statischer) Verfahren vermeiden. Wir
diskutieren hier zunächst einige dieser Probleme (siehe Unterabschnitt 2.1.1), und wie
das agile Manifest sie adressiert (siehe Unterabschnitt 2.1.2). Als kleine Auswahl agiler
Verfahren stellen wir Scrum und Kanban vor (siehe Unterabschnitt 2.1.3 und Unterab-
schnitt 2.1.4).

7

8 KAPITEL 2. ORGANISATION

2.1.1 Probleme Nicht-Agiler Verfahren

Klassische Verfahren reagieren in der Regel nur unzureichend auf Änderungen in Anfor-
derungen und Terminen, da die zugrundeliegenden Pläne für den gesamten Entwicklungs-
prozess erstellt werden. Da klassische Verfahren Planänderungen nicht im Entwicklungs-
prozess vorsehen (oder für sie ein bürokratisch aufwändiges Teilverfahren definieren), wird
die Notwendigkeit solcher Änderungen gerne verkannt.

Häufig stellen sich die zu Beginn des Projektes erstellten Pläne als nicht-optimal heraus,
weil sie später erworbene Informationen oder Änderungsbedarf nicht vorhersehen konnten.
Daher eignen sich klassische Verfahren insbesondere nicht, um Projekte zu managen, deren
Anforderungen zu Beginn unklar sind. Leider lässt sich die Klarheit der Anforderungen
nicht immer sofort entscheiden.

Ein weiteres Problem ist, dass die in klassischen Verfahren geforderte Vielfalt an Doku-
menten oft nur pro forma erstellt wird. So gibt es Dokumente, die nur beinhalten, was
ohnehin bereits abgestimmt wurde, oder die zu einem Zeitpunkt gefordert waren, an de-
nen noch keine ideale Lösung zu finden war. Solche Dokumente werden möglicherweise nie
gelesen oder veralten, bevor sie einen Nutzen darstellen konnten.

Prominente Vertreter klassischer Projektmanagement-Verfahren sind das Wasserfallmo-
dell, sowie die Modelle V und VXT. Sie alle basieren auf dem Prinzip, zunächst alle An-
forderungen festzulegen, basierend darauf Entwürfe zu erstellen, und zuletzt Implemen-
tierungsarbeiten aufzunehmen. Im Wasserfallmodell werden Tests erst am Ende durch-
geführt, was im V-Modell durch Testen auf jeder Entwicklungsstufe verbessert wurde.
Das VXT-Modell erweitert V durch Ausschreibungen und Einbettung in übergeordnete
Projekte. Durch diesen weiten Horizont entsteht aber ein enormer Umfang an Rollen und
Artefakten, wodurch Projekte auch behindert werden können.

2.1.2 Das Agile Manifest

Das agile Manifest stellt die Grundprinzipien jedes agilen Projektmanagement-Verfahrens
dar. Es korrigiert dabei die Annahmen klassischer Verfahren und leitet daraus explizite
Regeln ab. Das agile Manifest lautet wie folgt [15]:

Reagieren auf Änderungen ist wichtiger, als einem Plan zu folgen. Pläne fokussie-
ren die nahe Zukunft, da langfristige Planungen nur vorläufig sein können und
möglicherweise notwendigen Änderungen unterliegen.

Funktionierende Software ist wichtiger, als eine umfangreiche Dokumentation. Doku-
mentation sollte nicht pro forma erstellt werden, sondern einen Zweck erfüllen.

2.1. AGILES PROJEKTMANAGEMENT 9

Abbildung 2.1: Der Sprint in Scrum

Individuen und Interaktionen ist ein höherer Stellenwert einzuräumen, als Prozessen
und Tools. Unzureichende Interaktionen zwischen Projektbeteiligten gefährden Pro-
jekte, egal, welche Prozesse verwendet werden.

Partizipation des Kunden bringt mehr als Vertrags-Verhandlungen. Eine enge Einbin-
dung des Kunden macht Änderungsbedarf frühzeitig erkennbar und steigert damit
den Nutzen des Produktes.

2.1.3 Scrum

Scrum [52] ist ein prominenter Vertreter agiler Projektmanagement-Verfahren. Zentral für
Scrum ist der Sprint, ein kurzer Entwicklungszyklus (2 – 4 Wochen), welcher ein Produkt-
Inkrement erzeugt. Ein solches Inkrement sollte einen Mehrwert für den Kunden darstellen.
Während eines Sprints dürfen sich keine Änderungen der für den Sprint definierten Ziele
ergeben, damit der Sprint geordnet abgearbeitet werden kann. Im schlimmsten Fall ist es
möglich, einen Sprint vorzeitig abzubrechen und einen neuen Sprint aufzusetzen.

Abbildung 2.1 stellt einen Überblick über Scrum dar. Abgebildet sind die verschiedenen
Rollen und Artefakte und ihre Einbettung in den Sprint. Zudem definiert Scrum einige
Meetings. Alle diese Elemente werden im Folgenden vorgestellt.

Rollen

Der Product Owner (PO) stellt die Interessengruppen außerhalb des Teams dar. Insbe-
sondere das Interesse des Kunden ist hier widergespiegelt, idealerweise aber auch andere,
möglicherweise widersprüchliche Interessen. Der PO soll aus diesen Interessen die Vision

10 KAPITEL 2. ORGANISATION

des Endproduktes formen und diese auf das Team übertragen. Dazu managed er mit dem
Product Backlog eines der Artefakte.

Der Scrum Master (SM) coached das Team in der Ausführung von Scrum, kann dazu
die Moderation in den Meetings übernehmen und den PO in der Priorisierung des Product
Backlog unterstützen. Außerdem löst er sämtliche Probleme (Impediments), die das Team
von der Arbeit abhalten. Die Rolle des SM ist nicht gleichzusetzen mit einem Projekt-
leiter mit Entscheidungsgewalt. Sämtliche Entscheidungen werden gemeinsam im Team
getroffen.

Das Team übernimmt die Umsetzung eines Projektes. Dazu sollte es die Vision des End-
produktes verstehen. Es organisiert sich selbst, weshalb eine hohe Teilnahme der einzelnen
Mitglieder gefordert ist. Die Möglichkeit, durch Selbstorganisation am Projekterfolg teil-
zuhaben, kann die Mitglieder motivieren und den Projekterfolg erhöhen. Idealerweise setzt
sich das Team interdisziplinär aus 5 – 9 Personen zusammen.

Artefakte

Das vom PO verwaltete Product Backlog (PBL) soll sämtliche gewünschte Features
und Ergebnisse als User Stories vorhalten. Aufgrund sich ändernder Anforderungen ist das
PBL aber jederzeit anpassbar.

User Stories erklären den Nutzen des jeweiligen Features für einen Endnutzer. Aufgrund
dieses Nutzens lassen User Stories sich priorisieren. Außerdem lässt sich der Umfang jeden
Features schätzen. Aufgrund von Umfang und Priorität lassen sich User Stories aus dem
PBL auswählen, um im kommenden Sprint erledigt zu werden.

Für einen Sprint werden Teilaufgaben (Tasks) ausgewählter User Stories in den Sprint
Backlog (SBL) übernommen. Für jeden Task ist eine Definition of Done (DoD) formu-
liert, die aussagt, wann der Task abgeschlossen ist. Das SBL stellt damit die Basis für
die Organisation der Arbeit durch das Team dar. Es darf während eines Sprints nicht
verändert werden.

Damit der SM die Behinderungen des Teams beseitigen kann, verwaltet er ein Impedi-
ment Backlog (IBL), in welchem Teammitglieder Probleme einstellen und priorisieren
können. Er kann diese Behinderungen selbst auflösen, oder deren Auflösung weiterdelegie-
ren.

Meetings

Die verschiedenen Scrum-Meetings ermöglichen die Umsetzung des Verfahrens und eine
Abschätzung des Projektfortschritts. Sie haben einen jeweils fest definierten Zweck, wo-
durch die Zeit, die für Meetings verwendet wird, reduziert werden soll.

2.1. AGILES PROJEKTMANAGEMENT 11

Um einen kommenden Sprint zu planen, wird jeweils ein Sprint Planning Meeting ab-
gehalten. Es beinhaltet die Schätzung (möglicherweise die Neu-Schätzung) der Items des
PBL und eine Auswahl von Items für die Übernahme in den neuen Sprint. Die Auswahl
wird auf Basis von Aufwand und Priorisierung der Elemente durch Konsens im Team ge-
troffen. Darüber hinaus werden die Elemente des PBL in Tasks, wohldefinierte Arbeitspa-
kete, zergliedert. Tasks werden Verantwortlichen zugewiesen und in das SBL eingetragen.
Möglichst alle Termine für den kommenden Sprint werden festgelegt.

Um den Fortschritt des aktuellen Sprints festzustellen und Probleme (Impediments) zu
identifizieren wird ein tägliches Daily Meeting oder kurz ”Daily“, abgehalten. Es soll
dort lediglich beantwortet werden, was zuletzt getan wurde und was als nächstes getan
wird. Das Daily sollte eine Dauer von 15 Minuten nicht überschreiten.

Der Erfolg eines Sprints wird in einem Review und Sprint Retrospective ermittelt.
Zum Review zählen die Vorstellung des Produkt-Inkrements sowie die Abnahme desselben
durch den PO. In der Retrospektive wird die Qualität des Entwicklungsprozesses gemes-
sen. Hier soll beantwortet werden, was gut und schlecht im letzten Sprint lief, und wie
möglicherweise Verbesserungen zu erreichen sind. Wie die Qualität gemessen werden soll,
lässt Scrum offen. An dieser Stelle lässt sich Scrum hervorragend mit Kanban kombinieren,
da Kanban die Messung der Prozessqualität stark fokussiert (siehe Unterabschnitt 2.1.4).

2.1.4 Kanban

Kanban [51] ist, anders als Scrum, kein Vorgehensmodell. Es schreibt daher keinen Ent-
wicklungsprozess vor, beinhaltet aber Praktiken, welche die Qualität bestehender Prozesse
messen und verbessern können. Es wird ein Entwicklungsprozess angestrebt, der Inkremen-
te regelmäßig, schnell und mit hoher Qualität ausliefern kann.

Das Verfahren modelliert dazu bestehende Prozesse als Kette von Arbeitsstationen, die
jedes Produktinkrement durchlaufen muss (z.B. Analyse, Implementierung, Testing,. . .).
Wichtig ist insbesondere, Abhängigkeiten innerhalb des Prozesses zu identifizieren, um
Verzögerungen zu vermeiden. Dadurch lässt sich der Durchfluss optimieren, indem Bott-
lenecks identifiziert und aufgelöst werden.

Zentral für Kanban ist das Kanban-Board, auf dem der Prozess modelliert und sein Fort-
schritt sichtbar gemacht wird. Abbildung 2.2 zeigt einen Überblick über Kanban mit dem
Board im Zentrum. Man erkennt die in Spalten angeordneten Stationen, sowie zusätzliche
Spalten für Prozess-Input (in naher Zukunft geplante Features) und Prozess-Output (zur
Abnahme freigegebene Features). Die Regeln von Kanban werden im Folgenden erläutert.

12 KAPITEL 2. ORGANISATION

Abbildung 2.2: Das Kanban-Board

Regeln

Die grundlegende Regel in Kanban ist, dass die Anzahl Items in jeder Station, die Work In
Progress (WiP), streng limitiert ist. Die jeweiligen Obergrenzen sollten in jeder Spalte
des Kanban-Boards eingetragen werden. Jede Station hat einen eigenen Input und Output.
Im Input liegen aktuell bearbeitete Tickets, im Output fertige Tickets. Die Prozesskette
funktionert nach dem Pull-Prinzip. Damit können Features nur weiter wandern, wenn die
nachfolgende Arbeitsstation das Feature in seinen Input ”zieht“.

Durch diese einfachen Regeln lassen sich Bottlenecks des Prozesses schnell identifizieren:
Sollte ein Flaschenhals existieren, werden davor liegende Stationen aufgrund des Limits
blockiert. Denn da die Station, die den Flaschenhals erzeugt, keine weiteren Tickets zie-
hen kann, dürfen auch frühere Stationen, wenn sie ihr Limit erreicht haben, keine weiteren
Tickets annehmen. Dann kann die Ressourcenzuteilung zu den Stationen verbessert wer-
den, sodass der Durchfluss steigt.

Damit die Anzahl der Tickets die tatsächliche Arbeit angemessen quantisiert, sollten alle
Tickets einen ähnlichen Arbeitsaufwand erzeugen. Dies kann z.B. durch Zergliederung von
Features erreicht werden.

Optional können verschiedene Service-Klassen eingeführt werden, welche die Tickets prio-
risieren. Verbreitet ist z.B. eine Aufteilung in Standard, Expedite, Vague und Fixed.
Expedite-Tickets wird eine eigene Bahn durch den Prozess zugeordnet, die nicht zu den
Limits der Stationen zählt. So können z.B. wichtige Bugfixes vorrangig behandelt werden
(siehe die roten Tickets in Abbildung 2.2). Vague-Tickets sollten nur durch die Kette wan-
dern, wenn Kapazitäten des gesamten Prozesses frei sind. Fixed-Tickets können so durch
den Prozess geführt werden, dass sie zu festen Terminen fertiggestellt sind.

2.2. WAHL DES VERFAHRENS 13

Bewertung der Prozess-Qualität

Die Prozessqualität lässt sich zunächst daran messen, ob Bottlenecks in der Prozesskette
existieren. Diese verringern den Durchfluss und weisen auf eine nicht-optimale Ressourcen-
verteilung hin. Wie bereits angemerkt, lassen sich Bottlenecks dadurch identifizieren, dass
sie Tickets aufstauen und es dadurch vorigen Stationen nicht erlaubt ist, weitere Tickets
anzunehmen.

Eine weitere Metrik zur Abschätzung der Qualität ist die Zeit, die für einzelne Tickets seit
dem letzten Fortschritt vergangen ist. Solche Tickets sind möglicherweise blockiert, d.h. es
sind Behinderungen aus dem Weg zu schaffen, damit das Ticket erfolgreich abgearbeitet
werden kann. Weitere Metriken zur Messung des Durchflusses und dem Aufwand einzelner
Tickets existieren darüber hinaus.

Wie Scrum verwendet auch Kanban Dailies und Reviews (siehe Unterabschnitt 2.1.3), um
den Projektfortschritt zu kommunizieren. Anders als in Scrum müssen Reviews aber nicht
regelmäßig abgehalten werden.

2.2 Wahl des Verfahrens
von Mirko Bunse

Scrum und Kanban (siehe Unterabschnitt 2.1.3 und Unterabschnitt 2.1.4) stellen nur Rah-
menwerke mit vielen Optionen zur Verfügung. Die Implementierung der Verfahren obliegt
letztendlich dem Anwender. Für uns stellten sich folgende Fragen:

• Welches der Verfahren wählen wir? Nehmen wir eine Kombination vor?

• Wie lange sollen Sprints dauern?

• Wie sind die Rollen zu besetzen?

• Welche Software können wir für unser Verfahren verwenden?

Initial haben wir uns darauf geeinigt, lediglich Scrum zu verwenden und Kanban bei Bedarf
zur Prozessbewertung und -optimierung hinzuzuziehen. Auf diese Weise können wir uns
auf die Arbeit konzentrieren und die uns neuen agilen Projektmanagement-Verfahren ne-
benbei erlernen. Da Kanban kein Vorgehensmodell darstellt, sondern auf die Optimierung
bestehender Prozesse abzielt, lässt sich ein solches Vorgehen gut implementieren.

Wir haben zwei Scrum-Master gewählt, um die Arbeit an den Impediments aufteilen zu
können und bei Bedarf die Arbeit auf zwei Scrum-Teams aufzuteilen. Als Product Owner
sollten die Betreuer herhalten. Sprints sollten zunächst eine Woche dauern, um dem hohen
Abstimmungsaufwand am Anfang des Projektes zu begegnen, später sollten sie länger
dauern.

14 KAPITEL 2. ORGANISATION

Um das PBL zu pflegen, verwenden wir Atlassian JIRA [13]. Über die Kommentar-Funktio-
nen dieser Projektmanagement-Software für User Stories und Tasks können wir Lösungen
diskutieren und unseren Fortschritt dokumentieren.

2.3 Retrospektive der Umsetzung
von Mirko Bunse

Nach einem Semester Laufzeit der Projektgruppe können wir eine erste Bewertung un-
serer Umsetzung agilen Projektmanagements vornehmen. Da sich insbesondere Probleme
mit der Initialisierung des Projektes erkennen lassen, wollen wir darauf gesondert in Un-
terabschnitt 2.3.1 eingehen. Wir wollen dazu außerdem einen Blick auf unsere Meetings
werfen (siehe Unterabschnitt 2.3.2). Zusammenfassend und über diese Themen hinausge-
hend nehmen wir eine abschließende Bewertung vor (siehe Unterabschnitt 2.3.3).

2.3.1 Projekt-Initialisierung

Scrum fordert, dass das Team für die Vision des Endproduktes ein tiefgehendes Verständnis
entwickelt. Nur dadurch ist nachvollziehbar, was Teilziele für den Projekterfolg bedeuten,
und umrissen, was möglicherweise im Vorhinein für zukünftige Arbeitspakete zu bedenken
ist. Wir haben uns initial schwer damit getan, die Product Vision zu konkretisieren. Auch
wenn abstrakt klar war, welche Prozesse zur Analyse der Daten abzubilden sind, lag der
Weg dahin lange Zeit im Dunkeln. Ein Grund dafür war, dass wir mit den verwendeten
Technologien nur wenig Erfahrung besaßen.

Scrum nimmt an, dass das Team die für das Projekt nötige Expertise bereits mitbringt, im
Zweifelsfall durch im Vorhinein durchgeführte Schulungen. Mit dieser Expertise kann das
Projekt auch schneller initialisiert werden. Für Projektgruppen kann diese Annahme aller-
dings nicht vollends zutreffen, da dort große Teile dieser Expertise erst vermittelt werden
sollen. Uns fehlten insbesondere Erfahrungen mit Spark und dem Streams-Framework.

2.3.2 Meetings

Das Modulhandbuch des Masterstudiengangs Informatik sieht acht Semesterwochenstun-
den für die Projektgruppe vor [87]. Dies ist ein wesentlich geringerer Umfang, als in einem
üblichen Arbeitsleben mit acht täglichen Arbeitsstunden. Wir haben dadurch mit unse-
rem wöchentlichen Sprint Planning Meeting einen Umfang abgedeckt, für den von Scrum
ein Daily Meeting angedacht ist. Durch diesen übersichtlichen Sprint-Umfang erschien es
nicht zielführend, Scrum formal durchzuführen, also ein PBL, ein SBL oder ein IBL ge-
wissenhaft zu führen. Damit wurde aber der Großteil des Abstimmungsaufwandes in den
wöchentlichen Meetings abgehandelt. Sie wurden länger als vielleicht nötig.

2.3. RETROSPEKTIVE DER UMSETZUNG 15

Zudem haben sich die meisten wöchentlichen Meetings zu Arbeitsmeetings ausgewachsen,
die einzelne Probleme in einer Tiefe diskutiert haben, die nicht für alle Teilteams rele-
vant war. Erst später haben wir regelmäßige Treffen der Teilteams etabliert, in denen die
Arbeit erledigt und teilthemenbezogene Abstimmung erzielt wurde. Dadurch fielen die
wöchentlichen Hauptmeetings sinnvoll kürzer aus.

Für Sprint-Retrospektiven (”Was lief gut, wie können wir den Prozess verbessern?“) war
eine Woche kein ausreichender Sprint-Umfang. Ein dediziertes Meeting zur Bewertung des
Prozesses wurde auch nicht abgehalten. Damit haben wir noch nicht abgestimmt, wie wir
unseren Entwicklungsprozess optimieren wollen.

2.3.3 Abschließende Bewertung

Die angenommene Erfahrung mit verwendeten Technologien und die Annahme eines tief-
gehenden Verständnisses der Product Vision haben Scrum für die Initialisierung des Pro-
jekts nicht so recht aufgehen lassen (siehe Unterabschnitt 2.3.1). Wir sind dadurch erst
recht spät aus dieser Findungsphase ausgetreten. Insbesondere waren einige Zeit lang keine
sinnvollen Inkremente planbar.

Die von uns gewählte Sprintlaufzeit von einer Woche ließ eine formale Durchführung (PBL,
SBL, IBL) von Scrum nicht sinnvoll erscheinen. Durch die nicht von Scrum vorgesehene
Durchführung der Meetings haben wir wir viel Zeit in unseren Treffen verbraucht, wobei
nicht immer alle von dieser Zeit profitieren konnten (siehe Unterabschnitt 2.3.2).

Da die Initialisierung des Projektes mittlerweile abgeschlossen ist und die in diesem Zwi-
schenbericht vorgestellten Ergebnisse des Projektes eine gute Basis für die weitere Arbeit
darstellen, haben wir jedoch eine solide Grundlage für das zweite Semester geschaffen.
Wir haben ein Verständnis der Product Vision erlangt. Zukünftige Arbeitspakete werden
besser planbar sein, weil wir sie im Kontext bestehender Ergebnisse betrachten können.
Als Team sind wir heute eingespielter als zu Beginn der Projektgruppe.

Wir können im kommenden Semester an den hier genannten nicht-optimalen Punkten an-
setzen, um unseren Entwicklungsprozess zu verbessern und damit mehr Projektziele in der
uns gegebenen Zeit umzusetzen. Eine Retrospektive des bisherigen Projektmanagements
stellt einen guten Startpunkt für das kommende Semester dar.

Teil II

Big Data Analytics

17

Kapitel 3

Einführung in Big Data Systeme

von Alexander Bainczyk

Für den Begriff ”Big Data“ gibt es keine allgemeingültige Definition, vielmehr ist er ein
Synonym für stetig wachsende Datenmengen geworden, die mit herkömmlichen Systemen
nicht mehr effizient verarbeitet werden können. Wird nach Charakteristika von Big Data
gefragt, werden oftmals die 5 Vs [65] zitiert, die in Abbildung 3.1 veranschaulicht sind:

• Volume (Menge) Die Menge an Daten, die produziert werden, steigt in einen Be-
reich, der es für herkömmliche Systeme schwer macht, diese zu speichern und zu
verarbeiten und auch die Grenzen traditioneller Datenbanksysteme überschreitet.

• Velocity (Geschwindigkeit) Die Geschwindigkeit, mit der neue Daten generiert wer-
den und sich verbreiten, steigt. Um diese (in Echtzeit) zu analysieren, benötigt es
neue Herangehensweisen.

• Variety (Vielfalt) Die Daten stammen nicht mehr nur aus einer oder ein paar weni-
gen, sondern aus einer Vielzahl unterschiedlicher Quellen, wie zum Beispiel Sensoren,
Serverlogs und nutzergenerierten Inhalten und sind strukturiert oder unstrukturiert.

• Veracity (Vertrauenswürdigkeit) Bei der Menge an produzierten Daten kann es
passieren, dass sie Inkonsistenzen aufweisen, unvollständig oder beschädigt sind. Bei
der Analyse gilt es, diese Aspekte zu berücksichtigen.

• Value (Wert) Oftmals werden so viele Daten wie möglich gesammelt, um einen
Gewinn daraus zu schlagen. Dieser kann beispielsweise finanzieller Natur sein oder
darin bestehen, neue Erkenntnisse durch Datenanalyse für wissenschaftliche Zwecke
zu gewinnen.

In erster Hinsicht besteht die Herausforderung nun darin, diese Masse an Daten auf ir-
gendeine Art und Weise zu speichern, verfügbar und durchsuchbar zu machen und effizient
zu analysieren. Die folgenden Abschnitte geben daher einen kurzen Einblick in die Anwen-
dungsgebiete von Big Data, erläutern die Probleme mit herkömmlichen Ansätzen und
beschäftigen sich mit Anforderungen an Big Data Systeme.

19

20 KAPITEL 3. EINFÜHRUNG IN BIG DATA SYSTEME

Abbildung 3.1: Veranschaulichung der ersten vier Vs von Big Data. Von links nach rechts:
Volume, Velocity, Variety und Veracity (vgl. [25])

3.1 Nutzen von Big Data
von Alexander Bainczyk

Der große Nutzen von Big Data besteht in den Ergebnissen der Datenanalyse. Diese können
etwa dazu dienen, um personalisierte Werbung anzuzeigen oder wie in unserem Anwen-
dungsfall, um neue, unbekannte Daten zu erkennen und zu klassifizieren. Eine Möglichkeit
der Analyse besteht in der Anwendung maschineller Lernverfahren, dessen Konzepte in
Kapitel 8 vorgestellt werden. Im Kern geht es dabei darum, in Datensätzen Muster und
andere Regelmäßigkeiten zu finden. Es liegt nahe, dass je größer die bestehende Datenmen-
ge ist, Modelle genauer trainiert werden können, wenn die Daten nicht höchst verschieden
sind. Um große Datenmengen effizient zu analysieren, benötigt es auch hier spezielle Ver-
fahren, die vor allem in Abschnitt 8.3 angesprochen werden und entsprechende Software,
die auf die Analyse von Big Data zugeschnitten ist (s. Unterabschnitt 5.2.3).

3.2 Probleme mit herkömmlichen Ansätzen
von Alexander Bainczyk

Bei einer handelsüblichen Festplatte mit 2 TB Speicher und einer Lesegeschwindigkeit von
im Schnitt 120 MB/s dauert alleine das Lesen der Festplatte ungefähr 4,6 Stunden. Bei
noch größeren Datenmengen und zeitkritischen Analysen ist diese Zeitspanne jedoch nicht
akzeptabel, weshalb Ansätze darauf abzielen, die Daten und Berechnungen auf mehrere
Server zu verteilen, um nur einen Bruchteil dieser Zeit zu benötigen. Ein wichtiger Begriff
in diesem Zusammenhang ist die Skalierbarkeit.

Skalierbarkeit beschreibt die Fähigkeit eines Systems, bestehend aus Soft- und Hardware,
die Leistung durch das Hinzufügen von Ressourcen möglichst linear zu steigern. Generell
unterscheidet man hierbei zwischen vertikaler und horizontaler Skalierbarkeit (s. Abbil-
dung 3.2).

Unter vertikaler Skalierung spricht man dann, wenn sich eine Leistungssteigerung eines
einzelnen Rechners durch mehr Ressourcen, in etwa durch mehr Arbeitsspeicher, Prozes-
sorleistung oder Speicher ergibt. Der größte Nachteil dieses Verfahrens ist seine Kostspie-
ligkeit, da meistens nur die Anschaffung eines neueren, leistungsstärkeren Systems möglich

3.3. ANFORDERUNGEN AN BIG DATA SYSTEME 21

Abbildung 3.2: Arten der Skalierung

ist, wenn das alte an seine Grenzen stößt. Fürs Big Data Processing ist diese Art der Ska-
lierung somit eher ungeeignet, da an irgendeinem Punkt es nicht mehr möglich ist, sei
es aus technischer Sicht oder aus Gründen der Kosten, mehr Ressourcen in ein System
einzuspeisen.

Im Gegensatz dazu spricht man von horizontaler Skalierung, wenn in ein bestehendes
System weitere Rechner eingespeist werden. Für so einen Cluster wird meistens kostengün-
stige Serverhardware genommen, die über eine schnelle Netzwerkverbindung miteinander
verbunden sind. Ein Beispiel für eine derartige, horizontal skalierbare Architektur stellt
die λ-Architektur dar, die in Kapitel 4 thematisiert ist. In Fällen von Big Data werden
horizontal skalierbare Lösungen bevorzugt, da sie kostengünstiger in der Anschaffung im
Verhältnis zum Datenzuwachs sind und Ressourcen flexibel und je nach Bedarf hinzugefügt
werden können [66, Kap. 1], [91].

3.3 Anforderungen an Big Data Systeme
von Alexander Bainczyk

Eine derartige Skalierung, wie sie im vorigen Abschnitt beschrieben ist, stellt auch neue
Anforderungen an die Datenmodellierung und an die verwendete Software. Gewünschte
Eigenschaften von Big Data Systemen sind unter anderem:

Fehlererkennung und -toleranz In einem verteilten System muss die Annahme gel-
ten, dass zufällig jede beliebige Komponente zu jedem beliebigen Zeitpunkt ausfallen
kann. Mit der Anzahl an Knoten in einem Cluster steigt dieses Risiko. Kann ein sol-
cher Fehler nicht zuverlässig erkannt werden, können Endergebnisse verfälscht oder
nicht produziert werden. Infolgedessen müssen Big Data Systeme so konstruiert sein,
dass das Ausfallrisiko oder der Verlust von Daten mit einkalkuliert ist. Um Fehler-
toleranz zu gewährleisten wird meistens auf eine Kombination aus Datenredundanz
und wiederholter Ausführung von fehlgeschlagenen Teilaufgaben gesetzt. Die Feh-

22 KAPITEL 3. EINFÜHRUNG IN BIG DATA SYSTEME

lererkennung selbst geschieht zumeist auf algorithmischer Basis und soll hier nicht
weiter vertieft werden [60, Kap. 15].

Geringe Latenzen Auch bei Datenmengen im Bereich von mehreren Tera- oder Peta-
byte sollen Daten so schnell wie möglich abrufbar sein. Dies wird oft über Datenred-
undanzen realisiert. Motiviert von der großen Varianz von Daten haben sich nicht-
relationale Datenbanken (s. Abschnitt 13.1, Abschnitt 13.2) etabliert, die ebenfalls
verteilt arbeiten, um geringe Latenzen zu garantieren.

Skalierbarkeit Mit steigender Datenmenge soll das System horizontal mitskalieren, in-
dem mehr Ressourcen hinzugefügt werden. Entsprechende Software, wie Hadoop &
YARN (Unterabschnitt 5.1.2) müssen die neuen Ressourcen entsprechend verwalten
und auf Anwendungen verteilen. Eine skalierbare Architektur für Big Data Systeme
wird mit der λ–Architektur in Kapitel 4 präsentiert.

Generalisierbarkeit Ein eigen konzipiertes Big Data System für jeden beliebigen An-
wendungsfall ist aus Sicht der Wartbarkeit und Interoperabilität nicht praktikabel.
Die λ-Architektur bietet eine generelle Struktur und mit Software wie MapRedu-
ce (Unterabschnitt 5.1.3) und Spark (Abschnitt 5.2) lassen sich viele Probleme auf
einheitlicher Basis lösen.

Bei der Datenverarbeitung in Big Data Systemen stellen sich neben den erwähnten An-
forderungen noch weitere Herausforderungen. Etwa muss sich die Frage gestellt werden,
wie Daten in einem Cluster verteilt werden, sodass sie möglichst effizient verarbeitet wer-
den können und wie sich vorhandene Ressourcen für diese Aufgabe möglichst gut nutzen
lassen. Dies soll jedoch nicht Gegenstand dieser Projektgruppe sein, da wir auf bereits
existierende Lösungen setzen, die für diese Probleme Mechanismen integriert haben.

Kapitel 4

Lambda-Architektur

von Dennis Gaidel

Im vorangegangenen Kapitel 1 wurde bereits die Herausforderung motiviert: Datenmengen
in der Größenordnung von Tera- bis Petabyte müssen indiziert, angemessen verarbeitet und
analysiert werden. Bisher wurde im Rahmen der Projektgruppe eine Teilmenge der Tele-
skopdaten auf dem verteilten Dateisystem eines Hadoop-Clusters (vgl. Kapitel 5) abgelegt
und für die Verarbeitung herangezogen. Big-Data-Anwendungen zeichnen sich jedoch nicht
nur dadurch aus, dass sie eine große Menge persistierter Daten möglichst effizient vorhal-
ten, sodass Nutzeranfragen und damit verbundene Analysen zeitnah beantwortet werden
können. Vielmehr ist auch die Betrachtung von Datenströmen ein essentieller Bestandteil
einer solchen Anwendung, um eintreffende Daten in Echtzeit verarbeiten zu können. Im
Folgenden soll verdeutlicht werden, wie eine solche Big-Data-Anwendung im Sinne der sog.
Lambda-Architektur umgesetzt wird.

Motivation Die Problematik besteht in der Vereinigung der persistierten Datenmenge
und der Daten des eintreffenden Datenstroms, der in Echtzeit verarbeitet werden soll.
Auch beansprucht die Beantwortung von Anfragen auf den wachsenden Datenmengen
zunehmend viel Zeit, sodass klassische Architekturansätze an ihre Grenzen kommen.

Bei der Ausführung von Transaktionen sperren relationale Datenbanken bspw. betroffene
Tabellenzeilen oder die komplette Datenbank während der Aktualisierung der Daten, wo-
durch die Performanz und Verfügbarkeit eines Systems vorübergehend reduziert wird. Der
Einfluss dieses Flaschenhalses kann mit Hilfe von Shardingansätzen reduziert werden.

Sharding beschreibt die horizontale Partitionierung der Daten einer Datenbank, sodass
alle Partitionen auf verschiedenen Serverinstanzen (z.B. innerhalb eines Clusters) verteilt
werden, um die Last zu verteilen. Die Einträge einer Tabelle werden somit zeilenweise
auf separate Knoten ausgelagert, wodurch die Indexgröße reduziert und die Performanz
deutlich gesteigert werden kann. Allerdings ist diese Methode auch mit Nachteilen ver-
bunden. Durch den Verbund der einzelnen Knoten zu einem Cluster ergibt sich eine starke
Abhängigkeit zwischen den einzelnen Servern. Die Latenzzeit wird ggf. erhöht, sobald die

23

24 KAPITEL 4. LAMBDA-ARCHITEKTUR

Anfrage an mehr als einen Knoten im Rahmen einer Query gestellt werden muss. Insge-
samt leidet die Konsistenz bzw. die Strapazierfähigkeit des Systems, da die Komplexität
des Systems steigt und somit auch die Anfälligkeit gegenüber Fehlern.

Bisher wurde auf den Einsatz von Sharding verzichtet, obwohl die eingesetzten Datenbank-
systeme (vgl. Kapitel 13) diese Methode unterstützen, da die persistierten und indizierten
Event-Daten und die zugehörige Metadaten noch keine kritische Größe erreicht hatten. Im
Hinblick auf das zweite Semester und wachsenden Datenmengen (vgl. Kapitel 18) könnte
die Umsetzung dieses Ansatzes vorteilhaft sein.

Daraus resultierend ergibt sich die Notwendigkeit einer alternativen Architektur bei der
Verarbeitung von besonders großen Datenmengen im Big-Data-Umfeld.

Architektur Um dem Anspruch der simultanen Verarbeitung von Echtzeitdaten und
der historischen bzw. persistierten Daten gerecht zu werden, hat Nathan Marz die Lambda-
Architektur [67] eingeführt, die einen hybriden Ansatz verfolgt: Es werden sowohl Metho-
den zum Verarbeiten von Batches (also den historischen Daten, vgl. Kapitel 5), als auch
zum Verarbeiten von Streams (Echtzeitdaten, vgl. Kapitel 6) miteinander kombiniert.
Durch die Anwendung von geeigneten Methoden für den entsprechenden Datensatz wird
eine Ausgewogenheit zwischen der Latenzzeit (latency), dem Durchsatz (throughput) und
der Fehlertoleranz (fault-tolerance) erreicht.

Der Unterschied zu klassischen Ansätzen beginnt bereits beim Datenmodell, welches sich
durch eine unveränderliche Datenquelle auszeichnet, die lediglich durch das Hinzufügen
neuer Einträge erweitert werden kann. Im vorliegenden Fall werden die Events aus den
Teleskopdaten bzw. den FACT-Dateien extrahiert (vgl. Kapitel 10), in die Datenbank
überführt und indiziert (vgl. Kapitel 13).

Allgemein besteht die Lambda-Architektur (Abbildung 4.1) aus drei Komponenten: Batch
Layer (Kapitel 5), Speed Layer (Kapitel 6) und Serving Layer (Kapitel 7).

Der Batch Layer enthält die dauerhaft gespeicherten Daten in ihrer Gesamtform. Dies
sind zum einen die auf dem Dateisystem vorliegenden Rohdaten im FITS-Format, so-
wie die extrahierten Events und ihre zugehörigen Metadaten. Durch die große Menge
an Daten, die durch diesen Layer verwaltet werden, steigen die Latenzzeiten, sodass die
Performanz dieses Layers nicht besonders hoch ist. Während eine Berechnung auf die-
sem Datenbestand durchgeführt wird, werden neu hinzugefügte Daten bei der Berechnung
nicht betrachtet. Auch werden entsprechende Ansichten auf den Datenbestand über diese
Schicht erstellt und zur Verfügung gestellt. Wurden neue Daten hinzugefügt, so werden
auch die entsprechenden Views aktualisiert bzw. neu berechnet.

Der Speed Layer verarbeitet Datenströme in Echtzeit und vernachlässigt den Anspruch
des Batch Layers hinsichtlich der Vollständigkeit und Korrektheit der Ansichten auf die
aktuell verarbeiteten Daten, die von dieser Schicht bereitgestellt werden. Die neu ein-
gelesenen Daten werden temporär zwischengespeichert und stehen zur Ausführung von

25

Abbildung 4.1: Lambda-Architektur [3]

Berechnungen bereit. Sobald die temporär gespeicherten Daten des Speed Layers auch im
Batch Layer zur Verfügung stehen, werden diese aus dem Speed Layer entfernt.

Die Komplexität des Speed Layers entsteht durch die Aufgabe, die temporär zwischenge-
speicherten Daten aus dem Datenstrom mit dem bereits persistierten Datenbestand des
Batch Layers zusammenzuführen.

Werden neue Teleskopdaten an den Cluster übergeben, so sollen die Events in Echtzeit
eingelesen und der Prozesskette hinzugefügt werden, um in den anstehenden Analysen
(vgl. Kapitel 11) bereitzustehen.

Der Serving Layer dient als Schnittstelle für Abfragen, die nach erfolgter Berechnung ein
Ergebnis zur Folge haben. Diese Ergebnisse werden auf Grund der hohen Latenz des Batch
Layers zwischengespeichert, um das Ergebnis bei erneuter Abfrage schneller ausliefern zu
können. Dabei werden die ausgewerteten Daten sowohl von Speed- als auch Batch-Layer
indiziert, um die Abfragen zu beantworten.

Eine abgeschlossene Berechnung führt schließlich dazu, dass alle Daten im Serving Layer
mit dem neuberechneten ersetzt werden. Dadurch entfallen unnötig komplexe Updateme-
chanismen und die Robustheit gegenüber fehlerhaften Implementierungen werden erhöht.

Um die Events gemäß bestimmten Kriterien bereitzustellen und analysieren zu können,
wird eine REST-Schnittstelle (vgl. Abschnitt 7.2) zur Verfügung gestellt, über die die
Anwendung u.a. auch von außerhalb angesprochen werden kann.

Kapitel 5

Batch Layer

von Alexander Bainczyk

Wie im vorigen Kapitel 4 beschrieben, werden im Batch-Layer mit Hilfe eines verteilten
Systems große Mengen an Daten verarbeitet. In diesem Zusammenhang sind während der
initialen Seminarphase verschiedene Technologien vorgestellt und evaluiert worden. Im
Folgenden werden daher das Ökosystem um Apache Hadoop und Apache Spark vorgestellt,
dessen Konzepte veranschaulicht, Vor- und Nachteile besprochen und die Wahl der später
genutzten Software begründet.

5.1 Apache Hadoop
von Alexander Bainczyk

Bei dem Apache Hadoop Projekt1 handelt es sich um ein Open Source Framework, das
Anwendern ermöglicht, schnell eine verteilte Umgebung bereitzustellen, mit der sich Hard-
ware Ressourcen in einem Rechen-Cluster verwalten und große Mengen an Daten speichern
und verteilt verarbeiten lassen.

Abbildung 5.1: Architektur des Apache Hadoop Projekts. Quelle: [50]

1http://hadoop.apache.org/

27

http://hadoop.apache.org/

28 KAPITEL 5. BATCH LAYER

Wie in Abbildung 5.1 zu sehen ist, setzt sich das Projekt aus drei modularen Komponenten
zusammen, dessen Konzepte und Nutzen für unseren Anwendungsfall in den folgenden
Abschnitten thematisiert werden.

5.1.1 HDFS
von Alexander Bainczyk

Für den Storage-Layer in einem Rechnercluster zeichnet sich das Hadoop Distributed File
System (HDFS) verantwortlich und basiert auf dem Google File System [42]. Dieses eignet
sich insbesondere für den Bereich des Data Warehousing, also Einsatzzwecke, wo es darauf
ankommt, eine große Menge an Daten über eine lange Zeit hinweg hoch verfügbar und
ausfallsicher vorzuhalten.

Abbildung 5.2: Funktionsweise eines HDFS Clusters. Quelle: [35]

Der Aufbau eines HDFS Clusters ist in Abbildung 5.2 illustriert. Wie zu erkennen ist,
werden Daten auf sogenannten Datanodes in gleich großen Blocks gespeichert. Um Aus-
fallsicherheit zu garantieren, besitzt das System einen Replikationsmechanismus, bei dem
Blocks bei Bedarf mehrfach redundant (bestimmt durch einen Replikationsfaktor) auf ver-
schiedenen Datanodes und Racks gespeichert werden. Im Falle eines Ausfalls kann so der
Replikationsfaktor von betroffenen Blöcken durch Neuverteilung im Cluster wiederherge-
stellt werden, vorausgesetzt die nötigen Kapazitäten sind vorhanden.

Beim Namenode handelt es sich um eine dedizierte Einheit, auf der keine Daten gespeichert
werden. Dieser enthält Informationen über den Zustand des Systems, was das Wissen über
den Aufenthaltsort von Blöcken und dessen Replikationen im Cluster beinhaltet. Durch
einen periodisch ausgeführten Heartbeat werden alle Datanodes kontaktiert und aufge-
fordert, einen Zustandsbericht über gespeicherte Daten zu senden. Schlägt ein Heartbeat
mehrmals fehl, gilt der Zielknoten als tot und der beschriebene Replikationsmechanismus

5.1. APACHE HADOOP 29

greift ein. Darüber hinaus kann der Namenode selbst repliziert werden, da er sonst einen
single-point-of-failure in diesem System darstellt.

Der Zugriff auf Daten von einem Klienten geschieht je nach dem, welche Operation aus-
geführt werden soll. Bei Leseoperationen einer Datei wird zunächst der Namenode ange-
fragt, da dieser über ein Verzeichnis über alle Daten im Cluster verfügt. Dieser gibt dann
den Ort der angefragten Datei an. Schreiboperationen werden typischerweise direkt auf
den Datanodes durchgeführt. Mittels der Heartbeats wird der Namenode schließlich von
den Änderungen informiert und veranlasst die Replikation der neu geschriebenen Daten.
Weiterhin wird für Klienten eine einfache Programmierschnittstelle angeboten, die die
Verteilung der Daten nach außen hin abstrahiert und somit wie ein einziges Dateisystem
wirkt [35].

Für die Projektgruppe wurde zu Anfang ein aus sechs Rechnern bestehendes Hadoop Clu-
ster mit dem HDFS zur Verfügung gestellt. Das Dateisystem kommt in unserem Anwen-
dungsfall hauptsächlich für die Persistenz der in Kapitel 10 beschriebenen Teleskopdaten
zum Einsatz. Das verteilte Dateisystem erwies sich bereits als sehr zuverlässig in Bezug
auf Ausfallsicherheit [42] und wird in Produktivsystemen zum Speichern und Verarbeiten
mehrerer Petabyte genutzt2, womit es eine solide Grundlage für den Anwendungszweck
darstellt.

5.1.2 YARN
von Alexander Bainczyk

Yet Another Resource Allocator (YARN) wirkt als Mittelsmann zwischen dem Ressourcen-
management im Cluster und den Anwendungen, die gegebene Ressourcen für Berechnun-
gen nutzen möchten. Die Architektur setzt sich aus einem dedizierten RessourceManager
(RM) und mehreren NodeManager (NM) zusammen, wobei auf jedem Rechner im Cluster
ein NM läuft. Der RM stellt Anwendungen Ressourcen als sogenannte Container, also logi-
sche, auf einen Rechner bezogene Recheneinheiten zur Verfügung, die den Anforderungen
der Anwendung, wenn möglich, entsprechen. Ein von der Anwendung eingereichter Job
wird dann im Container verarbeitet. Nach Beendigung gibt der RM die Ressourcen wieder
frei.

Aufgrund dieser offenen Struktur sind Ressourcen in einem Hadoop Cluster nicht nur
für Software aus dem selben Ökosystem zugänglich, sondern können auch von Dritt-
Programmen wie Apache Spark und Apache Storm reserviert und genutzt werden [89].

