
PG 594: Big Data

– Abschlussbericht –

23. Oktober 2016

Autoren:

Asmi, Mohamed
Bainczyk, Alexander
Bunse, Mirko
Gaidel, Dennis
May, Michael
Pfeiffer, Christian

Schieweck, Alexander
Schönberger, Lea
Stelzner, Karl
Sturm, David
Wiethoff, Carolin
Xu, Lili

Betreuer:

Prof. Dr. Morik, Katharina
Dr. Bockermann, Christian

Blom, Hendrik

Danksagung

Wir danken dem Sonderforschungsbereich 876 für die freundliche
Unterstützung und Bereitstellung des Rechenclusters.

Inhaltsverzeichnis

1 Einleitung 1

1.1 Aufbau der Arbeit . 1

1.2 Anwendungsfall . 2

1.2.1 Datenanalyse . 3

1.3 Analyseziele . 5

1.3.1 Gamma/Hadron-Klassifizierung . 7

1.3.2 Energie-Abschätzung . 8

1.4 Analyse mit den FACT Tools . 8

1.4.1 Analysekette . 8

1.4.2 Grenzen von streams . 10

I Big Data Analytics 11

2 Einführung in Big Data Systeme 13

2.1 Nutzen von Big Data . 14

2.2 Probleme mit herkömmlichen Ansätzen . 14

2.3 Anforderungen an Big Data Systeme . 15

3 Lambda-Architektur 17

3.1 Batch Layer . 20

3.1.1 Apache Hadoop . 20

3.1.2 Apache Spark . 23

3.2 Speed Layer . 28

i

ii INHALTSVERZEICHNIS

3.2.1 Apache Storm . 28

3.2.2 Apache Trident . 30

3.2.3 Spark Streaming . 31

3.2.4 streams-Framework . 34

3.3 Serving Layer . 36

3.3.1 Datenbanken . 36

3.3.2 RESTful APIs . 41

4 Maschinelles Lernen 45

4.1 Ensemble Learning . 47

4.1.1 Bagging . 48

4.1.2 Boosting . 50

4.1.3 Fazit . 51

4.2 Clustering und Subgruppenentdeckung . 51

4.2.1 Clustering . 52

4.2.2 Subgruppenentdeckung . 54

4.3 Verteiltes Lernen . 57

4.3.1 Peer-to-Peer-K-Means . 58

4.3.2 Distributed random forests . 59

4.3.3 Kompression von Entscheidungsbäumen 59

4.4 Statisches und Inkrementelles Lernen . 60

4.5 Concept Drift und Concept Shift . 60

4.6 Learning with Imbalanced Classes . 62

4.6.1 Einfluss auf Klassifikatoren . 63

4.6.2 Bewertung von Klassifikatoren . 63

4.6.3 Verbesserung von Klassifikatoren . 65

4.7 Feature Selection . 66

4.7.1 Vorteile . 67

4.7.2 Problemstellung . 68

4.7.3 Arten von Algorithmen . 69

4.7.4 Korrelation als Heuristik . 70

INHALTSVERZEICHNIS iii

4.7.5 CFS . 71

4.7.6 Fast-Ensembles . 72

4.8 Sampling und Active Learning . 75

4.8.1 Der naive Ansatz . 75

4.8.2 Re-Sampling . 76

4.8.3 VLDS-Ada2Boost . 77

4.8.4 Active Learning . 79

II Architektur und Umsetzung 81

5 Komponenten und Architektur 83

6 Datenbeschreibung 87

6.1 FITS-Dateiformat . 87

6.2 Rohdaten . 88

6.3 Monte-Carlo-Daten . 88

6.4 Drs-Daten . 88

6.5 Aux-Daten . 89

7 Indexierung der Rohdaten 91

7.1 MongoDB . 91

7.2 Elasticsearch . 92

7.3 PostgreSQL . 93

7.4 Auswahl der Datenbank . 93

8 RESTful API 95

8.1 Design . 95

8.1.1 Endpunkte . 95

8.1.2 Rückgabeformate . 96

8.1.3 Dokumentation . 97

8.2 Implementierung . 98

8.2.1 Spring Framework . 98

8.2.2 Filterung . 99

iv INHALTSVERZEICHNIS

8.2.3 Jobs . 105

8.3 Ein Beispiel-Client: Die Web-UI . 111

8.3.1 Single Page Applications . 111

8.3.2 Implementierung . 111

9 Verteilung von Streams-Prozessen 117

9.1 Nebenläufigkeit der Verarbeitung . 117

9.2 XML-Spezifikation verteilter Prozesse . 118

9.3 Verarbeitung der XML-Spezifikation . 119

9.4 Verteilung der Daten . 119

9.5 Verteilte Batch-Prozesse . 120

9.5.1 Daten- und Kontrollfluss . 120

9.5.2 Instanziierung von Streams in den Workern 121

9.6 Verteilte Streaming-Prozesse . 123

9.6.1 Datenfluss . 123

9.6.2 Arbeitsweise der Receiver . 125

10 Einbindung von Spark ML 127

10.1 Spark ML vs. MLlib . 127

10.2 XML-Spezifikation . 130

10.3 Umsetzung . 134

11 Verteilte Ein- und Ausgabe 141

11.1 MultiStream-Generatoren . 141

11.2 REST-Stream . 142

11.2.1 RestFulStream . 142

11.2.2 RestFulMultiStream . 143

11.3 Verteilte CSV-Ausgabe . 144

12 Organisation 147

12.1 Agiles Projektmanagement . 147

12.1.1 Probleme Nicht-Agiler Verfahren . 148

12.1.2 Das Agile Manifest . 148

12.1.3 Scrum . 149

12.1.4 Kanban . 151

12.2 Wahl des Verfahrens . 153

INHALTSVERZEICHNIS v

III Evaluation und Ausblick 155

13 Verteilte Streams-Prozesse 157

13.1 Batch-Prozesse . 157

13.1.1 Rechenleistung . 157

13.1.2 Arbeitsspeicher . 158

13.1.3 Fehlertoleranz und Generalisierbarkeit 158

13.2 Streaming-Prozesse . 159

13.2.1 Rechenleistung . 159

13.2.2 Arbeitsspeicher . 160

13.2.3 Fehlertoleranz . 160

13.3 Performanz der Erweiterungen . 160

13.3.1 Feature Extraction auf MC-Daten 160

13.3.2 Feature Extraction auf Teleskop-Daten 162

14 Modellqualität in Spark ML 165

14.1 Vergleich der Klassifikationsmodelle . 165

14.2 Vergleich der Regressionsmodelle . 168

14.3 Trainingszeit von Modellen . 168

14.4 Einfluss der Waldgröße auf die Modellqualität 170

15 Fazit 175

15.1 Ergebnisse . 175

15.2 Ausblick . 176

15.3 Retrospektive der Organisation . 176

15.3.1 Projekt-Initialisierung . 177

15.3.2 Organisation im ersten Semester . 177

15.3.3 Organisation im zweiten Semester 178

15.3.4 Abschließende Bewertung . 179

vi INHALTSVERZEICHNIS

IV Benutzerhandbuch 181

16 Vorbereitung eines Clusters 183

16.1 Verfügbarkeit von Dependencies . 184

16.2 Starten der REST API & Web-UI . 184

16.2.1 Standard . 185

16.2.2 Docker . 185

17 Shell-Script 187

18 Web-UI 189

18.1 Konfiguration . 189

18.2 Starten und Managen von Jobs . 190

18.3 Schedulen von Jobs . 192

18.4 Testen von Filtern . 193

18.5 Einsehen der REST-API Dokumentation . 194

19 Maschinelles Lernen mit TELEPhANT 195

19.1 Datenaufbereitung . 195

19.2 Modelltraining und Evaluation . 199

19.2.1 Training und Klassifikation . 199

19.2.2 Evaluation . 202

19.2.3 Parameterstudie . 205

19.3 Der TreeParser . 206

19.3.1 Struktur der Lernbäume . 207

19.3.2 Die Parser-Klasse . 208

19.3.3 CombinedTreeFeatures . 208

A Liste der Operatoren 209

B XMLs zum Kapitel ”Modellqualität“ 211

B.1 Experiment 14.1: Vergleich von Klassifikationsmodellen 211

B.2 Experiment 14.4: Parameterstudie zur Waldgröße von Random Forests . . . 214

B.3 Experiment 14.2: Vergleich von Regressionsmodellen 215

B.4 Experiment 14.3: Trainingszeit in Abhängigkeit der Clusterressourcen . . . 218

INHALTSVERZEICHNIS vii

C Liste der referenzierten Software 219

Abkürzungsverzeichnis 221

Abbildungsverzeichnis 225

Literaturverzeichnis 235

Kapitel 1

Einleitung

In der heutigen Welt wird die Verarbeitung großer Mengen von Daten immer wichtiger. Da-
bei wird eine Vielzahl von Technologien, Frameworks und Software-Lösungen eingesetzt,
die explizit für den Big-Data-Bereich konzipiert wurden oder aber auf Big-Data-Systeme
portiert werden können. Ziel dieser Projektgruppe (PG) ist der Erwerb von Expertenwis-
sen hinsichtlich aktueller Tools und Systeme im Big-Data-Bereich anhand einer realen,
wissenschaftlichen Problemstellung. Vom Wintersemester 2015/2016 bis zum Ende des
Sommersemesters 2016 beschäftigte sich diese Projektgruppe mit der Verarbeitung und
Analyse der Daten des durch den Fachbereich Physik auf der Insel La Palma betriebenen
First G-APD Cherenkov Telescope (FACT). Dieses liefert täglich Daten im Terabyte-
Bereich, die mit Hilfe des Clusters des Sonderforschungsbereiches 876 zunächst indiziert
und dann auf effiziente Weise verarbeitet werden müssen, sodass diese Projektgruppe im
besten Falle die Tätigkeit der Physiker mit ihren Ergebnissen unterstützen kann. Wie ge-
nau dies geschehen soll, sei auf den nachfolgenden Seiten genauer beleuchtet - begonnen
mit dem dezidierten Anwendungsfall, unter Berücksichtigung der notwendigen fachlichen
sowie technischen Grundlagen, bis hin zu den finalen Ergebnissen.

1.1 Aufbau der Arbeit

Zunächst beschreiben wir die Grundlagen zum Anwendungsfall und die für uns relevan-
ten Analyseziele der Physiker. Weiterhin werden die bisherigen Ansätze der Physiker zur
Erreichung dieser Ziele und die FACT Tools vorgestellt, mit deren Hilfe die aktuelle Ana-
lysekette durchgeführt wird. Der Rest des Endberichts ist in vier Teile gegliedert.

Der erste Teil befasst sich mit dem Thema Big Data Analytics. Zunächst wird in die Big
Data Thematik eingeführt, wobei nicht nur der Begriff geklärt wird, sondern auch erläutert
wird, welche Herausforderungen Big Data mit sich bringt und warum es sich lohnt, auf die-
se Herausforderungen einzugehen. Danach folgt eine Beschreibung der Lambda-Architektur,

1

2 KAPITEL 1. EINLEITUNG

welche typischerweise für Big Data Anwendungen umgesetzt wird. In den darauffolgen-
den drei Kapiteln wird näher darauf eingegangen, mit welchen Methoden und mit welcher
Software die Architektur verwirklicht werden kann. Abschließend zu diesem Teil folgt eine
Einführung in das maschinelle Lernen.

Der zweite Teil gibt einen Einblick in die Architektur unserer Software und die Umsetzung
derselben. Dazu wird dargestellt, wie wir die Rohdaten mit Hilfe verschiedener Datenban-
ken indexieren, wie die REST-API umgesetzt wird und welche Erweiterungen wir aus
welchen Gründen am streams-Framework vorgenommen haben.

Der dritte Teil widmet sich der Evaluation unserer Software zum Ende der Projektgrup-
pe. Dabei geht es zuerst um die Verbesserungen, die mit einer verteilen Ausführung von
streams-Prozessen möglich sind. Anschließend werden verschiedene Modelle entsprechend
des Anwendungsfalles trainiert und evaluiert. Außerdem fassen wir abschließend zusam-
men, welche Ergebnisse wir in den zwei Semestern der Projektgruppe erzielt haben, und
geben einen kurzen Ausblick über denkbare Erweiterungen.

Das Benutzerhandbuch mit Informationen zur Installation und Ausführung im Cluster
sowie zur Web-Oberfläche und einigen Tipps zum maschinellen Lernen findet sich im
letzten Teil.

1.2 Anwendungsfall

Ein Teilgebiet der Astrophysik ist die Untersuchung von Himmelsobjekten, welche hoch-
energetische Strahlung ausstoßen. Beim Eintritt dieser Strahlung in die Erdatmosphäre
werden Lichtimpulse erzeugt, die sogenannte Cherenkov-Strahlung, welche mithilfe von
Teleskopen aufgezeichnet und analysiert werden können. Ein Teil der Analyse umfasst
das Erstellen von Lichtkurven, welche das emittierte Licht in Relation zur Zeit stellen, so-
dass Eigenschaften des beobachteten Himmelsobjektes hergeleitet werden können. Mithilfe
solcher Kurven können dann unter anderem Supernovae klassifiziert werden [21, 86].

Das auf der kanarischen Insel La Palma aufgebaute FACT dient der Beobachtung dieser
Gammastrahlung im TeV Bereich ausstoßenden Himmelsobjekte. Es setzt sich aus einer
mit 1440 geiger-mode avalanche photodiods (G-APD) Pixel ausgerüsteten Kamera zusam-
men, welche die Cherenkov-Strahlung in der Atmosphäre aufzeichnen kann. Ein Ziel des
FACT Projekts ist es, herauszufinden, ob die G-APD Technologie zur Beobachtung von
Cherenkov-Strahlung eingesetzt werden kann [3].

Cherenkov-Strahlung entsteht, wenn energiereiche geladene Teilchen, z.B. Gammastrah-
lung, die Erdatmosphäre mit sehr hoher Geschwindigkeit durchqueren. Dabei kollidieren
diese Teilchen mit Partikeln der Atmosphäre, wodurch neue geladene Teilchen aus die-
ser Kollision entstehen, welche wiederum Lichtblitze erzeugen und mit weiteren Partikeln

1.2. ANWENDUNGSFALL 3

kollidieren können. Ein solche Kaskade von Kollisionen wird unter anderem als Gamma-
Schauer bezeichnet. Die Lichtblitze können dann von Teleskopen wie dem FACT wahr-
genommen und analysiert werden, um z.B. den Ursprung der kosmischen Teilchen zu
bestimmen (siehe Abbildung 1.1).

Abbildung 1.1: Visuelle Darstellung eines Gamma-Showers (oben links), welcher von Teleskopen
aufgezeichnet wird (unten links) und in Grafiken der einzelnen Aufnahmen dargestellt werden kann
(rechts) [17]

Ein Hauptproblem in diesem Unterfangen ist dabei die Klassifizierung der aufgezeichne-
ten Lichtblitze, denn neben der Cherenkov Strahlung wird durch Hintergrundrauschen das
aufgezeichnete Bild gestört. Die Einteilung der Cherenkov-Strahlung, hervorgerufen durch
die kosmische Gammastrahlung, und des Hintergrundrauschens wird zudem erschwert,
da die beiden Klassen stark ungleichmäßig verteilt sind. Bockerman et al. [17] nennen
hier eine Gamma-Hadron Klassenverteilung von 1:1000 bis 1:10000. Aufgrund dieser stark
ungleichmäßigen Verteilung ist eine sehr große Menge von Daten für eine relevante Klas-
sifizierung erforderlich.

Ein wichtiges Merkmal in der Klassifizierung dieser Daten ist, dass zum Lernen Simu-
lationen der eigentlichen Beobachtungen verwendet werden müssen, da sie selbst keine
Label besitzen. Dazu wird die Cosmic Ray Simulations for Kascade (CORSIKA) [44]
Monte-Carlo-Simulation verwendet, welche für eine Reihe von Eingaben eine statistische
Simulation eines in die Atmosphäre eintreffenden Partikel, wie unter anderem Photonen
und Protonen, berechnet. Die Ausgaben einer solchen Simulation sind dann gelabelt und
können als Trainingsdaten für Lernmodelle verwendet werden.

1.2.1 Datenanalyse

Die Auswertung von Beobachtungen solcher Schauer ist ein schwieriges Unterfangen. Nicht
nur wegen der ungleichmäßigen Verteilung, sondern auch aufgrund der gigantischen Masse

4 KAPITEL 1. EINLEITUNG

an Daten, die analysiert werden muss. Ein mögliches Vorgehen ist dabei, die Daten auf
ein beliebiges verteiltes Dateisystem zu lagern, sodass diese auf Abruf angefordert wer-
den können. Zugriffe auf diesen Daten können dann über Ressourcenmanager, wie unter
anderem TORQUE (Terascale Open-source Resource and QUEue Manager) [1] einer ist,
verteilt werden.

Abbildung 1.2: Beispielhafte Verwaltung mit TORQUE und FhGFS (jetzt BeeGFS)

Diese Vorgehensweise bietet die Möglichkeit, Datenspeicherung und Datenverarbeitung
voneinander zu trennen, hat jedoch den Nachteil, dass die Daten zunächst an die Verar-
beitungsknoten gesendet werden müssen (Abbildung 1.2).

Code-2-Data Ein alternativer Ansatz verfolgt das Ziel, die Datenverarbeitung und -
speicherung miteinander zu kombinieren, wodurch eine performante Verarbeitung der Da-
ten ermöglicht werden kann. Apache bietet mit Hadoop (Kapitel 3.1.1) und Spark (3.1.2)
eine solche Umgebung an.

Abbildung 1.3 zeigt ein mögliches Konzept für die Datenanalyse von gespeicherten Daten
mittels HDFS und Spark. Hierbei wird versucht, die Datenanalyse an die Quelle zu bringen,
sodass keine Daten mehr zeitaufwändig an die jeweiligen Rechenzentren geschickt werden
müssen. Der große Vorteil eines solchen Systems ist, dass zum Einen Daten direkt an den
Quellen bearbeitet werden können, aber gleichzeitig noch die Möglichkeit besteht, Daten
aus benachbarten Knoten anzufordern. Dies wird meist im Falle von Systemausfällen und
Störungen benötigt, um die Fehlertoleranz der Datenanalyse zu verbessern.

Die Verteilung der Aufgaben kann hier zum Beispiel von YARN übernommen werden.

1.3. ANALYSEZIELE 5

Abbildung 1.3: Code-2-Data mit Hadoop und Spark

Gleichzeitig kann eine API entworfen werden, welche die Schnittstelle zwischen Endnutzer
und Datenmanagement herstellt.

1.3 Analyseziele

Alle diese grundlegenden Informationen gingen aus einem Treffen mit einem Repräsentanten
der Physiker hervor, welches zu Beginn unserer Projektgruppe stattfand. Wir machten uns
nicht nur mit den physikalischen Hintergründen bekannt, sondern legten auch gemeinsam
die exakten Analyseziele fest. Im Nachhinein fassten wir das gewonnene Wissen in User
Stories zusammen, welche nicht nur einen Überblick über diese Ziele geben, sondern auch
das Entwickeln von Sprints vorbereiten sollten, so wie sie in Kapitel 12.1.3 über das Pro-
jektmanagement mit SCRUM beschrieben werden. Im Folgenden werden die aus unserer
Sicht wichtigsten Analyseziele zusammengefasst, welche wir mit unserer Software zum
Ende der Projektgruppe ermöglichen wollten.

Durchsuchbarkeit der Events Zuerst ist es wichtig, einen Überblick über die Events
bekommen zu können. Dazu soll man die Events nach ihren Metadaten durchsuchen
können. Mithilfe einer REST-API (zur Beschreibung siehe Unterabschnitt 3.3.2, für un-
sere Umsetzung siehe Kapitel 8) sollen vom Anwender Metadaten spezifiziert werden, zu
denen alle passenden Events zurückgeliefert werden. Damit wird es einfach, alle Events zu
suchen, die beispielsweise in einem kontinuierlichen Zeitintervall liegen.

Normalisierung der Rohdaten Ein weiteres Anliegen ist die Normalisierung der Roh-
daten. Wie man in Kapitel 6.4 nachlesen kann, existiert zu jeder Aufnahmedatei eine
Drs-Datei zur Kalibrierung. Es ist mühsam, zu jeder Aufnahmedatei per Hand die passen-
de Drs-Datei zu finden. Um das System so benutzerfreundlich wie möglich zu gestalten,

6 KAPITEL 1. EINLEITUNG

soll diese Kalibrierung daher selbstständig durchgeführt werden, d.h., die passenden Drs-
Dateien werden automatisch gesucht und gefunden.

Gamma-Hadron-Separation Eine große Aufgabe bilden außerdem die maschinellen
Lernaufgaben. Zum Einen soll die Gamma-Hadron-Separation ermöglicht werden, sodass
aus den aufgezeichneten Teleskopdaten die für die Physiker interessanten Gammastrah-
lungen erkannt und separiert werden können. Dabei ist es wieder praktisch, nach Metada-
ten durchsuchen zu können, um beispielsweise alle Gammastrahlungen einer bestimmten
Region oder eines bestimmten Zeitraumes anzusehen. Da es viele verschiedene Klassifi-
kationsverfahren zur (binären) Klassifikation gibt, sollen in unserer Software Methoden
enthalten sein, mit denen man verschiedene Lernverfahren einfach evaluieren kann, sodass
die Eignung der Verfahren im Bezug auf die Gamma-Hadron-Separation abgeschätzt wer-
den kann. Eine Übersicht mit für uns möglicherweise interessanten Lernverfahren ist in
Kapitel 4 zu finden.

Energieschätzung Zu den Lernaufgaben gehört außerdem die Energieschätzung, bei
welcher die Energie der gefundenen Gammastrahlungen beziehungsweise der darin invol-
vierten Partikel geschätzt wird. Dies soll über eine Graphical User Interface (GUI) oder
eine Application Programming Interface (API) einfach möglich sein, sodass die Schätzung
mit nur einem Mausklick oder einem einfachen Aufruf angestoßen werden kann. Die dabei
entstehenden Ergebnisse sollen sich außerdem grafisch als Lichtkurven darstellen lassen.

Realzeitliche Verarbeitung Eine große Rolle spielt die realzeitliche Einsetzbarkeit
unserer Software. Wenn die Teleskopdaten in Echtzeit gespeichert und weiterverarbeitet
werden, kann vor Ort über mögliche Gammastrahlungen in Echtzeit informiert werden,
um eventuelle weitere Arbeitsschritte auf die Daten anzuwenden, welche Gammastrahlun-
gen enthalten. Dazu gehört unter anderem auch realzeitliches Filtern. Dabei sollen Daten,
die offensichtlich nicht für die Analyse wertvoll sind und auf keinen Fall eine Gammastrah-
lung enthalten, sofort gelöscht werden. Anstatt die Ressourcen zu verbrauchen, sollen diese
Daten gar nicht erst gespeichert und weiterverarbeitet werden. Für möglicherweise inter-
essante Daten soll eine automatische Speicherung und Indexierung erfolgen, sodass dieser
Teil der Arbeit nicht jeden Morgen nach der Aufzeichnung manuell angestoßen werden
muss. Einblicke in realzeitliches Arbeiten und Streamen gibt Abschnitt 3.2.

Instrumenten-Monitoring Mit Hilfe der kürzlich aufgenommenen Daten soll darüber
hinaus Instrumenten-Monitoring betrieben werden. Es soll geprüft werden, ob alle Instru-
mente einwandfrei funktionieren oder ob es Hinweise auf ein Versagen der Technik gibt.
In diesem Fall soll das System die Nutzer vor Ort warnen, sodass eine Reparatur oder ein
Austausch der beschädigten Teile möglichst schnell erfolgen kann.

1.3. ANALYSEZIELE 7

Inkrementelle Ergebnisausgabe Hinzu kommt, dass, abhängig von der Lernaufgabe,
Teilergebnisse abgefragt werden sollen. Möchte der Nutzer nicht die komplette Laufzeit
abwarten, bis das Endergebnis komplett berechnet wurde, kann es sinnvoll sein, das Er-
gebnis während des Rechenprozesses inkrementell zur Verfügung zu stellen, sofern das
Lernverfahren es zulässt. So können schon während der weiteren Verarbeitung erste Hy-
pothesen über die Daten angestellt werden und basierend darauf weitere Entscheidungen
zum Handling der Daten getroffen werden.

Datenexport Für alle Aufgaben ist es außerdem wichtig, dass Dateien und Ergebnisse
exportiert werden können. Dazu zählt nicht nur der möglicherweise komprimierte Export
von Klassifikationsergebnissen, sondern auch der Export von Log-Dateien und Grafiken,
beispielsweise der Lichtkurven, welche bei der Schätzung der Energie entstehen können.

Insgesamt werden viele Forderungen an unsere Software gestellt, welche korrekt und be-
nutzerfreundlich umgesetzt werden müssen. In den folgenden beiden Unterkapiteln wird
kurz beschrieben, welche Methoden zu den Klassifikations- beziehungsweise Regressions-
aufgaben der oben aufgeführten Analyseziele genutzt werden können.

1.3.1 Gamma/Hadron-Klassifizierung

Im Gebiet des maschinellen Lernens gibt es viele unterschiedliche Ansätze zur binären
Klassifizierung von Daten. Im Bereich der Klassifizierung von Gamma- und Hadron-Events
wurden Untersuchungen zu den wohl bekanntesten bereits durchgeführt. Dazu zählen unter
anderem

• Direct selection in the image parameters,

• Random Forest,

• Support Vector Machine (SVM) und

• Artificial Neural Network,

welche von Bock et al. [14] und Sharma et al. [82] näher untersucht wurden, mit dem
Ergebnis, dass der Random Forest die besten Ergebnisse liefert.

Zum Vergleich der jeweiligen Methoden wurden verschiedene Qualitätsmaße verglichen.
Ein wichtiges solches Maß ist der Qualitätsfaktor Q = εγ√

εP
, wobei εγ die Anzahl der

korrekt klassifizierten Gamma-Events und εP die Anzahl der als Gamma klassifizierten
Hadron-Events beschreibt. Der Q-Faktor ist damit vergleichbar mit der statistischen Si-
gnifikanz.

8 KAPITEL 1. EINLEITUNG

1.3.2 Energie-Abschätzung

Ein weiteres Anwendungsgebiet für maschinelles Lernen ist die Abschätzung der Energie
von klassifizierten Gamma-Events. Da mithilfe der Energie viele physikalische Eigenschaf-
ten bestimmt werden können, besteht eine wichtige Aufgabe darin, eine korrekte Energie-
angabe zu erhalten.

Die eigentliche maschinelle Lernaufgabe ist eine typische Regression, bei der ein Modell
gefunden werden muss, welches die Energie basierend auf einer Reihe von Features vor-
hersagen kann. Untersuchungen von Berger et al. [11] besagen, dass bereits das Feature
size für eine gute Einschätzung mithilfe eines Random Forest genügt.

1.4 Analyse mit den FACT Tools

Nachdem die Analyseziele detailliert erläutert wurden, befasst sich dieser Abschnitt mit
den bisherigen Ansätzen der Physiker zur Analyse der Teleskopdaten. Für die Verarbeitung
von Flexible Image Transport System (FITS)-Dateien (siehe Kapitel 6), die mit Hilfe
des FACT-Teleskops aufgenommen werden, wurden die FACT-Tools als Erweiterung des
streams-Frameworks implementiert.

Bei den FACT-Tools [17] wurden Inputs und Funktionalitäten für streams implementiert,
die für die Verarbeitung der Teleskop-Rohdaten notwendig sind. Dabei wurde z.B. ein
Stream fact.io.fitsStream implementiert, der in der Lage ist, eine FITS-Datei von
einem Input zu lesen. Darüber hinaus ermöglichen es die FACT-Tools, eine Datenanalyse
mit allen Schritten, die für die Physiker von Wichtigkeit sind und in diesem Abschnitt
erläutert werden, durchzuführen. Dazu gehören alle Vorverarbeitungsschritte sowie das
Einbinden von Bibliotheken für maschinelles Lernen.

1.4.1 Analysekette

Die von dem FACT-Teleskop erzeugten Daten werden für die Erforschung der Gamma-
strahlen mit verschiedenen Methoden des maschinellen Lernens analysiert. In diesem Ab-
schnitt wird die Analysekette der Daten von der Aufnahme der Daten bis zu den ersten
Ergebnissen der Datenanalyse betrachtet.

Die Datenanalyse kann dabei in drei Schritte unterteilt werden: Datensammlung, Daten-
vorverarbeitung und Datenanalyse.

1.4. ANALYSE MIT DEN FACT TOOLS 9

Datensammlung

Bei dem Eintreten eines Teilchen in die Atmosphäre wird ein Schauer erzeugt. Der Schauer
entsteht durch die Interaktion des Teilchens mit Elementen in der Atmosphäre. Dieser
Schauer strahlt ein Licht aus, das von den Kameras des FACT-Teleskops aufgenommen
wird. Die entstandenen Bilder werden in den FITS-Dateien gespeichert.

Dabei werden nicht nur die Bilder des Schauers gespeichert, sondern auch andere nützliche
Informationen wie zum Beispiel die Rauschfaktoren, die Stärke des Mondlichts und anderer
Lichtquellen etc. Diese Informationen können später bei der Auswertung der Daten von
größter Wichtigkeit sein.

Datenvorverarbeitung

Nach der Datensammlung werden nun die Vorverarbeitungsschritte mithilfe der FACT-
Tools durchgeführt. Darunter fallen zum Beispiel das Imagecleaning, das Kalibrieren der
Daten sowie das Extrahieren von Features.

Unter Imagecleaning versteht man das Filtern der Rauschinformation. Es wird ermittelt,
welche Pixel der Aufnahme überhaupt Teil des Schauers sind. Alle anderen Pixel werden
entfernt. So wird vermieden, dass wertlose Informationen gespeichert werden, die unsere
Datenmenge noch zusätzlich vergrößern.

Um die Daten für maschinelle Lernverfahren aufzubereiten, wird eine Feature-Extraktion
durchgeführt. Dabei werden die bereinigten Bilddaten (Pixelintensitäten) zu numerischen
Merkmalen abstrahiert, wie etwa die Länge und Breite eines ellipsenförmigen Schauers im
Bild. In den FACT-Tools ist die Extraktion einer ganzen Menge von Features implemen-
tiert.

Die FACT-Tools bieten allerdings nicht nur diese Verarbeitungsschritte an, sondern können
je nach Analyseaufgabe auch verschiedene andere Vorverarbeitungsschritte durchführen
[17]. Ist die Datenvorverarbeitung abgeschlossen, kann mit der eigentlichen Datenanalyse
begonnen werden.

Datenanalyse

Die Datenanalyse besteht in unserem Fall aus der Separation der Gamma- und Hadron-
Strahlen sowie der Energie Einschätzung der Gammastrahlen.

Gamma- /Hadron-Separation: Durch das Anwenden von Klassifikationsverfahren,
zum Beispiel RandomForest, können Gamma-Strahlen von anderen Events unterschieden
werden. Die Modelle werden dabei mithilfe der simulierten Daten (Monte-Carlo-Daten)
Abschnitt 6.3 trainiert. Danach werden sie auf die ”echten“ Teleskop-Daten angewendet.

10 KAPITEL 1. EINLEITUNG

Energie-Einschätzung: Mithilfe der Spektrumskurve und den aus der Datenanalyse
gewonnen Informationen kann nun die emittierte Energie vorhergesagt werden.

Datensammeln
(Aufnehmen und speichern)

Vorverarbeitung
(FACT-Tools)

Datenanalyse
(klassifikation und Energie-

Einschätzung)

Abbildung 1.4: Analysekette

Der Ablauf der Analysekette wird in Abbildung 1.4 veranschaulicht.

1.4.2 Grenzen von streams

Das FACT-Teleskop sammelt jede Nacht neue Daten, weshalb die Größe der gesammelten
Daten sehr schnell wächst. Die Analyse dieser Daten ist also ein Big-Data-Problem und
es ist daher nicht sinnvoll, sie auf einem einzelnen Rechner durchzuführen.

Da das streams-Framework von sich aus nicht verteilt ausführbar ist, stößt es deshalb
bei dieser Datenmenge an seine Grenzen. Unsere Experimente haben gezeigt, dass auch
bei Ausführung der FACT-Tools auf einem Rechencluster die einzelnen Prozessoren im-
mer sequentiell ausgeführt wurden. Daher würde eine interne verteilte Ausführung der
Prozessoren vom streams-Framework nicht gewährleistet. Deshalb scheint das streams-
Framework bzw. die FACT-Tools für unsere Aufgabe zunächst ungeeignet.

Die Aufgabe der PG wird von daher sein, eine Erweiterung der FACT-Tools zu implemen-
tieren, die das Verteilen von Prozessen und somit das Ausführen der FACT-Tools auf einem
Cluster erlaubt. Dies würde es erlauben, die FACT-Tools zur Bearbeitung von großen Da-
tenmengen zu nutzen. Eine solche Erweiterung besteht bereits für Apache Storm, in dieser
PG soll jedoch eine Spark-Erweiterung für die FACT-Tools entwickelt werden.

Teil I

Big Data Analytics

11

Kapitel 2

Einführung in Big Data Systeme

Für den Begriff ”Big Data“ gibt es keine allgemeingültige Definition, vielmehr ist er ein
Synonym für stetig wachsende Datenmengen geworden, die mit herkömmlichen Systemen
nicht mehr effizient verarbeitet werden können. Wird nach Charakteristika von Big Data
gefragt, werden oftmals die 5 Vs [62] zitiert, die in Abbildung 2.1 veranschaulicht sind:

• Volume (Menge) Die Menge an Daten, die produziert werden, steigt in einen Be-
reich, der es für herkömmliche Systeme schwer macht, diese zu speichern und zu
verarbeiten, und auch die Grenzen traditioneller Datenbanksysteme überschreitet.

• Velocity (Geschwindigkeit) Die Geschwindigkeit, mit der neue Daten generiert wer-
den und sich verbreiten, steigt. Um diese (in Echtzeit) zu analysieren, benötigt es
neue Herangehensweisen.

• Variety (Vielfalt) Die Daten stammen nicht mehr nur aus einer oder ein paar weni-
gen, sondern aus einer Vielzahl unterschiedlicher Quellen wie zum Beispiel Sensoren,
Serverlogs und nutzergenerierten Inhalten und sind strukturiert oder unstrukturiert.

• Veracity (Vertrauenswürdigkeit) Bei der Menge an produzierten Daten kann es
passieren, dass sie Inkonsistenzen aufweisen, unvollständig oder beschädigt sind. Bei
der Analyse gilt es, diese Aspekte zu berücksichtigen.

• Value (Wert) Oftmals werden so viele Daten wie möglich gesammelt, um einen
Gewinn daraus zu schlagen. Dieser kann beispielsweise finanzieller Natur sein oder
darin bestehen, neue Erkenntnisse durch Datenanalyse für wissenschaftliche Zwecke
zu gewinnen.

In erster Hinsicht besteht die Herausforderung nun darin, diese Masse an Daten auf ir-
gendeine Art und Weise zu speichern, verfügbar und durchsuchbar zu machen und effizient
zu analysieren. Die folgenden Abschnitte geben daher einen kurzen Einblick in die Anwen-
dungsgebiete von Big Data, erläutern die Probleme mit herkömmlichen Ansätzen und
beschäftigen sich mit Anforderungen an Big-Data-Systeme.

13

14 KAPITEL 2. EINFÜHRUNG IN BIG DATA SYSTEME

Abbildung 2.1: Veranschaulichung der ersten vier Vs von Big Data. Von links nach rechts:
Volume, Velocity, Variety und Veracity [91]

2.1 Nutzen von Big Data

Der große Nutzen von Big Data besteht in den Ergebnissen der Datenanalyse. Diese können
etwa dazu dienen, um personalisierte Werbung anzuzeigen oder wie in unserem Anwen-
dungsfall um neue, unbekannte Daten zu erkennen und zu klassifizieren. Eine Möglichkeit
der Analyse besteht in der Anwendung maschineller Lernverfahren, dessen Konzepte in
Kapitel 4 vorgestellt werden. Im Kern geht es dabei darum, in Datensätzen Muster und an-
dere Regelmäßigkeiten zu finden. Es liegt nahe, dass, je größer die bestehende Datenmenge
ist, Modelle genauer trainiert werden können, wenn die Daten nicht höchst verschieden
sind. Um große Datenmengen effizient zu analysieren, benötigt es auch hier spezielle Ver-
fahren, die vor allem in Abschnitt 4.3 angesprochen werden und entsprechende Software,
die auf die Analyse von Big Data zugeschnitten ist (s. Abbildung 3.1.2).

2.2 Probleme mit herkömmlichen Ansätzen

Bei einer handelsüblichen Festplatte mit 2 TB Speicher und einer Lesegeschwindigkeit von
im Schnitt 120 MB/s dauert alleine das Lesen der Festplatte ungefähr 4,6 Stunden. Bei
noch größeren Datenmengen und zeitkritischen Analysen ist diese Zeitspanne jedoch nicht
akzeptabel, weshalb Ansätze darauf abzielen, die Daten und Berechnungen auf mehrere
Server zu verteilen, um nur einen Bruchteil dieser Zeit zu benötigen. Ein wichtiger Begriff
in diesem Zusammenhang ist die Skalierbarkeit.

Skalierbarkeit beschreibt die Fähigkeit eines Systems, bestehend aus Soft- und Hardware,
die Leistung durch das Hinzufügen von Ressourcen möglichst linear zu steigern. Generell
unterscheidet man hierbei zwischen vertikaler und horizontaler Skalierbarkeit (s. Abbil-
dung 2.2).

Unter vertikaler Skalierung spricht man dann, wenn sich eine Leistungssteigerung eines
einzelnen Rechners durch mehr Ressourcen, in etwa durch mehr Arbeitsspeicher, Prozes-
sorleistung oder Speicher, ergibt. Ein Nachteil dieses Verfahrens ist seine Kostspieligkeit,
da meistens nur die Anschaffung eines neueren, leistungsstärkeren Systems möglich ist,

2.3. ANFORDERUNGEN AN BIG DATA SYSTEME 15

Abbildung 2.2: Arten der Skalierung

wenn das alte an seine Grenzen stößt. Fürs Big Data Processing ist diese Art der Ska-
lierung somit eher ungeeignet, da es an irgendeinem Punkt nicht mehr möglich ist, sei es
aus technischer Sicht oder aus Gründen der Kosten, mehr Ressourcen in ein System ein-
zuspeisen. Außerdem stellen die einzelnen Komponenten eines vertikalen Systems einen
single-point-of-failure dar. Dies bedeutet, dass der Ausfall einer Komponente den Ausfall
des ganzen Systems nach sich zieht, wodurch etwa komplexe Berechnungen nicht vollendet
werden können.

Im Gegensatz dazu spricht man von horizontaler Skalierung, wenn in ein bestehendes
System weitere Rechner eingespeist werden. Für so einen Cluster wird meistens kostengün-
stige Serverhardware genommen, die über eine schnelle Netzwerkverbindung miteinander
verbunden ist. Ein Beispiel für eine derartige, horizontal skalierbare Architektur stellt die
λ-Architektur dar, die in Kapitel 3 thematisiert wird. In Fällen von Big Data werden
horizontal skalierbare Lösungen bevorzugt, da sie kostengünstiger in der Anschaffung im
Verhältnis zum Datenzuwachs sind und Ressourcen flexibel und je nach Bedarf hinzugefügt
werden können [65, Kap. 1], [93]. Horizontal skalierte Systeme werden im Allgemeinen als
ausfallsicher angesehen, was meistens auf die genutzte Software zurückzuführen ist. Diese
sorgt dafür, dass selbst beim Ausfall von einzelnen Hardwarekomponenten, Knoten oder
im schlimmsten Fall von ganzen Netzwerkpartitionen Berechnungen zum Ende gebracht
werden.

2.3 Anforderungen an Big Data Systeme

Eine derartige Skalierung, wie sie im vorigen Abschnitt beschrieben ist, stellt auch neue
Anforderungen an die Datenmodellierung und an die verwendete Software. Gewünschte
Eigenschaften von Big-Data-Systemen sind unter anderem:

Fehlererkennung und -toleranz In einem verteilten System muss die Annahme gel-

16 KAPITEL 2. EINFÜHRUNG IN BIG DATA SYSTEME

ten, dass zufällig jede beliebige Komponente zu jedem beliebigen Zeitpunkt ausfallen
kann. Mit der Anzahl an Knoten in einem Cluster steigt dieses Risiko. Kann ein sol-
cher Fehler nicht zuverlässig erkannt werden, können Endergebnisse verfälscht oder
nicht produziert werden. Infolgedessen müssen Big-Data-Systeme so konstruiert sein,
dass das Ausfallrisiko oder der Verlust von Daten miteinkalkuliert ist. Um Fehler-
toleranz zu gewährleisten, wird meistens auf eine Kombination aus Datenredundanz
und wiederholter Ausführung von fehlgeschlagenen Teilaufgaben gesetzt. Die Feh-
lererkennung selbst geschieht zumeist auf algorithmischer Basis und soll hier nicht
weiter vertieft werden [57, Kap. 15].

Geringe Latenzen Auch bei Datenmengen im Bereich von mehreren Tera- oder Pe-
tabyte sollen Daten so schnell wie möglich abrufbar sein. Dies wird oft über Da-
tenredundanzen realisiert. Motiviert von der großen Varianz von Daten haben sich
nicht-relationale Datenbanken (s. Abschnitt 7.1, Abschnitt 7.2) etabliert, die eben-
falls verteilt arbeiten, um geringe Latenzen zu garantieren.

Skalierbarkeit Mit steigender Datenmenge soll das System horizontal mitskalieren, in-
dem mehr Ressourcen hinzugefügt werden. Entsprechende Software wie Hadoop &
YARN (Abbildung 3.1.1) muss die neuen Ressourcen entsprechend verwalten und auf
Anwendungen verteilen. Eine skalierbare Architektur für Big-Data-Systeme wird mit
der λ–Architektur in Kapitel 3 präsentiert.

Generalisierbarkeit Ein eigen konzipiertes Big-Data-System für jeden beliebigen An-
wendungsfall ist aus Sicht der Wartbarkeit und Interoperabilität nicht praktikabel.
Die λ-Architektur bietet eine generelle Struktur und mit Software wie MapReduce
(Abbildung 3.1.1) und Spark (Unterabschnitt 3.1.2) lassen sich viele Probleme auf
einheitlicher Basis lösen.

Bei der Datenverarbeitung in Big-Data-Systemen stellen sich neben den erwähnten An-
forderungen noch weitere Herausforderungen. Etwa muss sich die Frage gestellt werden,
wie Daten in einem Cluster verteilt werden, sodass sie möglichst effizient verarbeitet wer-
den können, und wie sich vorhandene Ressourcen für diese Aufgabe möglichst gut nutzen
lassen. Dies soll jedoch nicht Gegenstand dieser Projektgruppe sein, da wir auf bereits
existierende Lösungen setzen, die für diese Probleme Mechanismen integriert haben.

Was uns jedoch beschäftigt, ist die Portierung von bestehenden Softwarelösungen, um ge-
nau zu sein, des streams-Frameworks, auf Big Data Plattformen. Dazu gilt es zum Einen,
bestehenden Code so zu erweitern oder abzuändern, dass er grundsätzlich verteilt aus-
geführt werden kann, und zum Anderen müssen Schnittstellen zur Ausführungsplattform
(Hadoop & Spark) geschaffen und genutzt werden.

Kapitel 3

Lambda-Architektur

Im vorangegangenen Kapitel 1 wurde bereits die Herausforderung motiviert: Datenmengen
in der Größenordnung von Tera- bis Petabyte müssen indiziert, angemessen verarbeitet
und analysiert werden. Bisher wurde im Rahmen der Projektgruppe eine Teilmenge der
Teleskopdaten auf dem verteilten Dateisystem eines Hadoop-Clusters (vgl. Abschnitt 3.1)
abgelegt und für die Verarbeitung herangezogen. Big-Data-Anwendungen zeichnen sich
jedoch nicht nur dadurch aus, dass sie eine große Menge persistierter Daten möglichst
effizient vorhalten, sodass Nutzeranfragen und damit verbundene Analysen zeitnah beant-
wortet werden können. Vielmehr ist auch die Betrachtung von Datenströmen ein essenti-
eller Bestandteil einer solchen Anwendung, um eintreffende Daten in Echtzeit verarbeiten
zu können. Im Folgenden soll verdeutlicht werden, wie eine solche Big-Data-Anwendung
im Sinne der sog. Lambda-Architektur umgesetzt wird.

Motivation Die Problematik besteht in der Vereinigung der persistierten Datenmenge
und der Daten des eintreffenden Datenstroms, der in Echtzeit verarbeitet werden soll.
Auch beansprucht die Beantwortung von Anfragen auf den wachsenden Datenmengen
zunehmend viel Zeit, sodass klassische Architekturansätze an ihre Grenzen kommen.

Bei der Ausführung von Transaktionen sperren relationale Datenbanken bspw. betroffene
Tabellenzeilen oder die komplette Datenbank während der Aktualisierung der Daten, wo-
durch die Performanz und Verfügbarkeit eines Systems vorübergehend reduziert werden.
Der Einfluss dieses Flaschenhalses kann mit Hilfe von Shardingansätzen reduziert werden.

Sharding beschreibt die horizontale Partitionierung der Daten einer Datenbank, sodass
alle Partitionen auf verschiedenen Serverinstanzen (z.B. innerhalb eines Clusters) verteilt
werden, um die Last zu verteilen. Die Einträge einer Tabelle werden somit zeilenweise
auf separate Knoten ausgelagert, wodurch die Indexgröße reduziert und die Performanz
deutlich gesteigert werden kann. Allerdings ist diese Methode auch mit Nachteilen ver-
bunden. Durch den Verbund der einzelnen Knoten zu einem Cluster ergibt sich eine starke
Abhängigkeit zwischen den einzelnen Servern. Die Latenzzeit wird ggf. erhöht, sobald die

17

18 KAPITEL 3. LAMBDA-ARCHITEKTUR

Anfrage an mehr als einen Knoten im Rahmen einer Query gestellt werden muss. Insge-
samt leidet die Konsistenz bzw. die Strapazierfähigkeit des Systems, da die Komplexität
des Systems steigt und somit auch die Anfälligkeit gegenüber Fehlern.

Bisher wurde auf den Einsatz von Sharding verzichtet, obwohl die eingesetzten Datenbank-
systeme (vgl. Kapitel 7) diese Methode unterstützen, da die persistierten und indizierten
Event-Daten und die zugehörige Metadaten noch keine kritische Größe erreicht hatten.

Daraus resultierend ergibt sich die Notwendigkeit einer alternativen Architektur bei der
Verarbeitung von besonders großen Datenmengen im Big-Data-Umfeld.

Architektur Um dem Anspruch der simultanen Verarbeitung von Echtzeitdaten und
der historischen bzw. persistierten Daten gerecht zu werden, hat Nathan Marz die Lambda-
Architektur [65] eingeführt, die einen hybriden Ansatz verfolgt: Es werden sowohl Metho-
den zum Verarbeiten von Batches (also den historischen Daten, vgl. Abschnitt 3.1), als
auch zum Verarbeiten von Streams (Echtzeitdaten, vgl. Abschnitt 3.2) miteinander kombi-
niert. Durch die Anwendung von geeigneten Methoden für den entsprechenden Datensatz
wird eine Ausgewogenheit zwischen der Latenzzeit (latency), dem Durchsatz (throughput)
und der Fehlertoleranz (fault-tolerance) erreicht.

Der Unterschied zu klassischen Ansätzen beginnt bereits beim Datenmodell, welches sich
durch eine unveränderliche Datenquelle auszeichnet, die lediglich durch das Hinzufügen
neuer Einträge erweitert werden kann. Im vorliegenden Fall werden die Events aus den
Teleskopdaten bzw. den FACT-Dateien extrahiert (vgl. Kapitel 6), in die Datenbank
überführt und indiziert (vgl. Kapitel 7).

Allgemein besteht die Lambda-Architektur (Abbildung 3.1) aus drei Komponenten: Batch
Layer (Abschnitt 3.1), Speed Layer (Abschnitt 3.2) und Serving Layer (Abschnitt 3.3).

Abbildung 3.1: Lambda-Architektur [50]

19

Der Batch Layer enthält die dauerhaft gespeicherten Daten in ihrer Gesamtform. Dies
sind zum Einen die auf dem Dateisystem vorliegenden Rohdaten im FITS-Format sowie
die extrahierten Events und ihre zugehörigen Metadaten. Durch die große Menge an Daten,
die durch diesen Layer verwaltet werden, steigen die Latenzzeiten, sodass die Performanz
dieses Layers nicht besonders hoch ist. Während eine Berechnung auf diesem Datenbestand
durchgeführt wird, werden neu hinzugefügte Daten bei der Berechnung nicht betrachtet.
Auch werden entsprechende Ansichten auf den Datenbestand über diese Schicht erstellt
und zur Verfügung gestellt. Wurden neue Daten hinzugefügt, so werden auch die entspre-
chenden Views aktualisiert bzw. neu berechnet.

Der Speed Layer verarbeitet Datenströme in Echtzeit und vernachlässigt den Anspruch
des Batch Layers hinsichtlich der Vollständigkeit und Korrektheit der Ansichten auf die
aktuell verarbeiteten Daten, die von dieser Schicht bereitgestellt werden. Die neu ein-
gelesenen Daten werden temporär zwischengespeichert und stehen zur Ausführung von
Berechnungen bereit. Sobald die temporär gespeicherten Daten des Speed Layers auch im
Batch Layer zur Verfügung stehen, werden diese aus dem Speed Layer entfernt.

Die Komplexität des Speed Layers entsteht durch die Aufgabe, die temporär zwischenge-
speicherten Daten aus dem Datenstrom mit dem bereits persistierten Datenbestand des
Batch Layers zusammenzuführen.

Werden neue Teleskopdaten an den Cluster übergeben, so sollen die Events in Echtzeit
eingelesen und der Prozesskette hinzugefügt werden, um in den anstehenden Analysen
(vgl. Abschnitt 1.4) bereitzustehen.

Der Serving Layer dient als Schnittstelle für Abfragen, die nach erfolgter Berechnung ein
Ergebnis zur Folge haben. Diese Ergebnisse werden aufgrund der hohen Latenz des Batch
Layers zwischengespeichert, um das Ergebnis bei erneuter Abfrage schneller ausliefern zu
können. Dabei werden die ausgewerteten Daten sowohl von Speed- als auch Batch-Layer
indiziert, um die Abfragen zu beantworten.

Eine abgeschlossene Berechnung führt schließlich dazu, dass alle Daten im Serving Layer
mit den neuberechneten ersetzt werden. Dadurch entfallen unnötig komplexe Updateme-
chanismen und die Robustheit gegenüber fehlerhaften Implementierungen werden erhöht.

Um die Events gemäß bestimmten Kriterien bereitzustellen und analysieren zu können,
wird eine REST-Schnittstelle (vgl. Unterabschnitt 3.3.2) zur Verfügung gestellt, über die
die Anwendung u.a. auch von außerhalb angesprochen werden kann.

20 KAPITEL 3. LAMBDA-ARCHITEKTUR

3.1 Batch Layer

Wie im eben beschrieben, werden im Batch-Layer mithilfe eines verteilten Systems große
Mengen an Daten verarbeitet. In diesem Zusammenhang sind während der initialen Se-
minarphase verschiedene Technologien vorgestellt und evaluiert worden. Im Folgenden
werden daher das Ökosystem um Apache Hadoop und Apache Spark vorgestellt, dessen
Konzepte veranschaulicht, Vor- und Nachteile besprochen und die Wahl der später ge-
nutzten Software begründet.

3.1.1 Apache Hadoop

Bei dem Apache-Hadoop-Projekt handelt es sich um ein Open Source Framework, das An-
wendern ermöglicht, schnell eine verteilte Umgebung bereitzustellen, mit der sich Hardware
Ressourcen in einem Rechen-Cluster verwalten und große Mengen an Daten speichern und
verteilt verarbeiten lassen.

Abbildung 3.2: Architektur des Apache Hadoop Projekts [73]

Wie in Abbildung 3.2 zu sehen ist, setzt sich das Projekt aus drei modularen Komponenten
zusammen, dessen Konzepte und Nutzen für unseren Anwendungsfall in den folgenden
Abschnitten thematisiert werden.

HDFS

Für den Storage-Layer in einem Rechnercluster zeichnet sich das Hadoop Distributed File
System (HDFS) verantwortlich und basiert auf dem Google File System [40]. Dieses eignet
sich insbesondere für den Bereich des Data Warehousing, also Einsatzzwecke, wo es darauf
ankommt, eine große Menge an Daten über eine lange Zeit hinweg hoch verfügbar und
ausfallsicher vorzuhalten.

3.1. BATCH LAYER 21

Abbildung 3.3: Funktionsweise eines HDFS Clusters

Der Aufbau eines HDFS-Clusters ist in Abbildung 3.3 illustriert. Wie zu erkennen ist,
werden Daten auf sogenannten Datanodes in gleich großen Blocks gespeichert. Um Aus-
fallsicherheit zu garantieren, besitzt das System einen Replikationsmechanismus, bei dem
Blocks bei Bedarf mehrfach redundant (bestimmt durch einen Replikationsfaktor) auf ver-
schiedenen Datanodes und Racks gespeichert werden. Im Falle eines Ausfalls kann so der
Replikationsfaktor von betroffenen Blöcken durch Neuverteilung im Cluster wiederherge-
stellt werden, vorausgesetzt die nötigen Kapazitäten sind vorhanden.

Beim Namenode handelt es sich um eine dedizierte Einheit, auf der keine Daten gespeichert
werden. Dieser enthält Informationen über den Zustand des Systems, was das Wissen über
den Aufenthaltsort von Blöcken und dessen Replikationen im Cluster beinhaltet. Durch
einen periodisch ausgeführten Heartbeat werden alle Datanodes kontaktiert und aufge-
fordert, einen Zustandsbericht über gespeicherte Daten zu senden. Schlägt ein Heartbeat
mehrmals fehl, gilt der Zielknoten als tot und der beschriebene Replikationsmechanismus
greift ein. Darüber hinaus kann der Namenode selbst repliziert werden, da er sonst einen
single-point-of-failure in diesem System darstellt.

Der Zugriff auf Daten von einem Klienten geschieht je nach dem, welche Operation aus-
geführt werden soll. Bei Leseoperationen einer Datei wird zunächst der Namenode ange-
fragt, da dieser über ein Verzeichnis über alle Daten im Cluster verfügt. Dieser gibt dann
den Ort der angefragten Datei an. Schreiboperationen werden typischerweise direkt auf
den Datanodes durchgeführt. Mittels der Heartbeats wird der Namenode schließlich von
den Änderungen informiert und veranlasst die Replikation der neu geschriebenen Daten.
Weiterhin wird für Klienten eine einfache Programmierschnittstelle angeboten, die die
Verteilung der Daten nach außen hin abstrahiert und somit wie ein einziges Dateisystem
wirkt.

Für die Projektgruppe wurde zu Anfang ein aus sechs Rechnern bestehendes Hadoop-
Cluster vom LS8 mit dem HDFS zur Verfügung gestellt. Im zweiten Semester ist das

22 KAPITEL 3. LAMBDA-ARCHITEKTUR

Projekt auf ein größeres Cluster zwecks mehr Speicherkapazität und Rechenleistung um-
gezogen. Das Dateisystem kommt in unserem Anwendungsfall hauptsächlich für die Persi-
stenz der in Kapitel 6 beschriebenen Teleskopdaten zum Einsatz. Das verteilte Dateisystem
erwies sich bereits als sehr zuverlässig in Bezug auf Ausfallsicherheit [40] und wird in Pro-
duktivsystemen zum Speichern und Verarbeiten mehrerer Petabyte genutzt, womit es eine
solide Grundlage für den Anwendungszweck darstellt.

YARN

Yet Another Resource Allocator (YARN) wirkt als Mittelsmann zwischen dem Ressourcen-
management im Cluster und den Anwendungen, die gegebene Ressourcen für Berechnun-
gen nutzen möchten. Die Architektur setzt sich aus einem dedizierten RessourceManager
(RM) und mehreren NodeManager (NM) zusammen, wobei auf jedem Rechner im Cluster
ein NM läuft. Der RM stellt Anwendungen Ressourcen als sogenannte Container, also logi-
sche, auf einen Rechner bezogene Recheneinheiten zur Verfügung, die den Anforderungen
der Anwendung, wenn möglich, entsprechen. Ein von der Anwendung eingereichter Job
wird dann im Container verarbeitet. Nach Beendigung gibt der RM die Ressourcen wieder
frei.

Aufgrund dieser offenen Struktur sind Ressourcen in einem Hadoop-Cluster nicht nur
für Software aus dem selben Ökosystem zugänglich, sondern können auch von Dritt-
Programmen wie Apache Spark und Apache Storm reserviert und genutzt werden [89].

MapReduce

Bei Hadoop MapReduce handelt es sich um eine YARN-basierte Umgebung zum parallelen
Verarbeiten von Datenmengen in einem Hadoop-Cluster. Die Idee basiert auf einem Ver-
fahren aus der funktionalen Programmierung, bei der es eine map und eine reduce Funktion
gibt. Erstere wird auf jedes Element einer Menge unabhängig voneinander durchgeführt,
die errechneten Ergebnisse mit letzterer Funktion zusammengeführt. MapReduce macht
sich insbesondere die Unabhängigkeit der Daten zunutze, um beide Funktionen massiv
parallel auszuführen, sodass sich folgendes Verfahren ergibt:

(k1, v1) map===⇒ list(k2, v2) group====⇒ (k2, list(v2)) reduce====⇒ list(v2).