5.1.3 MapReduce
von Alexander Bainczyk

Bei Hadoop MapReduce handelt es sich um eine YARN-basierte Umgebung zum parallelen
2http://wiki.apache.org/hadoop/PoweredBy

http://wiki.apache.org/hadoop/PoweredBy

30 KAPITEL 5. BATCH LAYER

Verarbeiten von Datenmengen in einem Hadoop-Cluster. Die Idee basiert auf einem Ver-
fahren aus der funktionalen Programmierung, bei der es eine map und eine reduce Funktion
gibt. Erstere wird auf jedes Element einer Menge unabhängig voneinander durchgeführt,
die errechneten Ergebnisse mit letzterer Funktion zusammengeführt. MapReduce macht
sich insbesondere die Unabhängigkeit der Daten zu Nutze, um beide Funktionen massiv
parallel auszuführen, sodass sich folgendes Verfahren ergibt:

(k1, v1) map===⇒ list(k2, v2) group====⇒ (k2, list(v2)) reduce====⇒ list(v2).

Um das Prinzip zu veranschaulichen, kann das Zählen von Events pro Nacht benutzt wer-
den. Rechner, die einen map-Job ausführen (Mapper) erhalten als Eingabe jeweils eine fits-
Datei (s. Kapitel 10), zählen die Events und speichern jeweils eine Liste list(night, 1) als
Zwischenergebnis ab. MapReduce gruppiert die Zwischenergebnisse aller Mapper, was zu
einer Menge von (nighti, list(1, 1, . . .)) führen würde. Rechner, die für den reduce-Funktion
ausgewählt worden sind (Reducer) würden die Zwischenergebnisse zusammenführen und
Daten der Form (nighti, ni) abspeichern, wobei ni die Anzahl aufgenommener Events der
Nacht nighti beschreibt. Es ist anzumerken, dass selbst wenn einer der Jobs fehlschla-
gen sollte, der gesamte Prozess nicht abgebrochen, sondern der entsprechende Job ggf.
auf einem anderen Rechner erneut ausgeführt wird. Die Erkennung eines toten Knotens
geschieht durch ständige Statusanfragen des Masters an Mapper und Reducer. In Experi-
menten zeigte sich, dass dieses Prinzip eine hohe Wahrscheinlichkeit für die Terminierung
aufweist [29].

Hadoop MapReduce hat bislang in der Projektgruppe noch keine Anwendung gefunden,
wofür sich zwei Gründe angeben lassen. Zum einen haben direkte Vergleiche gezeigt, dass
andere Frameworks wie Apache Spark Vorteile bezogen auf die Performance haben, was
auch darauf zurückzuführen ist, dass bei MapReduce viele Lese- und Schreibzugriffe auf
das Speichermedium ausgeführt werden, anstatt Daten im Arbeitsspeicher vorzuhalten.
Weiterhin gestaltet sich die Suche nach einem MapReduce basiertem Framework zum
verteilten, maschinellen Lernen als schwierig. Zwar existiert mit Apache Mahout3 eine
entsprechende, ausgereifte Lösung, nach Angaben der Entwickler wird die Entwicklung des
Frameworks sich jedoch aus Gründen der Performance auf Apache Spark konzentrieren.

5.2 Apache Spark
von Dennis Gaidel

Bei Apache Spark handelt es sich um ein Cluster Computing Framework, mit dessen Hilfe
Aufgaben auf mehrere Knoten eines Clusters (Rechnerverbunds) verteilt und somit parallel
verarbeitet werden können. Dies hat einen deutlichen Geschwindigkeitsvorteil gegenüber

3http://mahout.apache.org/

http://mahout.apache.org/

5.2. APACHE SPARK 31

der Berechnung auf einem einzelnen Knoten zur Folge, was insbesonders bei der Verarbei-
tung großer Datenmengen deutlich wird. Im Gegensatz zu Apache Hadoop setzt Apache
Spark auf die Vorhaltung und Verarbeitung der Daten im Hauptspeicher und erzielt so
einen Perfomancevorteil, durch den Berechnungen bis zu 100 mal schneller durchgeführt
werden können [92].

Das Framework setzt sich grundlegend aus vier Komponenten zusammen: Spark Core,
Spark SQL, Spark Streaming, GraphX, sowie der MLlib Machine Learning Library. Mit
diesen Komponenten werden somit die essentielle Bestandteile des Projekts (Clustering,
Querying, Streaming und Datenanalyse) prinzipiell abgedeckt, sodass Apache Spark eine
besonders interessante Option als Systemgrundlage darstellt. Ebenso wird eine Vielzahl
an verteilten Dateisystemen unterstützt, wodurch die Anbindung des Frameworks an ver-
schiedene Datenquellen erheblich vereinfacht wird.

5.2.1 Spark Core

Spark Core bildet die Grundlage von Apache Spark und ist mitunter für die folgenden
Aufgaben verantwortlich: Speichermanagement, Fehlerbeseitigung, Verteilung der Aufga-
ben an die einzelnen Knoten, das Prozessscheduling und die Interaktion mit verteilten
Dateisystemen.

Ferner definiert Spark Core die Programmierschnittstelle, um auf dem Cluster zu arbei-
ten und Aufgaben zu definieren. Dabei handelt es sich um sog. resilient distributed da-
tasets (kurz: RDDs), die wiederum Listen von einzelnen Elementen repräsentieren, deren
Partitionen auf die einzelnen Knoten verteilt und parallel auf allen Knoten manipuliert
werden können, wie es in Abbildung 5.3 ersichtlich wird. Die Verteilung und die parallele
Ausführung der Operationen wird dabei vom Framework selbst übernommen. Dies ist ein
weiterer Vorteil von Apache Spark: Ursprünglich komplexe Aufgaben, wie das Verteilen
und parallele Ausführen von Prozessen auf mehreren Knoten, wird durch das Framework
vollkommen abstrahiert und somit stark vereinfacht.

Die Daten können zum einen, wie bereits erwähnt, aus statischen Dateien eines (verteilten)
Dateisystems bezogen werden oder aber auch aus anderen Datenquellen wie Datenbanken
(MongoDB, HBase, ...) und Suchmaschinen wie Elasticsearch.

Es wird zwischen zwei Arten von Operationen unterschieden, die auf den RDDs ausgeführt
werden können. Transformationen (wie das Filtern von Elementen) haben ein neues RDD
zur Folge, auf dem weitere Operationen ausgeführt werden. Transformationen werden je-
doch aus Gründen der Performanz nicht direkt ausgeführt, sondern erst wenn das finale
Ergebnisse nach einer Reihe von Transformationen ausgegeben werden soll. Diese Technik
wird Lazy Evaluation genannt und bietet den Vorteil, dass die Kette von Transformatio-
nen zunächst einmal vom Framework sinnvoll gruppiert werden kann, um die Scans des

32 KAPITEL 5. BATCH LAYER

Abbildung 5.3: Verteilung der Partitionen eines RDDs auf unterschiedliche Knoten [1]

Datensatzes zu reduzieren. Aktionen berechnen (wie das Zählen der Elemente in einem
RDD) ein Ergebnis und liefern dieses an den Master Node zurück oder halten es in einer
Datei auf einem verteilten Dateisystem fest.

5.2.2 Spark SQL

von Dennis Gaidel

Spark SQL unterstützt die Verarbeitung von SQL Anfragen, um sowohl die Daten der
RDDs, als auch die externer Quellen in strukturierter Form zu manipulieren. Dadurch
wird nicht nur die Kombinationen von internen und externen Datenquellen (JSON, Apa-
che Hive, Parquet, JDBC (und somit u.a. MySQL und PostgreSQL), Cassandra, Elastic-
Search, HBase, u.v.m.) erleichtert, sondern ebenfalls die Persistierung von Ergebnissen,
Parquet Dateien oder Hive Tabellen und somit die Zusammenführung mit anderen Daten
ermöglicht.

Eine zentrale Komponente ist das DataFrame, welches an das data frame Konzept aus der
Programmiersprache R anlehnt und die Daten wie in einer relationalen Datenbank in einer
Tabelle bestehend aus Spalten und Zeilen repräsentiert. Dabei wird dieses DataFrame,
analog zu den RDDs, dezentral auf die bereitstehenden Knoten verteilt. Analog zu den
RDDs können auf den DataFrames Transformationen, wie map() und filter() aufgerufen
werden, um die Daten zu manipulieren. Technisch gesehen besteht ein DataFrame auf
mehreren Row-Objekten, die zusätzliche Schemainformationen, wie z.B. die verwendeten
Datentypen für jede Spalte, enthalten.

Hinsichtlich der Performance schickt sich Spark SQL an, auf Grund der höheren Abstrak-
tion durch SQL und den zusätzlichen Typinformationen, besonders effizient zu sein.

5.2. APACHE SPARK 33

5.2.3 Spark MLlib
von Dennis Gaidel, Carolin Wiethoff

Da Apache Spark nicht nur zum Ziel hat, Daten effizient zu verteilen, sondern diese auch
zu analysieren, existiert die Bibliothek MLlib als weitere Komponente, um Algorithmen
des maschinellen Lernens auf die eingelesenen Daten ausführen zu können. Dabei werden
prinzipiell nur Algorithmen angeboten, die auch dafür ausgelegt sind verteilt zu arbeiten.

Allgemein existieren mehrere Arten von Lernproblemen, wie Klassifikation, Regression
oder Clustering, deren Lösungen verschiedene Ziele verfolgen. Alle Algorithmen benötigen
eine Menge an Merkmalen für jedes Element, das dem Lernalgorithmus zugeführt wird.
Betrachtet man beispielsweise das Problem der Identifizierung von Spamnachrichten, das
eine neue Nachricht als Spam oder Nicht-Spam klassifizieren soll, so könnte ein Merkmal
z.B. der Server sein, von dem die Nachricht versandt wurde, die Farbe des Texts und wie
oft bestimmte Wörter verwendet wurden.

Die meisten Algorithmen sind darauf ausgelegt lediglich numerische Merkmale zu betrach-
ten, sodass die Merkmale in entsprechende numerische Werte übersetzt beziehungsweise
in entsprechende Vektoren transformiert werden müssen.

Mit Hilfe dieser Vektoren und einer mathematischen Funktion wird schlussendlich ein Mo-
dell berechnet, um neue Daten zu klassifizieren. Zum Trainieren des Modells wird der
bestehende und bereits klassifizierte Datensatz in einen Trainings- und Testdatensatz auf-
geteilt. Mit ersterem wird das Modell trainiert und mit letzterem schließlich die Vorhersage
evaluiert, wie es in Abbildung 5.4 dargestellt wird.

Abbildung 5.4: Maschinelles Lernen mit Spark MLlib [2]

Mit Hilfe der von MLlib bereitgestellten Klassen können die Schritte zum Lösen eines Lern-
problems in einer Apache Spark Applikation nachvollzogen werden und die Algorithmen
darauf trainiert werden. Auch zur Evaluierung der Vorhersage stellt MLlib entsprechende
Methoden zur Verfügung.

34 KAPITEL 5. BATCH LAYER

Abbildung 5.5: Pipeline-Struktur von Spark ML [9]

Die MLlib Bibliothek gliedert sich in zwei Pakete: spark.mllib ist das ursprüngliche Paket,
welches auf Basis der zuvor vorgestellten RDDs arbeitet. Es wird nicht mehr weiterent-
wickelt, allerdings noch unterstützt. spark.ml ist die neue Version, die aktuell weiterent-
wickelt wird. Das Paket arbeitet auf Basis von den in Spark SQL eingeführten DataFrames.
Außerdem werden alle Arbeitsschritte in einer Pipeline zusammengefasst. Eine solche Pi-
peline besteht aus Stages, welche sequentiell ausgeführt werden. Daten werden also von
Stage zu Stage gereicht. Eine Stage kann ein Transformer oder ein Estimator sein. Ein
Transformer implementiert die transform()-Methode, welche einen gegebenen DataF-
rame verändert. Beispiele für typische Transformer ist die Merkmalsselektion oder die
Klassifikation. Ein Estimator implementiert die fit()-Methode, welche ein Modell auf
Basis eines DataFrames trainiert. Ein Beispiel für eine solche Pipeline ist in Abbildung 5.5
zu sehen. Ein Dokument soll in Worte zerlegt werden, welche dann in numerische Merk-
male überführt werden. Anschließend soll ein Modell mit Hilfe der logistischen Regression
trainiert werden. Die Transformer sind blau umrandet, der Estimator rot.

Spark ML vs. MLlib Im Folgenden soll näher betrachtet werden, welches Paket aus
Spark MLlib für unsere Projektgruppe das bessere ist. Dabei soll genauer auf die Unter-
schiede eingegangen werden.

In einer zweiwöchigen Experimentierphase zu Beginn der Projektgruppe beschäftigten wir
uns mit der Frage, welches Paket der Spark MLlib Bibliothek besser für unsere Zwecke
geeignet sein würde, entweder die ältere Version MLlib oder die neuere ML, welche auch
noch aktiv weiterentwickelt wird. Zunächst wählten wir einige Datensätze aus dem UC
Irvine Machine Learning Repository [63] aus, anhand welcher die Modelle trainiert und
evaluiert werden sollten. Diese Datensätze waren leicht zu beschaffen und sollten eine
erste Basis für die Experimente darstellen. Im späteren Verlauf der Experimentierphase
verwendeten wir außerdem einen Ausschnitt der Monte-Carlo-Simulationsdaten, welche
auch im Endprodukt den Trainingsdatensatz bilden werden. Einen guten Einstieg bildet
der Spark Machine Learning Library Guide [9], welcher nicht nur jedes einzelne Verfahren
detailliert erklärt, sondern auch die Grundlagen der Spark MLlib Bibliothek darstellt und
einige Beispielimplementierungen liefert. Dank dieser erzielten wir recht schnell Ergebnisse,
stießen jedoch auch auf einige Probleme, die im Folgenden kurz geschildert werden sollen.

5.2. APACHE SPARK 35

Zuerst informierten wir uns, welche Algorithmen von den einzelnen Paketen implementiert
werden. Unsere Ergebnisse sind in der nachfolgenden Tabelle zu sehen und entsprechen
dem Stand von Apache Spark 1.6.0 (4. Januar 2016):

MLLib ML
Feature Extraction, Transformation and Selection X

Lineare SVM X

Entscheidungsbaum X X

RandomForest X X

GradientBoosted Trees X X

Logistische Regression X X

Naive Bayes X

Methode kleinster Quadrate X

Lasso Regression X X

Ridge Regression X X

Isotonic Regression X

Neuronales Netzwerk X

Die von den Physikern bereits genutzten Entscheidungsbäume und Zufallswälder sind in
beiden Paketen enthalten. Dennoch fällt in der Übersicht auf, dass ML einen entscheiden-
den Vorteil bietet, nämlich die Möglichkeiten zur Merkmalsselektion, -transformation und
-extraktion. Dies ist für unseren Anwendungsfall wichtig, da eine Aufgabe unter anderem
darin besteht, die für das Training und die Klassifikation besten Merkmale zu finden.

Bei der Implementierung war es zunächst problematisch Datensätze einzulesen, welche
nicht dem des MLLib-Paketes bevorzugten Einleseformat LIBSVM entsprachen. Dement-
sprechend sollten die Daten wie folgt organisiert sein:

label feature1:value1 feature2:value2 ...

Die dem Repository entnommenen Datensätzen entsprachen leider nicht dem gewünschten
Format, sodass wir Methoden schreiben mussten, die die von uns ausgewählten Dateien
analysierten und in JavaRDDs konvertierten. Generell kann zwar jedes beliebige Dateifor-
mat eingelesen werden, doch das Parsen muss bei Verwendung des Pakets MLLib selbst
übernommen werden. Das Paket ML hingegen arbeitet auf Grundlage von DataFrames.
Diese können unter anderem aus Datenbanken oder JSON-Dateien gelesen werden. Da
uns das streams-Framework bereits die Möglichkeit zum JSON-Export bot, konnten wir
einfach einen Ausschnitt der Monte-Carlo-Simulationsdaten als JSON-Datei exportieren
und in unseren Tests als DataFrame importieren. Dies ist ein entscheidender Vorteil des
ML-Paketes.

36 KAPITEL 5. BATCH LAYER

Auf ein weiteres Problem stießen wir bei dem Versuch ein Modell mit Daten zu trainieren,
deren Attribute nicht ausschließlich numerischer Natur waren. Bei Nutzung des MLLib-
Paketes gingen die Algorithmen von Daten in Form eines LabeledPoint aus. Dieser besteht
aus einem numerischen Label und einem Vektor numerischer Features. Nutzt man die
Methoden aus dem Paket ML gibt es zwar beim Ablegen von nominalen Attributen in
einem DataFrame keine Probleme, jedoch gibt es Klassifikationsalgorithmen, welche nur
mit numerischen Merkmalen trainieren und klassifizieren können. Das Problem der Trans-
formation blieb also bestehen. Das Paket MLLib bietet keine Möglichkeiten, um diese
Transformation durchzuführen, bei ML fanden wir sehr schnell die benötigten Methoden.

Auch die Label unterliegen einer Einschränkung. Sie sollen beginnend von Null durchnum-
meriert werden, sollen also nicht nominal sein oder mit +1 und -1 gekennzeichnet sein, wie
es bei binären Klassifikationen oft der Fall ist. Es stellte sich ebenfalls heraus, dass ML
uns Arbeit durch Bereitstellung geeigneter Methoden abnehmen konnte, MLLib jedoch
nicht.

Für unseren Anwendungsfall ist es wichtig, dass sich Modelle abspeichern, im HDFS hin-
terlegen und nach Belieben wieder laden lassen. Außerdem sollen gespeicherte Modelle
gestreamt werden können. Das Paket ML bietet bereits einige Methoden, um Pipelines
abzuspeichern. Dabei muss darauf geachtet werden, dass in der Pipeline ein Modell trai-
niert oder genutzt wird, für welches diese Speichermethoden bereits funktionieren. Generell
scheint es jedoch kein Problem zu sein Modelle abzulegen und wiederzuverwenden, was
ein großer Vorteil des ML-Paketes ist.

Insgesamt stellte sich heraus, dass die Spark MLlib Bibliothek sehr konkrete Annahmen
über Eingabeformate und die Formatierung der Daten macht. Nutzt man das Paket ML
treten dabei jedoch keine Nachteile auf. Wir wollen primär aus Datenbanken lesen oder
die Trainingsdaten, welche als JSON-Datei vorliegen, importieren. Für die Vorbereitung
und Formatierung der Daten für den Trainings- und Klassifikationsablauf stellt das Paket
ML viele Methoden bereit. Es scheint nicht nur komfortabler primär auf das Paket ML zu
setzen, die Nutzung wird von Apache sogar ausdrücklich empfohlen, da das Paket MLLib
gar nicht mehr weiterentwickelt wird. Obwohl es auch noch unterstützt wird, haben wir
uns daher entschieden, auf die Pipeline-Struktur von ML aufzubauen und die in diesem
Paket enthaltenen Methoden zur Vorverarbeitung und Klassifikation unserer Daten zu
nutzen. Außerdem funktioniert das Speichern und Laden von Modellen, welche wir dann
problemlos streamen können.

Kapitel 6

Speed Layer

Im Unterschied zum Batch Layer wird mit einem Speed Layer versucht die Lücke der
echtzeitlichen Datenanalyse zu schließen. Neu eintreffende Daten sollen dabei direkt ver-
arbeitet und an den Klienten weitergeleitet werden.

Im Umfang dieser Projektgruppe wurden Informationen zu gängigen Werkzeugen, die für
die realzeitliche Verarbeitung von Datenströme in Frage kommen, gesammelt. Derzeit
findet sich allerdings noch keine Anwendung für einige diese Tools, da zunächst die Verar-
beitung von Batches im Vordergrund stand. Die Erarbeitung des Speed Layers fällt daher
in die zweite Phase der Projektgruppe.

6.1 Apache Storm
von Lili Xu, Michael May

Apache Storm [10] ist ein Tool, welches zur realzeitlichen Analyse von Daten genutzt
werden kann. Es ist als Open-Source Produkt verfügbar.

Abbildung 6.1: Beispiel einer Storm Topologie als DAG. Zu sehen sind Spouts (links, erste
Ebene) und Bolts (rechts, ab zweite Ebene). Quelle: [73]

37

38 KAPITEL 6. SPEED LAYER

Abbildung 6.1 zeigt eine Übersicht der in Storm vorhandenen Komponenten: Spouts und
Bolts. Storm Aufgaben werden über gerichtete, azyklische Graphen spezifiziert. Dabei
werden die Spouts und Bolts als Knoten realisiert und die Kanten als Datenstreams
zwischen den Knoten. Solche Aufgaben werden in Storm als Topologie bezeichnet.

6.1.1 Storm Topologien

Wie bereits erwähnt sind Topologien die Spezifikationen für Storm Aufgaben in Graphen-
form. Sie bestehen aus zwei Knotentypen und eine Menge von Kante, die als Datenstreams
zu verstehen sind und eine endlose Sequenz von Tupeln darstellen. Abbildung 6.1 zeigt ei-
ne solche Beispiel-Topologie. In diesen Abschnitt werden die Komponenten nochmal näher
betrachtet.

Spout Eine Spout realisiert eine Quelle für die Datenstreams und lesen im wesentlichen
Eingaben ein und geben diese im Anschluss an die folgenden Knoten, in Form von Daten-
streams, weiter. Spouts können als reliable oder unreliable markiert werden, welche das
Verfahren für ein Lesefehler festlegen. Wie in Abbildung 6.1 zu sehen ist, kann eine Spout

auch mehr als einen Stream erzeugen.

Bolt Ein Bolt Knoten dient zur Verarbeitung der Daten in Storm. Ähnlich zum Map-
Reduce Ansatz können über Bolts Filterung, Funktionen, Aggregationen, Joins usw.
durchgeführt werden. Bolts können mehrere Streams einlesen, aber auch ausgeben.

6.1.2 Storm Cluster

Ein Storm Cluster ist ähnlich zu einem Hadoop Cluster (siehe Abschnitt 5.1), unterscheidet
sich aber in der Ausführung. Auf Hadoop werden MapReduce Aufgaben verarbeitet, wo-
hingegen in Storm Topologien ausführt werden. Die Konzepte unterscheiden sich vor allem
darin, dass MapReduce Aufgaben irgendwann enden müssen. Storm Topologien werden
solange ausgeführt, bis von außen ein ”Stopp“ (kill) gesendet wird.

Knoten im Cluster Innerhalb eines Storm-Clusters existieren zwei Typen von Knoten:
Master Node und Worker Node. Abbildung 6.2 stellt den Aufbau eines solchen Clusters
dar.

Master Node Die Master Node ist verantwortlich für die Verteilung des Codes, die Feh-
lerüberwachung und die Aufgabenverteilung. Dafür läuft im Hintergrund ein Programm
namens Nimbus.

6.2. APACHE TRIDENT 39

Abbildung 6.2: Aufbau eines Storm Clusters [73]

Worker Knoten Die Worker Nodes führen die eigentliche Arbeit aus. Worker sind ver-
teilt auf mehrere Maschinen und führen immer Teile einer Topologie aus. Auf diese Weise
kann eine Topologie auf mehreren Worker verteilt abgearbeitet werden. Auf jedem Worker

Node läuft ein Supervisor Daemon.

Zookeeper Zwischen Master Knoten und Worker Knoten gibt es einen Koordinator, der
Zookeeper genannt wird. Alle Zustandsinformationen werden im Zookeeper gespeichert,
sodass es möglich ist, einen laufenden Nimbus oder Supervisor zu stoppen, ohne dass
das ganze Programm angehalten werden muss. Gleichzeitig können die Daemons erneut
gestartet werden und mit ihrer Arbeit von Neuem beginnen.

6.2 Apache Trident
von Michael May, Lili Xu

Trident ist eine High-Level-Abstraktion auf Basis von Storm und kann als Alternative
zum Storm Interface verwendet werden. Es ermöglicht die Verarbeitung von vielen Daten
sowie die Verwendung von zustandsbasierter Datenstreambearbeitung. Im Unterschied zu
Storm erlaubt Trident eine exactly-once Verarbeitung, transaktionale Datenpersistenz und
eine Reihe von verbreiteten Operationen auf Datenstreams, welche sich in 5 Kategorien
unterteilen lassen:

• lokale Operationen ohne Netzwerkbelastung

• Repartitionierung der Daten über das Netzwerk

40 KAPITEL 6. SPEED LAYER

• Aggregation als Teil einer Operation mit Netzwerkbelastung

• Gruppierung

• Merges und Joins

6.2.1 Trident Topologien

Trident Topologien werden über einen Compiler in optimale Storm Topologien kompiliert.
Abbildung 6.3 zeigt eine Trident Topologie, welche mit zwei Datenstreams, also bereits
aus Storm bekannte Spouts, initialisiert wird. Diese werden über lokale Operationen (hier
each) bearbeitet und anschließend gruppiert, bzw. partitioniert. Der obere Stream wird
anschließend in einen Zustand persistiert, sodass der untere Stream aus Queries Informa-
tionen des oberen erhalten und mitverarbeiten kann. Zudem ist zu sehen, dass mehrere
Streams über den join Operator miteinander kombiniert werden können.

Abbildung 6.3: Beispielhafte Trident Topologie. Quelle: [74]

Abbildung 6.4 stellt die kompilierte Storm Topologie dar. Dabei werden die Datenstreams
wieder als die bekannten Spouts initialisiert. Damit die kompilierte Topologie maximal op-
timiert wird, müssen Datenübertragungen nur stattfinden, wenn Daten über das Netzwerk
übertragen werden. Aufgrund dessen wurden lokale Operationen in Bolts zusammenge-
fasst. Die Gruppierung und die Partitionierung der Daten sind daher als Teil der Kanten
in der Storm Topologie und daher als Datenströme zu interpretieren.

6.3. SPARK STREAMING 41

Abbildung 6.4: Abbildung 6.3 als kompilierte Storm Topologie. Quelle: [74]

6.3 Spark Streaming
von Dennis Gaidel

Als Datenstrom wird ein kontinuierlicher Fluss von Datensätzen bezeichnet, dessen En-
de nicht abzusehen ist. Die Daten werden verarbeitet, sobald sie eintreffen, wobei die
Größe der Menge an Datensätzen, die pro Zeiteinheit verarbeitet wird, nicht festgelegt ist.
Datenströme unterscheiden sich von statischen Daten insofern, als dass die Daten in fe-
ster, zeitlich vorgegebener Reihenfolge eintreffen und nicht an beliebiger Stelle manipuliert
werden können. Die Datenströme werden also nur Satz für Satz fortlaufend (sequentiell)
verarbeitet und lediglich bei ihrem Eintreffen um neue Informationen erweitert.

Mit Spark Streaming steht eine Komponente zur Verarbeitung innerhalb des Apache Spark
Frameworks bereit, die eine Micro-Batch Architektur implementiert: Streams werden als
eine kontinuierliche Folge von Batchberechnungen aufgefasst, wie es in Abbildung 6.5
dargestellt wird. Neue Batches werden immer in regelmäßigen Abständen erstellt und alle
Daten, die innerhalb eines solchen Intervalls ankommen, werden dem Batch hinzugefügt.
Bei den Batches handelt es sich um die bereits im Abschnitt 5.2 eingeführten RDDs.

Spark Streaming unterstützt verschiedenste Eingangsquellen (z.B. Flume, Kafka, HDFS),
für die sog. receiver gestartet werden, die die Daten von diesen Eingangsquellen sammeln
und in RDDs speichern. Im Sinne der Fehlertoleranz wird das RDD im Anschluss auf einen
weiteren Knoten repliziert und die Daten werden im Speicher des Knotens zwischengespei-
chert, wie es auch bei gewöhnlichen RDDs der Fall ist. In periodischen Abständen wird
schließlich ein Spark Job gestartet, um diese RDDs zu verarbeiten und mit den vorange-
gangenen RDDs zu konkatenieren.

42 KAPITEL 6. SPEED LAYER

Abbildung 6.5: Verarbeitung von Datenströmen zu Batches (Quelle:
https://databricks.com/blog/2015/07/30/diving-into-spark-streamings-execution-model.html)

Auf technischer Ebene baut Spark Streaming auf dem Datentyp DStream auf, der eine
Folge von RDDs über einen bestimmten Zeitraum kapselt, wie es in der Abbildung 6.6
veranschaulicht wird. Ähnlich wie bei den RDDs können DStreams transformiert werden,
woraus neue DStream Instanzen entstehen. Oder es werden die bereitstehenden Ausgabe-
operationen genutzt, um die Daten zu persistieren.

Abbildung 6.6: DStream als Datentyp zur Kapselungen von RDDs (Quelle:
http://www.slideshare.net/frodriguezolivera/apache-spark-streaming)

Um die eingegangenen Daten zu verarbeiten, stehen zwei Arten von Transformationen
zur Verfügung. Mit den zustandslosen Transformationen werden die üblichen Transforma-
tionen, wie Mapping oder Filtern, bezeichnet. Diese Transformationen werden auf jedem
RDD ausgeführt, das von dem betreffenden DStream gekapselt wird. Die zustandlose
Transformierung ist unahängig von dem vorangegangen Batch, wodurch sie sich von der
zustandbehafteten Transformierung unterscheidet. Die zustandsbehaftete Transformati-
on hingegen baut auf den Daten des vorangegangenen Batches auf, um die Ergebnisse
des aktuellen Batches zu berechnen. Es wird zwischen zwei Typen von Transformationen
unterschieden: Windowed Transformations und UpdateStateByKey Transformation.

Bei den Windowed Transformations wird ein Zeitintervall betrachtet, das über die zeitliche
Länge eines Batches hinausgeht. Es wird also ein Fenster festgelegt, das eine gewisse
Anzahl an Batches umfasst, sodass die entsprechende Berechnung auf den Batches in
diesem Fenster ausgeführt wird. Dieses Fenster wiederum wird immer um ein bestimmtes
Verschiebungsintervall verschoben und die Berechnung erneut ausgeführt.

6.4. STREAMS-FRAMEWORK 43

Die UpdateStateByKey Transformation dient dazu, einen Zustand über mehrere Batches
hinweg zu erhalten. Ist ein DStream bestehend aus (Schlüssel,Event) Tupeln gegeben, so
kann mit dieser Transformation ein DStream bestehend aus (Schlüssel,Zustand) Tupeln
erzeugt werden. Dabei wird, ähnlich wie bei der ReduceByKey Operation, eine Funktion
übergeben, die definiert, wie der Zustand für jeden Schlüssel aktualisiert wird, wenn ein
neues Event eintritt.

Ein Beispiel hierfür wären Seitenbesuche als Events und eine Session- oder Nutzer-ID als
Schlüssel, über den die Seitenbesuche aggregiert werden. Die resultierende Liste bestünde
aus den jeweiligen Zuständen für jeden Nutzer, die wiederum die Anzahl der besuchten
Seiten reflektieren würden.

Spark Streaming stellt demnach ein mächtiges Tool zur Verarbeitung von Datenströmen
dar und integriert sich nahtlos in eine bestehende Apache Spark Applikation. Durch
die Unterstützung verschiedenster Datenquellen, insbesondere dem verteilten Dateisystem
HDFS, bietet es sich insbesondere zur Verarbeitung von eingehenden Events in Echtzeit
an.

6.4 streams-Framework
von Michael May

Das streams-Framework [21, 20] ist eine in Java entwickelte Bibliothek, welche eingesetzt
werden kann, um Datenströme zu verarbeiten. Die Verarbeitung der Daten wird über Pro-
zesse geregelt, welche unter anderem für das Klassifizieren von den Daten eingesetzt werden
können. Dafür wurde das existierende Softwarepaket Massive Online Analysis (MOA) [17]
integriert und ein Plugin für RapidMiner [77] entwickelt.

Prozesse werden in streams über eine XML Datei spezifiziert. Es können auch eigene Pro-
zesse in Java geschrieben und für die Verarbeitung verwendet werden. Die grundlegenden
Elemente von streams sind <container>, <stream>, <process> und <service>.

Der Container ist der Vater aller weiteren Elemente und definiert den eigentlichen stream

Prozess. Nur Elemente innerhalb eines Container werden ausgeführt.

Der Stream wird genutzt, um die Quellen der Daten zu definieren. Ein Stream liest einen
Strom von Daten, welcher dann beispielsweise an Prozesse weitergegeben werden kann.

Das Process Element besteht aus einer Reihe von Prozessoren, welche den Strom von
Daten abarbeiten. Dafür wird der Strom in Datenpakte aufgeteilt, welche nacheinander
durch Prozessoren geschoben werden. Prozessoren können die einzelnen Datenpakte lesen,
verändern oder komplett neue erstellen und an die nächsten Prozessoren weitergeben.

Service Elemente erlauben das Abrufen von Funktionen in jeder Phase der Verarbeitung.
Ein Service kann so z.B. dafür eingesetzt werden, um innerhalb eines Prozessors Daten-
bankanfragen zu stellen.

44 KAPITEL 6. SPEED LAYER

Abbildung 6.7: Schematischer Aufbau eines Container [20]

Abbildung 6.8: Funktionsweise eines Stream [20]

Abbildung 6.9: Arbeitsschritte eines Process [20]

Kapitel 7

Serving Layer

von Alexander Schieweck

Die letzte Schicht der im Kapitel 4 beschriebenen Lambda-Architektur ist der Serving
Layer. Während der Batch Layer und der Speed Layer sich vor allem um die Verarbeitung
der Daten gekümmert haben, übernimmt diese Schicht die Kommunikation mit den Nut-
zern. Die zugrundeliegenden Daten werden dazu üblicherweise indexiert und gewonnene
Ergebnisse aus den anderen Schichten werden (zwischen-)gespeichert, damit auch größere
Datenmengen und komplexere Anfragen den Anwendern schnell zur Verfügung gestellt
werden können.

Hierzu werden in diesem Kapitel verschiedene Datenbank-Systeme präsentiert, wobei ein
Schwerpunkt auf sogenannte ”Not only SQL (NoSQL)“-Systeme gelegt wird. Weiterhin
wird das Prinzip eines Service-Interfaces mithilfe einer RESTful Application Programming
Interface (API) erörtert.

7.1 Datenbanken
von Christian Pfeiffer

Für eine spätere Anwendung, die die vom Teleskop erzeugten Daten verarbeiten soll, ist
nicht pragmatisch, jedes Mal die Daten aus den einzelnen Dateien auszulesen. Daher bietet
es sich an, die häufig benötigten Daten in einer Datenbank zu erfassen.

Die verwendete Datenbank muss mit großen Datenmengen zurechtkommen und idealer-
weise erlauben, den Inhalt der Datenbank auf mehrere Knoten im Netzwerk zu verteilen.

Im Folgenden werden daher einige aktuelle Datenbanksysteme vorgestellt und auf ihre
Eignung hin überprüft.

7.1.1 MongoDB
von Christian Pfeiffer

Die MongoDB [70] zählt zu den dokumentenbasierten Datenbanksystemen. Im Gegensatz
zu einer relationalen Datenbank, die Tabellen mit fester Struktur und festen Datentypen

45

46 KAPITEL 7. SERVING LAYER

enthält, verwaltet MongoDB Collections von potenziell unterschiedlich strukturierten Do-
kumenten. Dies bedeutet auch, dass Anfragen an die MongoDB nicht per SQL sondern
mit einer eigenen Anfragesprache [71] durchgeführt werden. Somit zählt MongoDB zu den
NoSQL-Datenbanksystemen.

MongoDB unterstützt mehrere Konzepte, die die Verfügbarkeit der Daten und die Skalier-
barkeit der Datenbank begünstigen. Beim Sharding wird eine Collection in mehrere Teile
(Shards) partitioniert, die dann auf jeweils einem Rechner abgelegt werden. Auf diesem
Weg können auch große Datenmengen gespeichert und durchsucht werden.

Dieses Konzept ist in der Datenbank-Community bereits unter dem Namen horizontale
Skalierung bekannt. Horizontale Skalierung steht der bisher oft anzutreffenden vertikalen
Skalierung entgegen, bei der ein einzelner Rechner im Falle von zu geringer Leistung durch
einen einzelnen, leistungsfähigeren Rechner ersetzt wird.

Die Replication erlaubt es, dieselben Daten auf mehreren Rechnern abzulegen. Sollte ein
Rechner nicht verfügbar sein, können Lese- und Schreibanfragen dann auf den verbliebe-
nen Kopien durchgeführt werden. Dadurch bleibt die Verfügbarkeit der Datenbank auch
bei technischen Ausfällen von Teilen des Netzwerks oder einigen Rechnern gewährleistet.
Zusätzlich können Leseanfragen auf die verfügbaren Kopien verteilt werden, sodass die
Latenzen und der Gesamtlesedurchsatz verbessert werden. Allerdings müssen Schreiban-
fragen auf alle Kopien dupliziert werden, sodass ein trade-off zwischen dem Lesedurchsatz
und dem Schreibdurchsatz stattfindet.

Da Sharding und Replication beliebig kombinierbar sind, muss je nach den Anforderungen
des Projekts eine zugeschnittene Feinjustierung vorgenommen werden.

7.1.2 Elasticsearch
von Lea Schönberger

Bei Elasticsearch handelt es sich um eine von Shay Bannon im Jahr 2010 entwickelte,
verteilte, hochskalierbare Such-Engine, die auf der Suchmaschine Apache Lucene basiert.
Die Speicherung der Daten erfolgt bei Elasticsearch ebenso wie bei MongoDB dokumen-
tenbasiert, daher bezeichnet man die kleinste durchsuchbare Einheit als document. Jedes
document ist von einem ganz bestimmten type und bildet gemeinsam mit vielen weiteren
documents - oder im Zweifelsfall auch allein - einen Index. Vergleicht man diesen Aufbau
mit jenem herkömmlicher Datenbanken, so lässt sich ein Index mit einer Datenbank, ein
type mit einer Tabelle und ein document mit einer einzelnen Tabellenzeile gleichsetzen.
Jeder Index lässt sich in mehrere sogenannte shards unterteilen, die, falls Elasticsearch
auf mehreren Rechenknoten betrieben wird, auf ebendiese aufgeteilt werden können, um
die Geschwindigkeit sowie bei redundanter Verteilung ebenfalls die Ausfallsicherheit zu
erhöhen. Jeder shard wird intern mittels eines Lucene-Index realisiert.

7.1. DATENBANKEN 47

Elasticsearch kann entweder auf einem oder auf mehreren Rechenknoten, sogenannten
Nodes, betrieben werden. Verwendet man lediglich einen einzigen Node, so bildet dieser
den gesamten Cluster. Werden hingegen mehrere Nodes verwendet, so muss ein Master-
Node spezifiziert werden, der die übrigen Nodes koordiniert und darüberhinaus als Erster
alle Queries entgegennimmt, um sie daraufhin an einen oder mehrere entsprechende andere
Nodes weiterzupropagieren.

Das Formulieren von Suchabfragen an Elasticsearch erfolgt mit Hilfe einer RESTful API,
an welche die jeweilige Query als JSON-Dokument gesendet wird. Die daraufhin erhalte-
ne Response befindet sich ebenfalls im JSON-Format. Für diese RESTful API existiert
zudem eine Unterstützung durch Spring Data, die es ermöglicht, das Formulieren nativer
JSONs zu umgehen und das Stellen von Queries sowie die Verarbeitung der Responses zu
vereinfachen. Dies sei an späterer Stelle genauer erläutert.

Es lässt sich also feststellen, dass Elasticsearch geradezu ideal für die Zwecke dieser Pro-
jektgruppe ist, da es verteilt einsetzbar und zudem hochskalierbar ist, was im Bereich
des Big Data unabdingbar ist, und da darüberhinaus eine komfortable Java-Anbindung
gegeben ist, sodass Elasticsearch ohne großen Aufwand in das Projekt integriert werden
kann.

7.1.3 Cassandra
von Lea Schönberger

Ein weiteres NoSQL-Datenbanksystem, das sich für die Zwecke dieser Projektgruppe ein-
setzen ließe, ist Apache Cassandra. Dabei handelt es sich um eine hochskalierbare, sehr
ausfallsichere, verteilte Datenbank, die zur Persistierung von Daten eine Kombination aus
Key-Value-Store und spaltenorientiertem Ansatz nutzt. Ersteres bedeutet in grundlegen-
der Form, dass zur Speicherung von Daten nicht wie bei herkömmlichen Datenbanken
Tabellen verwendet werden, sondern jedem zu speichernden Wert (value) ein eindeutiger
Schlüssel (key) zugeordnet wird, mittels dessen auf den entsprechenden Datensatz zuge-
griffen werden kann. Jeder derartige Datensatz wird in einer sogenannten Spalte (column)
abgelegt und mit einem Zeitstempel versehen. Mehrere columns lassen sich - analog zu
einer Tabelle bezogen auf relationale Datenbanken - zu einer column family zusammenfas-
sen. Eine column kann darüber hinaus als super column markiert werden, sodass sie nicht
nur mit Hilfe von Schlüsselwerten, sondern auch anhand der Zeitstempel sortiert werden
kann.

Auf technischer Ebene besteht ein Cassandra-Cluster aus einer Menge von Nodes, die
mittels des Gossip Protocol kommunizieren. Dies funktioniert analog zu der dem Proto-
kollnamen entsprechenden Kommunikation im realen Leben folgendermaßen: Jeder Re-
chenknoten tauscht mit einem oder mehreren ihm bekannten Knoten sein Wissen aus,
welche wiederum auf ebendiese Weise verfahren, bis schließlich alle Nodes denselben Wis-
sensstand besitzen.

48 KAPITEL 7. SERVING LAYER

Abbildung 7.1: Veranschaulichung des Gossip Protocol. Quelle:
http://blogs.atlassian.com/2013/09/do-you-know-cassandra/

Die Menge der persistierten Datensätze eines sogenannten Keyspace, also einer Menge
von Schlüsselwerten, ist als Ring zu betrachten, für die Verwaltung dessen Teilmengen
jeweils ein Node zuständig ist. Die Zuweisung der Zuständigkeiten erfolgt dabei durch
einen Partitioner. Jeder Cassandra-Cluster besitzt einen oder mehrere Keyspaces, für die
jeweils ein sogenannter Replication Factor festgelegt wird. Dieser bestimmt die Anzahl
verschiedener Rechenknoten, auf denen die Speicherung eines Datensatzes erfolgen muss,
und dient zur Erhöhung der Redundanz und somit der Ausfallsicherheit der Datenbank.

Zur Replikation von Datensätzen existieren zwei verschiedene Ansätze, deren einfachere
Variante in der Simple Replication Strategy besteht. Gemäß dieses Verfahrens wird ein
Datensatz in jeweils einem Knoten gespeichert und daraufhin im Uhrzeigersinn durch eine
dem Replication Factor entsprechende Anzahl von Knoten repliziert. Bei der Network To-
pology Strategy handelt es sich um eine Replikationsstrategie für größere Cluster. In diesem
Fall gilt der Replication Factor pro Datacenter, sodass jeder Datensatz durch eine dem
Replication Factor entsprechende Zahl von Nodes eines anderen Racks, also Teilbereiches,
des Datacenters repliziert werden muss.

Während zur Durchführung einer Read/Write-Operation in der Simple Replication Strat-
egy ein beliebiger Knoten angesprochen und die Daten unmittelbar weiterpropagiert wer-
den können, fungiert der in der Variante der Network Topology Strategy angesprochene
Knoten als Coordinator, der mit den sogenannten Local Coordinators der jeweiligen Data-
centers kommuniziert, welche wiederum dort für ein lokales Weiterpropagieren der Daten
sorgen.

Es ist möglich, das Konsistenzlevel einer Read/Write-Operation festzulegen, indem eine
Anzahl von Knoten bestimmt wird, die dem Coordinator geantwortet haben müssen, bevor
dieser eine Antwort an den die Operation ausführenden Client weitergeben kann. An dieser
Stelle befindet sich ein Schwachpunkt von Cassandra, da mit wachsender Konsistenz die
Geschwindigkeit, mit der eine Operation durchgeführt werden kann, sinkt, eine steigende
Geschwindigkeit jedoch Einbußen in der Konsistenz zur Folge hat.

7.1. DATENBANKEN 49

7.1.4 PostgreSQL
von Karl Stelzner

Eine weitere Möglichkeit ist der Einsatz einer klassischen relationalen Datenbank. Eine
solche bietet verschiedene Vorteile:

Mächtige Anfragesprache Das relationale Modell und die damit verbundene Anfrage-
sprache SQL erlaubt die Formulierung von einer Vielzahl von deklarativen Anfra-
gen. Auch komplexe Datenanalysen können von einem relationalen Datenbanksystem
durchgeführt werden, was beispielsweise mit Cassandra auf Grund der restriktiveren
Anfragesprache im Allgemeinen nicht möglich ist.

Jahrzehntelange Optimierung Relationale Datenbanken sind seit Jahrzehnten der Stan-
dard im Datenbankbereich, und dementsprechend hoch entwickelt. Somit können sie
architekturbedingte Nachteile unter Umständen durch geschickte Optimierung wett-
machen.

Transaktionssicherer Betrieb Im Gegensatz zu anderen Systemen bieten relationale
Datenbanken eine Vielzahl von Garantien, was die Ausfall- und Transaktionssicher-
heit angeht.

Relationale Datenbanken stehen oft unter dem Ruf, dass diese Vorteile dadurch erkauft
werden, dass die Verarbeitung von sehr großen Datenmengen nicht effizient möglich ist.
In der Tat haben relationale Datenbanken zwei Eigenschaften, die sie für den Big Data
Kontext als nicht sehr geeignet erscheinen lassen. Zum einen verfügen sie über ein starres
Datenbankschema, das genau definiert, welche Typen die Einträge in der Datenbank haben
müssen. Es ist also schwierig, mit nachträglichen Änderungen oder schwach strukturierten
Daten umzugehen. Zum anderen sind die meisten großen relationalen Datenbanksysteme
auf den Betrieb auf einem einzelnen Rechner ausgelegt. Dies limitiert die Skalierbarkeit
des Systems.

Data Warehousing

Es ist allerdings möglich, diese Nachteile ein Stück weit auszugleichen, wenn die Daten-
bank so konzipiert ist, dass die Ausführung der vorgesehenen Analysen effizient möglich
ist. Dafür bestimmte Prinzipien werden seit den 90er Jahren unter den Begriffen Data
Warehousing und Dimensional Modelling zusammengefasst [56].

Die Essenz dieser Verfahren besteht darin, dass der Fokus, anders als bei herkömmlichen,
auf Normalisierung basierenden Datenbankdesigns, nicht auf der Vermeidung von Redun-
danz, sondern auf der Minimierung des Rechenaufwands für Analyseanfragen liegt. Vor
allem Join Operation zwischen großen Tabellen werden zu vermeiden versucht. Um dies
zu erreichen, wird bei dimensionaler Modellierung zwischen zwei Tabellentypen unter-
schieden: Faktentabellen, deren Einträge zu den Ereignissen korrespondieren, die primär

50 KAPITEL 7. SERVING LAYER

analysiert werden sollen, und deutlich kleineren Dimensionstabellen, die die möglichen
Ausprägungen dieser Ereignisse darstellen. Diese werden üblicherweise sternförmig ange-
ordnet, sodass Joins jeweils immer nur zwischen einer Fakten- und einer Dimensionstabelle
durchgeführt werden müssen. Ein typisches Schema ist in Abbildung 7.2 dargestellt.

Abbildung 7.2: Ein typisches Datenbankschema nach dimensionaler Modellierung, hier am Bei-
spiel einer Vertriebsdatenbank [56].

Eine Konsequenz dieser Modellierung ist, dass Daten mitunter redundant gespeichert wer-
den. Beispielsweise könnte in einer Dimensionstabelle der selbe String in verschiedenen
Tupeln wiederholt vorkommen. Dies wird in Kauf genommen, um die Analyseperformanz
zu verbessern.

PostgreSQL

PostgreSQL [75] wird gemeinhin als das am höchsten entwickelte relationale Open-Source
Datenbanksystem betrachtet [31]. Es unterstützt den gesamten SQL-Standard sowie das
ACID-Paradigma zur Transaktionssicherheit. Es ist somit unter den relationalen Daten-
banken die offensichtliche Wahl für den Einsatz in der PG.

PostgreSQL ist zudem attraktiv, weil es JSON als Datentyp unterstützt. JSON-Dokumente
können nicht nur in relationalen Tabellen abgelegt werden, sondern auch über spezielle
Operatoren modifiziert und ausgewertet werden. Dies kann eingesetzt werden, um auch
weniger strukturierte Daten mit PostgreSQL zu verarbeiten.

Ein interessanter Ableger von PostgreSQL ist Postgres-XL. Hierbei handelt es sich um
ein Projekt mit dem Ziel, PostgreSQL für den Betrieb als verteilten Datenbankcluster
zu erweitern. Es führt dazu Mechanismen für Sharding ein, also für das Aufspalten von
Tabellen auf mehrere Clusterknoten. Gleichzeitig bewahrt es die Vorteile von PostgreSQL,
wie zum Beispiel die ACID-Garantien. Für Fälle, in denen die Datenmengen zu groß für
eine einzelne Maschine sind, stellt Postgres-XL eine mögliche Lösung dar.

7.2. RESTFUL APIS 51

7.2 RESTful APIs
von Alexander Schieweck

In diesem Abschnitt soll nun gezeigt werden, wie die Indexdaten und zwischengespeicher-
ten Ergebnisse aus den Datenbanken Nutzern zur Verfügung gestellt werden können. Dazu
wird die Idee eines Service-Interfaces verdeutlicht und danach werden die Grundlagen von
RESTful APIs vorgestellt.

7.2.1 Grundlegende Idee
von Alexander Schieweck

Mit der weiteren Verbreitung von unterschiedlichen Endgeräten werden die Anforderungen
an Software-Projekte immer komplexer. Reichte es früher aus, nur eine klassische Desktop-
Anwendung bereitzustellen, wird heute auch eine Webseite, eine App, usw. gewünscht.
Somit muss die Geschäftslogik an drei oder mehr unterschiedlichen Stellen implementiert
werden. Dies ist offensichtlich alles andere als einfach zu warten und ein Fehler in einer
Anwendung kann die Logik einer Anderen beeinträchtigen, da alle auf den selben Daten
arbeiten. Schon seit etlichen Jahren hat es sich in der Praxis als nützlich erwiesen, wenn
die Geschäftslogik und die Anzeige der Daten getrennt voneinander implementiert werden.
Wenn man nun diese Trennung nicht nur intern in einer Anwendung beachtet, sondern die
Geschäftslogik zentral auf einem Server bereitstellt und die unterschiedlichen Anwendun-
gen als Clients darauf zugreifen lässt, umgeht man das Problem der verteilten Logik und
kann dennoch für jeden Anwendungsfall die passende Darstellung erzielen.

Darüber hinaus hat es sich in der Praxis bewährt, wenn solche Schnittstellen keine klassi-
schen Sitzungen pro Nutzer haben, sondern Stateless sind. Hierdurch können komplizierte
Mechanismen zur Sitzungsverwaltung und die sonst nötigen großen Zwischenspeicher für
die Sessions entfallen. Somit wird die Implementierung der APIs deutlich einfacher und die
Nutzer dieser Schnittstellen können von einem eindeutig definierten Verhalten pro Aufruf,
ohne Blick auf die Sitzungshistorie, vertrauen.

Dabei beschriebt Representational State Transfer (REST) keine festen Regeln oder gar
ein starres Protokoll, sondern ist mehr als eine Liste von Vorschlägen zu verstehen, wie
man eine solche API designen sollte. Hält man sich möglichst genau an diese Vorschläge,
ist es auch für Außenstehende einfacher, sich in eine für sie neue API einzuarbeiten. Auch
wenn die Vorschläge die meisten Anwendungsfälle abdecken, so kann es immer Situationen
geben, in denen es möglicherweise besser ist, den Standard nicht zu beachten. REST ist
somit äußerst flexibel [34, 78].

7.2.2 HTTP
von Alexander Schieweck

Grundlegend für RESTful APIs ist hierbei die Kommunikation über das Hyper Text Trans-
fer Protocol (HTTP). Dies ist heutzutage möglich, denn fast alle Geräte verfügen über

52 KAPITEL 7. SERVING LAYER

einen Internetanschluss, der sich als Basis für den Austausch zwischen dem Server und
den Client eignet. Da das HTTP umfangreich ist und sich als ein Standard-Protokoll für
den Austausch von Daten über das Internet etabliert hat, können die nötigen Operatio-
nen darüber abgewickelt werden, ohne das ein neues Protokoll designt und implementiert
werden muss. HTTP ist dabei ein klassisches Client-Server-Protokoll, bei dem die Kom-
munikation immer vom Client aus gestartet wird. HTTP regelt dabei die Syntax und
Semantik der gesendeten Daten und baut auf TCP/IP auf.

HTTP Anfragen

Eine Anfrage an einen HTTP Server enthält nicht nur die IP-Adresse des Servers sondern
auch einen Server-Pfad, der die gewünschte Ressource näher beschreibt. Diese Kombina-
tion wird auch als Uniform Resource Locator (URL) bezeichnet.

Neben der URL wird ein Header-Teil mitgeschickt, der zusätzliche Meta- und Zusatz-
Informationen enthält. Dazu können Daten zur Authentifizierung, die gewünschten For-
matierung der Antwort oder auch die Größe des Datenfeldes zählen. Eine der wichtigsten
Header-Informationen ist hierbei die gewünschte Methode, die der Server unter der URL
ausführen soll:

POST Drückt aus, dass die im Body des Request gesendeten Daten erstellt werden sollen.

GET Wird verwendet, wenn Daten vom Server gelesen werden sollen.

PUT Leitet ein Update von schon bestehenden Daten ein.

DELETE Bittet den Server bestimmte Daten zu löschen.

OPTIONS Fragt den Server, welche (anderen) Methoden für eine bestimmte URL zulässig
sind.

Durch diese Methoden werden die grundlegenden Create, Read, Update and Delete (CRUD)
Operationen unterstützt.

Abschließend kann die Anfrage auch Daten enthalten, welche aus reinem Text bestehen,
jedoch beliebig Formatiert sein können. Dies ist besonders bei POST - und PUT - Aufrufen
wichtig, um dem Server die zu erstellenden bzw. zu aktualisierenden Daten mitzuteilen.
Bei GET - und DELETE-Aufrufen bleiben diese Daten zumeist leer.

HTTP Antworten

Die Antwort des Servers enthält auch einen Header-Teil, in dem der Server bestimmte
Meta- und Zusatz-Informationen zurückschickt. Üblicherweise zählen dazu das Datum
und die aktuelle Uhrzeit, die Größe der Antwort im Datenfeld und welches Format dieses

7.2. RESTFUL APIS 53

Code Text Beschreibung
200 OK Drückt aus, dass die Anfrage erfolgreich war.
201 CREATED Wird oft zurück gegeben wenn ein Datensatz

erfolgreich erstellt wurde.
400 BAD REQUEST Die Anfrage konnte nicht vom Server gelesen

werden, da sie falsch Formatiert war oder
anders als fehlerhaft erkannt wurde.

404 NOT FOUND Die Anfrage konnte nicht erfolgreich
bearbeitet werden, da die Resource nicht
gefunden wurde.

500 INTERNAL SERVER ERROR Der Server hat intern einen
(schwerwiegenden) Fehler und kann daher
die Anfrage nicht richtig beantworten.

Tabelle 7.1: Übersicht von geläufigen HTTP Status Codes

hat. Hierbei spielt der Status Code eine besondere Rolle, da dieser eine Antwort zu Erfolg,
Problemen und Misserfolg der Anfrage liefert (vgl. Tabelle 7.1).

Ähnlich zur Anfrage kann natürlich auch die Antwort Daten enthalten, welche bei allen
Methoden entstehen können. Auch diese Daten sind reiner Text, können jedoch unter-
schiedlich formatiert sein [84].

7.2.3 JSON
von Alexander Schieweck

Auch wenn es keine vorgeschriebene Art bzw. Formatierung gibt, wie Daten über eine
RESTful API ausgetauscht werden sollen, so wird in der Praxis häufig die Extensible
Markup Language (XML) oder die JavaScript Object Notation (JSON) verwendet.

Da beide Optionen relativ ähnlich in ihrer Ausdrucksstärke sind, liegt die Wahl, ob man
eine der beiden oder gar eine dritte Möglichkeit verwendet, beim Designer der Schnitt-
stelle. In früheren APIs wurde stark auf XML gesetzt, sodass viele Anwendungen dieses
auch heute noch bevorzugen. In letzter Zeit ist jedoch ein Trend hin zu JSON zu be-
obachten. Dies liegt darin begründet, dass viele Clients Single-Site-Webapplications sind,
die in JavaScript implementiert wurden und JSON als Teil der JavaScript-Welt so direkt
interpretiert werden kann. Somit bleibt ein aufwändiger und langsamer Parser erspart.
JSON ist darüber hinaus auch noch recht einfach von Menschen zu lesen, sodass auch eine
Interaktion mit der API ohne speziellen Client möglich ist.

Im Kern besteht ein JSON-Dokument aus Key-Value-Paaren, die in Objekten zusammen-
gefasst sind. Der Schüssel dieses Paares ist dabei immer ein Text, während der Wert
unterschiedlichste Typen annehmen kann. Dazu zählen Text, Nummern (ganzzahlig oder
mit Fließkomma), boolsche Werte (true und false), ein Array oder wiederum ein Objekt
[85]. Ein Beispiel für ein solches JSON-Dokument wird in Listing 7.1 gezeigt.

54 KAPITEL 7. SERVING LAYER

1 {
2 "hello": "world",

3 "true": false,

4 "array": [

5 1, 2, 3

6],

7 "kord": {
8 "x": 1.23,

9 "y": 4.56

10 }
11 }

Listing 7.1: Ein Beispiel für ein JSON Dokument

Kapitel 8

Maschinelles Lernen

von Carolin Wiethoff

Das letzte Kapitel im Teil Big Data Analytics bildet das maschinelle Lernen. Wie in Ka-
pitel 3 erläutert, besteht der Zweck des Umgangs mit den riesigen Datenmengen in der
Analyse. Das bedeutet, dass automatisch erlernt werden soll, wie sich die gegebenen Infor-
mationen verallgemeinern lassen. Dieser Schritt ist wichtig, damit das Erlernte auf neue,
bisher noch nicht betrachtete Daten angewendet werden kann und nicht nur für die be-
reits angeschauten Daten gilt. Die gefundenen Regelmäßigkeiten sollen dementsprechend
ermöglichen, dass automatisiert Erkenntnisse über neue Daten erlangt werden können.
Zuerst soll es in diesem Kapitel um die Grundbegriffe des maschinellen Lernens und die
formalen Konzepte zur Datenanalyse gehen. Die dafür benötigten Grundlagen wurden aus
[72], [94] und [37] zusammengetragen. Anschließend folgen einige vertiefende Abschnit-
te, welche Verfahren diskutieren, die speziell auf Big Data zugeschnitten sind. Schließ-
lich bildet die Analyse von riesigen Datenmengen neue Herausforderungen an maschinelle
Lernverfahren, wie in Kapitel 3 gezeigt wurde.

(Un-)Überwachtes Lernen Man unterscheidet zuerst zwischen überwachtem und un-
überwachten Lernen. Beim überwachten Lernen liegen, zusätzlich zu den gesammelten Da-
ten, auch Informationen darüber vor, in welche Klassen oder Kategorien man die Daten
einteilen kann. Genau diese Zuteilung soll zukünftig für neu beobachtete Daten vorherge-
sagt werden. Meistens entsteht die Annotation der vorliegenden Daten mit einer passenden
Klassen durch einen Experten. Beim unüberwachten Lernen hingegen liegen diese Klas-
seninformationen zu den gesammelten Daten nicht vor. Mit speziellen Lernverfahren wird
versucht, die vorliegenden Daten in passende Klassen einzuteilen. Die Einteilung basiert
nur auf den in den Daten gefundenen Regelmäßigkeiten und geschieht automatisch. In
den nun folgenden einführenden Worten soll es genau um das überwachte Lernen gehen.
Abschnitt 8.2 beschäftigt sich schließlich mit den Formalien beim unüberwachten Lernen.

Die Lernaufgabe Etwas formaler besteht die Lernaufgabe aus dem Trainieren eines
Modells, welches das gelernte Wissen repräsentieren soll, und aus der Anwendung des

55

56 KAPITEL 8. MASCHINELLES LERNEN

Modells auf neue Daten. Für das Training werden annotierte Trainingsdaten

T = {(~x1, y1), (~x2, y2), ..., (~xN , yN)} ⊂ X × Y

benötigt, wobei X für das gesamte Universum möglicher Daten steht und Y für die Men-
ge an verfügbaren Klassen. Bei einer Klassifikation sind dies endlich viele vorgegebene
Klassen, bei einer Regression sind dies die reellen Zahlen. Jedes Datum besteht aus ei-
nem Vektor ~xi, welcher die Attributwerte des individuellen Datums repräsentiert, und aus
einer Annotation yi. Diese steht für die Klasse, zu der das betrachtete Datum gehört.
Die Annotation ist essentiell für das überwachte Lernen und den Erfolg der maschinellen
Lernverfahren.

In unserer Projektgruppe fällt mit der Gamma-Hadron-Separation eine typische Klassifi-
kationsaufgabe an. Dabei bilden die durch die Monte-Carlo-Simulation erlangten Daten
den Trainingsdatensatz. Die Klassen sind in unserem Fall Y = {gamma, hadron} und sind
Annotationen solcher Aufnahmen, welche mit Hilfe der Simulation entweder als Gamma-
oder als Hadronstrahlung eingeordnet wurden. Mit diesem Trainingsdatensatz werden ma-
schinelle Lernverfahren trainiert und mit den resultierenden Modellen wollen wir versuchen
für Rohdaten vorherzusagen, ob in einer Aufnahme eine für die Physiker interessante Gam-
mastrahlung vorliegt oder nicht. Außerdem liegt mit der anschließenden Energieschätzung
für die Partikel einer gefundenen Gammastrahlung eine Regressionsaufgabe vor, welche
ebenfalls mit maschinellen Lernverfahren gelöst werden kann.

Qualitätsmaße Es gibt etliche Lernverfahren, mit denen sich Modelle trainieren lassen.
Um das beste Modell für die Lernaufgabe zu finden, sollte die Generalisierungsleistung des
Modells im Auge behalten werden. Darunter versteht man die Anwendbarkeit auf neue
Daten, für welche die Klasse unbekannt ist. Die sogenannte Fehlklassifikationsrate kann
dazu beitragen, die Generalisierungsleistung eines Modells zu quantifizieren. Häufig werden
Modelle nicht auf dem gesamten verfügbaren Trainingsdatensatz trainiert, sondern es wird
eine Teilmenge der Trainingsdaten zurückgehalten. Diese bilden die Testdaten, welche von
dem trainierten Modell klassifiziert werden. Im Nachhinein können vorhergesagte und
wahre Klasse verglichen werden, um die Fehler dieses Modells auf unbekannten Daten
einschätzen zu können. Um die Fehlklassifikationsrate zuverlässig zu bestimmen, müssten
unendlich viele Testdaten klassifiziert werden, sodass man in der Praxis auf empirische
Schätzungen wie folgende zurückgreift:

ε(h) = Ex∼D[I(h(x) 6= f(x))] [94]

wobei h ein trainiertes Modell, Ex∼D[g(x)] der Erwartungswert der Funktion g(x), wenn
x nach D verteilt ist und I(g(x)) die Indikatorfunktion (1, wenn g(x) = true und 0 sonst).
Gewählt wird der Lerner h, welcher den Fehler ε(h) minimiert.

8.1. ENSEMBLE LEARNING 57

Dieser kurzen Einführung in das maschinelle Lernen folgen nun Vertiefungen. Es werden
Lernverfahren und Techniken beleuchtet, welche sich in der Praxis bewiesen haben und
daher für unsere Projektgruppe interessant sein können. Dabei wird vor allem Wert dar-
auf gelegt, dass diese Techniken für Big Data anwendbar sind. Große Datenmengen sollen
nicht nur schnell bearbeitet werden, es sollen auch die Vorteile eines Rechenclusters ausge-
nutzt werden können. Es soll besonders darauf eingegangen werden, wie sich Lernverfahren
parallelisieren lassen, sodass verteilt gelernt und auch klassifiziert werden kann. Einen wei-
teren Aspekt bilden die inkrementellen Verfahren, bei welchen die Trainingsdaten nicht
zwingend komplett zu Beginn des Trainings vorliegen müssen. Da wir uns mit riesigen
Datenmengen beschäftigen, könnte es ein Vorteil sein, diese Daten nach und nach vom
Lerner unserer Wahl bearbeiten zu lassen. Ein weiteres Problem unserer Trainingsdaten
ist außerdem, dass üblicherweise sehr viele Hadronstrahlungen, aber nur wenige Gamma-
strahlungen vorliegen. Deswegen soll das Lernen mit nicht balancierten Klassen ebenfalls
vertieft werden. Den Abschluss dieses Kapitels bilden Techniken, mit denen die Daten vor
dem Lernen organisiert werden können. Dazu gehört zum einen die Extraktion von Merk-
malen, welche besonders gut für die Vorhersage der Klassen geeignet ist, zum anderen
die passende Einteilung in Trainings- und Testdatensätze. Schließlich sollen die trainierten
Modelle zum Schluss evaluiert werden, sodass eine Aussage über deren Qualität möglich
ist.

8.1 Ensemble Learning
von Carolin Wiethoff

Die Idee des Ensemble Learnings ist, auf viele Modelle zurückzugreifen, anstatt sich nur
auf die Vorhersagen eines Modells zu verlassen. Nach Dietterich [30] sind die drei meist-
genannten Gründe für das Nutzen von Ensembles die folgenden:

Statistik Ähnlich unserem realen Leben soll mehreren Expertenmeinungen anstatt nur
einer vertraut werden. Es kann schwierig sein, sich für genau ein Modell zu entschei-
den, welches möglicherweise nur zufällig auf dem gerade genutzten Testdatensatz
die kleinste Fehlerrate hat. Außerdem können durchaus mehrere Modelle mit einer
ähnlich akzeptablen Fehlerrate für den Anwender interessant sein. Im Ensemble soll
nicht strikt ein Modell ausgesucht werden, sondern eine Kombination entstehen.

Berechnung Zum Training einiger Modelle wird eine Optimierung durchgeführt, welche
in lokale Optima enden kann. Trainiert man Modelle von verschiedenen Startpunkten
aus und kombiniert diese, kann es zu einer Verbesserung kommen.

Repräsentierbarkeit Manchmal kann die gesuchte wahre Funktion nicht von den Mo-
dellen im Hypothesenraum repräsentiert werden. Auch hier kann eine Kombination
von Modellen dazu beitragen, den Raum darstellbarer Funktionen zu vergrößern.

58 KAPITEL 8. MASCHINELLES LERNEN

In dieser Einführung wird davon ausgegangen, dass den Modellen dasselbe Lernverfahren
zugrunde liegt. Meist ist dieses Verfahren von recht einfacher Struktur, sodass mehrere
schwache Lerner zu einem starken Lerner durch eine gemeinsame Entscheidungsregel zur
Klassifikation neuer Daten kombiniert werden. Die einfachen Lerner sollen dabei möglichst
verschieden sein, damit eine Kombination erst sinnvoll wird. Um verschiedenartige Lerner
eines gleichen Basisalgorithmus zu erzielen, gibt es verschiedene Ansätze. Im Folgenden
stehen Bagging (insbesondere Random Forests nach [62]) und Boosting (insbesondere Ada-
Boost nach [36]) im Fokus. Neben diesen beiden Quellen wurden auch Grundlagen aus [94],
[30] und [76] über das Ensemble Learning entnommen und können für weitere Informa-
tionen nachgeschlagen werden. Die Grundideen der beiden Ensemble Learning Methoden
sollen erläutert werden, sowie deren möglicher Einsatz in unserer Projektgruppe.

8.1.1 Bagging

Beim Bagging (Bootstrap Aggregation) werden für jeden Lerner Bootstrap-Stichproben
genutzt. Das bedeutet, dass für jeden Lerner neue Trainingsdaten generiert werden, indem
n Beispiele aus den originalen n Beobachtungen mit Zurücklegen gezogen werden. Manche
Beispiele können somit mehrfach in einem Trainingsdatensatz vorkommen, andere gar
nicht.

Ein prominenter Vertreter der Bagging-Methoden ist der Random Forest oder auch
Zufallswald. Der Basislerner zu einem solchen Zufallswald ist ein Entscheidungsbaum,
wie er beispielhaft in Abbildung 8.1 zu sehen ist.

m1 ≥ 5.5

class 1

ye
s

m2 < 2.8

class 2

ye
s

class 3

no

no

Abbildung 8.1: Beispielhafter Entscheidungsbaum

Die Blätter in einem solchen Baum entsprechen den Klassen, die inneren Knoten entspre-
chen Splits anhand von Merkmalen. Die Splits werden jeweils so gewählt, dass möglichst
viele Beobachtungen getrennt werden können. Es werden so lange neue Splits gewählt, bis
die aktuell betrachtete Beobachtungsmenge nur noch aus einer Klasse stammt.

8.1. ENSEMBLE LEARNING 59

Data : Trainingsdatensatz T = {(~x1, y1), (~x2, y2), ..., (~xN , yN)},
Anzahl T der Bäume im Wald,
Anzahl M der Merkmale, die für Splits verwendet werden sollen

Result : T trainierte Entscheidungsbäume, welche den Zufallswald bilden
Ziehe T Bootstrap-Stichproben mit Zurücklegen;
for t = 1, ..., T do

Trainiere einen Baum mit der Bootstrap-Stichprobe t mit folgender
Modifikation: Ziehe zufällig M Merkmale aus den Originalmerkmalen der
Beobachtungen. Für die Splits werden nur diese gezogenen Merkmale
betrachtet.
Entstehender Baum wird nicht gestutzt.

end
Algorithmus 1 : Konstruktion von Zufallswäldern [62]

Jeder Baum im Wald wird mit einer Bootstrap-Stichprobe trainiert. Außerdem werden
für Splits nicht alle Attribute des Trainingsdatensatzes genutzt, sondern nur eine zufällige
Teilmenge. So entstehen möglichst viele verschiedene Entscheidungsbäume, welche zusam-
men den Zufallswald bilden. Die Vorgehensweise für die Konstruktion eines Zufallswaldes
ist in Algorithmus 1 zu sehen.

Neue Daten werden von jedem Baum klassifiziert, anschließend erfolgt ein Mehrheitsent-
scheid. Je mehr Bäume im Wald sind, desto besser für die Klassifikation. Im Gegensatz zu
einem einzelnen Baum besteht das Problem des Overfittings nicht, da für jeden Baum eine
zufällige Teilmenge der Merkmale ausgewählt wird. Führt man dies nicht durch und nimmt
beispielsweise an, dass es zwei Merkmale mit einem sehr starken Beitrag zur Klassentren-
nung gibt, dann würden alle Bäume im Wald genau diese Merkmale für ihre Splits wählen.
Daraus folgt eine starke Korrelation zwischen den Bäumen, was genau zum Overfitting
führt. Wählt man nun aber wie oben beschrieben für jeden Baum eine zufällige Teilmenge
an Merkmalen aus, dann taucht keine starke Korrelation auf und der Mehrheitsentscheid
ist stabil. Außerdem sind Zufallswälder praktisch bei vielen Merkmalen, welche nur einen
kleinen Beitrag zur Klassentrennung liefern und durch diese zufällige Merkmalsauswahl
genau die gleiche Chance, haben für einen Split gewählt zu werden wie andere Merkmale,
welche einen möglicherweise größeren Beitrag liefern.

Für unsere Projektgruppe könnte außerdem von Vorteil sein, dass sowohl Konstruktion
als auch Klassifikation mit Zufallswäldern gut parallelisierbar ist. Die Konstruktion erfolgt
unabhängig von den anderen trainierten Bäumen und die Ergebnisse vieler Bäume auf
verschiedenen Rechnern können am Schluss gemeinsam ausgewertet werden.

Ein Nachteil der Zufallswälder ist allerdings, dass die Verständlichkeit verloren geht, die
ein entscheidender Vorteil bei der Wahl von einzelnen Entscheidungsbäumen sein kann.
Durch die grafische Darstellung erschließt sich die Klassifikation auch Laien gut, was bei
einem Zufallswald von 100 oder mehr Bäumen nicht mehr der Fall ist.

60 KAPITEL 8. MASCHINELLES LERNEN

Data : Trainingsdatensatz T = {(~x1, y1), (~x2, y2), ..., (~xN , yN)} mit yi ∈ {−1,+1},
Anzahl T der Lerner und deren Basisalgorithmus

Result : H(~x) = sign
(∑T

t=1 αtht(~x)
)

D1(i) = 1/N als initiale Gewichte;
for t = 1, ..., T do

Trainiere Lerner ht mit Datensatz T und den aktuellen Gewichten in Dt;
Berechne den Fehler εt = Pri∼Dt [ht(~xi) 6= yi] 1;

Setze das Gewicht des Basislerners t auf αt = 1
2 ln

(1− εt
εt

)
;

Updaten der Gewichte: Dt+1(i) = Dt(i) · exp(−αtyiht(~xi))
Zt

dabei wird Zt zur Normalisierung genutzt ;
end

Algorithmus 2 : AdaBoost [36]

8.1.2 Boosting

Beim Boosting werden Gewichte für jedes Trainingsbeispiel eingeführt. Initial werden
Gleichgewichte gewählt, im Laufe des Trainings sollen die ”schwierigen“ Beispiele, wel-
che immer wieder falsch klassifiziert werden, höher gewichtet werden. Entscheidet man
sich im Vorfeld für ein Ensemble aus T einfachen Lernern, so gibt es T Trainingsrunden,
in denen jeweils ein Lerner mit den gewichteten Beispielen trainiert wird. Nach jeder dieser
Runden erfolgt eine Evaluation und Anpassung der Gewichte. Das entstehende Ensemble
wird zugunsten der schwierigen Beobachtungen im Lerndatensatz adaptiert.

Populär ist der Ansatz AdaBoost von Freund und Schapire. Im Folgenden soll die ur-
sprüngliche Version von 1997 für ein Zwei-Klassen-Problem vorgestellt werden, für welche
die Vorgehensweise in Algorithmus 2 abgebildet ist.

Einfache Lerner werden nach ihrer Qualität gewichtet. Ist der Fehler εt < 0.5, so ist das Ge-
wicht αt > 0. Je kleiner der Fehler, desto größer das Gewicht des Lerners. Beobachtungen
werden nach ihrer Schwierigkeit gewichtet. Der neue Wert hängt nach jeder Trainingsrun-
de von dem Term exp(−αtyiht(~xi)) ab. Wenn richtig klassifiziert wurde, ist yiht(~xi) = 1,
dann wird der Term exp(−αt) klein und so auch das neue Gewicht. Wenn allerdings falsch
klassifiziert wurde, ist yiht(~xi) = −1, dann wird der Term exp(αt) groß und das neue
Gewicht ebenso. Nach dem Ablauf aller Trainingsrunden erfolgt die Klassifikation neuer
Daten durch einen gewichteten Mehrheitsentscheid.

Parallelisieren lassen sich Boosting-Ansätze nur schwer, da in jeder Trainingsrunde eine
Abhängigkeit zur vorhergehenden Runde besteht. Außerdem wächst das Risiko des Over-
fitting mit der Anzahl T der Lerner. Die Lerner sollten in der Lage sein, Verteilungen der
Trainingsdaten zu beachten, ansonsten muss der Trainingsdatensatz in jeder Iteration der
Verteilung angepasst werden.

1Pr = Statistische Wahrscheinlichkeit

8.2. CLUSTERING UND SUBGRUPPENENTDECKUNG 61

8.1.3 Fazit

Es gab mehrere Versuche, Bagging und Boosting miteinander zu vergleichen. Dietterich
[30] fand heraus, dass AdaBoost viel besser als Bagging-Ensembles abschnitt, sofern die
Trainingsdaten wenig bis kein Rauschen aufwiesen. Sobald jedoch 20% künstliches Rau-
schen hinzugefügt wurde, schnitt AdaBoost plötzlich sehr viel schlechter ab. Quinlan [76]
experimentierte mit unterschiedlichen Lernerzahlen T . Ist T klein, scheint AdaBoost die
bessere Wahl zu sein. Je größer jedoch T wird, desto schlechter wird das Ergebnis der
Boosting-Methode und desto brauchbarer werden Zufallswälder.

Die Ergebnisse lassen sich damit erklären, dass Zufallswälder robust gegen Overfitting sind,
wohingegen AdaBoost eher anfällig dafür ist. Beim Boosting wird zu viel Fokus auf die
schwierigen Beobachtungen gelegt, denn deren Gewicht wird nach jeder Iteration erhöht.
Nach und nach verschwinden die einfachen Beispiele, wodurch Lerner in hohen Trainings-
runden mit einem stark angepassten Trainingsdatensatz arbeiten. Die Konsequenz ist das
Overfitting für große T .

Insgesamt lässt sich sagen, dass Ensembles das Gesamtergebnis erheblich verbessern könn-
en. Die populärsten Verfahren Bagging und Boosting wurden mit ihren Vor- und Nachtei-
len vorgestellt. Für unsere Projektgruppe rücken die Zufallswälder in den Fokus. Sie sind
nicht nur gut parallelisierbar und robust gegenüber Overfitting, sondern werden aktuell
von den Physikern für ihre Klassifikationen verwendet. Daher ist es essentiell für unsere
Anwendung, sich ebenfalls mit Zufallswäldern auseinanderzusetzen und diese Möglichkeit
der Klassifikation im Endprodukt anzubieten.

8.2 Clustering und Subgruppenentdeckung
von Mohamed Asmi

In diesem Kapitel wird hauptsächlich das unüberwachte Lernen erläutert. Dabei werden
die zwei Lernverfahrensmethoden Clustering und die Subgruppen-Entdeckung erläutert.
Während beim überwachten Lernen Hypothesen gesucht werden, die möglichst gute Vor-
hersagen über bestimmte schon vorgegebene Attribute geben, wird bei unüberwachten
Lernmethoden nach unbekannten Mustern gesucht.

8.2.1 Clustering

Clustering [53] ist eine unüberwachte Lernmethode. Sie ist die am meisten verwendete
Methode für das Entdecken von Wissen aus einer großen Datenmenge. Bei ihr geht es im
Allgemeinen darum, dass Objekte, die ähnliche Eigenschaften besitzen, in einer Gruppe
zusammengefasst werden. Dabei werden neue Klassen identifiziert. Die einzelnen Gruppen
werden Cluster genannt.

62 KAPITEL 8. MASCHINELLES LERNEN

Es gibt verschiedene Arten von Clustering-Verfahren, die sich in ihren algorithmischen
Vorgehensweisen unterscheiden. Dazu zählen:

• Partitionierende Verfahren, z.B. der k-means Algorithmus.

• Hierarchische Verfahren, die entweder bottom-up oder top-down vorgehen.

• Dichtebasierte Verfahren, z.B. der DBSCAN Algorithmus.

• Kombinierte Verfahren, bei welchen Methoden aus den oben vorgestellten Verfahren
kombiniert werden.

Partitionierende Verfahren

Bei den partitionierenden Verfahren muss die Anzahl der gesuchten Klassen bzw. Cluster
am Anfang festgelegt werden. Die Verfahren, die dieser Methodik folgen, starten meistens
mit einem zufälligen Partitionieren der Objekte. Im Laufe der Ausführung wird diese
Partitionierung schrittweise optimiert. Der k-means Algorithmus [90] gehört beispielsweise
zu diesen Verfahren und soll im Folgenden erläutert werden.

Sei ~x = {d1, d2, ..., dn} ein Vektor, der ein Objekt im Merkmalsraum repräsentiert. Die
Distanz zwischen zwei Vektoren ~x und ~y ist durch |~x − ~y| =

√∑n
i=0(xi − yi)2 definiert.

Der Mittelpunkt ~µ einer Menge ci von Vektoren ist durch ~µ = 1
|ci|
∑
~x∈ci

~x definiert. Sei k
die Anzahl der gesuchten Cluster. Am Anfang des Algorithmus wird k entweder zufällig
oder nach der Durchführung eines Optimierungsverfahren festgelegt. Außerdem werden k
Punkte als Cluster-Zentren ausgewählt und die restlichen Objekte dem Cluster mit dem
nächsten Zentrum zugewiesen. Bei jedem Durchlauf des Algorithmus werden die Mittel-
punkte ~µ neu berechnet und die Objekte wieder dem Cluster mit dem nächsten Zentrum
zugewiesen. Es wird immer weiter iteriert, bis alle Cluster stabil sind.

Der k-means Algorithmus ist für numerische Daten gedacht. Er ist effizient und leicht an-
zuwenden. Dagegen hat der Algorithmus gewisse Nachteile, da die Cluster stark von k und
den am Anfang ausgewählten Cluster-Zentren abhängen. Darüberhinaus zeigt der Algo-
rithmus eine Schwäche, wenn die Daten kugelförmig verteilt sind oder große Abweichungen
in Dichte und Größe aufweisen.

Hierarchische Verfahren

Die beliebte Alternative zu den partitionierenden Verfahren sind die hierarchischen Ver-
fahren [28]. Bei ihnen werden die identifizierten Cluster hierarchisch angeordnet. Es wird
ein Baum erzeugt, in dem jeder Elternknoten Zweige mit seinen Teil-Clustern besitzt. Die
Wurzel repräsentiert den Cluster mit allen Objekten (oberste Ebene). Bei der Identifi-
zierung von Clustern unterscheidet man zwei Vorgehensweisen, nämlich bottom-up oder
top-down.

8.2. CLUSTERING UND SUBGRUPPENENTDECKUNG 63

Top-down Clustering auch devisives Clustering genannt. Am Anfang gehören alle
Objekte zu einem Cluster. Dieser wird schrittweise aufgeteilt, bis jeder Cluster nur noch
ein Objekt enthält.

Bottom-up Clustering auch agglomerativ genannt. Bei diesem Verfahren enthält jeder
Cluster am Anfang nur ein Objekt. Danach werden die Cluster im Laufe des Verfahrens
vereinigt.

Dichtebasierte Verfahren

Cluster bestehen grundsätzlich aus Objekten, die dicht aneinander sind. Die dichteba-
sierten Verfahren nutzen diese Eigenschaft aus, um Cluster aufzufinden. Der DBSCAN-
Algorithmus [18] ist ein Vertreter und soll nun genauer betrachtet werden.

Um den DBSCAN-Algorithmus zu veranschaulichen, werden zuerst einige Definitionen
eingeführt. Eine ε-Umgebung definiert die Anzahl der Punkte in einem bestimmten Radius
ε. MinPts ist die Mindestanzahl der Punkte in einer ε- Umgebung. Ein Kernpunkt ist
ein Punkt, der mindestens MinPts in seiner Umgebung hat. Ein Randpunkt ist ein Punkt
in der ε-Umgebung, der kein Kernpunkt ist. Ein Rauschpunkt ist ein Punkt außerhalb
der ε-Umgebung. Zwei Punkte p und q sind Dichte-erreichbar, wenn p ein Kernpunkt
und q in der ε-Umgebung von p ist. Es gibt direkte und indirekte Dichte-Erreichbarkeit.
Wenn p von p1 direkt Dichte-erreichbar ist und p1 ist direkt Dichte-erreichbar von q, dann
ist p indirekt Dichte-erreichbar von q. Aber die andere Richtung gilt nicht.

Die Parameter ε und MinPts werden vor der Ausführung des Algorithmus festgelegt. Sie
können entweder zufällig gewählt oder durch die Anwendung heuristischer Verfahren be-
stimmt werden. Der DBSCAN-Algorithmus iteriert über alle Objekte in der Datenmenge
und wenn ein Objekt noch nicht klassifiziert und das Objekt ein Kernobjekt ist, dann
werden alle von diesem Punkt aus Dichte-erreichbaren Objekte (Punkte) in einem Cluster
zusammengefasst. Wenn dies nicht der Fall ist, dann wird das Objekt als Rauschpunkt
markiert. Es wird solange iteriert, bis alle Punkte betrachtet wurden.

Kombinierte Verfahren

Man kann die vorgestellten Clustering Verfahren kombinieren. Das kann nützlich sein, um
Parameter eines anderen Verfahrens zu bestimmen. Zum Beispiel führt man eine hierarchi-
sche Clusteranalyse durch, um die Anzahl k der Cluster zu bestimmen, die man später als
Eingabeparameter an k-means übergibt. Das hat den Vorteil, dass eine optimale Anzahl
von Clustern ermittelt wird. Leider ist dieses Verfahren sehr speicher- und zeitaufwendig,
da zwei Verfahren immer gleichzeitig angewendet werden müssen.

64 KAPITEL 8. MASCHINELLES LERNEN

8.2.2 Subgruppenentdeckung

Die bekannteste Methode zur Erkennung von Mustern mit vorgegebenen Eigenschaften ist
die Subgruppenentdeckung. Zum ersten Mal wurde sie von Kloesgen und Wrobel [57, 58]
eingeführt. Die Subgruppenentdeckung [64] liegt zwischen den zwei Bereichen des maschi-
nellen Lernens, da bei der Subgruppenentdeckung die Vorhersage genutzt werden soll, um
eine Beschreibung der Daten zu liefern. Andere Data-Mining Methoden zur Erkennung
von Mustern sind in [23] zu finden.

Definition der Subgruppenentdeckung

Sei D ein Datensatz, der aus Datenitems ~di besteht. Ein Datenitem ~di = (~a, t) ist ein
Paar aus Attributen {a1, a2, ..., am}, die mit ~a bezeichnet werden, und einem Zielattribut
t. In dieser Arbeit werden die Begriffe Datenitem und Transaktion die gleiche Bedeutung
haben. Das Zielattribut definiert die eingegebene Eigenschaft, für die die Daten erklärt
werden sollen. Das Zielattribut muss binär sein, jedoch hat jedes Attribut am einen Wert
aus einer Domäne dom(A). Die Werte der Attribute können binär, nominal oder numerisch
sein. Beispiele für Domänen sind dom(Am) = {0, 1} , |dom(Am)| ∈ N0 oder dom(Am) = R.
~di wird das i-te Datenitem genannt. Außerdem bezeichnen ~ai und ti den i-ten Vektor
der Attribute und das i-te Zielattribut. Die Größe der Datenmenge wird mit N = |D|
bezeichnet.

Nun benötigt man die Definition einer Regel, um eine Subgruppe definieren zu können.
Eine Regel ist eine Funktion p : P (A) × dom(A) → {0, 1}, wobei P (A) die Potenzmenge
der Attribute darstellt. Mit P bezeichnet man die Menge aller Regeln. Man sagt, eine
Regel p überdeckt einen Datenitem ~di genau dann, wenn p(~ai) = 1 ist. Die Attribute
werden miteinander konkateniert, um ~a zu konstruieren. Eine Regel hat die Form:

Bedingung → Wert der Regel.

Die Bedingung einer Regel ist die Konkatenation von Paaren (Attribut,Wert). Der Wert
der Regel wird das Zielattribut darstellen.

Definition (Subgruppe) Eine Subgruppe Gp ist die Menge aller Datenitems, die von
der Regel p überdeckt werden.

Gp = {~di ∈ D|p(~ai) = 1}

Das Komplement einer Subgruppe G ist Ḡ und enthält alle ~di /∈ G, d.h alle Datenitems,
die von p nicht überdeckt werden. Mit n und n̄ wird die Anzahl der Elemente in G und Ḡ
gekennzeichnet, wobei n = N − n̄.

8.2. CLUSTERING UND SUBGRUPPENENTDECKUNG 65

Die Subgruppenentdeckung arbeitet in zwei Phasen, nämlich dem Auffinden der Kandi-
daten der Regeln sowie dem Bewerten der Regeln. Es werden zuerst Regeln mit einer
kleineren Komplexität (allgemeine Regeln) aufgefunden, von denen im Laufe des Sub-
gruppenentdeckungsprozesses immer komplexere (konkretere) Regeln generiert werden.
Die Komplexität der Regeln ist durch die Anzahl der betrachteten Attribute bedingt.

Zuerst werden Kandidaten mit der Komplexität 1 aufgefunden. Danach werden Kandida-
ten mit höher Komplexität bottom-up generiert. Mit Hilfe einer Qualitätsfunktion werden
die Regeln bewertet.

Qualitätsfunktion

Die Qualitätsfunktion [49, 61] spielt eine wichtige Rolle bei der Subgruppenentdeckung.
Sie bestimmt die Güte der Regeln. Damit kann man die besten Regeln ausgeben.

Definition (Qualitätsfunktion) Eine Qualitätsfunktion ist eine Funktion ϕ: P → R,
die jeder Regel einen Wert (die Güte) zuweist.

Man kann die Auswahl der besten Regeln nach verschiedenen Kriterien treffen. Entweder
werden die Regeln nach ihrer Güte sortiert und dann die besten k Regeln ausgegeben
oder die Ausgabe wird durch einen minimalen Wert der Qualitätsfunktion beschränkt.
Außerdem kann man eine minimale Menge von Regeln mit maximaler Qualität suchen.
Diese Verfahren für die Auswahl der besten Regeln sollen hier nicht weiter betrachtet
werden.