Um das Prinzip zu veranschaulichen, kann das Zählen von Events pro Nacht benutzt wer-
den. Rechner, die einen map-Job ausführen (Mapper), erhalten als Eingabe jeweils eine
fits-Datei (s. Kapitel 6), zählen die Events und speichern jeweils eine Liste list(night, 1) als
Zwischenergebnis ab. MapReduce gruppiert die Zwischenergebnisse aller Mapper, was zu
einer Menge von (nighti, list(1, 1, . . .)) führen würde. Rechner, die für den reduce-Funktion

3.1. BATCH LAYER 23

ausgewählt worden sind (Reducer), würden die Zwischenergebnisse zusammenführen und
Daten der Form (nighti, ni) abspeichern, wobei ni die Anzahl aufgenommener Events der
Nacht nighti beschreibt. Es ist anzumerken, dass ,selbst wenn einer der Jobs fehlschla-
gen sollte, der gesamte Prozess nicht abgebrochen, sondern der entsprechende Job ggf.
auf einem anderen Rechner erneut ausgeführt wird. Die Erkennung eines toten Knotens
geschieht durch ständige Statusanfragen des Masters an Mapper und Reducer. In Experi-
menten zeigte sich, dass dieses Prinzip eine hohe Wahrscheinlichkeit für die Terminierung
aufweist [26].

Hadoop MapReduce hat in der Projektgruppe keine Anwendung gefunden, wofür sich zwei
Gründe angeben lassen. Zum Einen haben direkte Vergleiche gezeigt, dass andere Frame-
works wie Apache Spark Vorteile bezogen auf die Performance haben, was auch darauf
zurückzuführen ist, dass bei MapReduce viele Lese- und Schreibzugriffe auf das Spei-
chermedium ausgeführt werden, anstatt Daten im Arbeitsspeicher vorzuhalten. Weiterhin
gestaltet sich die Suche nach einem MapReduce basierten Framework zum verteilten, ma-
schinellen Lernen als schwierig. Zwar existiert mit Apache Mahout eine entsprechende,
ausgereifte Lösung, nach Angaben der Entwickler wird die Entwicklung des Frameworks
sich jedoch aus Gründen der Performance auf Apache Spark konzentrieren.

3.1.2 Apache Spark

Bei Apache Spark handelt es sich um ein Cluster Computing Framework, mit dessen
Hilfe Aufgaben auf mehrere Knoten eines Clusters (Rechnerverbunds) verteilt und somit
parallel verarbeitet werden können. Dies hat einen deutlichen Geschwindigkeitsvorteil ge-
genüber der Berechnung auf einem einzelnen Knoten zur Folge, was insbesondere bei der
Verarbeitung großer Datenmengen deutlich wird. Im Gegensatz zu Apache Hadoop setzt
Apache Spark auf die Vorhaltung und Verarbeitung der Daten im Hauptspeicher und
erzielt so einen Perfomancevorteil, durch den Berechnungen bis zu hundertmal schneller
durchgeführt werden können [94].

Das Framework setzt sich grundlegend aus vier Komponenten zusammen: Spark Core,
Spark SQL, Spark Streaming, GraphX, sowie der MLlib Machine Learning Library. Mit
diesen Komponenten werden somit die essentielle Bestandteile des Projekts (Clustering,
Querying, Streaming und Datenanalyse) prinzipiell abgedeckt, sodass Apache Spark eine
besonders interessante Option als Systemgrundlage darstellt. Ebenso wird eine Vielzahl
an verteilten Dateisystemen unterstützt, wodurch die Anbindung des Frameworks an ver-
schiedene Datenquellen erheblich vereinfacht wird.

24 KAPITEL 3. LAMBDA-ARCHITEKTUR

Spark Core

Spark Core bildet die Grundlage von Apache Spark und ist mitunter für die folgenden
Aufgaben verantwortlich: Speichermanagement, Fehlerbeseitigung, Verteilung der Aufga-
ben an die einzelnen Knoten, das Prozessscheduling und die Interaktion mit verteilten
Dateisystemen.

Ferner definiert Spark Core die Programmierschnittstelle, um auf dem Cluster zu arbei-
ten und Aufgaben zu definieren. Dabei handelt es sich um sog. resilient distributed da-
tasets (kurz: RDDs), die wiederum Listen von einzelnen Elementen repräsentieren, deren
Partitionen auf die einzelnen Knoten verteilt und parallel auf allen Knoten manipuliert
werden können, wie es in Abbildung 3.4 ersichtlich wird. Die Verteilung und die paralle-
le Ausführung der Operationen wird dabei vom Framework selbst übernommen. Dies ist
ein weiterer Vorteil von Apache Spark: Ursprünglich komplexe Aufgaben wie das Verteilen
und parallele Ausführen von Prozessen auf mehreren Knoten werden durch das Framework
vollkommen abstrahiert und somit stark vereinfacht.

Abbildung 3.4: Verteilung der Partitionen eines RDDs auf unterschiedliche Knoten [92]

Die Daten können zum einen, wie bereits erwähnt, aus statischen Dateien eines (verteilten)
Dateisystems bezogen werden oder aber auch aus anderen Datenquellen wie Datenbanken
(MongoDB, HBase, ...) und Suchmaschinen wie Elasticsearch.

Es wird zwischen zwei Arten von Operationen unterschieden, die auf den RDDs ausgeführt
werden können. Transformationen (wie das Filtern von Elementen) haben ein neues RDD
zur Folge, auf dem weitere Operationen ausgeführt werden. Transformationen werden je-
doch aus Gründen der Performanz nicht direkt ausgeführt, sondern erst wenn das finale
Ergebnisse nach einer Reihe von Transformationen ausgegeben werden soll. Diese Technik
wird Lazy Evaluation genannt und bietet den Vorteil, dass die Kette von Transformatio-

3.1. BATCH LAYER 25

nen zunächst einmal vom Framework sinnvoll gruppiert werden kann, um die Scans des
Datensatzes zu reduzieren. Aktionen berechnen (wie das Zählen der Elemente in einem
RDD) ein Ergebnis und liefern dieses an den Master Node zurück oder halten es in einer
Datei auf einem verteilten Dateisystem fest.

Spark SQL

Spark SQL unterstützt die Verarbeitung von SQL-Anfragen, um sowohl die Daten der
RDDs als auch die externer Quellen in strukturierter Form zu manipulieren. Dadurch
wird nicht nur die Kombinationen von internen und externen Datenquellen (JSON, Apa-
che Hive, Parquet, JDBC (und somit u.a. MySQL und PostgreSQL), Cassandra, Elastic-
Search, HBase, u.v.m.) erleichtert, sondern ebenfalls die Persistierung von Ergebnissen,
Parquet-Dateien oder Hive-Tabellen und somit die Zusammenführung mit anderen Daten
ermöglicht.

Eine zentrale Komponente ist das DataFrame, welches an das data frame-Konzept aus der
Programmiersprache R anlehnt und die Daten wie in einer relationalen Datenbank in einer
Tabelle bestehend aus Spalten und Zeilen repräsentiert. Dabei wird dieses DataFrame
analog zu den RDDs dezentral auf die bereitstehenden Knoten verteilt. Analog zu den
RDDs können auf den DataFrames Transformationen, wie map() und filter() aufgerufen
werden, um die Daten zu manipulieren. Technisch gesehen besteht ein DataFrame auf
mehreren Row-Objekten, die zusätzliche Schemainformationen wie z.B. die verwendeten
Datentypen für jede Spalte enthalten.

Hinsichtlich der Performance schickt sich Spark SQL an, aufgrund der höheren Abstraktion
durch SQL und den zusätzlichen Typinformationen besonders effizient zu sein.

Spark MLlib

Da Apache Spark nicht nur zum Ziel hat, Daten effizient zu verteilen, sondern diese auch
zu analysieren, existiert die Bibliothek MLlib als weitere Komponente, um Algorithmen
des maschinellen Lernens auf den eingelesenen Daten ausführen zu können. Dabei werden
prinzipiell nur Algorithmen angeboten, die auch dafür ausgelegt sind, verteilt zu arbeiten.

Allgemein existieren mehrere Arten von Lernproblemen wie Klassifikation, Regression oder
Clustering, deren Lösungen verschiedene Ziele verfolgen. Alle Algorithmen benötigen ei-
ne Menge an Merkmalen für jedes Element, das dem Lernalgorithmus zugeführt wird.
Betrachtet man beispielsweise das Problem der Identifizierung von Spamnachrichten, das
eine neue Nachricht als Spam oder Nicht-Spam klassifizieren soll, so könnte ein Merkmal
z.B. der Server sein, von dem die Nachricht versandt wurde, die Farbe des Texts und wie
oft bestimmte Wörter verwendet wurden.

26 KAPITEL 3. LAMBDA-ARCHITEKTUR

Die meisten Algorithmen sind darauf ausgelegt, lediglich numerische Merkmale zu betrach-
ten, sodass die Merkmale in entsprechende numerische Werte übersetzt beziehungsweise
in entsprechende Vektoren transformiert werden müssen.

Mithilfe dieser Vektoren und einer mathematischen Funktion wird schlussendlich ein Mo-
dell berechnet, um neue Daten zu klassifizieren. Zum Trainieren des Modells wird der
bestehende und bereits klassifizierte Datensatz in einen Trainings- und Testdatensatz auf-
geteilt. Mit Ersterem wird das Modell trainiert und mit Letzterem schließlich die Vorher-
sage evaluiert, wie es in Abbildung 3.5 dargestellt wird.

Abbildung 3.5: Maschinelles Lernen mit Spark MLlib [87]

Mithilfe der von MLlib bereitgestellten Klassen können die Schritte zum Lösen eines Lern-
problems in einer Apache-Spark-Applikation nachvollzogen werden und die Algorithmen
darauf trainiert werden. Auch zur Evaluierung der Vorhersage stellt MLlib entsprechende
Methoden zur Verfügung.

Abbildung 3.6: Pipeline-Struktur von Spark ML

Die MLlib-Bibliothek gliedert sich in zwei Pakete: spark.mllib ist das ursprüngliche Paket,
welches auf Basis der zuvor vorgestellten RDDs arbeitet. Es wird nicht mehr weiterent-
wickelt, allerdings noch unterstützt. spark.ml ist die neue Version, die aktuell weiterent-
wickelt wird. Das Paket arbeitet auf Basis von den in Spark SQL eingeführten DataFrames.
Außerdem werden alle Arbeitsschritte in einer Pipeline zusammengefasst. Eine solche Pi-
peline besteht aus Stages, welche sequentiell ausgeführt werden. Daten werden also von

3.1. BATCH LAYER 27

Stage zu Stage gereicht. Eine Stage kann ein Transformer oder ein Estimator sein. Ein
Transformer implementiert die transform()-Methode, welche einen gegebenen DataF-
rame verändert. Beispiele für typische Transformer ist die Merkmalsselektion oder die
Klassifikation. Ein Estimator implementiert die fit()-Methode, welche ein Modell auf
Basis eines DataFrames trainiert. Das Konzept einer solchen Pipeline ist in Abbildung
3.6 dargestellt, ein konkretes Beispiel liefert Abbildung 3.7. Ein Dokument soll in Worte
zerlegt werden, welche dann in numerische Merkmale überführt werden. Anschließend soll
ein Modell mit Hilfe der logistischen Regression trainiert werden. Die Transformer sind
blau umrandet, der Estimator rot. Generell kann es auch mehrere Estimator in einer Pi-
peline geben. Jeder dieser Lerner wird in der Pipeline auf den Trainingsdaten trainiert.
Wird auf dem Modell, welches aus einer solchen Pipeline hervorgeht, klassifiziert, erhält
der Anwender auch mehrere Klassifikationsergebnisse, nämlich genau eines pro Lerner.

Abbildung 3.7: Konkretes Beispiel für eine Pipeline in Spark ML [6]

Spark MLlib besteht insgesamt aus zwei Paketen: Die ältere Version MLlib, die der Bi-
bliothek den Namen gab, und die neuere Version ML, welche aktuell auch weiterentwickelt
wird. Zu Beginn der Projektgruppe erfolgten einige Experimente, in welchen die Eignung
der beiden Pakete für unsere Zwecke untersucht wurde. Das Ergebnis lässt sich in Ka-
pitel 10 nachlesen. Dort wird außerdem beschrieben, wie die Bibliothek letztendlich in
unsere Software integriert wurde.

28 KAPITEL 3. LAMBDA-ARCHITEKTUR

3.2 Speed Layer

Im Unterschied zum Batch Layer wird mittels eines Speed Layers versucht, sich der echt-
zeitlichen Datenanalyse zu approximieren. Neu eintreffende Daten sollen dabei unmittelbar
nach ihrer Ankunft verarbeitet und an den bzw. die Klienten weitergeleitet werden.

Im Rahmen dieser Projektgruppe wurden Informationen zu gängigen Werkzeugen, die für
die realzeitliche Verarbeitung von Datenströmen infrage kommen, gesammelt, um somit
Stück für Stück den Speed Layer zu entwickeln.

3.2.1 Apache Storm

Apache Storm ist ein Open-Source-Tool, welches zur realzeitlichen Analyse von Daten
genutzt werden kann.

Abbildung 3.8 zeigt eine Übersicht der in Storm vorhandenen Komponenten, Spouts und
Bolts, welche an späterer Stelle näher betrachtet werden. Storm-Aufgaben werden über
gerichtete, azyklische Graphen spezifiziert. Dabei werden die Spouts und Bolts als Knoten
realisiert und die Kanten als Datenstreams zwischen den Knoten. Derartige Aufgaben
werden in Storm als Topologie bezeichnet.

Abbildung 3.8: Beispiel einer Storm Topologie als DAG. Zu sehen sind Spouts (links, erste
Ebene) und Bolts (rechts, ab zweite Ebene) [63]

Storm Topologien

Wie bereits erwähnt, handelt es sich bei Topologien um die Spezifikationen von Storm-
Aufgaben in Graphenform. Sie bestehen aus zwei Knotentypen sowie einer Menge von
Kanten, die als Datenstreams zu verstehen sind und eine endlose Sequenz von Tupeln

3.2. SPEED LAYER 29

darstellen. Abbildung 3.8 zeigt eine solche Beispieltopologie. In diesen Abschnitt werden
die Komponenten nochmals näher betrachtet.

Spout Ein Spout realisiert eine Quelle für Datenstreams und liest im Wesentlichen Ein-
gaben ein, welche er im Anschluss in Form von Datenstreams an die folgenden Knoten
weitergibt. Spouts können als reliable oder unreliable markiert werden, wodurch das Ver-
fahren im Falle eines Lesefehlers festgelegt wird. Wie in Abbildung 3.8 zu sehen ist, kann
ein Spout auch mehr als einen Stream erzeugen.

Bolt Ein Bolt-Knoten dient zur Verarbeitung der Daten in Storm. Ähnlich zum Map-
Reduce Ansatz können über Bolts Filterung, Funktionen, Aggregationen, Joins usw.
durchgeführt werden. Bolts können mehrere Streams einlesen, aber auch ausgeben.

Storm-Cluster

Ein Storm-Cluster hat Ähnlichkeit mit einem Hadoop-Cluster (siehe Unterabschnitt 3.1.1),
unterscheidet sich aber in der Ausführung. Auf Hadoop werden MapReduce Aufgaben
verarbeitet, wohingegen in Storm Topologien ausführt werden. Die Konzepte unterschei-
den sich vor allem darin, dass MapReduce Aufgaben irgendwann enden müssen. Storm-
Topologien werden solange ausgeführt, bis von außen ein ”Stopp“ (kill) gesendet wird.

Knoten im Cluster Innerhalb eines Storm-Clusters existieren zwei Typen von Knoten:
Master Node und Worker Node. Abbildung 3.9 stellt den Aufbau eines solchen Clusters
dar.

Master Node Der Master Node ist verantwortlich für die Verteilung des Codes, die
Fehlerüberwachung und die Aufgabenverteilung. Zu diesem Zweck läuft im Hintergrund
ein Programm namens Nimbus.

Worker-Knoten Die Worker Nodes führen die eigentliche Arbeit aus. Worker sind ver-
teilt auf mehrere Maschinen und führen immer Teile einer Topologie aus. Auf diese Weise
kann eine Topologie auf mehreren Worker verteilt abgearbeitet werden. Auf jedem Worker

Node läuft ein Supervisor Daemon.

Zookeeper Zwischen Master-Knoten und Worker-Knoten gibt es einen Koordinator, der
Zookeeper genannt wird. Alle Zustandsinformationen werden im Zookeeper gespeichert,
sodass es möglich ist, einen laufenden Nimbus oder Supervisor zu stoppen, ohne dass
das ganze Programm angehalten werden muss. Gleichzeitig können die Daemons erneut
gestartet werden und mit ihrer Arbeit von Neuem beginnen.

30 KAPITEL 3. LAMBDA-ARCHITEKTUR

Abbildung 3.9: Aufbau eines Storm Clusters [63]

3.2.2 Apache Trident

Trident ist eine High-Level-Abstraktion auf Basis von Storm und kann als Alternative
zum Storm-Interface verwendet werden. Es ermöglicht die Verarbeitung von vielen Daten
sowie die Verwendung von zustandsbasierter Datenstreambearbeitung. Im Unterschied zu
Storm erlaubt Trident eine exactly-once-Verarbeitung, transaktionale Datenpersistenz und
eine Reihe von verbreiteten Operationen auf Datenstreams, welche sich in 5 Kategorien
unterteilen lassen:

• lokale Operationen ohne Netzwerkbelastung

• Repartitionierung der Daten über das Netzwerk

• Aggregation als Teil einer Operation mit Netzwerkbelastung

• Gruppierung

• Merges und Joins

Trident-Topologien

Trident-Topologien werden mittels eines Compilers in optimale Storm-Topologien kom-
piliert. Abbildung 3.10 zeigt eine Trident-Topologie, welche mit zwei Datenstreams, also
bereits aus Storm bekannten Spouts, initialisiert wird. Diese werden über lokale Opera-
tionen (hier each) bearbeitet und anschließend gruppiert bzw. partitioniert. Der obere
Stream wird anschließend in einen Zustand persistiert, sodass der untere Stream aus Que-

3.2. SPEED LAYER 31

ries Informationen des oberen erhalten und mitverarbeiten kann. Zudem ist zu sehen, dass
mehrere Streams über den join-Operator miteinander kombiniert werden können.

Abbildung 3.10: Beispielhafte Trident Topologie [64]

Abbildung 3.11 stellt die kompilierte Storm-Topologie dar. Dabei werden die Datenstreams
wieder als die bekannten Spouts initialisiert. Damit die kompilierte Topologie maximal op-
timiert wird, müssen Datenübertragungen nur stattfinden, wenn Daten über das Netzwerk
übertragen werden. Aufgrund dessen wurden lokale Operationen in Bolts zusammenge-
fasst. Die Gruppierung und die Partitionierung der Daten sind daher als Teil der Kanten
in der Storm-Topologie und somit als Datenströme zu interpretieren.

3.2.3 Spark Streaming

Als Datenstrom wird ein kontinuierlicher Fluss von Datensätzen bezeichnet, dessen En-
de nicht abzusehen ist. Die Daten werden verarbeitet, sobald sie eintreffen, wobei die
Größe der Menge an Datensätzen, die pro Zeiteinheit verarbeitet wird, nicht festgelegt ist.
Datenströme unterscheiden sich von statischen Daten insofern, als dass die Daten in fe-
ster, zeitlich vorgegebener Reihenfolge eintreffen und nicht an beliebiger Stelle manipuliert
werden können. Die Datenströme werden also nur Satz für Satz fortlaufend (sequentiell)
verarbeitet und lediglich bei ihrem Eintreffen um neue Informationen erweitert.

Mit Spark Streaming steht eine Komponente zur Verarbeitung innerhalb des Apache Spark
Framework bereit, die eine Micro-Batch Architektur implementiert: Streams werden als

32 KAPITEL 3. LAMBDA-ARCHITEKTUR

Abbildung 3.11: Abbildung 3.10 als kompilierte Storm Topologie [64]

eine kontinuierliche Folge von Batchberechnungen aufgefasst, wie es in Abbildung 3.12
dargestellt wird. Neue Batches werden immer in regelmäßigen Abständen erstellt und alle
Daten, die innerhalb eines solchen Intervalls ankommen, werden dem Batch hinzugefügt.
Bei den Batches handelt es sich um die bereits im Abschnitt 3.1.2 eingeführten RDDs.

Spark Streaming unterstützt verschiedenste Eingangsquellen (z.B. Flume, Kafka, HDFS),
für die sog. receiver gestartet werden, die die Daten von diesen Eingangsquellen sammeln
und in RDDs speichern. Im Sinne der Fehlertoleranz wird das RDD im Anschluss auf einen
weiteren Knoten repliziert und die Daten werden im Speicher des Knotens zwischengespei-
chert, wie es auch bei gewöhnlichen RDDs der Fall ist. In periodischen Abständen wird
schließlich ein Spark Job gestartet, um diese RDDs zu verarbeiten und mit den vorange-
gangenen RDDs zu konkatenieren.

Abbildung 3.12: Verarbeitung von Datenströmen zu Batches (Quelle:
https://databricks.com/blog/2015/07/30/diving-into-spark-streamings-execution-model.html)

3.2. SPEED LAYER 33

Auf technischer Ebene baut Spark Streaming auf dem Datentyp DStream auf, der eine
Folge von RDDs über einen bestimmten Zeitraum kapselt, wie es in der Abbildung 3.13
veranschaulicht wird. Ähnlich wie bei den RDDs können DStreams transformiert werden,
woraus neue DStream Instanzen entstehen. Oder es werden die bereitstehenden Ausgabe-
operationen genutzt, um die Daten zu persistieren.

Abbildung 3.13: DStream als Datentyp zur Kapselungen von RDDs (Quelle:
http://www.slideshare.net/frodriguezolivera/apache-spark-streaming)

Um die eingegangenen Daten zu verarbeiten, stehen zwei Arten von Transformationen zur
Verfügung. Mit den zustandslosen Transformationen werden die üblichen Transformatio-
nen wie Mapping oder Filtern bezeichnet. Diese Transformationen werden auf jedem RDD
ausgeführt, das von dem betreffenden DStream gekapselt wird. Die zustandlose Transfor-
mierung ist unahängig von dem vorangegangen Batch, wodurch sie sich von der zustandbe-
hafteten Transformierung unterscheidet. Die zustandsbehaftete Transformation hingegen
baut auf den Daten des vorangegangenen Batches auf, um die Ergebnisse des aktuellen
Batches zu berechnen. Es wird zwischen zwei Typen von Transformationen unterschieden:
Windowed Transformations und UpdateStateByKey Transformation.

Bei den Windowed Transformations wird ein Zeitintervall betrachtet, das über die zeitliche
Länge eines Batches hinausgeht. Es wird also ein Fenster festgelegt, das eine gewisse
Anzahl an Batches umfasst, sodass die entsprechende Berechnung auf den Batches in
diesem Fenster ausgeführt wird. Dieses Fenster wiederum wird immer um ein bestimmtes
Verschiebungsintervall verschoben und die Berechnung erneut ausgeführt.

Die UpdateStateByKey Transformation dient dazu, einen Zustand über mehrere Batches
hinweg zu erhalten. Ist ein DStream bestehend aus (Schlüssel,Event) Tupeln gegeben, so
kann mit dieser Transformation ein DStream bestehend aus (Schlüssel,Zustand) Tupeln
erzeugt werden. Dabei wird, ähnlich wie bei der ReduceByKey Operation, eine Funktion
übergeben, die definiert, wie der Zustand für jeden Schlüssel aktualisiert wird, wenn ein
neues Event eintritt.

Ein Beispiel hierfür wären Seitenbesuche als Events und eine Session- oder Nutzer-ID als
Schlüssel, über den die Seitenbesuche aggregiert werden. Die resultierende Liste bestünde
aus den jeweiligen Zuständen für jeden Nutzer, die wiederum die Anzahl der besuchten
Seiten reflektieren würden.

Spark Streaming stellt demnach ein mächtiges Tool zur Verarbeitung von Datenströmen

34 KAPITEL 3. LAMBDA-ARCHITEKTUR

dar und integriert sich nahtlos in eine bestehende Apache Spark Applikation. Durch
die Unterstützung verschiedenster Datenquellen, insbesondere dem verteilten Dateisystem
HDFS, bietet es sich insbesondere zur Verarbeitung von eingehenden Events in Echtzeit
an.

3.2.4 streams-Framework

Das streams-Framework [16] ist eine in Java entwickelte Bibliothek, welche eingesetzt
werden kann, um Datenströme zu verarbeiten. Die Verarbeitung der Daten wird über
Prozesse geregelt, welche unter anderem für das Klassifizieren der Daten eingesetzt werden
können. Dafür wurde das existierende Softwarepaket Massive Online Analysis (MOA) [12]
integriert und ein Plugin für RapidMiner entwickelt.

Prozesse werden in streams über eine XML Datei spezifiziert. Es können auch eigene Pro-
zesse in Java geschrieben und für die Verarbeitung verwendet werden. Die grundlegenden
Elemente von streams sind <container>, <stream>, <process> und <service>.

Der Container ist der Vater aller weiteren Elemente und definiert den eigentlichen stream

Prozess. Nur Elemente innerhalb eines Container werden ausgeführt.

Abbildung 3.14: Schematischer Aufbau eines Container [15]

Der Stream wird genutzt, um die Quellen der Daten zu definieren. Ein Stream liest einen
Strom von Daten, welcher dann beispielsweise an Prozesse weitergegeben werden kann.

Das Process Element besteht aus einer Reihe von Prozessoren, welche den Strom von
Daten abarbeiten. Dafür wird der Strom in Datenpakte aufgeteilt, welche nacheinander
durch Prozessoren geschoben werden. Prozessoren können die einzelnen Datenpakte lesen,
verändern oder komplett neue erstellen und an die nächsten Prozessoren weitergeben.

Service Elemente erlauben das Abrufen von Funktionen in jeder Phase der Verarbeitung.
Ein Service kann so z.B. dafür eingesetzt werden, um innerhalb eines Prozessors Daten-
bankanfragen zu stellen.

3.2. SPEED LAYER 35

Abbildung 3.15: Funktionsweise eines Stream [15]

Abbildung 3.16: Arbeitsschritte eines Process [15]

36 KAPITEL 3. LAMBDA-ARCHITEKTUR

3.3 Serving Layer

Die letzte Schicht der in diesem Kapitel beschriebenen Lambda-Architektur ist der Serving
Layer. Während der Batch Layer und der Speed Layer sich vor allem um die Verarbeitung
der Daten gekümmert haben, übernimmt diese Schicht die Kommunikation mit den Nut-
zern. Die zugrundeliegenden Daten werden dazu üblicherweise indexiert und gewonnene
Ergebnisse aus den anderen Schichten werden (zwischen-)gespeichert, damit auch größere
Datenmengen und komplexere Anfragen den Anwendern schnell zur Verfügung gestellt
werden können.

Hierzu werden in diesem Abschnitt verschiedene Datenbank-Systeme präsentiert, wobei
ein Schwerpunkt auf sogenannte ”Not only SQL (NoSQL)“-Systeme gelegt wird. Weiterhin
wird das Prinzip eines Service-Interfaces mithilfe einer RESTful API erörtert.

3.3.1 Datenbanken

Für eine spätere Anwendung, die die vom Teleskop erzeugten Daten verarbeiten soll, ist
nicht pragmatisch, jedes Mal die Daten aus den einzelnen Dateien auszulesen. Daher bietet
es sich an, die häufig benötigten Daten in einer Datenbank zu erfassen.

Die verwendete Datenbank muss mit großen Datenmengen zurechtkommen und idealer-
weise erlauben, den Inhalt der Datenbank auf mehrere Knoten im Netzwerk zu verteilen.

Im Folgenden werden daher einige aktuelle Datenbanksysteme vorgestellt und auf ihre
Eignung hin überprüft.

MongoDB

Die MongoDB zählt zu den dokumentenbasierten Datenbanksystemen. Im Gegensatz zu
einer relationalen Datenbank, die Tabellen mit fester Struktur und festen Datentypen
enthält, verwaltet MongoDB Collections von potenziell unterschiedlich strukturierten Do-
kumenten. Dies bedeutet auch, dass Anfragen an die MongoDB nicht per SQL sondern
mit einer eigenen Anfragesprache [70] durchgeführt werden. Somit zählt MongoDB zu den
NoSQL-Datenbanksystemen.

MongoDB unterstützt mehrere Konzepte, die die Verfügbarkeit der Daten und die Skalier-
barkeit der Datenbank begünstigen. Beim Sharding wird eine Collection in mehrere Teile
(Shards) partitioniert, die dann auf jeweils einem Rechner abgelegt werden. Auf diesem
Weg können auch große Datenmengen gespeichert und durchsucht werden.

Dieses Konzept ist in der Datenbank-Community bereits unter dem Namen horizontale
Skalierung bekannt. Horizontale Skalierung steht der bisher oft anzutreffenden vertikalen

3.3. SERVING LAYER 37

Skalierung entgegen, bei der ein einzelner Rechner im Falle von zu geringer Leistung durch
einen einzelnen, leistungsfähigeren Rechner ersetzt wird.

Die Replication erlaubt es, dieselben Daten auf mehreren Rechnern abzulegen. Sollte ein
Rechner nicht verfügbar sein, können Lese- und Schreibanfragen dann auf den verbliebe-
nen Kopien durchgeführt werden. Dadurch bleibt die Verfügbarkeit der Datenbank auch
bei technischen Ausfällen von Teilen des Netzwerks oder einigen Rechnern gewährleistet.
Zusätzlich können Leseanfragen auf die verfügbaren Kopien verteilt werden, sodass die
Latenzen und der Gesamtlesedurchsatz verbessert werden. Allerdings müssen Schreiban-
fragen auf alle Kopien dupliziert werden, sodass ein trade-off zwischen dem Lesedurchsatz
und dem Schreibdurchsatz stattfindet.

Da Sharding und Replication beliebig kombinierbar sind, muss je nach den Anforderungen
des Projekts eine zugeschnittene Feinjustierung vorgenommen werden.

Elasticsearch

Bei Elasticsearch handelt es sich um eine von Shay Bannon im Jahr 2010 entwickelte,
verteilte, hochskalierbare Such-Engine, die auf der Suchmaschine Apache Lucene basiert.
Die Speicherung der Daten erfolgt bei Elasticsearch ebenso wie bei MongoDB dokumen-
tenbasiert, daher bezeichnet man die kleinste durchsuchbare Einheit als document. Jedes
document ist von einem ganz bestimmten type und bildet gemeinsam mit vielen weiteren
documents - oder im Zweifelsfall auch allein - einen Index. Vergleicht man diesen Aufbau
mit jenem herkömmlicher Datenbanken, so lässt sich ein Index mit einer Datenbank, ein
type mit einer Tabelle und ein document mit einer einzelnen Tabellenzeile gleichsetzen.
Jeder Index lässt sich in mehrere sogenannte shards unterteilen, die, falls Elasticsearch
auf mehreren Rechenknoten betrieben wird, auf ebendiese aufgeteilt werden können, um
die Geschwindigkeit sowie bei redundanter Verteilung ebenfalls die Ausfallsicherheit zu
erhöhen. Jeder shard wird intern mittels eines Lucene-Index realisiert.

Elasticsearch kann entweder auf einem oder auf mehreren Rechenknoten, sogenannten
Nodes, betrieben werden. Verwendet man lediglich einen einzigen Node, so bildet dieser
den gesamten Cluster. Werden hingegen mehrere Nodes verwendet, so muss ein Master-
Node spezifiziert werden, der die übrigen Nodes koordiniert und darüberhinaus als Erster
alle Queries entgegennimmt, um sie daraufhin an einen oder mehrere entsprechende andere
Nodes weiterzupropagieren.

Das Formulieren von Suchabfragen an Elasticsearch erfolgt mit Hilfe einer RESTful API,
an welche die jeweilige Query als JSON-Dokument gesendet wird. Die daraufhin erhalte-
ne Response befindet sich ebenfalls im JSON-Format. Für diese RESTful API existiert
zudem eine Unterstützung durch Spring Data, die es ermöglicht, das Formulieren nativer
JSONs zu umgehen und das Stellen von Queries sowie die Verarbeitung der Responses zu
vereinfachen. Dies sei an späterer Stelle genauer erläutert.

38 KAPITEL 3. LAMBDA-ARCHITEKTUR

Es lässt sich also feststellen, dass Elasticsearch geradezu ideal für die Zwecke dieser Pro-
jektgruppe ist, da es verteilt einsetzbar und zudem hochskalierbar ist, was im Bereich
des Big Data unabdingbar ist, und da darüberhinaus eine komfortable Java-Anbindung
gegeben ist, sodass Elasticsearch ohne großen Aufwand in das Projekt integriert werden
kann.

Cassandra

Ein weiteres NoSQL-Datenbanksystem, das sich für die Zwecke dieser Projektgruppe ein-
setzen ließe, ist Apache Cassandra. Dabei handelt es sich um eine hochskalierbare, sehr
ausfallsichere, verteilte Datenbank, die zur Persistierung von Daten eine Kombination aus
Key-Value-Store und spaltenorientiertem Ansatz nutzt. Ersteres bedeutet in grundlegen-
der Form, dass zur Speicherung von Daten nicht wie bei herkömmlichen Datenbanken
Tabellen verwendet werden, sondern jedem zu speichernden Wert (value) ein eindeutiger
Schlüssel (key) zugeordnet wird, mittels dessen auf den entsprechenden Datensatz zuge-
griffen werden kann. Jeder derartige Datensatz wird in einer sogenannten Spalte (column)
abgelegt und mit einem Zeitstempel versehen. Mehrere columns lassen sich - analog zu
einer Tabelle bezogen auf relationale Datenbanken - zu einer column family zusammenfas-
sen. Eine column kann darüber hinaus als super column markiert werden, sodass sie nicht
nur mit Hilfe von Schlüsselwerten, sondern auch anhand der Zeitstempel sortiert werden
kann.

Auf technischer Ebene besteht ein Cassandra-Cluster aus einer Menge von Nodes, die
mittels des Gossip Protocol kommunizieren. Dies funktioniert analog zu der dem Proto-
kollnamen entsprechenden Kommunikation im realen Leben folgendermaßen: Jeder Re-
chenknoten tauscht mit einem oder mehreren ihm bekannten Knoten sein Wissen aus,
welche wiederum auf ebendiese Weise verfahren, bis schließlich alle Nodes denselben Wis-
sensstand besitzen.

Abbildung 3.17: Veranschaulichung des Gossip Protocol [2]

Die Menge der persistierten Datensätze eines sogenannten Keyspace, also einer Menge
von Schlüsselwerten, ist als Ring zu betrachten, für die Verwaltung dessen Teilmengen

3.3. SERVING LAYER 39

jeweils ein Node zuständig ist. Die Zuweisung der Zuständigkeiten erfolgt dabei durch
einen Partitioner. Jeder Cassandra-Cluster besitzt einen oder mehrere Keyspaces, für die
jeweils ein sogenannter Replication Factor festgelegt wird. Dieser bestimmt die Anzahl
verschiedener Rechenknoten, auf denen die Speicherung eines Datensatzes erfolgen muss,
und dient zur Erhöhung der Redundanz und somit der Ausfallsicherheit der Datenbank.

Zur Replikation von Datensätzen existieren zwei verschiedene Ansätze, deren einfachere
Variante in der Simple Replication Strategy besteht. Gemäß dieses Verfahrens wird ein
Datensatz in jeweils einem Knoten gespeichert und daraufhin im Uhrzeigersinn durch eine
dem Replication Factor entsprechende Anzahl von Knoten repliziert. Bei der Network To-
pology Strategy handelt es sich um eine Replikationsstrategie für größere Cluster. In diesem
Fall gilt der Replication Factor pro Datacenter, sodass jeder Datensatz durch eine dem
Replication Factor entsprechende Zahl von Nodes eines anderen Racks, also Teilbereiches,
des Datacenters repliziert werden muss.

Während zur Durchführung einer Read/Write-Operation in der Simple Replication Strat-
egy ein beliebiger Knoten angesprochen und die Daten unmittelbar weiterpropagiert wer-
den können, fungiert der in der Variante der Network Topology Strategy angesprochene
Knoten als Coordinator, der mit den sogenannten Local Coordinators der jeweiligen Data-
centers kommuniziert, welche wiederum dort für ein lokales Weiterpropagieren der Daten
sorgen.

Es ist möglich, das Konsistenzlevel einer Read/Write-Operation festzulegen, indem eine
Anzahl von Knoten bestimmt wird, die dem Coordinator geantwortet haben müssen, bevor
dieser eine Antwort an den die Operation ausführenden Client weitergeben kann. An dieser
Stelle befindet sich ein Schwachpunkt von Cassandra, da mit wachsender Konsistenz die
Geschwindigkeit, mit der eine Operation durchgeführt werden kann, sinkt, eine steigende
Geschwindigkeit jedoch Einbußen in der Konsistenz zur Folge hat.

PostgreSQL

Eine weitere Möglichkeit ist der Einsatz einer klassischen relationalen Datenbank. Eine
solche bietet verschiedene Vorteile:

Mächtige Anfragesprache Das relationale Modell und die damit verbundene Anfrage-
sprache SQL erlaubt die Formulierung von einer Vielzahl von deklarativen Anfra-
gen. Auch komplexe Datenanalysen können von einem relationalen Datenbanksystem
durchgeführt werden, was beispielsweise mit Cassandra aufgrund der restriktiveren
Anfragesprache im Allgemeinen nicht möglich ist.

Jahrzehntelange Optimierung Relationale Datenbanken sind seit Jahrzehnten der Stan-
dard im Datenbankbereich, und dementsprechend hoch entwickelt. Somit können sie

40 KAPITEL 3. LAMBDA-ARCHITEKTUR

architekturbedingte Nachteile unter Umständen durch geschickte Optimierung wett-
machen.

Transaktionssicherer Betrieb Im Gegensatz zu anderen Systemen bieten relationale
Datenbanken eine Vielzahl von Garantien, was die Ausfall- und Transaktionssicher-
heit angeht.

Relationale Datenbanken stehen oft unter dem Ruf, dass diese Vorteile dadurch erkauft
werden, dass die Verarbeitung von sehr großen Datenmengen nicht effizient möglich ist.
In der Tat haben relationale Datenbanken zwei Eigenschaften, die sie für den Big-Data-
Kontext als nicht sehr geeignet erscheinen lassen. Zum Einen verfügen sie über ein starres
Datenbankschema, das genau definiert, welche Typen die Einträge in der Datenbank haben
müssen. Es ist also schwierig, mit nachträglichen Änderungen oder schwach strukturierten
Daten umzugehen. Zum Anderen sind die meisten großen relationalen Datenbanksysteme
auf den Betrieb auf einem einzelnen Rechner ausgelegt. Dies limitiert die Skalierbarkeit
des Systems.

Data Warehousing Es ist allerdings möglich, diese Nachteile ein Stück weit auszu-
gleichen, wenn die Datenbank so konzipiert ist, dass die Ausführung der vorgesehenen
Analysen effizient möglich ist. Dafür bestimmte Prinzipien werden seit den 90er Jahren
unter den Begriffen Data Warehousing und Dimensional Modelling zusammengefasst [53].

Die Essenz dieser Verfahren besteht darin, dass der Fokus, anders als bei herkömmlichen,
auf Normalisierung basierenden Datenbankdesigns, nicht auf der Vermeidung von Redun-
danz, sondern auf der Minimierung des Rechenaufwands für Analyseanfragen liegt. Vor
allem Join-Operationen zwischen großen Tabellen werden zu vermeiden versucht. Um dies
zu erreichen, wird bei dimensionaler Modellierung zwischen zwei Tabellentypen unter-
schieden: Faktentabellen, deren Einträge zu den Ereignissen korrespondieren, die primär
analysiert werden sollen, und deutlich kleineren Dimensionstabellen, die die möglichen
Ausprägungen dieser Ereignisse darstellen. Diese werden üblicherweise sternförmig ange-
ordnet, sodass Joins jeweils immer nur zwischen einer Fakten- und einer Dimensionstabelle
durchgeführt werden müssen. Ein typisches Schema ist in Abbildung 3.18 dargestellt.

Eine Konsequenz dieser Modellierung ist, dass Daten mitunter redundant gespeichert wer-
den. Beispielsweise könnte in einer Dimensionstabelle derselbe String in verschiedenen
Tupeln wiederholt vorkommen. Dies wird in Kauf genommen, um die Analyseperformanz
zu verbessern.

PostgreSQL PostgreSQL wird gemeinhin als das am höchsten entwickelte relationa-
le Open-Source Datenbanksystem betrachtet [28]. Es unterstützt den gesamten SQL-
Standard sowie das ACID-Paradigma zur Transaktionssicherheit. Es ist somit unter den
relationalen Datenbanken die offensichtliche Wahl für den Einsatz in der PG.

3.3. SERVING LAYER 41

Abbildung 3.18: Ein typisches Datenbankschema nach dimensionaler Modellierung, hier am
Beispiel einer Vertriebsdatenbank [53]

PostgreSQL ist zudem attraktiv, weil es JSON als Datentyp unterstützt. JSON-Dokumente
können nicht nur in relationalen Tabellen abgelegt werden, sondern auch über spezielle
Operatoren modifiziert und ausgewertet werden. Dies kann eingesetzt werden, um auch
weniger strukturierte Daten mit PostgreSQL zu verarbeiten.

Ein interessanter Ableger von PostgreSQL ist Postgres-XL. Hierbei handelt es sich um
ein Projekt mit dem Ziel, PostgreSQL für den Betrieb als verteilten Datenbankcluster
zu erweitern. Es führt dazu Mechanismen für Sharding ein, also für das Aufspalten von
Tabellen auf mehrere Clusterknoten. Gleichzeitig bewahrt es die Vorteile von PostgreSQL,
wie zum Beispiel die ACID-Garantien. Für Fälle, in denen die Datenmengen zu groß für
eine einzelne Maschine sind, stellt Postgres-XL eine mögliche Lösung dar.

3.3.2 RESTful APIs

In diesem Abschnitt soll nun gezeigt werden, wie die Indexdaten und zwischengespeicher-
ten Ergebnisse aus den Datenbanken Nutzern zur Verfügung gestellt werden können. Dazu
wird die Idee eines Service-Interfaces verdeutlicht und danach werden die Grundlagen einer
RESTful APIs vorgestellt.

Grundlegende Idee

Mit der weiteren Verbreitung von unterschiedlichen Endgeräten werden die Anforderungen
an Software-Projekte immer komplexer. Reichte es früher aus, nur eine klassische Desktop-
Anwendung bereitzustellen, wird heute auch eine Webseite, eine App usw. gewünscht.
Somit muss die Geschäftslogik an drei oder mehr unterschiedlichen Stellen implementiert
werden. Dies ist offensichtlich alles andere als einfach zu warten und ein Fehler in einer
Anwendung kann die Logik einer anderen beeinträchtigen, da alle auf denselben Daten
arbeiten. Schon seit etlichen Jahren hat es sich in der Praxis als nützlich erwiesen, wenn
die Geschäftslogik und die Anzeige der Daten getrennt voneinander implementiert werden.
Wenn man nun diese Trennung nicht nur intern in einer Anwendung beachtet, sondern die

42 KAPITEL 3. LAMBDA-ARCHITEKTUR

Geschäftslogik zentral auf einem Server bereitstellt und die unterschiedlichen Anwendun-
gen als Clients darauf zugreifen lässt, umgeht man das Problem der verteilten Logik und
kann dennoch für jeden Anwendungsfall die passende Darstellung erzielen.

Darüberhinaus hat es sich in der Praxis bewährt, wenn solche Schnittstellen keine klassi-
schen Sitzungen pro Nutzer haben, sondern Stateless sind. Hierdurch können komplizierte
Mechanismen zur Sitzungsverwaltung und die sonst nötigen großen Zwischenspeicher für
die Sessions entfallen. Somit wird die Implementierung der APIs deutlich einfacher und
die Nutzer dieser Schnittstellen können einem eindeutig definierten Verhalten pro Aufruf,
ohne Blick auf die Sitzungshistorie, vertrauen.

Dabei beschreibt Representational State Transfer (REST) keine festen Regeln oder gar
ein starres Protokoll, sondern ist mehr als eine Liste von Vorschlägen zu verstehen, wie
man eine solche API designen sollte. Hält man sich möglichst genau an diese Vorschläge,
ist es auch für Außenstehende einfacher, sich in eine für sie neue API einzuarbeiten. Auch
wenn die Vorschläge die meisten Anwendungsfälle abdecken, so kann es immer Situationen
geben, in denen es möglicherweise besser ist, den Standard nicht zu beachten. REST ist
somit äußerst flexibel [31, 76].

HTTP

Grundlegend für RESTful APIs ist hierbei die Kommunikation über das Hyper Text Trans-
fer Protocol (HTTP). Dies ist heutzutage möglich, denn fast alle Geräte verfügen über
einen Internetanschluss, der sich als Basis für den Austausch zwischen dem Server und
den Client eignet. Da das HTTP umfangreich ist und sich als ein Standard-Protokoll für
den Austausch von Daten über das Internet etabliert hat, können die nötigen Operatio-
nen darüber abgewickelt werden, ohne das ein neues Protokoll designt und implementiert
werden muss. HTTP ist dabei ein klassisches Client-Server-Protokoll, bei dem die Kom-
munikation immer vom Client aus gestartet wird. HTTP regelt dabei die Syntax und
Semantik der gesendeten Daten und baut auf TCP/IP auf.

HTTP-Anfragen Eine Anfrage an einen HTTP-Server enthält nicht nur die IP-Adresse
des Servers sondern auch einen Server-Pfad, der die gewünschte Ressource näher be-
schreibt. Diese Kombination wird auch als Uniform Resource Locator (URL) bezeichnet.

Neben der URL wird ein Header-Teil mitgeschickt, der zusätzliche Meta- und Zusatz-
Informationen enthält. Dazu können Daten zur Authentifizierung, die gewünschten For-
matierung der Antwort oder auch die Größe des Datenfeldes zählen. Eine der wichtigsten
Header-Informationen ist hierbei die gewünschte Methode, die der Server unter der URL
ausführen soll:

POST Drückt aus, dass die im Body des Request gesendeten Daten erstellt werden sollen.

3.3. SERVING LAYER 43

Code Text Beschreibung
200 OK Drückt aus, dass die Anfrage erfolgreich war.
201 CREATED Wird oft zurück gegeben wenn ein Datensatz

erfolgreich erstellt wurde.
400 BAD REQUEST Die Anfrage konnte nicht vom Server gelesen

werden, da sie falsch formatiert war oder
anders als fehlerhaft erkannt wurde.

404 NOT FOUND Die Anfrage konnte nicht erfolgreich
bearbeitet werden, da die Resource nicht
gefunden wurde.

500 INTERNAL SERVER ERROR Der Server hat intern einen
(schwerwiegenden) Fehler und kann daher
die Anfrage nicht richtig beantworten.

Tabelle 3.1: Übersicht von geläufigen HTTP Status Codes

GET Wird verwendet, wenn Daten vom Server gelesen werden sollen.

PUT Leitet ein Update von schon bestehenden Daten ein.

DELETE Bittet den Server bestimmte Daten zu löschen.

OPTIONS Fragt den Server, welche (anderen) Methoden für eine bestimmte URL zulässig
sind.

Durch diese Methoden werden die grundlegenden Create, Read, Update and Delete (CRUD)-
Operationen unterstützt.

Abschließend kann die Anfrage auch Daten enthalten, welche aus reinem Text bestehen,
jedoch beliebig formatiert sein können. Dies ist besonders bei POST - und PUT -Aufrufen
wichtig, um dem Server die zu erstellenden bzw. zu aktualisierenden Daten mitzuteilen.
Bei GET - und DELETE-Aufrufen bleiben diese Daten zumeist leer.

HTTP-Antworten Die Antwort des Servers enthält auch einen Header-Teil, in dem
der Server bestimmte Meta- und Zusatz-Informationen zurückschickt. Üblicherweise zählen
dazu das Datum und die aktuelle Uhrzeit, die Größe der Antwort im Datenfeld und welches
Format dieses hat. Hierbei spielt der Status Code eine besondere Rolle, da dieser eine
Antwort zu Erfolg, Problemen und Misserfolg der Anfrage liefert (vgl. Tabelle 3.1).

Ähnlich zur Anfrage kann natürlich auch die Antwort Daten enthalten, welche bei allen
Methoden entstehen können. Auch diese Daten sind reiner Text, können jedoch unter-
schiedlich formatiert sein [32].

JSON

Auch wenn es keine vorgeschriebene Art bzw. Formatierung gibt, wie Daten über eine

44 KAPITEL 3. LAMBDA-ARCHITEKTUR

RESTful API ausgetauscht werden sollen, so wird in der Praxis häufig die Extensible
Markup Language (XML) oder die JavaScript Object Notation (JSON) verwendet.

Da beide Optionen relativ ähnlich in ihrer Ausdrucksstärke sind, liegt die Wahl, ob man
eine der beiden oder gar eine dritte Möglichkeit verwendet, beim Designer der Schnitt-
stelle. In früheren APIs wurde stark auf XML gesetzt, sodass viele Anwendungen dieses
auch heute noch bevorzugen. In letzter Zeit ist jedoch ein Trend hin zu JSON zu be-
obachten. Dies liegt darin begründet, dass viele Clients Single-Site-Webapplications sind,
die in JavaScript implementiert wurden und JSON als Teil der JavaScript-Welt so direkt
interpretiert werden kann. Somit bleibt ein aufwändiger und langsamer Parser erspart.
JSON ist darüberhinaus auch noch recht einfach von Menschen zu lesen, sodass auch eine
Interaktion mit der API ohne speziellen Client möglich ist.

Im Kern besteht ein JSON-Dokument aus Key-Value-Paaren, die in Objekten zusammen-
gefasst sind. Der Schüssel dieses Paares ist dabei immer ein Text, während der Wert
unterschiedlichste Typen annehmen kann. Dazu zählen Text, Nummern (ganzzahlig oder
mit Fließkomma), boolsche Werte (true und false), ein Array oder wiederum ein Objekt
[24]. Ein Beispiel für ein solches JSON-Dokument wird in Listing 3.1 gezeigt.

1 {
2 "hello": "world",

3 "true": false,

4 "array": [

5 1, 2, 3

6],

7 "kord": {
8 "x": 1.23,

9 "y": 4.56

10 }
11 }

Listing 3.1: Ein Beispiel für ein JSON Dokument

Kapitel 4

Maschinelles Lernen

Das letzte Kapitel im Teil Big Data Analytics bildet das maschinelle Lernen. Wie in Ka-
pitel 2 erläutert, besteht der Zweck des Umgangs mit den riesigen Datenmengen in der
Analyse. Das bedeutet, dass automatisch erlernt werden soll, wie sich die gegebenen Infor-
mationen verallgemeinern lassen. Dieser Schritt ist wichtig, damit das Erlernte auf neue,
bisher noch nicht betrachtete Daten angewendet werden kann und nicht nur für die be-
reits angeschauten Daten gilt. Die gefundenen Regelmäßigkeiten sollen dementsprechend
ermöglichen, dass automatisiert Erkenntnisse über neue Daten erlangt werden können.
Zuerst soll es in diesem Kapitel um die Grundbegriffe des maschinellen Lernens und die
formalen Konzepte zur Datenanalyse gehen. Die dafür benötigten Grundlagen wurden aus
[72], [96] und [35] zusammengetragen. Anschließend folgen einige vertiefende Abschnit-
te, welche Verfahren diskutieren, die speziell auf Big Data zugeschnitten sind. Schließ-
lich bildet die Analyse von riesigen Datenmengen neue Herausforderungen an maschinelle
Lernverfahren, wie in Kapitel 2 gezeigt wurde.

(Un-)Überwachtes Lernen Man unterscheidet zuerst zwischen überwachtem und un-
überwachten Lernen. Beim überwachten Lernen liegen zusätzlich zu den gesammelten
Daten auch Informationen darüber vor, in welche Klassen oder Kategorien man die Daten
einteilen kann. Genau diese Zuteilung soll zukünftig für neu beobachtete Daten vorherge-
sagt werden. Meistens entsteht die Annotation der vorliegenden Daten mit einer passenden
Klasse durch einen Experten. Beim unüberwachten Lernen hingegen liegen diese Klassen-
informationen zu den gesammelten Daten nicht vor. Mit speziellen Lernverfahren wird
versucht, die vorliegenden Daten in passende Klassen einzuteilen. Die Einteilung basiert
nur auf den in den Daten gefundenen Regelmäßigkeiten und geschieht automatisch. In
den nun folgenden einführenden Worten soll es genau um das überwachte Lernen gehen.
Abschnitt 4.2 beschäftigt sich schließlich mit den Formalien beim unüberwachten Lernen.

Die Lernaufgabe Etwas formaler besteht die Lernaufgabe aus dem Trainieren eines
Modells, welches das gelernte Wissen repräsentieren soll, und aus der Anwendung des

45

46 KAPITEL 4. MASCHINELLES LERNEN

Modells auf neue Daten. Für das Training werden annotierte Trainingsdaten

T = {(~x1, y1), (~x2, y2), ..., (~xN , yN)} ⊂ X × Y

benötigt, wobei X für das gesamte Universum möglicher Daten steht und Y für die Men-
ge an verfügbaren Klassen. Bei einer Klassifikation sind dies endlich viele vorgegebene
Klassen, bei einer Regression sind dies die reellen Zahlen. Jedes Datum besteht aus einem
Vektor ~xi, welcher die Merkmale des individuellen Datums repräsentiert, und aus einer
Annotation yi. Unter einem Merkmal (engl. Feature) versteht man eine für die Vorher-
sage nützliche Größe. Merkmale können direkt physikalisch messbar oder aus messbaren
Größen berechenbar sein. Beispielsweise können für die Klassifizierung von Texten die
Vorkommen bestimmter Wörter (direkt zählbar) oder das Vorkommen von Wortstämmen
(daraus ableitbar) Merkmale darstellen. Die Annotation steht für die Klasse, zu der das
betrachtete Datum gehört. Sie ist essentiell für das überwachte Lernen und den Erfolg der
maschinellen Lernverfahren.

In unserer Projektgruppe fällt mit der Gamma-Hadron-Separation eine typische Klassifika-
tionsaufgabe an. Dabei bilden die durch die Monte-Carlo-Simulation erlangten Daten den
Trainingsdatensatz. Die Klassen sind in unserem Fall Y = {gamma, hadron} und sind An-
notationen solcher Aufnahmen, welche mit Hilfe der Simulation entweder als Gamma- oder
als Hadronstrahlung eingeordnet wurden. Mit diesem Trainingsdatensatz werden maschi-
nelle Lernverfahren trainiert und mit den resultierenden Modellen wollen wir versuchen,
für Rohdaten vorherzusagen, ob in einer Aufnahme eine für die Physiker interessante Gam-
mastrahlung vorliegt oder nicht. Außerdem liegt mit der anschließenden Energieschätzung
für die Partikel einer gefundenen Gammastrahlung eine Regressionsaufgabe vor, welche
ebenfalls mit maschinellen Lernverfahren gelöst werden kann.

Qualitätsmaße Es gibt etliche Lernverfahren, mit denen sich Modelle trainieren lassen.
Um das beste Modell für die Lernaufgabe zu finden, sollte die Generalisierungsleistung des
Modells im Auge behalten werden. Darunter versteht man die Anwendbarkeit auf neue
Daten, für welche die Klasse unbekannt ist. Die sogenannte Fehlklassifikationsrate kann
dazu beitragen, die Generalisierungsleistung eines Modells zu quantifizieren. Häufig werden
Modelle nicht auf dem gesamten verfügbaren Trainingsdatensatz trainiert, sondern es wird
eine Teilmenge der Trainingsdaten zurückgehalten. Diese bilden die Testdaten, welche von
dem trainierten Modell klassifiziert werden. Im Nachhinein können vorhergesagte und
wahre Klasse verglichen werden, um die Fehler dieses Modells auf unbekannten Daten
einschätzen zu können. Um die Fehlklassifikationsrate zuverlässig zu bestimmen, müssten
unendlich viele Testdaten klassifiziert werden, sodass man in der Praxis auf empirische
Schätzungen wie folgende zurückgreift:

ε(h) = Ex∼D[I(h(x) 6= f(x))] [96]

4.1. ENSEMBLE LEARNING 47

wobei h ein trainiertes Modell, Ex∼D[g(x)] der Erwartungswert der Funktion g(x), wenn
x nach D verteilt ist und I(g(x)) die Indikatorfunktion (1, wenn g(x) = true und 0 sonst).
Gewählt wird der Lerner h, welcher den Fehler ε(h) minimiert. Weitere Qualitätsmaße
werden in Unterabschnitt 4.6.2 beleuchtet.

Dieser kurzen Einführung in das maschinelle Lernen folgen nun Vertiefungen. Es werden
Lernverfahren und Techniken beleuchtet, welche sich in der Praxis bewiesen haben und
daher für unsere Projektgruppe interessant sein können. Dabei wird vor allem Wert dar-
auf gelegt, dass diese Techniken für Big Data anwendbar sind. Große Datenmengen sollen
nicht nur schnell bearbeitet werden, es sollen auch die Vorteile eines Rechenclusters ausge-
nutzt werden können. Es soll besonders darauf eingegangen werden, wie sich Lernverfahren
parallelisieren lassen, sodass verteilt gelernt und auch klassifiziert werden kann. Einen wei-
teren Aspekt bilden die inkrementellen Verfahren, bei welchen die Trainingsdaten nicht
zwingend komplett zu Beginn des Trainings vorliegen müssen. Da wir uns mit riesigen
Datenmengen beschäftigen, könnte es ein Vorteil sein, diese Daten nach und nach vom
Lerner unserer Wahl bearbeiten zu lassen. Ein weiteres Problem unserer Trainingsdaten
ist außerdem, dass üblicherweise sehr viele Hadronstrahlungen, aber nur wenige Gamma-
strahlungen vorliegen. Deswegen soll das Lernen mit nicht balancierten Klassen ebenfalls
vertieft werden. Den Abschluss dieses Kapitels bilden Techniken, mit denen die Daten vor
dem Lernen organisiert werden können. Dazu gehört zum Einen die Extraktion von Merk-
malen, welche besonders gut für die Vorhersage der Klassen geeignet ist, zum Anderen
die passende Einteilung in Trainings- und Testdatensätze. Schließlich sollen die trainierten
Modelle zum Schluss evaluiert werden, sodass eine Aussage über deren Qualität möglich
ist.

4.1 Ensemble Learning

Die Idee des Ensemble Learnings ist, auf viele Modelle zurückzugreifen, anstatt sich nur
auf die Vorhersagen eines Modells zu verlassen. Nach Dietterich [27] sind die drei meist-
genannten Gründe für das Nutzen von Ensembles die folgenden:

Statistik Ähnlich unserem realen Leben soll mehreren Expertenmeinungen anstatt nur
einer vertraut werden. Es kann schwierig sein, sich für genau ein Modell zu entschei-
den, welches möglicherweise nur zufällig auf dem gerade genutzten Testdatensatz
die kleinste Fehlerrate hat. Außerdem können durchaus mehrere Modelle mit einer
ähnlich akzeptablen Fehlerrate für den Anwender interessant sein. Im Ensemble soll
nicht strikt ein Modell ausgesucht werden, sondern eine Kombination entstehen.

Berechnung Zum Training einiger Modelle wird eine Optimierung durchgeführt, welche
in lokale Optima enden kann. Trainiert man Modelle von verschiedenen Startpunkten
aus und kombiniert diese, kann es zu einer Verbesserung kommen.

48 KAPITEL 4. MASCHINELLES LERNEN

Repräsentierbarkeit Manchmal kann die gesuchte wahre Funktion nicht von den Mo-
dellen im Hypothesenraum repräsentiert werden. Auch hier kann eine Kombination
von Modellen dazu beitragen, den Raum darstellbarer Funktionen zu vergrößern.

In dieser Einführung wird davon ausgegangen, dass den Modellen dasselbe Lernverfahren
zugrunde liegt. Meist ist dieses Verfahren von recht einfacher Struktur, sodass mehrere
schwache Lerner zu einem starken Lerner durch eine gemeinsame Entscheidungsregel zur
Klassifikation neuer Daten kombiniert werden. Die einfachen Lerner sollen dabei möglichst
verschieden sein, damit eine Kombination erst sinnvoll wird. Um verschiedenartige Lerner
eines gleichen Basisalgorithmus zu erzielen, gibt es verschiedene Ansätze. Im Folgenden
stehen Bagging (insbesondere Random Forests nach [59]) und Boosting (insbesondere Ada-
Boost nach [34]) im Fokus. Neben diesen beiden Quellen wurden auch Grundlagen aus [96],
[27] und [75] über das Ensemble Learning entnommen und können für weitere Informa-
tionen nachgeschlagen werden. Die Grundideen der beiden Ensemble Learning Methoden
sollen erläutert werden, sowie deren möglicher Einsatz in unserer Projektgruppe.

4.1.1 Bagging

Beim Bagging (Bootstrap Aggregation) werden für jeden Lerner Bootstrap-Stichproben
genutzt. Das bedeutet, dass für jeden Lerner neue Trainingsdaten generiert werden, indem
n Beispiele aus den originalen n Beobachtungen mit Zurücklegen gezogen werden. Manche
Beispiele können somit mehrfach in einem Trainingsdatensatz vorkommen, andere gar
nicht.

Ein prominenter Vertreter der Bagging-Methoden ist der Random Forest oder auch
Zufallswald. Der Basislerner zu einem solchen Zufallswald ist ein Entscheidungsbaum,
wie er beispielhaft in Abbildung 4.1 zu sehen ist.

m1 ≥ 5.5

class 1

ye
s

m2 < 2.8

class 2

ye
s

class 3

no

no

Abbildung 4.1: Beispielhafter Entscheidungsbaum

4.1. ENSEMBLE LEARNING 49

Data : Trainingsdatensatz T = {(~x1, y1), (~x2, y2), ..., (~xN , yN)},
Anzahl T der Bäume im Wald,
Anzahl M der Merkmale, die für Splits verwendet werden sollen

Result : T trainierte Entscheidungsbäume, welche den Zufallswald bilden
Ziehe T Bootstrap-Stichproben mit Zurücklegen;
for t = 1, ..., T do

Trainiere einen Baum mit der Bootstrap-Stichprobe t mit folgender
Modifikation: Ziehe zufällig M Merkmale aus den Originalmerkmalen der
Beobachtungen. Für die Splits werden nur diese gezogenen Merkmale
betrachtet.
Entstehender Baum wird nicht gestutzt.

end
Algorithmus 1 : Konstruktion von Zufallswäldern [59]

Die Blätter in einem solchen Baum entsprechen den Klassen, die inneren Knoten entspre-
chen Splits anhand von Merkmalen. Die Splits werden jeweils so gewählt, dass möglichst
viele Beobachtungen getrennt werden können. Es werden so lange neue Splits gewählt, bis
die aktuell betrachtete Beobachtungsmenge nur noch aus einer Klasse stammt.

Jeder Baum im Wald wird mit einer Bootstrap-Stichprobe trainiert. Außerdem werden
für Splits nicht alle Attribute des Trainingsdatensatzes genutzt, sondern nur eine zufällige
Teilmenge. So entstehen möglichst viele verschiedene Entscheidungsbäume, welche zusam-
men den Zufallswald bilden. Die Vorgehensweise für die Konstruktion eines Zufallswaldes
ist in Algorithmus 1 zu sehen.

Neue Daten werden von jedem Baum klassifiziert, anschließend erfolgt ein Mehrheitsent-
scheid. Je mehr Bäume im Wald sind, desto besser für die Klassifikation. Im Gegensatz zu
einem einzelnen Baum besteht das Problem des Overfittings nicht, da für jeden Baum eine
zufällige Teilmenge der Merkmale ausgewählt wird. Führt man dies nicht durch und nimmt
beispielsweise an, dass es zwei Merkmale mit einem sehr starken Beitrag zur Klassentren-
nung gibt, dann würden alle Bäume im Wald genau diese Merkmale für ihre Splits wählen.
Daraus folgt eine starke Korrelation zwischen den Bäumen, was genau zum Overfitting
führt. Wählt man nun aber wie oben beschrieben für jeden Baum eine zufällige Teilmenge
an Merkmalen aus, dann taucht keine starke Korrelation auf und der Mehrheitsentscheid
ist stabil. Außerdem sind Zufallswälder praktisch bei vielen Merkmalen, welche nur einen
kleinen Beitrag zur Klassentrennung liefern und durch diese zufällige Merkmalsauswahl
genau die gleiche Chance, haben für einen Split gewählt zu werden wie andere Merkmale,
welche einen möglicherweise größeren Beitrag liefern.

Für unsere Projektgruppe könnte außerdem von Vorteil sein, dass sowohl Konstruktion
als auch Klassifikation mit Zufallswäldern gut parallelisierbar ist. Die Konstruktion erfolgt
unabhängig von den anderen trainierten Bäumen und die Ergebnisse vieler Bäume auf
verschiedenen Rechnern können am Schluss gemeinsam ausgewertet werden.

Ein Nachteil der Zufallswälder ist allerdings, dass die Verständlichkeit verloren geht, die

50 KAPITEL 4. MASCHINELLES LERNEN

Data : Trainingsdatensatz T = {(~x1, y1), (~x2, y2), ..., (~xN , yN)} mit yi ∈ {−1,+1},
Anzahl T der Lerner und deren Basisalgorithmus

Result : H(~x) = sign
(∑T

t=1 αtht(~x)
)

D1(i) = 1/N als initiale Gewichte;
for t = 1, ..., T do

Trainiere Lerner ht mit Datensatz T und den aktuellen Gewichten in Dt;
Berechne den Fehler εt = Pri∼Dt [ht(~xi) 6= yi] ;

Setze das Gewicht des Basislerners t auf αt = 1
2 ln

(1− εt
εt

)
;

Updaten der Gewichte: Dt+1(i) = Dt(i) · exp(−αtyiht(~xi))
Zt

dabei wird Zt zur Normalisierung genutzt ;
end

Algorithmus 2 : AdaBoost [34]

ein entscheidender Vorteil bei der Wahl von einzelnen Entscheidungsbäumen sein kann.
Durch die grafische Darstellung erschließt sich die Klassifikation auch Laien gut, was bei
einem Zufallswald von 100 oder mehr Bäumen nicht mehr der Fall ist.

4.1.2 Boosting

Beim Boosting werden Gewichte für jedes Trainingsbeispiel eingeführt. Initial werden
Gleichgewichte gewählt, im Laufe des Trainings sollen die ”schwierigen“ Beispiele, wel-
che immer wieder falsch klassifiziert werden, höher gewichtet werden. Entscheidet man
sich im Vorfeld für ein Ensemble aus T einfachen Lernern, so gibt es T Trainingsrunden,
in denen jeweils ein Lerner mit den gewichteten Beispielen trainiert wird. Nach jeder dieser
Runden erfolgt eine Evaluation und Anpassung der Gewichte. Das entstehende Ensemble
wird zugunsten der schwierigen Beobachtungen im Lerndatensatz adaptiert.

Populär ist der Ansatz AdaBoost von Freund und Schapire. Im Folgenden soll die ur-
sprüngliche Version von 1997 für ein Zwei-Klassen-Problem vorgestellt werden, für welche
die Vorgehensweise in Algorithmus 2 abgebildet ist.

Einfache Lerner werden nach ihrer Qualität gewichtet. Ist der Fehler εt < 0.5, so ist das Ge-
wicht αt > 0. Je kleiner der Fehler, desto größer das Gewicht des Lerners. Beobachtungen
werden nach ihrer Schwierigkeit gewichtet. Der neue Wert hängt nach jeder Trainingsrun-
de von dem Term exp(−αtyiht(~xi)) ab. Wenn richtig klassifiziert wurde, ist yiht(~xi) = 1,
dann wird der Term exp(−αt) klein und so auch das neue Gewicht. Wenn allerdings falsch
klassifiziert wurde, ist yiht(~xi) = −1, dann wird der Term exp(αt) groß und das neue
Gewicht ebenso. Nach dem Ablauf aller Trainingsrunden erfolgt die Klassifikation neuer
Daten durch einen gewichteten Mehrheitsentscheid.

Parallelisieren lassen sich Boosting-Ansätze nur schwer, da in jeder Trainingsrunde eine
Abhängigkeit zur vorhergehenden Runde besteht. Außerdem wächst das Risiko des Over-

4.2. CLUSTERING UND SUBGRUPPENENTDECKUNG 51

fitting mit der Anzahl T der Lerner. Die Lerner sollten in der Lage sein, Verteilungen der
Trainingsdaten zu beachten, ansonsten muss der Trainingsdatensatz in jeder Iteration der
Verteilung angepasst werden.

4.1.3 Fazit

Es gab mehrere Versuche, Bagging und Boosting miteinander zu vergleichen. Dietterich
[27] fand heraus, dass AdaBoost viel besser als Bagging-Ensembles abschnitt, sofern die
Trainingsdaten wenig bis kein Rauschen aufwiesen. Sobald jedoch 20% künstliches Rau-
schen hinzugefügt wurde, schnitt AdaBoost plötzlich sehr viel schlechter ab. Quinlan [75]
experimentierte mit unterschiedlichen Lernerzahlen T . Ist T klein, scheint AdaBoost die
bessere Wahl zu sein. Je größer jedoch T wird, desto schlechter wird das Ergebnis der
Boosting-Methode und desto brauchbarer werden Zufallswälder.

Die Ergebnisse lassen sich damit erklären, dass Zufallswälder robust gegen Overfitting sind,
wohingegen AdaBoost eher anfällig dafür ist. Beim Boosting wird zu viel Fokus auf die
schwierigen Beobachtungen gelegt, denn deren Gewicht wird nach jeder Iteration erhöht.
Nach und nach verschwinden die einfachen Beispiele, wodurch Lerner in hohen Trainings-
runden mit einem stark angepassten Trainingsdatensatz arbeiten. Die Konsequenz ist das
Overfitting für große T .

Insgesamt lässt sich sagen, dass Ensembles das Gesamtergebnis erheblich verbessern könn-
en. Die populärsten Verfahren Bagging und Boosting wurden mit ihren Vor- und Nachtei-
len vorgestellt. Für unsere Projektgruppe rücken die Zufallswälder in den Fokus. Sie sind
nicht nur gut parallelisierbar und robust gegenüber Overfitting, sondern werden aktuell
von den Physikern für ihre Klassifikationen verwendet. Daher ist es essentiell für unsere
Anwendung, sich ebenfalls mit Zufallswäldern auseinanderzusetzen und diese Möglichkeit
der Klassifikation im Endprodukt anzubieten.

4.2 Clustering und Subgruppenentdeckung

In diesem Kapitel wird hauptsächlich das unüberwachte Lernen erläutert. Dabei werden
die zwei Lernverfahrensmethoden Clustering und die Subgruppen-Entdeckung erläutert.
Während beim überwachten Lernen Hypothesen gesucht werden, die möglichst gute Vor-
hersagen über bestimmte schon vorgegebene Attribute geben, wird bei unüberwachten
Lernmethoden nach unbekannten Mustern gesucht.

52 KAPITEL 4. MASCHINELLES LERNEN

4.2.1 Clustering

Clustering [49] ist eine unüberwachte Lernmethode. Sie ist die am meisten verwendete
Methode für das Entdecken von Wissen aus einer großen Datenmenge. Bei ihr geht es im
Allgemeinen darum, dass Objekte, die ähnliche Eigenschaften besitzen, in einer Gruppe
zusammengefasst werden. Dabei werden neue Klassen identifiziert. Die einzelnen Gruppen
werden Cluster genannt.

Es gibt verschiedene Arten von Clustering-Verfahren, die sich in ihren algorithmischen
Vorgehensweisen unterscheiden. Dazu zählen:

• Partitionierende Verfahren, z.B. der k-means Algorithmus.

• Hierarchische Verfahren, die entweder bottom-up oder top-down vorgehen.

• Dichtebasierte Verfahren, z.B. der DBSCAN Algorithmus.

• Kombinierte Verfahren, bei welchen Methoden aus den oben vorgestellten Verfahren
kombiniert werden.

Partitionierende Verfahren

Bei den partitionierenden Verfahren muss die Anzahl der gesuchten Klassen bzw. Cluster
am Anfang festgelegt werden. Die Verfahren, die dieser Methodik folgen, starten meistens
mit einem zufälligen Partitionieren der Objekte. Im Laufe der Ausführung wird diese
Partitionierung schrittweise optimiert. Der k-means Algorithmus [90] gehört beispielsweise
zu diesen Verfahren und soll im Folgenden erläutert werden.

Sei ~x = {d1, d2, ..., dn} ein Vektor, der ein Objekt im Merkmalsraum repräsentiert. Die
Distanz zwischen zwei Vektoren ~x und ~y ist durch |~x − ~y| =

√∑n
i=0(xi − yi)2 definiert.

Der Mittelpunkt ~µ einer Menge ci von Vektoren ist durch ~µ = 1
|ci|
∑
~x∈ci

~x definiert. Sei k
die Anzahl der gesuchten Cluster. Am Anfang des Algorithmus wird k entweder zufällig
oder nach der Durchführung eines Optimierungsverfahren festgelegt. Außerdem werden k
Punkte als Cluster-Zentren ausgewählt und die restlichen Objekte dem Cluster mit dem
nächsten Zentrum zugewiesen. Bei jedem Durchlauf des Algorithmus werden die Mittel-
punkte ~µ neu berechnet und die Objekte wieder dem Cluster mit dem nächsten Zentrum
zugewiesen. Es wird immer weiter iteriert, bis alle Cluster stabil sind.

Der k-means Algorithmus ist für numerische Daten gedacht. Er ist effizient und leicht an-
zuwenden. Dagegen hat der Algorithmus gewisse Nachteile, da die Cluster stark von k und
den am Anfang ausgewählten Cluster-Zentren abhängen. Darüberhinaus zeigt der Algo-
rithmus eine Schwäche, wenn die Daten kugelförmig verteilt sind oder große Abweichungen
in Dichte und Größe aufweisen.

4.2. CLUSTERING UND SUBGRUPPENENTDECKUNG 53

Hierarchische Verfahren

Die beliebte Alternative zu den partitionierenden Verfahren sind die hierarchischen Ver-
fahren [23]. Bei ihnen werden die identifizierten Cluster hierarchisch angeordnet. Es wird
ein Baum erzeugt, in dem jeder Elternknoten Zweige mit seinen Teil-Clustern besitzt. Die
Wurzel repräsentiert den Cluster mit allen Objekten (oberste Ebene). Bei der Identifi-
zierung von Clustern unterscheidet man zwei Vorgehensweisen, nämlich bottom-up oder
top-down.

Top-down Clustering auch devisives Clustering genannt. Am Anfang gehören alle
Objekte zu einem Cluster. Dieser wird schrittweise aufgeteilt, bis jeder Cluster nur noch
ein Objekt enthält.

Bottom-up Clustering auch agglomerativ genannt. Bei diesem Verfahren enthält jeder
Cluster am Anfang nur ein Objekt. Danach werden die Cluster im Laufe des Verfahrens
vereinigt.

Dichtebasierte Verfahren

Cluster bestehen grundsätzlich aus Objekten, die dicht aneinander sind. Die dichteba-
sierten Verfahren nutzen diese Eigenschaft aus, um Cluster aufzufinden. Der DBSCAN-
Algorithmus [13] ist ein Vertreter und soll nun genauer betrachtet werden.

Um den DBSCAN-Algorithmus zu veranschaulichen, werden zuerst einige Definitionen
eingeführt. Eine ε-Umgebung definiert die Anzahl der Punkte in einem bestimmten Radius
ε. MinPts ist die Mindestanzahl der Punkte in einer ε- Umgebung. Ein Kernpunkt ist
ein Punkt, der mindestens MinPts in seiner Umgebung hat. Ein Randpunkt ist ein Punkt
in der ε-Umgebung, der kein Kernpunkt ist. Ein Rauschpunkt ist ein Punkt außerhalb
der ε-Umgebung. Zwei Punkte p und q sind Dichte-erreichbar, wenn p ein Kernpunkt
und q in der ε-Umgebung von p ist. Es gibt direkte und indirekte Dichte-Erreichbarkeit.
Wenn p von p1 direkt Dichte-erreichbar ist und p1 ist direkt Dichte-erreichbar von q, dann
ist p indirekt Dichte-erreichbar von q. Aber die andere Richtung gilt nicht.

Die Parameter ε und MinPts werden vor der Ausführung des Algorithmus festgelegt. Sie
können entweder zufällig gewählt oder durch die Anwendung heuristischer Verfahren be-
stimmt werden. Der DBSCAN-Algorithmus iteriert über alle Objekte in der Datenmenge
und wenn ein Objekt noch nicht klassifiziert und das Objekt ein Kernobjekt ist, dann
werden alle von diesem Punkt aus Dichte-erreichbaren Objekte (Punkte) in einem Cluster
zusammengefasst. Wenn dies nicht der Fall ist, dann wird das Objekt als Rauschpunkt
markiert. Es wird solange iteriert, bis alle Punkte betrachtet wurden.

54 KAPITEL 4. MASCHINELLES LERNEN

Kombinierte Verfahren

Man kann die vorgestellten Clustering-Verfahren kombinieren. Das kann nützlich sein, um
Parameter eines anderen Verfahrens zu bestimmen. Zum Beispiel führt man eine hierarchi-
sche Clusteranalyse durch, um die Anzahl k der Cluster zu bestimmen, die man später als
Eingabeparameter an k-means übergibt. Das hat den Vorteil, dass eine optimale Anzahl
von Clustern ermittelt wird. Leider ist dieses Verfahren sehr speicher- und zeitaufwendig,
da zwei Verfahren immer gleichzeitig angewendet werden müssen.

4.2.2 Subgruppenentdeckung

Die bekannteste Methode zur Erkennung von Mustern mit vorgegebenen Eigenschaften ist
die Subgruppenentdeckung. Zum ersten Mal wurde sie von Kloesgen und Wrobel [54, 55]
eingeführt. Die Subgruppenentdeckung [61] liegt zwischen den zwei Bereichen des maschi-
nellen Lernens, da bei der Subgruppenentdeckung die Vorhersage genutzt werden soll, um
eine Beschreibung der Daten zu liefern. Andere Data-Mining-Methoden zur Erkennung
von Mustern sind in [18] zu finden.

Definition der Subgruppenentdeckung

Sei D ein Datensatz, der aus Datenitems ~di besteht. Ein Datenitem ~di = (~a, t) ist ein
Paar aus Attributen {a1, a2, ..., am}, die mit ~a bezeichnet werden, und einem Zielattribut
t. In dieser Arbeit werden die Begriffe Datenitem und Transaktion die gleiche Bedeutung
haben. Das Zielattribut definiert die eingegebene Eigenschaft, für die die Daten erklärt
werden sollen. Das Zielattribut muss binär sein, jedoch hat jedes Attribut am einen Wert
aus einer Domäne dom(A). Die Werte der Attribute können binär, nominal oder numerisch
sein. Beispiele für Domänen sind dom(Am) = {0, 1} , |dom(Am)| ∈ N0 oder dom(Am) = R.
~di wird das i-te Datenitem genannt. Außerdem bezeichnen ~ai und ti den i-ten Vektor
der Attribute und das i-te Zielattribut. Die Größe der Datenmenge wird mit N = |D|
bezeichnet.

Nun benötigt man die Definition einer Regel, um eine Subgruppe definieren zu können.
Eine Regel ist eine Funktion p : P (A) × dom(A) → {0, 1}, wobei P (A) die Potenzmenge
der Attribute darstellt. Mit P bezeichnet man die Menge aller Regeln. Man sagt, eine
Regel p überdeckt einen Datenitem ~di genau dann, wenn p(~ai) = 1 ist. Die Attribute
werden miteinander konkateniert, um ~a zu konstruieren. Eine Regel hat die Form:

Bedingung → Wert der Regel.

Die Bedingung einer Regel ist die Konkatenation von Paaren (Attribut,Wert). Der Wert
der Regel wird das Zielattribut darstellen.

4.2. CLUSTERING UND SUBGRUPPENENTDECKUNG 55

Definition (Subgruppe) Eine Subgruppe Gp ist die Menge aller Datenitems, die von
der Regel p überdeckt werden.

Gp = {~di ∈ D|p(~ai) = 1}

Das Komplement einer Subgruppe G ist Ḡ und enthält alle ~di /∈ G, d.h alle Datenitems,
die von p nicht überdeckt werden. Mit n und n̄ wird die Anzahl der Elemente in G und Ḡ
gekennzeichnet, wobei n = N − n̄.

Die Subgruppenentdeckung arbeitet in zwei Phasen, nämlich dem Auffinden der Kandi-
daten der Regeln sowie dem Bewerten der Regeln. Es werden zuerst Regeln mit einer
kleineren Komplexität (allgemeine Regeln) aufgefunden, von denen im Laufe des Sub-
gruppenentdeckungsprozesses immer komplexere (konkretere) Regeln generiert werden.
Die Komplexität der Regeln ist durch die Anzahl der betrachteten Attribute bedingt.

Zuerst werden Kandidaten mit der Komplexität 1 aufgefunden. Danach werden Kandida-
ten mit höher Komplexität bottom-up generiert. Mit Hilfe einer Qualitätsfunktion werden
die Regeln bewertet.

Qualitätsfunktion

Die Qualitätsfunktion [46, 58] spielt eine wichtige Rolle bei der Subgruppenentdeckung.
Sie bestimmt die Güte der Regeln. Damit kann man die besten Regeln ausgeben.

Definition (Qualitätsfunktion) Eine Qualitätsfunktion ist eine Funktion ϕ: P → R,
die jeder Regel einen Wert (die Güte) zuweist.

Man kann die Auswahl der besten Regeln nach verschiedenen Kriterien treffen. Entweder
werden die Regeln nach ihrer Güte sortiert und dann die besten k Regeln ausgegeben
oder die Ausgabe wird durch einen minimalen Wert der Qualitätsfunktion beschränkt.
Außerdem kann man eine minimale Menge von Regeln mit maximaler Qualität suchen.
Diese Verfahren für die Auswahl der besten Regeln sollen hier nicht weiter betrachtet
werden.

Es gibt viele Qualitätsfunktionen und es ist schwer zu sagen, welche allgemein am be-
sten sind. Die Wahl der Qualitätsfunktionen wird von den Datenanalytikern getroffen.
Entscheiden ist die aktuelle Aufgabe. Im folgenden Abschnitt wird eine Auswahl von Qua-
litätsfunktionen präsentiert.

• Coverage: liefert den Prozentanteil der Elemente der Datenmenge, die von einer Re-
gel überdeckt sind.

Cov(R) = TP+FP
N

mit TP bezeichnet man, wie oft war eine Regel falsch war und richtig vorhergesagt

56 KAPITEL 4. MASCHINELLES LERNEN

wurde. Dagegen gibt FP eine Aussage darüber, wie oft eine Regel wahr war, aber
falsch vorhergesagt wurde.

• Precision: liefert den Anteil der tatsächlichen richtig vorhergesagten Regeln, wenn
die Regel wahr war.

Pr(R) = TP
FP+TP

• Recall: liefert den Anteil aller wahren Regeln, die richtig vorhergesagt wurden, von
allen wahr vorhergesagten Regeln.

Re(R) = TP
TP+FN

wobei FN die Anzahl der falschen Regeln ist, die falsch vorhergesagt wurden.

• Accuracy: liefert den Anteil der richtigen vorhergesagten Regeln von allen Regeln.
Acc(R) = TP+TN

N

• Weighted Relative Accuracy (WRAcc) [84]: Diese Gütefunktion gibt eine Aussa-
ge über die Ausgewogenheit zwischen der Überdeckung und der Genauigkeit einer
Regel. WRAcc ist die am meisten verwendete Qualitätsfunktion bei der Subgrup-
penentdeckung.

WRAcc(R) = Cov(R)
(
TP+FN

N − TP+TN
N

)
wobei TN die Anzahl der falschen Regeln ist, die richtig vorhergesagt wurden. Dieses
Maß wird verwendet, da die einzelne Betrachtung von Accuracy zu falschen Schlüssen
führen könnte.

• F1-Score [77]: das harmonische Mittel von Precision und Recall.
Fsr(R) = 2∗Pr(R)∗Re(R)

Pr(R)+Re(R)

Suchstrategien

Die Anzahl der aufgefundenen Kandidaten bei der Subgruppenentdeckung kann exponen-
tiell wachsen. Das kann beim Generieren der Regeln mit hoher Komplexität einen sehr
hohen Speicher- und Rechenbedarf bedeuten. Deshalb können algorithmische Techniken
eingesetzt werden, die den Suchraum verkleinern. Hierbei kann eine heuristische Suche
durchgeführt werden, z.B. Beam-search [95]. Darüberhinaus kann man zwei Parameter
einstellen, um den Suchraum zu beschränken oder die maximale Komplexität einer Regel
festlegen. Weiterhin kann man nur bestimmte Kandidaten betrachten, beispielsweise die
von einer Qualitätsfunktion am besten bewerteten Regeln.

Fazit

In diesem Kapitel haben wir uns mit maschinellen Lernmethoden, die zu dem unüberwach-
ten Lernen gehören, beschäftigt. Vorgestellt wurden klassische Clustering und Subgrup-
penentdeckung Methoden. Die Methoden erzielen gute Ergebnisse auf kleinen Datenmen-
gen. Für Big Data existieren verschiedene Ansätze, die diese Algorithmen erweitern, da-

4.3. VERTEILTES LERNEN 57

mit sie parallel bzw. verteilt arbeiten. In den folgenden Abschnitten werden diese Ansätze
erläutert.

4.3 Verteiltes Lernen

Eine Grundannahme des maschinellen Lernens ist die vollständige Verfügbarkeit des Da-
tensatzes an einem Ort. Diese Annahme ist in vielen Fällen zutreffend, weil traditionell
Datensätze auf einem leistungsstarken Computer gespeichert und auf Anfrage verarbeitet
werden. Im Laufe der Zeit entstanden aber Anwendungsfälle, die maschinelles Lernen in
einem verteilten Kontext betreiben und unter dem Begriff Verteiltes Lernen zusammenge-
fasst werden. Die prominentesten Vertreter sind wireless sensor networks sowie Rechen-
cluster.

Ein wireless sensor network ist ein Netzwerk aus datenerzeugenden Knoten. Üblicherweise
wird angenommen, dass die einzelnen Knoten eine stark beschränkte Rechenleistung und
Speicher haben. Jeder Knoten verfügt oder generiert z.B. durch Auslesen eines Sensors
einen Teil der gesamten Datenmenge.

Hingegen wird bei Rechenclustern von potenziell hoher Rechenleistung und Speicherka-
pazität ausgegangen. Hier wird die Verteilung genutzt, um sehr große Datensätze zu be-
arbeiten, die auf einem einzelnen Rechner nicht praktikabel gespeichert und verarbeitet
werden können.

Verteiltes Lernen kann somit als Querschnittsdisziplin aus Maschinellem Lernen und Ver-
teilten Systemen verstanden werden und fußt auf den Grundlagen beider Gebiete. So
weisen verteilte Algorithmen einige Besonderheiten auf, die bei sequentiellen Algorith-
men üblicherweise nicht auftreten. Bei ihrem beim Entwurf sollten daher unter anderem
folgende Aspekte [67] berücksichtigt werden:

• Rechenknoten: Gibt es verschiedene Rollen für die Rechenknoten? Ist ein gesonderter
Koordinator-Knoten notwendig? Gibt es ein Minimum oder Maximum für die Zahl
der beteiligten Rechenknoten?

• Nachrichtentypen: Welche Nachrichtentypen sind in welchen Phasen des Algorithmus
erlaubt? Wie muss ein Knoten auf eine Nachricht in Abhängigkeit seines Zustands
reagieren?

• Anforderungen an das Nachrichtentransportsystem: Ist es zum Gelingen des Algo-
rithmus notwendig, dass Nachrichten zuverlässig ankommen?

• Konvergenz: Kann garantiert werden, dass alle Knoten ein gemeinsames Endergebnis
in endlicher Zeit erreichen?

• Terminierungserkennung: Wann ist der Algorithmus beendet? Wie erkennt ein Re-
chenknoten die Terminierung?

58 KAPITEL 4. MASCHINELLES LERNEN

• Netzwerkkosten: Wie viele Nachrichten werden im Worst-Case verschickt und wie
groß ist das Gesamtvolumen der versendeten Daten?

Im Folgenden werden zwei populäre verteilte Lernalgorithmen vorgestellt, nämlich der
Peer-to-Peer-K-Means (auch P2P-K-Means genannt) und Distributed random forests. Ab-
schließend wird auf die Modellkompression mittels Fouriertransformation, ein weiteres
nützliches Verfahren des Verteilten Lernens, eingegangen.

4.3.1 Peer-to-Peer-K-Means

Der P2P-K-Means von Bandyopadhyay et al. [9] ist ein verteilter Lernalgorithmus, der für
wireless sensor networks konzipiert wurde. Er geht davon aus, dass der Datensatz bereits
über die einzelnen Knoten verteilt und ein Verschieben der Daten zu aufwendig ist. Jeder
Knoten durchläuft die folgenden Phasen:

Initialization. Ein herausgehobener Initiator-Knoten setzt den Algorithmus in Gang,
indem er zufällig Startwerte für die K Zentren zieht und diese in einer Initialisierungsnach-
richt an alle Knoten schickt. Da angenommen wird, dass der Initiator selbst auch über eine
Datenpartition verfügt, wechselt er wie alle anderen Knoten in die Computation-Phase.

Computation. Jeder Knoten führt eine Iteration des klassischen k-Means durch (siehe
Unterabschnitt 4.2.1) und erhält neue Positionen für die K Zentren. Dabei wird außerdem
die Größe jedes Clusters in Bezug auf die eigenen Datenpunkte bestimmt. Anschließend
wechselt der Algorithmus in die Polling-Phase.

Polling. Jeder Knoten zieht eine zufällige Auswahl aus allen beteiligten Knoten und
erfragt deren neu ermittelte Zentren und Größen. Es wird gewartet, bis alle Antworten
eingetroffen sind oder ein Timeout eintritt. Dann wird in die Merging-Phase gewechselt.

Merging. Die eigenen Zentren werden mit den Zentren aus den Antworten verglichen,
wobei die jeweils mitgelieferten Clustergrößen eine Gewichtung liefern. Wenn die Zentren
hinreichend nah beieinander liegen, wechselt der aktuelle Knoten in die Terminated-Phase
und behält seine Zentren dauerhaft bei. Andernfalls beginnt der aktuelle Knoten mit der
Computation-Phase die nächste Iteration.

Terminated. Die Terminated-Phase ist kein Terminierungszustand im engeren Sinn, da
der Knoten weiterhin Poll-Nachrichten beantwortet.

In [25] wurde für den Worst Case der Speicherbedarf und das Netzwerkvolumen des Al-
gorithmus untersucht. Sei n die Anzahl der Knoten, I die Anzahl an Iterationen, bis alle

4.3. VERTEILTES LERNEN 59

Knoten zu Terminated gewechselt sind, L die größte Zahl an Nachbarn, die ein Knoten
hat, und K die Anzahl der Zentren des k-means. Dann benötigt der P2P-K-Means auf
allen Knoten zusammen O(nI(K+L)) Speicher und verursacht ein Netzwerkvolumen von
O(nILK).

4.3.2 Distributed random forests

Random forests werden im Bereich des maschinellen Lernens häufig verwendet und sind
daher in vielen ML-Bibliotheken zu finden. Der Grundalgorithmus ist sequentiell, birgt
aber das Potential, einige Arbeitsschritte verteilt auszuführen.

In Spark ML findet sich eine auf Rechencluster ausgelegte Implementierung, die sich fol-
gende Ideen zunutze macht [19, 20]:

• Trainieren ganzer Baum-Ebenen. Es werden alle Knoten mit gleicher Tiefe
gleichzeitig trainiert. Dadurch werden die Iterationen über die Trainingsdaten besser
ausgenutzt und die Anzahl an benötigten Iterationen wird reduziert.

• Quantilschätzungen. Im sequentiellen Algorithmus werden die Daten sortiert. Dies
ist bei einem verteilten Datensatz mit hohem Aufwand verbunden und wird vermie-
den. Stattdessen wird das benötigte Quantil des Datensatzes geschätzt und eine
leichte Abweichung in Kauf genommen.

• Vorberechnete Feature-Bins. Kontinuierliche Features müssen in Halbräume un-
terteilt werden (”if feature 11 <= 8.736“). Diese können zum Teil vorberechnet
werden und sparen später in jeder Iteration Zeit ein.

Damit eignet sich diese Implementierung für das Ziel dieser PG, Big Data Analytics auf
einem Rechencluster zu betreiben. Im Kapitel 14 untersuchen daher wir unter anderem, in-
wiefern die Random forest Implementierung von Spark ML von steigender Worker-Anzahl
profitiert.

4.3.3 Kompression von Entscheidungsbäumen

Zum Bereich des Verteilten Lernen gehören neben Lernalgorithmen auch Verfahren, die
den Umgang mit Modellen in Verteilten Systemen vereinfachen.

Das Kompressionsverfahren von Kargupta und Park [52] wendet die aus der Elektrotechnik
bekannte Fouriertransformation auf einen gegebenen Entscheidungsbaum an. Dabei wird
die Klassifizierungsfunktion durch eine gewichtete Summe von Basisfunktionen dargestellt.
Der Nutzen dieses Verfahrens besteht zum Einen darin, dass die Basisfunktionen und
die Gewichte sich mit weniger Aufwand im Netzwerk versenden lassen als eine ganze

60 KAPITEL 4. MASCHINELLES LERNEN

Baumtopologie. Zum Anderen lässt sich aus dem Ergebnis der Fouriertransformation leicht
ablesen, welche Basisfunktionen einen großen Einfluss auf die Klassifizierung haben und
welche nur selten relevant sind. Dadurch kann der Nutzer entscheiden, ob Basisfunktionen
mit wenig Einfluss überhaupt über das Netzwerk übertragen werden sollen. Der am Zielort
rekonstruierte Entscheidungsbaum ist dann zwar keine exakte Kopie des Originals, enthält
dafür aber nur die wichtigen Ebenen und ist in der Anwendung somit schneller.

4.4 Statisches und Inkrementelles Lernen

Grundlegend für das statische oder auch batch genannte Lernen ist, dass die Trainings-
Daten vorher bekannt sind. Oftmals wird dies auch weiter eingeschränkt, indem ange-
nommen wird, dass die Daten komplett in den Hauptspeicher passen. Da diese Annahme
offensichtlich vieles vereinfacht, beruhen viele klassische Verfahren darauf.

Beim inkrementellen oder online Lernen kommen die Test-Daten nacheinander in der
Reihenfolge ihres Entstehens, z.B. ihres Auftretens, Messens usw., beim Lerner an und
werden dort sofort verarbeitet. Dabei wird so wenig wie möglich zwischengespeichert, was
auch als Data stream mining bezeichnet wird.

Das auffälligste Problem beim statischen Lernen ist die Annahme, dass die Daten voll-
ständig in den Hauptspeicher geladen werden können. Dieser ist relativ begrenzt und
besonders im Big-Data-Umfeld übersteigen die Daten den zur Verfügung stehenden Platz
um ein Vielfaches, z.B. umfangreiche Log-Files von großen Webseiten, Sensordaten, Inter-
net of Things usw. Um Beschränkungen durch zu kleinen Hauptspeicher zu umgehen, gibt
es auch Algorithmen bzw. Anpassung von bestehenden Algorithmen, die Sequenzen von
der Festplatte lesen und auf diesen dann batch-artig lernen. Diese Klasse von Algorithmen
sind zwar eine Mischung aus batch- und online-Lernen, werden aber meistens zum stati-
schen Lernen gezählt. Wünschenswert wäre daher ein Online-Algorithmus, dessen Ergebnis
äquivalent zu einem Ergebnisses eines Batch-Lerners wäre.

4.5 Concept Drift und Concept Shift

Beim kontinuierlichen Beobachten von Daten stellt man häufig fest, dass die Daten sich sy-
stematisch über einen bestimmten Zeitraum verändern bzw. verschieben. Dies kann durch
Veränderungen in den Rohdaten an sich oder auch durch die Messgeräte verursacht werden,
wenn sich diese zum Beispiel im Betrieb erwärmen und so bei gleichen Rohdaten dennoch
unterschiedliche Werte liefern. Durch dieses Verschieben kann die Qualität der Klassifikati-
on der angelernten Lernverfahren abnehmen, da die bisher verwendeten (Trainings-)Daten
nun nicht mehr zu den neuen Messdaten passen.

4.5. CONCEPT DRIFT UND CONCEPT SHIFT 61

Abbildung 4.2: Unterscheidung Realer Drift vs. Virtueller Drift [37]

Daher wird sich in diesem Abschnitt etwas genauer mit Concept Drift bzw. Concept Shift
beschäftigt, das heißt, die Auswirkungen dieser etwas näher erörtert, die unterschiedlichen
Arten näher beschrieben und angesprochen, wie man das Verschieben erkennen kann [29].

Realer Drift vs. Virtueller Drift

Während sich die Daten verschieben, kann man im Wesentlichen zwei wichtige Fälle un-
terscheiden: Das Verschieben beeinträchtigt unsere Klassifikation oder es ist für die Klas-
sifikation nicht weiter von Bedeutung. Betrachtet man alle Features über einer Menge
von Rohdaten, so sind nicht immer alle Features entscheidend für die Klassifikation durch
maschinelles Lernen. Oft sind die Algorithmen auch darauf ausgerichtet, eine möglichst
einfache Unterscheidung, das heißt, mit möglichst wenigen Features, der Klassen zu finden.
Findet nun ein Drift in einem oder mehreren Features statt, die zur Klassifikation nicht
notwendigerweise gebraucht werden, ist der Drift nicht weiter relevant. In diesem Fall wird
auch vom virtuellen Drift gesprochen (vgl. Abbildung 4.2 links und rechts). Verschieben
sich die Daten jedoch so, dass ein zur Klassifikation nötiges Feature betroffen ist und die
Daten die bisherigen Unterteilungskriterien nicht mehr erfüllen, spricht man von realem
Drift (vgl. Abbildung 4.2 links und Mitte). In diesem Fall muss der Lerner angepasst oder
gar neu antrainiert werden.

Auftreten von Shifts

Diese Veränderung der Daten kann zeitlich betrachtet recht unterschiedlich passieren (vgl.
Abbildung 4.3):

Plötzlich (engl. sudden / abrupt) Ab einem bestimmten Zeitpunkt fallen die Daten ein-
fach anders aus oder zeigen andere Charakteristika.

Schleichend (engl. incremental) Dies bezeichnet den Vorgang, wenn sich die Daten lang-
sam in einen anderen Bereich verschieben.

Wiederauftretend (engl. reoccuring concepts) Die Daten alternieren zwischen zwei be-
stimmten Werten, wobei es keine festen Zeitpunkte für den Wechsel zwischen den
Werten geben muss.

62 KAPITEL 4. MASCHINELLES LERNEN

Abbildung 4.3: Schematische Darstellung vom unterschiedlichen Auftreten von Concept Drift
[37]

Ausreißer (engl. outlier) Es können vereinzelte Datenpunkte außerhalb des erwarteten
Bereiches liegen, dies ist jedoch kein Shift / Drift, sondern einfach eine (Mess-)
Ungenauigkeit.

Erkennen von Shift

Das Erkennen von Shift verlangt ständiges Beobachten der Daten und Validieren der Klas-
sifikationen. Plötzlich auftretende Veränderungen und auch Ausreißer lassen sich noch
relativ einfach, auch durch einfache Algorithmen, erkennen. Schleichenden oder wieder-
auftretenden Shift zu erkennen erfordert dagegen komplexere statische Modelle oder Al-
gorithmen. In beiden Fällen können maschinelle Lernmethoden angewendet werden, um
einen möglichen Shift zu erkennen und um die Nutzer entsprechend zu informieren [37].

4.6 Learning with Imbalanced Classes

Bei vielen realen Klassifikationsproblemen geht es darum, seltene Ereignisse in einer Masse
aus uninteressanten Vorkommnissen zu entdecken [36]. Beispiele hierfür sind zum Beispiel:

• Die Diagnose von seltenen Krankheiten auf Basis der Daten von größtenteils nicht
betroffenen Patienten

• Die Erkennung von betrügerischen Finanztransaktionen

• Die Gamma-Hadron Separation, die ein entscheidender Teil der Analysekette in der
Cherenkov Astronomie ist (siehe Abschnitt 1.2)

Für die Klassifikation bedeutet dies, dass ein starkes Ungleichgewicht zwischen der Häu-
figkeit des Auftretens von Vertretern der unterschiedlichen Klassen besteht. Vielfach wird
in diesem Zusammenhang auch von einer positiven, seltenen Minoritätsklasse und einer
negativen, häufigen Majoritätsklasse gesprochen. Die damit verbundene Festlegung auf
nur zwei Klassen ist ohne Beschränkung der Allgemeinheit möglich, da eine Problem-
stellung mit mehr Klassen immer als Klassifikationsaufgabe zwischen einer Gruppe von
häufigen und einer Gruppe von seltenen Klassen gesehen werden kann. Von entscheiden-
der Bedeutung ist hierbei das Verhältnis zwischen der Häufigkeit der beiden Klassen. Dies
quantifiziert alle Aussagen, die hier getroffen werden.

4.6. LEARNING WITH IMBALANCED CLASSES 63

4.6.1 Einfluss auf Klassifikatoren

Der Einfluss, den das Klassenungleichgewicht auf die Leistung von Klassifikatoren hat,
wurde in verschiedenen Studien empirisch untersucht [51]. Die Ergebnisse lassen sich
wie folgt zusammenfassen: Das Ungleichgewicht führt nicht dazu, dass Standardlerner
zwangsläufig nicht mehr funktionieren, sondern sorgt vielmehr dafür, dass sich die Schwel-
len hinsichtlich der benötigten Menge an Trainingsdaten und der maximalen Modell-
komplexität verschieben. Das Problem lässt sich also dadurch lösen, dass einfach die
herkömmlichen Lerner mit zusätzlichen Trainingsdaten verwendet werden – ungünstiger-
weise ist das bei vielen Anwendungen aber ohnehin der limitierende Faktor.

4.6.2 Bewertung von Klassifikatoren

Ein wichtiger Punkt, der bei stark verschobenen Klassenverhältnissen bedacht werden
muss, ist, wie Klassifikatoren eigentlich zu bewerten und zu vergleichen sind. Ein na-
türlicher Ansatz für die Darstellung der Performanz eines binären Klassifikators ist eine
Wahrheitsmatrix, wie in Abbildung 4.4 dargestellt. Mit gegebenem Validationsdatensatz
lässt sich eine solche Tabelle durch simples Zählen der Antworten des Klassifikators und
der tatsächlichen Klassen befüllen. Offen ist aber, wie Leistungen verschiedener Lerner,
also verschiedene Tabellen dieser Art, miteinander verglichen werden können.

Positive Klasse Negative Klasse
Positive Voraussage Richtig positiv (TP) Falsch positiv (FP)
Negative Voraussage Falsch negativ (FN) Richtig negativ (TN)

Abbildung 4.4: Schematischer Aufbau einer Wahrheitsmatrix

Ein verbreitetes Vergleichskriterium ist die Fehlerrate ERR = (FP + FN)/(TP + FP +
FN+TN) , also der Anteil der Datenpunkte, die falsch klassifiziert wurden. Wenn die Mi-
noritätsklasse nun aber sehr selten ist, können Lerner sehr geringe Fehlerraten erreichen,
indem sie einfach alle Eingaben der Majoritätsklasse zuordnen. Da ein solcher Klassifi-
kator aber vollkommen nutzlos ist, ist dieses Vorgehen bei stark verschobenen Klassen-
verhältnissen offensichtlich inadäquat. Dies hat damit zu tun, dass die Anzahl der falsch po-
sitiven und falsch negativen Datenpunkte in der Fehlerrate schlicht addiert werden. Da es
von der negativen Klasse aber wesentlich mehr Instanzen gibt, werden die falsch positiven
Datenpunkte die Fehlerrate höchstwahrscheinlich dominieren. Ein sinnvolles Vergleichs-
kriterium muss daher die Klassifikatorleistung auf den einzelnen Klassen unabhängig von
der Anzahl der jeweils vorliegenden Instanzen ins Verhältnis setzen.

Eine Möglichkeit, dies zu tun, ist, über die richtig-positiv-Rate TPrate = TP/(TP + FN)

64 KAPITEL 4. MASCHINELLES LERNEN

und die richtig-negativ-Rate TNrate = TN/(TN + FP), die angeben, welcher Anteil der
jeweiligen Klassen richtig klassifiziert wurde. Um ein wirkliches Vergleichskriterium zu
erhalten, müssen diese beiden Werte aber noch geeignet ins Verhältnis gesetzt werden.
Ein Weg, die beiden Metriken zu kombinieren, ist die Visualisierung in einer Receiver
Operating Characteristic (ROC) Grafik [30] wie in Abbildung 4.5.

Abbildung 4.5: Eine ROC Kurve [36]

Die Klassifikatorleistung kann so als ein Punkt in diesem zweidimensionalen Raum darge-
stellt werden. Hierbei bedeutet ein Punkt, der sich weiter oben und weiter links befindet,
einen strikt besseren Klassifikator. Mögliche daraus abgeleitete Metriken sind das arith-
metische und geometrische Mittel von TPrate und TNrate:

AUC = TPrate + TNrate

2
Gmean =

√
TPrate ∗ TNrate

Diese Metriken behandeln TPrate und TNrate symmetrisch. In manchen Anwendungsfällen
ist die Performanz auf einer Klasse (üblicherweise der Minoritätsklasse) aber wichtiger als
auf der anderen. In diesem Fall bietet es sich an, eine asymmetrische Metrik zu verwenden,
etwa den Index of balanced accuracy (IBA) [38].

IBA = (1 + α (TPrate − TNrate)) ∗Gmean2

4.6. LEARNING WITH IMBALANCED CLASSES 65

Dieser Index führt den Asymmetriefaktor α ein, über den sich steuern lässt, wie viel stärker
die TPrate gegenüber der TNrate gewichtet werden soll.

4.6.3 Verbesserung von Klassifikatoren

Zur Verbesserung der Performanz von Klassifikatoren auf unausgewogenen Trainingsdaten
gibt es verschiedene Ansätze, die in drei Kategorien eingeteilt werden können: interne,
externe, und auf Ensemble-Learning basierende Ansätze [36, 39].

Eine Möglichkeit besteht darin, den Lernalgorithmus selbst zu verändern. Denkbar wäre
etwa, die Kostenfunktion anzupassen, um dafür zu sorgen, dass der Algorithmus seine
Ausgabe mit Blick auf die gewählte Metrik optimiert. Diese auch als intern bezeichneten
Ansätze stehen vor dem Problem, dass sie ein genaues Verständnis des Lernalgorithmus
und des Problems erfordern. Des Weiteren beziehen sich die vorgenommenen Anpassungen
jeweils nur auf einen Algorithmus und lassen sich in der Regel nicht auf andere Verfahren
verallgemeinern.

Eine anderer, attraktiver Ansatz besteht daher darin, in einem Vorverarbeitungsschritt
die Trainingsdaten so zu verändern, dass das Problem der unausgeglichenen Klassen ge-
ringer wird. Diese externen Ansätze haben den Vorteil, dass sie sich mit jedem beliebigen
Klassifikator kombinieren lassen.

Over-Sampling

Eine mögliches externes Verfahren besteht darin, zusätzliche synthetische Instanzen der
Minoritätsklasse in den Trainingsdatensatz einzufügen, um so den wenigen vorhandenen
Datenpunkten mehr Gewicht zu verleihen. Die wird Over-Sampling genannt und kann
durch verschiedene Strategien umgesetzt werden:

• Zufällig ausgewählte vorhandene positive Datenpunkte können repliziert werden

• Es kann zwischen vorhandenen Datenpunkten interpoliert werden, um Instanzen zu
erzeugen, die neu, aber gleichzeitig konsistent mit den bisherigen Daten sind

• Andere Ansätze sind möglich, etwa kann versucht werden, Datenpunkte in der Grenz-
region der Klasse zu erzeugen

Alle diese Ansätze haben ihre Vor- und Nachteile, abhängig davon, ob die über die Da-
ten getroffenen Annahmen stimmen oder nicht. Ein übergreifendes Problem ist aber das
Overfitting, also das Phänomen, dass ein Klassifikator die spezifische Verteilung der Trai-
ningsdaten lernt, anstatt der dahinter liegenden Muster, und deswegen schlecht auf ande-
re Daten generalisiert. Dadurch, dass die wenigen Datenpunkte der Minoritätsklasse beim
Oversampling vervielfacht werden, wird dieses Problem verstärkt. Ein weiterer Nachteil ist
der erhöhte Rechenaufwand durch die künstliche Vergrößerung des Trainingsdatensatzes.

66 KAPITEL 4. MASCHINELLES LERNEN

Under-Sampling

Das dem Over-Sampling entgegengesetzte Verfahren wird Under-Sampling genannt und
besteht darin, zufällig Instanzen der Majoritätsklasse aus dem Trainingsdatensatz zu
löschen. Der Effekt ist auch hier, dass das Ungleichheitsverhältnis so künstlich verringert
wird. Auch hierfür gibt es verschiedene Umsetzungsmöglichkeiten:

• Entfernen von zufälligen negativen Datenpunkten

• Entfernen von ”redundanten“ Datenpunkten, also etwa solchen, in deren Nähe sich
noch andere Punkte der selben Klasse befinden

• Entfernen von Datenpunkten in der Grenzregion zur Minoritätsklasse

Der große Nachteil dieser Verfahren ist, dass durch das Löschen von Datenpunkten unter
Umständen wichtige Informationen verloren gehen, und die Klassifikatorleistung dadurch
abnimmt. Insgesamt lässt sich aber sagen, dass beide Resampling-Varianten in aller Re-
gel zu einer Leistungssteigerung führen. Dank ihrer universellen Einsetzbarkeit sind diese
Verfahren daher sehr attraktiv.

Ensemble Learning

Ein weiterer Ansatz besteht darin, die in Abschnitt 4.1 vorgestellten Ensemble Learning
Verfahren zu adaptieren. Auch hierzu gibt es verschiedene Strategien, die allesamt das Ziel
haben, der Minoritätsklasse ein größeres Gewicht zu verleihen. Einige Beispiele sind:

• Over-/Under-Bagging. Bei dieser Variante des Bagging werden die Teildatensätze
nicht zufällig gezogen, sondern unter Benutzung von Over-/Under-Sampling

• SMOTEBoost. Diese Variante von AdaBoost (Algorithmus 2) generiert nach jeder
Iteration durch Interpolation zusätzliche Datenpunkte und fügt diese in den Daten-
satz ein

• AdaCost. Diese andere Variante von AdaBoost verändert die Updatefunktion der
Gewichte so, dass positive Datenpunkte schneller an Gewicht zunehmen als negative

Welches Verfahren das beste ist, lässt sich letztendlich nur durch den empirischen Ver-
gleich entscheiden. Die durchgeführten Studien deuten aber darauf hin, dass Resampling-
Verfahren in der Regel lohnenswert sind.

4.7 Feature Selection

Feature Selection (Merkmalsauswahl) versucht, möglichst geeignete Merkmale für ein ge-
gebenes Vorhersageproblem zu identifizieren. Als ungeeignet betrachtete Merkmale können

4.7. FEATURE SELECTION 67

ignoriert werden, wodurch sich die Dimensionalität der Daten reduzieren lässt. Dabei wird
die Auswahl nur unter den Originalmerkmalen vorgenommen (die hier nicht betrachtete
Merkmals-Extraktion hingegen erzeugt neue Merkmale, um die Datendimensionalität zu
reduzieren).

Die Vorteile von Dimensionsreduktion und Feature Selection insbesondere werden in Un-
terabschnitt 4.7.1 vorgestellt. Es wird eine formale Problemstellung aus den Eigenschaften
abgeleitet, die ein ”geeignetes“ Merkmal erfüllen sollte (siehe Unterabschnitt 4.7.2). Eine
Übersicht der Ansätze zur Feature Selection wird vorgestellt und Qualitätsmerkmale von
Auswahl-Algorithmen werden identifiziert (siehe Unterabschnitt 4.7.3). Als prominentes
Beispiel wird der korrelationsbasierte Algorithmus CFS (Correlation-based Feature Se-
lection) nach Hall [43] intensiv betrachtet (Unterabschnitt 4.7.5). Dessen Erweiterung zu
Fast-Ensembles wird ebenfalls vorgestellt (siehe Unterabschnitt 4.7.6).

4.7.1 Vorteile

Die Reduktion der Datendimensionalität kann im überwachten Lernen sowohl die Trai-
ningszeiten als auch die Anwendungszeiten der verwendeten Modelle reduzieren. Die trai-
nierten Modelle sind aufgrund der geringeren Dimension kompakter und damit, falls es der
Modelltyp hergibt, leichter interpretierbar. Ein besonderer Vorteil der Dimensionsreduk-
tion ist aber, dass dem Fluch der hohen Dimension entgegengewirkt werden kann. Dieser
besagt, dass hochdimensionale Modelle bei geringer Anzahl verfügbarer Beispiele stark
überangepasst werden. Überangepasste Modelle generalisieren schlecht auf unbekannten
Daten und resultieren daher in schlechter Vorhersage-Performanz. Dimensionsreduktion
schränkt die Variabilität der Modelle ein, sodass der Informationsgehalt kleiner Stichpro-
ben besser repräsentiert und damit die Generalisierungsfähigkeit erhöht wird.

Besteht die Dimensionsreduktion aus der Auswahl von Originalmerkmalen, können weitere
Vorteile gewonnen werden. So lassen sich Datenvisualisierungen auf wichtige Merkmale fo-
kussieren, was das Verständnis der Daten erhöhen kann. Außerdem müssen bei zukünftigen
Datenerfassungen nicht alle Merkmale erfasst werden, was die Kosten solcher Datenerfas-
sungen senken kann. Natürlich werden auch, wenn pro Beispiel weniger zu speichern ist,
auch die Speicheranforderungen geringer ausfallen.