Es gibt viele Qualitätsfunktionen und es ist schwer zu sagen welche allgemein am be-
sten sind. Die Wahl der Qualitätsfunktionen wird von den Datenanalytikern getroffen.
Entscheiden ist die aktuelle Aufgabe. Im folgenden Abschnitt wird eine Auswahl von Qua-
litätsfunktionen präsentiert.

• Coverage: liefert den Prozentanteil der Elemente der Datenmenge, die von einer Re-
gel überdeckt sind.

Cov(R) = TP+FP
N

mit TP bezeichnet man, wie oft war eine Regel falsch war und richtig vorhergesagt
wurde. Dagegen gibt FP eine Aussage über, wie oft war eine Regel wahr war aber
falsch vorhergesagt wurde.

• Precision: liefert den Anteil der tatsächlichen richtig vorhergesagten Regeln, wenn
die Regel wahr war.

Pr(R) = TP
FP+TP

• Recall: liefert den Anteil aller wahren Regeln, die richtig vorhergesagt wurden, von
allen wahr vorhergesagten Regeln.

66 KAPITEL 8. MASCHINELLES LERNEN

Re(R) = TP
TP+FN

wobei FN die Anzahl der falschen Regeln ist, die falsch vorhergesagt wurden.

• Accuracy: liefert den Anteil der richtigen vorhergesagten Regeln von allen Regeln.
Acc(R) = TP+TN

N

• Weighted Relative Accuracy (WRAcc) [86]: Diese Gütefunktion gibt eine Aussa-
ge über die Ausgewogenheit zwischen der Überdeckung und der Genauigkeit einer
Regel. WRAcc ist die am meisten verwendete Qualitätsfunktion bei der Subgrup-
penentdeckung.

WRAcc(R) = Cov(R)
(
TP+FN

N − TP+TN
N

)
wobei TN die Anzahl der falschen Regeln ist, die richtig vorhergesagt wurden. Dieses
Maß wird verwendet, da die einzelne Betrachtung von Accuracy zu falschen Schlüssen
führen könnte.

• F1-Score [79]: das harmonische Mittel von Precision und Recall.
Fsr(R) = 2∗Pr(R)∗Re(R)

Pr(R)+Re(R)

Suchstrategien

Die Anzahl der aufgefundenen Kandidaten bei der Subgruppenentdeckung kann exponen-
tiell wachsen. Das kann beim Generieren der Regeln mit hoher Komplexität einen sehr
hohen Speicher- und Rechenbedarf bedeuten. Deshalb können algorithmische Techniken
eingesetzt werden, die den Suchraum verkleinern. Hierbei kann eine heuristische Suche
durchgeführt werden, z.B. Beam-search [93]. Darüberhinaus kann man zwei Parameter
einstellen um den Suchraum zu beschränken oder die maximale Komplexität einer Regel
festlegen. Weiterhin kann man nur bestimmte Kandidaten betrachten, beispielsweise die
von einer Qualitätsfunktion am besten bewerteten Regeln.

Fazit

In diesem Kapitel haben wir uns mit maschinellen Lernmethoden, die zu dem unüberwach-
ten Lernen gehören, beschäftigt. Vorgestellt wurden klassische Clustering und Subgrup-
penentdeckung Methoden. Die Methoden erzielen gute Ergebnisse auf kleinen Datenmen-
gen. Für Big Data existieren verschiedene Ansätze, die diese Algorithmen erweitern, da-
mit sie parallel bzw. verteilt arbeiten. In den folgenden Abschnitten werden diese Ansätze
erläutert.

8.3 Verteiltes Lernen
von Christian Pfeiffer

Eine Grundannahme des maschinellen Lernens ist die vollständige Verfügbarkeit des Da-
tensatzes an einem Ort. Bei großen wissenschaftlichen Datensätzen, wie sie vom FACT-

8.3. VERTEILTES LERNEN 67

Teleskop aufgezeichnet werden, ist es aber aufgrund der schieren Größe nicht praktikabel,
den Datensatz auf einem einzelnen Rechner zu halten. Dies stellt eine große Herausforde-
rung für maschinelle Lernverfahren dar, weil Algorithmen, die Daten über das Netzwerk
statt von der eigenen Platte laden müssen, potenziell deutlich langsamer sind.

Für das Problem des maschinellen Lernens auf verteilten Datensätzen gibt es bereits einige
Verfahren, die in bestimmten Situationen weiterhelfen können. Die Suche nach verallge-
meinerbaren Lösungsansätzen ist immer noch aktives Forschungsthema.

Im Folgenden werden zwei Verfahren vorgestellt, die das Problem von sehr unterschiedli-
chen Perspektiven angehen. Dies sind der Peer-to-Peer-K-Means von Bandyopadhyay et
al. [14] sowie die Modellkompression für Entscheidungsbäume von Kargupta und Park
[55].

Der Peer-to-Peer-K-Means. Der erste Lösungsansatz liegt in dem Entwurf neuer ma-
schineller Lernverfahren, die direkt berücksichtigen, dass die Daten sich an unterschied-
lichen Orten befinden. Der P2P-K-Means erweitert das bekannte Prinzip des K-Means
(siehe Unterabschnitt 8.2.1) insofern, dass jeder Rechenknoten im Netzwerk den K-Means-
Algorithmus auf seine lokalen Daten anwendet und nach jeder Iteration seine errechneten
Zentren an die Nachbarn im Netzwerk versendet. Diese versuchen dann, einen Mittelwert
über die lokalen und die empfangenen Zentren zu bilden, und nutzen diese Werte als lokale
Zentren für die nächste Iteration. Dies wird so lange fortgesetzt, bis sich die Zentren bis
zu einem festgelegten Abstand angenähert haben.

Allerdings zeigt sich, dass der Entwurf eines verteilten Algorithmus komplexer ist als
der eines lokalen Algorithmus. Die Spezifikation muss folgende Aspekte auf jeden Fall
umfassen:

• Rechenknoten: Gibt es verschiedene Rollen für die Rechenknoten? Ist ein gesonderter
Koordinator-Knoten notwendig? Gibt es ein Minimum oder Maximum für die Zahl
der beteiligten Rechenknoten?

• Nachrichtentypen: Welche Nachrichtentypen sind in welchen Phasen des Algorithmus
erlaubt? Wie muss ein Knoten auf eine Nachricht in Abhängigkeit seines Zustands
reagieren?

• Anforderungen an das Nachrichtentransportsystem: Ist es zum Gelingen des Algo-
rithmus notwendig, dass Nachrichten zuverlässig ankommen?

• Konvergenz: Kann garantiert werden, dass alle Knoten ein gemeinsames Endergebnis
in endlicher Zeit erreichen?

• Terminierungserkennung: Wann ist der Algorithmus beendet? Wie erkennt ein Re-
chenknoten die Terminierung?

• Netzwerkkosten: Wie viele Nachrichten werden im Worst-Case verschickt und wie
groß ist das Gesamtvolumen der versendeten Daten?

68 KAPITEL 8. MASCHINELLES LERNEN

Innerhalb dieser Projektgruppe werden keine eigenen, verteilten maschinellen Lernver-
fahren entworfen, sondern die Algorithmen aus der Spark ML Bibliothek erprobt. Eine
Einführung in Spark ML findet sich in Unterabschnitt 5.2.3.

Die Kompression von Entscheidungsbäumen. Eine andere Strategie besteht darin,
keine verteilten Lernverfahren auf die verteilten Daten anzuwenden, sondern an jedem Re-
chenknoten ein traditionelles, lokales Lernverfahren einzusetzen. Dadurch wird an jedem
Rechenknoten ein eigenes Modell trainiert. Diese Menge von Modellen kann dann wie beim
Ensemble Learning in Abschnitt 8.1 genutzt werden. Der dort vorgestellte Mehrheitsent-
scheid kann so implementiert werden, dass jeder Rechenknoten die unklassifizierten Daten
empfängt, sein lokales Modell darauf anwendet und die resultierende Klassifizierung an
einen Koordinator schickt. Somit ist es für die reine Klassifizierung nicht zwingend not-
wendig, die lokalen Modelle im Netzwerk zu versenden.

Allerdings gibt es einige praktische Gründe, die das Versenden von Modellen irgendwann
notwendig machen. Dazu zählt beispielsweise das Klassifizieren von Datenströmen mit
hohem Datendurchsatz. Hier würde das Versenden der unklassifizierten Daten an die Re-
chenknoten und das Warten auf die Antwort zu hohen Latenzen führen, die einem hohen
Datendurchsatz entgegenstehen.

Das Kompressionsverfahren von Kargupta und Park wendet die aus der Elektrotechnik
bekannte Fouriertransformation auf einen gegebenen Entscheidungsbaum an. Dabei wird
die Klassifizierungsfunktion durch eine gewichtete Summe von Basisfunktionen dargestellt.
Der Nutzen dieses Verfahrens besteht zum Einen darin, dass die Basisfunktionen und
die Gewichte sich mit weniger Aufwand im Netzwerk versenden lassen als eine ganze
Baumtopologie. Zum Anderen lässt sich aus dem Ergebnis der Fouriertransformation leicht
ablesen, welche Basisfunktionen einen großen Einfluss auf die Klassifizierung haben und
welche nur selten relevant sind. Dadurch kann der Nutzer entscheiden, ob Basisfunktionen
mit wenig Einfluss überhaupt über das Netzwerk übertragen werden sollen. Der am Zielort
rekonstruierte Entscheidungsbaum ist dann zwar keine exakte Kopie des Originals, enthält
dafür aber nur die wichtigen Ebenen und ist in der Anwendung somit schneller.

8.4 Statisches und Inkrementelles Lernen
von Alexander Schieweck

Grundlegend für das statische oder auch batch genannte Lernen ist, dass die Trainings-
Daten vorher bekannt sind. Oftmals wird dies auch weiter eingeschränkt, indem ange-
nommen wird, dass die Daten komplett in den Hauptspeicher passen. Da diese Annahme
offensichtlich vieles vereinfacht, beruhen viele klassische Verfahren darauf.

Beim inkrementellen oder online Lernen kommen die Test-Daten nacheinander in der
Reihenfolge ihres Entstehens, z.B. ihres Auftretens, Messens, usw., beim Lerner an und

8.5. CONCEPT DRIFT UND CONCEPT SHIFT 69

werden dort sofort verarbeitet. Dabei wird so wenig wie möglich zwischengespeichert, was
auch als Data stream mining bezeichnet wird.

Das auffälligste Problem beim statischen Lernen ist die Annahme, dass die Daten voll-
ständig in den Hauptspeicher geladen werden können. Dieser ist relativ begrenzt und
besonders im Big Data-Umfeld übersteigen die Daten den zur Verfügung stehenden Platz
um ein Vielfaches, z.B. umfangreiche Log-Files von großen Webseiten, Sensordaten, In-
ternet of Things usw. Um Beschränkungen durch zu kleinen Hauptspeicher zu umgehen,
gibt es auch Algorithmen bzw. Anpassung von bestehenden Algorithmen, die Sequenzen
von der Festplatte lesen und auf diesen dann batch-artig Lernen. Diese Klasse von Al-
gorithmen sind zwar eine Mischung aus batch- und online-Lernen, werden aber meistens
zum statischen Lernen gezählt. Wünschenswert wäre daher ein Online-Algorithmus, dessen
Ergebnis äquivalent zu einem Ergebnisses eines Batch-Lerners wäre.

8.5 Concept Drift und Concept Shift
von Alexander Schieweck

Beim kontinuierlichen Beobachten von Daten stellt man häufig fest, dass die Daten sich sy-
stematisch über einen bestimmten Zeitraum verändern bzw. verschieben. Dies kann durch
Veränderungen in den Rohdaten an sich oder auch durch die Messgeräte verursacht werden,
wenn sich diese zum Beispiel im Betrieb erwärmen und so bei gleichen Rohdaten dennoch
unterschiedliche Werte liefern. Durch dieses Verschieben kann die Qualität der Klassifikati-
on der angelernten Lernverfahren abnehmen, da die bisher verwendeten (Trainings-)Daten
nun nicht mehr zu den neuen Messdaten passen.

Daher wird sich in diesem Abschnitt etwas genauer mit Concept Drift bzw. Concept Shift
beschäftigt, das heißt die Auswirkungen dieser etwas näher erörtert, die unterschiedlichen
Arten näher beschreiben und angesprochen, wie man das Verschieben erkennen kann [32].

Realer Drift vs. Virtueller Drift

Während sich die Daten verschieben, kann man im Wesentlichen zwei wichtige Fälle un-
terscheiden: Das Verschieben beeinträchtigt unsere Klassifikation oder es ist für die Klas-
sifikation nicht weiter von Bedeutung. Betrachtet man alle Features über einer Menge
von Rohdaten, so sind nicht immer alle Features entscheidend für die Klassifikation durch
maschinelles Lernen. Oft sind die Algorithmen auch darauf ausgerichtet, eine möglichst
einfache Unterscheidung, das heißt mit möglichst wenigen Features, der Klassen zu finden.
Findet nun ein Drift in einem oder mehreren Features statt, die zur Klassifikation nicht
notwendigerweise gebraucht werden, ist der Drift nicht weiter relevant. In diesem Fall wird
auch vom virtuellen Drift gesprochen (vgl. Abbildung 8.2 links und rechts). Verschieben
sich die Daten jedoch so, dass ein zur Klassifikation nötiges Feature betroffen ist und die

70 KAPITEL 8. MASCHINELLES LERNEN

Abbildung 8.2: Unterscheidung Realer Drift vs. Virtueller Drift [39]

Abbildung 8.3: Schematische Darstellung vom unterschiedlichen Auftreten von Concept Drift
[39]

Daten die bisherigen Unterteilungskriterien nicht mehr erfüllen, spricht man von realem
Drift (vgl. Abbildung 8.2 links und Mitte). In diesem Fall muss der Lerner angepasst oder
gar neu antrainiert werden.

Auftreten von Shifts

Diese Veränderung der Daten kann zeitlich betrachtet recht unterschiedlich passieren (vgl.
Abbildung 8.3):

Plötzlich (engl. sudden / abrupt) Ab einem bestimmten Zeitpunkt fallen die Daten ein-
fach anders aus oder zeigen andere Charakteristika.

Schleichend (engl. incremental) Dies bezeichnet den Vorgang, wenn sich die Daten lang-
sam in einen anderen Bereich verschieben.

Wiederauftretend (engl. reoccuring concepts) Die Daten alternieren zwischen zwei be-
stimmten Werten, wobei es keine festen Zeitpunkte für den Wechsel zwischen den
Werten geben muss.

Ausreißer (engl. outlier) Es können vereinzelte Datenpunkte außerhalb des erwarteten
Bereiches liegen, dies ist jedoch kein Shift / Drift, sondern einfach eine (Mess-)
Ungenauigkeit.

Erkennen von Shift

Das Erkennen von Shift verlangt ständiges Beobachten der Daten und Validieren der Klas-
sifikationen. Plötzlich auftretende Veränderungen und auch Ausreißer lassen sich noch
relativ einfach, auch durch einfache Algorithmen, erkennen. Schleichenden oder wieder-
auftretenden Shift zu erkennen erfordert dagegen komplexere statische Modelle oder Al-

8.6. LEARNING WITH IMBALANCED CLASSES 71

gorithmen. In beiden Fällen können maschinelle Lernmethoden angewendet werden, um
einen möglichen Shift zu erkennen und um die Nutzer entsprechend zu informieren [39].

8.6 Learning with Imbalanced Classes
von Karl Stelzner

Bei vielen realen Klassifikationsproblemen geht es darum, seltene Ereignisse in einer Masse
aus uninteressanten Vorkommnissen zu entdecken [38]. Beispiele hierfür sind zum Beispiel:

• Die Diagnose von seltenen Krankheiten auf Basis der Daten von größtenteils nicht
betroffenen Patienten

• Die Erkennung von betrügerischen Finanztransaktionen

• Die Gamma-Hadron Separation, die ein entscheidender Teil der Analysekette in der
Cherenkov Astronomie ist (siehe Abschnitt 1.1)

Für die Klassifikation bedeutet dies, dass ein starkes Ungleichgewicht zwischen der Häu-
figkeit des Auftretens von Vertretern der unterschiedlichen Klassen besteht. Vielfach wird
in diesem Zusammenhang auch von einer positiven, seltenen Minoritätsklasse und einer
negativen, häufigen Majoritätsklasse gesprochen. Die damit verbundene Festlegung auf
nur zwei Klassen ist ohne Beschränkung der Allgemeinheit möglich, da eine Problem-
stellung mit mehr Klassen immer als Klassifikationsaufgabe zwischen einer Gruppe von
häufigen und einer Gruppe von seltenen Klassen gesehen werden kann. Von entscheiden-
der Bedeutung ist hierbei das Verhältnis zwischen der Häufigkeit der beiden Klassen. Dies
quantifiziert alle Aussagen, die hier getroffen werden.

8.6.1 Einfluss auf Klassifikatoren

Der Einfluss, den das Klassenungleichgewicht auf die Leistung von Klassifikatoren hat,
wurde in verschiedenen Studien empirisch untersucht [54]. Die Ergebnisse lassen sich
wie folgt zusammenfassen: Das Ungleichgewicht führt nicht dazu, dass Standardlerner
zwangsläufig nicht mehr funktionieren, sondern sorgt vielmehr dafür, dass sich die Schwel-
len hinsichtlich der benötigten Menge an Trainingsdaten und der maximalen Modell-
komplexität verschieben. Das Problem lässt sich also dadurch lösen, dass einfach die
herkömmlichen Lerner mit zusätzlichen Trainingsdaten verwendet werden – ungünstiger-
weise ist das bei vielen Anwendungen aber ohnehin der limitierende Faktor.

8.6.2 Bewertung von Klassifikatoren

Ein wichtiger Punkt, der bei stark verschobenen Klassenverhältnissen bedacht werden
muss, ist, wie Klassifikatoren eigentlich zu bewerten und zu vergleichen sind. Ein na-

72 KAPITEL 8. MASCHINELLES LERNEN

türlicher Ansatz für die Darstellung der Performanz eines binären Klassifikators ist eine
Wahrheitsmatrix, wie in Abbildung 8.4 dargestellt. Mit gegebenem Validationsdatensatz
lässt sich eine solche Tabelle durch simples Zählen der Antworten des Klassifikators und
der tatsächlichen Klassen befüllen. Offen ist aber, wie Leistungen verschiedene Lerner,
also verschiedene Tabellen dieser Art, miteinander verglichen werden können.

Positive Klasse Negative Klasse
Positive Voraussage Richtig positiv (TP) Falsch positiv (FP)
Negative Voraussage Falsch negativ (FN) Richtig negativ (TN)

Abbildung 8.4: Schematischer Aufbau einer Wahrheitsmatrix

Eine verbreitetes Vergleichskriterium ist die Fehlerrate ERR = (FP +FN)/(TP +FP +
FN+TN) , also der Anteil der Datenpunkte, die falsch klassifiziert wurden. Wenn die Mi-
noritätsklasse nun aber sehr selten ist, können Lerner sehr geringe Fehlerraten erreichen,
indem sie einfach alle Eingaben der Majoritätsklasse zuordnen. Da ein solcher Klassifi-
kator aber vollkommen nutzlos ist, ist dieses Vorgehen bei stark verschobenen Klassen-
verhältnissen offensichtlich inadäquat. Dies hat damit zu tun, dass die Anzahl der falsch po-
sitiven und falsch negativen Datenpunkte in der Fehlerrate schlicht addiert werden. Da es
von der negativen Klasse aber wesentlich mehr Instanzen gibt, werden die falsch positiven
Datenpunkte die Fehlerrate höchstwahrscheinlich dominieren. Ein sinnvolles Vergleichs-
kriterium muss daher die Klassifikatorleistung auf den einzelnen Klassen unabhängig von
der Anzahl der jeweils vorliegenden Instanzen ins Verhältnis setzen.

Eine Möglichkeit, dies zu tun, ist, über die richtig-positiv-Rate TPrate = TP/(TP + FN)
und die richtig-negativ-Rate TNrate = TN/(TN + FP), die angeben, welcher Anteil der
jeweiligen Klassen richtig klassifiziert wurde. Um ein wirkliches Vergleichskriterium zu
erhalten, müssen diese beiden Werte aber noch geeignet ins Verhältnis gesetzt werden.
Ein Weg, die beiden Metriken zu kombinieren, ist die Visualisierung in einer Receiver
Operating Characteristic (ROC) Grafik [33] wie in Abbildung 8.5.

Die Klassifikatorleistung kann so als ein Punkt in diesem zweidimensionalen Raum darge-
stellt werden. Hierbei bedeutet ein Punkt, der sich weiter oben und weiter links befindet,
einen strikt besseren Klassifikator. Mögliche daraus abgeleitete Metriken sind das arith-
metische und geometrische Mittel von TPrate und TNrate:

AUC = TPrate + TNrate

2
Gmean =

√
TPrate ∗ TNrate

Diese Metriken behandeln TPrate und TNrate symmetrisch. In manchen Anwendungsfällen
ist die Performanz auf einer Klasse (üblicherweise der Minoritätsklasse) aber wichtiger als

8.6. LEARNING WITH IMBALANCED CLASSES 73

Abbildung 8.5: Eine ROC Kurve [38]

auf der anderen. In diesem Fall bietet es sich an, eine asymmetrische Metrik zu verwenden,
etwa den Index of balanced accuracy (IBA) [40].

IBA = (1 + α (TPrate − TNrate)) ∗Gmean2

Dieser Index führt den Asymmetriefaktor α ein, über den sich steuern lässt, wie viel stärker
die TPrate gegenüber der TNrate gewichtet werden soll.

8.6.3 Verbesserung von Klassifikatoren

Zur Verbesserung der Performanz von Klassifikatoren auf unausgewogenen Trainingsdaten
gibt es verschiedene Ansätze, die in drei Kategorien eingeteilt werden können: interne,
externe, und auf Ensemble-Learning basierende Ansätze [38, 41].

Eine Möglichkeit besteht darin, den Lernalgorithmus selbst zu verändern. Denkbar wäre
etwa, die Kostenfunktion anzupassen, um dafür zu sorgen, dass der Algorithmus seine
Ausgabe mit Blick auf die gewählte Metrik optimiert. Diese auch als intern bezeichneten
Ansätze stehen vor dem Problem, dass sie ein genaues Verständnis des Lernalgorithmus’
und des Problems erfordern. Des Weiteren beziehen sich die vorgenommenen Anpassungen
jeweils nur auf einen Algorithmus und lassen sich in der Regel nicht auf andere Verfahren
verallgemeinern.

74 KAPITEL 8. MASCHINELLES LERNEN

Eine anderer, attraktiver Ansatz besteht daher darin, in einem Vorverarbeitungsschritt
die Trainingsdaten so zu verändern, dass das Problem der unausgeglichenen Klassen ge-
ringer wird. Diese externen Ansätze haben den Vorteil, dass sie sich mit jedem beliebigen
Klassifikator kombinieren lassen.

Over-Sampling

Eine mögliches externes Verfahren besteht darin, zusätzliche synthetische Instanzen der
Minoritätsklasse in den Trainingsdatensatz einzufügen, um so den wenigen vorhandenen
Datenpunkten mehr Gewicht zu verleihen. Die wird Over-Sampling genannt und kann
durch verschiedene Strategien umgesetzt werden:

• Zufällig ausgewählte vorhandene positive Datenpunkte können repliziert werden

• Es kann zwischen vorhandenen Datenpunkten interpoliert werden, um Instanzen zu
erzeugen, die neu, aber gleichzeitig konsistent mit den bisherigen Daten sind

• Andere Ansätze sind möglich, etwa kann versucht werden, Datenpunkte in der Grenz-
region der Klasse zu erzeugen

Alle diese Ansätze haben ihre Vor- und Nachteile, abhängig davon, ob die über die Da-
ten getroffenen Annahmen stimmen oder nicht. Ein übergreifendes Problem ist aber das
Overfitting, also das Phänomen, dass ein Klassifikator die spezifische Verteilung der Trai-
ningsdaten lernt, anstatt der dahinter liegenden Muster, und deswegen schlecht auf ande-
re Daten generalisiert. Dadurch, dass die wenigen Datenpunkte der Minoritätsklasse beim
Oversampling vervielfacht werden, wird dieses Problem verstärkt. Ein weiterer Nachteil ist
der erhöhte Rechenaufwand durch die künstliche Vergrößerung des Trainingsdatensatzes.

Under-Sampling

Das dem Over-Sampling entgegengesetzte Verfahren wird Under-Sampling genannt und
besteht darin, zufällig Instanzen der Majoritätsklasse aus dem Trainingsdatensatz zu
löschen. Der Effekt ist auch hier, dass das Ungleichheitsverhältnis so künstlich verringert
wird. Auch hierfür gibt es verschiedene Umsetzungsmöglichkeiten:

• Entfernen von zufälligen negativen Datenpunkten

• Entfernen von ”redundanten“ Datenpunkten, also etwa solchen, in deren Nähe sich
noch andere Punkte der selben Klasse befinden

• Entfernen von Datenpunkten in der Grenzregion zur Minoritätsklasse

Der große Nachteil dieser Verfahren ist, dass durch das Löschen von Datenpunkten unter
Umständen wichtige Informationen verloren gehen, und die Klassifikatorleistung dadurch

8.7. FEATURE SELECTION 75

abnimmt. Insgesamt lässt sich aber sagen, dass beide Resampling-Varianten in aller Re-
gel zu einer Leistungssteigerung führen. Dank ihrer universellen Einsetzbarkeit sind diese
Verfahren daher sehr attraktiv.

Ensemble Learning

Ein weiterer Ansatz besteht darin, die in Abschnitt 8.1 vorgestellten Ensemble Learning
Verfahren zu adaptieren. Auch hierzu gibt es verschiedene Strategien, die allesamt das Ziel
haben, der Minoritätsklasse ein größeres Gewicht zu verleihen. Einige Beispiele sind:

• Over-/Under-Bagging. Bei dieser Variante des Bagging werden die Teildatensätze
nicht zufällig gezogen, sondern unter Benutzung von Over-/Under-Sampling

• SMOTEBoost. Diese Variante von AdaBoost (Algorithmus 2) generiert nach jeder
Iteration durch Interpolation zusätzliche Datenpunkte und fügt diese in den Daten-
satz ein

• AdaCost. Diese andere Variante von AdaBoost verändert die Updatefunktion der
Gewichte so, dass positive Datenpunkte schneller an Gewicht zunehmen als negative

Welches Verfahren das Beste ist, lässt sich letztendlich nur durch den empirischen Ver-
gleich entscheiden. Die durchgeführten Studien deuten aber darauf hin, dass Resampling-
Verfahren in der Regel lohnenswert sind.

8.7 Feature Selection
von Mirko Bunse

Unter einem Merkmal (engl. Feature) versteht man im maschinellen Lernen eine für
die Vorhersage nützliche Größe. Merkmale können direkt physikalisch messbar oder aus
messbaren Größen berechenbar sein. Beispielsweise können für die Klassifizierung von
Texten die Vorkommen bestimmter Wörter (direkt zählbar) oder das Vorkommen von
Wortstämmen (daraus ableitbar) Merkmale darstellen.

Feature Selection (Merkmalsauswahl) versucht, möglichst geeignete Merkmale für ein ge-
gebenes Vorhersageproblem zu identifizieren. Als ungeeignet betrachtete Merkmale können
ignoriert werden, wodurch sich die Dimensionalität der Daten reduzieren lässt. Dabei wird
die Auswahl nur unter den Originalmerkmalen vorgenommen (die hier nicht betrachtete
Merkmals-Extraktion hingegen erzeugt neue Merkmale, um die Datendimensionalität zu
reduzieren).

Die Vorteile von Dimensionsreduktion und Feature Selection insbesondere werden in Un-
terabschnitt 8.7.1 vorgestellt. Es wird eine formale Problemstellung aus den Eigenschaften
abgeleitet, die ein ”geeignetes“ Merkmal erfüllen sollte (siehe Unterabschnitt 8.7.2). Eine
Übersicht der Ansätze zur Feature Selection wird vorgestellt und Qualitätsmerkmale von

76 KAPITEL 8. MASCHINELLES LERNEN

Auswahl-Algorithmen werden identifiziert (siehe Unterabschnitt 8.7.3). Als prominentes
Beispiel wird der korrelationsbasierte Algorithmus CFS (Correlation-based Feature Se-
lection) nach Hall [46] intensiv betrachtet (Unterabschnitt 8.7.5). Dessen Erweiterung zu
Fast-Ensembles wird ebenfalls vorgestellt (siehe Unterabschnitt 8.7.6).

8.7.1 Vorteile

Die Reduktion der Datendimensionalität kann im überwachten Lernen sowohl die Trai-
ningszeiten, als auch die Anwendungszeiten der verwendeten Modelle reduzieren. Die trai-
nierten Modelle sind aufgrund der geringeren Dimension kompakter und damit, falls es der
Modelltyp hergibt, leichter interpretierbar. Ein besonderer Vorteil der Dimensionsreduk-
tion ist aber, dass dem Fluch der hohen Dimension entgegengewirkt werden kann. Dieser
besagt, dass hochdimensionale Modelle bei geringer Anzahl verfügbarer Beispiele stark
überangepasst werden. Überangepasste Modelle generalisieren schlecht auf unbekannten
Daten und resultieren daher in schlechter Vorhersage-Performanz. Dimensionsreduktion
schränkt die Variabilität der Modelle ein, sodass der Informationsgehalt kleiner Stichpro-
ben besser repräsentiert und damit die Generalisierungsfähigkeit erhöht wird.

Besteht die Dimensionsreduktion aus der Auswahl von Originalmerkmalen, können weitere
Vorteile gewonnen werden. So lassen sich Datenvisualisierungen auf wichtige Merkmale fo-
kussieren, was das Verständnis der Daten erhöhen kann. Außerdem müssen bei zukünftigen
Datenerfassungen nicht alle Merkmale erfasst werden, was die Kosten solcher Datenerfas-
sungen senken kann. Natürlich werden auch, wenn pro Beispiel weniger zu speichern ist,
auch die Speicheranforderungen geringer ausfallen.

Überdies hat sich Feature Selection auch als eigenständiges bzw primäres Analysewerkzeug
etabliert: Einige Probleme sind bereits dadurch gelöst, dass wichtige Merkmale identifiziert
werden. Beispielsweise sollen in der Analyse von Genexpressionsdaten für Krankheiten re-
levante Gene ausfindig gemacht werden. Die Ausprägungen der Gene stellen Merkmale
dar. Mit Krankheiten stark korrelierte Ausprägungen können ein Indiz für einen Zusam-
menhang sein.

Im Anwendungsfall interessiert uns die Auswahl von Features, da bestehende Analysen
eine große Anzahl teils redundanter Merkmale extrahieren. Die Relevanz dieser Merkma-
le für die Gamma-Hadron-Separation und die Energy Estimation ist fraglich. Wenn wir
Merkmale identifizieren können, die nicht weiter betrachtet werden müssen, können wir
die Analyse beschleunigen, indem wir die Berechnung unwichtiger Merkmale überspringen.
Sämtliche der oben genannten Vorteile können ebenfalls geltend gemacht werden.

8.7. FEATURE SELECTION 77

8.7.2 Problemstellung

Nützliche Merkmale zeichnen sich durch zwei Eigenschaften aus: Sie sollten zum Einen für
das gegebene Vorhersageproblem relevant sein, also eine gewisse Vorhersagekraft besitzen.
Möglicherweise ergibt sich diese Vorhersagekraft nur durch Zusammenspiel mit anderen
Merkmalen. Zum Anderen sollte die durch das Merkmal kodierte Information sich nicht
mit der Information anderer Merkmale überschneiden. Selektierte Merkmale sollten also
nicht redundant zueinander sein.

Es lässt sich daher nicht für jedes Merkmal isoliert entscheiden, ob es gewählt werden
sollte oder nicht. Wir müssen die Qualität von Merkmalsmengen (genauer: Teilmengen
der Original-Merkmalsmenge) abschätzen. Koller und Sahami [59] prägten die Vorstellung
einer optimalen Merkmalsmenge wie folgt:

Definition 8.1 (Optimale Merkmalsauswahl) Die minimale Teilmenge G ⊆ F der
Original-Merkmale F , so dass:

P(C | G = fG) und P(C | F = f) so ähnlich, wie möglich

betrachten wir als optimal, wobei P die wahre Wahrscheinlichkeits-Verteilung über den
Klassen C, f eine Realisierung von F und fG die Projektion von f auf G.

Damit ist die optimale Merkmalsauswahl eine minimal große Menge, welche die (wahre)
Wahrscheinlichkeits-Verteilung über der Zielvariable so gut wie möglich erhält. Es soll
also das zu lösende Vorhersageproblem durch die Beschränkung auf eine Teilmenge der
Merkmale nicht wesentlich verzerrt werden. Eine oft verwendete alternative Definition
beschreibt die optimale Auswahl als die minimal große Menge, welche die Vorhersage-
Performanz maximiert. Damit ist allerdings die wahre Verteilung ignoriert und das eigent-
liche Problem nicht korrekt wiedergegeben.

Da es bei Merkmalsauswahl um den Erhalt der wahren Verteilung geht (welche wir nicht
kennen), lässt sich das Problem im Allgemeinen nicht optimal lösen. Selbst die Verwen-
dung der alternativen Definition über die Vorhersageperformanz lässt Merkmalsauswahl
nicht zu einem einfachen Problem werden: Um das Zusammenspiel aller Merkmale zu
berücksichtigen, müssten wir alle möglichen Merkmalsmengen (2|F | Möglichkeiten) auspro-
bieren, was für viele Probleme schlicht nicht realisierbar ist. Daher ist allen Merkmalsauswahl-
Algorithmen gemein, das sie einige Merkmalsmengen (Kandidaten) heuristisch auswerten.
Kandidaten werden dabei durch eine Such-Strategie (z.B. Vorwärts-Suche, randomisierte
Suchen, . . .) im Raum der möglichen Lösungen erzeugt.

78 KAPITEL 8. MASCHINELLES LERNEN

8.7.3 Arten von Algorithmen

Algorithmen zur Auswahl von Merkmalen unterscheiden sich hauptsächlich durch die von
ihnen genutzte Heuristik zur Bewertung möglicher Lösungen. Oft genannte Arten von
Algorithmen sind:

Wrapper nutzen die Accuracy (Anteil korrekter Vorhersagen auf Testdaten) von Mo-
dellen, die mit der betrachteten Merkmalsmenge trainiert wurden. Es wird also in
jedem Suchschritt durch den Raum möglicher Teilmengen ein Modell eingepasst,
was einen hohen Berechnungsaufwand mit sich führt. Durch Wrapper ausgewählte
Merkmale sind allerdings nahe an der optimalen Merkmalsmenge, da die Accura-
cy auf unbekannten Daten eine gute Abschätzung für die Erhaltung der wahren
Verteilungsfunktion darstellt.

Eingebettete Methoden verwenden interne Informationen von Modellen, die auf der
gesamten Merkmalsmenge eingepasst werden. So können beispielsweise Merkmale
gewählt werden, die in einem Random Forest viele oder besonders gute Splits erzeu-
gen. Eingebettete Methoden sind effektiv, da der Raum möglicher Merkmalsmengen
und Modelle zugleich durchsucht wird, verzerren die Lösung aber zum verwendeten
Modell hin. Durch einen Random Forest ausgewählte Merkmale können z.B. für die
Verwendung in einer SVM ungeeignet sein.

Filter agieren unabhängig von jedem Lernalgorithmus durch explizite Verwendung von
Heuristiken, wie etwa Korrelationen zwischen Merkmalen. Sie sind daher besonders
effektiv.

Über diese Arten hinaus existieren hybride Verfahren, die etwa Filter für eine Voraus-
wahl verwenden, um im Anschluss einen Wrapper die Endauswahl treffen zu lassen. Wir
wollen hier Filter fokussieren, da sie das allgemein effektivste Verfahren darstellen. Durch
Berücksichtigung von zusammenspielenden Features können sie bereits sehr gute Ergeb-
nisse liefern. Die Qualität eines Algorithmus lässt sich überdies an folgenden Eigenschaften
messen [81]:

Begünstigung des Lernens Die Accuracy des trainierten Modells sollte im besten Fall
erhöht, aber zumindest nicht wesentlich gesenkt werden.

Geschwindigkeit Der Auswahl-Algorithmus sollte in der Anzahl der Originalmerkmale
skalierbar sein.

Multivarianz Das Zusammenspiel von Merkmalen (bzgl. Vorhersagerelevanz und Red-
undanz) sollte berücksichtigt werden.

Stabilität Die ausgewählte Merkmalsmenge sollte robust gegenüber der Varianz der ver-

8.7. FEATURE SELECTION 79

(a) Perfekte Korrelation (b) Hohe Korrelation

Abbildung 8.6: Korrelation als Heuristik

wendeten Daten sein. Insbesondere sollten für unterschiedliche Stichproben nicht
gänzlich unterschiedliche Merkmale ausgewählt werden. Nur stabile Verfahren können
ein Vertrauen in die Auswahl schaffen, das es erlaubt, Feature Selection zur Wissens-
generierung zu verwenden.

8.7.4 Korrelation als Heuristik

Bevor wir in Unterabschnitt 8.7.5 mit CFS ein korrelationsbasiertes Verfahren zur Merk-
malsauswahl kennen lernen, wollen wir zunächst die heuristische Natur von Korrelation
zwischen Merkmalen bzw. Korrelation zwischen Merkmalen und der Zielvariablen als Maß
für die Qualität einer Merkmalsmenge untersuchen.

Korrelation und Redundanz

Abbildung 8.6 zeigt zwei mögliche Verteilungen von Beispielen in R2. Mit den beiden Di-
mensionen gibt es also zwei Merkmale, von denen möglicherweise eines ausgewählt werden
könnte. Wir wollen mit der Auswahl die Klasse von Beispielen vorhersagen, wobei Beispie-
le entweder aus der orangenen oder der grünen Klasse stammen. Bei perfekter Korrelation
zwischen den Merkmalen (Abbildung 8.6a) ist es egal, ob wir ein Merkmal oder beide
verwenden, die Klassen lassen sich nicht trennen. Damit sind die Merkmale redundant zu-
einander. Bei einer ”lediglich“ sehr hohen Korrelation muss es jedoch nicht sein, dass beide
Merkmale redundant zueinander sind: In Abbildung 8.6b erlaubt die Verwendung beider
Merkmale eine lineare Separation der Klassen, was mit nur einem der Merkmale nicht
möglich wäre. In diesem Fall hinkt die Heuristik also. Für reale Probleme funktioniert
Korrelation als Heuristik aber sehr gut [45].

80 KAPITEL 8. MASCHINELLES LERNEN

Korrelation und Kausalität

Weiterhin ist anzumerken, dass Korrelation nicht gleich Kausalität ist: Welches zweier
Merkmale der Auslöser für die Ausprägung des anderen Merkmals ist, kann Korrelation
nicht erfassen. Möglicherweise sind die Ausprägungen beider Merkmale auch gemeinsamer
Effekt eines dritten Merkmals. Die Offenlegung (probabilistisch) kausaler Zusammenhänge
kann tiefgehende Erkenntnisse bringen, ist aber außerhalb dieser Betrachtung von Merk-
malsauswahl (für weitere Informationen, siehe [44]).

8.7.5 CFS

Wir wollen im Folgenden einen prominenten Vertreter von korrelationsbasierten Filter-
Verfahren zur Merkmalsselektion auf seine Qualität hin untersuchen, die Correlation-based
Feature Selection nach Hall [46].

Idee

Die Idee von CFS ist recht simpel: In jedem Schritt j+1 wird das Merkmal f ∈ F \Fj mit
dem besten Verhältnis von Relevanz und Redundanz zur bisherigen Auswahl Fj hinzu-
genommen. Damit beschreibt CFS eine Vorwärtssuche durch den Raum möglicher Merk-
malsmengen. Relevanz und Redundanz werden heuristisch ermittelt, indem die Relevanz
als Korrelation zwischen Merkmal f und Zielvariablen y und die Redundanz als Korrela-
tion zwischen Merkmal f und Merkmalen g ∈ Fj der vorherigen Auswahl Fj abgeschätzt
wird:

Fj+1 = Fj ∪
{

arg max
f∈F\Fj

Cor(f, y)
1
j

∑
g∈Fj

Cor(f, g)

}

Für das Maß Cor existieren verschiedene Definitionen basierend darauf, ob die Eingabe-
Merkmale numerisch oder nominal sind (siehe [44]). Diese sollen hier aber nicht weiter
betrachtet werden.

Beispiel-Ablauf

Abbildung 8.7 zeigt einen Beispiel-Ablauf des CFS-Algorithmus: Im ersten Schritt wird für
jedes Merkmal dessen Korrelation mit der Zielvariablen bestimmt. Das Merkmal mit der
höchsten Korrelation (hier X2) wird gewählt. In den weiteren Schritten müssen zusätzlich
die Korrelationen mit zuvor gewählten Merkmalen berechnet werden, um die Redundanz

8.7. FEATURE SELECTION 81

Abbildung 8.7: Beispiel-Ausführung CFS [81]

abzuschätzen. Einmal berechnete Korrelationen können gecached werden, um das Verfah-
ren zu beschleunigen. Dies passiert hier mit dem Korrelationen (X1,X2), (X3,X2) und
(X5,X2). Diese müssen kein zweites Mal berechnet werden. Das Verfahren kann bei einer
festgelegten Anzahl Merkmale terminieren oder wenn keine relative Verbesserung größer
als eine festgelegte Konstante erreicht wird.

Qualität

Der CFS-Algorithmus ist vielversprechend: Experimente zeigen, dass sich die Accuracy von
auf den Merkmalen trainierten Modellen erhöhen lässt [46]. Durch die höchstens einmalige
Berechnung der (|F | + 1)2 Korrelationen zwischen Merkmalen und Zielvariablen ist der
Algorithmus zudem schnell. Da er das Zusammenspiel von Merkmalen bezüglich ihrer
Redundanz berücksichtigt, erfüllt er auch das Multivarianz-Kriterium. Ein Problem von
CFS ist allerdings, dass alle verwendeten Maße Cor auf Varianz basieren und damit anfällig
für eine hohe Varianz der Stichprobe und gegenüber Ausreißern sind. CFS ist also nicht
stabil.

8.7.6 Fast-Ensembles

Um die Stabilität eines Klassifikators zu erhöhen, lassen sich mehrere Klassifikatoren zu
einem Ensemble zusammenfassen (siehe Abschnitt 8.1). Die selbe Idee lässt sich auf Feature
Selection übertragen, um die Stabilität der ausgewählten Merkmalsmengen zu erhöhen
[80]. Dazu wird ein Merkmalsauswahl-Algorithmus auf unterschiedlichen Teilmengen der
Stichprobe trainiert, wodurch mehrere Merkmalsmengen erzeugt werden. Die aggregierte
Merkmalsauswahl ist die Merkmalsmenge, die aus häufig selektierten Features besteht.

Problematisch bei der Anwendung von Ensembles zur Feature Selection ist, dass im
Ensemble mehrere Merkmalsmengen ausgewählt werden müssen. Damit sind Ensembles
üblicherweise nicht schnell. Für CFS-Ensembles haben Schowe und Morik [81] aber ein
Verfahren entwickelt, dass durch die Bildung eines Ensembles nahezu keine zusätzliche
Laufzeit erzeugt. Der Fast-Ensembles genannte Merkmalsselektor besitzt damit alle Vor-
teile von CFS, ist aber zudem stabil (CFS wurde bereits in Unterabschnitt 8.7.5 kennen
gelernt).

82 KAPITEL 8. MASCHINELLES LERNEN

Idee

Die Grundlegende Idee zur Beschleunigung von CFS-Ensembles ist, die Korrelations-Maße
Cor in eine Summe aus voneinander unabhängigen Teilsummen aufzuspalten. Die Teilsum-
men können dann wiederverwendet werden, um alle im Ensemble benötigten Abschätzungen
der Korrelation zu berechnen: Dass CFS im Ensemble ausgeführt wird, erzeugt dann kaum
zusätzliche Laufzeit. Alle Abschätzungen einer Korrelation können wie im Single-CFS in
einem Durchlauf über die Stichprobe erzeugt werden.

Wir wollen beispielhaft die Zerlegung des Pearson’s Correlation Coefficient in unabhängige
Teilsummen betrachten. Die Idee ist aber auch auf alle anderen in CFS verwendeten Maße
für Korrelation anwendbar.

Corpcc(X,Y) = Cov(X,Y)√
V ar(X) · V ar(Y)

(Pearson’s Correlation Coefficient)

Wobei Cov(X,Y) := E
[
(X − E(X))(Y − E(Y))

]
=

displ. law
E(XY)− E(X)E(Y).