Überdies hat sich Feature Selection auch als eigenständiges bzw. primäres Analysewerk-
zeug etabliert: Einige Probleme sind bereits dadurch gelöst, dass wichtige Merkmale identi-
fiziert werden. Beispielsweise sollen in der Analyse von Genexpressionsdaten für Krankhei-
ten relevante Gene ausfindig gemacht werden. Die Ausprägungen der Gene stellen Merk-
male dar. Mit Krankheiten stark korrelierte Ausprägungen können ein Indiz für einen
Zusammenhang sein.

Im Anwendungsfall interessiert uns die Auswahl von Features, da bestehende Analysen
eine große Anzahl teils redundanter Merkmale extrahieren. Die Relevanz dieser Merkma-

68 KAPITEL 4. MASCHINELLES LERNEN

le für die Gamma-Hadron-Separation und die Energy Estimation ist fraglich. Wenn wir
Merkmale identifizieren können, die nicht weiter betrachtet werden müssen, können wir
die Analyse beschleunigen, indem wir die Berechnung unwichtiger Merkmale überspringen.
Sämtliche der oben genannten Vorteile können ebenfalls geltend gemacht werden.

4.7.2 Problemstellung

Nützliche Merkmale zeichnen sich durch zwei Eigenschaften aus: Sie sollten zum Einen für
das gegebene Vorhersageproblem relevant sein, also eine gewisse Vorhersagekraft besitzen.
Möglicherweise ergibt sich diese Vorhersagekraft nur durch Zusammenspiel mit anderen
Merkmalen. Zum Anderen sollte die durch das Merkmal kodierte Information sich nicht
mit der Information anderer Merkmale überschneiden. Selektierte Merkmale sollten also
nicht redundant zueinander sein.

Es lässt sich daher nicht für jedes Merkmal isoliert entscheiden, ob es gewählt werden
sollte oder nicht. Wir müssen die Qualität von Merkmalsmengen (genauer: Teilmengen
der Original-Merkmalsmenge) abschätzen. Koller und Sahami [56] prägten die Vorstellung
einer optimalen Merkmalsmenge wie folgt:

Definition 4.1 (Optimale Merkmalsauswahl) Die minimale Teilmenge G ⊆ F der
Original-Merkmale F , so dass:

P(C | G = fG) und P(C | F = f) so ähnlich, wie möglich

betrachten wir als optimal, wobei P die wahre Wahrscheinlichkeits-Verteilung über den
Klassen C, f eine Realisierung von F und fG die Projektion von f auf G.

Damit ist die optimale Merkmalsauswahl eine minimal große Menge, welche die (wah-
re) Wahrscheinlichkeitsverteilung über der Zielvariable so gut wie möglich erhält. Es soll
also das zu lösende Vorhersageproblem durch die Beschränkung auf eine Teilmenge der
Merkmale nicht wesentlich verzerrt werden. Eine oft verwendete alternative Definition
beschreibt die optimale Auswahl als die minimal große Menge, welche die Vorhersage-
Performanz maximiert. Damit ist allerdings die wahre Verteilung ignoriert und das eigent-
liche Problem nicht korrekt wiedergegeben.

Da es bei Merkmalsauswahl um den Erhalt der wahren Verteilung geht (welche wir nicht
kennen), lässt sich das Problem im Allgemeinen nicht optimal lösen. Selbst die Verwen-
dung der alternativen Definition über die Vorhersageperformanz lässt Merkmalsauswahl
nicht zu einem einfachen Problem werden: Um das Zusammenspiel aller Merkmale zu
berücksichtigen, müssten wir alle möglichen Merkmalsmengen (2|F | Möglichkeiten) auspro-
bieren, was für viele Probleme schlicht nicht realisierbar ist. Daher ist allen Merkmalsauswahl-
Algorithmen gemein, dass sie einige Merkmalsmengen (Kandidaten) heuristisch auswerten.

4.7. FEATURE SELECTION 69

Kandidaten werden dabei durch eine Such-Strategie (z.B. Vorwärts-Suche, randomisierte
Suchen, . . .) im Raum der möglichen Lösungen erzeugt.

4.7.3 Arten von Algorithmen

Algorithmen zur Auswahl von Merkmalen unterscheiden sich hauptsächlich durch die von
ihnen genutzte Heuristik zur Bewertung möglicher Lösungen. Oft genannte Arten von
Algorithmen sind:

Wrapper nutzen die Accuracy (Anteil korrekter Vorhersagen auf Testdaten) von Mo-
dellen, die mit der betrachteten Merkmalsmenge trainiert wurden. Es wird also in
jedem Suchschritt durch den Raum möglicher Teilmengen ein Modell eingepasst,
was einen hohen Berechnungsaufwand mit sich führt. Durch Wrapper ausgewählte
Merkmale sind allerdings nahe an der optimalen Merkmalsmenge, da die Accura-
cy auf unbekannten Daten eine gute Abschätzung für die Erhaltung der wahren
Verteilungsfunktion darstellt.

Eingebettete Methoden verwenden interne Informationen von Modellen, die auf der
gesamten Merkmalsmenge eingepasst werden. So können beispielsweise Merkmale
gewählt werden, die in einem Random Forest viele oder besonders gute Splits erzeu-
gen. Eingebettete Methoden sind effektiv, da der Raum möglicher Merkmalsmengen
und Modelle zugleich durchsucht wird, verzerren die Lösung aber zum verwendeten
Modell hin. Durch einen Random Forest ausgewählte Merkmale können z.B. für die
Verwendung in einer SVM ungeeignet sein.

Filter agieren unabhängig von jedem Lernalgorithmus durch explizite Verwendung von
Heuristiken, wie etwa Korrelationen zwischen Merkmalen. Sie sind daher besonders
effektiv.

Über diese Arten hinaus existieren hybride Verfahren, die etwa Filter für eine Voraus-
wahl verwenden, um im Anschluss einen Wrapper die Endauswahl treffen zu lassen. Wir
wollen hier Filter fokussieren, da sie das allgemein effektivste Verfahren darstellen. Durch
Berücksichtigung von zusammenspielenden Features können sie bereits sehr gute Ergeb-
nisse liefern. Die Qualität eines Algorithmus lässt sich überdies an folgenden Eigenschaften
messen [80]:

Begünstigung des Lernens Die Accuracy des trainierten Modells sollte im besten Fall
erhöht, aber zumindest nicht wesentlich gesenkt werden.

Geschwindigkeit Der Auswahl-Algorithmus sollte in der Anzahl der Originalmerkmale
skalierbar sein.

70 KAPITEL 4. MASCHINELLES LERNEN

Multivarianz Das Zusammenspiel von Merkmalen (bzgl. Vorhersagerelevanz und Red-
undanz) sollte berücksichtigt werden.

Stabilität Die ausgewählte Merkmalsmenge sollte robust gegenüber der Varianz der ver-
wendeten Daten sein. Insbesondere sollten für unterschiedliche Stichproben nicht
gänzlich unterschiedliche Merkmale ausgewählt werden. Nur stabile Verfahren können
ein Vertrauen in die Auswahl schaffen, das es erlaubt, Feature Selection zur Wissens-
generierung zu verwenden.

4.7.4 Korrelation als Heuristik

Bevor wir in Unterabschnitt 4.7.5 mit CFS ein korrelationsbasiertes Verfahren zur Merk-
malsauswahl kennen lernen, wollen wir zunächst die heuristische Natur von Korrelation
zwischen Merkmalen bzw. Korrelation zwischen Merkmalen und der Zielvariablen als Maß
für die Qualität einer Merkmalsmenge untersuchen.

Korrelation und Redundanz

Abbildung 4.6 zeigt zwei mögliche Verteilungen von Beispielen in R2. Mit den beiden Di-
mensionen gibt es also zwei Merkmale, von denen möglicherweise eines ausgewählt werden
könnte. Wir wollen mit der Auswahl die Klasse von Beispielen vorhersagen, wobei Beispie-
le entweder aus der orangenen oder der grünen Klasse stammen. Bei perfekter Korrelation
zwischen den Merkmalen (Abbildung 4.6a) ist es egal, ob wir ein Merkmal oder beide
verwenden, die Klassen lassen sich nicht trennen. Damit sind die Merkmale redundant zu-
einander. Bei einer ”lediglich“ sehr hohen Korrelation muss es jedoch nicht sein, dass beide
Merkmale redundant zueinander sind: In Abbildung 4.6b erlaubt die Verwendung beider
Merkmale eine lineare Separation der Klassen, was mit nur einem der Merkmale nicht
möglich wäre. In diesem Fall hinkt die Heuristik also. Für reale Probleme funktioniert
Korrelation als Heuristik aber sehr gut [42].

Korrelation und Kausalität

Weiterhin ist anzumerken, dass Korrelation nicht gleich Kausalität ist: Welches zweier
Merkmale der Auslöser für die Ausprägung des anderen Merkmals ist, kann Korrelation
nicht erfassen. Möglicherweise sind die Ausprägungen beider Merkmale auch gemeinsamer
Effekt eines dritten Merkmals. Die Offenlegung (probabilistisch) kausaler Zusammenhänge
kann tiefgehende Erkenntnisse bringen, ist aber außerhalb dieser Betrachtung von Merk-
malsauswahl (für weitere Informationen, siehe [41]).

4.7. FEATURE SELECTION 71

(a) Perfekte Korrelation (b) Hohe Korrelation

Abbildung 4.6: Korrelation als Heuristik

4.7.5 CFS

Wir wollen im Folgenden einen prominenten Vertreter von korrelationsbasierten Filter-
Verfahren zur Merkmalsselektion auf seine Qualität hin untersuchen, die Correlation-based
Feature Selection nach Hall [43].

Idee

Die Idee von CFS ist recht simpel: In jedem Schritt j+1 wird das Merkmal f ∈ F \Fj mit
dem besten Verhältnis von Relevanz und Redundanz zur bisherigen Auswahl Fj hinzu-
genommen. Damit beschreibt CFS eine Vorwärtssuche durch den Raum möglicher Merk-
malsmengen. Relevanz und Redundanz werden heuristisch ermittelt, indem die Relevanz
als Korrelation zwischen Merkmal f und Zielvariablen y und die Redundanz als Korrela-
tion zwischen Merkmal f und Merkmalen g ∈ Fj der vorherigen Auswahl Fj abgeschätzt
wird:

Fj+1 = Fj ∪
{

arg max
f∈F\Fj

Cor(f, y)
1
j

∑
g∈Fj

Cor(f, g)

}

Für das Maß Cor existieren verschiedene Definitionen basierend darauf, ob die Eingabe-
Merkmale numerisch oder nominal sind (siehe [41]). Diese sollen hier aber nicht weiter
betrachtet werden.

Beispiel-Ablauf

Abbildung 4.7 zeigt einen Beispiel-Ablauf des CFS-Algorithmus: Im ersten Schritt wird für
jedes Merkmal dessen Korrelation mit der Zielvariablen bestimmt. Das Merkmal mit der

72 KAPITEL 4. MASCHINELLES LERNEN

Abbildung 4.7: Beispiel-Ausführung CFS [80]

höchsten Korrelation (hier X2) wird gewählt. In den weiteren Schritten müssen zusätzlich
die Korrelationen mit zuvor gewählten Merkmalen berechnet werden, um die Redundanz
abzuschätzen. Einmal berechnete Korrelationen können gecached werden, um das Verfah-
ren zu beschleunigen. Dies passiert hier mit dem Korrelationen (X1,X2), (X3,X2) und
(X5,X2). Diese müssen kein zweites Mal berechnet werden. Das Verfahren kann bei einer
festgelegten Anzahl Merkmale terminieren oder wenn keine relative Verbesserung größer
als eine festgelegte Konstante erreicht wird.

Qualität

Der CFS-Algorithmus ist vielversprechend: Experimente zeigen, dass sich die Accuracy von
auf den Merkmalen trainierten Modellen erhöhen lässt [43]. Durch die höchstens einmalige
Berechnung der (|F | + 1)2 Korrelationen zwischen Merkmalen und Zielvariablen ist der
Algorithmus zudem schnell. Da er das Zusammenspiel von Merkmalen bezüglich ihrer
Redundanz berücksichtigt, erfüllt er auch das Multivarianz-Kriterium. Ein Problem von
CFS ist allerdings, dass alle verwendeten Maße Cor auf Varianz basieren und damit anfällig
für eine hohe Varianz der Stichprobe und gegenüber Ausreißern sind. CFS ist also nicht
stabil.

4.7.6 Fast-Ensembles

Um die Stabilität eines Klassifikators zu erhöhen, lassen sich mehrere Klassifikatoren zu
einem Ensemble zusammenfassen (siehe Abschnitt 4.1). Dieselbe Idee lässt sich auf Feature
Selection übertragen, um die Stabilität der ausgewählten Merkmalsmengen zu erhöhen
[79]. Dazu wird ein Merkmalsauswahl-Algorithmus auf unterschiedlichen Teilmengen der
Stichprobe trainiert, wodurch mehrere Merkmalsmengen erzeugt werden. Die aggregierte
Merkmalsauswahl ist die Merkmalsmenge, die aus häufig selektierten Features besteht.

Problematisch bei der Anwendung von Ensembles zur Feature Selection ist, dass im
Ensemble mehrere Merkmalsmengen ausgewählt werden müssen. Damit sind Ensembles
üblicherweise nicht schnell. Für CFS-Ensembles haben Schowe und Morik [80] aber ein
Verfahren entwickelt, dass durch die Bildung eines Ensembles nahezu keine zusätzliche
Laufzeit erzeugt. Der Fast-Ensembles genannte Merkmalsselektor besitzt damit alle Vor-

4.7. FEATURE SELECTION 73

teile von CFS, ist aber zudem stabil (CFS wurde bereits in Unterabschnitt 4.7.5 kennen
gelernt).

Idee

Die Grundlegende Idee zur Beschleunigung von CFS-Ensembles ist, die Korrelations-Maße
Cor in eine Summe aus voneinander unabhängigen Teilsummen aufzuspalten. Die Teilsum-
men können dann wiederverwendet werden, um alle im Ensemble benötigten Abschätzun-
gen der Korrelation zu berechnen: Dass CFS im Ensemble ausgeführt wird, erzeugt dann
kaum zusätzliche Laufzeit. Alle Abschätzungen einer Korrelation können wie im Single-
CFS in einem Durchlauf über die Stichprobe erzeugt werden.

Wir wollen beispielhaft die Zerlegung des Pearson’s Correlation Coefficient in unabhängige
Teilsummen betrachten. Die Idee ist aber auch auf alle anderen in CFS verwendeten Maße
für Korrelation anwendbar.

Corpcc(X,Y) = Cov(X,Y)√
V ar(X) · V ar(Y)

(Pearson’s Correlation Coefficient)

Wobei Cov(X,Y) := E
[
(X − E(X))(Y − E(Y))

]
=

displ. law
E(XY)− E(X)E(Y).

Wegen V ar(X) = Cov(X,X) beschränken wir unsere Betrachtungen im Folgenden auf
Cov, welches wir anhand der gegebenen Beispiele (xi, yi), 1 ≤ i ≤ n, xi ∈ X, yi ∈ Y

schätzen wollen:

ˆCov(X,Y) = (1
n

n∑
i=1

xiyi)−− (1
n

n∑
i=1

xi)(
1
n

n∑
i=1

yi)︸ ︷︷ ︸
?

= 1
n

(
m1∑
i=1

xiyi︸ ︷︷ ︸
s1(X,Y)

+
m2∑

i=m1+1
xiyi︸ ︷︷ ︸

s2(X,Y)

+ · · ·+
n∑

i=me−1+1
xiyi)︸ ︷︷ ︸

se(X,Y)

− ?

Wir sehen: Es lassen sich voneinander unabhängige Teilsummen sj(X,Y), 1 ≤ j ≤ e

durch Partitionierung der Beispiele an willkürlichen Grenzen mj erzeugen. Der mit ?

bezeichnete Term wird analog zum dargestellten ersten Term in die Teilsummen sj(X)
und sj(Y) zerteilt. Bei der ebenfalls analogen Zerteilung der Varianz-Schätzungen ˆV ar
werden zusätzlich die Teilsummen sj(X2) und sj(Y 2) erlangt.

Um eine Menge von e Ensemble-Schätzungen zu erzeugen, brauchen lediglich für jede
Schätzung die j-ten unabhängigen Teilsummen weggelassen werden. Damit ist der j-te Teil
der Stichprobe im j-ten Teil des Ensembles ignoriert. Alle anderen Teilsummen werden

74 KAPITEL 4. MASCHINELLES LERNEN

Cor1(not used)

(not used)

(not used)

(not used)

Cor2

Cor3

Cor4

 s1 s2 s3 s4

Block 1 Block 2 Block 3 Block 4

Training Data

Abbildung 4.8: Berechnung von Ensemble-Korrelationen in Fast-Ensembles

Abbildung 4.9: Beispiel-Ausführung Fast-Ensembles [80]

aufaddiert, um die Gesamtsummen zu ergeben, mit denen sich die Schätzung von Corpcc

berechnen lässt. Wir erhalten e unterschiedliche Schätzungen für die Korrelation zweier
Merkmale bzw. eines Merkmals mit der Zielvariablen. Abbildung 4.8 fasst die Schätzung
der Korrelation im Ensemble zusammen.

Beispiel-Ausführung

Es werden nun, wie im Single-CFS, einmal berechnete Korrelationen gecached, sodass sie
kein zweites Mal berechnet werden müssen. Fast-Ensembles berechnen durch das oben
vorgestellte Schema jedoch nicht nur eine Ensemble-Schätzung pro Korrelation, sondern
gleich alle Schätzungen des Ensembles.

Abbildung 4.9 stellt dar, wie dadurch bei Einpassung eines Ensembles nur wenige zusätz-
liche Korrelationen (im Gegensatz zum Single-CFS) berechnet werden müssen. Part 1 in
der Abbildung ist bereits aus Unterabschnitt 4.7.5 bekannt. Part 2 und 3 müssen nun ihre

4.8. SAMPLING UND ACTIVE LEARNING 75

Schätzungen der Korrelationen mit der Zielvariablen nicht mehr berechnen, da diese bereits
durch Part 1 auf Basis der unabhängigen Teilsummen mitberechnet wurden. Auch andere
Korrelationen können ohne Mehraufwand wiederverwendet werden. Da die unterschiedli-
chen Schätzungen unterschiedliche Entscheidungen des Algorithmus hervorrufen können,
gibt es natürlich einige zusätzlich zu berechnende Korrelationen ((X1,X3), (X5,X3) und
(X1,X5)). Im Gegensatz zu einer kompletten Neuberechnung aller Korrelationen stellt
das Verfahren aber eine enorme Beschleunigung dar. Damit erfüllen Fast-Ensembles alle
in Unterabschnitt 4.7.3 vorgestellten Qualitätskriterien.

4.8 Sampling und Active Learning

Bisher haben wir uns in diesem Kapitel mit den eigentlichen Lernverfahren beschäftigt.
Zum Beispiel haben wir gelernt, was ein Modell ist, wie Merkmale ausgewählt werden
etc. Jetzt wollen wir zum Abschluss noch das sogenannte Sampling betrachten. Wollen
wir einen Algorithmus verwenden, um ein Modell zu lernen, stellt sich nämlich die Frage,
welche Daten wir diesem überhaupt übergeben und auf welchen Teilen des Datensatzes
das Modell angelernt werden soll. Angenommen, wir haben einen Datensatz der Form
(x1, y1), . . . , (xn, yn) gegeben, wobei x̂i ein Merkmalsvektor und yi die Klasse des Vektors
ist. Diese Daten wollen wir nun nutzen, um unser Modell zu trainieren.

4.8.1 Der naive Ansatz

Am einfachsten bzw. logischsten erscheint es nun, den gesamten Datensatz zum Lernen
zu verwenden. Schließlich bedeuten mehr Daten auch mehr Informationen und je mehr
Informationen wir dem Lernverfahren geben, desto besser sollte unser gelerntes Modell
sein.

Das Problem bei diesem Ansatz ist, dass wir nicht nur ein Modell lernen wollen, son-
dern unser gelerntes Modell auch testen müssen. Schließlich müssen wir auch herausfin-
den können, wie gut das Modell überhaupt ist, gerade wenn wir zwischen verschiedenen
entscheiden müssen. Wir brauchen also definitiv einen Datensatz, an dem wir das Ge-
lernte ausprobieren und testen können. Verwenden wir hierfür nämlich den bereits zum
Lernen verwendeten Datensatz einfach nochmal, werden unsere gelernten Modelle zwar
alle erstaunlich akkurat sein, allerdings testen wir auch nur, wie gut sie darin sind, den
Datensatz, auf dem sie basieren, zu klassifizieren. Wir lernen also nicht die ”wahre“ Klas-
senverteilung, sondern nur die Testdaten auswendig. Dieses Problem wird als Overfitting
bezeichnet. Was wir brauchen, ist ein zweiter, unabhängiger Datensatz, auf dem wir unsere
Modelle testen können. Ein besserer Ansatz wäre daher, die gegeben Daten vor dem Ler-
nen zufällig in Test- und Trainingsdaten zu unterteilen. Eine typische Einteilung hierfür

76 KAPITEL 4. MASCHINELLES LERNEN

wäre, zwei Drittel der Daten zum Lernen zu nutzen und das gelernte Modell dann auf dem
letzten Drittel zu testen. Und tatsächlich gibt uns dieser Ansatz erstmal die Möglichkeit,
ein Modell zu lernen und es dann fair beurteilen zu können. Schade ist nur, dass jetzt
ein beträchtlicher Anteil unserer Daten gar nicht zum Lernen verwendet wird und somit
Informationen ungenutzt bleiben.

4.8.2 Re-Sampling

Nachdem wir die Probleme dieser simpleren Ansätze betrachtet haben, überlegen wir nun,
wie diese vermieden werden können. Dazu betrachten wir das sogenannte Re-Sampling
in Form der Methoden der k-fachen Kreuzvalidierung und des Bootstrappings, die uns
Lösungen für diese Probleme geben können. Die Idee dieser Ansätze ist, die Daten zwar
wie zuvor in Trainings- und Testdaten zu teilen, dies aber dann mehrmals zu wiederholen.

k-fache Kreuzvalidierung

Bei der k-fachen Kreuzvalidierung wird unsere Datenmenge in k Teile geteilt, von denen
dann k− 1 zum Trainieren des Klassifikators verwendet werden. Das gelernte Modell wird
dann auf dem letzten Teil getestet. Dieser Vorgang wird k mal durchgeführt, wobei jeder
Teil des Datensatzes einmal zum Testen verwendet wird. Schließlich wird die durchschnitt-
liche Fehlerrate der einzelnen Modelle betrachtet, um die erhaltenen k Klassifikatoren zu
bewerten. Durch diese mehrfache Ausführung haben wir erreicht, dass wir zwar immer auf
unabhängigen Testdaten testen konnten, aber trotzdem jeder Teil der Daten gleich starken
Einfluss auf das Modell hat.

Abbildung 4.10: k-fache Kreuzvalidierung [68]

4.8. SAMPLING UND ACTIVE LEARNING 77

Bootstrapping

Ein alternativer Ansatz zur Kreuzvalidierung ist das sogenannte Bootstrapping. Hier wird
die Datenmenge nicht in k Blöcke unterteilt, sondern es wird zufällig eine Menge von
Daten mit zurücklegen aus dem Datensatz gezogen. In der gewählten Menge von Daten
können nun also bestimmte Daten mehrfach auftreten, alle Daten, die nie gewählt wur-
den, werden wie zuvor zum Testen verwendet. Der Vorteil dieser Methode ist, dass sich
bessere Rückschlüsse auf die Verteilung, die den Daten zugrundeliegt, machen lassen, al-
lerdings werden auch deutlich mehr Durchläufe benötigt. Bootstrapping ist also in der
Regel deutlich rechenintensiver.

4.8.3 VLDS-Ada2Boost

Als nächstes betrachten wir nun den VLDS(Very Large Data Set)-Ada2Boost Algorith-
mus. Dieser ist eine Variation des AdaBoost-Algorithmus 2 aus dem Boosting Kapitel. Im
Kontext von Big Data stellt sich nun nämlich eine völlig neue Frage. Bisher war unser
Datensatz kostbar und wir haben versucht, ihn möglichst effizient zu nutzen, doch was
tun wir, wenn das Gegenteil auftritt? Wie gehen wir vor, wenn unser Datensatz so groß
ist, dass es unmöglich ist, alle Daten zum Lernen zu verwenden? Natürlich könnte man
einfach nur einen Teil der Daten zum Lernen nutzen und die restlichen Daten ignorie-
ren, der VLDS-Ada2Boost Algorithmus zeigt allerdings eine Möglichkeit, doch noch einen
Vorteil aus der großen Datenmenge zu ziehen. Betrachten wir zunächst den Pseudocode
des Algorithmus aus der Diplomarbeit von Marius Helf [45]. Hierbei ist zu beachten, dass
der in dem Paper behandelte Algorithmus, der Ada2Boost Algorithmus, eine Variante des
normalen AdaBoost-Algorithmus ist. Für den VLDS Part des Algorithmus ist dies aber
nicht weiter relevant.

Die Idee dieser Version des Algorithmus ist es, alle R Durchläufe einmal den kompletten
Satz an Trainingsdaten auszutauschen. Die neuen Trainingsdaten durchlaufen dann noch
einmal dieselben Schritte wie die alten, danach fährt der Algorithmus fort.

Der Else-Pfad des Algorithmus entspricht deshalb dem normalen Ada2Boost-Algorithmus.
Ein schwacher Klassifikator wird trainiert, danach werden die Datenpunkte neu gewichtet,
sodass ein größerer Fokus auf schwierige Fälle gelegt werden kann. Die späteren Klassi-
fikatoren konzentrieren sich dann häufig auf ebendiese. Am Ende wird eine gewichtete
Kombination der einzelnen Lerner zum Bilden von Modellen genutzt.

Der Unterschied zum ursprünglichen Algorithmus liegt im if-Teil. Hier wird alle R Durch-
läufe einmal der Datensatz durch einen völlig neuen, zufälligen Datensatz aus unserer
großen Datenmenge ersetzt. Die neuen Daten werden zunächst wieder mit 1 gewichtet,
dann werden alle bisher verwendeten Klassifikatoren 1, . . . , t noch einmal durchlaufen, um
nacheinander die Daten neu zu gewichten. Die Klassifikatoren werden also auf die neuen

78 KAPITEL 4. MASCHINELLES LERNEN

Data : Zeiger auf große Beispielmenge E
Größe m der Arbeitsmenge
Anzahl der Iterationen k
Resampling Intervall R
Gewichtungsregel W : X × Y × R→ R

Result : Modell h: X → R
Initialisiere Arbeitsmenge E0
Initialisiere Gewichte w0,i := 1

for t = 1, .., k do
if t/R ∈ N then
Et := random subset(E ,m)
w0, i := 1 ∀i ∈ {1, ...,m}
for j = 1, .., t− 1 do
∀(xi, yi) ∈ Et : wj,i := wj−1,i ·W (xi, yi, hj(xi))

end
end
else
Et := Et−1
if t > 1 then
∀(xi, yi) ∈ Et : wt,i := wj−1,i ·W (xi, yi, ht−1(xi))

end
end
Trainiere neues Basismodell ht : X → RaufEt

end
return h : X → R mit h(x) = h(h1(x), .., hk(x))

Algorithmus 3 : VLDS-Ada2Boost [45]

Daten angewendet, auf denen sie allerdings nicht trainiert wurden. Wichtig ist, dass die
bereits gelernten Klassifikatoren dabei nicht mehr geändert werden, nur die Gewichte der
Beispiele werden bearbeitet und für den t+ 1-ten Klassifikator angepasst.

Der VLDS-Ada2Boost Algorithmus tauscht also regelmäßig die ihm zugrunde liegenden
Daten aus und kann dadurch einen beliebig großen Teil der vorhandenen Daten zum
Lernen verwenden. Wichtig ist, dass schon gelernte Klassifikatoren dabei immer wieder auf
neuen Daten angewendet werden, der Algorithmus ist also nicht äquivalent zum normalen
AdaBoost auf der kombinierten Datenmenge. Stattdessen testet er seine bereits gelernten
Klassifikatoren immer wieder auf neuen Daten. Somit können eventuelle Tendenzen in
einzelnen Datenblöcken durch Umgewichtung in späteren Klassifikatoren korrigiert werden
und es gibt deutlich weniger Overfitting. Auch ist es aus praktischen Gründen natürlich
hilfreich, dass nicht der gesamte Datensatz dauerhaft im Speicher vorhanden sein muss.

4.8. SAMPLING UND ACTIVE LEARNING 79

4.8.4 Active Learning

Zum Schluss beschäftigen wir uns noch mit der Idee des active learnings. Bisher war es
immer unsere Aufgabe, mit einer begrenzten Menge an klassifizierten Daten einen Klas-
sifikator zu trainieren. Nun stellt sich jedoch die Frage, ob dies überhaupt realistisch ist.
Woher kriegen wir überhaupt diese perfekt klassifizierten Daten, auf denen wir lernen? Ge-
rade im Kontext von Big Data erhalten wir stattdessen häufig riesige Mengen an Daten,
die (noch) nicht klassifiziert sind. Wollen wir diese Daten nutzen, müssen wir sie also erst
selber klassifizieren. Aber war unser Ziel nicht gerade, mit den Daten einen Klassifikator
zu finden? Was nun?

Überlegungen

Häufig gibt es auch andere Möglichkeiten, die Klasse eines Datenpunkts zu erfahren. So
können zum Beispiel im Fall von Diagnosen weitere Tests an einem Patienten durchgeführt
werden, es kann ein Experte gefragt werden oder Ähnliches. Das Problem hierbei ist nur,
dass dies häufig teuer und zeitaufwändig ist. Wollen wir eine sehr große Menge Daten
klassifizieren, können wir nicht erwarten, dass unser Experte die Zeit hat (oder wir das Geld
haben), jeden Datenpunkt einzeln zu klassifizieren. Genau deshalb soll ja ein automatischer
Klassifikator gefunden werden. Es stellt sich nun die Frage, wie wir aus einer begrenzten
Anzahl an Beispielen, die wir dem Experten zeigen können, möglichst viele Informationen
für unseren Klassifikator erhalten können.

Querys und Experten

Genau mit dieser Frage, welche Daten lasse ich klassifizieren, um daraus zu lernen, be-
schäftigt sich active learning. Hierbei werden sogenannte Querys formuliert, die einem
Oracle, also dem Experten, übergeben werden. Dabei verfolgen wir einen gierigen Ansatz,
wir fragen uns also stets nur welche Anfrage uns genau in diesem nächsten Schritt den
größten Informationsgewinn liefert.

Gehen wir davon aus, dass wir zu einem beliebigen Zeitpunkt t bereits Querys gesendet
haben, haben wir dadurch auch eine Menge L von klassifizierten Daten. Jetzt wählen
wir entweder einen einzelnen Datenpunkt oder eine Gruppe von Punkten, die wir als
nächstes übergeben. Dazu brauchen wir eine Funktion, die den nützlichsten Datenpunkt,
gegeben irgendwelcher Kriterien und der Menge L, aussucht. Diesen Punkt lassen wir dann
klassifizieren und fügen ihn in L ein.

Die eigentliche Aufgabe beim active learning ist also, eine ideale Strategie für die Auswahl-
funktion zu finden. Hierzu werden häufig die zwei folgenden Kriterien betrachtet, andere
sind natürlich auch denkbar.

80 KAPITEL 4. MASCHINELLES LERNEN

Abbildung 4.11: Active learning als Kreislauf [81]

Informativeness Wie sehr hilft der Punkt bei der Verbesserung meines Modells?

Representativeness Wie repräsentativ ist der Punkt für die Verteilung D, die ich suche?

Uncertainty Sampling

Eine Beispiel für eine sehr einfache Art, eine Query zu formulieren, ist das sogenannte
uncertainty sampling. Hier wird immer der Datenpunkt zur Klassifikation gewählt, der
für das Modell mit der bisherigen Punktemenge L am schwersten vorherzusagen ist. Beim
Formulieren der Query wird also nur auf die Informativeness geachtet. Leider führt dieses
Vorgehen wieder zu dem bekannten Overfitting-Problem, da wir unsere Klassifikatoren
nur mit Ausreißern und Spezialfällen trainieren. Sie lernen also nur die Besonderheiten
des aktuellen Datensatzes auswendig, lernen dabei aber wenig über die repräsentativeren
Punkte. Dieses kurze Beispiel reicht aber, um zu zeigen, dass das Formulieren von Querys
nicht trivial ist und dass solche einfachen Ansätze keine akzeptable Lösung sind.

Fazit

Wichtig ist, dass active Learning kein Gegensatz zu anderen Sampling-Strategien ist. Statt-
dessen beschäftigt es sich mit neueren Problemen, die durch die immer größere Menge an
gewonnenen Daten auftreten. Active learning kann auch als eine Art Vorbereitung für das
eigentliche Sampeln betrachtet werden. Hier erstellen wir aus den noch nicht klassifizierten
Rohdaten einen Datensatz, auf den andere Sampling-Methoden wie die Kreuzvalidierung
angewandt werden können.

Teil II

Architektur und Umsetzung

81

Kapitel 5

Komponenten und Architektur

Bei Betrachtung der für den Anwendungsfall zu analysierenden Daten (siehe auch Kapi-
tel 6) wird deutlich, dass zur Umsetzung der Analyseziele ein Big-Data-System benötigt
wird. Mehrere Eigenschaften von Big Data (vgl. Kapitel 2) treffen auf die Problemstellung
zu:

• Volume. Die Menge der Daten überschreitet mit teilweise hunderten Gigabyte pro
Tag das, was von herkömmlichen Systemen gestemmt werden kann.

• Velocity. Das FACT-Teleskop zeichnet kontinuierlich Daten auf und diese sollen
idealerweise in Echtzeit verarbeitet werden.

• Variety. Wie in Kapitel 6 gesehen, werden von verschiedensten Sensoren Daten
gesammelt, die anschließend in der Analyse kombiniert werden müssen.

Unser System basiert daher auf der in Kapitel 3 vorgestellten Lambda-Architektur für
Big-Data-Systeme. Eine Übersicht über die verwendeten Software-Komponenten ist in
Abbildung 5.1 dargestellt.

Den Kern des Systems bildet ein Apache Hadoop Cluster (vgl. Unterabschnitt 3.1.1). Die-
ser bietet zum einen das verteilte Dateisystem HDFS, mit dem große Datenmengen redun-
dant und effizient abrufbar gespeichert werden können. Aufgrund dieser Eigenschaften wird
es von uns zur Ablage der Rohdaten, also der in Kapitel 6 beschriebenen FITS-Dateien,
verwendet. Um diese Daten und etwaige Zwischenergebnisse allerdings durchsuchbar zu
machen, müssen sie indexiert werden. Hierfür verwenden wir das dokumentenbasierte Da-
tenbanksystem MongoDB. Unsere Lösung sowie andere von uns in Betracht gezogene
Systeme werden in Kapitel 7 vorgestellt.

Zum Anderen bildet Hadoop auch die Grundlage für das verteilte Rechnen auf dem Clu-
ster, da es über den Ressourcen-Manager YARN die Möglichkeit bietet, verschiedenartige
verteilte Rechenaufgaben auf dem Cluster auszuführen. Hierzu verwenden wir das Cluster
Computing Framework Apache Spark, welches es erlaubt, verteilte Datensätze über den
Hadoop Cluster zu verarbeiten (vgl. Unterabschnitt 3.1.2).

83

84 KAPITEL 5. KOMPONENTEN UND ARCHITEKTUR

HDFS

Rohdaten

Mongo
-DB

Event-Index Apache Hadoop

REST-API

Benutzer

streams-Erw. Model

Apache Spark

Datenhaltung Datenverarbeitung

streams fact-tools

Verteilte
Prozesse

ML-
Integration

Abbildung 5.1: Überblick über die verwendeten Software-Komponenten

Um die verteilte Ausführung möglichst vieler Analyseaufgaben zu ermöglichen, erweitern
wir das streams-Framework (vgl. Unterabschnitt 3.2.4) zur Ausführung unter Apache
Spark. Dieser Ansatz hat den Vorteil, dass die von streams vorgesehene XML-Schnittstelle
zur Spezifikation von beliebigen Analyseprozessen auch für die verteilte Ausführung ver-
wendet werden kann. Insbesondere kann die Analysekette zur Vorverarbeitung der Tele-
skopdaten (siehe Unterabschnitt 1.4.1) mit geringen Anpassungen auf dem Cluster aus-
geführt werden. Um das zu erreichen, führt unsere Erweiterung die Möglichkeit ein, Pro-
zesse als verteilt zu definieren, sodass diese dann verteilt auf dem Cluster ausgeführt
werden.

Die Ausführung kann hierbei auf zwei Arten geschehen. Eine Möglichkeit ist die Verarbei-
tung eines statischen Datensatzes, der bereits zu Beginn der Laufzeit vollständig vorliegt
(zum Beispiel im HDFS). In diesem Fall sprechen wir von einem Batch-Prozess, weil die
Daten in einem Schub verarbeitet werden. Die Implementierung dieser Funktion wird in
Abschnitt 9.5 beschrieben. Die andere Möglichkeit ist die Verarbeitung eines Datenstroms.
Hierbei werden die Daten erst während der Laufzeit des Prozesses gelesen und fortlaufend
verarbeitet. Unsere Umsetzung dieser Funktionalität basiert auf Spark Streaming (vgl.
Unterabschnitt 3.2.3) und wird in Abschnitt 9.6 beschrieben. Diese beiden Komponenten
stellen unsere Umsetzung von Batch- und Speed-Layer dar.

Zusätzlich integriert unsere Erweiterung die von Spark zur Verfügung gestellte Bibliothek
für maschinelles Lernen in das streams-Framework. Damit lassen sich Lern- und Klas-

85

sifikationsaufgaben via XML definieren, sodass auch die ML-basierte Analyse der Tele-
skopdaten (vgl. Unterabschnitt 1.4.1) über dieselbe Schnittstelle spezifiziert werden kann.
Näheres zur Implementierung und zu den Änderungen an der XML-Schnittstelle wird in
Kapitel 10 erläutert.

Um dem Benutzer eine einheitliche Schnittstelle zu unserem System zu bieten, verwenden
wir eine REST-API (vgl. Unterabschnitt 3.3.2). Diese erlaubt es einerseits, Anfragen an
die MongoDB zu stellen, um zum Beispiel bestimmte Datenpunkte zu selektieren. An-
dererseits bietet sie ein Webinterface, über das Jobs an den Cluster geschickt und ihre
Ausführung überwacht werden kann. Weiteres zu Design und Implementierung der API
wird in Kapitel 8 beschrieben.

Kapitel 6

Datenbeschreibung

In diesem Kapitel werden die verwendeten Daten näher beschrieben. Dazu zählt sowohl
eine Einführung in das zugrundeliegende Dateiformat als auch eine etwas ausführlichere
Beschreibung der logischen Struktur der Dateien und deren Inhalt.

6.1 FITS-Dateiformat

Das FITS-Format [33] wurde 1981 von der National Aeronautics and Space Administration
(NASA) als Austausch- und Transportformat von astronomischen Bilddaten entwickelt.
Dabei ist dieses Format modular aufgebaut und es gibt verschiedene Extensions, welche
die eigentliche Datenrepräsentation in der Datei vorschreiben.

Eine FITS-Datei hat zunächst einen 2880 Byte großen Header-Block, den sogenannten
Primary-Header, wobei dieser die weiteren Daten in der Datei beschreibt. Dazu besteht
der Header aus Key-Value-Paaren, denen ein optionaler Kommentar folgen kann. Pro
Key-Value-Paar stehen jedoch nur 80 Byte zur Verfügung, von denen zehn dem Schlüssel
zugeteilt sind und 70 Byte sich der Wert und der Kommentar teilen. Sollte der Header
nicht die kompletten 2880 Byte brauchen, so bleiben die restlichen Bytes leer. Im Primary-
Header sind bestimmte Felder vorgeschrieben, zum Beispiel eine Checksumme über den
Header und ob sich an den FITS-Standard gehalten wird oder nicht. Dieser Header gibt
auch Auskunft darüber, ob Extensions in der Datei verwendet werden.

Nach dem Primary-Header folgt das erste Datenfeld, welches auch leer sein kann.

Hiernach folgt der Secondary-Header, der ähnlich zum Primary-Header aufgebaut ist, je-
doch auch angibt, welche Extension verwendet wird und noch weitere Informationen für
diese enthält. Als Beispiel für eine solche Erweiterung sei hier die Extension ”BINTABLE“
erwähnt. Dafür wird im Secondary-Header auch angegeben, wie viele Zeilen diese Tabel-
le enthält, wie viele Spalten es gibt, wie diese Spalten heißen und welchen Datentyp sie
haben. Dieser Header wird auch in 2880 Byte großen Blocks gespeichert.

87

88 KAPITEL 6. DATENBESCHREIBUNG

Nach diesen Header-Blocks folgt dann die Datentabelle.

Darüberhinaus werden große FITS-Dateien mit GZip komprimiert und diese Dateien tra-
gen die Endung .fits.gz.

6.2 Rohdaten

Die Daten des FACT werden in FITS-Dateien mit der Erweiterung ”BINTABLE“ gespei-
chert. Dazu schreibt das Teleskop die auftretenden Events in einer Zeitspanne von etwa
fünf Minuten in sogenannte Runs. Diese Dateien werden in einer hierarchischen Ordner-
Struktur pro Nacht zusammengefasst, zum Beispiel ”raw/2013/09/29/0130929 232.fits.gz“
für den Run mit der Nummer ”232“ am 29.09.2013. Innerhalb eines Runs gibt es nun eine
Tabelle mit etwa 3000 Zeilen, wobei jede Zeile ein Event beschreibt. Dazu zählen unter
anderem die Eventnummer, der Zeitpunkt des Auftretens und die Daten der einzelnen
Pixel, ein Datenfeld aus 432000 16bit-Integern.

6.3 Monte-Carlo-Daten

Monte-Carlo-Daten werden im Gegensatz zu den anderen Daten per Simulation erzeugt.
Bei dieser Simulation trifft ein Teilchen von festgelegter Energie auf die Atmosphäre und
erzeugt ein Cherenkov-Licht, das von einem simulierten Teleskop aufgenommen wird.

Der große Vorteil dieses Vorgehens liegt darin, dass im resultierenden Datensatz sowohl
die Features der Aufnahme als auch die Energie des verursachenden Teilchens vorliegen.
Deswegen werden die Monte-Carlo-Datensätze dazu verwendet, Modelle zu trainieren, die
anhand der Features die Energie des zugrundeliegenden Teilchens vorhersagen.

6.4 Drs-Daten

Die analogen Signale, die an den Fotodioden der Teleskopkamera gemessen werden können,
werden mithilfe von Domino-Ring-Samplern (DRS) digitalisiert. Ohne Kalibierung sind die
Messungen jedoch, wie in Abbildung 6.1 (links) zu sehen, stark verrauscht. Dies liegt zum
Einen am einfallenden Hintergrundlicht und zum Anderen an temperaturbedingen Span-
nungsänderungen. Um Events besser erkennen zu können, wird eine DRS-Kalibrierung
durchgeführt. Diese wird in regelmäßigen Zeitabständen vor einem Run durchgeführt und
dessen Ergebnisse mit den folgenden Aufnahmen verrechnet.

Die Drs-Daten, die ebenfalls im FITS-Format abgespeichert werden, beinhalten neben di-
versen Kalibrierungskonstanten zwei Aufnahmen: Ein Bild wird bei geschlossener Klappe

6.5. AUX-DATEN 89

aufgenommen und eins wird vom Nachthimmel gemacht. Aus den Informationen dieser
Aufnahmen kann das Hintergrundrauschen für folgende Aufnahmen zuverlässig herausge-
rechnet werden (s. Abbildung 6.1 (rechts)).

[5], [3], [4]

Abbildung 6.1: Event vor (links) und nach (rechts) der DRS Kalibrierung. Die Spitzen entspre-
chen den Signalen einer einzelnen Fotodiode [5]

6.5 Aux-Daten

Neben den eigentlichen Rohdaten werden von verschiedenen weiteren Sensoren Daten auf-
genommen, die dabei helfen sollen, die Rohdaten besser zu interpretieren oder Anpassun-
gen an dem Messvorgang zur Laufzeit durchzuführen. Diese Hilfsdaten (Auxiliary Data)
werden je nach Sensor in bestimmten Intervallen im FITS-Format abgespeichert und bein-
halten zum Beispiel Informationen über Wetter- und Sichtverhältnisse zum Zeitpunkt einer
Aufnahmereihe. So können etwa Informationen über die Wolkendichte oder Nebel von In-
teresse sein, da bei dichtem Himmel, schlechten Sichtverhältnissen oder Schneefall nur
ein Bruchteil des Cherenkov-Lichts am Teleskop ankommt. Weiterhin kann beispielsweise
Regen einen Wasserfilm auf der Kamera hinterlassen, der eingehendes Licht reflektiert,
und starker Wind kann die Lage des Teleskops verändern, sodass Anpassungen an dessen
Antriebssystem gemacht werden können [69].

Für den Anwendungsfall sind die Aux-Daten insofern interessant, als dass man durch deren
Indexierung in einer Datenbank eine genauere Eventselektion und Eventanalyse erreichen
kann. So können zum Beispiel Anfragen der Art ”Finde alle Events aus Nacht n, wo die
Temperatur unter y◦C liegt“ gestellt werden, um bessere Modelle für maschinelle Lern-
verfahren zu erzeugen. Bei Anfragen dieser Art werden geeignete Strategien benötigt, um
Event-Daten und Aux-Daten zusammenzuführen, da nicht sichergestellt werden kann, dass
zum Zeitpunkt te der Aufnahme eines Events e auch Sensordaten aufgezeichnet wurden.

90 KAPITEL 6. DATENBESCHREIBUNG

Abbildung 6.2: Statistik zur Luftfeuchtigkeit in der Nacht des 21.09.2013 aufgenommen von zwei
Sensoren: TNG (oben) und MAGIC (unten)

Meistens befindet sich te nämlich irgendwo zwischen zwei aufgezeichneten AuxPoints ai
und aj , also tai < te < taj . In solchen Fällen wird e mit dem AuxPoint zusammengeführt,
dessen Aufnahme am nächsten an te liegt, um möglichst genaue Informationen zu erhalten.

Für Analysezwecke wurde von uns ein Tool (AuxViewer) entwickelt, mit dessen Hilfe sich
Diagramme indizierter Aux-Daten für eine bestimmte Nacht generieren lassen. Eine bei-
spielhafte Analyse der Wetterdaten ergab, dass verschiedene Sensoren unterschiedliche
Aufnahmeintervalle haben, wie die Statistiken zur gemessenen Luftfeuchtigkeit einer Nacht
in Abbildung 6.2 zeigt. Für eine genauere Eventselektion gilt es also herauszufinden, welche
Sensordaten besser geeignet sind, falls verschiedene Sensoren das selbe Merkmal aufzeich-
nen.

Eine stichprobenartige Überprüfungen mehrerer Sensoren zu unterschiedlichen Nächten
zeigte weiterhin, dass die Sensoren anscheinend zuverlässig arbeiten. Die Werte werden in
regelmäßigen Abständen ausgelesen, Definitionslücken durch Ausfälle wurden nicht ver-
zeichnet und Sensoren, die dasselbe Merkmal aufnehmen, liefern in etwa die selben Werte
(siehe z.B. Abbildung 6.2).

Kapitel 7

Indexierung der Rohdaten

Der Ausgangspunkt für unsere Datenanalyse sind die vielen Hundert Gigabyte von Roh-
daten, die im FITS-Format vorliegen und von uns in dem verteilten Dateisystem HDFS
abgelegt wurden (vgl. Kapitel 6). Unser System soll dem Nutzer erlauben, anhand von
Suchanfragen bestimmte Teildatensätze daraus auszuwählen, um diese dann weiterzuver-
arbeiten. Diese Anfragen beziehen sich nicht auf die vom Teleskop gemachten Bilder selbst,
sondern auf die Metadaten zu diesen Bildern, also etwa den Zeitpunkt der Aufnahme, die
Ausrichtung des Teleskops oder die Außentemperatur.

Eine effiziente Bearbeitung solcher Anfragen ist nur dann möglich, wenn diese Daten in
einer für die Suche geeigneten Datenstruktur vorliegen. Andernfalls müsste für jede An-
frage der gesamte Datensatz durchlaufen werden. Aus diesem Grund indexieren wir die
Metadaten mithilfe von Datenbanksystemen. Ausgenommen sind hierbei die eigentlichen
Bilddaten, welche einen Großteil der Datenmenge ausmachen, jedoch für die Auswertung
der Suchanfragen nicht relevant sind. Zweck der Datenbanken ist es, die Menge der auf-
gezeichneten Datenpunkte (Events) zu finden, die den durch den Nutzer formulierten
Bedingungen genügen. Anschließend können dann gezielt die zugehörigen Bilddaten aus
dem HDFS geladen und weiterverarbeitet werden.

Die drei von uns untersuchten Systeme sind die dokumentenbasierte verteilte Datenbank
MongoDB, die verteilte Suchmaschine ElasticSearch und die relationale Datenbank Post-
greSQL. Die Art und Weise, wie wir jedes dieser Systeme auf das Problem angewendet
haben, wird im Folgenden erläutert.

7.1 MongoDB

Das Ziel, einen Index für die Rohdaten zu erstellen, kann in MongoDB (siehe Unter-
abschnitt 3.3.1) auf sehr unterschiedliche Art und Weise erreicht werden. Eine mögliche
Realisierung besteht in dem Anlegen einer Collection, die für jedes Event ein einzelnes

91

92 KAPITEL 7. INDEXIERUNG DER ROHDATEN

Dokument besitzt. Genauso gut ist es möglich, mehrere Events zu aggregieren und als ein
Dokument zu speichern. Wir gehen im Folgenden auf beide Varianten ein.

Ein Dokument pro Event. Dieser Ansatz ist sehr naheliegend und nutzt die simple
key-value-Struktur der JSON-Dokumente. Ein großer Vorteil liegt in dem einfachen Hin-
zufügen von zusätzlichen Attributen, wenn weitere Informationen zu den Events gespei-
chert werden sollen. Diese flache Dokumentenstruktur führt auch zu sehr übersichtlichen
Suchanfragen, da eine Suchanfrage bei MongoDB ebenfalls ein JSON-Objekt ist, das die-
selbe Struktur wie das Dokument besitzt.

Aggregation von mehreren Events. Ein MongoDB-Dokument darf Arrays, einge-
bettete Dokumente sowie Arrays von eingebetteten Dokumenten beinhalten. Daher ist es
möglich, mehrere Events in einem Dokument zusammenzufassen. Dabei kann die Gra-
nularität frei gewählt werden. So können zum Beispiel für jede Sekunde alle Events, die
in dieser Sekunde aufgenommen wurden, zu einem Dokument zusammengefasst werden.
Durch Aggregation sinkt die Anzahl der Dokumente in der Collection, wodurch die Größe
der Indices sinkt. Außerdem liegen dann die Events, die in der gleichen Sekunde aufgenom-
men wurden, in der gleichen Datei. Wenn also oft Events aus einem zusammenhängenden
Zeitraum angefragt werden, sinkt die Anzahl der zu durchsuchenden Dokumente, was die
Performanz vermutlich erhöht. Dafür steigt aber auch die Komplexität der Suchanfragen.

Beide Varianten der Indexierung wurden von uns mithilfe des streams-Frameworks imple-
mentiert. Bei den bisher durchgeführten Tests wurde die MongoDB bisher nur auf einem
einzelnen Knoten gestartet, weshalb noch keine abschließende Beurteilung möglich ist. Es
hat sich insbesondere bei der Variante ”Ein Dokument pro Event“ gezeigt, dass der Job
mehr Zeit in Anspruch nimmt, als es für das reine Auslesen der Ursprungsdateien nötig
wäre. Dieses Problem könnte durch ein verteiltes Setup der Datenbank gelöst werden.

Darüber hinaus ist es uns gelungen, die Aux-Daten in die indexierten Meta-Daten zu inte-
grieren. Dabei wurde die in Abschnitt 6.5 erläuterte Strategie zum Finden des passenden
Messwertes für ein Event eingesetzt.

7.2 Elasticsearch

Um die Performanz verschiedener Datenbanken hinsichtlich des Anwendungsfalles die-
ser Projektgruppe gegeneinander abwägen zu können, wurde als zweite Persistenzlösung
Elasticsearch eingesetzt. Der Cluster pg594-cluster gliedert sich in drei Indizes, nämlich
metadataindex, drsindex und auxindex. Der metadataindex enthält Dokumente des Typs
metadata, in denen die Metadaten zu den jeweiligen Events abgelegt sind. Im drsindex
befinden sich die Kalibrationsdaten aus den DRS-Dateien und im auxindex in analoger

7.3. POSTGRESQL 93

Weise die in den AUX-Dateien befindlichen Informationen. Für den pg594-cluster wurde
Elasticsearch lediglich auf einem einzigen Rechenknoten betrieben, eine Alternative dazu
wäre jedoch gewesen, auf jedem verfügbaren Knoten des Clusters des Sonderforschungs-
bereiches 876 einen Elasticsearch-Node zu betreiben.

7.3 PostgreSQL

Als dritte mögliche Lösung haben wir ein PostgreSQL System aufgesetzt, also ein her-
kömmliches relationales Datenbankmanagementsystem (vgl. Abbildung 3.3.1). Dies ist
unter anderem dadurch motiviert, dass die Größe der Metadaten sich in Grenzen hält.
Es ist anzunehmen, dass der verbrauchte Speicherplatz pro Event selbst mit zusätzlichen
Aux-Daten und berechneten Features 2 KB nicht überschreiten wird. Für die zwei Mil-
lionen Events, die aktuell den Cluster füllen, sind das gerade einmal 4 GB. Insofern ist
es durchaus realistisch, die Metadaten auch auf lange Sicht in einer monolithischen re-
lationalen Datenbank zu verwalten. Des Weiteren bietet Postgres-XL im Zweifelsfall die
Möglichkeit, auf eine verteilte Lösung umzusteigen.

Eine größere Herausforderung stellt das Design eines Schemas dar, das alle in Zukunft
benötigten Funktionalitäten bereitstellt. Insbesondere das Abspeichern der berechneten
Features ist nicht einfach, da jederzeit neuartige Features hinzukommen können. Eine
Möglichkeit, dies umzusetzen, ist, eine eins-zu-viele-Relation zu verwenden, die Events und
Features verbindet. Diese würde allerdings dazu führen, dass für viele Anfragen teure Join-
Operationen nötig wären, und so die Prinzipien der dimensionalen Modellierung verletzen
(vgl. Abbildung 3.3.1). Eine andere Möglichkeit ist der Einsatz des JSON-Datentyps, den
PostgreSQL anbietet. Neue Features könnten dann einfach in bestehende Tabellenzeilen
eingefügt werden.

7.4 Auswahl der Datenbank

Nachdem im ersten Semester der Projektgruppe drei verschiedene Datenbanken in einer
experimentellen Phase parallel zueinander verwendet wurden, entwickelte sich im zweiten
Semester ein deutlicher Trend zur Nutzung der MongoDB. Dies ist zum Einen damit zu
begründen, dass eine dokumentenbasierte Lösung im Gegensatz zu einem herkömmlichen
relationalen Datenbankmodell für unseren Anwendungsfall zweckdienlicher ist, da Erstere
es ermöglicht, jederzeit ohne großen Aufwand neue Attribute hinzuzufügen. Ein solches
Vorgehen ist beispielsweise dann notwendig und relevant, wenn Berechnungen auf den
Events durchgeführt werden, deren Ergebnisse längerfristig Gültigkeit haben bzw. häufig
benötigt werden und somit nicht bei jedem Zugriff neu kalkuliert werden sollen. Zum

94 KAPITEL 7. INDEXIERUNG DER ROHDATEN

Anderen setzen auch die Physiker zur Indexierung ihrer Rohdaten eine MongoDB ein,
sodass durch die Fokussierung auf diese Datenhaltungslösung ein leichter Umstieg auf die
Datenbank der Physiker oder aber eine Fusionierung der Datenbanken ermöglicht wird.

Kapitel 8

RESTful API

Zum Erreichen der Analyseziele, namentlich die Normalisierung der Rohdaten, die Durch-
suchbarkeit von Events und deren Analyse mittels maschineller Lernverfahren, ist eine
RESTful API implementiert worden. Insbesondere soll mit ihr sowohl der Zugriff auf den
Rohdaten-Index, als auch die Ausführung, die Überwachung und die Steuerung von ver-
teilten Jobs über ein einheitliches HTTP Interface vereinfacht werden.

Für die angesprochenen Punkte sind Schnittstellen entworfen und implementiert worden,
die im Laufe der folgenden Abschnitte detaillierter besprochen werden. Neben der Do-
kumentation der einzelnen Schnittstellen wird gleichzeitig auf die technischen Aspekte
der Implementierung eingegangen. Weiterhin wird eine Webanwendung präsentiert, die
zusammen mit der RESTful API ausgeliefert wird und deren Funktionalitäten über eine
komfortable Oberfläche zur Verfügung stellt.

8.1 Design

Zur Umsetzung der RESTful API (vgl. Unterabschnitt 3.3.2) ist es zunächst wichtig, diese
Schnittstelle zu planen. Dazu werden wir die notwendigen URLs festlegen und das Format
der Daten definieren. Weiterhin wird beschrieben, wie diese Informationen auch außerhalb
dieses Berichts dokumentiert wurden. [66]

8.1.1 Endpunkte

Die Endpunkte der REST API sind so gewählt, dass der Zugriff auf indizierte Daten in
den in der PG genutzten Datenbank MongoDB mehr anwendungsfallbezogen verläuft.

Die in Tabelle 8.1 aufgelisteten Schnittstellen sind für den Zugriff auf Metadaten von
Events konzipiert. Die Angabe der GET-Parameter ist optional. Hierbei kann über format

95

96 KAPITEL 8. RESTFUL API

URL GET-Parameter
GET /api/events format, filter
GET /api/events/count filter

Tabelle 8.1: Schnittstellen der REST API für Metadaten

1 [
2 {
3 ”EVENT NUM” : ”4” ,
4 ”TRIGGER NUM” : ”4” ,
5 ”NIGHT” : ”20130921” ,
6 . . .
7 } ,
8 {
9 ”EVENT NUM” : ”5” ,

10 ”TRIGGER NUM” : ”4” ,
11 ”NIGHT” : ”20130921” ,
12 . . .
13 } ,
14 . . .
15]

(a) JSON

1 [
2 {
3 ” path ” : ” . . . / h d f s / f a c t /raw / 2 0 1 3 / 0 8 / 2 1 / f i t s . gz ” ,
4 ” eventNums ” : [2 0 , 22 , 24 , 50 , . . .] ”
5 } ,
6 {
7 ” path ” : ” . . . / h d f s / f a c t /raw / 2 0 1 3 / 0 9 / 0 6 / f i t s . gz ” ,
8 ” eventNums ” : [2 , 22 , 120 , 121 , . . .] ”
9 } ,

10 . . .
11]

(b) Minimal

Abbildung 8.1: Die Rückgabeformate der REST API

das Rückgabeformat einer Antwort bestimmt werden (s. Unterabschnitt 8.1.2). Über den
Parameter filter lässt sich ein Filterausdruck übergeben, mit dem die Metadaten selektiert
werden können (s. Unterabschnitt 8.2.2).

Im Laufe des zweiten Semesters sind weitere Endpunkte erstellt worden, mit denen sich
etwa komfortabel Jobs verwalten und ausführen lassen. Diese sollen hier jedoch nicht alle
aufgezählt werden, da sie im Verlauf des Kapitels, in Kapitel 18 und in einer separaten
Software-Dokumentation erläutert sind.

8.1.2 Rückgabeformate

Die Ausgabe von Anfragen, die über die REST API gestellt werden, können für verschie-
dene Zwecke anders formatiert werden. Das Rückgabeformat lässt sich dabei mit dem
GET-Parameter format über die URL festlegen. Mögliche Werte für diesen Parameter
sind json und min. Falls der Formatierungsparameter nicht übergeben wird, wird der
Wert standardmäßig auf json gesetzt. Das Rückgabeformat ermöglicht so ein einheitliches
Format, sodass Anfragen unabhängig von der angesprochenen Datenbank eine einheitli-
che Antwort erzeugen. Eine Beschreibung der unterschiedlichen Formate sowie mögliche
Beispiele zur Benutzung und mögliche Ausgaben ist im Folgenden gegeben.

JSON Eine Anfrage, die den Parameter format=json übergibt, bekommt als Antwort
eine Liste aller Events mit allen Attributen, wie sie in der Datenbank vorkommen, im
JSON-Format. Dadurch wird ein direkter Zugriff auf die indexierten Metadaten ermöglicht.
Eine beispielhafter Request an die API könnte wie folgt aussehen:

8.1. DESIGN 97

GET http://[...]/api/events/?filter=[...]&format=json

Die Antwort würde in diesem Fall aussehen, wie in Abbildung 8.1a gezeigt, wobei die Fel-
der ”EVENT NUM“, ”TRIGGER NUM“ und ”NIGHT“ den Namen der entsprechenden
Dokumenten in der Datenbank entsprechen.

Minimal Anstatt alle Felder der Metadaten zurückzugeben, besteht der Sinn dieses Pa-
rameters darin, an die eigentlichen Rohdaten zu kommen, die zu dem in der URL gegebe-
nen Filterausdruck passen. Wie in Abbildung 8.1b zu sehen, wird die Antwort ebenfalls im
JSON-Format zurückgegeben. Zu jedem Event, das auf den Filter zutrifft, wird die Event-
Nummer innerhalb der entsprechenden FITS-Datei in eine Liste eingefügt. Ein HTTP
Request sollte nach folgendem Muster gestellt werden:

GET http://[...]/api/events/?filter=[...]&format=min

Dieser Parameter eignet sich insbesondere für den Fall, zu einer gestellten Anfrage die
Rohdaten aus den fits Dateien zu erhalten, um diese anschließend in einem Stream zu
verarbeiten. Durch der Angabe der einzelnen Event-Nummern kann im Stream innerhalb
einer fits-Datei genau nach passenden Events gesucht werden.

8.1.3 Dokumentation

Da diese API nicht nur von Mitgliedern dieser PG verwendet werden soll, ist eine gute
Dokumentation unerlässlich. Natürlich erfüllt dieser Bericht auch diese Funktion, jedoch
wäre es wünschenswert die Dokumentation näher an die Anwendung zu bringen.

Um diese Anforderungen zu erfüllen, wurde sich für das Swagger-Projekt entschieden. Dort
wurde eine Spezifikation, die mittlerweile von der Open API Initative betreut wird, ent-
wickelt, mit der sich RESTful APIs mithilfe von JSON beschreiben lassen [74]. Rund um
diese Dokumentation sind unterschiedliche Tools entstanden, z.B. der Text-Editor Swagger
Editor, mit dem das JSON, welches die API beschreibt, einfach bearbeitet werden kann.
Noch hilfreicher ist jedoch die Swagger UI, die aus der JSON-Definition eine dynamische
Website generiert, welche die Dokumentation übersichtlich und mit einer modernen Ober-
fläche anzeigt. Darüber hinaus kann man die angegebenen REST-Endpunkte auch direkt
ansprechen und bekommt die Anfrage- und Antwort-Informationen detailliert präsentiert
(vgl. Screenshot). Diese Website kann nun mit zusammen mit der eigentlichen API auf
einem Server bereitgestellt werden.

98 KAPITEL 8. RESTFUL API

8.2 Implementierung

Zur Implementierung der REST API wurde auf Java-basierte Lösungen gesetzt, für die
bereits entsprechendes Know-How unter dem Team Mitgliedern vorhanden war. Dies sollte
eine schnelle und zuverlässige Implementierung ermöglichen. Im Folgenden werden die
verwendeten Softwareprodukte kurz vorgestellt.

8.2.1 Spring Framework

Bei der Implementierung der RESTful API wurde das Spring-Framework verwendet. Dabei
handelt es sich um ein sich aus verschiedenen, separat nutzbaren Modulen bestehendes
OpenSource-Framework für die Java-Plattform. Für den Einsatz in dieser Projektgruppe
wurden aus dem vielfältigen Angebot an Modulen des Spring-Frameworks Spring Boot
sowie Spring Data für MongoDB ausgewählt, welche im Folgenden näher erläutert werden.

Spring Boot Spring Boot ermöglicht es, auf einfache Weise und mit minimalem Kon-
figurationsaufwand Stand-Alone-Anwendungen zu entwickeln. Bei mit Spring Boot ent-
wickelten Anwendungen entfällt zum Einen jegliche über die pom.xml herausgehende
XML-Konfiguration sowie zum Anderen die Notwendigkeit, die Anwendung als War-File
zu deployen, da Spring Boot bereits einen Application-Server - wahlweise Tomcat, Jetty
oder Undertow - mitliefert, sodass die Anwendung nur noch gestartet werden muss.

Zur Einbindung von Spring Boot müssen lediglich die benötigten Dependencies zur Pro-
jektkonfigurationsdatei des entsprechenden Dependency-Management-Systems hinzugefügt
werden.

1
2 <parent>

3 <groupId>org . springframework . boot </groupId>

4 <a r t i f a c t I d >spr ing−boot−s t a r t e r−parent </ a r t i f a c t I d >

5 <v e r s i o n > 1 . 3 . 3 .RELEASE</v e r s i o n >

6 </parent>

7 <dependencies >

8 <dependency>

9 <groupId>org . springframework . boot </groupId>

10 <a r t i f a c t I d >spr ing−boot−s t a r t e r−web</ a r t i f a c t I d >

11 </dependency>

12 </dependencies >

Listing 8.1: Einbindung von Spring Boot mittels Maven durch Hinzufügen der Dependencies zur
pom.xml

Das Herzstück einer mit Spring Boot entwickelten Anwendung ist die Application-Klasse,
die im Falle der REST API folgendermaßen aussieht:

8.2. IMPLEMENTIERUNG 99

1

2 @SpringBootApplication

3 public class Application {

4 public static void main(String [] args) {

5 SpringApplication .run(Application .class , args);

6 }

7 }

Listing 8.2: Application-Klasse bei Spring Boot

Die Annotation @SpringBootApplication deklariert die Anwendung als Spring Boot
Application und ermöglicht den Einsatz folgender weiterer Annotationen:

• Durch die Annotation @Configuration wird eine annotierte Klasse als mögliche
Quelle für Bean-Definitionen im Application-Context erkannt.

• Die Annotation @EnableAutoConfiguration ermöglicht, wie der Name bereits er-
kennen lässt, eine automatisierte Spring-Konfiguration, im Zuge welcher Beans auf
Basis von Classpath-Settings generiert sowie diverse weitere Einstellungen vorgenom-
men werden. Über das vollständige Funktionsspektrum klärt die Projekt-Homepage
von Spring Boot auf.

• Falls von Spring Boot eine entsprechende Dependency in der Projektkonfigurations-
datei des Dependency-Management-Systems erkannt wurde, wird die Anwendung
automatisch als Web-Anwendung gekennzeichnet.

• Durch Einsatz der Annotation @ComponentScan sucht Spring Boot automatisiert
nach weiteren Komponenten, Services sowie Konfigurationsdateien.

Die main()-Methode der Application-Klasse nutzt Spring Boots SpringApplication.run()-
Methode, um die Anwendung zu starten, welche den Application-Context und somit auch
alle automatisiert und manuell erstellten Beans zurückgibt.

Spring Data Bei Spring Data handelt es sich um ein Modul des Spring-Frameworks,
mittels dessen Boilerplate-Code beim Datenbank-Zugriff durch Nutzung sogenannter CRUD-
Repositories reduziert werden kann. Dieses wird nachfolgend in Kapitel 1.5.2.2 näher in
Augenschein genommen.

8.2.2 Filterung

Der Ansatz der Implementierung einer Schnittstelle mit Hilfe von REST ressourcenbasiert
auf der Überlegung bestimmte Funktionen zu kapseln und als Services bereitzustellen,

100 KAPITEL 8. RESTFUL API

die von anderen Teilen der Anwendung oder von außerhalb angesprochen werden können,
um z.B. die Metadaten der Events bereitzustellen, die wiederum zur Selektion von Events
genutzt werden können, die bestimmten Kriterien genügen. Im Falle der Events handelt
es sich bei den Kriterien um eine Vielzahl von Attributen, die jedes Event inne hat.

Herausforderungen Bei der Implementierung der Filterung stellen sich einem mehre-
re Herausforderungen. Die Filterung muss in der Lage sein, eine Anfragesprache (engl.
domain specific language (DSL)) verarbeiten und interpretieren zu können, sodass auch
komplexere Anfragen an das System gestellt werden können. Es wäre noch verhältnismäßig
leicht gewesen, die Selektion von Events zu implementieren, deren Attribut exakt den vor-
gegebenen Werten entsprechen. Womöglich möchte der Anwender aber den Wertebereich
eines Attributs nicht auf einen bestimmten Wert, sondern auf ein Intervall eingrenzen und
womöglich sollen einige Datensätze prinzipiell ausgeschlossen werden. Und vielleicht soll
ein Wert nicht nur innerhalb eines, sondern zweier Intervalle liegen. Der Komplexität einer
Anfrage sind je nach Anwendungsfall also keine Grenzen gesetzt und die Implementierung
eines geeigneten Interpreters ein anspruchsvolles Unterfangen gewesen. Es wird also eine
Anfragesprache verlangt, die zum Einen hinsichtlich der Ausdruckskraft z.B. der Daten-
banksprache SQL nahekommt und zum Anderen vom Anwender leicht anzuwenden und
somit möglichst nah an die natürlichen Sprache angelehnt ist.

SQL (engl. Structured Query Language) ist eine Anfragesprache, die auf der relationalen
Algebra basiert und den Umgang mit den Daten eines relationalen Datenbankmanage-
mentsystems ermöglichen. Eine wichtige Komponente der SQL ist die sog. Query, die der
Beschreibung der gewünschten Daten dient und vom Datenbanksystem interpretiert wird,
um die gewünschten Daten bereitzustellen. Listing 8.3 stellt eine solche SQL-Anfrage bei-
spielhaft dar, die den Pfad (event path) aller Events ausgeben soll, deren Eventnummer
(event num) entweder zwischen 5 und 10 oder zwischen 50 und 100 liegt und deren Trig-
gernummer (trigger num) größer als 10 ist. Bei der vorliegenden Anfrage ist die WHERE
clause von Interesse, da diese beschreibt, welche Eigenschaften die gewünschten Events
besitzen sollen, und nach diesen Kriterien gefiltert wird.

1 SELECT event_path FROM events WHERE (

2 (event_num >= 5 AND event_num <= 10) OR

3 (event_num >= 50 AND event_num <= 100)

4) AND trigger_num > 10

Listing 8.3: Beispiel für eine SQL-Anfrage

Die Ausführung einer übergebenen SQL-Anfrage wäre möglich, aber bringt mehrere Nach-
teile mit sich. Die Persistierungsebene wird nicht abstrahiert und der Anwender ist ge-
zwungen mit dieser insofern direkt zu interagieren, als dass er sich unnötigerweise mit

8.2. IMPLEMENTIERUNG 101

dem Aufbau des Datenbankschemas vertraut machen muss. Wie eingangs erwähnt, wer-
den mehrere Systeme zur Datenhaltung eingesetzt, die nicht allesamt auf SQL als Anfrage-
sprache setzen. MongoDB setzt ganz im Gegenteil auf ein JSON-basiertes Anfrageformat,
dessen Pendant zum o.g. SQL-Ausdruck in Listing 8.4 dargestellt wird.

1 { $and: [

2 { $or: [

3 { event_num : { $gte: 5, $lte: 10 }},

4 { event_num : { $gte: 50, $lte: 100 }}
5]},

6 {
7 trigger_num : { $gt: 10 }
8 }
9]}

Listing 8.4: Beispiel für eine Anfrage an eine MongoDB Datenbank

Da die REST API JSON-basiert ist und die Anfragesprache von MongoDB alle benötigten
Eigenschaften einer ausdrucksstarken Anfragesprache in Form eines JSON-Dokuments
mitbringt, liegt der Gedanke nahe, diese Syntax zur Filterung der Events zu übernehmen.
Die Problematik bestünde jedoch darin, diese Anfrage in das jeweilige Anfrageformat der
anderen Systeme (Elasticsearch und PostgreSQL) übersetzen zu müssen, was einen gewal-
tigen Overhead an zusätzlicher Programmierarbeit zur Folge hätte.

Es wird also eine Lösung benötigt, um die Anfrage über den Filter möglichst automatisiert
in eine kompatible Anfrage für die jeweilige Engine zu übersetzen.

Architektur Architektonisch besteht die Filterung aus drei Schichten: Schnittstelle,
Service-Layer und Persistierungs-Layer. Wie in Unterabschnitt 8.1.1 erwähnt, steht jeweils
ein Endpunkt für jede Engine zur Verfügung, der einen Filterausdruck über die aufgerufe-
ne URL entgegennimmt. Jeder Endpunkt bzw. jede Engine, die durch diesen repräsentiert
wird, verwendet einen eigenen Service, der die Geschäftslogik für die jeweilige Engine im-
plementiert. Über die Geschäftslogik der Services wird schließlich auf den Persistierungs-
Layer zugegriffen, welcher den Zugriff auf die persistierten Daten ermöglicht.

Der Kern des Spring-Frameworks, welches in Unterabschnitt 8.2.1 eingeführt wurde, kann
um das Modul Spring Data JPA erweitert werden, welches auf der Java Persistence
API (JPA) aufbaut und die Zuordnung zwischen Java-Objekten und den persistierten
Daten vereinfacht. Man spricht hier auch von einem bidirektionalen Mapping, sodass
Veränderungen der Daten auf die korrespondierenden Java-Objekte übertragen und gleich-
zeitig Änderungen der Attribute der Java-Objekte in den Daten reflektiert werden. Die

102 KAPITEL 8. RESTFUL API

grundlegende Idee besteht darin, sog. Repositories bereitzustellen, die als Interfaces um-
gesetzt wurden und über die grundlegende Methoden zur Datenverarbeitung (CRUD -
Create, Read, Update, Delete) zur Verfügung gestellt werden. Ebenso wird über die Re-
positories der Datentyp festgelegt, der für das Mapping zwischen Daten und Objekten
genutzt werden soll.

Da JPA mit den verschiedensten Datenbanktreibern kompatibel ist und die Repositories
für alle drei Datenbankengines genutzt werden können, wurde der Zugriff auf die Persi-
stierungsebene vereinheitlicht. Diese Vereinheitlichung stellt auch die Grundlage für eine
einheitliche Lösung zur Filterung von Eventdaten dar.

Um die Events filtern zu können, wird das Framework QueryDSL eingesetzt, das typsiche-
re, SQL-ähnliche Anfragen an unterschiedliche Datenquellen, wie JPA, MongoDB, SQL,
Java Collections u.v.m. ermöglicht. Dabei ist das Format der Anfrage unabhängig von der
verwendeten Datenquelle und somit die Anwendung des Filters vereinheitlicht.

Implementierung Für jedes Datenbanksystem steht ein dedizierter Service zur Verfügung,
der die Businesslogik kapselt. Dabei soll die Filterung der Events unabhängig vom ver-
wendeten System sein bzw. jedes System die Filterung unterstützen. Zu diesem Zweck
implementieren alle Services ein Interface, welches die Methode zur Filterung der Events
definiert (vgl. Listing 8.5).

1 public interface EventService {

2 Iterable <Metadata > filterEvents (String filterExpression);

3 }

Listing 8.5: Service Interface

Dem Rückgabewert der Methode filterEvents(...) ist ein Iterable des Datentyps
Metadata. Metadata ist ein sog. POJO (Plain Old Java Object), welches die Metadaten
der Events aus der Datenbank als Java-Objekt repräsentiert. Somit ist die Klasse Metadata

auch diejenige Klasse, die von QueryDSL modifiziert wird, um entsprechende Anfragen an
eine Liste mit Instanzen dieser Klasse stellen zu können. Eine Anfrage könnte beispielsweise
wie in Listing 8.6 aussehen.

1 ((

2 eventNum .gte (5).and(eventNum .lte (10))

3).or(

4 eventNum .gte (50).and(eventNum .lte (100))

5)).and(

6 triggerNum .gt (10)

8.2. IMPLEMENTIERUNG 103

7)

Listing 8.6: Anfrage

Hier repräsentieren eventNum und triggerNum Attribute der Klasse Metadata, die aber in
dem POJO als Integer definiert sind und somit nicht über die Methoden gte(), lte o.ä.
verfügen. Mittels eines Präprozessors wird beim Bauen des Projekts eine Klasse QMetada-
ta.class erzeugt, die die Attribute der Klasse um die entsprechenden Methoden erweitert,
die Anfragen, wie die o.g. erlauben. Ebenso wird durch das Beispiel ersichtlich, dass es
sich hierbei um Methodenaufrufe auf einem Java-Objekt handelt, jedoch der Anfrage zur
Filterung der Events als String übergeben wird (vgl. Listing 8.5).

Der Ausdruck muss also zur Laufzeit in ausführbaren Java-Code übersetzt werden, was
mittels der Ausdruckssprache MVEL erreicht wird. Diese Ausdruckssprache ist an die Java-
Syntax angelehnt, sodass der String mit dem Filterausdruck äquivalent zu Java-Code ist.
Um nun ein Predicate-Objekt zu erhalten, welches vom QueryDSL-Framework benötigt
wird, um die Abfrage an die Datenbank zu stellen, wird eine Java-HashMap erstellt, der
als Schlüssel gültige Variablennamen übergeben werden, die in dem Ausdruck vorkommen
dürfen, sowie deren entsprechendes Klassenattribut als Wert, wie man es beispielhaft in
Listing 8.7 nachvollziehen kann. MVEL wertet den Ausdruck aus, ordnet die Variablen im
Ausdruck denen der Zielklasse zu und erzeugt das gewünschte Objekt, in diesem Fall das
Predicate.

1 public static Predicate toPredicate (final String

filterExpression){

2 Map <String , Object > vars = new HashMap <>();

3 vars.put(" eventNum ", QMetadata . metadata . eventNum);

4 vars.put(" triggerNum ", QMetadata . metadata . triggerNum);

5 ...

6 return (Predicate) MVEL.eval(filterExpression , vars);

7 }

Listing 8.7: Evaluation der Anfrage

Nach der Erzeugung des Predicate Objekts kann dieses an das entsprechende Repository
übergeben werden, wie es beispielsweise in Listing 8.8 umgesetzt wurde. Die Methode
findAll(...) dient der Suche aller Events (bzw. Metadaten), die dem Prädikat genügen.

1 @Override

2 public Iterable <Metadata > filterEvents (String

filterExpression) {

104 KAPITEL 8. RESTFUL API

3 return metadataRepository . findAll (Metadata . toPredicate (

filterExpression));

4 }

Listing 8.8: Service Implementierung

Für gewöhnlich akzeptiert diese Methode des Spring-Repositorys kein Predicate-Objekt
als Parameter. Daher muss das Repository insofern angepasst werden, als dass es ein wei-
teres Interface (QueryDslPredicateExecutor<Metadata>) implementiert, das von Que-
ryDSL bereitgestellt wird und dem Repository die Fähigkeit verleiht, Prädikate zur Fil-
terung von Datenbankeinträgen zu nutzen. Damit der QueryDslPredicateExecutor das
Prädikat für das jeweilige Datenbanksystem ausführen kann, muss lediglich die entspre-
chende Maven Dependency eingebunden werden, die die nötige Logik enthält. Eine solche
Depedency ist für die populärsten Systeme vorhanden, sodass eine Integration problemlos
und schnell umgesetzt werden kann.

Ein Spring-Repository zeichnet sich dadurch aus, dass es ein Interface ist, dessen definierte
Methoden zur Übersetzungszeit des Projekts automatisch vom Spring-Framework imple-
mentiert werden, wie dem Beispiel in Listing 8.9 zu entnehmen ist. Durch diesen Mecha-
nismus garantiert die Einbindung des QueryDslPredicateExecutors, dass die benötigten
Methoden wie findAll(Predicate predicate) ohne zusätzliche Arbeit implementiert
werden.

1 public interface MetadataRepository extends MongoRepository <

Metadata , String >,

2 QueryDslPredicateExecutor <Metadata >

3 {

4 }

Listing 8.9: Metadata Repository für die MongoDB

Fazit Mit der Kombination verschiedener Frameworks und Bibliotheken ist es gelungen,
einen Ansatz zu entwickeln, der den Zugriff auf die Persistierungsebene und die Auswer-
tung der Anfragen vereinheitlicht und sich somit generisch an verschiedenste Datenbank-
systeme anpassen lässt. Der Vorteil dieses Ansatz liegt insbesondere in der Wartbarkeit,
Anpassbarkeit und der Reduktion des Codes zur Implementierung der benötigten Featu-
res. Im Vordergrund steht hierbei insbesondere die automatisierte Auswertung komplexerer
Anfragen zur Filterung der persistierten Daten.

Bisher wurde jedoch nur von dem Fall ausgegangen, dass der Filter korrekt angewandt
wurde. Durch eine fehlerhafte oder absichtlich böswillige Query könnte Schadcode inji-
ziert werden, was bisher nicht überprüft wird, sodass der aktuelle Fortschritt eher als

8.2. IMPLEMENTIERUNG 105

HTTP-Methode URL Beschreibung
POST /jobs/start Starten einen im Body übergebenen Job.
GET /jobs/active Gibt eine Liste aller aktiven Jobs im Cluster zurück.
POST /jobs Speichert einen Job als Template.
GET /jobs Gibt eine Liste aller gespeicherten Jobs zurück.
GET /jobs/id Gibt einen gespeicherten Job zurück.
DELETE /jobs/id Löscht einen gespeicherten Job.

Tabelle 8.2: Schnittstellen der REST API für Jobs

Proof of Concept bezeichnet werden kann. In einer weiteren Iteration müsste überprüft
werden, ob der übergeben Ausdruck tatsächlich in ein Prädikat übersetzt werden kann
und die Eingabe auf die Prädikatausdrücke beschränkt werden. Im Fehlerfall muss mit
einer Exception o.ä. reagiert werden.

8.2.3 Jobs

Dies RESTfull API soll jedoch nicht nur das Durchsuchen von Events ermöglichen, sondern
insbesondere auch die Interaktion mit dem Apache Spark Cluster vereinfachen. Daher
wurden in der Schnittstelle auch Wege umgesetzt um Jobs zu starten, verwalten, speichern
und auch Ausführungen zu planen. Durch diese Abstraktion des Clusters kann mit diesem
interagiert werden, ohne dass spezielle Software auf dem Client installieren werden muss
oder besondere Einstellungen getroffen werden müssen.

Ein Job bezeichnet dabei eine durch ein Stream-XML definierte Aufgabe, die per Stre-
ams auf Apache Spark ausgeführt werden soll. Neben dem XML können noch weitere
Ausführungsparameter wie die Anzahl von Cores, der zuverwendende Arbeitsspeicher usw.
festgelegt werden. Dies hilft, die zur Verfügung stehenden Resourcen effektiv zu nutzen,
oder beim Testen der Skalierbarkeit.

Apache Spark bzw. YARN stellen ihrerseits schon umfangreiche und teilweise auch REST-
basierte Werkzeuge bereit. Die im folgenden beschriebene API soll diese nicht ersetzten
oder in Konkurrenz zu diesen sein, sondern ist mehr eine Ergänzung, die auf die Auf-
gabenstellung zugeschnittene Optionen anbietet. Bei manchen Endpunkten werden im
Hintergrund auch die mitgelieferten Tools verwendet.

Eine Übersicht der Endpunkte ist in Tabelle 8.2 aufgelistet.
Starten

Das Starten von Jobs erfolgt per HTTP-POST-Aufruf von /api/jobs/start mit einer Job-
Beschreibung als JSON im Body. Diese Job-Beschreibung enthält einen eindeutigen Namen
für den Job, das Streams-XML, die Anzahl von Spark Executors, der zu verwendende
Haupstpeicher für die Excecutors und die Spark Driver sowie die Anzahl der Kerne für
die Executors und für die Driver.

106 KAPITEL 8. RESTFUL API

Neben diesen Parametern für den Spark-Kontext kann noch optional eine Jar-Datei übergeben
werden. Dies ermöglicht es, neue Prozessoren, Operatoren etc. auszuprobieren, ohne die
REST API verändern zu müssen. Diese Idee entstand aus dem Wunsch, dass unterschied-
liche Arbeitsgruppen der PG verschiedene Funktionen testen wollten.

Auf dem Server, auf welchem die REST API gestartet wurde, liegt eine Standard-Jar-
Datei, die verwendet wird, wenn keine explizit übergeben wird,

Nachdem versucht wurde, den Job zu starten, wird eine Antwort zurückgegeben, die Aus-
kunft über den Erfolg oder Misserfolg enthält (vgl. Listing 8.10).

1 {
2 ”name ” : ” Test Job ” ,
3 ” e r r o r ” : f a l s e ,
4 ” message ” : ”The job s t a r t e d s u c c e s s f u l l y . ” ,
5 ” s t a r t D a t e ” : ”20130921”
6 }

Listing 8.10: Beispeil Antwort

Die Implementierung dieser Endpunkte wurde auch über das Spring Framework umgesetzt.
Die Kommunikation mit Spark erfolgt jedoch nicht über eine spezielle Java-API, sondern
verwendet ein externes Shell-Skript. Das übergebene XML wird in eine temporäre Datei
geschrieben und aus den anderen Parametern der entsprechende Skript-Aufruf generiert.

Verwalten

Das Webinterface bietet auf der Startseite als Hauptmerkmal eine einfache Möglichkeit
zum Starten von Jobs und erleichtert somit die Interaktion mit dem Cluster. Nach dem
Starten eines Jobs möchte der Nutzer naturgemäß über den Zustand seines ausgeführten
Jobs im Bilde bleiben, um beispielsweise entsprechend reagieren zu können, wenn die-
ser erfolgreich beendet oder mit einem Fehler abgebrochen wurde. Dazu bietet YARN,
welches die Ressourcen des Clusters dynamisch für die verschiedenen Jobs verwaltet, un-
terschiedliche Informationen über sein eigenes Webinterface an. Jedoch wird bei kontinu-
ierlicher Nutzung des Webinterfaces recht deutlich, dass ein Wechsel zum Interface des
YARN-Clusters umständlich ist und das Interface oft mehr Informationen anbietet als
grundsätzlich von Interesse sind. Daher lag es nahe, eine entsprechende Übersicht mit
den laufenden und bereits terminierten Jobs in das Webinterface zu integrieren und die
gewünschten Informationen tabellarisch darzustellen.

Als Untermenge der von YARN bereitgestellten Informationen bot sich u.A. die ID des
laufenden Jobs sowie sein Name an. Der Name wird beim Starten des Jobs vergeben und
an YARN übermittelt, während die ID von Nutzen ist, um weitere Informationen über
einen Job von YARN anzufordern. Für den Abruf (weiterer) Informationen stellt YARN
entsprechende Endpunkte über eine Schnittstelle zur Verfügung. Die bereitstehenden In-
formationen werden im Folgenden erläutert, während die Details zur Kommunikation mit
der Schnittstelle im Abschnitt 8.3.2 näher betrachtet werden.

8.2. IMPLEMENTIERUNG 107

Zudem enthält die Tabelle Einträge, die den Startzeitpunkt eines Jobs dem Anwender of-
fenbaren und der aktuelle Fortschritt des Jobs wird als Prozentzahl ausgedrückt. Über die-
sen Wert kann in Kombination mit dem Startzeitpunkt im laufenden Betrieb insbesondere
die Geschwindigkeit der Verarbeitung des Jobs durch den Anwender abgeschätzt werden
und stellt somit eine sinnvolle Metrik dar. Der Zustand (”state“) kann folgende Werte an-
nehmen: ”NEW, NEW SAVING, SUBMITTED, ACCEPTED, RUNNING, FINISHED,
FAILED und KILLED“. Die interessantesten Attribute sind hier sicherlich RUNNING,
FINISHED und FAILED. Mit ihnen wird ausgegeben, ob der jeweilige Job ausgeführt
wird, beendet wurde oder die Ausführung fehlgeschlagen ist. Dabei bezieht sich dieser Zu-
stand auf die Ausführung des Jobs durch den Ressourcemanager. Auch ein erfolgreich aus-
geführter Job kann im Endeffekt fehlgeschlagen sein, wenn das auszuführende Programm,
welches durch den Job ausgeführt wurde, mit keinem erfolgreichen Resultat beendet wur-
de. Dies wird durch den finalen Status (”finalStatus“) ausgedrückt, der den Status des
Jobs ausgibt, der von dem auszuführenden Programm bzw. dem Job zurückgegeben wur-
de. Der Status kann die Werte ”UNDEFINED, SUCCEEDED, FAILED und KILLED“
annehmen.

Der Vollständigkeit halber wird in der Tabelle 8.3 auf weitere, mögliche Attribute ein-
gegangen. Aus dieser Tabelle wird schnell ersichtlich, dass die wichtigsten Werte für den
jeweiligen Job bereits im Webinterface einzusehen sind.

Neben den jobspezifischen Parametern stehen auch Metriken zum Clusterzustand zur
Verfügung. Darunter fällt beispielsweise das Attribut äctivesNodes¨, welches die Anzahl
der aktiven Knoten ausgibt oder die Attribute l̈ostNodes¨ und ünhealthynodes¨: Sie weisen
auf möglicherweise ausgefallene Knoten hin, die dem Cluster nicht mehr zur Verfügung
stehen oder auf Knoten, die sich in einem Zustand befinden, in dem sie nicht in der La-
ge sind Teile eines Jobs auszuführen. Besonders im Hinblick auf die Verlässlichkeit eines
Clusters könnte anhand dieser Parameter entschieden werden, ob dem Cluster neue Jobs
zugeführt werden sollten oder eine verringerte Verarbeitungsgeschwindigkeit der Jobs auf
einen fehlerhaften Cluster zurückzuführen sind. Somit wäre die Einbindung dieser Attri-
bute im Webinterface eine potentielle Verbesserung.

Im Folgenden werden mögliche Verbesserungen konzeptuell diskutiert, die das Entfaltungs-
potential und die Notwendigkeit einer differenzierten Jobverwaltung über das Webinterface
hervorheben und unterstreichen.

Momentan wird die Untermenge an dargestellten Informationen bzw. Attributen eines
Jobs vorgegeben. Vorstellbar wäre, dass ein Anwender die für ihn relevanten Attribute
auswählt und die Tabellenansicht entsprechend angepasst wird. So wird kann die Anwen-
dung benutzerspezifischer gestaltet werden.

Die Tabelle, die die Jobs und ihre jeweiligen Attributen beinhaltet, wird lediglich durch
das Neuladen der Browserseite oder durch das Drücken des Buttons am Kopfende der
Seite aktualisiert. Um den Komfort zu erhöhen, wäre ein automatisiertes Aktualisieren

108 KAPITEL 8. RESTFUL API

id Eine eindeutige Job ID
user Der Name des Nutzers, der den jeweiligen Job ausgeführt

hat
name Der Name der Applikation, der über das Interface mitgege-

ben wird
Application Type Die Art der Applikation
queue Die Warteschlange, in der der Job eingereiht wurde
state der Zustand der Applikation im Ressourcemanager
finalStatus Der Status, der von der Applikation bzw. dem Job

zurückgemeldet wurde
progress Der Fortschritt der Verarbeitung des Jobs als Prozentzahl
trackingUI Ort der Logs: Application Master oder History Server, auf

den die Logs ausgelagert wurden
trackingUrl Die URL zu dem YARN Interface, über die der Zustand des

Jobs bereitgestellt wird
diagnostics Detaillierte Diagnoseinformationen
clusterId Die ID des Clusters, auf dem der Job ausgeführt wird
startedTime Die Zeit, zu der der Job gestartet wurde
finishedTime Die Zeit, zu der der Job beendet wurde
elapsedTime Die Zeit (in ms), die vergangenen ist, seitdem der Job gest-

artet wurde
amContainerLogs Die URL der Container Logs
amHostHttpAddress URL des Application Servers
allocatedMB Der Speicherplatz, der für die Container zur Ausführung des

Jobs reserviert wurde
allocatedVCores Die Anzahl virtueller Kerne, die reserviert wurden
runningContainers Die Anzahl der Container, die für den Job ausgeführt werden
memorySeconds Den Speicherplatz, den die Applikation/der Job belegt hat
vcoreSeconds Die Anzahl der CPU Ressourcen, die die Applikation belegt

hat

Tabelle 8.3: Abrufbare Attribute eines YARN Jobs

8.2. IMPLEMENTIERUNG 109

der Seite wünschenswert. Noch besser wäre es, wenn die Seite lediglich dann aktualisiert
würde, wenn tatsächlich eine Änderung stattgefunden hätte. Vorstellbar wäre hier eine
feingranulare Beobachtung der Attribute hinsichtlich jeder Änderung wie beispielsweise
dem Fortschritt oder eine grobgranularere Beobachtung, bei der die Seite lediglich hin-
sichtlich von Status und/oder Zustandsänderungen eines Jobs aktualisiert wird, um die
Anfragen an den YARN Server zu verringern.

Um den Nutzer während einer Ausführung länger andauernder Jobs über den aktuellen
Status im Bilde zu halten, wäre ein Benachrichtigungssystem vorstellbar, welches auf ver-
schiedene, womöglich vom Nutzer definierte, Attributsänderungen mit einer Benachrich-
tung des Nutzers reagiert. Diese Benachrichtigung könnten klassisch per E-Mail erfolgen
oder über sog. Push Notifications, die von modernen Browsern wie Safari oder Chrome
angeboten werden. Dabei handelt es sich um Echtzeitbenachrichtigungen, die von einem
Server an Nutzer gesendet werden können, die sich für solche Benachrichtigungen interes-
sieren. Diese Art von Benachrichtigungen sind bereits von mobilen Endgeräten wie Smart-
phones oder Tablets bekannt, die den Eingang einer kurzen Nachricht für gewöhnlich am
oberen Bildschirmrand für einen kurzen Zeitraum einblenden und daraufhin verschwin-
den. Ähnlich funktioniert es am Computer im Browserumfeld: Selbst wenn der Nutzer
sich nicht auf der Website befindet, über die der Nutzer die Benachrichtigungen abonniert
hat, so werden die Nachrichten dennoch ähnlich wie beim Smartphone in einem system-
nativen Fenster in der rechten Ecke am oberen Bildschirmrand eingeblendet. Im Fall des
Safari Browsers muss der Browser nicht einmal aktiv sein, damit der Nutzer weiterhin
über Neuigkeiten benachrichtigt wird. Somit könnte ein Anwender zeitnah über beende-
te oder fehlgeschlagene Jobs informiert werden und wäre von der Pflicht entbunden, in
regelmäßigen Abständen selber nach dem Status des Jobs schauen zu müssen.

Auch wenn sich diese Technik womöglich langfristig durchsetzen wird, so sind aktuel-
le Lösungen meist browserspezifisch und an einen Anbieter (z.B. Apple) gebunden. Um
Push Notifications nutzen zu können, muss zunächst ein Zertifikat (beispielsweise von Ap-
ple) angefordert werden, welches die Anwendung eindeutig identifiziert. Im zweiten Schritt
wird ein sog. Push Package auf dem Webserver generiert, welches mit dem Zertifikat si-
gniert und an den Browser des Nutzers ausgeliefert wird. Dieses Push Package wird an
den Nutzer ausgeliefert. Mit Hilfe des Push Packages wird Safari auf das Empfangen von
Push-Nachrichten der entsprechenden Webanwendung vorbereitet. Möchte der Betreiber
der Anwendung nun eine Benachrichtigung an seine Nutzer senden, so wird die Nachricht
signiert an den Apple Push Notification Server gesendet, welcher wiederum eine Verbin-
dung zum Client aufbaut und für das Auslösen der entsprechenden Benachrichtigung beim
Nutzer verantwortlich ist.

So interessant und geeignet dieses Verfahren für die vorgestellte Applikation ist, so um-
ständlich ist es, dieses für mehrere Browser einzurichten. Auch werden lediglich aktuel-
le Browserversionen unterstützt, da es sich dabei um ein verhältnismäßig neues Feature

110 KAPITEL 8. RESTFUL API

HTTP-Methode URL Beschreibung
POST /tasks Plant einen Job.
GET /tasks Gibt eine Liste aller geplanten Jobs zurück.
PUT /tasks Aktualisiert einen geplanten Job.
DELETE /tasks/id Löscht einen geplanten Job.

Tabelle 8.4: Schnittstellen der REST API für geplante Jobs

handelt. Im Abschnitt 8.3.2 wird jedoch beispielhaft auf die Implementierung von Local
Notifications unter Berücksichtigung des Safari Browsers eingegangen. Diese sind insofern
eine vereinfachte Ausführung von Push Notifications, als dass sie durch ein JavaScript
der aufgerufenen Website ausgeführt bzw. an den Anwender gesendet werden. Der Nach-
teil hierbei ist jedoch, dass die Webseite und der Browser definitiv geöffnet sein müssen,
damit der Nutzer die Nachrichten empfangen kann. Jedoch stellt dieses Verfahren eine
passable Alternativlösung zu den Push Notifications dar. Insbesondere im Bezug auf den
reduzierten Implementierungs- und Verwaltungsaufwand.

Speichern Neben dem einfachen Starten und Überwachen von
Jobs gibt es Aufgaben, die, vielleicht nur leicht verändert, öfters ausgeführt werden sollen.
Denkbare wäre hier die Standard-Analyse-Kette, die im Wesentlichen unverändert bleibt,
jedoch auf unterschiedlichen Daten aufgerufen werden soll. Ein anderes Beispiel ist das
Testen der Skalierbarkeit, bei dem ein Job mit unterschiedlichen Spark-Parametern aufge-
rufen wird oder das Ausprobieren von verschiedenen Implementierungen von Prozessoren,
bei der sich nur die PG-Jar-Datei ändert.

Daher wurde die Möglichkeit geschaffen, Jobs zu Speichern und diese gespeicherten Jobs
zu verwalten. Eine Liste der dazugehörenden Endpunkte ist ebenfalls in Tabelle 8.2 auf-
gelistet. Diese sind im wesentlichen Klassische CRUD-Operationen, die mit dem Spring
Framework und der MongoDB als Datenbank umgesetzt wurden.

Scheduling

Als Erweiterung von vordefinierten Jobs bietet es sich an, diese auch automatisch zu
bestimmten Zeitpunkten zu starten. Dies Ermöglicht eine bessere Auslastung des Clusters,
da die Jobs nun von den klassischen Arbeitszeiten der Nutzer entkoppelt sind.

Ein geplanter Job oder Task wird dabei über einen Namen definiert und enthält die Id des
Jobs, welcher gestartet werden soll, ob der Task aktiviert ist oder nicht und zu welchen
Zeitpunkten dieser ausgeführt werden soll, wenn er aktiv ist. Zum Definieren der Zeit-
punkte wurde sich dabei an der Syntax des aus der Unix-Welt bekannten Cron-Deamon
orientiert, welche Zeitpunkte über Minuten, Stunden, Tag im Monat, Monaten und Wo-
chentag beschreibt, wobei auch Wildcards erlaubt sind.

Die Endpunkte wurden dabei auch wieder mit dem Spring Framework und der MongoDB
als Datenspeicher umgesetzt. Eine Übersicht der Endpunkte findet sich in Tabelle 8.4.

8.3. EIN BEISPIEL-CLIENT: DIE WEB-UI 111

8.3 Ein Beispiel-Client: Die Web-UI

Wie weiter oben in der Einführung zu REST APIs beschrieben, bietet eine RESTful API
den Vorteil, dass diese auf das weit verbreitetet HTTP aufbauen und damit im Allgemei-
nen einfach verwendet beziehungsweise in andere Anwendungen integriert werden können.
Jedoch ist die Kommunikation für Menschen über HTTP nicht wirklich intuitiv. Es gibt
allgemeine Tools, die speziell für die Interaktion mit unterschiedlichen REST APIs aus-
gerichtet sind, wobei diese natürlich nicht auf spezielle Anforderungen der verschieden
Anwendungsfälle eingehen können.

Daher wurde neben der eigentlichen API auch ein Client entwickelt, der die API verwendet
und dabei speziell auf die Analyse-Anforderungen zugeschnitten wurde. Um den Vorteil der
Plattformunabhängigkeit und Portabilität nicht zu verlieren, wurde sich für eine Web-UI
entschieden, da diese nur einen modernen Browser bei den Anwendern voraussetzt, welcher
bei den meisten Systemen im Allgemeinen vorhanden ist (vgl. Kapitel 18). Darüber hinaus
läuft die REST API schon auf einem Server, sodass für das Bereitstellen der Web-UI kein
großer zusätzlicher Aufwand auf der Server-Seite betrieben werden muss.

8.3.1 Single Page Applications

Ein populäres Konzept für solche Web-UIs sind sogenannte Single Page Application. Wie
der Name es vermuten lässt, liefert der Server nur eine HTML-Seite aus, die dann beim
Client im Browser dynamisch über JavaScript angepasst wird und so auch den Eindruck
von mehreren Seiten erzeugen kann. Während der erste Aufruf der Seite also wahrschein-
lich etwas länger dauert als bei klassischen Webservices mit mehreren Seiten, so ist die
Interaktion mit der Single Page Application danach deutlich schneller, da die zum An-
zeigen benötigten Daten schon beim Client sind und nur noch die Daten vom Server
nachgeladen werden müssen. Dieses Nachladen kann dabei natürlich auch durch spezielle
Warte-Animationen verdeutlicht werden, was für Benutzer ein insgesamt flüssigeren Nut-
zererlebnis erzeugt. Weiterhin wird damit die Last des Servers reduziert, da dieser nur eine
statische HTML-Seite und die Daten über API ausliefern, jedoch nicht das Anzeigen der
Daten bearbeiten muss. In Kombination mit einer RESTful API bedeutet dies auch, dass
der Zustand der Nutzer-Sitzung beim Client gespeichert werden kann.

8.3.2 Implementierung

Für Singe Page Applications gibt es viele JavaScript-Frameworks. Für die Web-UI wird
das von Google unterstütze AngularJS verwendet.

112 KAPITEL 8. RESTFUL API

Zunächst sei erwähnt, dass wir den Node Package Manager (NPM) verwenden, um Angu-
larJS und die anderen benötigten Abhängigkeiten zu verwalten. Dies erlaubt es uns, die
verwendeten Bibliotheken in der richtigen Version mittels des Befehls npm install herun-
terzuladen, ohne dass wir mit diesen unser Projektrepository überladen.

Weiterhin wird Grunt als Build Managment Tool verwendet, um die Web UI zu bauen.
Grunt ist selber in JavaScript geschrieben und kann auch mittels NPM verwaltet werden.

Um ein modernes Design zu erreichen, wurde das CSS Framework Bootstrap verwendet.
Bootstrap wurde ursprünglich von einem Team von Twitter entwickelt, jedoch kommt es
nun, auch wegen seiner OpenSource Lizenz, überall bei unterschiedlichsten Projekte zum
Einsatz und ist eines der populärsten CSS Frameworks der Welt. Seine Stärke liegt in un-
terschiedlichsten, vordefinierten Komponenten, die durch einfache (Klassen-)Annotationen
an bestehendes HTML angehängt werden können.

Um die unterschiedlichen Anforderungen wie Jobs zu starten oder zu verwalten auch
in der Oberfläche zu trennen, wurde das sogenannte Rounting von AngularJS verwen-
det. Dabei wird jedem Zustand der Oberfläche eine eigene Sub-URL nach dem Muster
http://...app.html#/jobs gegeben. Was zunächst wie ein Widerspruch zu einer Single Pa-
ge Application aussieht, hilft jedoch, die Vorteile von Webseiten mit vielen Seiten in diese
zu integrieren. Da sich nur der Teil der URL hinter der Raute verändert, bleibt es bei
einer Single Page Application. Jedoch ist es auch so möglich, bestimmte Bereiche direkt
anzusprechen, zum Beispiel als Link oder Bookmark.

Ein wesentlicher Aspekt der Web UI wird es auch das Angeben der Streams-XML-Definitionen
sein. Daher wurde auf das Projekt ACE als Editor-Komponente zurückgegriffen. Anders
als ein einfaches, großes Texteingabefeld ermöglicht ACE, mittels einer Syntax-Definition
wichtige Schlüsselwörter hervorzuheben oder Fehler in der Eingabe direkt zu markieren.
Dadurch wird die Spezifikation des XML-Texts für Streams einfacher und weniger feh-
leranfällig.

Abschließend wurde eine eigene Upload-Komponente entwickelt, um die PG-Jar-Datei an
die REST API als BLOB zu übergeben.

Jobs verwalten

Die Verwaltung der Jobs verteilt sich in Hinblick auf die Implementierungsdetails auf zwei
Bereiche. Zum Einen bedarf es der visuellen Darstellung der Informationen im Webinter-
face (Frontend) und zum Anderen des Abrufens, Parsens und Bereistellung der benötigten
Informationen (Backend).

Frontend AngularJS implementiert das MVVM (Model-View-ViewModel) Pattern. Das
View ist hierbei die Tabelle, welche für die Anzeige der Daten verantwortlich ist, die von
einem Controller bereitgestellt werden.

8.3. EIN BEISPIEL-CLIENT: DIE WEB-UI 113

Die Tabelle wird dabei als Template in der Single-Page-Application eingebunden. Das
Template ist in einem <script>-Tag eingebettet und repräsentiert regulären HTML Code
mit zusätzlichem Markup. Dieser wird von AngularJS beim Start der Applikation verar-
beitet und in eine übliche DOM-Struktur überführt, die vom Browser interpretiert werden
kann.

Der Controller stellt die benötigten Methoden in einem isolierten Scope bereit, auf den
vom Template aus zugegriffen werden kann. Eine solche Methode ist z.B. das Abrufen
der benötigten Informationen vom Backend über ein asynchrones XMLHttpRequest, wel-
ches von AngularJS durch den $http-Service ausgeführt werden kann. Dem $http-Service
wird ein Konfigurationsobjekt übergeben, mit dem eine HTTP-Anfrage generiert wird und
das schließlich in der Rückgabe eines Promise-Objekts resultiert. Dieses repräsentiert im
Prinzip einen Proxy für einen Wert, der zum Zeitpunkt seiner Erstellung noch nicht (unbe-
dingt) bekannt ist. Im Prinzip versteht sich das Objekt als Platzhalter für den tatsächlichen
Wert und verspricht somit implizit, dass dieser Wert nicht unbedingt zum momentan Zeit-
punkt, aber irgendwann in der Zukunft bereitstehen wird. Durch die Verwendung eines
solchen Proxyobjekts wird ein asynchroner Programmablauf in einem sonst synchronen
Code ermöglicht. Die Asynchronität hat zur Folge, dass die Applikation während der An-
frage an den Server weiterhin genutzt werden kann und nicht blockiert. Ein Promiseobjekt
kann sich in den Zuständen pending (initialer Status), fulfilled (Ausführung der Operation
war erfolgreich) oder rejected (Operation ist gescheitert) befinden. In diesem Fall bedeutet
der Zustand pending, dass der HTTP-Request abgesendet, aber noch nicht beantwortet
wurde. Wird der Zustand fulfilled erreicht, so hat der Endpunkt der REST-API eine Ant-
wort geliefert, die in diesem Fall die Informationen zu den jeweiligen Jobs umfasst und
über den isolierten Scope bereitgestellt wird.

In AngularJS werden Components als Alternative zu den sonst üblichen Direktiven einge-
setzt, um eine Single-Page-Application besser zu strukturieren. Dazu werden Components
über die module-Methode des globalen AngularJS-Objekts in die Applikation eingebunden
und kapseln das View sowie seine Daten und den assoziierten Controller. Der Job History
Component stellt dem View beispielsweise die Jobs und ihre entsprechenden Attribute als
Model zur Verfügung.

Backend Das Backend, sprich die REST-API, stellt einen Endpunkt zur Verfügung,
der auf einen HTTP-GET-Request mit den Jobinformationen im JSON-Format antwor-
tet. Die Informationen müssen vom YARN Cluster bezogen werden, der selbst wiederum
eine REST-API anbietet, um die entsprechenden Informationen anzufragen. Der erste
Gedanke wäre die YARN API direkt vom Frontend aus anzusprechen und diese über
Controller-Logik des Job History Components zu verarbeiten. Jedoch scheitert dieser Ver-
such an der Same-Origin-Policy, die ein browserseitiges Sicherheitsfeature ist, die den
Zugriff auf andere Objekte (JavaScript, Grafiken, CSS Stylesheets u.v.m.) und Websites

114 KAPITEL 8. RESTFUL API

anderen Ursprungs untersagt. Damit sollen Angriffe durch das Einbinden fremder Skripte
unterbunden werden, jedoch führt dies auch leider zu den o.g. Einschränkungen.

CORS und JSONP Unter Cross-Origin Resource Sharing (CORS) wird eine Methode
verstanden, die die auferlegten Restriktionen der Same-Origin-Policy des Browsers aufhe-
ben lässt. Damit ein solcher Cross-Origin-Request erfolgreich durchgeführt werden kann,
muss der Server mit der abweichenden Domain den Header seiner HTTP-Response anpas-
sen. Durch das Hinzufügen des Access-Control-Allow-Origin Schlüssels wird der Aufruf von
Seiten ausnahmsweise erlaubt, die unter die Domain fallen, die als Wert des Schlüssels
gesetzt wird. Die Funktionalität dieser Lösung ist wie so oft bei der Frontendentwick-
lung von der Art und Version des eingesetzten Browsers abhängig. CORS wird auch von
YARN Schnittstelle unterstützt, muss jedoch gesondert konfiguriert werden und steht
standardmäßig nicht zur Verfügung, sodass ohne weitere Maßnahmen kein Zugriff auf die-
se Schnittstelle direkt aus dem Frontend heraus erfolgen kann.

Als Alternative zu CORS existiert außerdem JSONP (JSON mit Padding), der eine Aus-
nahme in der Same-Origin-Policy zum Nachladen weiterer Inhalte eines anderen Servers
ausnutzt. Browser erlauben nämlich die Referenzierung beliebiger URLs im src Attribut
eines <script> Tags. Somit wird eine Übermittlung von Daten auch über Domaingrenzen
hinweg ermöglicht. Wird auf diese Weise ein Endpunkt referenziert, der JSON-basierte Da-
ten zurückliefert, hat dies jedoch keinen Effekt und kann nicht vom Entwickler ausgenutzt
werden, um die Daten in sein Model (o.Ä.) einzubinden. Hier kommt der Zusatz Padding
ins Spiel: Der URL im src Attribut wird als Query String (bzw. GET Parameter) der
Name einer JavaScript-Funktion, die bereits im Frontendcode vorhanden ist, hinzugefügt.
Es handelt sich also um eine Art Callback-Funktion. Der Server wiederum antwortet mit
JavaScript Code, der die angefragten Informationen (JSON-Daten) kapselt und über das
script-Tag eingebunden wird. Der vom Server übertragene JavaScript-Code ruft schließ-
lich die Funktion als Callback auf, deren Namen zuvor übertragen wurde, und übergibt
die gekapselten Daten über einen Paramter dieser Callback-Funktion.

Der $http-Service von AngularJS unterstützt JSONP-Anfragen über die gleichnamige
jsonp-Methode, jedoch hat dies im Zusammenspiel mit der YANR REST API nicht
funktioniert. Schlussendlich schien nach der Abwägung der Vor- und Nachteile,die Im-
plementierung eines zusätzlichen Endpunkts, der sich um die Anfrage und Verarbeitung
der Informationen des YARN Clusters kümmert, am sinnvollsten.

Kommunikation mit YARN Der YARN RessourceManager erlaubt es, clusterbezo-
gene Informationen über eine eigene REST API zu beziehen. Dabei kann der Zustand des
Clusters, Metriken zum Cluster, Scheduler und Node Informationen sowie Informationen
zu den ausgeführten und auszuführenden Jobs erfragt werden.

8.3. EIN BEISPIEL-CLIENT: DIE WEB-UI 115

Unter der URL http://<rmhttpaddress:port>/ws/v1/cluster/apps wird ein verschach-
teltes JSON-Objekt zurückgeliefert, welches unter dem Wurzelschlüssel apps einen weite-
ren Schlüssel app enthält, der wiederum als Wert ein Array aus Objekten annimmt, die
die einzelnen Jobs repräsentieren, die vom RessourceManager verwaltet wurden und wer-
den. In den Job-Objekten stehen alle Informationen bereit, die bereits in der Tabelle 8.3
aufgeführt wurden.

Zum Aufruf der YARN API wird der jersey-client genutzt, über den der Header der An-
frage an die YARN API insofern manipuliert wird, als dass der Wert des Schlüssels Accept

auf application/json gesetzt wird, um die Schnittstelle zur Ausgabe von JSON-basierten
Daten zu zwingen. Mithilfe der von Google bereitgestellten gson-Bibliothek werden die
JSON Daten geparst, das Job-Array traversiert und die gewünschten Informationen ex-
trahiert. Im Anschluss wird ein neues JSON-Objekt aus einem POJO (Plain Old Java
Object) erzeugt, welches als Attribute die extrahierten Informationen enthält.

Notifications Um den Anwender über Job-Status-Updates zu informieren, sind zwei
Kommunikationswege vorstellbar. Die simplere Variante verfolgt den Ansatz des Pollings,
bei dem das Frontend in vorgegebenen Zeitintervallen Anfragen an den Endpunkt der
REST API sendet, um über neue Updates in Kenntnis gesetzt zu werden. Neben dem Pol-
ling ist aber auch eine Socketverbindung vorstellbar, die beispielsweise mit der socket.io-
JavaScript-Bibliothek umgesetzt werden könnte. Das Frontend baut eine dauerhaft beste-
hende Verbindung zum Backend auf, über die sowohl Frontend als auch Backend Nach-
richten senden können, die wiederum zeitnah beim Eintreffen der Nachricht verarbeitet
werden. Ein Vorteil der o.g. Bibliothek ist auch, dass sie Fallbackstrategien anbietet, so-
fern Socketverbindungen vom Browser nicht unterstützt werden und der implementierte
Socketendpunkt im Backend diese auch implementiert hat. Leider bietet YARN lediglich
eine REST API an und lässt keine Socketverbindungen zu, sodass zumindest im Backend
Polling betrieben werden müsste, um aktuelle Informationen über Jobs abzurufen. Im
Endeffekt würde sich also leider der Mehraufwand für die Implementierung einer Socket-
verbindung zwischen Frontend und Backend nicht lohnen. Dadurch, dass Jobs aber i.d.R.
eine ganze Weile laufen und sich der Status i.d.R. nicht in kurzen Abständen ändert, ist
das Polling eine akzeptable Umsetzung.