Wegen V ar(X) = Cov(X,X) beschränken wir unsere Betrachtungen im Folgenden auf
Cov, welches wir anhand der gegebenen Beispiele (xi, yi), 1 ≤ i ≤ n, xi ∈ X, yi ∈ Y

schätzen wollen:

ˆCov(X,Y) = (1
n

n∑
i=1

xiyi)−− (1
n

n∑
i=1

xi)(
1
n

n∑
i=1

yi)︸ ︷︷ ︸
?

= 1
n

(
m1∑
i=1

xiyi︸ ︷︷ ︸
s1(X,Y)

+
m2∑

i=m1+1
xiyi︸ ︷︷ ︸

s2(X,Y)

+ · · ·+
n∑

i=me−1+1
xiyi)︸ ︷︷ ︸

se(X,Y)

− ?

Wir sehen: Es lassen sich voneinander unabhängige Teilsummen sj(X,Y), 1 ≤ j ≤ e

durch Partitionierung der Beispiele an willkürlichen Grenzen mj erzeugen. Der mit ?

bezeichnete Term wird analog zum dargestellten ersten Term in die Teilsummen sj(X)
und sj(Y) zerteilt. Bei der ebenfalls analogen Zerteilung der Varianz-Schätzungen ˆV ar
werden zusätzlich die Teilsummen sj(X2) und sj(Y 2) erlangt.

Um eine Menge von e Ensemble-Schätzungen zu erzeugen, brauchen lediglich für jede
Schätzung die j-ten unabhängigen Teilsummen weggelassen werden. Damit ist der j-te Teil
der Stichprobe im j-ten Teil des Ensembles ignoriert. Alle anderen Teilsummen werden
aufaddiert, um die Gesamtsummen zu ergeben, mit denen sich die Schätzung von Corpcc

berechnen lässt. Wir erhalten e unterschiedliche Schätzungen für die Korrelation zweier
Merkmale bzw. eines Merkmals mit der Zielvariablen. Abbildung 8.8 fasst die Schätzung
der Korrelation im Ensemble zusammen.

8.7. FEATURE SELECTION 83

Cor1(not used)

(not used)

(not used)

(not used)

Cor2

Cor3

Cor4

 s1 s2 s3 s4

Block 1 Block 2 Block 3 Block 4

Training Data

Abbildung 8.8: Berechnung von Ensemble-Korrelationen in Fast-Ensembles

Abbildung 8.9: Beispiel-Ausführung Fast-Ensembles [81]

Beispiel-Ausführung

Es werden nun, wie im Single-CFS, einmal berechnete Korrelationen gecached, sodass sie
kein zweites Mal berechnet werden müssen. Fast-Ensembles berechnen durch das oben
vorgestellte Schema jedoch nicht nur eine Ensemble-Schätzung pro Korrelation, sondern
gleich alle Schätzungen des Ensembles.

Abbildung 8.9 stellt dar, wie dadurch bei Einpassung eines Ensembles nur wenige zusätzliche
Korrelationen (im Gegensatz zum Single-CFS) berechnet werden müssen. Part 1 in der
Abbildung ist bereits aus Unterabschnitt 8.7.5 bekannt. Part 2 und 3 müssen nun ihre
Schätzungen der Korrelationen mit der Zielvariablen nicht mehr berechnen, da diese bereits
durch Part 1 auf Basis der unabhängigen Teilsummen mitberechnet wurden. Auch andere
Korrelationen können ohne Mehraufwand wiederverwendet werden. Da die unterschiedli-
chen Schätzungen unterschiedliche Entscheidungen des Algorithmus hervorrufen können,
gibt es natürlich einige zusätzlich zu berechnende Korrelationen ((X1,X3), (X5,X3) und

84 KAPITEL 8. MASCHINELLES LERNEN

(X1,X5)). Im Gegensatz zu einer kompletten Neuberechnung aller Korrelationen stellt
das Verfahren aber eine enorme Beschleunigung dar. Damit erfüllen Fast-Ensembles alle
in Unterabschnitt 8.7.3 vorgestellten Qualitätskriterien.

8.8 Sampling und Active Learning
von David Sturm

Bisher haben wir uns in diesem Kapitel mit den eigentlichen Lernverfahren beschäftigt.
Zum Beispiel haben wir gelernt, was ein Modell ist, wie Merkmale ausgewählt werden
etc. Jetzt wollen wir zum Abschluss noch das sogenannte Sampling betrachten. Wollen
wir einen Algorithmus verwenden, um ein Modell zu lernen, stellt sich nämlich die Frage,
welche Daten wir diesem überhaupt übergeben und auf welchen Teilen des Datensatzes
das Modell angelernt werden soll. Angenommen, wir haben einen Datensatz der Form
(x1, y1), . . . , (xn, yn) gegeben, wobei x̂i ein Merkmalsvektor und yi die Klasse des Vektors
ist. Diese Daten wollen wir nun nutzen, um unser Modell zu trainieren.

8.8.1 Der naive Ansatz

Am einfachsten, bzw. logischsten, erscheint es nun, den gesamten Datensatz zum Lernen
zu verwenden. Schließlich bedeuten mehr Daten auch mehr Informationen und je mehr
Informationen wir dem Lernverfahren geben, desto besser sollte unser gelerntes Modell
sein.

Das Problem bei diesem Ansatz ist, dass wir nicht nur ein Modell lernen wollen, son-
dern unser gelerntes Modell auch testen müssen. Schließlich müssen wir auch herausfin-
den können, wie gut das Modell überhaupt ist, gerade wenn wir zwischen verschiedenen
entscheiden müssen. Wir brauchen also definitiv einen Datensatz, an dem wir das Ge-
lernte ausprobieren und testen können. Verwenden wir hierfür nämlich den bereits zum
Lernen verwendeten Datensatz einfach nochmal, werden unsere gelernten Modelle zwar
alle erstaunlich akkurat sein, allerdings testen wir auch nur, wie gut sie darin sind, den
Datensatz, auf dem sie basieren, zu klassifizieren. Wir lernen also nicht die ”wahre“ Klas-
senverteilung, sondern nur die Testdaten auswendig. Dieses Problem wird als Overfitting
bezeichnet. Was wir brauchen, ist ein zweiter, unabhängiger Datensatz, auf dem wir unsere
Modelle testen können. Ein besserer Ansatz wäre daher, die gegeben Daten vor dem Ler-
nen zufällig in Test- und Trainingsdaten zu unterteilen. Eine typische Einteilung hierfür
wäre, zwei Drittel der Daten zum Lernen zu nutzen und das gelernte Modell dann auf dem
letzten Drittel zu testen. Und tatsächlich gibt uns dieser Ansatz erstmal die Möglichkeit,
ein Modell zu lernen und es dann fair beurteilen zu können. Schade ist nur, dass jetzt
ein beträchtlicher Anteil unserer Daten gar nicht zum Lernen verwendet wird und somit
Informationen ungenutzt bleiben.

8.8. SAMPLING UND ACTIVE LEARNING 85

8.8.2 Re-Sampling

Nachdem wir die Probleme dieser simpleren Ansätze betrachtet haben, überlegen wir nun,
wie diese vermieden werden können. Dazu betrachten wir das sogenannte Re-Sampling
in Form der Methoden der k-fachen Kreuzvalidierung und des Bootstrappings, die uns
Lösungen für diese Probleme geben können. Die Idee dieser Ansätze ist, die Daten zwar
wie zuvor in Trainings- und Testdaten zu teilen, dies aber dann mehrmals zu wiederholen.

k-fache Kreuzvalidierung

Bei der k-fachen Kreuzvalidierung wird unsere Datenmenge in k Teile geteilt, von denen
dann k− 1 zum Trainieren des Klassifikators verwendet werden. Das gelernte Modell wird
dann auf dem letzten Teil getestet. Dieser Vorgang wird k mal durchgeführt, wobei jeder
Teil des Datensatzes einmal zum Testen verwendet wird. Schließlich wird die durchschnitt-
liche Fehlerrate der einzelnen Modelle betrachtet, um die erhaltenen k Klassifikatoren zu
bewerten. Durch diese mehrfache Ausführung haben wir erreicht, dass wir zwar immer auf
unabhängigen Testdaten testen konnten, aber trotzdem jeder Teil der Daten gleich starken
Einfluss auf das Modell hat.

Abbildung 8.10: k-fache Kreuzvalidierung, Quelle: [26]

Bootstrapping

Ein alternativer Ansatz zur Kreuzvalidierung ist das sogenannte Bootstrapping. Hier wird
die Datenmenge nicht in k Blöcke unterteilt, sondern es wird zufällig eine Menge von
Daten mit zurücklegen aus dem Datensatz gezogen. In der gewählten Menge von Daten
können nun also bestimmte Daten mehrfach auftreten, alle Daten, die nie gewählt wur-
den, werden wie zuvor zum Testen verwendet. Der Vorteil dieser Methode ist, dass sich
bessere Rückschlüsse auf die Verteilung, die den Daten zugrundeliegt, machen lassen, al-
lerdings werden auch deutlich mehr Durchläufe benötigt. Bootstrapping ist also in der
Regel deutlich rechenintensiver.

86 KAPITEL 8. MASCHINELLES LERNEN

Data : Zeiger auf große Beispielmenge E
Größe m der Arbeitsmenge
Anzahl der Iterationen k
Resampling Intervall R
Gewichtungsregel W : X × Y × R→ R

Result : Modell h: X → R
Initialisiere Arbeitsmenge E0
Initialisiere Gewichte w0,i := 1

for t = 1, .., k do
if t/R ∈ N then
Et := random subset(E ,m)
w0, i := 1 ∀i ∈ {1, ...,m}
for j = 1, .., t− 1 do
∀(xi, yi) ∈ Et : wj,i := wj−1,i ·W (xi, yi, hj(xi))

end
end
else
Et := Et−1
if t > 1 then
∀(xi, yi) ∈ Et : wt,i := wj−1,i ·W (xi, yi, ht−1(xi))

end
end
Trainiere neues Basismodell ht : X → RaufEt

end
return h : X → R mit h(x) = h(h1(x), .., hk(x))

Algorithmus 3 : VLDS-Ada2Boost [48]

8.8.3 VLDS-Ada2Boost

Als nächstes betrachten wir nun den VLDS(Very Large Data Set)-Ada2Boost Algorith-
mus. Dieser ist eine Variation des AdaBoost-Algorithmus 2 aus dem Boosting Kapitel. Im
Kontext von Big Data stellt sich nun nämlich eine völlig neue Frage. Bisher war unser
Datensatz kostbar und wir haben versucht, ihn möglichst effizient zu nutzen, doch was
tun wir, wenn das Gegenteil auftritt? Wie gehen wir vor, wenn unser Datensatz so groß
ist, dass es unmöglich ist, alle Daten zum Lernen zu verwenden? Natürlich könnte man
einfach nur einen Teil der Daten zum Lernen nutzen und die restlichen Daten ignorie-
ren, der VLDS-Ada2Boost Algorithmus zeigt allerdings eine Möglichkeit, doch noch einen
Vorteil aus der großen Datenmenge zu ziehen. Betrachten wir zunächst den Pseudocode
des Algorithmus aus der Diplomarbeit von Marius Helf [48]. Hierbei ist zu beachten, dass
der in dem Paper behandelte Algorithmus, der Ada2Boost Algorithmus, eine Variante des
normalen AdaBoost-Algorithmus ist. Für den VLDS Part des Algorithmus ist dies aber
nicht weiter relevant.

Die Idee dieser Version des Algorithmus ist es, alle R Durchläufe einmal den kompletten
Satz an Trainingsdaten auszutauschen. Die neuen Trainingsdaten durchlaufen dann noch

8.8. SAMPLING UND ACTIVE LEARNING 87

einmal dieselben Schritte wie die alten, danach fährt der Algorithmus fort.

Der Else-Pfad des Algorithmus entspricht deshalb dem normalen Ada2Boost-Algorithmus.
Ein schwacher Klassifikator wird trainiert, danach werden die Datenpunkte neu gewichtet,
sodass ein größerer Fokus auf schwierige Fälle gelegt werden kann. Die späteren Klassi-
fikatoren konzentrieren sich dann häufig auf eben diese. Am Ende wird eine gewichtete
Kombination der einzelnen Lerner zum Bilden von Modellen genutzt.

Der Unterschied zum ursprünglichen Algorithmus liegt im if-Teil. Hier wird alle R Durch-
läufe einmal der Datensatz durch einen völlig neuen, zufälligen Datensatz aus unserer
großen Datenmenge ersetzt. Die neuen Daten werden zunächst wieder mit 1 gewichtet,
dann werden alle bisher verwendeten Klassifikatoren 1, . . . , t noch einmal durchlaufen, um
nacheinander die Daten neu zu gewichten. Die Klassifikatoren werden also auf die neuen
Daten angewendet, auf denen sie allerdings nicht trainiert wurden. Wichtig ist, dass die
bereits gelernten Klassifikatoren dabei nicht mehr geändert werden, nur die Gewichte der
Beispiele werden bearbeitet und für den t+ 1-ten Klassifikator angepasst.

Der VLDS-Ada2Boost Algorithmus tauscht also regelmäßig die ihm zugrunde liegenden
Daten aus und kann dadurch einen beliebig großen Teil der vorhandenen Daten zum
Lernen verwenden. Wichtig ist, dass schon gelernte Klassifikatoren dabei immer wieder auf
neuen Daten angewendet werden, der Algorithmus ist also nicht äquivalent zum normalen
AdaBoost auf der kombinierten Datenmenge. Stattdessen testet er seine bereits gelernten
Klassifikatoren immer wieder auf neuen Daten. Somit können eventuelle Tendenzen in
einzelnen Datenblöcken durch Umgewichtung in späteren Klassifikatoren korrigiert werden
und es gibt deutlich weniger Overfitting. Auch ist es aus praktischen Gründen natürlich
hilfreich, dass nicht der gesamte Datensatz dauerhaft im Speicher vorhanden sein muss.

8.8.4 Active Learning

Zum Schluss beschäftigen wir uns noch mit der Idee des active learnings. Bisher war es
immer unsere Aufgabe, mit einer begrenzten Menge an klassifizierten Daten einen Klas-
sifikator zu trainieren. Nun stellt sich jedoch die Frage, ob dies überhaupt realistisch ist.
Woher kriegen wir überhaupt diese perfekt klassifizierten Daten, auf denen wir lernen? Ge-
rade im Kontext von Big Data erhalten wir stattdessen häufig riesige Mengen an Daten,
die (noch) nicht klassifiziert sind. Wollen wir diese Daten nutzen, müssen wir sie also erst
selber klassifizieren. Aber war unser Ziel nicht gerade, mit den Daten einen Klassifikator
zu finden? Was nun?

Überlegungen

Häufig gibt es auch andere Möglichkeiten, die Klasse eines Datenpunkts zu erfahren. So
können zum Beispiel im Fall von Diagnosen weitere Tests an einem Patienten durchgeführt

88 KAPITEL 8. MASCHINELLES LERNEN

Abbildung 8.11: Active learning als Kreislauf, Quelle: [82]

werden, es kann ein Experte gefragt werden oder Ähnliches. Das Problem hierbei ist nur,
dass dies häufig teuer und zeitaufwändig ist. Wollen wir eine sehr große Menge Daten
klassifizieren, können wir nicht erwarten, dass unser Experte die Zeit hat (oder wir das Geld
haben), jeden Datenpunkt einzeln zu klassifizieren. Genau deshalb soll ja ein automatischer
Klassifikator gefunden werden. Es stellt sich nun die Frage, wie wir aus einer begrenzten
Anzahl an Beispielen, die wir dem Experten zeigen können, möglichst viele Informationen
für unseren Klassifikator erhalten können.

Querys und Experten

Genau mit dieser Frage, welche Daten lasse ich klassifizieren, um daraus zu lernen, be-
schäftigt sich active learning. Hierbei werden sogenannte Querys formuliert, die einem
Oracle, also dem Experten, übergeben werden. Dabei verfolgen wir einen gierigen Ansatz,
wir fragen uns also stets nur welche Anfrage uns genau in diesem nächsten Schritt den
größten Informationsgewinn liefert.

Gehen wir davon aus, dass wir zu einem beliebigen Zeitpunkt t bereits Querys gesendet
haben, haben wir dadurch auch eine Menge L von klassifizierten Daten. Jetzt wählen
wir entweder einen einzelnen Datenpunkt oder eine Gruppe von Punkten, die wir als
nächstes übergeben. Dazu brauchen wir eine Funktion, die den nützlichsten Datenpunkt,
gegeben irgendwelcher Kriterien und der Menge L, aussucht. Diesen Punkt lassen wir dann
klassifizieren und fügen ihn in L ein.

Die eigentliche Aufgabe beim active learning ist also, eine ideale Strategie für die Auswahl-
funktion zu finden. Hierzu werden häufig die zwei folgenden Kriterien betrachtet, andere
sind natürlich auch denkbar.

Informativeness Wie sehr hilft der Punkt bei der Verbesserung meines Modells?

Representativeness Wie repräsentativ ist der Punkt für die Verteilung D, die ich suche?

8.8. SAMPLING UND ACTIVE LEARNING 89

Uncertainty Sampling

Eine Beispiel für eine sehr einfache Art, eine Query zu formulieren, ist das sogenannte
uncertainty sampling. Hier wird immer der Datenpunkt zur Klassifikation gewählt, der
für das Modell mit der bisherigen Punktemenge L am schwersten vorherzusagen ist. Beim
Formulieren der Query wird also nur auf die Informativeness geachtet. Leider führt dieses
Vorgehen wieder zu dem bekannten Overfitting Problem, da wir unsere Klassifikatoren
nur mit Ausreißern und Spezialfällen trainieren. Sie lernen also nur die Besonderheiten
des aktuellen Datensatzes auswendig, lernen dabei aber wenig über die repräsentativeren
Punkte. Dieses kurze Beispiel reicht aber, um zu zeigen, dass das Formulieren von Querys
nicht trivial ist und dass solche einfachen Ansätze keine akzeptable Lösung sind.

Fazit

Wichtig ist, dass active Learning kein Gegensatz zu anderen Sampling-Strategien ist. Statt-
dessen beschäftigt es sich mit neueren Problemen, die durch die immer größere Menge an
gewonnenen Daten auftreten. Active learning kann auch als eine Art Vorbereitung für das
eigentliche Sampeln betrachtet werden. Hier erstellen wir aus den noch nicht klassifizierten
Rohdaten einen Datensatz, auf den andere Sampling-Methoden wie die Kreuzvalidierung
angewandt werden können.

Teil III

Anwendungsfall

91

Kapitel 9

Analyseziele

von Carolin Wiethoff

Um unser Endprodukt perfekt auf die Anforderungen der Physiker abzustimmen, war es
unumgänglich, sich mit den eigentlichen Analysezielen auseinanderzusetzen. In einem Tref-
fen mit einem Repräsentanten der Physiker konnten wir mehr über den Anwendungsfall
(siehe Abschnitt 1.1) erfahren und unsere Fragen dazu stellen. Im Nachhinein fassten wir
das gewonnene Wissen in User Stories zusammen, welche nicht nur einen Überblick über
die Analyseziele geben, sondern auch das Entwickeln von Sprints vorbereiten sollten, so
wie sie in Kapitel 2.1.3 über das Projektmanagement mit SCRUM beschrieben wurden. Im
Folgenden werden die aus unserer Sicht wichtigsten Analyseziele zusammengefasst, welche
wir mit unserem Endprodukt ermöglichen wollen.

Durchsuchbarkeit der Events Zuerst ist es wichtig, einen Überblick über die Events
bekommen zu können. Dazu soll man die Events nach ihren Metadaten durchsuchen
können. Mithilfe einer REST-API (zur Beschreibung siehe Abschnitt 7.2, für unsere Um-
setzung siehe Kapitel 14) sollen vom Anwender Metadaten spezifiziert werden, zu denen
alle passenden Events zurückgeliefert werden. Damit wird es einfach alle Events zu suchen,
die beispielsweise in einem kontinuierlichen Zeitintervall liegen.

Normalisierung der Rohdaten Ein weiteres Anliegen ist die Normalisierung der Roh-
daten. Wie man in Kapitel 10.4 nachlesen kann, existiert zu jeder Aufnahmedatei eine
Drs-Datei zur Kalibrierung. Es ist mühsam, zu jeder Aufnahmedatei per Hand die passen-
de Drs-Datei zu finden. Um das System so benutzerfreundlich wie möglich zu gestalten,
soll diese Kalibrierung daher selbstständig durchgeführt werden, d.h., die passenden Drs-
Dateien werden automatisch gesucht und gefunden.

Gamma-Hadron-Separation Eine große Aufgabe bilden außerdem die maschinellen
Lernaufgaben. Zum Einen soll die Gamma-Hadron-Separation ermöglicht werden, sodass

93

94 KAPITEL 9. ANALYSEZIELE

aus den aufgezeichneten Teleskopdaten die für die Physiker interessanten Gammastrah-
lungen erkannt und separiert werden können. Dabei ist es wieder praktisch nach Metada-
ten durchsuchen zu können, um beispielsweise alle Gammastrahlungen einer bestimmten
Region oder eines bestimmten Zeitraumes anzusehen. Da es viele verschiedene Klassifi-
kationsverfahren zur (binären) Klassifikation gibt, sollen im Endprodukt Methoden ent-
halten sein, mit denen man verschiedenen Lernverfahren einfach evaluieren kann, sodass
die Eignung der Verfahren im Bezug auf die Gamma-Hadron-Separation abgeschätzt wer-
den kann. Eine Übersicht mit für uns möglicherweise interessanten Lernverfahren ist in
Kapitel 8 zu finden.

Energieschätzung Zu den Lernaufgaben gehört außerdem die Energieschätzung, bei
welcher die Energie der gefundenen Gammastrahlungen beziehungsweise der darin invol-
vierten Partikel geschätzt wird. Dies soll über eine Graphical User Interface (GUI) oder
eine API einfach möglich sein, sodass die Schätzung mit nur einem Mausklick oder einem
einfachen Aufruf angestoßen werden kann. Die dabei entstehenden Ergebnisse sollen sich
außerdem grafisch als Lichtkurven darstellen lassen.

Realzeitliche Verarbeitung Eine große Rolle spielt die realzeitliche Einsetzbarkeit des
Endproduktes. Wenn die Teleskopdaten in Echtzeit gespeichert und weiterverarbeitet wer-
den, kann vor Ort über mögliche Gammastrahlungen in Echtzeit informiert werden, um
eventuelle weitere Arbeitsschritte auf die Daten anzuwenden, welche Gammastrahlungen
enthalten. Dazu gehört unter anderem auch realzeitliches Filtern. Dabei sollen Daten, die
offensichtlich nicht für die Analyse wertvoll sind und auf keinen Fall eine Gammastrah-
lung enthalten, sofort gelöscht werden. Anstatt die Ressourcen zu verbrauchen, sollen diese
Daten gar nicht erst gespeichert und weiterverarbeitet werden. Für möglicherweise inter-
essante Daten soll eine automatische Speicherung und Indexierung erfolgen, sodass dieser
Teil der Arbeit nicht jeden Morgen nach der Aufzeichnung manuell angestoßen werden
muss. Einblicke in realzeitliches Arbeiten und Streamen gibt Kapitel 6.

Instrumenten-Monitoring Mit Hilfe der kürzlich aufgenommenen Daten soll darüber
hinaus Instrumenten-Monitoring betrieben werden. Es soll geprüft werden, ob alle Instru-
mente einwandfrei funktionieren oder ob es Hinweise auf ein Versagen der Technik gibt.
In diesem Fall soll das System die Nutzer vor Ort warnen, sodass eine Reparatur oder ein
Austausch der beschädigten Teile möglichst schnell erfolgen kann.

Inkrementelle Ergebnisausgabe Hinzu kommt, dass, abhängig von der Lernaufgabe,
Teilergebnisse abgefragt werden sollen. Möchte der Nutzer nicht die komplette Laufzeit
abwarten, bis das Endergebnis komplett berechnet wurde, kann es sinnvoll sein, das Er-
gebnis während des Rechenprozesses inkrementell zur Verfügung zu stellen, sofern das

9.1. GAMMA/HADRON-KLASSIFIZIERUNG 95

Lernverfahren es zulässt. So können schon während der weiteren Verarbeitung erste Hy-
pothesen über die Daten angestellt werden und basierend darauf weitere Entscheidungen
zum Handling der Daten getroffen werden.

Datenexport Für alle Aufgaben ist es außerdem wichtig, dass Dateien und Ergebnisse
exportiert werden können. Dazu zählt nicht nur der möglicherweise komprimierte Export
von Klassifikationsergebnissen, sondern auch der Export von Log-Dateien und Grafiken,
beispielsweise der Lichtkurven, welche bei der Schätzung der Energie entstehen können.

Insgesamt werden viele Forderungen an unser Endprodukt gestellt, welche korrekt und be-
nutzerfreundlich umgesetzt werden müssen. In den folgenden beiden Unterkapiteln wird
kurz beschrieben, welche Methoden zu den Klassifikations- beziehungsweise Regressions-
aufgaben der oben aufgeführten Analyseziele genutzt werden können.

9.1 Gamma/Hadron-Klassifizierung
von Michael May

Im Gebiet des maschinellen Lernens gibt es viele unterschiedliche Ansätze zur binären
Klassifizierung von Daten. Im Bereich der Klassifizierung von Gamma- und Hadron-Events
wurden Untersuchungen zu den wohl bekanntesten bereits durchgeführt. Dazu zählen unter
anderem

• Direct selection in the image parameters,

• Random Forest,

• Support Vector Machine (SVM) und

• Artificial Neural Network,

welche von Bock et al. [19] und Sharma et al. [83] näher untersucht wurden, mit dem
Ergebnis, dass der Random Forest die besten Ergebnisse liefert.

Zum Vergleich der jeweiligen Methoden wurden verschiedene Qualitätsmaße verglichen.
Ein wichtiges solches Maß ist der Qualitätsfaktor Q = εγ√

εP
, welcher vor allem einen hi-

storischen Wert besitzt. Hierbei beschreibt εγ die korrekt klassifizierten Gamma-Events
und εP die als Gamma klassifizierten Hadron-Events. Es ist vergleichbar mit der statisti-
schen Signifikanz.

9.2 Energie-Abschätzung
von Michael May

Ein weiteres Anwendungsgebiet für maschinelles Lernen ist die Abschätzung der Energie
von klassifizierten Gamma-Events. Da mithilfe der Energie viele physikalische Eigenschaf-

96 KAPITEL 9. ANALYSEZIELE

ten bestimmt werden können, besteht eine wichtige Aufgabe darin, eine korrekte Energie-
angabe zu erhalten.

Die eigentliche maschinelle Lernaufgabe ist eine typische Regression, bei der ein Modell
gefunden werden muss, welches die Energie, basierend auf einer Reihe von Features, vor-
hersagen kann. Untersuchungen von Berger et al. [16] besagen, dass bereits das Feature
size für eine gute Einschätzung mit Hilfe eines Random Forest genügt.

Kapitel 10

Datenbeschreibung

von Alexander Schieweck

In diesem Kapitel werden die verwendeten Daten näher beschrieben. Dazu zählt sowohl
eine Einführung in das zugrundeliegende Dateiformat als auch eine etwas ausführlichere
Beschreibung der logischen Struktur der Dateien und deren Inhalt.

10.1 FITS-Dateiformat
von Alexander Schieweck

Das Flexible Image Transport System (FITS)-Format [43] wurde 1981 von der National
Aeronautics and Space Administration (NASA) als Austausch- und Transportformat von
astronomischen Bilddaten entwickelt. Dabei ist dieses Format modular aufgebaut und
es gibt verschiedene Extensions, welche die eigentliche Datenrepräsentation in der Datei
vorschreiben.

Eine FITS-Datei hat zunächst einen 2880 Byte großen Header-Block, den sogenannten
Primary-Header, wobei dieser die weiteren Daten in der Datei beschreibt. Dazu besteht
der Header aus Key-Value-Paaren, denen ein optionaler Kommentar folgen kann. Pro
Key-Value-Paar stehen jedoch nur 80 Byte zur Verfügung, von denen zehn dem Schlüssel
zugeteilt sind und 70 Byte sich der Wert und der Kommentar teilen. Sollte der Header
nicht die kompletten 2880 Byte brauchen, so bleiben die restlichen Bytes leer. Im Primary-
Header sind bestimmte Felder vorgeschrieben, zum Beispiel eine Checksumme über den
Header und ob sich an den FITS-Standard gehalten wird oder nicht. Dieser Header gibt
auch Auskunft darüber, ob Extensions in der Datei verwendet werden.

Nach dem Primary-Header folgt das erste Datenfeld, welches auch leer sein kann.

Hiernach folgt der Secondary-Header, der ähnlich zum Primary-Header aufgebaut ist, je-
doch auch angibt, welche Extension verwendet wird und noch weitere Informationen für
diese enthält. Als Beispiel für eine solche Erweiterung sei hier die Extension ”BINTABLE“

97

98 KAPITEL 10. DATENBESCHREIBUNG

erwähnt. Dafür wird im Secondary-Header auch angegeben, wie viele Zeilen diese Tabel-
le enthält, wie viele Spalten es gibt, wie diese Spalten heißen und welchen Datentyp sie
haben. Dieser Header wird auch in 2880 Byte großen Blocks gespeichert.

Nach diesen Header-Blocks folgt dann die Datentabelle.

Darüberhinaus werden große FITS-Dateien mit GZip komprimiert und diese Dateien tra-
gen die Endung .fits.gz.

10.2 Rohdaten
von Alexander Schieweck

Die Daten des FACT werden in FITS-Dateien mit der Erweiterung ”BINTABLE“ gespei-
chert. Dazu schreibt das Teleskop die auftretenden Events in einer Zeitspanne von etwa
fünf Minuten in sogenannte Runs. Diese Dateien werden in einer hierarchischen Ordner-
Struktur pro Nacht zusammen gefasst, zum Beispiel ”raw/2013/09/29/0130929 232.fits.gz“
für den Run mit der Nummer ”232“ am 29.09.2013. Innerhalb eines Runs gibt es nun eine
Tabelle mit etwa 3000 Zeilen, wobei jede Zeile ein Event beschreibt. Dazu zählen unter
anderem die Eventnummer, der Zeitpunkt des Auftretens und die Daten der einzelnen
Pixel, ein Datenfeld aus 432000 16bit-Integern!

10.3 Monte-Carlo-Daten
von Christian Pfeiffer

Monte-Carlo-Daten werden im Gegensatz zu den anderen Daten per Simulation erzeugt.
Bei dieser Simulation trifft ein Teilchen von festgelegter Energie auf die Atmosphäre und
erzeugt ein Cherenkov-Licht, das von einem simulierten Teleskop aufgenommen wird.

Der große Vorteil dieses Vorgehens liegt darin, dass im resultierenden Datensatz sowohl
die Features der Aufnahme als auch die Energie des verursachenden Teilchens vorliegen.
Deswegen werden die Monte-Carlo-Datensätze dazu verwendet, Modelle zu trainieren, die
anhand der Features die Energie des zugrundeliegenden Teilchens vorhersagen.

10.4 Drs-Daten
von Alexander Bainczyk

Die analogen Signale, die an den Fotodioden der Teleskopkamera gemessen werden können,
werden mithilfe von Domino Ring Samplern (DRS) digitalisiert. Ohne Kalibierung sind die
Messungen jedoch, wie in Abbildung 10.1 (links) zu sehen, stark verrauscht. Dies liegt zum
einen am einfallenden Hintergrundlicht und zum anderen an temperaturbedingen Span-
nungsänderungen. Um Events besser erkennen zu können, wird eine DRS-Kalibrierung

10.5. AUX-DATEN 99

durchgeführt. Diese wird in regelmäßigen Zeitständen vor einem Run durchgeführt und
dessen Ergebnisse mit den folgenden Aufnahmen verrechnet.

Die Drs-Daten, die ebenfalls im FITS-Format abgespeichert werden, beinhalten neben di-
versen Kalibrierungskonstanten zwei Aufnahmen: Ein Bild wird bei geschlossener Klappe
aufgenommen und eins wird vom Nachthimmel gemacht. Aus den Informationen dieser
Aufnahmen kann das Hintergrundrauschen für folgende Aufnahmen zuverlässig herausge-
rechnet werden (s. Abbildung 10.1 (rechts)).

[6], [4], [27]

Abbildung 10.1: Event vor (links) und nach (rechts) der DRS Kalibrierung. Die Spitzen entspre-
chen den Signalen einer einzelnen Fotodiode. Quelle: [6]

10.5 Aux-Daten
von Alexander Bainczyk

Neben den eigentlichen Rohdaten werden von verschiedenen weiteren Sensoren Daten auf-
genommen, die dabei helfen sollen, die Rohdaten besser zu interpretieren oder Anpassun-
gen an dem Messvorgang zur Laufzeit durchzuführen. Diese Hilfsdaten (Auxiliary Data)
werden je nach Sensor in bestimmten Intervallen im FITS-Format abgespeichert und bein-
halten zum Beispiel Informationen über Wetter- und Sichtverhältnisse zum Zeitpunkt einer
Aufnahmereihe. So können etwa Informationen über die Wolkendichte oder Nebel von In-
teresse sein, da bei dichtem Himmel, schlechten Sichtverhältnissen oder Schneefall nur
ein Bruchteil des Cherenkov-Lichts am Teleskop ankommt. Weiterhin kann beispielswei-
se Regen einen Wasserfilm auf der Kamera hinterlassen, der eingehendes Licht reflektiert
und starker Wind kann die Lage des Teleskops verändern, sodass Anpassungen an dessen
Antriebssystem gemacht werden können [69].

Für den Anwendungsfall sind die Aux-Daten insofern interessant, als dass man durch deren
Indexierung in einer Datenbank eine genauere Eventselektion und Eventanalyse erreichen
kann. So können zum Beispiel Anfragen der Art ”Finde alle Events aus Nacht n, wo die

100 KAPITEL 10. DATENBESCHREIBUNG

Abbildung 10.2: Statistik zur Luftfeuchtigkeit in der Nacht des 21.09.2013 aufgenommen von
zwei Sensoren: TNG (oben) und MAGIC (unten)

Temperatur unter y◦C liegt“ gestellt werden, um bessere Modelle für maschinelle Lern-
verfahren zu erzeugen. Bei Anfragen dieser Art werden geeignete Strategien benötigt, um
Event-Daten und Aux-Daten zusammenzuführen, da nicht sichergestellt werden kann, dass
zum Zeitpunkt te der Aufnahme eines Events e auch Sensordaten aufgezeichnet wurden.
Meistens befindet sich te nämlich irgendwo zwischen zwei aufgezeichneten AuxPoints ai
und aj , also tai < te < taj . In solchen Fällen wird e mit dem AuxPoint zusammengeführt,
dessen Aufnahme am nächsten an te liegt, um möglichst genaue Informationen zu erhalten.

Für Analysezwecke wurde von uns ein Tool (AuxViewer) entwickelt, mit dessen Hilfe sich
Diagramme indizierter Aux-Daten für eine bestimmte Nacht generieren lassen. Eine bei-
spielhafte Analyse der Wetterdaten ergab, dass verschiedene Sensoren unterschiedliche
Aufnahmeintervalle haben, wie die Statistiken zur gemessenen Luftfeuchtigkeit einer Nacht
in Abbildung 10.2 zeigt. Für eine genauere Eventselektion gilt es also herauszufinden,
welche Sensordaten besser geeignet sind, falls verschiedene Sensoren das selbe Merkmal
aufzeichnen.

Eine stichprobenartige Überprüfungen mehrerer Sensoren zu unterschiedlichen Nächten
zeigte weiterhin, dass die Sensoren anscheinend zuverlässig arbeiten. Die Werte werden in
regelmäßigen Abständen ausgelesen, Definitionslücken durch Ausfälle wurden nicht ver-
zeichnet und Sensoren, die dasselbe Merkmal aufnehmen, liefern in etwa die selben Werte
(siehe z.B. Abbildung 10.2).

Kapitel 11

Analyse mit den FACT Tools

von David Sturm

Für die Verarbeitung von FITS-Dateien (siehe Kapitel 10), die mit Hilfe des FACT-
Teleskops aufgenommen werden, wurden die FACT-Tools implementiert. Das ist eine Er-
weiterung des streams-Frameworks.

Bei den FACT-Tools [22] wurden Inputs und Funktionalitäten für streams implemen-
tiert, die für die Verarbeitung der Rohdaten notwendig sind. Dabei wurde z.B. ein Stream
fact.io.fitsStream implementiert, der in der Lage ist eine FITS-Datei von einem In-
put zu lesen. Darüberhinaus ermöglichen die FACT-Tools, eine Datenanalyse mit allen
Schritten, die in diesem Abschnitt erläutert werden, durchzuführen. Dazu gehören alle
Vorverarbeitungsschritte sowie das Einbinden von Bibliotheken für maschinelles Lernen.

11.1 Analysekette
von Mohamed Asmi

Die von dem FACT-Teleskop erzeugten Daten werden für die Erforschung der Gamma-
strahlen mit verschiedenen Methoden des maschinellen Lernens analysiert. In diesem Ab-
schnitt werden wir die Analysekette der Daten von der Aufnahme der Daten bis zu den
ersten Ergebnissen der Datenanalyse betrachten.

Die Datenanalyse kann dabei in drei Schritte unterteilt werden: Datensammlung, Daten-
vorverarbeitung und Datenanalyse.

11.1.1 Datensammlung

Bei dem Eintreten eines Teilchen in die Atmosphäre wird ein Schauer erzeugt. Der Schauer
entsteht durch die Interaktion des Teilchens mit Elementen in der Atmosphäre. Dieser
Schauer strahlt ein Licht aus, das von den Kameras des FACT-Teleskops aufgenommen
wird. Die entstandenen Bilder werden in den FITS-Dateien gespeichert.

101

102 KAPITEL 11. ANALYSE MIT DEN FACT TOOLS

Dabei werden nicht nur die Bilder des Schauers gespeichert, sondern auch andere nützliche
Informationen wie zum Beispiel die Rauschfaktoren, die Stärke des Mondlichts und anderer
Lichtquellen etc. Diese Informationen können später bei der Auswertung der Daten von
größter Wichtigkeit sein.

11.1.2 Datenvorverarbeitung

Nach der Datensammlung werden nun die Vorverarbeitungsschritte mithilfe der FACT-
Tools durchgeführt. Darunter fallen zum Beispiel das Imagecleaning, das Kalibrieren der
Daten sowie das Extrahieren von Features.

Unter Imagecleaning versteht man das Filtern der Rauschinformation. Es wird ermittelt,
welche Pixel der Aufnahme überhaupt Teil des Schauers sind. Alle anderen Pixel werden
entfernt. So wird vermieden, dass wertlose Informationen gespeichert werden, die unsere
Datenmenge noch zusätzlich vergrößern.

Als Nächstes wird die Datenanalyse durchgeführt. Da nicht alle Attribute gleich wichtig
sind, wird zuerst eine Feature-Extraktion durchgeführt. Dabei wird ermittelt, welche haben
die Attributen auf die gesamten Daten. Mit den FACT-Tools ist man in der Lage, so eine
Feature-Extraktion durchzuführen.

Die FACT-Tools bieten allerdings nicht nur diese Verarbeitungsschritte an, sondern können,
je nach Analyseaufgabe, auch verschiedene andere Vorverarbeitungsschritte durchführen
[22]. Ist die Datenvorverarbeitung abgeschlossen, kann mit der eigentlichen Datenanalyse
begonnen werden.

11.1.3 Datenanalyse

Die Datenanalyse besteht in unserem Fall aus der Separation der Gamma- und Hadron-
Strahlen sowie der Energie Einschätzung der Gammastrahlen.

Gamma- /Hadron-Separation: Durch das Anwenden von Klassifikationsverfahren,
zum Beispiel RandomForest, können Gamma-Strahlen von anderen Events unterschieden
werden. Die Modelle werden dabei mithilfe der simulierten Daten (Monte-Carlo-Daten)
Abschnitt 10.3 trainiert. Danach werden sie auf die ”echten“ Teleskop-Daten angewendet.

Energie-Einschätzung: Mithilfe der Spektrumskurve und den aus der Datenanalyse
gewonnen Informationen kann nun die emittierte Energie vorhergesagt werden.

Der Ablauf der Analysekette wird in Abbildung 11.1 veranschaulicht.

11.2. GRENZEN VON STREAMS 103

Datensammeln
(Aufnehmen und speichern)

Vorverarbeitung
(FACT-Tools)

Datenanalyse
(klassifikation und Energie-

Einschätzung)

Abbildung 11.1: Analysekette

11.2 Grenzen von streams
von Mohamed Asmi

Das FACT-Teleskop sammelt jede Nacht neue Daten, weshalb die Größe der gesammelten
Daten sehr schnell wächst. Die Analyse dieser Daten ist also ein Big-Data Problem und
es ist daher nicht sinnvoll sie auf einem einzelnen Rechner durchzuführen.

Da das streams-Framework von sich aus nicht verteilt ausführbar ist, stößt es deshalb
bei dieser Datenmenge an seine Grenzen. Auch unsere Experimente haben gezeigt, dass
auch bei Ausführung der FACT-Tools auf einem Rechencluster die einzelnen Prozessoren
immer sequentiell ausgeführt wurden. Daher würde eine interne verteilte Ausführung der
Prozessoren vom streams-Framework nicht gewährleistet. Deshalb scheint das streams-
Framework bzw. die FACT-Tools für unsere Aufgabe zunächst ungeeignet.

Die Aufgabe der PG wird von daher sein, eine Erweiterung der FACT-Tools zu implemen-
tieren, die das Parallelisieren von Prozessen und somit das Ausführen der FACT-Tools
auf einem Cluster erlaubt. Dies würde es erlauben, die FACT-Tools zur Bearbeitung von
großen Datenmengen zu nutzen. Eine solche Erweiterung besteht bereits für Apache Storm,
in dieser PG soll jedoch eine Spark-Erweiterung für die FACT-Tools entwickelt werden.

Der Grund dafür ist, dass man die Ergebnisse von verschiedenens Einsätzen vergleichen
kann.

Teil IV

Architektur und Umsetzung

105

Kapitel 12

Komponenten und Architektur

von Karl Stelzner

Bei Betrachtung der zu analysierenden Daten (Kapitel 10) wird deutlich, dass zur Um-
setzung der in Kapitel 9 spezifizierten Ziele ein Big Data-System benötigt wird. Mehrere
Eigenschaften von Big Data (vgl. Kapitel 3) treffen auf die Problemstellung zu:

• Volume. Die Menge der Daten überschreitet mit teilweise hunderten Gigabyte pro
Tag das, was von herkömmlichen Systemen gestemmt werden kann.

• Velocity. Das FACT-Teleskop zeichnet kontinuierlich Daten auf und diese sollen
idealerweise in Echtzeit verarbeitet werden.

• Variety. Wie in Kapitel 10 gesehen, werden von verschiedensten Sensoren Daten
gesammelt, die anschließend in der Analyse kombiniert werden müssen.

Unser System basiert daher auf der in Kapitel 4 vorgestellten Lambda-Architektur für
Big-Data-Systeme. Eine Übersicht über die verwendeten Software-Komponenten ist in
Abbildung 12.1 dargestellt.

Den Kern des Systems bildet ein Apache Hadoop Cluster (vgl. Abschnitt 5.1). Dieser bietet
zum einen das verteilte Dateisystem HDFS, mit dem große Datenmengen redundant und
effizient abrufbar gespeichert werden können. Auf Grund dieser Eigenschaften wird es von
uns zur Ablage der Rohdaten, also der in Kapitel 10 beschriebenen FITS-Dateien, verwen-
det. Um diese Daten und etwaige Zwischenergebnisse allerdings durchsuchbar zu machen,
müssen sie indexiert werden. Hierfür verwenden wir verschiedene Datenbanksysteme. Da
die genaue Ausprägung der zu speichernden Daten und der zu erwartenden Anfragen noch
unklar ist, haben wir uns nicht auf ein System festgelegt, sondern verschiedene Lösungen
implementiert. Diese werden in Kapitel 13 vorgestellt.

Zum anderen bildet Hadoop auch die Grundlage für das verteilte Rechnen auf dem Clu-
ster, da es über den Ressourcen-Manager YARN die Möglichkeit bietet, verschiedenartige
verteilte Rechenaufgaben auf dem Cluster auszuführen. Für die Batchverarbeitung ver-
wenden wir das Cluster Computing Framework Apache Spark, welches es erlaubt, verteilte
Datensätze über den Hadoop Cluster zu verarbeiten (vgl. Abschnitt 5.2).