Um Änderungen des Models im Frontend feststellen zu können, muss bei jeder periodischen
Anfrage der Daten am Backend das aktuell vorhandene Model mit den eingehenden JSON-
Daten verglichen werden. Die JavaScript-Bibliothek Lodash bietet hierfür die Methode
isEqual(value, other) an, die einen Vergleich zweier JavaScript-Objekte mit beliebiger
Tiefe ermöglicht. Im betrachteten Fall werden zwei Arrays bzw. die Schlüssel-Wert-Paare
der beinhalteten Job-Objekten verglichen. Bei der Änderung eines Wertes wird (beispiel-
haft im Falle des Safaribrowsers) ein Notification-Objekt erstellt, dem ein Titel und eine
Nachricht übergeben wird. Damit jedoch Notifications durch das Notificationcenter ange-
zeigt werden, wird zunächst eine Erlaubnis über die Methode Notification.requestPermission()

http://<rm http address:port>/ws/v1/cluster/apps

116 KAPITEL 8. RESTFUL API

erfragt. Wenn der Nutzer Notifications durch die Website erlaubt, werden diese in Zukunft
rechts am oberen Bildschirmrand eingeblendet. Dafür muss die Website lediglich in einem
Browsertab geöffnet sein, allerdings nicht aktiv genutzt werden.

Events zählen

Mit dem Reststream wurde ein Stream entwickelt, der u.a. als Parameter einen Filter-
ausdruck entgegennimmt und die FITS-Dateien zu denjenigen Events zurückliefert, de-
ren Metadaten dem gegebenen Filterausdruck genügen, wie es bereits im Abschnitt 8.2.2
erläutert wurde. Das Webinterface wurde um die Funktionalität erweitert, einen solchen
Filterausdruck vor dem Einsatz in der Analysekette auszuführen, um zum Einen die Kor-
rektheit der Syntax überprüfen zu können und zum Anderen a priori eine Rückmeldung
darüber zu bekommen, wie viele Events von der gegebenen Anfrage betroffen sind und ob
eine Analyse somit überhaupt lohnenswert ist.

Das Userinterface für diese Funktion ist bewusst einfach gehalten und besteht aus ei-
nem Eingabefeld für den Filterausdruck und einer Ausgabe mit der Anzahl der gezählten
Events, die von dem Filterausdruck erfasst werden. Dabei erscheint die Ausgabe erst,
sobald das Ergebnis, sprich die Anzahl der gezählten Events zur Verfügung steht. Dafür
wird auch an dieser Stelle von dem zuvor vorgestellten Promise-Objekt des $http-Services
Gebrauch gemacht. Beim Klick auf den Button wird die zugehörige Beschriftung solange
geändert bis ein Ergebnis vorliegt bzw. die übergebene Callbackfunktion vom Promise-
Objekt aufgerufen wird.

Im Backend wird die Anfrage ähnlich ausgewertet, wie es auch im Abschnitt 8.2.2 erläutert
wird. Lediglich zum Zählen der Events wird im Spring Repository auf die count()-
Methode zurückgegriffen, die dynamisch vom Spring Framework für alle Datenbankan-
fragen zur Verfügung gestellt wird und eine effiziente Zählung ermöglicht.

Kapitel 9

Verteilung von Streams-Prozessen

Das für unsere Erweiterung verwendete Apache Spark verteilt die Last der Datenver-
arbeitung über ein Rechencluster. Dieses Konzept skaliert sehr gut horizontal, d.h., die
Performanz lässt sich durch Anbindung weiterer Cluster-Knoten steigern. Da horizontale
Skalierbarkeit eine Schlüsseleigenschaft von Big-Data-Anwendungen darstellt (siehe Ab-
schnitt 2.3), wollen wir die Verarbeitung der Daten im Streams-Framework geeignet mit
Spark verteilen.

9.1 Nebenläufigkeit der Verarbeitung

Im Streams-Framework werden Daten in sogenannten Prozessen verarbeitet. Ein Pro-
zess besteht dabei aus einer Kette von Prozessoren, die jeweils Datenelemente transfor-
mieren oder Seiteneffekte erzielen (wie z.B. Speicherung von Elementen oder Logging).
Jedes Datenelement durchläuft diese Verarbeitungs-Kette sequentiell. Prozessoren sind
üblicherweise stateless, wodurch die Verarbeitung jedes Datenelementes unabhängig von
der Verarbeitung anderer Datenelemente ist (siehe Unterabschnitt 3.2.4).

Teilt man die eingehenden Datenelemente in disjunkte Teilmengen (Partitionen) auf, so
lässt sich jede dieser Partitionen unabhängig von den anderen verarbeiten. Damit erlaubt
die Unabhängigkeit der Datenelemente zueinander eine beliebig nebenläufige Verarbeitung
der Daten. Mit Ausnahme der Zusammenführung der Teilergebnisse ist überdies keine Syn-
chronisation zwischen nebenläufigen Verarbeitungspfaden notwendig. Das Gesamtergebnis
wird durch die Vereinigung der verarbeiteten Partitionen dargestellt.

Eine verteilte Ausführung eines Streams-Prozess lässt sich also wie folgt umsetzen:

• Datenelemente werden in Partitionen aufgeteilt

• Die Partitionen werden auf Worker-Nodes verteilt verarbeitet

• Die verarbeiteten Partitionen werden zum Gesamtergebnis vereinigt

117

118 KAPITEL 9. VERTEILUNG VON STREAMS-PROZESSEN

Den hier vorgestellten Ansatz zur Verteilung der Last werden wir zur Demonstration mit
Spark und Spark Streaming umsetzen (siehe Abschnitt 9.5 und Abschnitt 9.6). Die zur
Nebenläufigkeit der Verarbeitung gewonnenen Erkenntnisse beschränken sich allerdings
nicht auf diese Plattformen: Die Partitionierung der Datenströme kann für die Verteilung
auf beliebigen Infrastrukturen verwendet werden.

9.2 XML-Spezifikation verteilter Prozesse

Zur Spezifikation verteilter Streams-Prozesse empfiehlt es sich, möglichst nahe an üblichen
XML-Konfigurationen für Streams zu bleiben. Dies ermöglicht Anwendern einen schnelle-
ren Einstieg in Streams auf Spark und kann auch den Implementierungs-Aufwand senken.
Wie wir sehen werden, müssen bestehende XML-Konfigurationen nur minimal verändert
werden, um unsere Erweiterung zu nutzen.

Dazu verwenden wir die bestehenden Tags stream, sink und processor aus dem Streams-
Framework wieder, sie verhalten sich damit komplett identisch zu den Framework-Tags.
Die einzig neuen Tags zur Verteilung von Streams-Prozessen sind distributedProcess

(für Streaming-Prozesse) und batchProcess (für Batch-Prozesse). Sie unterscheiden sich
von Default-Prozessen lediglich durch die Verteilung der Verarbeitung auf Worker-Knoten
im Cluster.

Damit ein Prozess verteilbar ist, erwarten wir einen MultiStream als Input. MultiStreams
sind Teil des Streams-Frameworks und werden verwendet, um mehrere innere Streams zu-
sammenzufassen, sie z.B. sequentiell abzuarbeiten. Für die Verteilung von Prozessen stellt
der MultiStream für uns die Partitionierung der Daten dar (vgl. Abschnitt 9.1). Jeder in-
nere Stream kann unabhängig von den anderen inneren Streams verarbeitet werden. Wird
kein MultiStream als Eingang verwendet, so besteht keine vernünftige Partitionierung und
der Prozess wird auf dem Driver (ohne eine Verteilung vorzunehmen) als Standard-Prozess
ausgeführt.

Listing 9.1 stellt die Konfiguration einer verteilt ausgeführten Streams-Applikation in XML
beispielhaft dar. Es lässt sich gut erkennen, wie wenig sie sich von einer üblichen Streams-
Spezifikation unterscheidet: Der Input-MultiStream, die Senke und die Prozessoren sind
beliebig. Insbesondere können sämtliche bestehenden Streams, Senken und Prozessoren in
einer verteilten Ausführung auf Spark verwendet werden.

Im BigData-Umfeld ist es üblich, ausgesprochen viele Streams zu erzeugen, wie etwa zur
Verarbeitung hunderter .fits-Dateien. Weiterhin kann es sinnvoll sein, die Ausgabe verteilt
auszuführen. Wir haben dazu einige Implementationen der Sink- und Source-Interfaces
entwickelt, die eine verteilte Ein- und Ausgabe ermöglichen (siehe Kapitel 11).

9.3. VERARBEITUNG DER XML-SPEZIFIKATION 119

1 <stream id="IN" class="..."> <!-- arbitrary multistream -->
2 <stream id="s1" class="..." />
3 <stream id="s2" class="..." />
4 </ stream >
5
6 <sink id="OUT" class="..." /> <!-- arbitrary sink -->
7
8 <distributedProcess id="PP" input="IN" output ="OUT">
9 ... <!-- arbitrary processors -->

10 </ distributedProcess >

Listing 9.1: Beispiel-XML für die Nutzung eines DistributedProcess

9.3 Verarbeitung der XML-Spezifikation

Damit die neuen Tags distributedProcess und batchProcess verwendet werden können,
mussten wir Handler für XML-Elemente dieser Tags schreiben. Der bestehende Parser er-
zeugt Objekte solcher Elemente, welche dann von den neuen Handlern verarbeitet werden.
Die Handler haben je eine Factory aufzurufen, die verteilte Streaming- oder Batch-Prozesse
erzeugt.

Für die Implementierung der beiden Factories reichte es aus, Methodenaufrufe an die
Default-Factory weiterzudelegieren und die Rückgaben anzupassen. Es musste also keine
Factory von Grund auf neu implementiert werden. Zunächst erzeugt die Default-Factory
Prozess-Konfigurationen, die sich anpassen lassen. So konnten wir den Namen der Klas-
se, von der ein Prozess-Objekt erzeugt werden soll, in diesen Konfigurationen ändern. In
einem zweiten Schritt erzeugt die Default-Factory aus den (geänderten) Konfigurationen
Prozess-Objekte. Mit den korrigierten Konfigurationen zeigt diese Erzeugung bereits das
gewünschte Verhalten: Es werden Objekte der Typen DistributedProcess und BatchPro-
cess erzeugt.

Für die Umsetzung von Streams, Senken und Prozessoren ist weder ein Handler noch eine
Factory erforderlich. Die Angabe des Klassennamens im XML-Element (class="...")
realisiert die Erzeugung von Objekten der genannten Klasse bereits. Dieses Verhalten
haben wir durch die komplette Wiederverwendung der Tags erzielt.

9.4 Verteilung der Daten

Wie bereits erwähnt, gehen wir davon aus, dass die Daten bereits partitioniert vorlie-
gen als eine Menge von Streams. Offen ist aber die Frage, wie die einzelnen Teile auf
die Clusterknoten verteilt werden sollen. Dies ist für die Performanz aus verschiendenen

120 KAPITEL 9. VERTEILUNG VON STREAMS-PROZESSEN

Gründen entscheidend. Zum Einen sollte die Verteilung so gleichmäßig wie möglich sein,
damit die einzelnen Clusterknoten die ihnen zugeteilte Arbeit möglichst gleichzeitig ab-
schließen und nicht aufeinander warten müssen. Zum Anderen sollten die Daten nach dem
Code-to-Data Prinzip möglichst auf denjenigen Knoten verarbeitet werden, auf denen sie
auch gespeichert sind, um Netzwerkressourcen zu sparen und Verzögerungen zu vermei-
den. Es besteht daher das Potential, die Performanz der Analyse gegenüber der trivialen
Reihum-Verteilung signifikant zu verbessern. Unsere Architektur bietet die Möglichkeit,
basierend auf Speicherort und Größe der Daten eigene Verteilungsstrategien zu definieren.
Solche Strategien zu entwickeln und zu untersuchen ist ein Ansatz, um die Performanz des
Systems in Zukunft weiter zu verbessern.

Um den Arbeiterknoten mitzuteilen, welche Daten für sie bestimmt sind, werden die IDs
der betreffenden Streams übermittelt. Zusätzlich wird die ID des auszuführenden Prozesses
und die Beschreibung des Jobs als XML-Objektbaum an alle Knoten gesendet. Jeder
Knoten hat so die Möglichkeit, seine Daten aufzurufen und den auszuführenden Prozess
zu bestimmen.

9.5 Verteilte Batch-Prozesse

Als ersten Ansatz zur Verteilung von Streams-Prozessen mit Apache Spark verwenden wir
das ”reine“ Spark, in Abgrenzung zu Spark-Streaming. Die Core-Engine von Spark zeich-
net sich insbesondere dadurch aus, dass sie ausschließlich Batch-Verarbeitung adressiert.
Diese Eigenschaft stellt sich als problematisch heraus, wenn wir mit Datenströmen arbei-
ten wollen. Es lässt sich jedoch bereits bei diesem Ansatz ein hoher Performanzgewinn
gegenüber einer nicht-verteilten Ausführung feststellen.

Wir diskutieren die Umsetzung von verteilten Streams-Prozessen mit der Spark Core-
Engine, evaluieren dessen Performanz und nutzen die auftretenden Probleme als Motiva-
tion für den Einsatz von Spark-Streaming.

9.5.1 Daten- und Kontrollfluss

Um mit Spark verteilte Operationen auf einem Datensatz durchführen zu können, muss
dieser zunächst auf die Arbeiterknoten verteilt werden. Hierzu stellt Spark den Daten-
typ RDD zu Verfügung, mit dem benutzerdefinierte Operationen auf verteilten Daten
ausgeführt werden können. Der erste Schritt des Batch-Prozesses besteht daher darin,
die Liste der gegebenen Streams mit Hilfe der parallelize-Methode auf die Worker zu
verteilen, um so eine RDD von Streams zu erhalten. Hierbei können benutzerdefinier-
te Verteilungsstrategien verwendet werden, wie in Abschnitt 9.4 erläutert. Dieser und

9.5. VERTEILTE BATCH-PROZESSE 121

Partition 1

Partition 2

Partition 3

Partition 4

Partition 1

Partition 2

Partition 3

Partition 4

RDD<Stream> RDD<Data>

flatmap

Input

List<Stream>

parallelize

Output

List<Data>

collect

Driver DriverWorker

Abbildung 9.1: Datenfluss bei verteilten Batch-Prozessen

die folgenden Schritte sind in Abbildung 9.1 dargestellt. Anschließend muss auf den Ar-
beiterknoten der eigentliche Prozess ausgeführt werden, also die Daten aus den Streams
gelesen und durch die Prozessoren verarbeitet werden. Da aus einem verteilten Daten-
satz ein neuer, ebenfalls verteilter Datensatz errechnet werden soll, kommt hier eine der
von Spark angebotenen RDD-Transformationen zum Einsatz. In diesem Fall wird jedem
Stream (Eingabe) eine Menge von Datenelementen (Ausgabe) zugeordnet, weshalb es sich
um eine flatmap-Transformation handelt. Was genau auf jedem Knoten passiert, um diese
Transformation durchzuführen, wird im kommenden Abschnitt erläutert.

Als dritter Schritt müssen die Ergebnisdaten an den Driver geschickt werden, um dort
eventuell auf herkömmliche Art weiterverarbeitet zu werden. Die über die Knoten verteil-
ten Inhalte der Ergebnis-RDD müssen also eingesammelt und zusammengeführt werden.
Dies geschieht durch die collect-Operation. Hat der Driver die Ergebnisse erhalten, kann
er sie einfach in die im XML-Dokument spezifizierte Ausgabe des verteilten Prozesses
schreiben.

Eine andere Möglichkeit, die von uns zwischenzeitlich zur Rückführung der Ergebnisse
genutzt wurde, ist die Spark-Datenstruktur Accumulable. Diese erlaubt es, Daten von allen
Knoten zu sammeln, und im Driver auszulesen. Allerdings wird von Spark empfohlen, für
den Hauptdatenfluss RDDs zu benutzen, und Accumulables nur für Zusatzinformationen
wie etwa Logs zu verwenden. Da sich außerdem experimentell gezeigt hat, dass RDDs
performanter sind als Accumulables, haben wir von deren Nutzung Abstand genommen.

9.5.2 Instanziierung von Streams in den Workern

Wie oben gesehen, besteht die Aufgabe eines jedes Knotens darin, einen gegebenen sta-
tischen Datensatz zu verarbeiten. Diese Aufgabe wird durch ein XML-Dokument, die ID
des auszuführenden Prozesses, und die IDs der zu verwenden Streams spezifiziert, und
muss im Rahmen der oben beschriebenen flatmap-Operation geschehen. Um dieses Ver-
halten umzusetzen, ist es vorteilhaft, die streams-Klassen zur Verarbeitung des XML-

122 KAPITEL 9. VERTEILUNG VON STREAMS-PROZESSEN

Dokuments wiederzuverwenden. Andernfalls müssten große Teile des streams-Codes zur
Erzeugung der Ausführungsumgebung reimplementiert werden. Irgendwie muss allerdings
gewährleistet werden, dass nicht alle Prozesse, sondern nur der mit der gegebenen Prozess-
ID ausgeführt wird, und dass dieser die korrekte Eingabe bekommt. Daraus ergeben sich
im Wesentlichen folgende drei Möglichkeiten der Implementierung:

Reimplementierung von ProcessContainer Die Klasse ProcessContainer ist bei
streams dafür zuständig, die im XML-Dokument spezifizierten Prozesse in einer
Liste zu sammeln und ihre Ausführung anzustoßen. Eine Möglichkeit wäre gewesen,
diese so zu reimplementieren, dass sie statt ihres aktuellen Verhaltens nur einen
Prozess ausführen. Aufgrund des großen Umfangs der Klasse und der Menge an
Code, die schlicht hätte kopiert werden müssen, erschien diese Option nicht ratsam.

Manipulation des XML-Dokuments Eine weitere Option wäre gewesen, das XML-
Dokument so zu manipulieren, dass alle Prozesse außer dem gewünschten gelöscht
werden und dessen Input entsprechend umgeleitet wird. Es ist allerdings schwierig,
sicherzustellen, dass dieser Ansatz für beliebige legale XML-Eingaben korrekt arbei-
tet. Außerdem ist er unflexibel, für den Fall, dass sich die XML-Spezifikation einmal
ändern sollte. Ein weiteres Problem besteht darin, dass für jeden Knoten ein eigenes
XML-Dokument erstellt werden muss, was Overhead verursacht.

Manipulation der vom ProcessContainer erstellten Objekte Wir haben uns da-
her dafür entschieden, den regulären ProcessContainer auf dem gegebenen XML-
Dokument zu initialisieren. Damit werden für die entsprechenden Tags Prozess-,
Stream-, Prozessor-Objekte usw. erzeugt. Über unseren ElementHandler sorgen wir
dafür, dass der verteilte Prozess in jedem Worker wie ein regulärer Prozess behandelt
wird. Dessen Eingabe wird aber von dem im XML-Dokument spezifizierten Multi-
stream auf die jeweilig gewünschten Substreams geändert. Es werden damit die nicht
gewünschten Substreams ignoriert. Weitere Prozesse im XML, die nicht der aktu-
ellen Lastverteilung unterliegen, werden aus dem ProcessContainer entfernt. Diese
Manipulationen sorgen dafür, dass die gewünschte Semantik durch einen schlichten
execute()-Aufruf beim ProcessContainer erreicht wird: Eine Instanz des verteilten
Prozesses läuft auf jedem Worker und bearbeitet genau die jeweilige Partition der
Daten.

Ein Problem dieser Lösung besteht in der Initialisierung der Streams. Bei der Verarbeitung
großer Datenmengen kann es leicht passieren, dass das gleichzeitige Öffnen aller gegebenen
Streams auf einer Maschine nicht möglich ist, etwa weil dadurch zu viel Arbeitsspeicher
verbraucht wird. Weiterhin existiert eine Beschränkung der Anzahl Dateien, die gleichzeitig
aus dem HDFS gelesen werden können. Aus diesem Grund haben wir den Zeitpunkt der
Stream-Initialisierung so verändert, dass diese erst passiert, wenn auch wirklich von dem

9.6. VERTEILTE STREAMING-PROZESSE 123

Stream gelesen werden soll. Das hat zur Folge, dass auf dem Driver gar keine Streams
initialisiert werden und auf den Arbeiterknoten jeweils nur die, die auch verarbeitet werden
sollen.

9.6 Verteilte Streaming-Prozesse

Als Alternative zur Batch-Verarbeitung bietet unsere Erweiterung die Möglichkeit, Daten
als kontinuierlichen Strom verteilt zu verarbeiten. Dieser Ansatz hat im Wesentlichen zwei
Vorteile. Zum Einen erlaubt er die Analyse von Echtzeit-Daten, also von Daten, die erst
während der Laufzeit des Prozesses verfügbar werden. So kann zum Beispiel ein IP-Port
als Eingabestrom genutzt werden, sodass dort ankommende Daten direkt weiterverarbeitet
werden. Streaming-Prozesse können also genutzt werden, um einen Speed-Layer umzuset-
zen (vgl. Abschnitt 3.2).

Zum Anderen gewährleistet die kontinuierliche Verarbeitung, dass zu jedem Zeitpunkt nur
ein kleiner Teil der Daten im System ist. Dies steht im Gegensatz zur Batch-Verarbeitung,
bei der sämtliche Ergebnisse gleichzeitig an den Driver geschickt werden. Dadurch ist dort
die maximale Datenmenge, die verarbeitet werden kann, durch die Größe des Arbeitsspei-
chers des Drivers limitiert. Mit unserer Streaming-Lösung hingegen werden kontinuierlich
kleine Teile der Daten gelesen, verarbeitet und weggeschrieben, sodass es möglich ist, die
Datenmenge und die Anzahl Worker ohne harte Limits zu skalieren. Es kann also sinnvoll
sein, Streaming-Prozesse auch für Daten zu verwenden, die bereits vollständig vorliegen.
Unsere Lösung basiert auf Spark-Streaming und wird im Folgenden im Detail erläutert.

9.6.1 Datenfluss

Wie bereits in Unterabschnitt 3.2.3 vorgestellt, basiert Spark Streaming darauf, dass der
Eingabestrom in eine Sequenz von Minibatches zerstückelt wird, die dann durch herkömm-
liche Spark-Transformationen verarbeitet werden können. Es erscheint daher naheliegend,
Streaming-Prozesse wie in Abbildung 9.2 dargestellt zu implementieren: Der ankommende
Datenstrom wird von einem Receiver entgegengenommen, der nichts weiter tut als ankom-
mende Daten zu speichern und in einem regelmäßigen Intervall als Minibatch-RDD wei-
terzugeben. Gegebenenfalls können auch mehrere Receiver verwendet werden, die reihum
Daten aus dem Datenstrom nehmen und jeweils eine RDD-Sequenz erzeugen. Die so ent-
stehenden RDDs können dann wie beim Batch-Prozess verarbeitet werden, indem in einer
Spark-Transformation das streams-Framework instantiiert wird, um den spezifizierten
Prozess auszuführen. Anschließend können die Ergebnis-RDDs zunächst durch die union-
Operation zusammengeführt und dann mittels collect im Driver gesammelt werden.

124 KAPITEL 9. VERTEILUNG VON STREAMS-PROZESSEN

Receiver 1

Receiver 2

Input Stream

Minibatches (RDDs)
von Eingabedaten

Minibatches (RDDs)
von Ergebnisdaten

union /
collect

Driver

Worker 1
streams

Worker 2
streams

Worker 3
streams

Abbildung 9.2: Datenfluss nach dem Konzept von Spark Streaming

Leider hat diese Lösung einige schwerwiegende Probleme. Das größte besteht darin, dass
das System zusammenbricht, wenn über längere Zeit Daten schneller eingelesen als ver-
arbeitet werden. Für den Fall, dass Echtzeitdaten verarbeitet werden, ist das schwer zu
ändern - schließlich macht die Echtzeit-Analyse nur dann Sinn, wenn die ankommenden
Daten auch in Echtzeit verarbeitet werden können. Eine der Motivationen für Streaming-
Prozesse war ja aber, damit auch Daten verarbeiten zu können, die bereits vorliegen (z.
B. im HDFS), um eine bessere Skalierbarkeit zu ermöglichen. In diesem Fall pumpen die
Receiver ungebremst Daten ins System, was früher oder später den Arbeitsspeicher der
Knoten füllt und das System zum Erliegen bringt. Der einzige Weg, das System auf diese
Weise zu betreiben, ist, aufwändig auszutesten, mit welcher Rate Daten verarbeitet werden
können und die Leserate der Receiver künstlich auf einen geringeren Wert zu limitieren.
Daher ist dieser Ansatz zur Analyse von Bestandsdaten kaum praktikabel.

Ein weiteres Problem dieser Lösung besteht darin, dass die Eingabedaten, nachdem sie
von den Receivern verarbeitet wurden, noch einmal durch das Netzwerk geschickt wer-
den müssen, bevor sie verarbeitet werden. Das verschwendet unnötig Ressourcen, und
fällt bei unserem Anwendungsfall besonders ins Gewicht, da hier die Eingabedaten um
Größenordnungen größer als die Ausgabedaten sind. Zusätzlich hat diese Lösung das prak-
tischen Problem, dass für jede RDD das streams-Framework neu initialisiert werden muss,
da jeweils ein neuer Spark-Task erzeugt wird. Dies sorgt für einigen Overhead und führt
zu einer unteren Schranke für das Batch-Intervall.

Aus diesen Gründen haben wir uns entschieden, von dieser Architektur Abstand zu neh-
men. Stattdessen führen wir die Verarbeitung der Daten bereits im Receiver durch, wie in
Abbildung 9.3 dargestellt. Dies eliminiert die oben genannten Probleme: Dank der Pull-
Semantik des streams-Frameworks werden Daten nur so schnell eingelesen wie sie auch
verarbeitet werden, die Eingabedaten müssen nicht nochmal verschickt werden und das
streams-Framework kann dauerhaft initialisiert bleiben. Möglich wird diese Lösung da-
durch, dass das streams-Framework bereits von sich aus für die Verarbeitung von kontinu-
ierlichen Datenströmen ausgelegt ist. Es kann sehr natürlich in den Receivern instantiiert

9.6. VERTEILTE STREAMING-PROZESSE 125

Input Stream

Minibatches (RDDs)
von Ergebnisdaten

union /
collect

Driver

Receiver 1
streams

Receiver 2
streams

Receiver 3
streams

Abbildung 9.3: Datenfluss von unserer Streaming-Lösung

werden und die vorherige Stückelung in Minibatches ist unnötig.

Dadurch, dass auf diese Weise fast die ganze Arbeit in den Receivern erledigt wird, sollte
auch ein Großteil der verfügbaren Ressourcen für die Receiver alloziert werden. Es wird
allerdings weiterhin eine geringe Zahl Worker benötigt, um die ankommenden RDDs zu-
sammenzuführen. Dadurch, dass diese Operationen wenig Overhead pro RDD verursachen,
kann das Batch-Intervall klein gehalten werden. Wir haben daher ein Intervall von 500ms
gewählt. Die Implikationen für die Performanz werden in Abschnitt 13.2 analysiert.

9.6.2 Arbeitsweise der Receiver

Zentral zur Umsetzung dieser Lösung ist es, einen benutzerdefinierten Receiver zu imple-
mentieren, der einen streams-Prozess ausführt. Hierzu wird bei Initialisierung des Re-
ceivers das streams-Framework instantiiert, genau wie bereits in Unterabschnitt 9.5.2
beschrieben. Anders als bei den Batch-Prozessen müssen die Ergebnisse des Prozesses al-
lerdings in die Ausgabe des Receivers umgeleitet werden. Dort werden sie dann von Spark
automatisch in RDDs verpackt. Hierzu verwenden wir eine Senke, die Daten automatisch
entsprechend weiterleitet, wenn sie vom Prozess ausgegeben werden.

Etwas problematisch ist, zu entscheiden, wann der Streaming-Prozess beendet ist. Spark
Streaming ist zur Verarbeitung von Echtzeitdaten ausgelegt, die prinzipiell endlos in das
System hineinströmen. Sollen jedoch statische Daten verarbeitet werden, ist es wünschens-
wert, dass die Analyse stoppt, wenn alle Daten abgearbeitet sind. Dazu bieten wir die
Möglichkeit, den Prozess zu beenden, sobald eine gewisse Anzahl der eingelesenen RDDs
in Folge leer waren. Ist der Eingabestrom des Prozesses versiegt, wird das auf jeden Fall
passieren und die Analyse wird wie gewünscht stoppen. Um zu verhindern, dass Schwan-
kungen im Datendurchsatz zum unerwünschten Herunterfahren des Systems führen, bieten

126 KAPITEL 9. VERTEILUNG VON STREAMS-PROZESSEN

wir dem Benutzer die Möglichkeit, die maximale Anzahl leerer RDDs über den Parameter
maxEmptyRDDs festzulegen.

Kapitel 10

Einbindung von Spark ML

Zur Arbeit unserer Software wird unter anderem die Gamma-Hadron-Separation und die
Energieschätzung gehören. Beide Aufgaben beinhalten maschinelle Lernverfahren, sodass
wir eine Möglichkeit finden mussten, die Spark-MLlib-Methoden in streams zur Verfügung
zu stellen. Dazu gehören nicht nur die Klassifikation und Regression, sondern auch die
Merkmalsextraktion, die Vorverarbeitung der Daten und die Evaluation der gewählten
Lernverfahren. Momentan werden Vorverarbeitung und Merkmalsextraktion von dem im
vorherigen Abschnitt 9.5 vorgestellten BatchProcess durchgeführt. Mit unserer Erweite-
rung soll es jedoch auch möglich sein, MLlib-Methoden zu nutzen, wenn dies gewünscht
ist.

Bevor das Design unserer Erweiterung erläutert wird, soll Spark MLlib noch einmal genau-
er beleuchtet werden. Die grundlegenden Konzepte wurden in Abbildung 3.1.2 beschrieben,
nun soll näher betrachtet werden, welches Paket aus Spark MLlib für unsere Projektgrup-
pe das bessere ist. Dabei soll im Folgenden genauer auf die Unterschiede zwischen den
Paketen eingegangen werden.

10.1 Spark ML vs. MLlib

In einer zweiwöchigen Experimentierphase zu Beginn der Projektgruppe beschäftigten wir
uns mit der Frage, welches Paket der Spark-MLlib-Bibliothek besser für unsere Zwecke ge-
eignet sein würde, entweder die ältere Version MLlib oder die neuere ML, welche auch noch
aktiv weiterentwickelt wird. Zunächst wählten wir einige Datensätze aus dem UC Irvine
Machine Learning Repository [60] aus, anhand welcher die Modelle trainiert und evaluiert
werden sollten. Diese Datensätze waren leicht zu beschaffen und sollten eine erste Basis
für die Experimente darstellen. Im späteren Verlauf der Experimentierphase verwendeten
wir außerdem einen Ausschnitt der Monte-Carlo-Simulationsdaten (siehe Abschnitt 6.3),

127

128 KAPITEL 10. EINBINDUNG VON SPARK ML

welche auch in der endgültigen Software den Trainingsdatensatz bilden werden. Einen gu-
ten Einstieg bildet der Spark Machine Learning Library Guide [6], welcher nicht nur jedes
einzelne Verfahren detailliert erklärt, sondern auch die Grundlagen der Spark MLlib Bi-
bliothek darstellt und einige Beispielimplementierungen liefert. Dank dieser erzielten wir
recht schnell Ergebnisse, stießen jedoch auch auf einige Probleme, die im Folgenden kurz
geschildert werden sollen.

Zuerst informierten wir uns, welche Algorithmen von den einzelnen Paketen implementiert
werden. Unsere Ergebnisse sind in der nachfolgenden Tabelle zu sehen und entsprechen
dem Stand von Apache Spark 1.6.0 (4. Januar 2016):

MLLib ML
Feature Extraction, Transformation and Selection X

Lineare SVM X

Entscheidungsbaum X X

RandomForest X X

GradientBoosted Trees X X

Logistische Regression X X

Naive Bayes X

Methode kleinster Quadrate X

Lasso Regression X X

Ridge Regression X X

Isotonic Regression X

Neuronales Netzwerk X

Die von den Physikern bereits genutzten Entscheidungsbäume und Zufallswälder sind in
beiden Paketen enthalten. Dennoch fällt in der Übersicht auf, dass ML einen entscheiden-
den Vorteil bietet, nämlich die Möglichkeiten zur Merkmalsselektion, -transformation und
-extraktion. Dies ist für unseren Anwendungsfall wichtig, da eine Aufgabe unter anderem
darin besteht, die für das Training und die Klassifikation besten Merkmale zu finden.

Bei der Implementierung war es zunächst problematisch, Datensätze einzulesen, welche
nicht dem des MLLib-Paketes bevorzugten Einleseformat LIBSVM [22] entsprachen. Dement-
sprechend sollten die Daten wie folgt organisiert sein:

label feature1:value1 feature2:value2 ...

Die dem Repository entnommenen Datensätzen entsprachen leider nicht dem gewünschten
Format, sodass wir Methoden schreiben mussten, die die von uns ausgewählten Datei-
en analysierten und in JavaRDDs konvertierten. Generell kann zwar jedes beliebige Da-
teiformat eingelesen werden, doch das Parsen muss bei Verwendung des Pakets MLLib

10.1. SPARK ML VS. MLLIB 129

selbst übernommen werden. Das Paket ML hingegen arbeitet auf Grundlage von DataFra-
mes. Diese können unter anderem aus Datenbanken oder JSON-Dateien gelesen werden.
Da uns das streams-Framework bereits die Möglichkeit zum JSON-Export bot, konnten
wir einfach einen Ausschnitt der Monte-Carlo-Simulationsdaten (siehe Abschnitt 6.3) als
JSON-Datei exportieren und in unseren Tests als DataFrame importieren. Dies ist ein
entscheidender Vorteil des ML-Paketes.

Auf ein weiteres Problem stießen wir bei dem Versuch, ein Modell mit Daten zu trai-
nieren, deren Attribute nicht ausschließlich numerischer Natur waren. Bei Nutzung des
MLLib-Paketes gingen die Algorithmen von Daten in Form eines LabeledPoint aus. Dieser
besteht aus einem numerischen Label und einem Vektor numerischer Features. Nutzt man
die Methoden aus dem Paket ML, gibt es zwar beim Ablegen von nominalen Attributen in
einem DataFrame keine Probleme, jedoch gibt es Klassifikationsalgorithmen, welche nur
mit numerischen Merkmalen trainieren und klassifizieren können. Das Problem der Trans-
formation blieb also bestehen. Das Paket MLLib bietet keine Möglichkeiten, um diese
Transformation durchzuführen, bei ML fanden wir sehr schnell die benötigten Methoden.

Auch die Label unterliegen einer Einschränkung. Sie sollen beginnend von Null durchnum-
meriert werden, sollen also nicht nominal sein oder mit +1 und -1 gekennzeichnet sein, wie
es bei binären Klassifikationen oft der Fall ist. Es stellte sich ebenfalls heraus, dass ML
uns Arbeit durch Bereitstellung geeigneter Methoden abnehmen konnte, MLLib jedoch
nicht.

Für unseren Anwendungsfall ist es wichtig, dass sich Modelle abspeichern, im HDFS hin-
terlegen und nach Belieben wieder laden lassen. Außerdem sollen gespeicherte Modelle
gestreamt werden können. Das Paket ML bietet bereits einige Methoden, um Pipelines
abzuspeichern. Dabei muss darauf geachtet werden, dass in der Pipeline ein Modell trai-
niert oder genutzt wird, für welches diese Speichermethoden bereits funktionieren. Generell
scheint es jedoch kein Problem zu sein, Modelle abzulegen und wiederzuverwenden, was
ein großer Vorteil des ML-Paketes ist.

Insgesamt stellte sich heraus, dass die Spark MLlib Bibliothek sehr konkrete Annahmen
über Eingabeformate und die Formatierung der Daten macht. Nutzt man das Paket ML,
treten dabei jedoch keine Nachteile auf. Wir wollen primär aus Datenbanken lesen oder
die Trainingsdaten, welche als JSON-Datei vorliegen, importieren. Für die Vorbereitung
und Formatierung der Daten für den Trainings- und Klassifikationsablauf stellt das Paket
ML viele Methoden bereit. Es scheint nicht nur komfortabler, primär auf das Paket ML zu
setzen, die Nutzung wird von Apache sogar ausdrücklich empfohlen, da das Paket MLLib
gar nicht mehr weiterentwickelt wird. Obwohl es auch noch unterstützt wird, haben wir
uns daher entschieden, auf die Pipeline-Struktur von ML aufzubauen und die in diesem
Paket enthaltenen Methoden zur Vorverarbeitung und Klassifikation unserer Daten zu
nutzen. Außerdem funktioniert das Speichern und Laden von Modellen, welche wir dann
problemlos streamen können. Nachdem die Entscheidung für das ML-Paket gefallen ist,

130 KAPITEL 10. EINBINDUNG VON SPARK ML

folgt nun die detaillierte Beschreibung unserer Einbindung.

10.2 XML-Spezifikation

Beim Design unserer Erweiterung stand vor allem im Fokus, dass das Spark-ML-Paket
auf DataFrames arbeitet. Während in der Basisvariante des streams-Frameworks die zu
verarbeitenden Daten in Data-Items gestreamt werden, mussten wir einen Weg finden,
diese in DataFrames zu konvertieren oder die Daten direkt in DataFrames zu laden, damit
diese dann an die Spark-MLlib-Methoden weitergegeben werden können. Außerdem spielt
die Pipelinestruktur, welche im ML-Paket von Spark MLlib verwendet wird, eine zentra-
le Rolle in unserer Spezifikation. Sie ähnelt stark der Prozess-und-Prozessoren-Struktur
des streams-Frameworks. Während Prozesse diverse Prozessoren enthalten können, durch
die die Daten sequentiell durchgereicht werden, können die in Spark ML verwendeten Pi-
pelines diverse Stages enthalten. Auch dort werden die Daten sequentiell von Stage zu
Stage weitergereicht. Wir entschieden uns dieses Konzept in unsere XML-Spezifikation
zu übernehmen, schließlich soll die Anwendung für die Physiker, welche bisher nur das
streams-Framework kennen, einfach zu erlernen sein. Durch den ähnlichen Aufbau in-
tegriert sich unsere Erweiterung nicht nur optisch, sondern auch inhaltlich gut in das
Framework. Die Spezifikation und die Implementation der neu eingeführten Tags soll in
den folgenden Unterkapiteln näher erläutert werden.

XML-Spezifikation von input

Ein input-Tag dient dazu, eine Datenquelle zu spezifizieren, die einen DataFrame (siehe
Abbildung 3.1.2) zurückgibt. Im Gegensatz zu einem <stream> müssen die Daten also
nicht zeilenweise, sondern als ganze Tabelle zurückgegeben werden.

Als Datenquelle kann jede Unterklasse von stream.io.DataFrameStream verwendet wer-
den. Jeder input muss ein Attribut id mit einem eindeutigen Wert besitzen. Ein input-
Tag muss auf der obersten Ebene eines Containers stehen. Ein Beispiel hierfür findet sich
in Listing 10.1.

XML-Spezifikation von task & operator

Das Task-Tag wird genutzt, um neue Arbeitsabläufe zu modellieren. Es befindet sich in-
nerhalb des container-Tags, zusammen mit den input-Tags. Ein Task hat die Argumente
ID=... und input=.... Letzteres erlaubt ihm, auf die vorher verwendeten input-Tags Be-
zug nehmen. Dann führt er den in ihm spezifizierten Arbeitsablauf auf den im Input

10.2. XML-SPEZIFIKATION 131

angegeben Daten aus. Dazu kann der Nutzer innerhalb des Tasks eine Kombination der
Tags pipeline und operator verwenden, um die Daten zu bearbeiten, Modelle zu lernen
und anzuwenden, Ergebnisse anzuzeigen etc. Dafür muss jeder Operator eine Unterklasse
von stream.runtime.AbstractOperator angeben, die die Arbeitsschritte auf dem Da-
taFrame enthält. Operatoren und Pipelines werden sequentiell ausgeführt und der jeweils
resultierende DataFrame an den Nachfolger weitergereicht.

Interessant ist hierbei, dass Task bzw. Operator genau dem Prozess bzw. den Prozesso-
ren von Streams entsprechen. Da wir allerdings die SparkML- bzw. SparkMLib-Bibliothek
verwenden wollen, müssen wir, wie bereits erwähnt, die Daten in Form von DataFrames
anstelle der von Streams verwendeten Data-Klasse speichern. Task und Operatoren tun
genau dies, sie sind also äquivalent zu den jeweiligen Streams-Klassen, arbeiten aber auf ei-
nem anderen Typ von Daten. Dies ermöglicht es uns, die Algorithmen der Spark-Bibliothek
zu verwenden, ohne dass sich an der Struktur des XMLs viel ändert.

Eine wirkliche Neuerung stellt also nur das Pipeline-Tag, mit dem Pipelines der Spark
Bibliotheken verwendet werden können, dar. Es dient dazu, komplexere Abläufe in der
Datenvorverarbeitung einmalig zu modellieren, die so modellierte Pipeline kann dann von
den auf sie folgenden Operatoren verwendet werden.

1 <container >

2 <input id="1" class=" someInput " />

3

4 <task id="2" input="1">

5 <pipeline modelName ="model">

6 ...

7 </ pipeline >

8

9 <operator class=" ApplyModelOperator " modelName ="model" />

10 <operator class=" PrintDataFrameOperator " />

11 </task >

12 </ container >

Listing 10.1: Ein Beispiel XML - Mehr Informationen zu den einzelnen Tags sind in den folgenden
Abschnitten zu finden

XML-Spezifikation von pipeline

Wie bereits erwähnt, wurde das <pipeline>-Tag eingeführt, damit die von Spark ML
bereitgestellt Pipeline-Struktur als XML-Format definiert werden kann. Dazu wird das

132 KAPITEL 10. EINBINDUNG VON SPARK ML

Tag innerhalb eines Tasks definiert und kann dann durch Spezifizierens eines Namens im
weiteren Verlauf verwendet werden (Listing 10.1).

1 <task ... >

2 <pipeline modelName ="model">

3 <stage class=" MyStage " />

4 <transformer ... />

5 <transformer ... />

6 <estimator ... />

7 ...

8 </ pipeline >

9

10 <operator class=" ExportModelOperator " exportURL ="..."
modelName ="model" />

11 </task >

Listing 10.2: Beispiel-XML einer reduzierten Pipeline innerhalb einer Task

Listing 10.2 stellt beispielhaft dar, wie eine Pipeline innerhalb eines Task erstellt werden
kann, um dann später im ExportModelOperator wieder abgerufen zu werden. Dazu muss
lediglich der Name der zu exportierenden Pipeline im Parameter modelName angegeben
werden. Durch die Einführung eines Namens wird es zeitgleich ermöglicht, mehrere defi-
nierte Pipelines innerhalb eines Task voneinander zu unterscheiden. Dabei sei allerdings
anzumerken, dass eine Pipeline überschrieben wird, sollte derselbe Name später wieder
verwendet werden.

Innerhalb einer Spark ML Pipeline existieren zwei unterschiedliche Komponenten: Estimator

und Transformer, welche im Allgemeinen als Stages bezeichnet werden. Die Beschreibung
ihrer XML-Spezifikation folgt im nächsten Unterabschnitt.

XML-Spezifikation von stages

Nachdem der pipeline-Tag genauer ausgeführt wurde, soll es nun um die Estimator und
Transformer gehen, deren Überbegriff Stage ist. Sie bilden das Herzstück der Pipeline und
legen fest, welche Arbeitsschritte in der Pipeline auf den Daten ausgeführt werden sollen.

Ein Estimator ist eine Klasse, welche einen DataFrame bekommt und basierend auf einem
Lernalgorithmus ein Modell erzeugt. In Spark ML stehen dafür zahlreiche Klassifikations-
und Regressionsmethoden, aber auch Methoden für die Mermalsextraktion und das Clu-
stering zur Verfügung. Um diese Funktionalität nutzen zu können, spezifizierten wir einen

10.2. XML-SPEZIFIKATION 133

estimator-Tag. Die gewünschte Klasse soll im Parameter stage angegeben werden, danach
können beliebig viele Parameter für genau diese Klasse folgen.

1 <estimator stage=" RandomForestRegressor " numTrees ="20"
labelCol ="label" featuresCol =" features " />

Listing 10.3: Beispiel-XML für die Verwendung des estimator-Tags

In Listing 10.3 wird beispielsweise ein Estimator der Klasse RandomForestRegressor er-
zeugt, wobei die Attribute numTrees, labelCol und featuresCol gesetzt werden.

Ein Transformer ist eine Klasse, welche einen DataFrame bekommt und verändert, mei-
stens durch Anfügen einer neuen Spalte. Damit können Vorverarbeitungsschritte oder
auch eine Klassifikation, also eine Anwendung eines erlernten Modells, gemeint sein. Ana-
log zum estimator-Tag erstellten wir einen transformer-Tag, wobei im Parameter stage
die gewünschte Klasse angegeben werden soll. Danach können wiederum beliebig viele
Parameter folgen, um die gewünschten Attribute zu setzen.

1 <transformer stage=" Binarizer " inputCol =" Length " outputCol =

" newLength " threshold ="2" />

Listing 10.4: Beispiel-XML für die Verwendung des transformer-Tags

In Listing 10.4 wird beispielsweise ein Transformer der Klasse Binarizer erzeugt, wobei
die Attribute inputCol, outputCol und threshold gesetzt werden.

Insgesamt kann man auf diese Weise alle von Spark ML bereitgestellten Estimator und
Transformer in einer Pipeline instantiieren. Wichtig ist, dass diese beiden Tags nur in-
nerhalb einer pipeline-Umgebung stehen, denn sie werden in Spark ML immer als Teil
einer großen Pipeline ausgeführt. Die Reihenfolge der Ausführung wird mit der Reihenfol-
ge der Tags im XML festgelegt und die Stages werden sequentiell durchlaufen. Außerdem
können pro Pipeline mehrere Modelle trainiert werden. Es ist auch möglich, dass nach
einem estimator-Tag wieder transformer-Tags folgen, beispielsweise um im weiteren Ver-
lauf der Pipeline ein Modell auf Grundlage eines noch weiterverarbeiteten DataFrames zu
trainieren. Weiterhin gibt es keine Limitierung für die Anzahl von Stages. Nachfolgend
steht ein abschließendes Beispiel für den Aufbau einer Pipeline durch Transformer und
Estimator:

1 <container >

2 <input id="1" class=" stream .pg594. example . MCInput "/>

3

134 KAPITEL 10. EINBINDUNG VON SPARK ML

4 <task id="2" input="1">

5 <pipeline modelName =" RFRegressor ">

6 <transformer stage=" VectorAssembler " inputCols ="Length
,Width ,Delta ,Distance ,Alpha ,Disp ,Size" outputCol ="
features "/>

7 <!-- arbitrary transformers and estimators -->

8 <estimator stage=" VectorIndexer " inputCol =" features "
outputCol =" indexedFeatures " maxCategories ="10"/>

9 <estimator stage=" RandomForestRegressor " numTrees ="20"
labelCol =" MCorsikaEvtHeaderfTotalEnergy "

featuresCol =" indexedFeatures "/>

10 </ pipeline >

11 </task >

12 </ container >

Listing 10.5: Beispiel-XML für die Verwendung der estimator- und transformer-Tags innerhalb
einer Pipeline

10.3 Umsetzung

In diesem Abschnitt werden die Schritte der Umsetzung näher erläutert. Dazu werden die
Klassen zur Instantiierung und Verarbeitung von Spark-ML-Aufgaben beleuchtet.

Implementierung von task & operator

Nun wird die Implementierung der gerade beschriebenen XML-Elemente skizziert. Dabei
ist es das Ziel, die streams-Architektur zu erhalten und lediglich an einigen Stellen zu
erweitern.

Das task-Element soll wie das process-Element auf der obersten Hierarchie-Ebene eines
streams Container stehen. Deshalb muss zuerst ein TaskElementHandler beim XML-
Parser registriert werden.

Aufgrund der syntaktischen Äquivalenz von task und process ist es möglich, den Code
von process wiederzuverwenden. Hierzu müssen die task-Datentypen von den process-
Datentypen erben. Auf diesem Weg entfällt das Problem, den streams Scheduler anzupas-
sen, da die task-Blöcke von der streams Laufzeitumgebung automatisch wie process-Blöcke
ausgeführt werden.

Das bedeutet aber auch, dass der Inhalt eines task-Blocks kompatibel zu den Inhalten
eines process-Blocks sein muss. Dies wird erreicht, indem der Operator-Datentyp von dem

10.3. UMSETZUNG 135

Processor-Datentyp erbt. Dazu muss jeder Operator eine Methode Data process(Data

input) implementieren. Dies steht scheinbar im Widerspruch zum Konzept, dass je-
der Operator einen DataFrame erhält, diesen bearbeitet und den veränderten DataFrame
zurückgibt.

Diese beiden Anforderungen können zusammengeführt werden, indem das Bearbeiten des
eigentlichen DataFrames in eine abstrakte Methode ausgelagert wird, die einen DataFra-
me erhält und den veränderten DataFrame wieder zurückgibt. Diese abstrakte Methode
wird dann von jedem einzelnen Operator anwendungsspezifisch überschrieben. Hingegen
wird die Data process(Data input) für alle Operatoren einheitlich implementiert. Sie
liest den DataFrame aus dem gegebenen Data-Objekt aus, lässt ihn von der operator-
spezifischen Methode bearbeiten und schreibt den veränderten DataFrame zurück in das
Data-Objekt. Auf diesem Weg verhält sich ein Operator aus der Sicht von streams wie ein
Processor, bietet aber dem Nutzer die neue Schnittstelle zur Bearbeitung von DataFrames
an.

Implementierung von input

Das <input>-Tag wurde eingeführt, damit DataFrame Objekte in die bisherige streams-
Architektur eingepflegt werden konnten. Dazu wurden zwei neue Klassen entwickelt: DataFrameInput

und DataFrameStream. Abbildung 10.1 stellt die einzelnen Klassen dar, die bei der Ver-
arbeitung von Input-Elementen beteiligt sind.

Zunächst ist anzumerken, dass für die Verarbeitung von DataFrame-Instanzen im streams-
Framework die instantiierten Objekte an die zugehörigen Prozesse gesendet werden müssen.
Nativ wird dies vom streams-Framework ermöglicht, sofern eine neue Klasse als Spezia-
lisierung von Source definiert wird.

Aufgrund der Ähnlichkeit zu normalen Datenstreams wurde hier eine direkte Speziali-
sierung zur Klasse AbstractStream hergestellt. Jedoch sollte vermerkt werden, dass für
eine bessere Abgrenzung von normalen Datenstreams eine Spezialisierung zur Schnitt-
stelle Stream hergestellt werden sollte. Dies war jedoch für den ersten Prototypen keine
Priorität.

Das Interface DataFrameInput wurde erstellt, damit eine bessere Abgrenzung von nor-
malen Datenstreams ermöglicht wird. Der Vorteil einer solchen Schnittstelle findet sich
schnell, wenn die Instanziierung der Klassen betrachtet wird. Derzeit wird noch der vom
streams-Framework bereitgestellt StreamElementHandler genutzt, um Input-Elemente
zu erstellen. Jedoch wäre es angebrachter, hier ein eigenständigen InputElementHandler

zu implementieren, welcher nur Streams erzeugt die eine Spezialisierung von DataFrameInput

darstellen, sodass eine bessere Abgrenzung zu dem bereits vorhandenen <stream> Tag
ermöglicht wird.

136 KAPITEL 10. EINBINDUNG VON SPARK ML

Abbildung 10.1: Klassendiagramm mit zugehörigen Klassen für DataFrameInput und
DataFrameStream

10.3. UMSETZUNG 137

Die Klasse DataFrameStream bietet die Möglichkeiten eines normalen Streams und er-
weitert diesen, um die von der DataFrameInput-Schnittstelle bereitgestellten Methode
nextDataFrame(). Ziel dieser Methode ist es, dem DataFrameStream zu ermöglichen, eine
Reihe von DataFrame Instanzen abzuarbeiten. Dazu muss zunächst ein EOF für einen
Stream von DataFrames definiert werden, sodass beim Erreichen dessen der Stream en-
det. In der readNext() Methode wird dann jedes Mal nextDataFrame() aufgerufen und
solange der Stream noch nicht den EOF Status erreicht hat, wird ein neues Data-Objekt
erstellt, welchem das nächste Dataframe hinzugefügt wird. Auf diese Weise können Dataf-
rames als Datastream im streams-Framework weitergeleitet und bearbeitet werden. Auch
hier sei anzumerken, dass der derzeitige EOF Status noch nicht vollständig definiert und
implementiert wurde, weshalb nur ein einziges DataFrame-Objekt in einem Input-Element
erzeugt wird. Dies kann allerdings durch Implementieren von spezialisierten Klassen um-
gehen werden, indem die Methode nextDataFrame() überschrieben wird.

Implementierung von pipeline und stages

Mithilfe von einer <pipeline> können die aus SparkML bereitgestellten Pipelines ge-
nutzt werden. Damit diese Klassen im erweiterten streams-Framework abgerufen werden
können, mussten Klassen zur Erstellung (Abb. 10.2) und Verarbeitung (Abb. 10.3) bereit-
gestellt werden.

Zur Erstellung von Spark ML Pipelines wurden im Wesentlichen zwei Factories implemen-
tiert. Die PipelineFactory erzeugt AbstractPipeline-Instanzen, für jedes spezifizierte
<pipeline> Tag. Mittels der Methode createNestedStage() werden die definierten Sta-
ges erzeugt und der Pipeline zugewiesen. Hierbei wurden ein Ansatz über eine Erstellung
über ObjectCreator gewählt. ObjectCreator sind Bestandteile der ObjectFactory, wel-
che Teil des streams-Frameworks ist. Der ObjectFactory wird das zu erstellende XML-
Element übergeben, welche dann innerhalb der Erstellung überprüft, ob ein ObjectCreator

existiert, der dieses Element bearbeitet.

Abbildung 10.3 zeigt eine Übersicht der so erstellten Pipeline und Stage-Instanzen. Hier-
bei sei anzumerken, dass während der Entwicklung des Prototypen verschiedene Ansätze
verfolgt wurden und sich diese Variante als intuitiv sinnvollste herausgestellt hat, da durch
die Weiterverwendung der streams-Prozessoren wenig Änderungen an der Konstruktion
dieser durchgeführt werden mussten.

Eine instantiierte Pipeline, wie beispielsweise eine DefaultPipeline, verarbeitet DataFra-
me-Objekte, weswegen sie als Spezialisierung des AbstractOperator implementiert wur-
de. Da Pipelines spezialisierte Prozessoren sind, kann die streams-Implementierung ge-
nutzt werden, um Daten zu verarbeiten und im Fall der Pipeline Dataframes. In der

138 KAPITEL 10. EINBINDUNG VON SPARK ML

Abbildung 10.2: Übersicht der Klassen zuständig für die Erstellung von Pipelines und Stages

DefaultPipeline wird so für jeden Bearbeitungsphase ein neues Model trainiert und
dem Datenstream übergeben. Damit die erstellten Modelle weiter genutzt werden können,
muss jeder Pipeline über den Parameter modelName ein Name zugewiesen werden, womit
die weitergegebenen Modelle identifiziert werden.

Pipelinestages werden über eine extra Ebene abstrahiert, um die aus streams bekannte
Struktur, d.h. Prozesse (Pipelines) besitzen Prozesseoren (Stages), beizubehalten. Da Pi-
pelines bereits als Prozessoren instanziiert werden, musste eine zustäzliche Ebene erstellt
werden, um Stages einzubinden. Zugleich können diese Klassen genutzt werden, um unter
anderen von Spark unabhängige Pipelinestages zu verfassen.

10.3. UMSETZUNG 139

Abbildung 10.3: Übersicht der Klassen zuständig für die Verarbeitung von Pipelines und Stages

Kapitel 11

Verteilte Ein- und Ausgabe

Zur verteilten Ausführung von Prozessen ist es nötig, die zu verarbeitenden Daten auf-
zuteilen, sodass jeder Worker eine Teilmenge der Gesamtdaten verarbeiten kann. Nach
Abschluss der Datenverarbeitung müssen die einzelnen Ergebnisdaten wiederum zu einer
Gesamtheit zusammengeführt werden. Zudem soll die Möglichkeit bestehen, Ergebnisse
(verteilt) im CSV-Format zu persistieren, um dieses Output als Basis für weitere Arbeits-
schritte zu nutzen. Im Folgenden werden die zu diesem Zwecke erarbeiteten Lösungen der
Projektgruppe vorgestellt.

11.1 MultiStream-Generatoren

Die verteilte Ausführung der Prozesse erfordert die Verfügbarkeit von mehreren Daten-
strömen. Damit können die Prozesse mehrere Datenströme gleichzeitig verteilt verarbeiten.
Dafür wurde der MultiStreamGenerator implementiert.