107

108 KAPITEL 12. KOMPONENTEN UND ARCHITEKTUR

HDFS
Rohdaten

DB
Event-Index &

Features Apache Hadoop

REST-API

Benutzer

streams-Erw. Model

Apache Spark

Service Layer Batch Layer

streams fact-tools

Verteilte
Prozesse

ML-
Integration

Abbildung 12.1: Überblick über die verwendeten Software-Komponenten

Um die verteilte Ausführung möglichst vieler Analyseaufgaben zu ermöglichen, erweitern
wir das streams-Framework (vgl. Abschnitt 6.4) zur Ausführung unter Apache Spark. Die-
ser Ansatz hat den Vorteil, dass die von streams vorgesehene XML-Schnittstelle zur Spe-
zifikation von beliebigen Analyseprozessen auch für die verteilte Ausführung verwendet
werden kann. Insbesondere kann die Analysekette zur Vorverarbeitung der Teleskopda-
ten (siehe Unterabschnitt 11.1.2) mit geringen Anpassungen auf dem Cluster ausgeführt
werden. Um das zu erreichen, führt unsere Erweiterung die Möglichkeit ein, Prozesse
als verteilt zu definieren, sodass diese dann verteilt auf dem Cluster ausgeführt werden.
Zusätzlich integriert unsere Erweiterung die von Spark zur Verfügung gestellte Bibliothek
für maschinelles Lernen in das streams-Framework. Damit lassen sich Lern- und Klassifika-
tionsaufgaben via XML definieren, sodass auch die ML-basierte Analyse der Teleskopdaten
(vgl. Unterabschnitt 11.1.3) über dieselbe Schnittstelle spezifiziert werden kann. Näheres
zur Implementierung und zu den Änderungen an der XML-Schnittstelle wird in Kapitel 15
erläutert.

Um dem Benutzer eine einheitliche Schnittstelle zu unserem System zu bieten, verwenden
wir eine REST-API (vgl. Abschnitt 7.2). Diese versteckt einerseits die unterschiedlichen
Anfragesprachen der Datenbanksysteme hinter einer gemeinsamen Schnittstelle und er-
laubt es dem Benutzer andererseits, Anfragen über ein Webinterface zu stellen. Details
zur Implementierung der API werden in Kapitel 14 beschrieben.

Ein Speed-Layer zur Verarbeitung von Daten in Echtzeit ist von uns bisher noch nicht

109

umgesetzt worden. Denkbar wäre hierzu die Nutzung einer der in Kapitel 6 vorgestellten
Technologien. Dies wird ein Fokus unserer Arbeit im kommenden Semester sein.

Kapitel 13

Indexierung der Rohdaten

von Karl Stelzner

Der Ausgangspunkt für unsere Datenanalyse sind die vielen Hundert Gigabyte von Roh-
daten, die im FITS-Format vorliegen und von uns in dem verteilten Dateisystem HDFS
abgelegt wurden (vgl. Kapitel 10). Unser System soll dem Nutzer erlauben, anhand von
Suchanfragen bestimmte Teildatensätze daraus auszuwählen, um diese dann weiterzuver-
arbeiten. Diese Anfragen beziehen sich nicht auf die vom Teleskop gemachten Bilder selbst,
sondern auf die Metadaten zu diesen Bildern, also etwa den Zeitpunkt der Aufnahme, die
Ausrichtung des Teleskops, oder die Außentemperatur.

Eine effiziente Bearbeitung solcher Anfragen ist nur dann möglich, wenn diese Daten in
einer für die Suche geeigneten Datenstruktur vorliegen. Andernfalls müsste für jede An-
frage der gesamte Datensatz durchlaufen werden. Aus diesem Grund indexieren wir die
Metadaten mit Hilfe von Datenbanksystemen. Ausgenommen sind hierbei die eigentlichen
Bilddaten, welche einen Großteil der Datenmenge ausmachen, jedoch für die Auswertung
der Suchanfragen nicht relevant sind. Zweck der Datenbanken ist es, die Menge der auf-
gezeichneten Datenpunkte (Events) zu finden, die den durch den Nutzer formulierten
Bedingungen genügen. Anschließend können dann gezielt die zugehörigen Bilddaten aus
dem HDFS geladen und weiterverarbeitet werden.

Die drei von uns verwendeten Systeme sind die dokumentenbasierte verteilte Datenbank
MongoDB, die verteilte Suchmaschine ElasticSearch, und die relationale Datenbank Post-
greSQL. Die Art und Weise, wie wir jedes dieser Systeme auf das Problem angewendet
haben, wird im Folgenden erläutert.

13.1 MongoDB
von Christian Pfeiffer

Das Ziel, einen Index für die Rohdaten zu erstellen, kann in MongoDB (siehe Unter-
abschnitt 7.1.1) auf sehr unterschiedliche Art und Weise erreicht werden. Eine mögliche
Realisierung besteht in dem Anlegen einer Collection, die für jedes Event ein einzelnes

111

112 KAPITEL 13. INDEXIERUNG DER ROHDATEN

Dokument besitzt. Genauso gut ist es möglich, mehrere Events zu aggregieren und als ein
Dokument zu speichern. Wir gehen im Folgenden auf beide Varianten ein.

Ein Dokument pro Event. Dieser Ansatz ist sehr naheliegend und nutzt die simple
key-value-Struktur der JSON-Dokumente. Ein großer Vorteil liegt in dem einfachen Hin-
zufügen von zusätzlichen Attributen, wenn weitere Informationen zu den Events gespei-
chert werden sollen. Diese flache Dokumentenstruktur führt auch zu sehr übersichtlichen
Suchanfragen, da eine Suchanfrage bei MongoDB ebenfalls ein JSON-Objekt ist, das die
selbe Struktur wie das Dokument besitzt.

Aggregation von mehreren Events. Ein MongoDB-Dokument darf Arrays, einge-
bettete Dokumente sowie Arrays von eingebetteten Dokumenten beinhalten. Daher ist es
möglich, mehrere Events in einem Dokument zusammenzufassen. Dabei kann die Gra-
nularität frei gewählt werden. So können zum Beispiel für jede Sekunde alle Events, die
in dieser Sekunde aufgenommen wurden, zu einem Dokument zusammengefasst werden.
Durch Aggregation sinkt die Anzahl der Dokumente in der Collection, wodurch die Größe
der Indices sinkt. Außerdem liegen dann die Events, die in der gleichen Sekunde aufgenom-
men wurden, in der gleichen Datei. Wenn also oft Events aus einem zusammenhängenden
Zeitraum angefragt werden, sinkt die Anzahl der zu durchsuchenden Dokumente, was die
Performanz vermutlich erhöht. Dafür steigt aber auch die Komplexität der Suchanfragen.

Beide Varianten der Indexierung wurden von uns mit Hilfe des streams Frameworks imple-
mentiert. Bei den bisher durchgeführten Tests wurde die MongoDB bisher nur auf einem
einzelnen Knoten gestartet, weshalb noch keine abschließende Beurteilung möglich ist. Es
hat sich insbesondere bei der Variante ”Ein Dokument pro Event“ gezeigt, dass der Job
mehr Zeit in Anspruch nimmt, als es für das reine Auslesen der Ursprungsdateien nötig
wäre. Dieses Problem könnte durch ein verteiltes Setup der Datenbank gelöst werden.

Darüber hinaus ist es uns gelungen, die Aux-Daten in die indexierten Meta-Daten zu inte-
grieren. Dabei wurde die in Abschnitt 10.5 erläuterte Strategie zum Finden des passenden
Messwertes für ein Event eingesetzt. Weitere Experimente zur Performance des Indexie-
rungsvorgangs sowie zur Suchgeschwindigkeit innerhalb der Indexdatenstrukturen folgen
im zweiten PG-Semester.

13.2 Elasticsearch
von Lea Schönberger

Um die Performanz verschiedener Datenbanken hinsichtlich des Anwendungsfalles die-
ser Projektgruppe gegeneinander abwägen zu können, wird als zweite Persistenzlösung
Elasticsearch eingesetzt. Der Cluster pg594-cluster gliedert sich in drei Indizes, nämlich
metadataindex, drsindex und auxindex. Der metadataindex enthält Dokumente des Typs

13.3. POSTGRESQL 113

metadata, in denen die Metadaten zu den jeweiligen Events abgelegt sind. Im drsindex
befinden sich die Kalibrationsdaten aus den DRS-Dateien und im auxindex in analoger
Weise die in den AUX-Dateien befindlichen Informationen. Für den pg594-cluster wird
Elasticsearch momentan lediglich auf einem einzigen Rechenknoten betrieben, dies soll
sich jedoch künftig ändern, sodass auf jedem verfügbaren Knoten des Clusters des Son-
derforschungsbereiches 876 ein Elasticsearch-Node betrieben wird.

13.3 PostgreSQL
von Karl Stelzner

Als dritte mögliche Lösung haben wir ein PostgreSQL System aufgesetzt, also ein her-
kömmliches relationales Datenbankmanagementsystem (vgl. Unterabschnitt 7.1.4). Dies
ist unter anderem dadurch motiviert, dass die Größe der Metadaten sich in Grenzen hält.
Es ist anzunehmen, dass der verbrauchte Speicherplatz pro Event, selbst mit zusätzlichen
Aux-Daten und berechneten Features, 2 KB nicht überschreiten wird. Für die zwei Mil-
lionen Events, die aktuell den Cluster füllen, sind das gerade einmal 4 GB. Insofern ist
es durchaus realistisch, die Metadaten auch auf lange Sicht in einer monolithischen re-
lationalen Datenbank zu verwalten. Des Weiteren bietet Postgres-XL im Zweifelsfall die
Möglichkeit, auf eine verteilte Lösung umzusteigen.

Eine größere Herausforderung stellt das Design eines Schemas dar, das alle in Zukunft
benötigten Funktionalitäten bereitstellt. Insbesondere das Abspeichern der berechneten
Features ist nicht einfach, da jederzeit neuartige Features hinzukommen können. Eine
Möglichkeit, dies umzusetzen, ist, eine eins-zu-viele Relation zu verwenden, die Events
und Features verbindet. Diese würde allerdings dazu führen, dass für viele Anfragen teu-
re Join-Operationen nötig wären, und so die Prinzipien der dimensionalen Modellierung
verletzen (vgl. Unterabschnitt 7.1.4). Eine andere Möglichkeit ist der Einsatz des JSON-
Datentyps, den PostgreSQL anbietet. Neue Features könnten dann einfach in bestehende
Tabellenzeilen eingefügt werden. Wie performant und skalierbar diese Lösung ist, muss
noch getestet werden.

Als erstes Experiment haben wir eine Tabelle für die Metadaten erstellt, und diese mit
dem selben Inhalt wie die MongoDB befüllt. Die Ergebnisse des Leistungsvergleichs finden
sich in Abschnitt 17.1.

Kapitel 14

Umsetzung der RESTful API

14.1 Design
von Alexander Schieweck

Zur Umsetzung der RESTful API (vgl. Abschnitt 7.2) ist es zunächst wichtig, diese Schnitt-
stelle zu planen. Dazu werden wir die notwendigen URLs festlegen und das Format der
Daten definieren. Weiterhin wird beschrieben, wie diese Informationen auch außerhalb
dieses Berichts dokumentiert wurden. [68]

14.1.1 Endpunkte
von Alexander Bainczyk

Die Endpunkte der REST API sind so gewählt, dass der Zugriff auf indizierte Daten in den
in der PG genutzten Datenbanken (MongoDB, Elasticsearch und PostgreSQL) einheitlich
verläuft. Wie bereits im vorigen Abschnitt beschrieben, sind zum Zeitpunkt des Schreibens
noch keine Endpunkte für die PostgreSQL Datenbank realisiert.

URL GET-Parameter
GET /api/mg/events format, filter
GET /api/es/events format, filter

Tabelle 14.1: Schnittstellen der REST API für Metadaten

Die in Tabelle 14.1 aufgelisteten Schnittstellen sind für den Zugriff auf Metadaten von
Events konzipiert, wobei die Abkürzung mg für die MongoDB- und es für die Elasticsearch-
Datenbank steht. Die Angabe der GET-Parameter ist optional. Hierbei kann über format
das Rückgabeformat einer Antwort bestimmt werden (s. Unterabschnitt 14.1.2). Über den
Parameter filter lässt sich ein Filterausdruck übergeben, mit dem die Metadaten selektiert
werden können (s. Unterabschnitt 14.2.2).

115

116 KAPITEL 14. UMSETZUNG DER RESTFUL API

1 [
2 {
3 ”EVENT NUM” : ”4” ,
4 ”TRIGGER NUM” : ”4” ,
5 ”NIGHT” : ”20130921” ,
6 . . .
7 } ,
8 {
9 ”EVENT NUM” : ”5” ,

10 ”TRIGGER NUM” : ”4” ,
11 ”NIGHT” : ”20130921” ,
12 . . .
13 } ,
14 . . .
15]

(a) JSON

1 [
2 {
3 ” path ” : ” . . . / h d f s / f a c t /raw / 2 0 1 3 / 0 8 / 2 1 / f i t s . gz ” ,
4 ” eventNums ” : [2 0 , 22 , 24 , 50 , . . .] ”
5 } ,
6 {
7 ” path ” : ” . . . / h d f s / f a c t /raw / 2 0 1 3 / 0 9 / 0 6 / f i t s . gz ” ,
8 ” eventNums ” : [2 , 22 , 120 , 121 , . . .] ”
9 } ,

10 . . .
11]

(b) Minimal

Abbildung 14.1: Die Rückgabeformate der REST API

14.1.2 Rückgabeformate
von Alexander Bainczyk

Die Ausgabe von Anfragen, die über die REST API gestellt werden, können für verschie-
dene Zwecke anders formatiert werden. Das Rückgabeformat lässt sich dabei mit dem
GET-Parameter format über die URL festlegen. Mögliche Werte für diesen Parameter
sind json und min. Falls der Formatierungsparameter nicht übergeben wird, wird der
Wert standardmäßig auf json gesetzt. Das Rückgabeformat ermöglicht so ein einheitliches
Format, sodass Anfragen unabhängig von der angesprochenen Datenbank eine einheitli-
che Antwort erzeugen. Eine Beschreibung der unterschiedlichen Formate sowie mögliche
Beispiele zur Benutzung und mögliche Ausgaben ist im Folgenden gegeben.

JSON Eine Anfrage, die den Parameter format=json übergibt, bekommt als Antwort
eine Liste aller Events mit allen Attributen, wie sie in der Datenbank vorkommen, im
JSON-Format. Dadurch wird ein direkter Zugriff auf die indexierten Metadaten ermöglicht.
Eine beispielhafter Request an die API könnte wie folgt aussehen:

GET http://[...]/api/mg/events/?filter=[...]&format=json

Die Antwort würde in diesem Fall aussehen, wie in Abbildung 14.1a gezeigt, wobei die Fel-
der ”EVENT NUM“, ”TRIGGER NUM“ und ”NIGHT“ den Namen der entsprechenden
Dokumenten in der Datenbank entsprechen.

Minimal Anstatt alle Felder der Metadaten zurückzugeben, besteht der Sinn dieses
Parameters darin, an die eigentlichen Rohdaten zu kommen, die zu dem in der URL
gegebenen Filterausdruck passen. Wie in Abbildung 14.1b zu sehen, wird die Antwort
ebenfalls im JSON Format zurückgegeben. Zu jedem Event, das auf den Filter zutrifft,
wird die Event-Nummer innerhalb der entsprechenden FITS-Datei in eine Liste eingefügt.
Ein HTTP Request sollte nach folgendem Muster gestellt werden:

14.2. IMPLEMENTIERUNG 117

GET http://[...]/api/mg/events/?filter=[...]&format=min

Dieser Parameter eignet sich insbesondere für den Fall, zu einer gestellten Anfrage die
Rohdaten aus den fits Dateien zu erhalten, um diese anschließend in einem Stream zu
verarbeiten. Durch der Angabe der einzelnen Event-Nummern kann im Stream innerhalb
einer fits-Datei genau nach passenden Events gesucht werden.

14.1.3 Dokumentation
von Alexander Schieweck

Da diese API nicht nur von Mitgliedern dieser PG verwendet werden soll, ist eine gute
Dokumentation unerlässlich. Natürlich erfüllt dieser Bericht auch diese Funktion, jedoch
wäre es wünschenswert die Dokumentation näher an die Anwendung zu bringen.

Um diese Anforderungen zu erfüllen, wurde sich für das Swagger Projekt1 entschieden.
Dort wurde eine Spezifikation, die mittlerweile von der Open API Initative2 betreut wird,
entwickelt, mit der sich RESTful APIs mithilfe von JSON beschreiben lassen3. Rund um
diese Dokumentation sind unterschiedliche Tools entstanden4, z.B. ein Text-Editor, um
das JSON, welches die API beschreibt, einfacher bearbeiten zu können5. Noch hilfreicher
ist jedoch die Swagger UI6, die aus der JSON-Definition eine dynamische Website gene-
riert, welche die Dokumentation übersichtlich und mit einer modernen Oberfläche anzeigt.
Darüber hinaus kann man die angegebenen REST-Endpunkte auch direkt ansprechen und
bekommt die Anfrage- und Antwort-Informationen detailliert präsentiert (vgl. Screens-
hot). Diese Website kann nun mit zusammen mit der eigentlichen API auf einem Server
bereitgestellt werden.

14.2 Implementierung

14.2.1 Spring Framework

Bei der Implementierung der RESTful API wurde das Spring-Framework verwendet. Dabei
handelt es sich um ein sich aus verschiedenen, separat nutzbaren Modulen bestehendes
OpenSource-Framework für die Java-Plattform. Für den Einsatz in dieser Projektgruppe
wurden aus dem vielfältigen Angebot an Modulen des Spring-Frameworks Spring Boot
sowie Spring Data für Elasticsearch und MongoDB ausgewählt, welche im Folgenden näher
erläutert werden.

1http://swagger.io
2https://openapis.org/
3https://github.com/OAI/OpenAPI-Specification
4http://swagger.io/open-source-integrations
5http://swagger.io/swagger-editor
6http://swagger.io/swagger-ui

118 KAPITEL 14. UMSETZUNG DER RESTFUL API

Spring Boot Spring Boot ermöglicht es, auf einfache Weise und mit minimalem Kon-
figurationsaufwand Stand-Alone-Anwendungen zu entwickeln. Bei mit Spring Boot ent-
wickelten Anwendungen entfällt zum Einen jegliche über die pom.xml herausgehende
XML-Konfiguration sowie zum Anderen die Notwendigkeit, die Anwendung als War-File
zu deployen, da Spring Boot bereits einen Application-Server - wahlweise Tomcat, Jetty
oder Undertow - mitliefert, sodass die Anwendung nur noch gestartet werden muss.

Zur Einbindung von Spring Boot müssen lediglich die benötigten Dependencies zur Pro-
jektkonfigurationsdatei des entsprechenden Dependency-Management-Systems hinzugefügt
werden.

1
2 <parent>

3 <groupId>org . springframework . boot </groupId>

4 <a r t i f a c t I d >spr ing−boot−s t a r t e r−parent </ a r t i f a c t I d >

5 <v e r s i o n > 1 . 3 . 3 .RELEASE</v e r s i o n >

6 </parent>

7 <dependencies >

8 <dependency>

9 <groupId>org . springframework . boot </groupId>

10 <a r t i f a c t I d >spr ing−boot−s t a r t e r−web</ a r t i f a c t I d >

11 </dependency>

12 </dependencies >

Listing 14.1: Einbindung von Spring Boot mittels Maven durch Hinzufügen der Dependencies
zur pom.xml

Das Herzstück einer mit Spring Boot entwickelten Anwendung ist die Application-Klasse,
die im Falle der REST API folgendermaßen aussieht:

1

2 @SpringBootApplication

3 public class Application {

4 public static void main(String [] args) {

5 SpringApplication .run(Application .class , args);

6 }

7 }

Listing 14.2: Application-Klasse bei Spring Boot

Die Annotation @SpringBootApplication deklariert die Anwendung als Spring Boot
Application und ermöglicht den Einsatz folgender weiterer Annotationen:

• Durch die Annotation @Configuration wird eine annotierte Klasse als mögliche
Quelle für Bean-Definitionen im Application-Context erkannt.

• Die Annotation @EnableAutoConfiguration ermöglicht, wie der Name bereits er-
kennen lässt, eine automatisierte Spring-Konfiguration, im Zuge welcher Beans auf

14.2. IMPLEMENTIERUNG 119

Basis von Classpath-Settings generiert sowie diverse weitere Einstellungen vorgenom-
men werden. Das vollständige Funktionsspektrum kann in der Online-Dokumentation7

nachgelesen werden.

• Falls von Spring Boot eine entsprechende Dependency in der Projektkonfigurations-
datei des Dependency-Management-Systems erkannt wurde, wird die Anwendung
automatisch als Web-Anwendung gekennzeichnet.

• Durch Einsatz der Annotation @ComponentScan sucht Spring Boot automatisiert
nach weiteren Komponenten, Services sowie Konfigurationsdateien.

Die main()-Methode der Application-Klasse nutzt Spring Boots SpringApplication.run()-
Methode, um die Anwendung zu starten, welche den Application-Context und somit auch
alle automatisiert und manuell erstellten Beans zurückgibt.

Spring Data Bei Spring Data handelt es sich um ein Modul des Spring-Frameworks,
mittels dessen Boilerplate-Code beim Datenbank-Zugriff durch Nutzung sogenannter CRUD-
Repositories reduziert werden kann. Dieses wird nachfolgend in Kapitel 1.5.2.2 näher in
Augenschein genommen.

14.2.2 Filterung
von Dennis Gaidel

Der Ansatz der Implementierung einer Schnittstelle mit Hilfe von REST Ressourcen basiert
auf der Überlegung bestimmte Funktionen zu kapseln und als Services bereitzustellen, die
von anderen Teilen der Anwendung oder von außerhalb angesprochen werden können, um
z.B. die Metadaten der Events bereitzustellen, die wiederum zur Selektion von Events
genutzt werden können, die bestimmten Kriterien genügen. Im Falle der Events handelt
es sich bei den Kriterien um eine Vielzahl von Attributen, die jedes Event inne hat.

Herausforderungen Bei der Implementierung der Filterung stellen sich einem mehre-
re Herausforderungen. Die Filterung muss in der Lage sein, eine Anfragesprache (engl.
domain specific language (DSL)) verarbeiten und interpretieren zu können, sodass auch
komplexere Anfragen an das System gestellt werden können. Es wäre noch verhältnismäßig
leicht gewesen, die Selektion von Events zu implementieren, deren Attribut exakt den vor-
gegebenen Werten entsprechen. Womöglich möchte der Anwender aber den Wertebereich
eines Attributs nicht auf einen bestimmten Wert, sondern auf ein Intervall eingrenzen und
womöglich sollen einige Datensätze prinzipiell ausgeschlossen werden. Und vielleicht soll
ein Wert nicht nur innerhalb eines, sondern zweier Intervalle liegen. Der Komplexität einer
Anfrage sind je nach Anwendungsfall also keine Grenzen gesetzt und die Implementierung

7http://projects.spring.io/spring-boot/

120 KAPITEL 14. UMSETZUNG DER RESTFUL API

eines geeigneten Interpreters ein anspruchsvolles Unterfangen gewesen. Es wird also eine
Anfragesprache verlangt, die zum Einen hinsichtlich der Ausdruckskraft z.B. der Daten-
banksprache SQL nahekommt und zum Anderen vom Anwender leicht anzuwenden und
somit möglichst nah an die natürlichen Sprache angelehnt ist.

SQL (engl. Structured Query Language) ist eine Anfragesprache, die auf der relationalen
Algebra basiert und den Umgang mit den Daten eines relationalen Datenbankmanage-
mentsystems ermöglichen. Eine wichtige Komponente der SQL ist die sog. Query, die der
Beschreibung der gewünschten Daten dient und vom Datenbanksystem interpretiert wird,
um die gewünschten Daten bereitzustellen. Listing 14.3 stellt eine solche SQL Anfrage bei-
spielhaft dar, die den Pfad (event path) aller Events ausgeben soll, deren Eventnummer
(event num) entweder zwischen 5 und 10 oder zwischen 50 und 100 liegt und deren Trig-
gernummer (trigger num) größer als 10 ist. Bei der vorliegenden Anfrage ist die WHERE
clause von Interesse, da diese beschreibt, welche Eigenschaften die gewünschten Events
besitzen sollen, und nach diesen Kriterien gefiltert wird.

1 SELECT event_path FROM events WHERE (

2 (event_num >= 5 AND event_num <= 10) OR

3 (event_num >= 50 AND event_num <= 100)

4) AND trigger_num > 10

Listing 14.3: Beispiel für eine SQL-Anfrage

Die Ausführung einer übergebenen SQL-Anfrage wäre möglich, aber bringt mehrere Nach-
teile mit sich. Die Persistierungsebene wird nicht abstrahiert und der Anwender ist ge-
zwungen mit dieser insofern direkt zu interagieren, als dass er sich unnötigerweise mit
dem Aufbau des Datenbankschemas vertraut machen muss. Wie eingangs erwähnt, wer-
den mehrere Systeme zur Datenhaltung eingesetzt, die nicht allesamt auf SQL als Anfrage-
sprache setzen. MongoDB setzt ganz im Gegenteil auf ein JSON-basiertes Anfrageformat,
dessen Pendant zum o.g. SQL-Ausdruck in Listing 14.4 dargestellt wird.

1 { $and: [

2 { $or: [

3 { event_num : { $gte: 5, $lte: 10 }},

4 { event_num : { $gte: 50, $lte: 100 }}
5]},

6 {
7 trigger_num : { $gt: 10 }
8 }
9]}

14.2. IMPLEMENTIERUNG 121

Listing 14.4: Beispiel für eine Anfrage an eine MongoDB Datenbank

Da die REST API JSON-basiert ist und die Anfragesprache von MongoDB alle benötigten
Eigenschaften einer ausdrucksstarken Anfragesprache in Form eines JSON Dokuments
mitbringt, liegt der Gedanke nahe, diese Syntax zur Filterung der Events zu übernehmen.
Die Problematik bestünde jedoch darin, diese Anfrage in das jeweilige Anfrageformat
der anderen Systeme (Elasticsearch und PostgreSQL) übersetzen zu müssen, was einen
gewaltigen Overhead an zusätzlicher Programmierarbeit zur Folge hätte.

Es wird also eine Lösung benötigt, um die Anfrage über den Filter möglichst automatisiert
in eine kompatible Anfrage für die jeweilige Engine zu übersetzen.

Architektur Architektonisch besteht die Filterung aus drei Schichten: Schnittstelle,
Service-Layer und Persistierungs-Layer. Wie in Unterabschnitt 14.1.1 erwähnt, steht je-
weils ein Endpunkt für jede Engine zur Verfügung, der einen Filterausdruck über die
aufgerufene URL entgegennimmt. Jeder Endpunkt bzw. jede Engine, die durch diesen
repräsentiert wird, verwendet einen eigenen Service, der die Geschäftslogik für die jewei-
lige Engine implementiert. Über die Geschäftslogik der Services wird schließlich auf den
Persistierungs-Layer zugegriffen, welcher den Zugriff auf die persistierten Daten ermöglicht.

Der Kern des Spring-Frameworks, welches in Unterabschnitt 14.2.1 eingeführt wurde,
kann um das Modul Spring Data JPA erweitert werden, welches auf der Java Persi-
stence API (JPA) aufbaut und die Zuordnung zwischen Java-Objekten und den persi-
stierten Daten vereinfacht. Man spricht hier auch von einem bidirektionalen Mapping, so-
dass Veränderungen der Daten auf die korrespondierenden Java-Objekte übertragen und
gleichzeitig Änderungen der Attribute der Java-Objekte in den Daten reflektiert werden.
Die grundlegende Idee besteht darin, sog. Repositories bereitzustellen, die als Interfaces
umgesetzt wurden und über die grundlegende Methoden zur Datenverarbeitung (CRUD
- Create, Read, Update, Delete) zur Verfügung gestellt werden. Ebenso wird über die
Repositories der Datentyp festgelegt, der für das Mapping zwischen Daten und Objekten
genutzt werden soll.

Da JPA mit den verschiedensten Datenbanktreibern kompatibel ist und die Repositories
für alle drei Datenbankengines genutzt werden können, wurde der Zugriff auf die Persi-
stierungsebene vereinheitlicht. Diese Vereinheitlichung stellt auch die Grundlage für eine
einheitliche Lösung zur Filterung von Eventdaten dar.

Um die Events filtern zu können, wird das Framework QueryDSL 8 eingesetzt, das typ-
sichere, SQL-ähnliche Anfragen an unterschiedliche Datenquellen, wie JPA, MongoDB,
SQL, Java Collections u.v.m. ermöglicht. Dabei ist das Format der Anfrage unabhängig
von der verwendeten Datenquelle und somit die Anwendung des Filters vereinheitlicht.

8https://github.com/querydsl/querydsl

https://github.com/querydsl/querydsl

122 KAPITEL 14. UMSETZUNG DER RESTFUL API

Implementierung Für jedes Datenbanksystem steht ein dedizierter Service zur Verfügung,
der die Businesslogik kapselt. Dabei soll die Filterung der Events unabhängig vom ver-
wendeten System sein bzw. jedes System die Filterung unterstützen. Zu diesem Zweck
implementieren alle Services ein Interface, welches die Methode zur Filterung der Events
definiert (vgl. Listing 14.5).

1 public interface EventService {

2 Iterable <Metadata > filterEvents (String filterExpression);

3 }

Listing 14.5: Service Interface

Dem Rückgabewert der Methode filterEvents(...) ist ein Iterable des Datentyps
Metadata. Metadata ist ein sog. POJO (Plain Old Java Object), welches die Metadaten
der Events aus der Datenbank als Java-Objekt repräsentiert. Somit ist die Klasse Metadata

auch diejenige Klasse, die von QueryDSL modifiziert wird, um entsprechende Anfragen an
eine Liste mit Instanzen dieser Klasse stellen zu können. Eine Anfrage könnte beispielsweise
wie in Listing 14.6 aussehen.

1 ((

2 eventNum .gte (5).and(eventNum .lte (10))

3).or(

4 eventNum .gte (50).and(eventNum .lte (100))

5)).and(

6 triggerNum .gt (10)

7)

Listing 14.6: Anfrage

Hier repräsentieren eventNum und triggerNum Attribute der Klasse Metadata, die aber in
dem POJO als Integer definiert sind und somit nicht über die Methoden gte(), lte o.Ä.
verfügen. Mittels eines Präprozessors wird beim Bauen des Projekts eine Klasse QMetada-
ta.class erzeugt, die die Attribute der Klasse um die entsprechenden Methoden erweitert,
die Anfragen, wie die o.g. erlauben. Ebenso wird durch das Beispiel ersichtlich, dass es
sich hierbei um Methodenaufrufe auf einem Java-Objekt handelt, jedoch der Anfrage zur
Filterung der Events als String übergeben wird (vgl. Listing 14.5).

Der Ausdruck muss also zur Laufzeit in ausführbaren Java-Code übersetzt werden, was
mittels der Ausdruckssprache MVEL 9 erreicht wird. Diese Ausdruckssprache ist an die

9https://github.com/mvel/mvel

https://github.com/mvel/mvel

14.2. IMPLEMENTIERUNG 123

Java-Syntax angelehnt, sodass der String mit dem Filterausdruck äquivalent zu Java-
Code ist. Um nun ein Predicate-Objekt zu erhalten, welches vom QueryDSL-Framework
benötigt wird, um die Abfrage an die Datenbank zu stellen, wird eine Java-HashMap er-
stellt, der als Schlüssel gültige Variablennamen übergeben werden, die in dem Ausdruck
vorkommen dürfen, sowie deren entsprechendes Klassenattribut als Wert, wie man es bei-
spielhaft in Listing 14.7 nachvollziehen kann. MVEL wertet den Ausdruck aus, ordnet die
Variablen im Ausdruck denen der Zielklasse zu und erzeugt das gewünschte Objekt, in
diesem Fall das Predicate.

1 public static Predicate toPredicate (final String

filterExpression){

2 Map <String , Object > vars = new HashMap <>();

3 vars.put(" eventNum ", QMetadata . metadata . eventNum);

4 vars.put(" triggerNum ", QMetadata . metadata . triggerNum);

5 ...

6 return (Predicate) MVEL.eval(filterExpression , vars);

7 }

Listing 14.7: Evaluation der Anfrage

Nach der Erzeugung des Predicate Objekts kann dieses an das entsprechende Repository
übergeben werden, wie es beispielsweise in Listing 14.8 umgesetzt wurde. Die Methode
findAll(...) dient der Suche aller Events (bzw. Metadaten), die dem Prädikat genügen.

1 @Override

2 public Iterable <Metadata > filterEvents (String

filterExpression) {

3 return metadataRepository . findAll (Metadata . toPredicate (

filterExpression));

4 }

Listing 14.8: Service Implementierung

Für gewöhnlich akzeptiert diese Methode des Spring-Repositorys kein Predicate-Objekt
als Parameter. Daher muss das Repository insofern angepasst werden, als dass es ein wei-
teres Interface (QueryDslPredicateExecutor<Metadata>) implementiert, das von Que-
ryDSL bereitgestellt wird und dem Repository die Fähigkeit verleiht, Prädikate zur Fil-
terung von Datenbankeinträgen zu nutzen. Damit der QueryDslPredicateExecutor das
Prädikat für das jeweilige Datenbanksystem ausführen kann, muss lediglich die entspre-
chende Maven Dependency eingebunden werden, die die nötige Logik enthält. Eine solche

124 KAPITEL 14. UMSETZUNG DER RESTFUL API

Depedency ist für die populärsten Systeme vorhanden, sodass eine Integration problemlos
und schnell umgesetzt werden kann.

Ein Spring-Repository zeichnet sich dadurch aus, dass es ein Interface ist, dessen definierte
Methoden zur Übersetzungszeit des Projekts automatisch vom Spring-Framework imple-
mentiert werden, wie dem Beispiel in Listing 14.9 zu entnehmen ist. Durch diesen Mecha-
nismus garantiert die Einbindung des QueryDslPredicateExecutors, dass die benötigten
Methoden wie findAll(Predicate predicate) ohne zusätzliche Arbeit implementiert
werden.

1 public interface MetadataRepository extends MongoRepository <

Metadata , String >,

2 QueryDslPredicateExecutor <Metadata >

3 {

4 }

Listing 14.9: Metadata Repository für die MongoDB

Fazit Mit der Kombination verschiedener Frameworks und Bibliotheken ist es gelungen,
einen Ansatz zu entwickeln, der den Zugriff auf die Persistierungsebene und die Auswer-
tung der Anfragen vereinheitlich und sich somit generisch an verschiedenste Datenbank-
systeme anpassen lässt. Der Vorteil dieses Ansatz liegt insbesondere in der Wartbarkeit,
Anpassbarkeit und der Reduktion des Codes zur Implementierung der benötigten Featu-
res. Im Vordergrund steht hierbei insbesondere die automatisierte Auswertung komplexerer
Anfragen zur Filterung der persistierten Daten.

Bisher wurde jedoch nur von dem Fall ausgegangen, dass der Filter korrekt angewandt
wurde. Durch eine fehlerhafte oder absichtlich böswillige Query könnte Schadcode inji-
ziert werden, was bisher nicht überprüft wird, sodass der aktuelle Fortschritt eher als
Proof of Concept bezeichnet werden kann. In einer weiteren Iteration müsste überprüft
werden, ob der übergeben Ausdruck tatsächlich in ein Prädikat übersetzt werden kann
und die Eingabe auf die Prädikatausdrücke beschränkt werden. Im Fehlerfall muss mit
einer Exception o.ä. reagiert werden.

Kapitel 15

Erweiterung der Streams-Architektur

von Mirko Bunse, David Sturm, Christian Pfeiffer

Analysten der FACT-Daten verwenden zurzeit das Streams-Framework [20]. Es ermög-
licht die Spezifikation einer Streaming-Applikation durch ein XML-Dokument (für weitere
Informationen siehe Abschnitt 6.4). Da Streams den Datenanalysten bereits bekannt ist,
empfiehlt es sich, für die PG, auf Streams aufzubauen und die Ergebnisse als Erweiterung
des Frameworks zu konzipieren.

Mit Streams-Storm existiert bereits eine BigData-Erweiterung für Streams. Das dort ver-
wendete Apache Storm [10] stellt eine Infrastruktur für Streaming-Applikationen von
großen Datenvolumen in Clustern dar. Wir verwenden für unsere Erweiterung Apache
Spark [11], welches in Hinblick auf die Geschwindigkeit ein prominenter Konkurrent von
Storm ist. Apache Spark führt seine Applikationen im Cluster verteilt als Batch-Jobs aus,
wobei hohe Ausführungsgeschwindigkeiten durch Vorhaltung der Daten im Hauptspeicher
erreicht werden. Spark-Streaming [12] ermöglicht darüber hinaus Streaming-Applikationen,
indem die Daten in Ketten von Mini-Batches analysiert werden. Für weitere Informationen
zu Spark und Spark-Streaming siehe auch Abschnitt 5.2 und Abschnitt 6.3.

Durch die Entwicklung einer Spark-Erweiterung für das Streams-Framework wollen wir
feststellen, wie gut sich die beiden Ansätze von Spark zur Analyse der FACT-Daten eignen.
Gibt es möglicherweise unterschiedliche Analysen, die durch jeweils andere Ansätze besser
abgedeckt werden?

Wir erweitern Streams um zwei Komponenten, die die Möglichkeiten von Spark ausnut-
zen. Zunächst wollen wir eine verteilte Ausführung von Streams-Prozessen ermöglichen.
Bisher kann ein solcher Prozess, der mehrere unabhängige Eingabeströme verarbeiten
soll, dies lediglich sequentiell tun. Es bietet sich an, diese Eingabeströme auf die Rech-
ner des Clusters zu verteilen. Zu diesem Zweck erstellen wir einen DistributedProcess

(siehe Abschnitt 15.1), welcher Spark zur Synchronisation der Ergebnisse verwendet. Er
gestaltet die verteilte Ausführung für den Autor der XML-Konfiguration weitestgehend
transparent (lediglich das distributedProcess-Tag ist statt des Streams-Tags process

zu verwenden).

125

126 KAPITEL 15. ERWEITERUNG DER STREAMS-ARCHITEKTUR

Die zweite Erweiterung von Streams zielt darauf ab, die Methoden der Machine-Learning-
Bibliothek Spark ML [9] verfügbar zu machen. Diese sind bereits für die Ausführung im
Rechencluster ausgelegt und ermöglichen unter anderem das Trainieren von Vorhersage-
modellen (für weitere Informationen zu MLlib siehe Unterabschnitt 5.2.3). Zur Anbin-
dung an MLlib stellen wir gleich mehrere neue Elemente (input, task, . . .) für XML-
Spezifikationen bereit (siehe Abschnitt 15.2). Durch diese Elemente streben wir die syn-
taktische Trennung der Batch-Algorithmen in MLlib von den bestehenden Elementen mit
Streaming-Semantik an. Unsere MLlib-Elemente können selbstverständlich trotzdem mit
anderen Streams-Elementen kombiniert werden.

Die Kombination der beiden Erweiterungen erlaubt es uns, innerhalb einer einzigen XML-
Konfiguration zuerst Vorverarbeitungsschritte mit verteilten Prozessen als Streams zu rea-
lisieren, als auch mit den resultierenden Features ein Modell mit MLlib einzupassen. Auf
diese Weise wird eine Basis geschaffen, mit der später auch komplexe Abläufe modelliert
werden können.

15.1 Verteilte Streams-Prozesse mit Spark
von Mirko Bunse

Das für unsere Erweiterung verwendete Apache Spark verteilt Datenverarbeitung in Re-
chenclustern. Dieses Konzept skaliert sehr gut horizontal, d.h., die Performanz lässt sich
durch Anbindung weiterer Cluster-Knoten steigern. Da horizontale Skalierbarkeit eine
Schlüsseleigenschaft von BigData-Anwendungen darstellt (siehe Abschnitt 3.3), wollen wir
die Verarbeitung der Daten im Streams-Framework geeignet mit Spark verteilen.

15.1.1 Nebenläufigkeit der Verarbeitung
von Mirko Bunse

Im Streams-Framework werden Daten in sogenannten Prozessen verarbeitet. Ein Pro-
zess besteht dabei aus einer Kette von Prozessoren, die jeweils Datenelemente transfor-
mieren oder Seiteneffekte erzielen (wie z.B. Speicherung von Elementen oder Logging).
Jedes Datenelement durchläuft diese Verarbeitungs-Kette sequentiell. Prozessoren sind
üblicherweise stateless, wodurch die Verarbeitung jedes Datenelementes unabhängig von
der Verarbeitung anderer Datenelemente ist (siehe Abschnitt 6.4).

Teilt man die eingehenden Datenelemente in disjunkte Teilmengen (Partitionen) auf, so
lässt sich jede dieser Partitionen unabhängig von den anderen verarbeiten. Damit erlaubt
die Unabhängigkeit der Datenelemente zueinander eine beliebig nebenläufige Verarbeitung
der Daten. Mit Ausnahme der Zusammenführung der Teilergebnisse ist überdies keine Syn-
chronisation zwischen nebenläufigen Verarbeitungspfaden notwendig. Das Gesamtergebnis
wird durch die Vereinigung der verarbeiteten Partitionen dargestellt.

Eine verteilte Ausführung eines Streams-Prozess lässt sich also wie folgt umsetzen:

15.1. VERTEILTE STREAMS-PROZESSE MIT SPARK 127

• Datenelemente werden in Partitionen aufgeteilt

• Die Partitionen werden auf Worker-Nodes verteilt verarbeitet

• Die verarbeiteten Partitionen werden zum Gesamtergebnis vereinigt

Diese Erkenntnisse beschränken sich nicht auf Apache Spark. Wir werden Spark aber
verwenden, um den hier vorgestellten Ansatz der Verteilung umzusetzen (siehe Unterab-
schnitt 15.1.4).

15.1.2 XML-Spezifikation verteilter Prozesse
von Mirko Bunse

Zur Spezifikation verteilter Streams-Prozesse empfiehlt es sich, möglichst nahe an üblichen
XML-Konfigurationen für Streams zu bleiben. Dies ermöglicht Anwendern einen schnelle-
ren Einstieg in Streams auf Spark und kann auch den Implementierungs-Aufwand senken.
Wie wir sehen werden, müssen bestehende XML-Konfigurationen nur minimal verändert
werden, um unsere Erweiterung zu nutzen.

Dazu verwenden wir die bestehenden Tags stream, sink und processor aus dem Streams-
Framework wieder, sie verhalten sich damit komplett identisch zu den Framework-Tags.
Das einzig neue Tag zur Verteilung von Streams-Prozessen ist distributedProcess, was
sich von Default-Prozessen durch die Verteilung der Verarbeitung auf Worker-Knoten im
Cluster unterscheidet.

Damit ein Prozess verteilbar ist, erwarten wir einen MultiStream als Input. MultiStreams
sind Teil des Streams-Frameworks und werden verwendet, um mehrere innere Streams zu-
sammenzufassen, sie z.B. sequentiell abzuarbeiten. Für die Verteilung von Prozessen stellt
der MultiStream für uns die Partitionierung der Daten dar (vgl. Unterabschnitt 15.1.1).
Jeder innere Stream kann unabhängig von den anderen inneren Streams verarbeitet wer-
den. Wird kein MultiStream als Eingang verwendet, so besteht keine vernünftige Parti-
tionierung und der Prozess wird auf dem Driver (ohne eine Verteilung vorzunehmen) als
Standard-Prozess ausgeführt.

Listing 15.1 stellt die Konfiguration einer verteilt ausgeführten Streams-Applikation in
XML beispielhaft dar. Es lässt sich gut erkennen, wie wenig sie sich von einer üblichen
Streams-Spezifikation unterscheidet: Der Input-MultiStream, die Senke und die Prozesso-
ren sind beliebig. Insbesondere können sämtliche bestehenden Streams, Senken und Pro-
zessoren in einer verteilten Ausführung auf Spark verwendet werden!

Da es im BigData-Umfeld vorkommt, dass ausgesprochen viele Streams (z.B. zur Verarbei-
tung hunderter .fits-Dateien) zu erzeugen sind, haben wir einen MultiStream-Generator
konzipiert, der eine Menge von Streams als MultiStream erzeugt. Damit müssen nicht
alle inneren Streams mühselig aufgelistet werden. Stattdessen erlaubt eine Regular Ex-
pression über Datei-Pfade, alle benötigten Streams in einer Zeile zu spezifizieren (siehe
Unterabschnitt 15.1.5).

128 KAPITEL 15. ERWEITERUNG DER STREAMS-ARCHITEKTUR

1 <stream id="IN" class="..."> <!-- arbitrary multistream -->
2 <stream id="s1" class="..." />
3 <stream id="s2" class="..." />
4 </ stream >
5
6 <sink id="OUT" class="..." /> <!-- arbitrary sink -->
7
8 <distributedProcess id="PP" input="IN" output ="OUT">
9 ... <!-- arbitrary processors -->

10 </ distributedProcess >

Listing 15.1: Beispiel-XML für die Nutzung eines DistributedProcess

15.1.3 Verarbeitung der XML-Spezifikation
von Mirko Bunse

Damit das neue Tag distributedProcess verwendet werden kann, mussten wir einen
Handler für XML-Elemente dieses Tags schreiben. Der bestehende Parser erzeugt Objekte
solcher Elemente, welche dann von unserem neuen Handler verarbeitet werden können.
Der Handler hat eine Factory aufzurufen, die verteilte Prozesse erzeugt.

Für die Implementierung der Factory verteilter Prozesse reichte es aus, Methodenaufrufe
an die Default-Factory weiterzudelegieren und die Rückgaben anzupassen. Es musste also
keine Factory von Grund auf neu implementiert werden. Zunächst erzeugt die Default-
Factory Prozess-Konfigurationen, die sich anpassen lassen. So konnten wir den Namen der
Klasse, von der ein Prozess-Objekt erzeugt werden soll, in diesen Konfigurationen ändern.
In einem zweiten Schritt erzeugt die Default-Factory aus den (geänderten) Konfigurationen
Prozess-Objekte. Mit den korrigierten Konfigurationen zeigt diese Erzeugung bereits das
gewünschte Verhalten: Es werden Objekte des Typs DistributedProcess erzeugt.

Für die Umsetzung von Streams, Senken und Prozessoren ist weder ein Handler, noch eine
Factory erforderlich. Die Angabe des Klassennamens im XML-Element (class="...")
realisiert die Erzeugung von Objekten der genannten Klasse bereits. Dieses Verhalten
haben wir durch die komplette Wiederverwendung der Tags erzielt.

15.1.4 Ansatz unter der Spark Core-Engine
von Mirko Bunse

Als ersten Ansatz zur Verteilung von Streams-Prozessen mit Apache Spark verwenden wir
das ”reine“ Spark, in Abgrenzung zu Spark-Streaming. Die Core-Engine von Spark zeich-
net sich insbesondere dadurch aus, dass sie ausschließlich Batch-Verarbeitung adressiert.
Diese Eigenschaft stellt sich als problematisch heraus, wenn wir mit Datenströmen arbei-
ten wollen. Es lässt sich jedoch bereits bei diesem Ansatz ein hoher Performanzgewinn
gegenüber einer nicht-verteilten Ausführung feststellen.

15.1. VERTEILTE STREAMS-PROZESSE MIT SPARK 129

Wir diskutieren die Umsetzung von verteilten Streams-Prozessen mit der Spark Core-
Engine, evaluieren dessen Performanz und nutzen die auftretenden Probleme als Motiva-
tion für den Einsatz von Spark-Streaming.

Verteilung von Streams-Prozessen
von Mohamed Asmi

Nach dem ersten Experimenten unter der Verwendung von Spark wurde festgestellt, dass
die Datenströme sequenziell verarbeitet wurden. Jedoch wurde jeder eingehende Daten-
strom parallel verarbeitet. Dadurch ist der gewünschte Performanzgrad nicht erreicht wor-
den. Auf diesem Grund wurde die Idee von der Verteilung der gesamten Datenstromver-
arbeitung umgesetzt.

Für die Realisierung wurde die Klasse DistributedProcess implementiert. Sie sorgt
dafür, eine erhöhte Performanz zu schaffen. Ein DistributedProcess-Objekt ist in der
Lage, zu erkennen, ob aus einer Datenstromquelle einer oder mehrere Datenströme kom-
men. In dem Fall, in dem nur ein Datenstrom verarbeitet wird, wird ein Standardprozess
vom streams-Framework [20] durchgeführt. Dieser Prozess wird auf einem einzelnen Ar-
beitsknoten (auch Worker genannt) ausgeführt.

Anderseits, wenn mehrere Datenströme für die Verarbeitung zu Verfügung stehen, wird
die verteilte Verarbeitung ausgelöst. Die Verarbeitung der einzelnen Datenströme wird auf
die Worker verteilt. Wie die einzelnen konkret arbeiten wird in dem nächsten Abschnitt
untersucht.

Bei der Verteilung werden nicht die Datenströme verteilt, sondern nur deren IDs. Damit
müssen nicht die Daten immer im Netzwerk zwischen den Knoten verschickt werden. Die
Datenstrom-IDs werden in RDDs verpackt und für die einzelnen Workern weitergegeben.
Darüber hinaus wird ein DistributedProcessContext-Objekt an alle Workern durch eine
Spark-Broadcast-Variable [11] geschickt. Der DistributedProcessContext besteht aus
dem XML-Dokument und der Prozess-ID. Dadurch hat jeder Worker lokal die benötigten
Ressourcen für die Ausführung des Prozesses. Um das gesamte Ergebnis am Ende der
Verarbeitung zusammenzufassen, wird ein Accumulable-Objekt von Spark verwendet. Es
dient dazu, dass die Teilergebnisse aus den einzelnen Workern gesammelt und gebunden
werden. Daher liegt am Ende das gesamte Ergebnis im Output auf dem Driver. Der Ablauf
wird in Abbildung 15.1 veranschaulicht.

Instanziierung des streams-Frameworks in den Workern
von Karl Stelzner

Die Aufgabe eines jeden Workers besteht nun darin, den Prozess für eine Teilmenge der
Daten auszuführen, nämlich für den Eingabestream, dessen ID übergeben wurde. Wie
oben gesehen verfügt der Worker über alle notwendigen Informationen, nämlich das XML-
Dokument (als Objektbaum), die Prozess-ID, und die Stream-ID. Um die tatsächliche
Ausführung umzusetzen, gibt es allerdings mehrere Alternativen.

130 KAPITEL 15. ERWEITERUNG DER STREAMS-ARCHITEKTUR

Driver

Worker

Worker

more workers
XML

Broad

cast
processId:

xml:

out:

 "PP"

 [Document]

 [Accumulable]

"s2"streamId:

"s1"streamId:

read

(once)

Abbildung 15.1: Verteilung eines Streams-Prozesses

Klar ist zunächst, dass es vorteilhaft ist, die streams-Klassen zur Interpretation des XML-
Dokuments wiederzuverwenden. Andernfalls müssten große Teile des streams-Codes zur
Erzeugung der Ausführungsumgebung, reimplementiert werden. Irgendwie muss allerdings
gewährleistet werden, dass nicht alle Prozesse, sondern nur der mit der gegebenen Prozess-
ID ausgeführt wird, und dass dieser die korrekte Eingabe bekommt. Dafür gibt es im
Wesentlichen drei Möglichkeiten:

Reimplementierung von ProcessContainer Die Klasse ProcessContainer ist bei streams

dafür zuständig, die im XML-Dokument spezifizierten Prozesse in einer Liste zu
sammeln und ihre Ausführung anzustoßen. Eine Möglichkeit wäre gewesen, diese
so zu reimplementieren, dass sie statt ihres aktuellen Verhaltens nur einen Prozess
ausführen. Aufgrund des großen Umfangs der Klasse und der Menge an Code, die
schlicht hätte kopiert werden müssen, erschien diese Option nicht ratsam.

Manipulation des XML-Dokuments Eine weitere Option wäre gewesen, das XML
Dokument so zu manipulieren, dass alle Prozesse außer dem gewünschten gelöscht
werden, und dessen Input entsprechend umgeleitet wird. Es ist allerdings schwierig,
sicherzustellen, dass dieser Ansatz für beliebige legale XML-Eingaben korrekt arbei-
tet. Außerdem ist er unflexibel, für den Fall, dass sich die XML-Spezifikation einmal
ändern sollte. Ein weiteres Problem besteht darin, dass für jeden Worker ein eige-
nes XML-Dokument erstellt werden muss, was unter Umständen zu viel Overhead
verursacht.

Manipulation der vom ProcessContainer erstellten Objekte Wir haben uns da-
her dafür entschieden, den regulären ProcessContainer auf dem gegebenen XML-
Dokument zu initialisieren. Damit werden für die entsprechenden Tags Prozess-,
Stream-, Prozessor-Objekte usw. erzeugt. Über unseren ElementHandler sorgen wir
dafür, dass der parallele Prozess hier wie ein regulärer behandelt wird. Um die
von uns gewünschte Semantik zu gewährleisten, lässt sich der Worker dann über

15.1. VERTEILTE STREAMS-PROZESSE MIT SPARK 131

Driver

Worker

Worker

more workers

Accum

ulable

(all at

once)

read

Driver

Sink

[Data]item:

[Data]item:

Abbildung 15.2: Zusammenfassung der Teilergebnisse per Accumulable

die getProcesses() Methode die Liste der erzeugten Prozesse geben und entfernt
daraus alle bis auf den gewünschten. Dessen Eingabe wird dann von dem im XML-
Dokument spezifizierten Multistream auf den gewünschten Substream geändert. Dies
sorgt dafür, dass die gewünschte Semantik durch einen schlichten execute() Aufruf
beim ProcessContainer erreicht wird.

Zusammenfassung der Teilergebnisse
von Karl Stelzner

Der vorherige Abschnitt erläutert, wie wir dafür gesorgt haben, dass auf jedem Worker
eine Instanz des verteilten Prozesses mit korrekter Eingabe ausgeführt wird. Noch offen
ist die Frage, wie der Teilergebnisse der Worker an den Driver zurückgeschickt werden.

Eine Möglichkeit, die Spark hierfür bietet, ist die Klasse Accumulable. Diese erlaubt es,
Daten der Workernodes in einer gemeinsamen Datenstruktur zu aggregieren. Anschließend
kann dann die gesamte Datenmenge auf Seite des Drivers abgerufen werden. Um die Ver-
bindung zwischen dieser Funktionalität und der streams-Logik herzustellen, haben wir die
Klasse AccumulableListSink geschrieben, die von Accumulable erbt und gleichzeitig das
Sink-Interface von Streams implementiert. Werden Daten über die Sink-Methode write

geschrieben, leitet diese Klasse sie einfach über die add Methode an das Accumulable
weiter.

Ein Objekt dieses Typs wird den Workern via Broadcast zu Verfügung gestellt. Dort wird es
über das im vorigen Abschnitt erläuterte Verfahren als Ausgabeobjekt des auszuführenden
Prozesses gesetzt. Dies sorgt dafür, dass die auf dem Worker laufende streams-Instanz ihre
Ergebnisse automatisch in das als Senke getarnte Accumulable schreibt.

Nachdem alle Worker ihre Arbeit fertiggestellt haben, kann der Driver die Gesamtheit der
Ergebnisse als verkettete Liste von Datenobjekten aus dem Accumulable auslesen. Dieser
Ablauf wird durch Abbildung 15.2 verdeutlicht.

Eine alternative Vorgehensweise besteht darin, die Worker über die flatmap-Methode auf-
zurufen. Diese sorgt dafür, dass deren Teilergebnisse automatisch in einer Ergebnis-RDD

132 KAPITEL 15. ERWEITERUNG DER STREAMS-ARCHITEKTUR

zusammengefasst werden. Deren Inhalt kann dann durch den Driver über die collect-
Methode aggregiert werden. Beide Vorgehensweisen führen im Wesentlichen zum gleichen
Verhalten und teilen die selben Schwächen (vgl. Abschnitt 16.2). Der Unterschied liegt
lediglich darin, dass der Einsatz von Accumulables eine etwas flexiblere und allgemeinere
Zuweisung der Ergebnisse erlaubt, und daher von uns zuerst umgesetzt wurde. Die Nut-
zung von Ergebnis-RDDs ist dagegen schlanker in der Umsetzung und entspricht eher
der Spark-Designphilosophie, weshalb wir sie vermutlich für das Endprodukt bevorzugen
werden.

15.1.5 MultiStream-Generatoren
von Mohamed Asmi

Die verteilte Ausführung der Prozesse erfordert die Verfügbarkeit von mehreren Daten-
strömen. Damit können die Prozesse mehrere Datenströme gleichzeitig verteilt verarbeiten.
Dafür wurde der MultiStreamGenerator implementiert.

Der MultistreamGenerator ist eine Erweiterung des Streams-Framework MultiStreams.
Er wird zum Erzeugen von Datenströmen für eine verteilte Verarbeitung verwendet. Au-
ßerdem ist er auch in der Lage, mehrere Mengen von Datenströmen zu erzeugen. Da
der MultiStreamGenerator eine Erweiterung der Klasse SequentielMultiStream des
Streams-Frameworks ist, ist man so in der Lage zwischen einer lokalen (nicht verteilten)
und verteilten Datenstromverarbeitung zu unterscheiden.

Durch den MultiStreamGenerator ist es möglich, verschiedene Datenstromgeneratoren
zu implementieren, zum Beispiel wurde im Rahmen der PG ein FitsStreamGenerator

verwendet, der aus fits-Dateien Datenströme generieren kann. Aus einer Ordnerstruktur,
die aus vielen Dateien besteht, werden verschiedene Datenströme erzeugt. Der Vorteil ist,
dass es genügt, den Pfad des Oberordners anzugeben. Außerdem kann man durch die
Eingabe regulärer Ausdrücke nicht erwünschte Dateien filtern. Will man für Testzwecke
oder aufgrund von Speichermangel die Anzahl der generierten Datenströme begrenzen, er-
laubt der FitsStreamGenerator dies durch das Setzen der Parameter streamLimits und
maxNumStreams. streamLimits definiert die Länge der einzelnen Datenströme. maxNumStreams

setzt die Anzahl der generierten Datenströme fest.

Durch Erweiterung von MultiStream durch den MultiStreamGenerator ist man also in
der Lage, mit einer Zeile mehrere Datenstromquellen zu definieren (siehe Listing 15.2).

1 <application >

2 <stream id="fact" class=" stream .io.multi.
FitsStreamGenerator " url="${ infile }"

3 regex=".*\. fits \.gz" maxNumStreams ="1000" />

4 </ application >

15.2. MLLIB IN STREAMS 133

Listing 15.2: Beispiel Multistream Eingabe

Der Performanzgewinn wird in Abschnitt 16.1 diskutiert.

15.2 MLLib in Streams
von Carolin Wiethoff

Zur Arbeit des Endprodukts wird unter anderem die Gamma-Hadron-Separation und die
Energieschätzung gehören. Beide Aufgaben beinhalten maschinelle Lernverfahren, sodass
wir eine Möglichkeit finden mussten, die Spark MLlib Methoden, beziehungsweise die
Methoden des darin enthaltenen und von uns favorisierten Paketes ML (siehe Abschnitt
5.2.3), in streams zur Verfügung zu stellen. Dazu gehören nicht nur die Klassifikation
und Regression, sondern auch die Merkmalsextraktion, die Vorverarbeitung der Daten
und die Evaluation der gewählten Lernverfahren. Momentan werden Vorverarbeitung und
Merkmalsextraktion von den im vorherigen Abschnitt 15.1 vorgestellten DistributedProcess
durchgeführt. Mit unserer Erweiterung soll es jedoch auch möglich sein, MLlib-Methoden
zu nutzen, wenn dies gewünscht ist. Beim Design unserer Erweiterung stand vor allem
im Fokus, dass das Spark ML-Paket auf DataFrames arbeitet. Während in der Basis-
variante des streams-Frameworks die zu verarbeitenden Daten in Data-Items gestreamt
werden, mussten wir einen Weg finden, diese in DataFrames zu konvertieren oder die
Daten direkt in DataFrames zu laden, damit diese dann an die Spark MLlib Methoden
weitergegeben werden können. Außerdem spielt die Pipelinestruktur, welche im ML-Paket
von Spark MLlib verwendet wird, eine zentrale Rolle in unserer Spezifikation. Sie ähnelt
stark der Prozess-und-Prozessoren-Struktur des streams-Frameworks. Während Prozesse
diverse Prozessoren enthalten können, durch die die Daten sequentiell durchgereicht wer-
den, können die in Spark ML verwendeten Pipelines diverse Stages enthalten. Auch dort
werden die Daten sequentiell von Stage zu Stage weitergereicht. Wir entschieden uns dieses
Konzept in unsere XML-Spezifikation zu übernehmen, schließlich soll die Anwendung für
die Physiker, welche bisher nur das streams-Framework kennen, einfach zu erlernen sein.
Durch den ähnlichen Aufbau integriert sich unsere Erweiterung nicht nur optisch, sondern
auch inhaltlich gut in das Framework. Die Spezifikation und die Implementation der neu
eingeführten Tags soll in den folgenden Unterkapiteln näher erläutert werden.

15.2.1 XML-Spezifikation von input
von Christian Pfeiffer

Ein input-Tag dient dazu, eine Datenquelle zu spezifizieren, die einen DataFrame (siehe
Unterabschnitt 5.2.2) zurückgibt. Im Gegensatz zu einem <stream> müssen die Daten also
nicht zeilenweise, sondern als ganze Tabelle zurückgegeben werden.

134 KAPITEL 15. ERWEITERUNG DER STREAMS-ARCHITEKTUR

Als Datenquelle kann jede Unterklasse von stream.io.DataFrameStream verwendet wer-
den. Jeder input muss ein Attribut id mit einem eindeutigen Wert besitzen. Ein input-
Tag muss auf der obersten Ebene eines eines Containers stehen. Ein Beispiel hierfür findet
sich in Listing 15.3.

15.2.2 XML-Spezifikation von task & operator
von David Sturm

Das Task-Tag wird genutzt, um neue Arbeitsabläufe zu modellieren. Es befindet sich in-
nerhalb des container-Tags, zusammen mit den input-Tags. Ein Task hat die Argumente
ID=... und input=.... Letzteres erlaubt ihm, auf die vorher verwendeten input-Tags Be-
zug nehmen. Dann führt er den in ihm spezifizierten Arbeitsablauf auf den im Input
angegeben Daten aus. Dazu kann der Nutzer innerhalb des Tasks eine Kombination der
Tags pipeline und operator verwenden, um die Daten zu bearbeiten, Modelle zu lernen
und anzuwenden, Ergebnisse anzuzeigen etc. Dafür muss jeder Operator eine Unterklasse
von stream.runtime.AbstractOperator angeben, die die Arbeitsschritte auf dem Da-
taFrame enthält. Operatoren und Pipelines werden sequentiell ausgeführt und der jeweils
resultierende DataFrame an den Nachfolger weitergereicht.

Interessant ist hierbei, dass Task bzw. Operator genau dem Prozess bzw. den Prozesso-
ren von Streams entsprechen. Da wir allerdings die SparkML- bzw. SparkMLib-Bibliothek
verwenden wollen, müssen wir, wie bereits erwähnt, die Daten in Form von DataFrames
anstelle der von Streams verwendeten Data-Klasse speichern. Task und Operatoren tun
genau dies, sie sind also äquivalent zu den jeweiligen Streams-Klassen, arbeiten aber auf ei-
nem anderen Typ von Daten. Dies ermöglicht es uns, die Algorithmen der Spark-Bibliothek
zu verwenden, ohne dass sich an der Struktur des XMLs viel ändert.

Eine wirkliche Neuerung stellt also nur das Pipeline-Tag, mit dem Pipelines der Spark
Bibliotheken verwendet werden können, dar. Es dient dazu, komplexere Abläufe in der
Datenvorverarbeitung einmalig zu modellieren, die so modellierte Pipeline kann dann von
den auf sie folgenden Operatoren verwendet werden.

1 <container >

2 <input id="1" class=" someInput " />

3

4 <task id="2" input="1">

5 <pipeline modelName ="model">

6 ...

7 </ pipeline >

8

9 <operator class=" ApplyModelOperator " modelName ="model" />

15.2. MLLIB IN STREAMS 135

10 <operator class=" PrintDataFrameOperator " />

11 </task >

12 </ container >

Listing 15.3: Ein Beispiel XML - Mehr Informationen zu den einzelnen Tags sind in den folgenden
Abschnitten zu finden

15.2.3 XML-Spezifikation von pipeline
von Michael May, Lili Xu

Wie bereits erwähnt, wurde das <pipeline> Tag eingeführt, damit die von Spark ML
bereitgestellt Pipeline-Struktur als XML-Format definiert werden kann. Dazu wird das
Tag innerhalb einer Task definiert und kann dann durch Spezifizierens eines Namens im
weiteren Verlauf verwendet werden (Listing 15.3).

1 <task ... >

2 <pipeline modelName ="model">

3 <stage class=" MyStage " />

4 <transformer ... />

5 <transformer ... />

6 <estimator ... />

7 ...

8 </ pipeline >

9

10 <operator class=" ExportModelOperator " exportURL ="..."
modelName ="model" />

11 </task >

Listing 15.4: Beispiel-XML einer reduzierten Pipeline innerhalb einer Task

Listing 15.4 stellt beispielhaft dar, wie eine Pipeline innerhalb eines Task erstellt werden
kann, um dann später im ExportModelOperator wieder abgerufen zu werden. Dazu muss
lediglich der Name der zu exportierenden Pipeline im Parameter modelName angegeben
werden. Durch die Einführung eines Namens wird es zeitgleich ermöglicht, mehrere defi-
nierte Pipelines innerhalb eines Task voneinander zu unterscheiden. Dabei sei allerdings
anzumerken, dass eine Pipeline überschrieben wird, sollte derselbe Name später wieder
verwendet werden.

Innerhalb einer Spark ML Pipeline existieren zwei unterschiedliche Komponenten: Estimator

und Transformer, welche im Allgemeinen als Stages bezeichnet werden. Die Beschreibung
ihrer XML-Spezifikation folgt im nächsten Unterabschnitt.

136 KAPITEL 15. ERWEITERUNG DER STREAMS-ARCHITEKTUR

15.2.4 XML-Spezifikation von stages
von Carolin Wiethoff

Nachdem der pipeline-Tag genauer ausgeführt wurde, soll es nun um die Estimator und
Transformer gehen, deren Überbegriff Stage ist. Sie bilden das Herzstück der Pipeline und
legen fest, welche Arbeitsschritte in der Pipeline auf den Daten ausgeführt werden sollen.

Ein Estimator ist eine Klasse, welche einen DataFrame bekommt und basierend auf einem
Lernalgorithmus ein Modell erzeugt. In Spark ML stehen dafür zahlreiche Klassifikations-
und Regressionsmethoden, aber auch Methoden für die Mermalsextraktion und das Clu-
stering zur Verfügung. Um diese Funktionalität nutzen zu können, spezifizierten wir einen
estimator-Tag. Die gewünschte Klasse soll im Parameter stage angegeben werden, danach
können beliebig viele Parameter für genau diese Klasse folgen.

1 <estimator stage=" RandomForestRegressor " numTrees ="20"
labelCol ="label" featuresCol =" features " />

Listing 15.5: Beispiel-XML für die Verwendung des estimator-Tags

In Listing 15.5 wird beispielsweise ein Estimator der Klasse RandomForestRegressor er-
zeugt, wobei die Attribute numTrees, labelCol und featuresCol gesetzt werden.

Ein Transformer ist eine Klasse, welche einen DataFrame bekommt und verändert, mei-
stens durch Anfügen einer neuen Spalte. Damit können Vorverarbeitungsschritte oder
auch eine Klassifikation, also eine Anwendung eines erlernten Modells, gemeint sein. Ana-
log zum estimator-Tag erstellten wir einen transformer-Tag, wobei im Parameter stage
die gewünschte Klasse angegeben werden soll. Danach können wiederum beliebig viele
Parameter folgen, um die gewünschten Attribute zu setzen.

1 <transformer stage=" Binarizer " inputCol =" Length " outputCol =

" newLength " threshold ="2" />

Listing 15.6: Beispiel-XML für die Verwendung des transformer-Tags

In Listing 15.6 wird beispielsweise ein Transformer der Klasse Binarizer erzeugt, wobei
die Attribute inputCol, outputCol und threshold gesetzt werden.

Insgesamt kann man auf diese Weise alle von Spark ML bereitgestellten Estimator und
Transformer in einer Pipeline instantiieren. Wichtig ist, dass diese beiden Tags nur in-
nerhalb einer pipeline-Umgebung stehen, denn sie werden in Spark ML immer als Teil
einer großen Pipeline ausgeführt. Die Reihenfolge der Ausführung wird mit der Reihenfol-
ge der Tags im XML festgelegt und die Stages werden sequentiell durchlaufen. Außerdem
können pro Pipeline mehrere Modelle trainiert werden. Es ist auch möglich, dass nach

15.2. MLLIB IN STREAMS 137

einem estimator-Tag wieder transformer-Tags folgen, beispielsweise um im weiteren Ver-
lauf der Pipeline ein Modell auf Grundlage eines noch weiter verarbeiteten DataFrames
zu trainieren. Weiterhin gibt es keine Limitierung für die Anzahl von Stages. Nachfolgend
steht ein abschließendes Beispiel für den Aufbau einer Pipeline durch Transformer und
Estimator:

1 <container >

2 <input id="1" class=" stream .pg594. example . MCInput "/>

3

4 <task id="2" input="1">

5 <pipeline modelName =" RFRegressor ">

6 <transformer stage=" VectorAssembler " inputCols ="Length
,Width ,Delta ,Distance ,Alpha ,Disp ,Size" outputCol ="
features "/>

7 <!-- arbitrary transformers and estimators -->

8 <estimator stage=" VectorIndexer " inputCol =" features "
outputCol =" indexedFeatures " maxCategories ="10"/>

9 <estimator stage=" RandomForestRegressor " numTrees ="20"
labelCol =" MCorsikaEvtHeaderfTotalEnergy "

featuresCol =" indexedFeatures "/>

10 </ pipeline >

11 </task >

12 </ container >

Listing 15.7: Beispiel-XML für die Verwendung der estimator- und transformer-Tags innerhalb
einer Pipeline

15.2.5 Umsetzung
von Michael May

In diesem Abschnitt werden die Schritte der Umsetzung näher erläutert. Dazu werden die
Klassen zur Instantiierung und Verarbeitung von Spark-ML-Aufgaben beleuchtet.

Implementierung von task & operator von Christian Pfeiffer

Nun wird die Implementierung der gerade beschriebenen XML-Elemente skizziert. Dabei
ist es das Ziel, die streams-Architektur zu erhalten und lediglich an einigen Stellen zu
erweitern.

Das task-Element soll wie das process-Element auf der obersten Hierarchie-Ebene eines
streams Container stehen. Deshalb muss zuerst ein TaskElementHandler beim XML-
Parser registriert werden.

138 KAPITEL 15. ERWEITERUNG DER STREAMS-ARCHITEKTUR

Aufgrund der syntaktischen Äquivalenz von task und process ist es möglich, den Code
von process wiederzuverwenden. Hierzu müssen die task-Datentypen von den process-
Datentypen erben. Auf diesem Weg entfällt das Problem, den streams Scheduler anzupas-
sen, da die task-Blöcke von der streams Laufzeitumgebung automatisch wie process-Blöcke
ausgeführt werden.

Das bedeutet aber auch, dass der Inhalt eines task-Blocks kompatibel zu den Inhalten
eines process-Blocks sein muss. Dies wird erreicht, indem der Operator-Datentyp von dem
Processor-Datentyp erbt. Dazu muss jeder Operator eine Methode Data process(Data

input) implementieren. Dies steht scheinbar im Widerspruch zum Konzept, dass je-
der Operator einen DataFrame erhält, diesen bearbeitet und den veränderten DataFrame
zurückgibt.

Diese beiden Anforderungen können zusammengeführt werden, indem das Bearbeiten des
eigentlichen DataFrames in eine abstrakte Methode ausgelagert wird, die einen DataFra-
me erhält und den veränderten DataFrame wieder zurückgibt. Diese abstrakte Methode
wird dann von jedem einzelnen Operator anwendungsspezifisch überschrieben. Hingegen
wird die Data process(Data input) für alle Operatoren einheitlich implementiert. Sie
liest den DataFrame aus dem gegebenen Data-Objekt aus, lässt ihn von der operator-
spezifischen Methode bearbeiten und schreibt den veränderten DataFrame zurück in das
Data-Objekt. Auf diesem Weg verhält sich ein Operator aus der Sicht von streams wie ein
Processor, bietet aber dem Nutzer die neue Schnittstelle zur Bearbeitung von DataFrames
an.

Implementierung von input von Michael May

Das <input> Tag wurde eingeführt, damit DataFrame Objekte in die bisherige streams-
Architektur eingepflegt werden konnten. Dazu wurden zwei neue Klassen entwickelt: DataFrameInput

und DataFrameStream. Abbildung 15.3 stellt die einzelnen Klassen dar, die bei der Ver-
arbeitung von Input-Elementen beteiligt sind.

Zunächst ist anzumerken, dass für die Verarbeitung von DataFrame Instanzen im streams-
Framework die instantiierten Objekte an die zugehörigen Prozesse gesendet werden müssen.
Nativ wird dies vom streams-Framework ermöglicht, sofern eine neue Klasse als Spezia-
lisierung von Source definiert wird.

Aufgrund der Ähnlichkeit zu normalen Datenstreams wurde hier eine direkte Speziali-
sierung zur Klasse AbstractStream hergestellt. Jedoch sollte vermerkt werden, dass für
eine bessere Abgrenzung von normalen Datenstreams eine Spezialisierung zur Schnitt-
stelle Stream hergestellt werden sollte. Dies war jedoch für den ersten Prototypen keine
Priorität.

Das Interface DataFrameInput wurde erstellt, damit eine bessere Abgrenzung von nor-
malen Datenstreams ermöglicht wird. Der Vorteil einer solchen Schnittstelle findet sich

15.2. MLLIB IN STREAMS 139

Abbildung 15.3: Klassendiagramm mit zugehörigen Klassen für DataFrameInput und
DataFrameStream

140 KAPITEL 15. ERWEITERUNG DER STREAMS-ARCHITEKTUR

schnell, wenn die Instanziierung der Klassen betrachtet wird. Derzeit wird noch der vom
streams-Framework bereitgestellt StreamElementHandler genutzt, um Input Elemente zu
erstellen. Jedoch wäre es angebrachter hier ein eigenständigen InputElementHandler zu
implementieren, welcher nur Streams erzeugt die eine Spezialisierung von DataFrameInput

darstellen, sodass eine bessere Abgrenzung zu dem bereits vorhandenen <stream> Tag
ermöglicht wird.

Die Klasse DataFrameStream bietet die Möglichkeiten eines normalen Streams und er-
weitert diesen, um die von der DataFrameInput Schnittstelle bereitgestellten Methode
nextDataFrame(). Ziel dieser Methode ist es, dem DataFrameStream zu ermöglichen eine
Reihe von DataFrame Instanzen abzuarbeiten. Dazu muss zunächst ein EOF für einen
Stream von DataFrames definiert werden, sodass beim Erreichen dieses der Stream en-
det. In der readNext() Methode wird dann jedes Mal nextDataFrame() aufgerufen und
solange der Stream noch nicht den EOF Status erreicht hat, wird ein neues Data-Objekt
erstellt, welchem das nächste Dataframe hinzugefügt wird. Auf diese Weise können Dataf-
rames als Datastream im streams-Framework weitergeleitet und bearbeitet werden. Auch
hier sei anzumerken, dass der derzeitige EOF Status noch nicht vollständig definiert und
implementiert wurde, weshalb nur ein einziges DataFrame Objekt in einem Input Element
erzeugt wird. Dies kann allerdings durch implementieren von spezialisierten Klassen um-
gehen werden, indem die Methode nextDataFrame() überschrieben wird.

Implementierung von pipeline und stages von Michael May

Mithilfe von einer <pipeline> können die aus SparkML bereitgestellten Pipelines ge-
nutzt werden. Damit diese Klassen im erweiterten streams-Framework abgerufen werden
können, mussten Klassen zur Erstellung (Abb. 15.4) und Verarbeitung (Abb. 15.5) bereit-
gestellt werden.

Zur Erstellung von Spark ML Pipelines wurden im wesentlichen zwei Factories implemen-
tiert. Die PipelineFactory erzeugt AbstractPipeline Instanzen, für jedes spezifizierte
<pipeline> Tag. Mittels der Methode createNestedStage() werden die definierten Sta-
ges erzeugt und der Pipeline zugewiesen. Hierbei wurden ein Ansatz über eine Erstellung
über ObjectCreator gewählt. ObjectCreator sind Bestandteile der ObjectFactory, wel-
che Teil des streams-Frameworks ist. Der ObjectFactory wird das zu erstellende XML-
Element übergeben, welche dann innerhalb der Erstellung überprüft, ob ein ObjectCreator

existiert, der dieses Element bearbeitet.

Abbildung 15.5 zeigt eine Übersicht der so erstellten Pipeline und Stage-Instanzen. Hier-
bei sei anzumerken, dass während der Entwicklung des Prototypen verschiedene Ansätze
verfolgt wurden und auch die derzeitige Version einen work-in-progress darstellt.

Eine instantiierte Pipeline, wie beispielsweise eine DefaultPipeline, verarbeitet DataFra-
me Objekte, weswegen sie als Spezialisierung des AbstractOperator implementiert wur-

15.2. MLLIB IN STREAMS 141

Abbildung 15.4: Übersicht der Klassen zuständig für die Erstellung von Pipelines und Stages

de. Da Pipelines spezialisierte Prozessoren sind, kann die streams Implementierung ge-
nutzt werden, um Daten zu verarbeiten, und im Fall der Pipeline Dataframes. In der
DefaultPipeline wird so für jeden Bearbeitungsphase ein neues Model trainiert und
dem Datenstream übergeben. Damit die erstellten Modelle weiter genutzt werden können,
muss jeder Pipeline über den Parameter modelName ein Name zugewiesen werden, womit
die weitergegebenen Modelle identifiziert werden.

In der aktuellen Version des Prototypen wurden Klassen für die Pipelinestages erstellt,
welche als abstrakte Ebene zwischen den Spark-ML-Stages und streams-Stages. Allerdings
findet sich derzeit kein Nutzen in dieser Abgrenzung, weswegen eine wünschenswertes Ziel
für die nächste Version den Zweck einer solchen Ebene zu untersuchen.

142 KAPITEL 15. ERWEITERUNG DER STREAMS-ARCHITEKTUR

Abbildung 15.5: Übersicht der Klassen zuständig für die Verarbeitung von Pipelines und Stages

Teil V

Evaluation und Ausblick

143

Kapitel 16

Vergleich mit streams

von Mohamed Asmi

Im Rahmen dieser Projektgruppe (PG) wurde eine Spark-Erweiterung des streams-Frameworks[20]
implementiert. Dadurch wird ein verteiltes Verarbeiten der Daten durch das FACT-Tools
unterstützt. Durch die Eingabe von mehreren Datenquellen wird der StreamsGenerator

angeschaltet. Der Generator baut die Datenströme ein und leitet sie für die verteilte Ver-
arbeitung weiter. Dabei werden die Datenströme an verschiedene worker verschickt. Wenn
hingegen keine verteilte Verarbeitung notwendig ist, wird ein Standard-Prozess ausgeführt.

Das Ziel der Erweiterung ist, eine bestimmte Performanz zu erreichen. Durch die verteilte
Verarbeitung wird eine schnellere und effizientere Verarbeitung der Daten erzielt. Bei Big
Data soll es ein Vorteil sein, da es immer große Datenmengen verwendet. Aber man kann
nicht ausschließen, dass bei der Verarbeitung von großen Datenmengen andere Probleme
auftreten können.

In diesem Kapitel wird der Performanzgewinn durch die Spark-Erweiterung betrachtet.
Dafür werden Experimente durchgeführt, bei denen Datenmenge verschiedener Größe ein-
mal mit dem streams-Framework und mit deren Spark-Erweiterung verarbeitet werden.

16.1 Performanzgewinn durch verteilte Prozesse
von Mohamed Asmi

Für die Experimente wird die MC-Analyse in Hinblick auf die Monte-Carlo-Daten betrach-
tet, bei der die Daten für die Anwendung eines maschinellen Lernverfahrens bereitgestellt
werden. Dabei wird die Verarbeitungszeit von Events untersucht. Ein Event ist ein Datai-
tem, das von dem streams-Frameworkgeliefert wird. Für die Zeitmessung wurde eine Sinke
implementiert. Der PerformanceSink ist in der Lage, die Verarbeitungszeit eines Dateni-
tems bzw. Events zu messen. Die Messergebnisse werden in eine Datei geschrieben. Alle
Tests werden auf dem Hadoop-Cluster des Sonderforschungsbereiches 876 durchgeführt.

Bei den Experimenten werden zwei Fälle betrachtet. Im ersten Fall wird nur ein einzelner
Datenstrom betrachtet, d.h., die Daten kommen nur aus einer Datei. Der Grund für diese

145

146 KAPITEL 16. VERGLEICH MIT STREAMS

Auswahl ist, dass gezeigt werden soll, dass, die streams-Erweiterung in der Lage ist,
automatisch zu erkennen, ob mehrere oder nur eine Datenquelle betrachtet wird. Außerdem
wird als Hauptgrund die Untersuchung der Verarbeitungszeit der Events, unter die Lupe
genommen.

Für die Ausführung der Experimente werden insgesamt 6GB Arbeitsspeicher verwendet.
Also in dem Fall, in dem verteilte Prozesse betrachtet werden, werden 3 Cluster Knoten
mit jeweils 2GB verwendet. In dem anderen Fall wird 6GB Arbeitsspeicher für den Master-
Knoten zur Verfügung gestellt.

Zuerst wird die MC-Analysis nur auf einem Datenstrom betrachtet. Die Ergebnisse sind
in Abbildung 16.1 zu sehen.

Abbildung 16.1: Vergleich von der Spark-Erweiterunf mit streams (einzel Stream)

In diesem Fall ist keine verteilte Verarbeitung notwendig. bei der Spark-Erweiterung wird
der Standard-Prozess des streams-Frameworks durchgeführt. Das erklärt die gleichen
gemessenen Ausführungszeiten, die in Abbildung 16.1 zu sehen sind.

Jetzt werden mehrere Dateien als Datenquellen genutzt. Verwendet werden 200 Dateien
der proton klaus, die aus der Monte-Carlo-Simulation entstanden sind. Die Ergebnisse
sind in Abbildung 16.2 zu sehen.

Bei dem Bereitstellen von mehreren Datenströmen wird die verteilte Verarbeitung an-
geschaltet. Man kann bei der Spark-Erweiterung in Abbildung 16.2 beobachten, dass am
Anfang nichts passiert und dann auf einmal alle Daten in einer konstanten Zeit verarbeitet

16.2. PROBLEME VERTEILTER PROZESSE UNTER SPARK 147

Abbildung 16.2: Vergleich von der Spark-Erweiterunf mit streams (Multistream)

wurden. Dagegen steigt die Ausführungszeit linear mit der Anzahl der Events. Insgesamt
wurde bei der Verarbeitung von ungefähr 4600 Events 228 Sekunden mit dem streams-
Framework gebraucht und nur 170 Sekunden bei dem Anwenden der Spark-Erweiterung.
Je mehr Daten verarbeitet werden, desto größer ist der Performanzgewinn. Bei der Ver-
arbeitung von ungefähr 22800 Events wurde fast 8 Minuten mit der Spark-Erweiterung
gebraucht. Dabei wurden aber insgesamt 24GB Arbeitsspeicher genutzt.

Bei der in der PG entwickelten Spark-Erweiterung des streams-Framework ist ein Perfor-
manzgewinn durch die verteilte Verarbeitung deutlich zu erkennen. Dieser Erfolg ist aber
auch von ein paar Problemen begleitet. Diese werden in dem nächsten Abschnitt disku-
tiert. Darüber hinaus besteht der Cluster nur aus zwei Servern und die sechs Maschinen,
die man sehen kann, sind nur virtuell. Aus diesem Grund entsteht wenig Netzwerkver-
kehr, denn da das HDFS drei Replikationen verwendet, hat meistens einer der beiden
Server die gewünschte Datei lokal liegen. Deshalb entsteht wenig Netzwerkverkehr, der
die Ausführungszeiten beeinflussen kann. Aus diesem Grund könnte es sein, dass bei der
Ausführung auf einem Cluster mit realen Knoten längere Verarbeitungszeiten entstehen
könnten.

16.2 Probleme verteilter Prozesse unter Spark
von Karl Stelzner

Der Einsatz von Spark zur Implementierung verteilter Prozesse geht mit einigen konzeptio-
nellen Problemen einher. Diese rühren vor allem daher, dass Spark auf Batch-Verarbeitung

148 KAPITEL 16. VERGLEICH MIT STREAMS

basiert, während dem streams-Framework Datenströme aus einzelnen Datenpunkten zu-
grunde liegen. Dies hat zum Einen zur Folge, dass verteilte Prozesse aktuell nur Eingaben
verarbeiten können, die zu Beginn der Ausführung schon vollständig zur Verfügung ste-
hen. Insbesondere ist es also nicht möglich, die Ausgabe eines anderen Prozesses verteilt
weiterzuverarbeiten. In der Zukunft ließe sich dies allerdings durch Spark-Streaming um-
setzen, da damit eintreffende Datenpunkte in regelmäßigen Zeitabständen zu Mini-Batches
verarbeitet werden können.

Zum Anderen hat Spark den Nachteil, dass Ergebnisse erst dann verfügbar werden, wenn
ein Batch vollständig abgearbeitet wurde. Dies ist sowohl bei der Nutzung von Akkumu-
latoren als auch bei der Verwendung von RDDs (via RDD.collect) der Fall. Dies verletzt
nicht nur die Design-Philosophie des streams-Frameworks, sondern kann bei sehr großen
Datenmengen auch dafür sorgen, dass das Driverprogramm unter der gebündelten Daten-
last zusammenbricht.

Eine naive Möglichkeit, dieses Problem zu adressieren, ist die manuelle Partitionierung des
Eingabe-Multistreams in kleinere Mini-Batches, die sequentiell abgearbeitet werden. Dies
ist mit zwei Problemen verbunden: Zum Einen muss sichergestellt sein, dass diese Mini-
Batches groß genug sind, um noch sinnvoll verteilt werden zu können. Zum Anderen kann
es passieren, dass Workernodes auf einander warten müssen, wenn Streams unterschiedlich
lang sind. Das liegt daran, dass der nächste Batch immer erst gestartet werden kann, wenn
alle Streams des vorherigen abgearbeitet sind. Spark Streaming hilft in diesem Fall nicht
weiter, da die Mini-Batches hier ebenfalls rein sequentiell verarbeitet werden.

Auch wenn die Rückgabe so in kleinere Batches zerteilt werden kann, entspricht dies immer
noch nicht der streams-Semantik. Eleganter und effizienter wäre es, wenn die Workernodes
ihre Ergebnisse als kontinuierlichen Datenstrom zurückgeben würden. Eine solche Funk-
tionalität ist in Spark aber nicht vorgesehen, und müsste daher von Hand implementiert
werden. Dahingehende Lösungsansätze sollen im kommenden Semester untersucht werden.

Kapitel 17

Datenbank-Performance

17.1 Vergleich von PostgreSQL und MongoDB
von Karl Stelzner

Als ersten Vergleich zwischen der Performance von MongoDB uns PostgreSQL haben
wir die Zeit gemessen, die für die Ausführung verschiedener Selektionsanfragen auf einer
Kollektion bzw. Tabelle benötigt wird. Technisch ist PostgreSQL hierbei im Vorteil, da
die Einträge aufgrund des festen relationalen Datenmodells besser sequentiell von der
Festplatte gelesen werden können. Die folgenden drei Queries wurden getestet:

1 SELECT COUNT (*) FROM events WHERE night=’2013 -09 -29 ’;

2 db. metaData .count ({ NIGHT :20130929}) ;

3

4 SELECT COUNT (*) FROM events WHERE event_num >500 AND run_id <5;

5 db. metaData .count ({ EventNum :{ $gt :500} , RUNID :{ $lt :5}});

6

7 SELECT COUNT (*) FROM events WHERE event_num != trigger_num ;

8 db. metaData .count ({ $where :"this. EventNum != this. TriggerNum "});

Listing 17.1: Drei Testanfragen, jeweils als SQL- und als MongoDB-Query

Das erste Query verwendet ein einfaches Gleichheitsprädikat, und kann leicht über einen
Index beanwortet werden. Da die Einträge nur gezählt, und nicht ausgegeben werden,
müssen die tatsächlichen Daten noch nicht einmal geladen werden. Es handelt sich somit
um ein index only query. Ein passender Index ist auch in beiden Datenbanken vorhanden.
Das zweite Query ist eine Kombination aus zwei Rangequeries, für das keine (eindimensio-
nalen) Indizes verwendet werden können. Beide Systeme müssen daher einen vollständigen
Scan über die Tabelle bzw. Collection durchführen. Die dritte Anfrage verwendet ein kom-
plexeres Prädikat, das zwei Felder miteinander vergleicht. Für dieses Query muss das

149

150 KAPITEL 17. DATENBANK-PERFORMANCE

Prädikat auf jeden Eintrag einzeln angewandt werden. Die Antwortzeiten der beiden Da-

Query 1 Query 2 Query 3
PostgreSQL 30ms 291 ms 267ms
MongoDB 31ms 851 ms 27545 ms

Abbildung 17.1: Antwortzeit beider Datenbanken auf die oben genannten Anfragen

tenbanken auf diese Queries ist in Abbildung 17.1 dargestellt. Aus den Ergebnissen zu
Query 1 lässt sich ablesen, dass beide Datenbanken indexbasierte Queries sehr schnell,
und in beinahe identischer Zeit ausführen können. Man muss allerdings dazu sagen, dass
PostgreSQL bei der ersten Anfrage dieser Art ca. 160ms benötigt, vermutlich, weil der
Index noch in den Hauptspeicher geladen werden muss. Bei Query 2 ist PostgreSQL deut-
lich schneller. Dies hat vermutlich mit den oben erwähnten Unterschieden bezüglich des
Datenmodells zu tun. Query 3 demonstriert, wie ineffizient MongoDB bei der Auswer-
tung von komplexeren Anfragen ist. Während PostgreSQL hier in etwa genauso lange
benötigt wie bei Query 2 (in beiden Fällen wird ein full table scan durchgeführt), steigt
die Ausführungszeit bei MongoDB auf über 27 Sekunden an. Derartige Anfragen sind also
unbedingt zu vermeiden.