Der MultistreamGenerator ist eine Erweiterung des Streams-Framework MultiStreams.
Er wird zum Erzeugen von Datenströmen für eine verteilte Verarbeitung verwendet. Au-
ßerdem ist er auch in der Lage, mehrere Mengen von Datenströmen zu erzeugen. Da
der MultiStreamGenerator eine Erweiterung der Klasse SequentielMultiStream des
Streams-Frameworks ist, ist man so in der Lage, zwischen einer lokalen (nicht verteilten)
und verteilten Datenstromverarbeitung zu unterscheiden.

Durch den MultiStreamGenerator ist es möglich, verschiedene Datenstromgeneratoren
zu implementieren, zum Beispiel wurde im Rahmen der PG ein FitsStreamGenerator

verwendet, der aus fits-Dateien Datenströme generieren kann. Aus einer Ordnerstruktur,
die aus vielen Dateien besteht, werden verschiedene Datenströme erzeugt. Der Vorteil ist,
dass es genügt, den Pfad des Oberordners anzugeben. Außerdem kann man durch die
Eingabe regulärer Ausdrücke nicht erwünschte Dateien filtern. Will man für Testzwecke

141

142 KAPITEL 11. VERTEILTE EIN- UND AUSGABE

oder aufgrund von Speichermangel die Anzahl der generierten Datenströme begrenzen, er-
laubt der FitsStreamGenerator dies durch das Setzen der Parameter streamLimits und
maxNumStreams. streamLimits definiert die Länge der einzelnen Datenströme. maxNumStreams

setzt die Anzahl der generierten Datenströme fest.

Durch Erweiterung von MultiStream durch den MultiStreamGenerator ist man also in
der Lage, mit einer Zeile mehrere Datenstromquellen zu definieren (siehe Listing 11.1).

1 <application >

2 <stream id="fact" class=" stream .io.multi.
FitsStreamGenerator " url="${ infile }"

3 regex=".*\. fits \.gz" maxNumStreams ="1000" />

4 </ application >

Listing 11.1: Beispiel Multistream Eingabe

11.2 REST-Stream

Das REST-Interface 8 stellt Schnittstellen zur Verfügung, um FITS Dateien ausfindig
zu machen, die Beobachtungen umfassen, deren Metadaten bestimmten Kriterien 8.2.2
entsprechen. Um die gefilterten Dateien bzw. die Beobachtungen im Sinne der Prozesskette
verarbeiten zu können, wurde der REST-Stream entwickelt und wird nun im Folgenden
vorgestellt.

11.2.1 RestFulStream

Der Stream ist so aufgebaut, dass dieser zwei Parameter (url, filter) annimmt. Mittels
url wird die Url zu der entsprechenden Schnittstelle des REST-Interfaces übergeben und
über den Paramter filter können die Kriterien zur Filterung der einzelnen Metadaten
bzw. Dateien als einfacher String festgelegt werden. In 11.2 wird die wesentliche Verwen-
dung des Streams verdeutlicht. Der Stream ist für die Verbindung zur REST-Schnittstelle
verantwortlich und liefert als Ergebnis die einzelnen Events zurück, deren Metadaten den
Kriterien des Filters genügen. Diese Events können innerhalb des process-Tags mit Pro-
zessoren des streams-Frameworks weiterverarbeitet werden. Die Events werden mit Hilfe
des Paramteres input und dem Wert events referenziert.

1

11.2. REST-STREAM 143

2 <application >

3

4 <!-- Name of the stream and url to the input file -->

5 <stream id=" events "
6 class="edu.udo. reststreams . stream .

RestfulEventStream "
7 url="http :// ls8cb01 .cs.uni - dortmund .de :6060/ api/

events /"
8 filter ="night.eq (20130801) .and(eventNum .lt (10)).

and(eventNum .gt (0))" />

9

10 <process input=" events ">

11 <!-- Process filtered events applying processors -->

12 </ process >

13

14 </ application >

Listing 11.2: Beispiel RestFullStream Eingabe

11.2.2 RestFulMultiStream

Die aus der REST-API zu Verfügung gestellten Daten, können als Mulltistrem mit dem
RestFulEventMultiStream für den Input geliefert werden. RestFulEventMultiStream

ist eine Erweiterung der Klasse SequentiellMultiStream. Aus den von der REST-API
gelieferten JSON-Dateien werden die URLs der gewünschten Daten gelesen. Anhand die-
ser URL werden die einzelnen FitsStream erstellt und der Multistream angebunden. Ein
Beispiel für die Verwendung eines RestFulEventMultiStream ist in Listing 11.3 zu fin-
den.

1 <application >

2

3 <!-- Name of the stream and url to the input file -->

4 <stream id=" events "
5 class=" stream .io.multi. RestfullEventMultiStream "

streamLimits ="5" maxNumStreams ="3"
6 url="http :// ls8cb01 .cs.uni - dortmund .de :6060/ api/

events /"
7 filter ="night.eq (20130801) .and(eventNum .lt (10)).

and(eventNum .gt (0))" />

144 KAPITEL 11. VERTEILTE EIN- UND AUSGABE

8

9

10 <distributedProcess id="DO" input=" events " >

11

12 <!-- Do something -->

13

14 </ distributedProcess >

15

16 </ application >

Listing 11.3: Beispiel RestFullMultiStream Eingabe

Man kann wie auch beim einzelnen Stream einen Filter verwenden. Außerdem ist es
möglich, die Anzahl der gelieferten Datenströme sowie die Anzahl der gelieferten Events
per Datenstrom einzustellen. In dem Beispiel werden drei Datenströme geliefert mit jeweils
fünf Events.

Mit dem RestFulEventMultiStream ist eine effiziente verteilte Verarbeitung der Daten,
die auch aus der REST-API geliefert werden, möglich.

11.3 Verteilte CSV-Ausgabe

Um ein Modell trainieren zu können, müssen die Daten davor entsprechend vorberei-
tet werden. Man muss in der Lage sein, aufbereitete Daten exportieren können, um sie
später für ein Modelltraining zu verwenden oder um einfach die Daten nach einer Feature-
Extraction anzusehen. Aus diesem Grund ermöglicht unser Framework einen Export der
von den Workern verarbeiteten Daten sowie von den Dataframes als CSV-Dateien

Export der Daten

Bei der Aufbereitungsphase werden entweder die Rohdaten anhand des FitsstreamGenarator

gelesen oder über den REST-API geliefert. Anhand des DistributedCsvWriter können
die Daten, die von den einzelnen Workern verarbeitet wurden, direkt nach der Aufbe-
reitungsphase in CSV-Dateien geschrieben werden. Die einzelnen Dateien bekommen als
Namen die IDs der einzelnen Worker. Da ein interner Zugriff auf den IDs der Workern
nicht möglich ist, werden die eingegebenen Daten mit der Worker-ID versehen. Der Pa-
rameter WorkerIdKex in dem Input-Tag bekommt das Attribut @worker zugewiesen. In
diesem Attribut wird die ID der für die Verarbeitung dieser Daten zuständigen Wor-
ker gespeichert und von dem DistributedCsvWriter verwendet. Außerdem muss man
einen Link eines Ordners eingeben, in dem die Dateien gespeichert werden sollen. Ein

11.3. VERTEILTE CSV-AUSGABE 145

Beispiel ist in Listing 11.4 der XML zu sehen. Dabei werden die Daten mit Hilfe des
RestfulEventMultiStream aus der MongoDB gelesen und von den einzelnen Workern in
die CSV-Dateien geschrieben.

1 <application >

2

3 <!-- Name of the stream and url to the input file -->

4 <stream id=" events "
5 class=" stream .io.multi. RestfulEventMultiStream "

streamLimits ="3" maxNumStreams ="3"
6 url="http :// ls8cb01 .cs.uni - dortmund .de :6060/ api/

events /"
7 filter ="night.eq (20130801) .and(eventNum .lt (10)).

and(eventNum .gt (0))" />

8

9

10 <BatchProcess id="DO" input=" events " workerIdKey ="
@worker " maxEmptyRDDs ="0">

11

12 <stream .io. DistributedCsvWriter url="hdfs ://
ls8cb01 .cs.uni - dortmund .de :9000/ user/

hadoop / CsvWriterTest /" workerIdKey ="
@worker " />

13 </ BatchProcess >

14

15 </ application >

Listing 11.4: Beispiel von der Anwendung eines DistributedCsvWriter

Export von Dataframe

Man kann nicht nur die extern gelesenen Daten als CSV exportieren sondern auch die schon
in Dataframes gespeicherten Daten. Dafür ist der Operator ExportDataframe zuständig.
Für den Export muss einen CSV-Ordner eingegeben, in den die einzelnen Dateien ge-
schrieben werden sollen. Man ist auch in der Lage, die Anzahl der ausgegebenen Dateien
zu definieren. In dem Parameter numFiles wird die Anzahl der ausgegeben Dateien einge-
geben. In Listing 11.5 ist eine Beispiel-XML zu sehen, bei der ein Operator ein Dataframe
in zehn Dateien schreiben soll.

146 KAPITEL 11. VERTEILTE EIN- UND AUSGABE

1 <application >

2

3 <queue class=" stream .io. RddQueue " id="queue"/>

4

5

6 <task id=" Export " input="queue" persistDataFrameIn ="
MEMORY_ONLY ">

7 <stream .pg594. operators . ExportDataFrame url="hdfs ://
ls8cb01 .cs.uni - dortmund .de :9000/ demo/ features .
csv" numFiles ="10"/>

8

9

10 </task >

11

12 </ application >

Listing 11.5: Beispiel von der Anwendung eines DistributedCsvWriter

Mit der verteilten Ausgabe ermöglicht das Framework ein verteiltes Wiedereinlesen der
Daten. Das kann von Vorteil sein, wenn man schon verarbeitete Daten oder vorhergesagte
Daten wieder braucht.

Kapitel 12

Organisation

Das umzusetzende Projekt der Big-Data-Analyse auf FACT-Teleskopdaten besitzt eine
Laufzeit von zwei Semestern und wird durch uns, ein Team aus 12 Studentinnen und Stu-
denten, umgesetzt. Damit besitzt das Projekt unter Organisations-Aspekten eine gewisse
Komplexität: Wie lässt sich die Arbeit sinnvoll zergliedern? Wie gehen wir mit Abhän-
gigkeiten zwischen den Arbeitspaketen um? Wie strukturieren wir die Arbeit so, dass wir
unsere Ziele bestmöglich umsetzen können?

Damit die Beantwortung solcher Fragen nicht zum Problem wird, ist es wichtig, sich bereits
im Vorhinein auf Methoden zu einigen, die sinnvolle Antworten festlegen. Vorgehensmo-
delle und andere Projektmanagement-Praktiken geben Teams solche Methoden an die
Hand.

Wir haben zu Beginn der PG eine kleine Auswahl agiler Verfahren kennengelernt, die wir
in Abschnitt 12.1 einführen wollen. Unsere konkrete Umsetzung dieser Verfahren wird in
Abschnitt 12.2 vorgestellt. Eine Retrospektive dieser Umsetzung findet sich übrigens in
Abschnitt 15.3.

12.1 Agiles Projektmanagement

Agile Projektmanagement-Verfahren können den Arbeitsablauf optimieren, indem sie ei-
nige der Probleme klassischer (also nicht-agiler bzw statischer) Verfahren vermeiden. Wir
diskutieren hier zunächst einige dieser Probleme (siehe Unterabschnitt 12.1.1), und wie
das agile Manifest sie adressiert (siehe Unterabschnitt 12.1.2). Als kleine Auswahl agiler
Verfahren stellen wir Scrum und Kanban vor (siehe Unterabschnitt 12.1.3 und Unterab-
schnitt 12.1.4).

147

148 KAPITEL 12. ORGANISATION

12.1.1 Probleme Nicht-Agiler Verfahren

Klassische Verfahren reagieren in der Regel nur unzureichend auf Änderungen in Anfor-
derungen und Terminen, da die zugrundeliegenden Pläne für den gesamten Entwicklungs-
prozess erstellt werden. Da klassische Verfahren Planänderungen nicht im Entwicklungs-
prozess vorsehen (oder für sie ein bürokratisch aufwändiges Teilverfahren definieren), wird
die Notwendigkeit solcher Änderungen gerne verkannt.

Häufig stellen sich die zu Beginn des Projektes erstellten Pläne als nicht-optimal heraus,
weil sie später erworbene Informationen oder Änderungsbedarf nicht vorhersehen konnten.
Daher eignen sich klassische Verfahren insbesondere nicht, um Projekte zu managen, deren
Anforderungen zu Beginn unklar sind. Leider lässt sich die Klarheit der Anforderungen
nicht immer sofort entscheiden.

Ein weiteres Problem ist, dass die in klassischen Verfahren geforderte Vielfalt an Doku-
menten oft nur pro forma erstellt wird. So gibt es Dokumente, die nur beinhalten, was
ohnehin bereits abgestimmt wurde, oder die zu einem Zeitpunkt gefordert waren, an de-
nen noch keine ideale Lösung zu finden war. Solche Dokumente werden möglicherweise nie
gelesen oder veralten, bevor sie einen Nutzen darstellen konnten.

Prominente Vertreter klassischer Projektmanagement-Verfahren sind das Wasserfallmo-
dell, sowie die Modelle V und VXT. Sie alle basieren auf dem Prinzip, zunächst alle An-
forderungen festzulegen, basierend darauf Entwürfe zu erstellen, und zuletzt Implemen-
tierungsarbeiten aufzunehmen. Im Wasserfallmodell werden Tests erst am Ende durch-
geführt, was im V-Modell durch Testen auf jeder Entwicklungsstufe verbessert wurde.
Das VXT-Modell erweitert V durch Ausschreibungen und Einbettung in übergeordnete
Projekte. Durch diesen weiten Horizont entsteht aber ein enormer Umfang an Rollen und
Artefakten, wodurch Projekte auch behindert werden können.

12.1.2 Das Agile Manifest

Das agile Manifest stellt die Grundprinzipien jedes agilen Projektmanagement-Verfahrens
dar. Es korrigiert dabei die Annahmen klassischer Verfahren und leitet daraus explizite
Regeln ab. Das agile Manifest lautet wie folgt [10]:

Reagieren auf Änderungen ist wichtiger, als einem Plan zu folgen. Pläne fokussie-
ren die nahe Zukunft, da langfristige Planungen nur vorläufig sein können und
möglicherweise notwendigen Änderungen unterliegen.

Funktionierende Software ist wichtiger als eine umfangreiche Dokumentation. Doku-
mentation sollte nicht pro forma erstellt werden, sondern einen Zweck erfüllen.

12.1. AGILES PROJEKTMANAGEMENT 149

Abbildung 12.1: Der Sprint in Scrum

Individuen und Interaktionen ist ein höherer Stellenwert einzuräumen als Prozessen
und Tools. Unzureichende Interaktionen zwischen Projektbeteiligten gefährden Pro-
jekte, egal, welche Prozesse verwendet werden.

Partizipation des Kunden bringt mehr als Vertrags-Verhandlungen. Eine enge Einbin-
dung des Kunden macht Änderungsbedarf frühzeitig erkennbar und steigert damit
den Nutzen des Produktes.

12.1.3 Scrum

Scrum [48] ist ein prominenter Vertreter agiler Projektmanagement-Verfahren. Zentral für
Scrum ist der Sprint, ein kurzer Entwicklungszyklus (2 – 4 Wochen), welcher ein Produkt-
Inkrement erzeugt. Ein solches Inkrement sollte einen Mehrwert für den Kunden darstellen.
Während eines Sprints dürfen sich keine Änderungen der für den Sprint definierten Ziele
ergeben, damit der Sprint geordnet abgearbeitet werden kann. Im schlimmsten Fall ist es
möglich, einen Sprint vorzeitig abzubrechen und einen neuen Sprint aufzusetzen.

Abbildung 12.1 stellt einen Überblick über Scrum dar. Abgebildet sind die verschiedenen
Rollen und Artefakte und ihre Einbettung in den Sprint. Zudem definiert Scrum einige
Meetings. Alle diese Elemente werden im Folgenden vorgestellt.

Rollen

Der Product Owner (PO) stellt die Interessengruppen außerhalb des Teams dar. Insbe-
sondere das Interesse des Kunden ist hier widergespiegelt, idealerweise aber auch andere,
möglicherweise widersprüchliche Interessen. Der PO soll aus diesen Interessen die Vision

150 KAPITEL 12. ORGANISATION

des Endproduktes formen und diese auf das Team übertragen. Dazu managt er mit dem
Product Backlog eines der Artefakte.

Der Scrum Master (SM) coacht das Team in der Ausführung von Scrum, kann dazu die
Moderation in den Meetings übernehmen und den PO in der Priorisierung des Product
Backlog unterstützen. Außerdem löst er sämtliche Probleme (Impediments), die das Team
von der Arbeit abhalten. Die Rolle des SM ist nicht gleichzusetzen mit einem Projekt-
leiter mit Entscheidungsgewalt. Sämtliche Entscheidungen werden gemeinsam im Team
getroffen.

Das Team übernimmt die Umsetzung eines Projektes. Dazu sollte es die Vision des End-
produktes verstehen. Es organisiert sich selbst, weshalb eine hohe Teilnahme der einzelnen
Mitglieder gefordert ist. Die Möglichkeit, durch Selbstorganisation am Projekterfolg teil-
zuhaben, kann die Mitglieder motivieren und den Projekterfolg erhöhen. Idealerweise setzt
sich das Team interdisziplinär aus 5 – 9 Personen zusammen.

Artefakte

Das vom PO verwaltete Product Backlog (PBL) soll sämtliche gewünschte Features
und Ergebnisse als User Stories vorhalten. Aufgrund sich ändernder Anforderungen ist das
PBL aber jederzeit anpassbar.

User Stories erklären den Nutzen des jeweiligen Features für einen Endnutzer. Aufgrund
dieses Nutzens lassen User Stories sich priorisieren. Außerdem lässt sich der Umfang jeden
Features schätzen. Aufgrund von Umfang und Priorität lassen sich User Stories aus dem
PBL auswählen, um im kommenden Sprint erledigt zu werden.

Für einen Sprint werden Teilaufgaben (Tasks) ausgewählter User Stories in den Sprint
Backlog (SBL) übernommen. Für jeden Task ist eine Definition of Done (DoD) formu-
liert, die aussagt, wann der Task abgeschlossen ist. Das SBL stellt damit die Basis für
die Organisation der Arbeit durch das Team dar. Es darf während eines Sprints nicht
verändert werden.

Damit der SM die Behinderungen des Teams beseitigen kann, verwaltet er ein Impedi-
ment Backlog (IBL), in welchem Teammitglieder Probleme einstellen und priorisieren
können. Er kann diese Behinderungen selbst auflösen, oder deren Auflösung weiterdelegie-
ren.

Meetings

Die verschiedenen Scrum-Meetings ermöglichen die Umsetzung des Verfahrens und eine
Abschätzung des Projektfortschritts. Sie haben einen jeweils fest definierten Zweck, wo-
durch die Zeit, die für Meetings verwendet wird, reduziert werden soll.

12.1. AGILES PROJEKTMANAGEMENT 151

Um einen kommenden Sprint zu planen, wird jeweils ein Sprint Planning Meeting ab-
gehalten. Es beinhaltet die Schätzung (möglicherweise die Neu-Schätzung) der Items des
PBL und eine Auswahl von Items für die Übernahme in den neuen Sprint. Die Auswahl
wird auf Basis von Aufwand und Priorisierung der Elemente durch Konsens im Team ge-
troffen. Darüber hinaus werden die Elemente des PBL in Tasks, wohldefinierte Arbeitspa-
kete, zergliedert. Tasks werden Verantwortlichen zugewiesen und in das SBL eingetragen.
Möglichst alle Termine für den kommenden Sprint werden festgelegt.

Um den Fortschritt des aktuellen Sprints festzustellen und Probleme (Impediments) zu
identifizieren wird ein tägliches Daily Meeting oder kurz ”Daily“, abgehalten. Es soll
dort lediglich beantwortet werden, was zuletzt getan wurde und was als nächstes getan
wird. Das Daily sollte eine Dauer von 15 Minuten nicht überschreiten.

Der Erfolg eines Sprints wird in einem Review und Sprint Retrospective ermittelt.
Zum Review zählen die Vorstellung des Produkt-Inkrements sowie die Abnahme desselben
durch den PO. In der Retrospektive wird die Qualität des Entwicklungsprozesses gemes-
sen. Hier soll beantwortet werden, was gut und schlecht im letzten Sprint lief und wie
möglicherweise Verbesserungen zu erreichen sind. Wie die Qualität gemessen werden soll,
lässt Scrum offen. An dieser Stelle lässt sich Scrum hervorragend mit Kanban kombinieren,
da Kanban die Messung der Prozessqualität stark fokussiert (siehe Unterabschnitt 12.1.4).

12.1.4 Kanban

Kanban [47] ist, anders als Scrum, kein Vorgehensmodell. Es schreibt daher keinen Ent-
wicklungsprozess vor, beinhaltet aber Praktiken, welche die Qualität bestehender Prozesse
messen und verbessern können. Es wird ein Entwicklungsprozess angestrebt, der Inkremen-
te regelmäßig, schnell und mit hoher Qualität ausliefern kann.

Das Verfahren modelliert dazu bestehende Prozesse als Kette von Arbeitsstationen, die
jedes Produktinkrement durchlaufen muss (z.B. Analyse, Implementierung, Testing,. . .).
Wichtig ist insbesondere, Abhängigkeiten innerhalb des Prozesses zu identifizieren, um
Verzögerungen zu vermeiden. Dadurch lässt sich der Durchfluss optimieren, indem Bott-
lenecks identifiziert und aufgelöst werden.

Zentral für Kanban ist das Kanban-Board, auf dem der Prozess modelliert und sein Fort-
schritt sichtbar gemacht wird. Abbildung 12.2 zeigt einen Überblick über Kanban mit dem
Board im Zentrum. Man erkennt die in Spalten angeordneten Stationen, sowie zusätzliche
Spalten für Prozess-Input (in naher Zukunft geplante Features) und Prozess-Output (zur
Abnahme freigegebene Features). Die Regeln von Kanban werden im Folgenden erläutert.

152 KAPITEL 12. ORGANISATION

Abbildung 12.2: Das Kanban-Board

Regeln

Die grundlegende Regel in Kanban ist, dass die Anzahl Items in jeder Station, die Work In
Progress (WiP), streng limitiert ist. Die jeweiligen Obergrenzen sollten in jeder Spalte
des Kanban-Boards eingetragen werden. Jede Station hat einen eigenen Input und Output.
Im Input liegen aktuell bearbeitete Tickets, im Output fertige Tickets. Die Prozesskette
funktionert nach dem Pull-Prinzip. Damit können Features nur weiterwandern, wenn die
nachfolgende Arbeitsstation das Feature in seinen Input ”zieht“.

Durch diese einfachen Regeln lassen sich Bottlenecks des Prozesses schnell identifizieren:
Sollte ein Flaschenhals existieren, werden davor liegende Stationen aufgrund des Limits
blockiert. Denn da die Station, die den Flaschenhals erzeugt, keine weiteren Tickets zie-
hen kann, dürfen auch frühere Stationen, wenn sie ihr Limit erreicht haben, keine weiteren
Tickets annehmen. Dann kann die Ressourcenzuteilung zu den Stationen verbessert wer-
den, sodass der Durchfluss steigt.

Damit die Anzahl der Tickets die tatsächliche Arbeit angemessen quantifiziert, sollten alle
Tickets einen ähnlichen Arbeitsaufwand erzeugen. Dies kann z.B. durch Zergliederung von
Features erreicht werden.

Optional können verschiedene Service-Klassen eingeführt werden, welche die Tickets prio-
risieren. Verbreitet ist z.B. eine Aufteilung in Standard, Expedite, Vague und Fixed.
Expedite-Tickets wird eine eigene Bahn durch den Prozess zugeordnet, die nicht zu den
Limits der Stationen zählt. So können z.B. wichtige Bugfixes vorrangig behandelt werden
(siehe die roten Tickets in Abbildung 12.2). Vague-Tickets sollten nur durch die Kette
wandern, wenn Kapazitäten des gesamten Prozesses frei sind. Fixed-Tickets können so
durch den Prozess geführt werden, dass sie zu festen Terminen fertiggestellt sind.

12.2. WAHL DES VERFAHRENS 153

Bewertung der Prozess-Qualität

Die Prozessqualität lässt sich zunächst daran messen, ob Bottlenecks in der Prozesskette
existieren. Diese verringern den Durchfluss und weisen auf eine nicht-optimale Ressourcen-
verteilung hin. Wie bereits angemerkt, lassen sich Bottlenecks dadurch identifizieren, dass
sie Tickets aufstauen und es dadurch vorigen Stationen nicht erlaubt ist, weitere Tickets
anzunehmen.

Eine weitere Metrik zur Abschätzung der Qualität ist die Zeit, die für einzelne Tickets seit
dem letzten Fortschritt vergangen ist. Solche Tickets sind möglicherweise blockiert, d.h.,
es sind Behinderungen aus dem Weg zu schaffen, damit das Ticket erfolgreich abgearbeitet
werden kann. Weitere Metriken zur Messung des Durchflusses und dem Aufwand einzelner
Tickets existieren darüber hinaus.

Wie Scrum verwendet auch Kanban Dailies und Reviews (siehe Unterabschnitt 12.1.3),
um den Projektfortschritt zu kommunizieren. Anders als in Scrum müssen Reviews aber
nicht regelmäßig abgehalten werden.

12.2 Wahl des Verfahrens

Scrum und Kanban (siehe Unterabschnitt 12.1.3 und Unterabschnitt 12.1.4) stellen nur
Rahmenwerke mit vielen Optionen zur Verfügung. Die Implementierung der Verfahren
obliegt letztendlich dem Anwender. Für uns stellten sich folgende Fragen:

• Welches der Verfahren wählen wir? Nehmen wir eine Kombination vor?

• Wie lange sollen Sprints dauern?

• Wie sind die Rollen zu besetzen?

• Welche Software können wir für unser Verfahren verwenden?

Initial haben wir uns darauf geeinigt, lediglich Scrum zu verwenden und Kanban bei Bedarf
zur Prozessbewertung und -optimierung hinzuzuziehen. Auf diese Weise wollten wir uns
auf die Arbeit konzentrieren und die uns neuen agilen Projektmanagement-Verfahren ne-
benbei erlernen. Da Kanban kein Vorgehensmodell darstellt, sondern auf die Optimierung
bestehender Prozesse abzielt, lässt sich ein solches Vorgehen gut implementieren.

Wir haben zwei Scrum-Master gewählt, um die Arbeit an den Impediments aufteilen zu
können und bei Bedarf die Arbeit auf zwei Scrum-Teams aufzuteilen. Als Product Owner
sollten die Betreuer herhalten. Sprints sollten zunächst eine Woche dauern, um dem hohen
Abstimmungsaufwand am Anfang des Projektes zu begegnen, später sollten sie länger
dauern.

154 KAPITEL 12. ORGANISATION

Um das PBL zu pflegen, verwenden wir Atlassian JIRA. Über die Kommentar-Funktio-
nen dieser Projektmanagement-Software für User Stories und Tasks können wir Lösungen
diskutieren und unseren Fortschritt dokumentieren.

Teil III

Evaluation und Ausblick

155

Kapitel 13

Verteilte Streams-Prozesse

Die im Rahmen dieser PG umgesetzte Erweiterung des streams-Frameworks erlaubt die
verteilte Ausführung von streams-Prozessen in einem Spark-Cluster (siehe Kapitel 9 bis
Abschnitt 9.6). Dabei ist es möglich, die Gesamtheit der Eingabedaten als Batch zu ver-
arbeiten. Alternativ lassen sich Mini-Batches streamen, um kontinuierlich Ergebnisse zu
erhalten.

Es soll hier zunächst konzeptionell evaluiert werden, welche Vorteile und Grenzen unsere
Erweiterungen mit sich bringen (siehe Abschnitt 13.1 und Abschnitt 13.2). Darüberhinaus
sollen die Skalierungseigenschaften des Systems beleuchtet werden, indem wir die Ausführungszeiten
für verschiedene Konfigurationen des Clusters heranziehen (siehe Abschnitt 13.3).

13.1 Batch-Prozesse

In einem Batch-Prozess wird für jeden zu verarbeitenden Datenstrom ein Spark-Task er-
stellt. Spark übernimmt das Scheduling solcher Tasks auf die verfügbaren Cores des Clu-
sters. Sobald ein Task (beziehungsweise Datenstrom) abgearbeitet ist, wird dem freiwer-
denden Core ein neuer Task zugeteilt (vgl. Abschnitt 9.5).

13.1.1 Rechenleistung

Durch Sparks Task-Scheduling sind die Cores des Clusters sehr gut ausgelastet. Werden
mehr Cores zur Verfügung gestellt, können auf sie ebenfalls Datenströme geschedulet wer-
den und die Analysen werden früher fertig gestellt. Das System lässt sich also bezüglich der
Rechenleistung, also der Anzahl und Geschwindigkeit der CPU-Kerne, horizontal skalieren
- eine Schlüsseleigenschaft von Big Data-Systemen (vgl. Abschnitt 2.3).

Allerdings werden natürlich nur maximal so viele Cores verwendet, wie Eingabe-Daten-
ströme spezifiziert wurden. Die Anzahl der Eingabeströme stellt also eine Grenze für die

157

158 KAPITEL 13. VERTEILTE STREAMS-PROZESSE

horizontale Skalierbarkeit dar. Da für Big Data ein hohes Datenvolumen angenommen wird
(siehe Kapitel 2), besteht diese Grenze für praktische Anwendungen aber möglicherweise
gar nicht. Im Zweifelsfall ist es möglich, durch eine Vorverarbeitung Daten auf mehrere
Ströme aufzuteilen. Dadurch ist prinzipiell eine beliebige horizontale Skalierbarkeit der
Batch-Prozesse möglich.

Problematisch ist auch, wenn die Größe der Eingabeströme stark variiert. Da Spark die
Größe der Ströme nicht kennt, kann es die Größe beim Scheduling nicht heranziehen. Es
kann dann passieren, dass zum Ende einer Batch-Analyse nicht mehr alle Kerne ausge-
lastet sind, weil manche Kerne ihre kurzen Datenströme abgearbeitet haben und andere
mit längeren Datenströmen noch arbeiten müssen. Durch eine geeignete Vorverarbeitung
können Eingabe-Datenströme mit annähernd gleicher Größe erzeugt werden.

13.1.2 Arbeitsspeicher

Eine schwerwiegendere Grenze der horizontalen Skalierbarkeit unseres Systems findet sich
im Arbeitsspeicher des Driver-Knotens: Da sämtliche Ergebnisse als Batch, also zur glei-
chen Zeit gesammelt werden, kann der Speicher des Drivers beim Sammeln der Daten
überlaufen. Dies ist der Fall, wenn das Ergebnis-Volumen die Kapazität des reservier-
ten RAM überschreitet. Das Sammeln der Daten im Driver geschieht, damit sämtliche
bestehenden Senken des streams-Frameworks wiederverwendet werden können.

Ist ein Speicherüberlauf zu befürchten, sollte man statt einer zentralen Senke zur Aus-
gabe Prozessoren verwenden, welche eine äquivalente Aufgabe übernehmen. Prozessoren
werden in jedem Knoten erzeugt und erlauben somit eine verteilte Ausgabe der Ergebnis-
se. Beispielsweise können mit Prozessoren mehrere Dateien verteilt ins HDFS geschrieben
werden, statt durch eine Senke zentral eine einzelne große Datei zu erzeugen. Ist es möglich,
eine Analysekette auf diese Weise zu spezifizieren, müssen keine Daten im Driver gesam-
melt werden und ein Speicherüberlauf ist nicht zu befürchten. In diesem Falle skaliert der
Arbeitsspeicher des Systems problemlos horizontal.

13.1.3 Fehlertoleranz und Generalisierbarkeit

Da Spark verfehlte Tasks (beispielsweise bei einem Hardware-Ausfall) neu schedulet, ist der
Fehlertoleranz-Anforderung (siehe Abschnitt 2.3) in diesem Sinne beigekommen. Weiterhin
ist unsere Erweiterung generalisierbar, da sämtliche streams-Prozesse als Batch ausgeführt
werden können.

13.2. STREAMING-PROZESSE 159

13.2 Streaming-Prozesse

Streaming-Prozesse verarbeiten die Daten in Spark Receivern. Dadurch werden sämtliche
Daten in derselben JVM verarbeitet, in der sie auch eingelesen werden. Es müssen also kei-
ne Daten (nachdem sie eingelesen wurden) durch das Cluster transportiert werden (siehe
Abschnitt 9.6). Durch die Wahl von 500ms als Länge eines Mini-Batches werden die Er-
gebnisse in subsekündlicher Aktualität gestreamt. Genügend Rechenleistung vorausgesetzt
können also auch realzeitliche Analysen gefahren werden.

13.2.1 Rechenleistung

Die Spark Streaming Engine geht davon aus, dass zusätzlich zu den Receivern Cores für
anschließende Transformationen der Daten zur Verfügung stehen. Leider müssen diese Co-
res zwingend alloziiert werden, auch wenn sie keine Transformation vornehmen und sich
damit im Leerlauf befinden (siehe Abschnitt 9.6). Da nicht alle Cores verwendet wer-
den können, skalieren Streaming-Prozesse in unserer Implementierung also schlechter als
Batch-Prozesse: Sie nutzen niemals die gesamte zur Verfügung stehende Rechenleistung.

Eigentlich sollen Receiver lediglich zum Einlesen der Daten verwendet werden und darauf-
folgende Tasks die Daten verarbeiten. In diesem Fall muss das Verhältnis von Receivern
zu Tasks durch Ausprobieren eingestellt werden, damit nicht zu viele und nicht zu wenige
Eingabedaten von den Receivern in das System gespeist werden. Wir haben uns gegen
diesen üblichen Weg entschieden, weil die eingelesenen Daten schlicht zu groß waren und
die Puffer, die zwischen Receivern und Tasks bestehen, in der Folge überliefen. Jetzt wer-
den lediglich die (wesentlich kleineren) Ergebnisse verschickt und zwar zum Driver, wo sie
ohnehin hin sollen. Die niemals ganz ausgenutzte Rechenleistung ist der Preis, den wir in
Spark Streaming gegen einen Pufferüberlauf bezahlen müssen.

Auch die Leistung der durch die Receiver verwendeten Cores ist nicht immer optimal
ausgenutzt: Da die Parameter eines Spark-Receivers nicht mehr geändert werden können,
wenn er einmal läuft, muss die Verteilung der Eingabe-Datenströme vor dem Start der
Receiver geschehen (siehe Abschnitt 9.6). Sollte sich diese Verteilung als unausgewogen
herausstellen, stellen die Receiver ihre Analysen zu auseinanderliegenden Zeitpunkten fer-
tig. Zum Ende der Laufzeit befinden sich also mehr und mehr Rechenkerne im Leerlauf, die
Geschwindigkeit der Analyse stagniert. Unausgewogene Verteilungen der Eingabeströme
ergeben sich beispielsweise, falls als Eingabe Dateien stark variierender Größe verwendet
werden.

160 KAPITEL 13. VERTEILTE STREAMS-PROZESSE

13.2.2 Arbeitsspeicher

Einen besonderen Vorteil gegenüber den Batch-Prozessen genießen Streaming-Prozesse
mit Blick auf den Arbeitsspeicher: Da die Ergebnisse als Mini-Batches alle 500ms zum
Driver gestreamt werden, muss keiner der Nodes viel Arbeitsspeicher besitzen. Es müssen
lediglich die Daten in den Speicher eine Node passen, die von ihr in einer halben Sekunde
abgearbeitet werden können (plus natürlich für die Verarbeitung nötige Datenstrukturen).
Das ein sehr geringes Volumen. Kann der Driver alle Daten der letzten halben Sekunde
sofort wegschreiben, braucht auch er nicht viel RAM.

13.2.3 Fehlertoleranz

Spark Receiver sind nicht so fehlertolerant wie Tasks. Sollte ein Receiver fehlschlagen,
wird auch er neu gestartet, da er aber bereits Daten in das System gespeist hat, kann es
passieren, dass er dieselben Daten ein zweites Mal liefert. Dies ist beispielsweise der Fall,
wenn die Eingabeströme aus Dateien im HDFS erzeugt werden: Wird ein Receiver neu
gestartet, nachdem er eine halbe Datei gelesen hat, beginnt er wieder von vorn.

Erzeugt man einen Receiver für eine Datenquelle, die nicht sämtliche Daten ein zweites Mal
liefern kann, besteht dieses Problem nicht. Dann trägt der Neustart eines fehlgeschlagenen
Receivers zur Fehlertoleranz bei. Eine solche Datenquelle ist beispielsweise ein IP-Port, der
online immer genau die gerade eintreffenden Daten liefert. Genau für solche Settings sind
unsere Streaming-Prozesse geeignet.

13.3 Performanz der Erweiterungen

Die Erweiterungen, die wir in der PG an streams vorgenommen haben, zielen darauf ab,
große Datenmengen effektiv zu verarbeiten. Daher sind wir insbesondere daran interessiert,
welche Geschwindigkeit das Cluster für unterschiedliche Konfigurationen (Anzahl Cores
und Menge an Arbeitsspeicher) erreicht. Wir messen diese Geschwindigkeit in Form von
Eventraten, also wie viele Events durchschnittlich pro Sekunde verarbeitet werden.

Es werden die Eventraten unserer Erweiterungen für verschiedene Konfigurationen der
Clusterressourcen verglichen. Für Teleskop-Daten beziehen wir auch die Geschwindigkeit
zweier Konfigurationen im Torque-Cluster ein.

13.3.1 Feature Extraction auf MC-Daten

Zur Verfügung standen Monte-Carlo-simulierte Daten. Wir haben die Standard-Feature
Extraction für MC-Daten mit verschiedenen Konfigurationen des Clusters für 2000 fits-

13.3. PERFORMANZ DER ERWEITERUNGEN 161

Number of Cores

1 2x22x2 2x42x44x24x2 2x82x84x44x48x28x2 4x84x88x48x4 8x88x8

Plain
Streaming
Batch

Solution

0

200

400

600

E
v
e
n
ts

 /
 s

e
c

Abbildung 13.1: Eventraten der Feature Extraction auf MC-Daten

Dateien (22.789 Events) ausgeführt. Für jedes Event haben wir den Eintreffzeitpunkt der
Ergebnisse am Driver aufgezeichnet.

Die Anzahl der Events geteilt durch die Gesamtzeit der Ausführung liefert uns eine mittlere
Eventrate für die Standard-Feature Extraction auf MC-Daten. Abbildung 13.1 stellt die
Eventraten für verschiedene Konfigurationen des Clusters dar. Die Konfigurationen sind
nach dem Schema Anzahl Workernodes × Anzahl Kerne pro Node benannt und visuell
nach der Gesamtanzahl Cores gruppiert. Der Umfang des Arbeitsspeichers machte für die
Raten keinen Unterschied und ist deshalb nicht dargestellt.

Wie sich in Abbildung 13.1 erkennen lässt, erhöht sich die Geschwindigkeit der Analy-
se erwartungsgemäß mit der Anzahl der zur Verfügung stehenden Rechenkerne. Es zeigt
sich dabei als durchaus relevant, auf wie viele Maschinen die Kerne verteilt sind. Ins-
besondere für Streaming-Prozesse ist eine Verteilung der Kerne auf wenige Maschinen
vorzuziehen. Der Grund dafür liegt in dem Receiver-Konzept (siehe Abschnitt 9.6): Da die
Leerlauf-Cores pro Maschine alloziert werden müssen, bedeuten weniger Maschinen we-
niger Rechenkerne im Leerlauf. Für Batch-Prozesse erscheint es besser, mehr Maschinen
mit weniger Kernen zu haben. Der Unterschied fällt hier aber geringer aus.

In Unterabschnitt 13.1.1 und Unterabschnitt 13.2.1 wurde bereits erörtert, dass bei einer
unausgewogenen Verteilung der Eingabe-Datenströme zum Ende der Laufzeit die Even-
traten stagnieren können. Da bei Batch-Prozessen die Tasks erst zugeordnet werden, wenn
ein Core den vorigen Tasks abschließt, fällt der Effekt dort geringer aus, als bei Streaming-

162 KAPITEL 13. VERTEILTE STREAMS-PROZESSE

Number of Cores

88 161616 323232 6464

Streaming
Batch
Torque

Solution

0

25

50

75

100

E
v
e
n
ts

 /
 s

e
c

Abbildung 13.2: Eventraten der Feature Extraction auf Teleskop-Daten

Prozessen. Dort wird die Aufteilung der Eingabeströme bereits zu Beginn der Ausführung
festgelegt.

Da bei jeder Ausführung eine andere Aufteilung der Datenströme vorgenommen werden
kann, unterliegen die hier vorgestellten Ergebnisse also einer gewissen Schwankung, denn
manche Aufteilungen sind besser als andere. Beispielsweise lässt die Ausführung 2 × 8 in
Abbildung 13.1 vermuten, dass die Streaming-Variante schneller sei als der Batch. In den
meisten Fällen sollte dies nicht der Fall sein. Aufgrund der Schwankungen kam es aber zu
dem hier geplotteten Ergebnis. Auf eine umfassendere Messung mehrerer Ausführungen
mit Bestimmung von Mittelwert und Standardabweichung der Raten mussten wir aus
Zeitgründen leider verzichten.

13.3.2 Feature Extraction auf Teleskop-Daten

In einem zweiten Experiment haben wir die Standard-Feature Extraction für reale, vom
Teleskop gelieferte Daten zur Messung der Performanz verwendet. Der verwendete Daten-
satz umfasst sämtliche Events, die im August 2013 aufgezeichnet wurden. Er setzt sich
aus 38 Dateien (110.441 Events) zusammen, wobei die Dateigrößen zwischen 64, 5 MB und
10, 6 GB eine enorm große Spannweite abdecken.

Die Eventraten der Analyse sind in Abbildung 13.2 dargestellt. Da wir aus der Evaluation
auf MC-Daten (siehe Unterabschnitt 13.3.1) bereits wissen, wie die Rechenkerne für Batch-
und Streaming-Prozesse am besten auf Maschinen zu verteilen sind, haben wir die jeweils
beste Aufteilung gewählt. Im Vergleich zur MC-Analyse fallen die Eventraten insgesamt
geringer aus, vermutlich weil die Feature Extraction hier aufwändiger ist.

Ebenfalls dargestellt ist die Geschwindigkeit zweier Konfigurationen des Torque-Clusters.
Wie eindeutig ersichtlich ist, läuft das Torque-Cluster insgesamt langsamer als unsere
Erweiterungen. Der hauptsächliche Grund dafür liegt in der Architektur von Torque: Da

13.3. PERFORMANZ DER ERWEITERUNGEN 163

die Daten nicht wie in Hadoop auf den Rechenknoten gespeichert werden – das Code-to-
Data Prinzip also nicht umgesetzt werden kann – müssen große Datenvolumen durch das
Netzwerk wandern. Damit wird das Einlesen und Abspeichern von Daten zum Flaschenhals
für das Cluster. Wie wir beobachten konnten, wurden die einzelnen Rechenkerne so zu nur
jeweils 50% ausgelastet. Die Auslastung der Kerne im Spark-Cluster lag stets bei über
80%.

Die stark variierende Größe der Dateien ist problematisch für eine vernünftige Verteilung
der Dateiströme auf die zur Verfügung stehenden Rechenkerne (siehe Unterabschnitt 13.1.1
und Unterabschnitt 13.2.1). Damit sind auch stärker variierende Eventraten als für die MC-
Daten zu erwarten, wo die Dateigrößen noch annähernd gleich waren. Der große Sprung
der Raten des Streaming-Prozesses für 32 und 64 Cores lässt sich durch diese Varianz
erklären. Auch hier war die Zeit für eine umfangreichere Evaluation nicht gegeben.

Ein weiteres Problem für die Verteilung der Dateien auf Rechenkerne ist deren geringe
Anzahl. Da der Batch-Prozess nur so viele Cores nutzen kann, wie Eingabeströme zur
Verfügung stehen, ergibt sich für 38 Dateien nur ein geringer Unterschied zwischen 32 und
64 Cores: Bei 64 Cores bleiben 26 Cores ungenutzt.

Diese Ergebnisse zeigen, wie wichtig eine geeignete Vorverarbeitung der Daten ist: Die
zu prozessierenden Dateien sollten annähernd gleich groß sein, damit deren Verteilung
gleichmäßig und mit geringer Varianz der Laufzeit geschehen kann.

Kapitel 14

Modellqualität in Spark ML

Mit unserer Software TELEPhANT wird streams um Funktionalitäten erweitert, die es
erlauben, Spark ML Modelle zu trainieren und anzuwenden (vgl. Kapitel 10). Da Spark
ML eine vielfältige Palette an nutzbaren Modellen und zugehörigen Parametern besitzt,
wird in den nachfolgenden Abschnitten anhand einiger Beispiele gezeigt, wie sich die Mo-
dellvarianten von Spark ML auf den Daten des Anwendungsfalls verhalten. Insbesondere
soll die Qualität der Klassifikations- und Regressionsmodelle sowie die benötigte Dauer
des Trainiervorgangs in Abhängigkeit der Clusterressourcen gemessen werden. Gleichzei-
tig soll gezeigt werden, dass derartige Experimente recht einfach mit XMLs spezifiziert
werden können, weshalb die zur Erhebung der Daten verwendeten XMLs im Anhang B
eingesehen werden können.

14.1 Vergleich der Klassifikationsmodelle

Nachfolgend soll zunächst erläutert werden, in welcher Art und Weise die Qualität der
jeweiligen Klassifikationsmodelle bestimmt wird, und daraufhin genauer auf die einzelnen
Ergebnisse eingegangen werden.

Qualitätsbestimmung Zur Qualitätsbestimmung der Klassifikationsmodelle sind ge-
labelte Daten zu verwenden. In diesem Fall handelt es sich dabei um einen Datensatz von
etwa 140.000 MonteCarlo-Events, welcher sich in etwa 80.000 Gamma- und etwa 60.000
Hadron-Events gliedert. Für die verteilte Verarbeitung wird der Datensatz in 20 Partitio-
nen aufgeteilt und in einem HDFS, das sich über einen Cluster mit 10 Rechnern erstreckt,
gespeichert. Als Replication Factor wurde hier 3 gewählt, um Wartezeiten durch das Ver-
senden von Daten über das Netzwerk zu vermeiden.

Die eingesetzten Modelle sollen die korrekte Zuordnung der Events anhand von 32 ganz-
zahligen sowie reellen Features voraussagen, wobei zu beachten ist, dass Spark ML grund-

165

166 KAPITEL 14. MODELLQUALITÄT IN SPARK ML

sätzlich alle Features als reellwertig interpretiert. Diese Eigenschaft stellt hinsichtlich des
Anwendungsfalls jedoch kein Problem dar. Da lediglich zwischen Gamma- und Hadron-
Events unterschieden wird, handelt es sich also um eine binäre Klassifikationsaufgabe (vgl.
Kapitel 4), bei welcher Gamma-Events als ”Positiv“ und Hadron-Events entsprechend als

”Negativ“ definiert werden.

Zur Messung der Qualität der jeweiligen Modelle sind die True-Positive-Rate (”Recall“),
die True-Negative-Rate (”Specifity“) sowie die Präzision der Vorhersage zu bestimmen.
Dies geschieht in einer solchen Weise, dass 90% der Daten zum Trainieren des Modells
verwendet werden, welches anschließend auf die verbleibenden 10% des Datensatzes ange-
wendet wird. Die aus dem Modell resultierende Vorhersage wird daraufhin mit dem bereits
bekannten Label verglichen, dessen Korrektheit als gegeben anzusehen ist. Jede Konfigura-
tion wird fünfmal ausgeführt und aus den erhaltenen Ergebnissen ein Mittelwert gebildet.
Zudem wird in Abbildung 14.1 die einfache Standardabweichung eingezeichnet, um die
Schwankung der Werte zu visualisieren. Bei der Ausführung werden die Klassifikationsmo-
delle RandomForest sowie GradientBoostedTrees in den Standardeinstellungen belassen,
es wird lediglich die Option cacheNodeIds zum Zwecke des Performanzgewinns aktiviert.
Die konkreten Werte der Standardeinstellungen können ebenso wie die verwendete XML
im Anhang B.1 nachgeschlagen werden. Bei der Verwendung des MultilayerPerceptron-
Classifier muss die Netzgröße manuell festgelegt werden, in diesem Fall werden dort 20
Ebenen mit 32 Knoten sowie eine Ausgabeebene mit zwei Knoten verwendet.

Naive Bayes Da der in Spark ML unterstützte ”Naive Bayes“-Klassifikator auf boole-
sche Features ausgelegt ist, kann dieser nicht auf sinnvolle Weise eingesetzt werden. Zwar
ist in einschlägiger Fachliteratur eine Variante für reellwertige Features (”Gaussian Naive
Bayes“) zu finden, diese steht allerdings in Spark ML bis jetzt noch nicht zur Verfügung.

RF und GBT RandomForest und GradientBoostedTrees liefern an dieser Stelle ver-
gleichbare Ergebnisse. GBT erkennt (unter Beibehaltung der Standardeinstellungen) Ha-
dron-Events zuverlässiger als dies bei RF der Fall ist (vgl. True-Negative-Rate in Abbil-
dung 14.1), ist jedoch hinsichtlich der Erkennung von Gamma-Events weniger verlässlich
(vgl. True-Positive-Rate).

MPC Der MultilayerPerceptronClassifier legt ein sehr extremes Verhalten an den Tag,
welches sich darin äußert, dass er alle Events als Gamma-Events klassifiziert. Dies resul-
tiert zwar in einer perfekten True-Positive-Rate von 1.0, jedoch zugleich in einer True-
Negative-Rate von 0.0 sowie einer Präzision von 57%, was dem Verhältnis von Gamma-
und Hadron-Events in dem Testdatensatz entspricht. Da dieses Verhalten auch von an-
deren Anwendern beobachtet wurde [88], ist wie dort zu vermuten, dass zu viele nicht
aussagekräftige Features betrachtet werden und zudem die Features nicht normiert wur-
den.

14.1. VERGLEICH DER KLASSIFIKATIONSMODELLE 167

Abbildung 14.1: Die True-Positive-Rate, True-Negative-Rate und die Präzision der verschiede-
nen Klassifikationsverfahren. Eingezeichnet ist der Mittelwert aus 5 Replikationen und die einfache
Standardabweichung. Die Werte für den MPC sind in den beiden letzten Grafiken erheblich schlech-
ter und werden daher nicht aufgeführt.

168 KAPITEL 14. MODELLQUALITÄT IN SPARK ML

14.2 Vergleich der Regressionsmodelle

Nach einem Vergleich der Klassifikationsmodelle sollen nun die verschiedenen Regressions-
modelle evaluiert werden. Zu diesem Zweck wird eine Energie-Abschätzung (vgl. Unter-
abschnitt 1.3.2) auf Basis eines erweiterten Datensatzes mit etwa 550.000 Events durch-
geführt. Dieser Datensatz weist ein erhebliches Ungleichgewicht zwischen Gamma- und
Hadronen-Events auf und konnte daher bei den bisherigen Experimenten, die auf eine
gleichermaßen präzise Erkennung von Gamma- und Hadronen-Events abzielen, nicht ver-
wendet werden. Im Rahmen einer Regression eignet er sich aber aufgrund seines Umfangs
an Trainingsdaten hervorragend. Analog zum vorherigen Datensatz wird auch dieser in 20
Partitionen geteilt und in einem HDFS verteilt gespeichert.

Der RandomForest-Regressor und der GradientBoostedTrees-Regressor werden hier in den
jeweiligen Standardeinstellungen verwendet, welche im Anhang B.3 eingesehen werden
können. Da Spark ML mit dem root mean squared error sowie R2 zwei Bewertungsfunk-
tionen zur Verfügung stellt, können anhand der Ergebnisse ebendieser die verwendeten
Regressoren bewertet werden (vgl. Abbildung 14.2). Im betrachteten Fall schneidet der
GBT-Regressor deutlich besser ab, da sein root mean squared error bei etwa 1410 liegt,
wohingegen der RF-Regressor sich in einem Bereich von etwa 1575 verorten lässt. Hin-
sichtlich des Faktors R2 weist GBT einen etwas besseren Wert auf, jedoch schneidet auch
RF noch akzeptabel ab.

14.3 Trainingszeit von Modellen

Im Folgenden wird die Performanz des Trainierens von Modellen in Abhängigkeit von
der Anzahl der verwendeten Rechenknoten und Prozessoren untersucht. Um den Effekt
steigender Zahlen von Knoten und Prozessoren deutlicher sichtbar zu machen, wird an
dieser Stelle in Form eines RandomForest-Klassifikatiors mit 80 Bäumen und einer Maxi-
maltiefe von 25 ein recht aufwendiges Modell verwendet. Gleichzeitig wird wieder auf den
erweiterten Datensatz zurückgegriffen, da hier nicht die Klassifikationsqualität gemessen
wird.

Bei dieser Messreihe wird auf die Möglichkeit des Spark Shell-Scripts zurückgegriffen, die
Anzahl der beteiligten Rechenknoten (”Executors“) sowie die Anzahl an Prozessoren pro
Rechenknoten (”Cores“) einzustellen (vgl. Kapitel 17).

Aus Abbildung 14.3 ist ersichtlich, dass der Trainingsdurchsatz mit wachsender Knoten-
und Prozessorzahl deutlich ansteigt. Allerdings resultiert aus doppeltem Ressourcenein-
satz nicht eine Verdopplung der Leistung. Dieses Phänomen wird im Bereich der paralle-
len und verteilten Datenbanken als ”sub-linear speed-up“ bezeichnet [83]. Gründe hierfür

14.3. TRAININGSZEIT VON MODELLEN 169

Abbildung 14.2: Der root mean squared error und der R2 Wert für die Regressionsverfahren.
Eingezeichnet ist der Mittelwert aus 5 Replikationen und die einfache Standardabweichung.

170 KAPITEL 14. MODELLQUALITÄT IN SPARK ML

können in einer ungleichen Verteilung der Arbeitslast oder in hohen Anteilen an nicht-
parallelisierbaren Aufgaben liegen.

Auffällig ist, dass die Performanz ab einer Zahl von vier Rechenknoten mit jeweils acht
Prozessoren kaum noch wächst. Es wird vermutet, dass die Aufteilung des Datensatzes
in 20 Partitionen hier limitierend wirkt. Laut [78] wird jede Partition zu einem eigenen

”task“, wobei jeder Prozessor einen task gleichzeitig bearbeiten kann. Damit bräuchte eine
Konfiguration von 8 Rechenknoten mit 8 Prozessoren einen Datensatz mit 64 Partitionen,
um alle Prozessoren sinnvoll auszulasten. Dies sollte beim späteren Einsatz von Apache
Spark beachtet werden.

Die Messung des Klassifikationsdurchsatzes ist schwieriger als beim Trainingsdurchsatz,
weil Spark lazy evaluation anwendet. Dabei wird die Anweisung, das Modell auf den
Datensatz anzuwenden, erst dann ausgeführt, wenn eine Operation mit anschließender
Ausgabe diese Klassifikation benötigt. Eine Zeitmessung, die das nicht berücksichtigt,
würde nur die Zeit zum Absenden des Klassifikationsauftrags, nicht jedoch die eigentliche
Dauer der Klassifikation messen.

Daher wurde eine zusätzliche Leseoperation eingefügt, die zählt, wie oft die Klasse 1.0
vergeben wurde. Das Ergebnis dieser Operation ist nicht von Interesse, sie wird ledig-
lich eingesetzt, um eine Klassifikation mithilfe des Modells zu garantieren. Es wird also
die Dauer dieser beiden Operationen zusammen gemessen, wobei es im Nachhinein nicht
trivial möglich ist, den Zeitanteil für die reine Klassifikation herauszurechnen. Die hier an-
gegebenen Klassifikationsraten sind also als vorsichtige untere Schranken zu interpretieren.
Wie in Abbildung 14.3 erkennbar steigt die Klassifikationsrate zunächst kaum merklich,
wächst aber ab einer Knotenzahl von zwei mit jeweils acht Prozessoren rapide. Interessan-
terweise ist in diesem Fall keine Limitierung durch die Verwendung von 20 Partitionen zu
beobachten.

14.4 Einfluss der Waldgröße auf die Modellqualität

Da durch die Standardeinstellungen des RandomForest-Klassifikators noch nicht die ge-
wünschte Modellqualität erzielt wird, soll untersucht werden, wie die Qualität des Mo-
dells bei Beibehaltung des Datensatzes aus Abschnitt 14.1 durch geeignete Parameter-
wahl optimiert werden kann. Zu diesem Zweck wird mittels der Variation der Anzahl von
Bäumen der Einfluss ebendieser auf die True-Positive-Rate, True-Negative-Rate sowie auf
die Präzision gemessen. Um realitätsnahe Ergebnisse zu erzielen, wird bei allen Konfigu-
rationen die maximale Tiefe der Bäume auf einen Wert von 25 gesetzt.

Des Weiteren wird untersucht, wie die Anzahl der Bäume die Trainingszeit beeinflusst, was
anhand des Trainingsdurchsatzes, der als die Anzahl von Trainingsevents dividiert durch
die Trainingszeit in Sekunden definiert ist, beschrieben wird. Dabei wurden im Cluster

14.4. EINFLUSS DER WALDGRÖSSE AUF DIE MODELLQUALITÄT 171

Abbildung 14.3: Trainingsdurchsatz und Klassifikationsdurchsatz in Abhängigkeit von verwen-
deten Rechenknoten und Prozessoren.