Alle drei Testanfragen korrespondieren zu möglichen Anwendungen für die PG. Query 1
repräsentiert einfache Anfragen nach zum Beispiel allen Events einer bestimmten Nacht.
Query 2 steht für komplexere Anfragen, die verschiedene Merkmale einschließen. Ein Bei-
spiel wäre eine Anfrage nach allen Events, die von einer bestimmten Quelle stammen und
in mondlosen Nächten aufgenommen wurden. Analyseanfragen, die verschiedene Felder
miteinander in Beziehung setzen, fallen in die Kategorie von Query 3.

Da die genauen Anforderungen an die Datenbank weiterhin unklar sind, werden wir an
beiden Systemen (und ElasticSearch) weiterarbeiten. Die gewonnenen Erkenntnisse werden
aber für die schlussendliche Entscheidung, welche Lösung für das Endprodukt verwendet
werden soll, hilfreich sein.

Kapitel 18

Fazit

von Lea Schönberger

Im Laufe des Wintersemesters 2015/2016 konnte die Projektgruppe nicht nur viele Fort-
schritte, sondern auch einige Erfolge verzeichnen. Über diese sei in den nachfolgenden
Zeilen in resümierender Weise ein kurzer Überblick gegeben.

Zu den größten Errungenschaften dieses Semesters gehört die Realisierung verteilter Streams-
Prozesse mit Apache Spark (vgl. Kapitel 15.1), mittels derer zum Einen eine Steigerung
der Performanz ermöglicht wird sowie zum Anderen die Kompatibilität zum bekann-
ten Streams-Standard gewährleistet wird. Zur Nutzung eines solchen verteilten Streams-
Prozesses ist lediglich der neue Tag distributedProcess in der gewohnten XML-Konfigu-
ration, der einen bereits aus Streams bekannten Multi-Stream als Input erhält, vonnöten.
Doch dies ist nicht die einzige Erweiterung des Streams-Frameworks: Mithilfe des neu ein-
geführten pipeline-Tags (vgl. Kapitel 15.2.3) lässt sich darüber hinaus kinderleicht die
von Spark ML bereitgestellte Pipeline via XML konfigurieren. Auf Basis dieser Pipeline ist
es nun möglich, Modelle zu trainieren, zu speichern, zu laden und anzuwenden. Im Zuge
der Integration der ML-Pipeline in das Streams-Framework wurde dieses zudem um die
XML-Tags task und operator (vgl. Kapitel 15.2.2) sowie die damit verbundenen Funk-
tionalitäten erweitert. Einen besonderen Stellenwert nimmt dabei der operator ein, der
als neue Schnittstelle zur Bearbeitung von DataFrames (vgl. Kapitel 15.2.5) fungiert.

Doch nicht nur im gerade umrissenen Bereich wurden in diesem Semester vorzeigbare Re-
sultate erzielt, sondern auch im Hinblick auf die Datenbankebene. Die durch das FACT-
Teleskop gelieferten Meta- und Kalibrationsdaten wurden in MongoDB, Elasticsearch so-
wie in PostgreSQL indiziert und darüber hinaus mittels einer neu entwickelten REST-API
(vgl. Kapitel 14) zugänglich gemacht. Diese soll künftig als Schnittstelle zu den (Meta- und
Roh-)Daten und als Verbindungsglied zu auf diesen Daten aufbauenden Funktionalitäten
dienen.

Nicht zuletzt ist auch zu erwähnen, dass die Projektgruppe in den vergangenen Monaten
nicht nur auf technischer Ebene Leistungen erbracht hat, sondern auch auf strategischer

151

152 KAPITEL 18. FAZIT

und sozialer Ebene. Während zu Beginn des Semesters die Wenigsten von uns Projekter-
fahrung hatten, sind uns nun Projektplanungsstrategien wie SCRUM (vgl. Kapitel 2.1.3)
ein Begriff. Fernab der grauen Theorie des theoretischen Studiums konnten wir selbst Hand
anlegen und im Zuge dessen unsere jeweiligen Stärken, Schwächen und Fähigkeiten, un-
ser Zeitmanagement, unsere Belastbarkeit sowie viele weitere Aspekte ausloten und haben
nun die Möglichkeit, im kommenden Semester darauf aufbauend gemeinsam unser Projekt
weiterzuentwickeln und zu einem erfolgreichen Abschluss zu bringen.

Teil VI

Benutzerhandbuch

153

Kapitel 19

Vorbereitung eines Clusters

von Christian Pfeiffer

Die in dieser Projektgruppe entwickelte Bibliothek arbeitet gerade dann effizient, wenn
die Berechnung in einem ganzen Cluster ausgeführt wird. Dazu müssen die folgenden
Vorbereitungsschritte einmalig erfolgen.

1. Vernetzung. Alle Rechner des Clusters sollten so eingerichtet werden, dass sie sich
in einem gemeinsamen, lokalen Netzwerk befinden.

2. Hadoop und Ressourcenmanager einrichten. Auf jedem Rechner des Clusters
muss Hadoop 2.6 [7] installiert und eingerichtet werden. Lediglich auf einem Rech-
ner des Clusters wird ein Ressourcenmanager installiert, der zu bearbeitende Jobs
annimmt und im Cluster verteilt. Im Rahmen der Projektgruppe wurde zu diesem
Zweck YARN [8] eingesetzt.

3. Verteiltes Dateisystem einrichten. Damit alle Knoten des Clusters Zugriff auf
alle Daten haben, empfiehlt sich die Nutzung eines verteilten Dateisystems. Hierfür
bietet sich das HDFS an, weil das Zusammenspiel mit Hadoop und Spark gut funk-
tioniert. Wie bei der zentralen Annahme der Jobs muss auch für das verteilte Datei-
system ein einzelner Rechner ausgewählt werden, der alle Anfragen entgegennimmt.
Außerdem sollte vor dem Einspielen der Daten die Zahl der Replikationen geeignet
gewählt werden. Eine große Anzahl an Replikationen führt zu einem hohem Speicher-
platzbedarf, verringert aber potenziell die Bearbeitungsdauer der Jobs, weil weniger
Dateien über das Netzwerk gesendet werden müssen.

4. Weitere Software im Cluster installieren. Nun können weitere, optionale Kom-
ponenten installiert werden. Es empfiehlt sich, ein Datenbankmanagementsystem auf
jedem Rechner des Clusters zu installieren. Das Datenbankmanagementsystem darf
seine Daten aber nicht im verteilten Dateisystem ablegen, da die Rechner des Clu-
sters sonst ihre Datenbanken gegenseitig überschreiben! Wenn gewünscht ist, dass
sich alle Rechner im Cluster eine Datenbank teilen, müssen die entsprechenden Funk-
tionen des Datenbankmanagementsystems verwendet werden.

155

156 KAPITEL 19. VORBEREITUNG EINES CLUSTERS

Anschließend muss jeder Rechner außerhalb des Clusters, der Jobs an diesen schicken soll,
ebenfalls vorbereitet werden. Hierfür reicht es aus, Hadoop 2.6 sowie Spark 1.6 [11] zu
installieren und die jeweils genannten Einrichtungsschritte zu befolgen.

Kapitel 20

Ausführung im Cluster

von Mirko Bunse

Im Cluster des Lehrstuhls läuft Spark auf YARN [8], einem Tool zur Ressourcenverwaltung
in Rechenclustern. Mit dem Shell-Kommando spark-submit können Spark-Applikationen
YARN als Jobs übergeben werden, sodass sie mit zu spezifizierenden Ressourcen (Anzahl
Cores, Hauptspeicher-Volumen, benötigte Dateien) ausgeführt werden.

20.1 Verfügbarkeit von Dependencies
von Mirko Bunse

Für die Erweiterung von Streams existieren einige Abhängigkeiten zu verwendeten Biblio-
theken. Die folgenden Dependencies müssen zur Laufzeit im Cluster vorhanden sein:

Streams Die Maven-Module streams-core und streams-runtime beinhalten alle für die
Ausführung einer in XML spezifizierten Applikation nötigen Funktionen. streams-

hdfs stellt einen Handler für URLs des HDFS-Protokolls zur Verfügung, was für das
Öffnen von XML-Spezifikationen nötig ist.

FACT-Tools Das Projekt fact-tools ist eine Sammlung von Streams-Prozessoren und
weiteren Funktionen zur Analyse der FACT-Daten im Streams-Framework.

Spark spark-core stellt die Basis-Konzepte von Spark zur Verfügung, die für eine ver-
teilte Ausführung im Cluster nötig sind. spark-mllib und spark-sql werden für
die Verwendung der Lernbibliothek MLlib benötigt.

Hadoop hadoop-client ist, neben streams-hdfs nötig, um Dateien aus dem HDFS zu
lesen. mongo-hadoop-core ist für die Anbindung der MongoDB verantwortlich.

Damit nicht bei jeder Ausführung ein ”Über-jar“, also ein Archiv mit sämtlichen Depen-
dencies vom Client ins Cluster kopiert werden muss, haben wir ein Maven-Projekt für die
Sammlung dieser Dependencies erstellt. Das aus diesem Projekt erstellte jar-Archiv kann

157

158 KAPITEL 20. AUSFÜHRUNG IM CLUSTER

dann für sämtliche Ausführungen, sofern keine Änderungen an den Abhängigkeiten nötig
sind, verwendet werden.

Wir laden dazu die Dependency-Jar ins HDFS und übergeben ihren Pfad bei jeder Ausfüh-
rung an spark-submit. Yarn erkennt den HDFS-Pfad und nimmt keine Kopie vom lokalen
System vor. Um einen Job auszuführen, muss damit lediglich ein kleines Archiv mit dem
aktuellen Stand unserer Streams-Erweiterung hochgeladen werden. Da die Abhängigkeiten
in unserem Fall ein Archiv aus weit über 100MB ergeben, spart dieses Vorgehen eine Menge
Zeit, insbesondere während der Entwicklung, wenn im Minutentakt eine neue Programm-
version getestet werden muss.

20.2 Komfortable Ausführung per Shell-Script
von Mirko Bunse

Um YARN einen Spark-Job zu übergeben, muss spark-submit mit einigen Parametern
(Ressourcen, auszuführende Datei, zu verwendende XML-Spezifikation) aufgerufen wer-
den. Zudem muss sichergestellt sein, dass die gewünschte XML-Spezifikation im HDFS
vorhanden ist. Um dem Benutzer die manuelle Spezifikation dieser Parameter und das
Hochladen der XML zu ersparen, haben wir ein recht umfangreiches Shell-Script geschrie-
ben, das diese Aufgaben übernimmt. Listing 20.1 stellt die Verwendung des Scriptes vor.

1 Usage: ./ streams - submit .sh [options] <xml file >

2

3 Options :

4 --num - executors NUM Number of executors

5 --driver - memory NUMg GB of memory in driver

6 --executor - memory NUMg GB of memory in executors

7 --executor -cores NUM Number of cores per executor

8

9 Example :

10 ./ streams - submit .sh --driver - memory 4g example .xml

Listing 20.1: Verwendung des Shell-Scripts zur Ausführung im Cluster

Das Script prüft zunächst, ob alle Systemvariablen auf der ausführenden Maschine korrekt
gesetzt sind. Nur so ist sichergestellt, dass spark-submit korrekt arbeitet. Dann wird ein
temporäres Verzeichnis im HDFS-Home-Directory des Hadoop-Benutzers angelegt, in wel-
ches die lokal vorliegende XML kopiert wird. In die temporäre Kopie wird ein Zeitstempel
in den Dateinamen geschrieben, um Konflikte zu verhindern.

Sind alle diese Vorarbeiten erledigt, kann spark-submit aufgerufen werden. Für die ver-
wendeten Ressourcen bestehen niedrige Standard-Werte (2 Executor, 2GB Speicher pro

20.2. KOMFORTABLE AUSFÜHRUNG PER SHELL-SCRIPT 159

Executor, ...), welche das Cluster nicht auslasten sollen. So können mehrere Entwickler
gleichzeitig testen. Bei nicht zu aufwändig gestalteten Test-Konfigurationen reichen diese
Ressourcen üblicherweise aus. Für aufwändigere Berechnungen können dem Script jedoch
auch einige der spark-submit-Parameter (siehe ”Options“ in Listing 20.1) übergeben wer-
den. Es leitet diese weiter, sodass mehr Ressourcen verwendet werden.

Am Ende der Ausführung räumt das Script auf. Es löscht dazu die temporär verwendete
XML-Konfiguration aus dem HDFS.

Abkürzungsverzeichnis

API Application Programming Interface

CRUD Create, Read, Update and Delete

DAG Directed Acyclic Graph

DoD Definition of Done

FACT First G-APD Cherenkov Telescope

FITS Flexible Image Transport System

GUI Graphical User Interface

HDFS Hadoop Distributed File System

HTTP Hyper Text Transfer Protocol

IBA Index of balanced accuracy

IBL Impediment Backlog

JSON JavaScript Object Notation

NASA National Aeronautics and Space Administration

NoSQL Not only SQL

PBL Product Backlog

PG Projektgruppe

PO Product Owner

REST Representational State Transfer

ROC Receiver Operating Characteristic

SBL Sprint Backlog

161

162 KAPITEL 20. AUSFÜHRUNG IM CLUSTER

SM Scrum Master

URL Uniform Resource Locator

WiP Work In Progress

XML Extensible Markup Language

YARN Yet Another Resource Negotiator

Abbildungsverzeichnis

1.1 Visuelle Darstellung eines Gamma-Showers (oben links), welcher von Te-
leskopen aufgezeichnet wird (unten links) und in Grafiken der einzelnen
Aufnahmen dargestellt werden kann (rechts). [22] 4

2.1 Der Sprint in Scrum . 9

2.2 Das Kanban-Board . 12

3.1 Veranschaulichung der ersten vier Vs von Big Data. Von links nach rechts:
Volume, Velocity, Variety und Veracity (vgl. [25]) 20

3.2 Arten der Skalierung . 21

4.1 Lambda-Architektur . 25

5.1 Architektur des Apache Hadoop Projekts. Quelle: [50] 27

5.2 Funktionsweise eines HDFS Clusters. Quelle: [35] 28

5.3 Apache Spark Resilient Distributed Datasets 32

5.4 Maschinelles Lernen mit Spark MLlib . 33

5.5 Pipeline-Struktur von Spark ML . 34

6.1 Beispiel einer Storm Topologie als DAG. Zu sehen sind Spouts (links, erste
Ebene) und Bolts (rechts, ab zweite Ebene). Quelle: [73] 37

6.2 Aufbau eines Storm Clusters [73] . 39

6.3 Beispielhafte Trident Topologie. Quelle: [74] 40

6.4 Abbildung 6.3 als kompilierte Storm Topologie. Quelle: [74] 41

6.5 Apache Spark Streaming . 42

6.6 Spark Streaming - DStream . 42

163

164 ABBILDUNGSVERZEICHNIS

6.7 Schematischer Aufbau eines Container [20] 44

6.8 Funktionsweise eines Stream [20] . 44

6.9 Arbeitsschritte eines Process [20] . 44

7.1 Veranschaulichung des Gossip Protocol. Quelle: http://blogs.atlassian.com/2013/09/do-
you-know-cassandra/ . 48

7.2 Ein typisches Datenbankschema nach dimensionaler Modellierung, hier am
Beispiel einer Vertriebsdatenbank [56]. 50

8.1 Beispielhafter Entscheidungsbaum . 58

8.2 Unterscheidung Realer Drift vs. Virtueller Drift [39] 70

8.3 Schematische Darstellung vom unterschiedlichen Auftreten von Concept
Drift [39] . 70

8.4 Schematischer Aufbau einer Wahrheitsmatrix 72

8.5 Eine ROC Kurve [38] . 73

8.6 Korrelation als Heuristik . 79

8.7 Beispiel-Ausführung CFS [81] . 81

8.8 Berechnung von Ensemble-Korrelationen in Fast-Ensembles 83

8.9 Beispiel-Ausführung Fast-Ensembles [81] . 83

8.10 k-fache Kreuzvalidierung, Quelle: [26] . 85

8.11 Active learning als Kreislauf, Quelle: [82] . 88

10.1 Event vor (links) und nach (rechts) der DRS Kalibrierung. Die Spitzen
entsprechen den Signalen einer einzelnen Fotodiode. Quelle: [6] 99

10.2 Statistik zur Luftfeuchtigkeit in der Nacht des 21.09.2013 aufgenommen von
zwei Sensoren: TNG (oben) und MAGIC (unten) 100

11.1 Analysekette . 103

12.1 Überblick über die verwendeten Software-Komponenten 108

14.1 Die Rückgabeformate der REST API . 116

15.1 Verteilung eines Streams-Prozesses . 130

15.2 Zusammenfassung der Teilergebnisse per Accumulable 131

ABBILDUNGSVERZEICHNIS 165

15.3 Klassendiagramm mit zugehörigen Klassen für DataFrameInput und DataFrameStream

. 139

15.4 Übersicht der Klassen zuständig für die Erstellung von Pipelines und Stages 141

15.5 Übersicht der Klassen zuständig für die Verarbeitung von Pipelines und
Stages . 142

16.1 Vergleich von der Spark-Erweiterunf mit streams (einzel Stream) 146

16.2 Vergleich von der Spark-Erweiterunf mit streams (Multistream) 147

17.1 Antwortzeit beider Datenbanken auf die oben genannten Anfragen 150

Literaturverzeichnis

[1] Apache Spark Resilient Distributed Datasets. http://www.lightbend.com/

activator/template/spark-workshop. Zugriff am 1.3.2016.

[2] Maschinelles Lernen mit Spark MLlib. http://apachesparkcentral.com/

category/mllib/. Zugriff am 1.3.2016.

[3] Lambda Architecture Illustration. http://data-informed.com/wp-content/

uploads/2013/10/Lambda-architecture-illustration.jpg, 2013. Zugriff am
1.3.2016.

[4] Anderhub, H, M Backes, A Biland, V Boccone, I Braun, T Bretz, J Buß,
F Cadoux, V Commichau, L Djambazov, D Dorner, S Einecke, D Ei-
senacher, A Gendotti, O Grimm, H von Gunten, C Haller, D Hilde-
brand, U Horisberger, B Huber, K S Kim, M L Knoetig, J H Köhne,
T Krähenbühl, B Krumm, M Lee, E Lorenz, W Lustermann, E Lyard,
K Mannheim, M Meharga, K Meier, T Montaruli, D Neise, F Nessi-
Tedaldi, A K Overkemping, A Paravac, F Pauss, D Renker, W Rhode,
M Ribordy, U Röser, J P Stucki, J Schneider, T Steinbring, F Temme,
J Thaele, S Tobler, G Viertel, P Vogler, R Walter, K Warda, Q Weit-
zel und M Zänglein: Design and operation of FACT – the first G-APD Cherenkov
telescope. Journal of Instrumentation, 8(06):P06008, 2013.

[5] Anderhub, H, M Backes, A Biland, Vittorio Boccone, I Braun, T Bretz,
J Buß, Franck Cadoux, V Commichau, L Djambazov et al.: Design and ope-
ration of FACT–the first G-APD Cherenkov telescope. Journal of Instrumentation,
8(06):P06008, 2013.

[6] Anderhub, Hans, Adrian Biland, I. Braun, S.C. Commichau, Volker Com-
michau, O. Grimm, Hanspeter von Gunten, Dorothée Maria Hildebrand,
Urs Horisberger, Thomas Krähenbühl, Werner Lustermann, Felicitas
Pauss und et al.: Calibrating the camera for the First G-APD Cherenkov Teles-
cope (FACT). Proceedings of ICRC2011, Beijing, China, 2011. ICRC.

167

http://www.lightbend.com/activator/template/spark-workshop
http://www.lightbend.com/activator/template/spark-workshop
http://apachesparkcentral.com/category/mllib/
http://apachesparkcentral.com/category/mllib/
http://data-informed.com/wp-content/uploads/2013/10/Lambda-architecture-illustration.jpg
http://data-informed.com/wp-content/uploads/2013/10/Lambda-architecture-illustration.jpg

168 LITERATURVERZEICHNIS

[7] Apache Software Foundation: Apache Hadoop. https://hadoop.apache.org/

Letzter Zugriff: 26.03.2016.

[8] Apache Software Foundation: Apache Hadoop NextGen MapReduce (YARN).
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/

YARN.html 17.01.16.

[9] Apache Software Foundation: Apache Spark Machine Learning Library Guide.
https://spark.apache.org/docs/latest/mllib-guide.html, 25.02.16.

[10] Apache Software Foundation: Apache Storm. http://storm.apache.org/

17.01.16.

[11] Apache Software Foundation: Spark - Lightning-fast cluster computing. http:

//spark.apache.org/ 17.01.16.

[12] Apache Software Foundation: Spark Streaming. http://spark.apache.org/

streaming/ 17.01.16.

[13] Atlassian: JIRA Software. https://de.atlassian.com/software/jira 08.02.16.

[14] Bandyopadhyay, Sanghamitra, Chris Giannella, Ujjwal Maulik, Hillol
Kargupta, Kun Liu und Souptik Datta: Clustering distributed data streams in
peer-to-peer environments. Inf. Sci., 176(14):1952–1985, 2006.

[15] Beck, Kent et al.: Manifesto for Agile Software Development. http://www.

agilemanifesto.org/ (08.02.2016), 2001.

[16] Berger, K, T Bretz, D Dorner, D Hoehne und B Riegel: A robust way of
estimating the energy of a gamma ray shower detected by the magic telescope. In:
Proceedings of the 29th International Cosmic Ray Conference, Seiten 100–104, 2005.

[17] Bifet, Albert, Geoff Holmes, Richard Kirkby und Bernhard Pfahringer:
Moa: Massive online analysis. The Journal of Machine Learning Research, 11:1601–
1604, 2010.

[18] Birant, Derya und Alp Kut: ST-DBSCAN: An algorithm for clustering spatial–
temporal data. Data & Knowledge Engineering, 60(1):208–221, 2007.

[19] Bock, RK, A Chilingarian, M Gaug, F Hakl, Th Hengstebeck, M Jiřina,
J Klaschka, E Kotrč, P Savickỳ, S Towers et al.: Methods for multidimensional
event classification: a case study using images from a Cherenkov gamma-ray telesco-
pe. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 516(2):511–528, 2004.

[20] Bockermann, Christian: The streams Framework. https://sfb876.de/streams/

17.01.16.

https://hadoop.apache.org/
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://spark.apache.org/docs/latest/mllib-guide.html
http://storm.apache.org/
http://spark.apache.org/
http://spark.apache.org/
http://spark.apache.org/streaming/
http://spark.apache.org/streaming/
https://de.atlassian.com/software/jira
http://www.agilemanifesto.org/
http://www.agilemanifesto.org/
https://sfb876.de/streams/

LITERATURVERZEICHNIS 169

[21] Bockermann, Christian und Hendrik Blom: The streams Framework. Techni-
scher Bericht 5, TU Dortmund University, 12 2012.

[22] Bockermann, Christian, Kai Brügge, Jens Buss, Alexey Egorov, Katha-
rina Morik, Wolfgang Rhode und Tim Ruhe: Online Analysis of High-Volume
Data Streams in Astroparticle Physics. In: Machine Learning and Knowledge Disco-
very in Databases, Seiten 100–115. Springer, 2015.

[23] Boulicaut, Jean-Francois, Katharina Morik und Arno Siebes: Local Pattern
Detection - International Seminar Dagstuhl Castle, Germany, April 12-16, 2004, Re-
vised Selected Papers. Springer, Berlin, Heidelberg, 2005. Aufl. Auflage, 2005.

[24] Cappellaro, Enrico und Massimo Turatto: Supernova types and rates. In: The
influence of binaries on stellar population studies, Seiten 199–214. Springer, 2001.

[25] Central, Data Sience: Data Veracity. http://www.datasciencecentral.com/

profiles/blogs/data-veracity, 2012. [Online; accessed 13-March-2016].

[26] Chris McCormick: K-Fold Cross-Validation, With MATLAB Co-
der. https:\/\/chrisjmccormick.wordpress.com\/2013\/07\/31\

/k-fold-cross-validation-with-matlab-code 29.03.16.

[27] Collaboration, FACT, T. Bretz und et al.: Status of the First G-APD Cheren-
kov Telescope (FACT). In: Proceedings of ICRC 2011, Beijing, China, 2011. ICRC.

[28] Corpet, Florence: Multiple sequence alignment with hierarchical clustering.
Nucleic acids research, 16(22):10881–10890, 1988.

[29] Dean, Jeffrey und Sanjay Ghemawat: MapReduce: Simplified Data Processing
on Large Clusters. Commun. ACM, 51(1):107–113, Januar 2008.

[30] Dietterich, Thomas G: Ensemble methods in machine learning. In: Multiple clas-
sifier systems, Seiten 1–15. Springer, 2000.

[31] Douglas, Korry und Susan Douglas: PostgreSQL: a comprehensive guide to
building, programming, and administering PostgreSQL databases. SAMS publishing,
2003.

[32] Dries, Anton und Ulrich Rückert: Adaptive concept drift detection. Statistical
Analysis and Data Mining, 2(5-6):311–327, 2009.

[33] Fawcett, Tom: An introduction to ROC analysis. Pattern recognition letters,
27(8):861–874, 2006.

[34] Fielding, Roy Thomas: Architectural styles and the design of network-based soft-
ware architectures. Doktorarbeit, University of California, Irvine, 2000.

http://www.datasciencecentral.com/profiles/blogs/data-veracity
http://www.datasciencecentral.com/profiles/blogs/data-veracity
https:\/\/chrisjmccormick.wordpress.com\/2013\/07\/31\/k-fold-cross-validation-with-matlab-code
https:\/\/chrisjmccormick.wordpress.com\/2013\/07\/31\/k-fold-cross-validation-with-matlab-code

170 LITERATURVERZEICHNIS

[35] Foundation, Apache Software: HDFS Architecture. http://hadoop.apache.

org/docs/r2.6.4/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html, 2016.

[36] Freund, Yoav; Schapire, Robert E.: A Short Introduction to Boosting. Journal
of Japanese Society for Artificial Intelligence, 14(5):771–780, 1999.

[37] Friedman, Jerome, Trevor Hastie und Robert Tibshirani: The Elements of
Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Sta-
tistics, Second Edition Auflage, 2001.

[38] Galar, Mikel, Alberto Fernandez, Edurne Barrenechea, Humberto Bu-
stince und Francisco Herrera: A review on ensembles for the class imbalance
problem: bagging-, boosting-, and hybrid-based approaches. Systems, Man, and Cy-
bernetics, Part C: Applications and Reviews, IEEE Transactions on, 42(4):463–484,
2012.

[39] Gama, João, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy und Ab-
delhamid Bouchachia: A survey on concept drift adaptation. ACM Computing
Surveys (CSUR), 46(4):44, 2014.

[40] Garćıa, Vicente, Ramón Alberto Mollineda und José Salvador Sánchez:
Index of balanced accuracy: A performance measure for skewed class distributions. In:
Pattern Recognition and Image Analysis, Seiten 441–448. Springer, 2009.

[41] Garćıa, Vicente, Javier Salvador Sánchez und Ramón Alberto Molline-
da: On the effectiveness of preprocessing methods when dealing with different levels
of class imbalance. Knowledge-Based Systems, 25(1):13–21, 2012.

[42] Ghemawat, Sanjay, Howard Gobioff und Shun-Tak Leung: The Google File
System. In: Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, SOSP ’03, Seiten 29–43, New York, NY, USA, 2003. ACM.

[43] Group, FITS Working et al.: Definition of the flexible image transport system
(FITS). FITS Standard Version, 3, 2008.

[44] Guyon, Isabelle, Constantin Aliferis und André Elisseeff: Causal feature
selection. Computational methods of feature selection, Seiten 63–86, 2007.

[45] Guyon, Isabelle und André Elisseeff: An introduction to variable and feature
selection. The Journal of Machine Learning Research, 3:1157–1182, 2003.

[46] Hall, Mark A: Correlation-based feature selection for machine learning. Doktorar-
beit, The University of Waikato, 1999.

[47] Heck, Dieter, G Schatz, J Knapp, T Thouw und JN Capdevielle: CORSIKA:
A Monte Carlo code to simulate extensive air showers. Technischer Bericht, 1998.

http://hadoop.apache.org/docs/r2.6.4/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
http://hadoop.apache.org/docs/r2.6.4/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

LITERATURVERZEICHNIS 171

[48] Helf, Marius: Gamma-Hadron- Separation im MAGICExperiment durch vertei-
lungsgestütztes Sampling. Diploma Thesis, Tu Dortmund, 2011.

[49] Herrera, Franciso, Cristóbal José Carmona, Pedro González und
Maŕıa José del Jesus: An overview on subgroup discovery: foundations and appli-
cations. Knowledge and information systems, 29(3):495–525, 2011.

[50] Hortonworks: Apache Hadoop YARN - Enabling Next Generati-
on Data Applications. http://de.slideshare.net/hortonworks/

apache-hadoop-yarn-enabling-nex, 2013. [Online; accessed 23-March-2016].

[51] InterFace AG: Das KANBAN-Plakat. http://www.kanban-plakat.de/ 03.11.15.

[52] InterFace AG, Technische Universität München, The Interpreneur
Group: Das SCRUM-Plakat. http://www.scrum-plakat.de/ 03.11.15.

[53] Jain, A. K., M. N. Murty und P. J. Flynn: Data Clustering: A Review. ACM
Comput. Surv., 31(3):264–323, September 1999.

[54] Japkowicz, Nathalie und Shaju Stephen: The Class Imbalance Problem: A Sy-
stematic Study. Intell. Data Anal., 6(5):429–449, Oktober 2002.

[55] Kargupta, Hillol und Byung-Hoon Park: A Fourier Spectrum-Based Approach
to Represent Decision Trees for Mining Data Streams in Mobile Environments. IEEE
Trans. Knowl. Data Eng., 16(2):216–229, 2004.

[56] Kimball, Ralph und Margy Ross: The data warehouse toolkit: the complete guide
to dimensional modeling. John Wiley & Sons, 2011.

[57] Kloesgen, Willi: Explora: a multipattern and multistrategy discovery assistant. In:
Fayyad, Usama M., Gregory Piatetsky-Shapiro, Padhraic Smyth und Ra-
masamy Uthurusamy (Herausgeber): Advances in Knowledge Discovery and Data
Mining, Kapitel Explora: A Multipattern and Multistrategy Discovery Assistant, Sei-
ten 249–271. American Association for Artificial Intelligence, Menlo Park, CA, USA,
1996.

[58] Klösgen, Willi: Applications and research problems of subgroup mining. In: Raś,
ZbigniewW. und Andrzej Skowron (Herausgeber): Foundations of Intelligent Sy-
stems, Band 1609 der Reihe Lecture Notes in Computer Science, Seiten 1–15. Springer
Berlin Heidelberg, 1999.

[59] Koller, Daphne und Mehran Sahami: Toward optimal feature selection. 1996.

[60] Kshemkalyani, Ajay D. und Mukesh Singhal: Distributed Computing: Princip-
les, Algorithms, and Systems. Cambridge University Press, Reissue Auflage, 3 2011.

http://de.slideshare.net/hortonworks/apache-hadoop-yarn-enabling-nex
http://de.slideshare.net/hortonworks/apache-hadoop-yarn-enabling-nex
http://www.kanban-plakat.de/
http://www.scrum-plakat.de/

172 LITERATURVERZEICHNIS

[61] Lavrač, Nada, Branko Kavšek, Peter Flach und Ljupčo Todorovski: Sub-
group discovery with CN2-SD. The Journal of Machine Learning Research, 5:153–188,
2004.

[62] Liaw, Andy; Wiener, Matthew: Classification and Regression by RandomForest.
R News, 2, 2002.

[63] Lichman, M.: UCI Machine Learning Repository, 2013.

[64] Mampaey, Michael, Siegfried Nijssen, Ad Feelders und Arno Knobbe: Ef-
ficient algorithms for finding richer subgroup descriptions in numeric and nominal
data. In: IEEE International Conference on Data Mining, Seiten 499–508, 2012.

[65] Marr, Bernhard: Big Data: The 5 Vs Everyo-
ne Must Know. https://www.linkedin.com/pulse/

20140306073407-64875646-big-data-the-5-vs-everyone-must-know, 2014.
[Online; accessed 13-March-2016].

[66] Marz, Nathan und James Warren: Big Data: Principles and best practices of
scalable realtime data systems. Manning Publications, 1 Auflage, 5 2015.

[67] Marz, Nathan und James Warren: Big Data: Principles and best practices of
scalable realtime data systems. Manning Publications Co., 2015.

[68] Masse, Mark: REST API design rulebook. Ö’Reilly Media, Inc.”, 2011.

[69] Meier, Katja J.: FACT - The First G-APD Cherenkov Telescope. http://www.

astro.uni-wuerzburg.de/en/research/fact/fact-introduction, Mai 2014. ac-
cessed: 23.02.2016.

[70] MongoDB, Inc.: MongoDB. https://www.mongodb.org/ Letzter Zugriff:
25.03.2016.

[71] MongoDB, Inc.: MongoDB CRUD Operations. https://docs.mongodb.org/

manual/crud/ Letzter Zugriff: 25.03.2016.

[72] Morik, Katharina; Weihs, Claus: Wissensentdeckung in Datenbank. Folien zur
gleichnamigen Vorlesung an der TU Dortmund, 2015.

[73] Nathan Marz: A Storm is coming, Twitter Blog. https://blog.twitter.com/

2011/a-storm-is-coming-more-details-and-plans-for-release Letzter Zu-
griff: 25.03.2016.

[74] Nathan Marz: Trident: a high-level abstraction for realtime
computation, Twitter Blog. https://blog.twitter.com/2012/

trident-a-high-level-abstraction-for-realtime-computation Letzter Zu-
griff: 25.03.2016.

https://www.linkedin.com/pulse/20140306073407-64875646-big-data-the-5-vs-everyone-must-know
https://www.linkedin.com/pulse/20140306073407-64875646-big-data-the-5-vs-everyone-must-know
http://www.astro.uni-wuerzburg.de/en/research/fact/fact-introduction
http://www.astro.uni-wuerzburg.de/en/research/fact/fact-introduction
https://www.mongodb.org/
https://docs.mongodb.org/manual/crud/
https://docs.mongodb.org/manual/crud/
https://blog.twitter.com/2011/a-storm-is-coming-more-details-and-plans-for-release
https://blog.twitter.com/2011/a-storm-is-coming-more-details-and-plans-for-release
https://blog.twitter.com/2012/trident-a-high-level-abstraction-for-realtime-computation
https://blog.twitter.com/2012/trident-a-high-level-abstraction-for-realtime-computation

LITERATURVERZEICHNIS 173

[75] PostgreSQL Global Development Group: PostgreSQL. http://www.

postgresql.org/ 16.02.16.

[76] Quinlan, J. R.:: Bagging, Boosting, and C4.5. In: AAAI-96 Proceedings, 1996.

[77] RapidMiner: RapidMiner. https://rapidminer.com/ 29.02.16.

[78] Richardson, Leonard und Sam Ruby: RESTful web services. Ö’Reilly Media,
Inc.”, 2008.

[79] Rijsbergen, C. J. Van: Information Retrieval. Butterworth-Heinemann, Newton,
MA, USA, 2nd Auflage, 1979.

[80] Saeys, Yvan, Thomas Abeel und Yves Van de Peer: Robust feature selecti-
on using ensemble feature selection techniques. In: Machine learning and knowledge
discovery in databases, Seiten 313–325. Springer, 2008.

[81] Schowe, Benjamin und Katharina Morik: Fast-ensembles of minimum redun-
dancy feature selection. In: Ensembles in Machine Learning Applications, Seiten 75–
95. Springer, 2011.

[82] Settles, Burr: Active Learning Literature Survey. Computer Sciences Technical
Report, 1648.

[83] Sharma, Mradul, Jitadeepa Nayak, Maharaj Krishna Koul, Smarajit Bose
und Abhas Mitra: Gamma/hadron segregation for a ground based imaging atmo-
spheric Cherenkov telescope using machine learning methods: Random Forest leads.
Research in Astronomy and Astrophysics, 14(11):1491, 2014.

[84] Society, The Internet: Hypertext Transfer Protocol – HTTP/1.1, 1999. http:

//tools.ietf.org/html/rfc2616.

[85] Society, The Internet: The application/json Media Type for JavaScript Object
Notation (JSON), 2006. https://tools.ietf.org/html/rfc4627.

[86] Todorovski, Ljupčo, Peter Flach und Nada Lavrač: Predictive performance
of weighted relative accuracy. Springer, 2000.

[87] TU Dortmund, Fakultät für Informatik: Modulhandbuch Master-Studiengän-
ge Informatik und Angewandte Informatik. http://www.cs.tu-dortmund.de/nps/

de/Studium/Ordnungen_Handbuecher_Beschluesse/Modulhandbuecher/Master_

Inf/gesamtes_Modulhandbuch/Modulhandbuch_MSc_INF_1.pdf, Dezember 2015.

[88] Turatto, Massimo: Classification of supernovae. In: Supernovae and Gamma-Ray
Bursters, Seiten 21–36. Springer, 2003.

http://www.postgresql.org/
http://www.postgresql.org/
https://rapidminer.com/
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc4627
http://www.cs.tu-dortmund.de/nps/de/Studium/Ordnungen_Handbuecher_Beschluesse/Modulhandbuecher/Master_Inf/gesamtes_Modulhandbuch/Modulhandbuch_MSc_INF_1.pdf
http://www.cs.tu-dortmund.de/nps/de/Studium/Ordnungen_Handbuecher_Beschluesse/Modulhandbuecher/Master_Inf/gesamtes_Modulhandbuch/Modulhandbuch_MSc_INF_1.pdf
http://www.cs.tu-dortmund.de/nps/de/Studium/Ordnungen_Handbuecher_Beschluesse/Modulhandbuecher/Master_Inf/gesamtes_Modulhandbuch/Modulhandbuch_MSc_INF_1.pdf

174 LITERATURVERZEICHNIS

[89] Vavilapalli, Vinod Kumar, Arun C. Murthy, Chris Douglas, Sharad
Agarwal, Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe,
Hitesh Shah, Siddharth Seth, Bikas Saha, Carlo Curino, Owen O’Malley,
Sanjay Radia, Benjamin Reed und Eric Baldeschwieler: Apache Hadoop
YARN: Yet Another Resource Negotiator. In: Proceedings of the 4th Annual Sym-
posium on Cloud Computing, SOCC ’13, Seiten 5:1–5:16, New York, NY, USA, 2013.
ACM.

[90] Wagstaff, Kiri, Claire Cardie, Seth Rogers, Stefan Schrödl et al.: Cons-
trained k-means clustering with background knowledge. In: ICML, Band 1, Seiten
577–584, 2001.

[91] Wikipedia: Scalability. https://en.wikipedia.org/wiki/Scalability, 2016.
[Online; accessed 22-February-2016].

[92] Xin, Reynold S, Josh Rosen, Matei Zaharia, Michael J Franklin, Scott
Shenker und Ion Stoica: Shark: SQL and rich analytics at scale. In: Proceedings
of the 2013 ACM SIGMOD International Conference on Management of data, Seiten
13–24. ACM, 2013.

[93] Zhang, Weixiong: Complete Anytime Beam Search. In: Proceedings of the Fifteenth
National/Tenth Conference on Artificial Intelligence/Innovative Applications of Arti-
ficial Intelligence, AAAI ’98/IAAI ’98, Seiten 425–430, Menlo Park, CA, USA, 1998.
American Association for Artificial Intelligence.

[94] Zhou, Zhihua: Ensemble Methods: Foundations and Algorithms. Chapman and
Hall/CRC, 2012.

https://en.wikipedia.org/wiki/Scalability

	I Einführung
	Einleitung
	Anwendungsfall
	Aufbau der Arbeit

	Organisation
	Agiles Projektmanagement
	Probleme Nicht-Agiler Verfahren
	Das Agile Manifest
	Scrum
	Kanban

	Wahl des Verfahrens
	Retrospektive der Umsetzung
	Projekt-Initialisierung
	Meetings
	Abschließende Bewertung

	II Big Data Analytics
	Einführung in Big Data Systeme
	Nutzen von Big Data
	Probleme mit herkömmlichen Ansätzen
	Anforderungen an Big Data Systeme

	Lambda-Architektur
	Batch Layer
	Apache Hadoop
	HDFS
	YARN
	MapReduce

	Apache Spark
	Spark Core
	Spark SQL
	Spark MLlib

	Speed Layer
	Apache Storm
	Storm Topologien
	Storm Cluster

	Apache Trident
	Trident Topologien

	Spark Streaming
	streams-Framework

	Serving Layer
	Datenbanken
	MongoDB
	Elasticsearch
	Cassandra
	PostgreSQL

	RESTful APIs
	Grundlegende Idee
	HTTP
	JSON

	Maschinelles Lernen
	Ensemble Learning
	Bagging
	Boosting
	Fazit

	Clustering und Subgruppenentdeckung
	Clustering
	Subgruppenentdeckung

	Verteiltes Lernen
	Statisches und Inkrementelles Lernen
	Concept Drift und Concept Shift
	Learning with Imbalanced Classes
	Einfluss auf Klassifikatoren
	Bewertung von Klassifikatoren
	Verbesserung von Klassifikatoren

	Feature Selection
	Vorteile
	Problemstellung
	Arten von Algorithmen
	Korrelation als Heuristik
	CFS
	Fast-Ensembles

	Sampling und Active Learning
	Der naive Ansatz
	Re-Sampling
	VLDS-Ada2Boost
	Active Learning

	III Anwendungsfall
	Analyseziele
	Gamma/Hadron-Klassifizierung
	Energie-Abschätzung

	Datenbeschreibung
	FITS-Dateiformat
	Rohdaten
	Monte-Carlo-Daten
	Drs-Daten
	Aux-Daten

	Analyse mit den FACT Tools
	Analysekette
	Datensammlung
	Datenvorverarbeitung
	Datenanalyse

	Grenzen von streams

	IV Architektur und Umsetzung
	Komponenten und Architektur
	Indexierung der Rohdaten
	MongoDB
	Elasticsearch
	PostgreSQL

	Umsetzung der RESTful API
	Design
	Endpunkte
	Rückgabeformate
	Dokumentation

	Implementierung
	Spring Framework
	Filterung

	Erweiterung der Streams-Architektur
	Verteilte Streams-Prozesse mit Spark
	Nebenläufigkeit der Verarbeitung
	XML-Spezifikation verteilter Prozesse
	Verarbeitung der XML-Spezifikation
	Ansatz unter der Spark Core-Engine
	MultiStream-Generatoren

	MLLib in Streams
	XML-Spezifikation von input
	XML-Spezifikation von task & operator
	XML-Spezifikation von pipeline
	XML-Spezifikation von stages
	Umsetzung

	V Evaluation und Ausblick
	Vergleich mit streams
	Performanzgewinn durch verteilte Prozesse
	Probleme verteilter Prozesse unter Spark

	Datenbank-Performance
	Vergleich von PostgreSQL und MongoDB

	Fazit

	VI Benutzerhandbuch
	Vorbereitung eines Clusters
	Ausführung im Cluster
	Verfügbarkeit von Dependencies
	Komfortable Ausführung per Shell-Script

	Abkürzungsverzeichnis
	Abbildungsverzeichnis
	Literaturverzeichnis