172 KAPITEL 14. MODELLQUALITÄT IN SPARK ML

Abbildung 14.4: Durchsatz in Abhängigkeit der Größe des RandomForest. Eingezeichnet ist der
Mittelwert aus 5 Replikationen und die einfache Standardabweichung.

8 Rechenknoten mit jeweils 8 Prozessoren eingesetzt. Wie im bisherigen Klassifikationsex-
periment werden hier in fünf Replikationen 90% des Datensatzes als Trainingsdaten und
10% als Testdaten verwendet.

Aus Abbildung 14.5 ist ersichtlich, dass die Anzahl der Bäume sich nicht signifikant auf
die True-Positive-Rate auswirkt. Die True-Negative-Rate hingegen steigt zunächst sehr
stark, ab einer Waldgröße von 40 Bäumen jedoch nur noch langsam an. Dabei ist die
stochastische Schwankung recht groß. Analog zur True-Negative-Rate steigt die Präzision
des Modells zunächst stark, ab einer Anzahl von 40 Bäumen allerdings nur noch langsam
an. Zudem ist aus Abbildung 14.4 ersichtlich, dass der Trainingsdurchsatz des Modells mit
wachsender Zahl der Bäume rapide sinkt.

14.4. EINFLUSS DER WALDGRÖSSE AUF DIE MODELLQUALITÄT 173

Abbildung 14.5: Die erzielte True-Positive-Rate, True-Negative-Rate und die Präzision in
Abhängigkeit der Größe des RandomForest. Eingezeichnet ist der Mittelwert aus 5 Replikatio-
nen und die einfache Standardabweichung.

Kapitel 15

Fazit

15.1 Ergebnisse

Im Laufe der vergangenen beiden Semester konnte die Projektgruppe zahlreiche Erfolge
verzeichnen, über welche im Folgenden in resümierender Weise ein kurzer Überblick gege-
ben werden soll. Die Leistungen der Projektgruppe lassen sich unter einem einzigen, be-
deutenden Stichpunkt subsummieren, nämlich der Erweiterung des streams-Frameworks
für die verteilte Ausführung mit Spark. Diese wiederum setzt sich aus verschiedenen Tei-
laspekten zusammen.

Zunächst ist hervorzuheben, dass die Rohdaten mittels einer MongoDB indexiert wurden
(vgl. Kapitel 7), um einerseits die Durchsuchbarkeit der Events zu gewährleisten und ande-
rerseits eine Steigerung der Performanz zu erreichen. Einen nicht unbedeutenden Beitrag
zu Letzterer leistet ebenfalls die verteilte Datenhaltung mit HDFS sowie die Realisierung
des Code-to-Data-Prinzips, welche eine Neuerung im Gegensatz zum TORQUE-Cluster
der Physiker darstellen (vgl. Abschnitt 3.1).

Eine weitere Innovation besteht im beliebig skalierbaren DistributedProcess, der eine Ver-
teilung der Rechenlast und abschließend eine automatisierte Zusammenführung der Teil-
ergebnisse ermöglicht. Eine solche Verteilung ist sowohl für Streaming als auch für Batch-
verarbeitung möglich (vgl. Kapitel 9).

Um verteilte Lernalgorithmen verfügbar zu machen, wurde Spark ML als neues streams-
Element integriert, sodass sich die dadurch bereitgestellte Pipeline nun via XML kon-
figurieren lässt. Auf Basis dieser Pipeline ist es nun möglich, Modelle zu trainieren, zu
speichern, zu laden und anzuwenden. Im Zuge der Integration der ML-Pipeline in das
streams-Framework wurde dieses zudem um die XML-Tags task und operator sowie die
damit verbundenen Funktionalitäten erweitert. Einen besonderen Stellenwert nimmt da-
bei der operator ein, der als neue Schnittstelle zur Bearbeitung von DataFrames fungiert
(vgl. Kapitel 10 und Kapitel 19).

175

176 KAPITEL 15. FAZIT

Im Vergleich zum Status Quo der Physiker sollte erwähnt werden, dass durch die Einfüh-
rung einer REST-API sowie die zur Nutzung dieser geschaffene Web-Oberfläche TELEPhANT

um ein Vielfaches einfacher und komfortabler hinsichtlich der Bedienung konzipiert wurde.
Ebendiese Web-Oberfläche ermöglicht nicht nur das unproblematische Starten von Jobs
durch das Submitten einer XML, sondern zudem das Managen von Jobs im Cluster und
bietet außerdem zahlreiche Konfigurationsoptionen. Details diesbezüglich lassen sich im
Benutzerhandbuch finden (vgl. Kapitel 18).

Was den Umstieg auf TELEPhANT besonders einfach machen dürfte, ist die Tatsache, dass
bestehende streams-Funktionalitäten einfach weiterverwendet werden können. Lediglich
die Verwendung einiger neuer XML-Tags muss erlernt werden. Ein Überblick über diese
wird im Benutzerhandbuch gegeben (vgl. Unterabschnitt 19.3.3).

15.2 Ausblick

In den vergangenen beiden Semestern hat die Projektgruppe vieles erreicht - nichtsdesto-
trotz sind einige zusätzliche Erweiterungen der Funktionalitäten denkbar, für welche die
verfügbare Zeit leider nicht mehr ausreichte. Die zur Indexierung der Rohdaten eingesetz-
te MongoDB läuft zurzeit lediglich auf einem einzigen Knoten, könnte jedoch geshardet,
also auf mehreren Knoten verteilt eingesetzt werden, um die Ausfallsicherheit des Index zu
erhöhen. Zudem erscheint es sinnvoll, die MongoDB der Projektgruppe sowie die der Physi-
ker auf einen Nenner zu bringen, sofern TELEPhANT tatsächlich in der Forschung eingesetzt
werden sollte. In welcher Weise dies geschehen sollte, ist noch zu klären. Ein weiteres
mögliches Feature ist das Streaming von Daten nicht nur aus Fits-Dateien, sondern auch
aus anderen Quellen, beispielsweise von einem Forschungszentrum in der Schweiz, was
für die Physiker einige Arbeitsabläufe vereinfachen könnte. Die Grundvoraussetzungen für
diese Funktionalität sind bereits vorhanden und müssten lediglich erweitert werden, falls
gewünscht. Dies könnte darüberhinaus mit Realzeitanalysen ebendieser gestreamten Daten
verbunden werden. Eine letzte Erweiterung, die wir in Betracht zogen, ist das Einführen
einer umfangreichen Instrumentenmonitoring-Funktionalität, allerdings wäre es zur Rea-
lisierung dieser vonnöten, die genauen Bedürfnisse und Wünsche der Physiker in dieser
Hinsicht zu kennen, um tatsächlich ein sinnvolles Software-Feature zu gestalten.

15.3 Retrospektive der Organisation

Wie in Kapitel 12 beschrieben, haben wir zur Organisation der PG das agile Vorgehens-
modell SCRUM festgelegt. Wir haben unsere Umsetzung des Modells von der initialen
Parametrisierung ausgehend in den letzten zwei Semestern ständig weiterentwickelt. Die

15.3. RETROSPEKTIVE DER ORGANISATION 177

Änderungen, die wir an unserer Umsetzung von SCRUM vorgenommen haben, spiegeln
die Lösung von organisatorischen Problemen wider, die wir mit der Zeit identifiziert ha-
ben. Sie zeigen, dass wir in organisatorischer Hinsicht in den letzten zwei Semestern viel
lernen konnten.

Zu Beginn der PG hatten wir einige organisatorische Probleme, auf die zunächst in Unter-
abschnitt 15.3.1 eingegangen werden soll. Anschließend beschreiben wir die Änderungen,
die wir im ersten und zweiten Semester an unserer Umsetzung von SCRUM vorgenom-
men haben (siehe Unterabschnitt 15.3.2 und Unterabschnitt 15.3.3). Eine abschließende
Bewertung wird in Unterabschnitt 15.3.4 vorgenommen.

15.3.1 Projekt-Initialisierung

Scrum fordert, dass im Team ein tiefgehendes Verständnis über die Vision des Endproduk-
tes vorliegt. Nur dadurch ist nachvollziehbar, was Teilziele für den Projekterfolg bedeuten,
und umrissen, was möglicherweise im Vorhinein für zukünftige Arbeitspakete zu bedenken
ist. Wir haben uns zu Beginn des ersten Semesters schwer damit getan, die Product Vision
zu konkretisieren. Auch wenn abstrakt klar war, welche Prozesse zur Analyse der Daten
abzubilden sind, lag der Weg dahin lange Zeit im Dunkeln. Ein Grund dafür war, dass
wir mit den verwendeten Technologien nur wenig Erfahrung besaßen. Erst im Laufe des
ersten Semesters konnten wir ein konkretes Bild der Product Vision schaffen.

Scrum nimmt weiterhin an, dass das Team die für das Projekt nötige Expertise bereits
mitbringt, im Zweifelsfall durch im Vorhinein durchgeführte Schulungen. Dadurch wer-
den Gliederungen auf geeigneter Abstraktionsstufe und zutreffende Aufwandsschätzungen
ermöglicht. Auch lässt sich die Projektinitialisierung so schneller abwickeln. Für Projekt-
gruppen kann die Annahme umfangreicher Expertise allerdings nicht vollends zutreffen,
da dort das nötige Wissen erst vermittelt werden soll. Uns fehlten zu Anfang insbesondere
Erfahrungen mit Spark und dem Streams-Framework.

15.3.2 Organisation im ersten Semester

Initial bestand aufgrund der inkonkreten Product Vision und den zunächst notwendigen
Lernerfolgen bezüglich Spark und Streams ein besonders hoher Abstimmungsaufwand.
Daher haben wir uns entschlossen, unsere Sprint-Meetings wöchentlich abzuhalten. Wir
mussten dabei feststellen, dass Scrum für seine wöchentlichen Sprint Planning Meetings
implizit einen höheren Arbeitsumfang, als für die Projektgruppe vorgesehen, annimmt:
Während in einem regulären Arbeitsleben etwa acht tägliche Arbeitsstunden üblich sind,
sieht das Modulhandbuch des Masterstudiengangs Informatik acht Semesterwochenstun-
den für die Projektgruppe vor [85]. Wir haben dadurch mit unserem wöchentlichen Sprint

178 KAPITEL 15. FAZIT

Planning Meeting einen Umfang abgedeckt, für den von Scrum eigentlich ein Daily Meeting
angedacht ist.

Durch diesen übersichtlichen Sprint-Umfang erschien es zunächst nicht zielführend, Scrum
formal durchzuführen, also ein PBL, ein SBL oder ein IBL gewissenhaft zu führen. Da-
durch wurde allerdings der Abstimmungsaufwand weiter erhöht und wir mussten in den
wöchentlichen Meetings besonders viele Inhalte abhandeln. Die Treffen wurden länger als
vielleicht nötig.

Zudem haben sich die meisten wöchentlichen Meetings zu Arbeitsmeetings ausgewachsen,
die einzelne Probleme in einer Tiefe diskutiert haben, die nicht für alle Teilteams relevant
war. Erst später im Semester haben wir regelmäßige Treffen der Teilteams etabliert, in
denen die Arbeit erledigt und teilthemenbezogene Abstimmung erzielt wurde. Dadurch
fielen die wöchentlichen Hauptmeetings sinnvollerweise kürzer aus.

Für Sprint-Retrospektiven (”Was lief gut, wie können wir den Prozess verbessern?“) war
eine Woche kein ausreichender Sprint-Umfang. Ein dediziertes Meeting zur Bewertung des
Prozesses wurde auch nicht abgehalten. So haben wir nicht abstimmen können, wie wir
unseren Entwicklungsprozess optimieren können.

15.3.3 Organisation im zweiten Semester

Durch die für den Zwischenbericht angefertigte erste Retrospektive haben wir die organi-
satorischen Probleme identifiziert, die sich im ersten Semester ergeben haben. Wir haben
also Maßnahmen getroffen, um diese Probleme im zweiten Semester zu lösen.

Ein wesentlicher Punkt war es, die Gruppentreffen weiter zu optimieren. Wir konnten
bereits zum Ende des ersten Semesters feststellen, dass Arbeitstreffen in den Teilteams
die Planungstreffen mit der gesamten Gruppe fokussieren konnten. Wir haben darauf
aufbauend beschlossen, weniger Planungstreffen zu veranstalten. Da wir so mehr Zeit zur
Implementierung zwischen zwei Treffen besaßen, wurde die formale Durchführung eines
Sprints erstmals attraktiv. Einem hohen Teil des Abstimmungsaufwandes konnten wir
durch den intensivierten Einsatz von Atlassian JIRA beikommen.

Sicher wurden diese Entwicklungen dadurch begünstigt, dass wir durch die Formulierung
des Zwischenberichtes die Product Vision ganz konkret festgelegt hatten. Der Ausblick
des Zwischenberichtes diente uns als Zielformulierung im zweiten Semester, sodass wir
ausgesprochen zielgerichtet arbeiten konnten. Arbeitspakete waren präziser planbar, weil
sie im Kontext bestehender Ergebnisse standen. Ein genaues Bild des Endproduktes im
Auge zu haben, hat überdies die Motivation der Gruppe regelrecht beflügeln können.

15.3. RETROSPEKTIVE DER ORGANISATION 179

15.3.4 Abschließende Bewertung

Die angenommene Erfahrung mit verwendeten Technologien und die Annahme eines tief-
gehenden Verständnisses der Product Vision haben Scrum für die Initialisierung des Pro-
jekts nicht so recht aufgehen lassen (siehe Unterabschnitt 15.3.1). Wir sind dadurch erst
recht spät aus dieser Findungsphase ausgetreten. Insbesondere waren einige Zeit lang keine
sinnvollen Inkremente planbar.

Die von uns zunächst gewählte Sprintlaufzeit von einer Woche ließ eine formale Durchfüh-
rung (PBL, SBL, IBL) von Scrum nicht sinnvoll erscheinen. Durch die nicht von Scrum vor-
gesehene Durchführung unserer Treffen haben wir wir viel Zeit in den Treffen verbraucht,
wobei nicht immer alle von dieser Zeit profitieren konnten (siehe Unterabschnitt 15.3.2).

Im zweiten Semester sind wir die organisatorischen Probleme des ersten Semesters an-
gegangen. Seltenere fokussiertere Treffen mit der gesamten Gruppe machten die formale
Durchführung von Scrum erstmals attraktiv. Die Formulierung des Zwischenberichtes kon-
kretisierte die Product Vision, wodurch Arbeitspakete besser planbar wurden. Zusammen
mit den im ersten Semester gewonnenen Erfahrungen mit Spark und Streams ermöglichten
diese Umstände ein weitaus effizienteres Arbeiten als noch im ersten Semester. Auch sind
wir heute als Team eingespielter als noch zu Beginn der Projektgruppe.

Es lässt sich festhalten, dass wir in der Projektgruppe allerhand über die praktische
Durchführung von SCRUM gelernt haben. Insbesondere haben wir nun eine Vorstel-
lung davon, unter welchen Umständen SCRUM sinnvoll ist und unter welchen nicht. Ein
Projektmanagement-System wie JIRA zu kennen, kann den Einstieg in andere agil geführte
Projekte erleichtern.

Da im zweiten Semester die in den Sprint Planning Meetings festgelegten Ziele meist er-
reicht wurden und wir dazu die von uns geforderte Arbeitszeit im Großen und Ganzen
leisteten, hat sich nicht die dringende Notwendigkeit einer formal durchgeführten kontinu-
ierlichen Prozessoptimierung ergeben. So haben wir Kanban nicht praktisch kennen lernen
können.

Teil IV

Benutzerhandbuch

181

Kapitel 16

Vorbereitung eines Clusters

Die in dieser Projektgruppe entwickelte Bibliothek arbeitet gerade dann effizient, wenn
die Berechnung in einem ganzen Cluster ausgeführt wird. Dazu müssen die folgenden
Vorbereitungsschritte einmalig erfolgen.

1. Vernetzung. Alle Rechner des Clusters sollten so eingerichtet werden, dass sie sich
in einem gemeinsamen, lokalen Netzwerk befinden.

2. Hadoop und Ressourcenmanager einrichten. Auf jedem Rechner des Clusters
muss Apache Hadoop 2.6.2 (oder eine kompatible spätere Version) installiert und
eingerichtet werden. Lediglich auf einem Rechner des Clusters wird ein Ressourcen-
manager installiert, der zu bearbeitende Jobs annimmt und im Cluster verteilt. Im
Rahmen der Projektgruppe wurde zu diesem Zweck Apache YARN eingesetzt.

3. Verteiltes Dateisystem einrichten. Damit alle Knoten des Clusters Zugriff auf
alle Daten haben, empfiehlt sich die Nutzung eines verteilten Dateisystems. Hierfür
bietet sich das HDFS an, weil das Zusammenspiel mit Hadoop und Spark gut funk-
tioniert. Wie bei der zentralen Annahme der Jobs muss auch für das verteilte Datei-
system ein einzelner Rechner ausgewählt werden, der alle Anfragen entgegennimmt.
Außerdem sollte vor dem Einspielen der Daten die Zahl der Replikationen geeignet
gewählt werden. Eine große Anzahl an Replikationen führt zu einem hohem Speicher-
platzbedarf, verringert aber potenziell die Bearbeitungsdauer der Jobs, weil weniger
Dateien über das Netzwerk gesendet werden müssen.

4. Weitere Software im Cluster installieren. Nun können weitere, optionale Kom-
ponenten installiert werden. Es empfiehlt sich, ein Datenbankmanagementsystem auf
jedem Rechner des Clusters zu installieren. Das Datenbankmanagementsystem darf
seine Daten aber nicht im verteilten Dateisystem ablegen, da die Rechner des Clu-
sters sonst ihre Datenbanken gegenseitig überschreiben! Wenn gewünscht ist, dass
sich alle Rechner im Cluster eine Datenbank teilen, müssen die entsprechenden Funk-
tionen des Datenbankmanagementsystems verwendet werden.

183

184 KAPITEL 16. VORBEREITUNG EINES CLUSTERS

Anschließend muss jeder Rechner außerhalb des Clusters, der Jobs an diesen schicken soll,
ebenfalls vorbereitet werden. Hierfür reicht es aus, Hadoop 2.6.2 sowie Spark 1.6.2 zu
installieren und die jeweils genannten Einrichtungsschritte zu befolgen.

16.1 Verfügbarkeit von Dependencies

Für die Erweiterung von Streams existieren einige Abhängigkeiten zu verwendeten Biblio-
theken. Die folgenden Dependencies müssen zur Laufzeit im Cluster vorhanden sein:

Streams Die Maven-Module streams-core und streams-runtime beinhalten alle für die
Ausführung einer in XML spezifizierten Applikation nötigen Funktionen. streams-

hdfs stellt einen Handler für URLs des HDFS-Protokolls zur Verfügung, was für das
Öffnen von XML-Spezifikationen nötig ist.

FACT-Tools Das Projekt fact-tools ist eine Sammlung von Streams-Prozessoren und
weiteren Funktionen zur Analyse der FACT-Daten im Streams-Framework.

Spark spark-core stellt die Basis-Konzepte von Spark zur Verfügung, die für eine ver-
teilte Ausführung im Cluster nötig sind. spark-mllib und spark-sql werden für
die Verwendung der Lernbibliothek MLlib benötigt.

Hadoop hadoop-client ist, neben streams-hdfs nötig, um Dateien aus dem HDFS zu
lesen. mongo-hadoop-core ist für die Anbindung der MongoDB verantwortlich.

Damit nicht bei jeder Ausführung ein ”Über-jar“, also ein Archiv mit sämtlichen Depen-
dencies vom Client ins Cluster kopiert werden muss, haben wir ein Maven-Projekt für die
Sammlung dieser Dependencies erstellt. Das aus diesem Projekt erstellte jar-Archiv kann
dann für sämtliche Ausführungen, sofern keine Änderungen an den Abhängigkeiten nötig
sind, verwendet werden.

Wir laden dazu die Dependency-Jar ins HDFS und übergeben ihren Pfad bei jeder Ausfüh-
rung an spark-submit. Yarn erkennt den HDFS-Pfad und nimmt keine Kopie vom lokalen
System vor. Um einen Job auszuführen, muss damit lediglich ein kleines Archiv mit dem
aktuellen Stand unserer Streams-Erweiterung hochgeladen werden. Da die Abhängigkeiten
in unserem Fall ein Archiv aus weit über 100MB ergeben, spart dieses Vorgehen eine Menge
Zeit, insbesondere während der Entwicklung, wenn im Minutentakt eine neue Programm-
version getestet werden muss.

16.2 Starten der REST API & Web-UI

Zum Starten der REST API auf dem Server gibt es im wesentlichen zwei Wege: ”per Hand“

16.2. STARTEN DER REST API & WEB-UI 185

und über Docker. Beide werden im Folgenden kurz beschrieben.

16.2.1 Standard

Dies ist der klassische Weg, der keine besonderen Voraussetzungen an den oder die Server
stellt.

MongoDB Zum Installieren der MongoDB sollte am besten der Anleitung auf der
MongoDB-Website gefolgt werden [71]. Es ist nicht zwingend notwendig, dass die Mon-
goDB und die REST API auf dem selben Server laufen, da die Verbindung zwischen den
Beiden über einen Kommandozeilenparameter gesteuert werden kann.

REST API Die Jar-Datei der REST API enthält einen eingebauten Tomcat-Server,
sodass es über einen einfachen Java Befehl gestartet werden kann, z.B.

java -jar target/apiwebapp-1.0-SNAPSHOT.jar [--server.port=8080]

[--mongodb=mongodb://ls8cb01.cs.uni-dortmund.de:27017/fact]

Die MongoDB URI sollte hierbei natürlich für die MongoDB aus dem vorherigen Schritt
gelten.

Da die REST API das Shell-Skript (vgl. Kapitel 17) verwendet, müssen die entsprechenden
Umgebungsvariablen auch gesetzt werden. Alternativ können diese als weitere Parameter
beim Jar-Datei-tart übergeben werden.

Nach dem Start der REST API ist diese unter dem Port 8080 (falls kein eigener Port
angegeben wurde) auf dem Server zu erreichen.

Zum Beenden der REST API kann im Prozess einfach Strg + C gedrückt werden.

Damit die REST API im Hintergrund gestartet wird und auch läuft, wenn man nicht mehr
mit dem Server verbunden ist, empfiehlt es sich das Programm screen zu verwenden. Dieses
Werkzeug startet mehrere virtuelle Sitzungen in einer Verbindung und erlaubt es, diese
von der eigentlichen Verbindung zu trennen und wieder aufzunehmen.

16.2.2 Docker

Alternativ zum Starten der Jar-Datei über den klassischen Weg kann auch Docker genutzt
werden. Hierzu ist es erforderlich, dass Docker bereits auf dem Server installiert ist.

MongoDB Hierzu kann einfach das offiziell MongoDB Image von Docker Hub genom-
men werden. Dieses Image ist auch ausreichend dokumentiert.

186 KAPITEL 16. VORBEREITUNG EINES CLUSTERS

REST API Zur REST API gibt es ein Dockerfile, welches es erlaubt ein Docker Image
für die REST API zu erstellen.

Dazu ist es zunächst nötig die REST API mittels mvn clean package zu bauen. Anschlie-
ßend sollte mit dem Befehl cd docker ins entsprechende Unterverzeichnis gewechselt wer-
den. Als nächste Schritte müssen die notwendigen Komponenten vorbereitet werden: Durch
cp ../target/rest-api-1.0-SNAPSHOT.jar ., cp ../../streams-pg594/streams-submit.sh . und
mkdir hadoop conf. Ins letzte Verzeichnis muss nun die Hadoop Konfiguration, also z.B. die
core-site.xml, kopiert werden. Nun kann docker build -t rest-api:latest . aufgerufen werden
um das Image zu bauen.

Abschließend muss dann dieses Image an den Server verschickt werden, da es nicht auf
Docker Hub zu finden ist und somit nicht einfach von Docker heruntergeladen werden kann.
Ist das Image auf dem Server verfügbar kann die REST API mit docker run -p 8080:8080
rest-api:latest [–server.port=8080] [–mongodb=mongodb://ls8cb01.cs.uni-dortmund.de:27017/fact]
gestartet werden und ist unter http://localhost:8080 dann erreichbar.

Kapitel 17

Shell-Script

Im Cluster des Lehrstuhls läuft Spark auf YARN, einem Tool zur Ressourcenverwaltung
in Rechenclustern. Mit dem Shell-Kommando spark-submit können Spark-Applikationen
YARN als Jobs übergeben werden, sodass sie mit zu spezifizierenden Ressourcen (Anzahl
Cores, Hauptspeicher-Volumen, benötigte Dateien) ausgeführt werden.

Um YARN einen Spark-Job zu übergeben, muss spark-submit mit einigen Parametern
(Ressourcen, auszuführende Datei, zu verwendende XML-Spezifikation) aufgerufen wer-
den. Zudem muss sichergestellt sein, dass die gewünschte XML-Spezifikation im HDFS
vorhanden ist. Um dem Benutzer die manuelle Spezifikation dieser Parameter und das
Hochladen der XML zu ersparen, haben wir ein recht umfangreiches Shell-Script geschrie-
ben, das diese Aufgaben übernimmt. Listing 17.1 stellt die Verwendung des Scriptes vor.

1 Usage : . / streams−submit . sh [opt ions] <xml f i l e >
2

3 Options :
4 −−num−executo r s NUM Number o f executo r s
5 −−dr ive r−memory NUMg GB of memory in d r i v e r
6 −−executor−memory NUMg GB of memory in executo r s
7 −−executor−co r e s NUM Number o f c o r e s per executor
8 −−dr ive r−co r e s NUM Number o f c o r e s per d r i v e r
9 −−max−r e s u l t−s i z e NUMg GB of the r e s u l t o f batchProcess and

10 d i s t r i b u t e d P r o c e s s
11 −−name STRING Name o f the job d i sp layed in YARN
12 −−streams−j a r STRING Path to the dependec i e s j a r
13 −−hdfs−root STRING URL of the hadoop c l u s t e r
14 −−nowait Exit d i r e c t l y a f t e r the app i s accepted
15

16 Example :
17 . / streams−submit . sh −−dr ive r−memory 4g example . xml

187

188 KAPITEL 17. SHELL-SCRIPT

Listing 17.1: Verwendung des Shell-Scripts zur Ausführung im Cluster

Für jede der beschriebenen Optionen sind sinnvolle Standartwerte gesetzt. So wird etwa
angenommen, dass die Jar mit den Abhängigkeiten im Hadoop Cluster unter einem fest
definiertem Pfad zu finden ist. Für Entwicklungszwecke kann jedoch auch eine abweichen-
de Jar-Datei mit der Option –streams-jar spezifiziert werden. Dies ist z.B. immer dann
notwendig, wenn neue Streams getestet werden sollen.

Das Script prüft zunächst, ob alle Systemvariablen auf der ausführenden Maschine korrekt
gesetzt sind. Nur so ist sichergestellt, dass spark-submit korrekt arbeitet. Dann wird ein
temporäres Verzeichnis im HDFS-Home-Directory des Hadoop-Benutzers angelegt, in wel-
ches die lokal vorliegende XML kopiert wird. In die temporäre Kopie wird ein Zeitstempel
in den Dateinamen geschrieben, um Konflikte zu verhindern.

Sind alle diese Vorarbeiten erledigt, kann spark-submit aufgerufen werden. Für die ver-
wendeten Ressourcen bestehen niedrige Standard-Werte (2 Executor, 2GB Speicher pro
Executor, ...), welche das Cluster nicht auslasten sollen. So können mehrere Entwickler
gleichzeitig testen. Bei nicht zu aufwändig gestalteten Test-Konfigurationen reichen diese
Ressourcen üblicherweise aus. Für aufwändigere Berechnungen können dem Script jedoch
auch einige der spark-submit-Parameter (siehe ”Options“ in Listing 17.1) übergeben wer-
den. Es leitet diese weiter, sodass mehr Ressourcen verwendet werden.

Am Ende der Ausführung räumt das Script auf. Es löscht dazu die temporär verwendete
XML-Konfiguration aus dem HDFS.

Kapitel 18

Web-UI

Neben dem Shell-Script ist während des zweiten Semesters eine Weboberfläche erstellt
worden, mit der sich nicht nur Jobs komfortabel ausführen lassen, sondern auch das Ma-
nagen von Jobs im Cluster vereinfachen lässt. Diese steht im direkten Zusammenhang
mit der REST-API und wird als Teil dieser mitgeschickt. In diesem Kapitel soll nun die
Bedienung der Oberfläche beschrieben werden.

Der gesamte Quellcode befindet sich im Order rest-api, wo sich auch das Dokument READ-
ME.md befindet. Darin enthalten sind auch Informationen zur Installation per Standalone-
jar oder per Docker, sowie die Systemvoraussetzungen zum Testen und Weiterentwickeln
der beiden Komponenten.

Sobald die REST-API gestartet ist, kann die Weboberfläche über die Root-URL / der
REST-API aufgerufen werden. Dort werden verschiedene Routen angeboten, die sich auf
die folgenden Sektionen beziehen.

URL Aufgabe
/#/config Konfiguration der Hadoop URL
/#/jobs Erstellen, starten und schedulen von Jobs
/#/events Testen von Filter-Ausdrücken
/#/swagger REST-Dokumentation

Daneben befinden sich in der rechts-oberen Ecke, wie beispielsweise auf Abbildung 18.1
zu sehen, zwei Navigationspunkte, die den Nutzer direkt zur Übersichtsseite des YARN-
Clusters und die Startseite der Hadoop Weboberfläche weiterleitet.

18.1 Konfiguration

Zunächst sollte die Basis-URL von Hadoop konfiguriert werden, da der Parameter an das
Shell-Script weitergegeben wird. Standardmäßig wird der Wert hadoop.baseUrl aus der

189

190 KAPITEL 18. WEB-UI

Abbildung 18.1: Konfigurationsseite der Web-UI

Konfigurationsdatei application.properties genutzt, dessen Wert zunächst auf

hdfs://s876cn01.cs.uni-dortmund.de:9000

gesetzt ist. Sollte sich die URL ändern, muss sie entsprechend über die Oberfläche über
den Navigationspunkt Config (s. Abbildung 18.1) angepasst werden, da Jobs ansonsten
nicht mehr korrekt gestartet werden können.

18.2 Starten und Managen von Jobs

Das Managen von Jobs beinhaltet das Erstellen, Ändern, Konfigurieren und Starten von
Jobs. Hierfür bietet die Web-UI ein View an, das in Abbildung 18.2 abgebildet ist. Unter
1 wird eine Liste aller gespeicherten Jobs angezeigt.

1 2

3

4

Abbildung 18.2: Interface zum Managen von Jobs

18.2. STARTEN UND MANAGEN VON JOBS 191

Soll ein neuer Job erstellt werden, muss unter 2 die aus dem Projekt generierte streams-
pg594.jar mit den entsprechenden Klassen per Drag-and-Drop oder per Klick ausgewählt
werden. Dabei ist darauf zu achten, dass die gepackte jar-Datei die Klassen beinhalten
muss, die im XML verwendet werden. Andernfalls schlägt der Job fehl. Anschließend
wird in das vorgegebene Feld in 3 die Definition des Jobs im XML-Format eingetragen.
Der Editor zeigt etwaige Syntaxfehler an. Durch das Klicken auf den angezeigten Link
Show configuration öffnet sich ein Formular (siehe Abbildung 18.3), um den Job näher zu
konfigurieren. Die Parameter entsprechen den Argumenten des Shell-Scripts und haben
den selben Effekt. Schließlich kann der Job über den Button Start Job in 4 gestartet
werden. Ein Popup informiert darüber, ob der Job erfolgreich gestartet wurde.

Abbildung 18.3: Konfiguration eines Jobs

Das Drücken des Save-Buttons speichert das Tripel aus Jar, XML und Konfiguration in
der MongoDB, sodass bei einer erneuten Ausführung die Jar-Datei nicht noch einmal
hochgeladen werden muss. Der entsprechende Eintrag erscheint dann in der Auflistung
unter 1 . Es wird weiterhin empfohlen, einen aussagekräftigen Namen für den Job zu
wählen.

Alle gestarteten Jobs lassen sich in der Übersicht anzeigen, die über den Tab Job History
erreichbar ist. Der Inhalt, der auf Abbildung 18.4 zu sehen ist, listet alle Jobs auf, die
gestartet wurden. Neben dem selbst gewählten Namen des Jobs werden auch Informatio-
nen zum Zustand und Fortschritt des Jobs angezeigt. Ein Klick auf den Refresh-Button
aktualisiert die Liste der Jobs. Neben jedem Eintrag befindet sich ein Link Details, der auf
die YARN-Übersichtsseite des Jobs verweist, wo genauere Informationen abzulesen sind,
wie etwa einem Stacktrace bei einem fehlgeschlagenem Job.

192 KAPITEL 18. WEB-UI

Abbildung 18.4: Auflistung aller gestarteten Jobs

18.3 Schedulen von Jobs

Manchmal ist es hilfreich, einen Job zu einem bestimmten Zeitpunkt immer wieder aus-
zuführen. So könnte man etwa den Import neu aufgenommener Events in die Datenbank
manuell noch vor Arbeitsbeginn ausführen lassen. Für diesen Zweck bietet die Web-UI
das Erstellen von immer wiederkehrenden Tasks an. Die Übersichtsseite ist über den Tab
Tasks erreichbar und auf Abbildung 18.5 abgebildet.

In 1 ist das Formular zu sehen, mit dem ein neuer Tast erstellt wird. Ein Task ist definiert

1 2

3

Abbildung 18.5: Übersichtseite der Tasks

18.4. TESTEN VON FILTERN 193

durch seinen Namen, den Job der ausgeführt werden soll und einem Cron-Ausdruck, der
bestimmt, in welchem Intervall der Job ausgeführt wird. So bedeutet der Ausdruck ”0 30
7 1/1 * ? *“ etwa, dass ein Job jeden Tag um 7:30 Uhr gestartet werden soll. Zusätzlich
kann eingestellt werden, ob der Task direkt aktiviert werden soll. Durch das Klicken auf
den Button Create Task wird der Task erstellt und erscheint in der Liste 2 .

Unter dem Menü 3 können Tasks aktiviert oder deaktiviert sowie vollständig gelöscht
werden. Falls ein aktiver Job aus der Datenbank entfernt wird, wird auch der entsprechende
Schedule beendet. Gleiches gilt, falls ein Job gelöscht wird, der von Tasks referenziert
werden.

Weiterhin ist anzumerken, dass nach einem erwarteten oder unerwarteten Beenden der
Anwendung die Tasks nicht erneut manuell aktiviert werden müssen, da eine Routine in
der Anwendung dafür sorgt, dass aktive Tasks beim Start der Anwendung automatisch
gescheduled werden.

18.4 Testen von Filtern

Möchte man über die REST-API Events filtern, etwa mit dem dafür vorgesehenen REST-
fulEventStream, muss ein Filterausdruck angegeben werden, dessen Syntax bereits in Un-
terabschnitt 8.2.2 beschrieben wurde. In der Web-UI ist es möglich, diese Filterausdrücke
zu testen. Die entsprechende Seite ist auf Abbildung 18.6 zu sehen. In dem dafür vorgese-
hen Feld wird ein Filterausdruck erwartet. Ein Klick auf dem Button Count Events führt
diesen Ausdruck aus und liefert die Anzahl der gemachten Events zurück, was dann für
den Filterausdruck

night.eq(20130801).and(eventNum.lt(10)).and(eventNum.gt(0))

wie in Abbildung 18.7 aussieht. Der Ausdruck filtert alle Events der Nacht des 01.08.2013
mit einer Eventnummer zwischen 0 und 10.

Abbildung 18.6: Übersichtseite des Event

194 KAPITEL 18. WEB-UI

Abbildung 18.7: Übersichtseite des Event Ergebnis

18.5 Einsehen der REST-API Dokumentation

Wie bereits in Unterabschnitt 8.1.3 angesprochen, sind die Schnittstellen der REST-API
mithilfe von Swagger dokumentiert worden. Über den Menüpunkt REST API ist diese,
wie beispielhaft auf Abbildung 18.8 dargestellt, erreichbar. Dort sind alle Schnittstellen
der REST-API mitsamt einer Beschreibung aufgelistet.

Sollte sich durch die Weiterentwicklung eine neue Schnittstelle ergeben, muss diese in
der Datei rest-api/src/main/resources/public/swagger.json gemäß der Spezifikation [74]
manuell definiert werden, damit sie in der Oberfläche auftaucht.

Abbildung 18.8: Konfigurationsseite der Web-UI

Kapitel 19

Maschinelles Lernen mit TELEPhANT

Nachdem in den vorherigen Kapiteln die Voraussetzungen für den Einsatz von TELEPhANT

geklärt und das ShellScript sowie die Web-Oberfläche erläutert wurden, geht es im Fol-
genden um die XML-Gestaltung in Bezug auf das maschinelle Lernen. In diesem Kapitel
wird auf die Besonderheiten von Apache Spark hingewiesen, welche im Umgang mit den
von Spark ML bereitgestellten Lernverfahren beachtet werden sollten. Außerdem wird ein
ausführliches Beispiel für das Modelltraining, die Evaluation und eine Parameterstudie
gegeben. Abschließend folgt eine Erläuterung des in TELEPhANT enthaltenen TreeParsers
für die genaue Analyse der von Spark ML erzeugten Baummodelle.

19.1 Datenaufbereitung

Zunächst soll es um die Datenaufbereitung gehen. Spark ML stellt sehr klare Anforderun-
gen an die zu verarbeitenden Daten, sodass in den meisten Fällen Aufbereitungsschritte
in der Pipeline nötig sind.

Numerische Merkmale Eine Voraussetzung für die korrekte Verarbeitung ist, dass
in den Daten nur numerische Merkmale verwendet werden. Enthalten die gewünschten
Daten allerdings kategorische Merkmale, müssen diese in passende numerische Merkmale
konvertiert werden. Dabei ist zu beachten, dass diese Aufgabe keineswegs trivial ist. Num-
meriert man beispielsweise alle Strings im Wertebereich einfach durch, kann es sein, dass
einige Strings von Algorithmen als nahe beieinander liegend oder benachbart erkannt wer-
den, weil ihre Zahlenwerte nahe zueinander sind. Dies muss aber nicht der Fall sein, wenn
man nur die ursprünglichen Strings betrachtet. Daher ist die gemeinsame Verwendung des
Estimators StringIndexer und des Transformers OneHotEncoder im erste Pipeline-Schritt
empfehlenswert, wenn man kategorische Merkmale verwenden möchte.

195

196 KAPITEL 19. MASCHINELLES LERNEN MIT TELEPHANT

Der StringIndexer bildet die Strings einer Spalte auf die Zahlenwerte 0.0 bis zur Anzahl
ihrer verschiedenen Strings ab. Dabei werden die Zahlenwerte nach Häufigkeit absteigend
vergeben, der häufigste String erhält daher den Zahlenwert 0.

1 <estimator stage=" StringIndexer " inputCol =" category "
outputCol =" categoryIndexed " />

Listing 19.1: Anwendung eines StringIndexer-Estimators

In Listing 19.1 ist die Verwendung des StringIndexers aufgeführt. Das folgende Beispiel für
die Umwandlung kategorischer Merkmale in Zahlenwerte ist dem Apache Spark ML-Guide
[6] entnommen und dient zur Demonstration:

id category
0 a
1 b
2 c
3 a
4 a
5 c

StringIndexer=========⇒

id category categoryIndexed
0 a 0.0
1 b 2.0
2 c 1.0
3 a 0.0
4 a 0.0
5 c 1.0

Verwendet man nur den StringIndexer ergibt sich genau das Problem, dass nun die nu-
merischen Kategorien a und c näher beieinander liegen als a und b. Deswegen folgt
nun der Transformer OneHotEncoder, welcher eine Spalte mit Indizes in eine Spalte mit
Binärvektoren umwandelt. Diese Binärvektoren enthalten genauso viele Komponenten,
wie es verschiedene Kategorien gibt, sodass genau eine Komponente für eine Kategorie
steht. Für jede Zeile enthält der Binärvektor an der Komponente eine 1, welche für die
Kategorie steht, zu welcher diese Zeile gehört. Alle anderen Komponenten sind 0. Da nun
jede Ausprägung ihre eigene Dimension im Vektor hat, gibt es keine Ähnlichkeiten mehr
zwischen den eigentlich kategorischen Merkmalen.

Der OneHotEncoder nutzt eine spärliche Darstellung des Vektors: Anstatt einen Vektor
der Form (0.0, 0.0, 1.0, 0.0, 0.0) auszuschreiben wird dieser als (5, [2], [1.0]) dargestellt. Im
Vektor mit fünf Komponenten steht an Index 2 die 1.0, der Rest wird mit 0.0 gefüllt. Bei
vielen verschiedenen Merkmalsausprägungen ist diese Darstellung platzsparender als ein
Vektor mit zig Einträgen.

1 <transformer stage=" OneHotEncoder " inputCol =

2 " categoryIndexed " outputCol =" categoryVec " />

Listing 19.2: Anwendung eines OneHotEncoder-Transformers

19.1. DATENAUFBEREITUNG 197

In Listing 19.2 ist die XML-Verwendung in der Pipeline aufgeführt. Insgesamt können
mit Hilfe dieser Kodierung kategorische Merkmale umgewandelt und in Spark ML korrekt
verarbeitet werden. Zum besseren Verständnis und zur Erklärung einer weiteren Eigenheit
von Spark ML ein kurzes Beispiel:

id category categoryIndexed
0 a 0.0
1 b 2.0
2 c 1.0
3 a 0.0
4 a 0.0
5 c 1.0

OneHotEncoder==========⇒

id categoryVec
0 (2, [0], [1.0])
1 (2, [], [])
2 (2, [1], [1.0])
3 (2, [0], [1.0])
4 (2, [0], [1.0])
5 (2, [1], [1.0])

Auffällig ist, dass die Vektoren nur zwei Komponenten haben, aber insgesamt drei Kate-
gorien vertreten sind. Um sicherzustellen, dass die Vektoren linear abhängig sind, bildet
genau die Kategorie mit den wenigsten zugehörigen Zeilen (in diesem Fall b) auf den
Vektor (0.0, 0.0) ab, anstatt auf (0.0, 0.0, 1.0). Möchte man genau die lineare Unabhängig
zwischen den Binärvektoren erreichen, fügt man in die XML in Listing 19.2 zusätzlich den
Paramter dropLast="false" ein.

Merkmalsvektor Verfügt man nun ausschließlich über Merkmale beziehungsweise Spal-
ten mit numerischen oder booleschen Werten oder Vektoren, müssen all diese Merkmale
zu einem großen Merkmalsvektor zusammengefasst werden. Die in Spark ML bereitgestell-
ten Lernverfahren verlangen nämlich als Eingabe genau eine Merkmalsspalte. Dies kann
nur geliefert werden, wenn man alle Merkmale zu einem Vektor zusammenfasst. Genau zu
diesem Zweck wird der Transformer VectorAssembler bereitgestellt.

1 <transformer stage=" VectorAssembler " outputCol =" features "
2 inputCols =

3 " categoryVec ,numberA ,numberB ,boolA ,..." />

Listing 19.3: Anwendung eines VectorAssembler-Transformers

In Listing 19.3 ist ein Beispiel für die Einbindung eines solchen VectorAssemblers in die
XML-Pipeline gegeben. Alle Spalten, die im Parameter inputCols angegeben werden,
werden in einen Vektor zusammengefasst. Wichtig ist dabei, dass diese Spalten wirklich
nur numerische, boolesche Werte oder Vektoren enthalten, sonst bricht die Prozedur mit
einem Fehler ab. Die Angabe des gebildeten Merkmalsvektors wird im späteren Verlauf
des Kapitels in Abschnitt 19.2 genauer erläutert.

198 KAPITEL 19. MASCHINELLES LERNEN MIT TELEPHANT

Benennung der Label Auch die Spalte mit den wahren Klassen (Labels) bei den Trai-
ningsdaten unterliegt bestimmten Voraussetzungen: Die Klassen sollen durch ganzzahlige
Double-Werte startend bei 0.0 repräsentiert werden. In unserem Fall mit zwei Klassen
würde dies bedeuten, gamma und hadron als 0.0 und 1.0 darzustellen. Für binäre Klassifi-
kationsprobleme tauchen oftmals auch die Bezeichnungen -1 und 1 für die beiden möglichen
Klassen auf. Auch diese müssen auf 0.0 und 1.0 abgebildet werden. Hilfe bei dieser Auf-
gabe bietet wieder der oben bereits erwähnte StringIndexer. Um garantieren zu können,
dass die Label vom Lernverfahren richtig erkannt werden, sollte der StringIndexer immer
auf die Klassenspalte angewendet werden. Sollte das Label schon numerisch gewesen sein,
wird dieser numerische Wert in einen String umgewandelt und von dort aus auf gewohnte
Weise indiziert. Eine Einbindung des StringIndexers ist wie in Listing 19.1 gezeigt möglich
und eine klare Empfehlung von unserer Seite. Auch wenn die Klassen schon mit 0.0 und
1.0 benannt sind, ist die Verwendung eines StringIndexers ratsam, um einen reibungslosen
Ablauf garantieren zu können.

Sollen nach der Klassifikation die Klassenlabel in die ursprünglichen zurück konvertiert
werden, steht auch dazu ein Operator zur Verfügung. Dieser Schritt kann jedoch nicht
in die Pipeline integriert werden, da für die korrekte Ausführung eine Datenstruktur not-
wendig ist, welche erst bei der Ausführung des in der Pipeline definierten StringIndexers
erzeugt wird. Daher sollte der Operator IndexToStringConversion erst nach der Pipeline
und dem Training des Pipeline-Modells (siehe Abschnitt 19.2) aufgerufen werden.

1 <pipeline modelName ="model"> ... </ pipeline >

2 <!-- load test or raw data and apply model -->

3 <stream .pg594. operators . IndexToStringConversion modelName ="
model" inputCol =" prediction " outputCol =" predictedLabel "/>

Listing 19.4: Umkehrung eines StringIndexers

Listing 19.4 zeigt eine beispielhafte XML-Gestaltung für die Integration einer Rückkonvertierung.

Weitere Möglichkeiten zur Datenvorverarbeitung Spark ML bietet nicht nur Trans-
former und Estimator zur Aufbereitung der Daten an, damit sie die von den bereitgestell-
ten Lernalgorithmen gestellten Voraussetzungen erfüllen können. Mithilfe der implemen-
tierten Stages kann man auch eigene Ansprüche und Wünsche an die Daten umsetzen.
Dazu sei auf die Seite http://spark.apache.org/docs/latest/ml-features.html ver-
wiesen, auf welcher alle Stages für die Merkmalsanpassung vorgestellt werden.

Abschließend ist noch zu sagen, dass alle Aufbereitungs- und Vorverarbeitungsschritte, die
in einer Pipeline aufgeführt werden, auch auf die späteren Test- beziehungsweise Klassifika-
tionsdaten angewendet werden. Daher ist keine neue Aufbereitung der zu klassifizierenden

http://spark.apache.org/docs/latest/ml-features.html

19.2. MODELLTRAINING UND EVALUATION 199

Daten nötig. Solange dieselben Spalten mit denselben Namen wie im Trainingsdatensatz
existieren, ausgenommen natürlich die Spalte mit den Klassen, treten keine Probleme auf.
Wurde beim Design der Pipeline darauf geachtet, dass kategorische in numerische Merk-
male konvertiert wurden und dass pro Zeile ein gesamter Merkmalsvektor gebildet wurde,
werden diese Schritte automatisch auch auf die zu klassifizierenden Daten angewendet,
bevor sie wirklich durch das Modell klassifiziert werden. Es ist daher nur essentiell darauf
zu achten, dass auch dieselben Merkmale mit denselben Namen vorhanden sind wie in den
Trainingsdaten.

19.2 Modelltraining und Evaluation

Nachdem die nötigen Schritte zur Datenaufbereitung erläutert wurden, geht es in die-
sem Abschnitt um das Herzstück des maschinellen Lernens, nämlich den Einsatz des
gewünschten Lerners und dessen Evaluation. Dieser Abschnitt ist in drei Unterabschnitte
gegliedert. Zunächst werden Training und Klassifikation eines Lernverfahrens thematisiert,
anschließend die Evaluation eines Modells und die Möglichkeiten der Durchführung von
Parameterstudien.

19.2.1 Training und Klassifikation

Zu Beginn des Trainings ist es ratsam, die gegebenen Daten in Trainings- und Testdaten-
satz zu splitten. Meist wird ein Verhältnis von circa 70 zu 30 Prozent gewählt. Auf dem
größeren Trainingsdatensatz wird das Pipeline-Modell trainiert, während die restlichen
Daten zur Evaluation des Lerners genutzt werden.

1 <stream .pg594. operators . SplitDataFrame ratio="0.3" newName ="
testData "/>

Listing 19.5: Splitten in Trainings- und Testdaten

In Listing 19.5 ist zu sehen, wie diese Aufteilung im XML umgesetzt werden kann. Der
Operator SplitDataFrame schneidet in diesem Fall 30% des geladenen DataFrames ab und
speichert diesen unter dem Namen testData. Auf dem verbliebenen DataFrame wird das
Pipeline-Modell trainiert.

In der Pipeline stehen zuerst die verschiedenen Aufbereitungs- und Vorverarbeitungsschrit-
te, wie sie im vorangegangenen Abschnitt erklärt wurden. Anschließend können ein oder
mehrere Lernverfahren definiert werden, welche trainiert werden sollen. Dabei wird in
Klassifikation und Regression unterschieden. Im Folgenden werden die von Spark ML be-
reitgestellten Lernverfahren aus den jeweiligen Kategorien kurz vorgestellt.

200 KAPITEL 19. MASCHINELLES LERNEN MIT TELEPHANT

Klassifikation Für die Klassifikation werden folgende Lernverfahren bereitgestellt: Lo-
gistische Regression, Entscheidungsbaum, Random Forest, Gradient-Boosted Trees, Mul-
tilayer Perceptron, One-vs-Rest-Klassifikator und Naive Bayes. Für die Gamma-Hadron-
Separation empfehlen sich besonders die baumbasierten Lernverfahren [6].

Regression Für die Regression werden folgende Lernverfahren bereitgestellt: Lineare
Regression, Entscheidungsbaum, Random Forest, Gradient-Boosted Trees, Survival Re-
gression und Isotonic Regression [6]. Für die Energieschätzung haben sich in unseren Tests
erneut die baumbasierten Methoden am besten verhalten.

Die jeweiligen Parameter lassen sich aus der Spark ML-API [7] ablesen. Wie dies ge-
nau funktioniert, wird am Beispiel des RandomForestClassifiers [8] erläutert: In der API
befindet sich eine Zusammenfassung aller Methoden. Alle set-Methoden beschreiben Pa-
rameter, die gesetzt werden können. Soll ein bestimmter Parameter in der XML gesetzt
werden, muss das set weggelassen und der erste Buchstabe des Parameters kleingeschrie-
ben werden.

1 <estimator stage=" RandomForestClassifier " maxDepth ="20"
numTrees ="30" featuresCol =" features " labelCol ="
labelIndexed " predictionCol =" prediction "/>

Listing 19.6: Definition eines Random Forest

In Listing 19.6 wird ein RandomForestClassifier in der Pipeline definiert. In der API zu
diesem Klassifikator kann nachgelesen werden, dass dieser unter anderem über Methoden
setMaxDepth(int value) und setNumTrees(int value) verfügt. In Klammern wird an-
gegeben, wie viele Parameter von welchem Datentyp benötigt werden. Wie im Beispiel
gezeigt können die gewünschten Parameter in der XML beschrieben werden.

Besonders wichtig ist es hier, immer die Parameter featuresCol und labelCol anzugeben,
damit das jeweilige Lernverfahren weiß, auf welchen Merkmalen und Klassen er trainieren
soll. Diese Parameter existieren unabhängig davon, ob es sich um ein Klassifikations- oder
Regressionsverfahren handelt. Außerdem kann der Parameter predictionCol angegeben
werden, um die Spalte zu benennen, in welcher die Anwendungsergebnisse des Lerners
gespeichert werden. Der Standardwert für diesen Parameter ist prediction”.

Auch die Pipeline enthält Parameter. Neben dem Modellnamen, welcher relativ selbster-
klärend ist, spielt der Parameter automaticTraining eine wichtige Rolle. Ist dieser auf
true gesetzt, wird das Pipeline-Modell automatisch trainiert und kann danach abgespei-
chert werden und neue Daten klassifizieren. Es gibt jedoch auch Anwendungsfälle, in de-
nen das Modell nicht sofort trainiert werden sollte und der Parameter auf false gestellt
werden kann. Anwendungsfälle dafür sind beispielsweise eine auf die Pipeline folgende

19.2. MODELLTRAINING UND EVALUATION 201

Kreuzvalidierung oder ein gewünschtes Training mit jeweils anderen Daten. Beide Fälle
werden am Ende dieses Unterabschnittes besprochen. Zunächst folgt ein XML-Ausschnitt
mit zugehöriger Erläuterung für das automatische Training:

1 <pipeline modelName ="model" automaticTraining ="True">

2 <!-- beliebige Transformer und Estimator zur Aufbereitung -->

3 <estimator stage=" RandomForestClassifier " numTrees ="30"
featuresCol =" features " labelCol =" labelIndexed "/>

4 </ pipeline >

5 <stream .pg594. operators . LoadDataFrame name=" testData " />

6 <stream .pg594. operators . ApplyModel modelName ="model" />

7 <stream .pg594. operators . ExportModelToBinaryFile modelName ="
model" url="hdfs ://... " />

Listing 19.7: Training und Anwendung eines Modells

Wie in Listing 19.7 zu sehen ist, wird zunächst eine Pipeline gebaut, welche nach belie-
bigen Aufbereitungsschritten einen Klassifikator trainiert, in diesem Fall einen Random-
ForestClassifier mit 30 Bäumen. Anschließend wird der Testdatensatz geladen. Alternativ
können in diesem Schritt, wenn nicht getestet werden soll, die Rohdaten geladen werden,
welche klassifiziert werden sollen. Das Modell, welches am Ende der Pipeline automatisch
trainiert wurde, wird auf die Testdaten angewendet und an einen beliebigen Ort im HDFS
exportiert, sodass es für spätere Anwendungen wieder geladen werden kann. Das Modell
wird als modelName.model abgespeichert und kann mit Hilfe des ImportModelFromBi-
naryFile-Operators durch Angabe der URL und des gewünschten Modelnamens wieder
geladen werden.

Es wird nun der Fall betrachtet, in welchem die Pipeline nicht automatisch trainiert wird.
Der erste Anwendungsfall ist eine Kreuzvalidierung, welche auf die Pipeline folgen soll.

1 <stream .pg594. operators . CrossValidator type=" classification "
modelName =" CrossValidatorModel " folds="4" labelCol ="
labelIndexed " predictionCol =" prediction " metricName ="
recall "/>

Listing 19.8: Kreuzvalidierung

Wie in Listing 19.8 zu sehen ist, muss bei einer Kreuzvalidierung der Typ, also Klassifika-
tion oder Regression, angegeben werden. In diesem Fall wird eine vierfache Kreuzvalidie-
rung durchgeführt. Dabei wird das Modell viermal auf den gleichen Daten trainiert und
sofort evaluiert. Genau das Modell, welches bei den Evaluationen am besten abschneidet,

202 KAPITEL 19. MASCHINELLES LERNEN MIT TELEPHANT

wird zurückgegeben und als CrossValidatorModel abgespeichert. Danach kann dieses wie
gewohnt zur Klassifikation genutzt, abgespeichert und evaluiert werden. Die Kreuzvali-
dierung ist hilfreich, um statistische Schwankungen zu reduzieren. Aufgrund der Nutzung
von random seeds innerhalb der meisten Algorithmen kann es durchaus vorkommen, dass
sich Modelle, die mit denselben Parametern und auf denselben Daten trainiert werden, in
ihrer Qualität unterscheiden.

Diese Schwankungen können mit Hilfe unserer Operatoren außerdem zu Analysezwecken
beobachtet werden. Dazu gibt es den foreach-Operator, welcher es möglich macht, das
Training eines Pipeline-Modells beliebig oft zu wiederholen, sofern automaticTraining auf
false gesetzt war. Werden in jedem Durchlauf die entsprechenden Evaluationsergebnisse
abgespeichert, werden die Schwankungen sichtbar. Der folgende XML-Auszug gibt einen
Einblick in das Konzept des foreach-Operators, die Evaluation und Speicherung ebendieser
Ergebnisse wird in Unterabschnitt 19.2.2 diskutiert.

1 <stream .pg594. operators . ForEach header ="i in [1 ,2 ,3 ,4 ,5]">

2 <stream .pg594. operators . LoadDataFrame name=" trainingData " />

3 <stream .pg594. operators . TrainModel modelName ="model" />

4 <stream .pg594. operators . LoadDataFrame name=" testData " />

5 <stream .pg594. operators . ApplyModel modelName ="model" />

6 <! -- evaluation -->

7 </ stream .pg594. operators . ForEach >

Listing 19.9: Mehrfaches Training eines Modells auf denselben Daten zur Beobachtungen der
statistischen Schwankungen

In Listing 19.9 wird fünfmal trainiert und getestet. Voraussetzung für das Funktionieren
dieser XML ist, dass vor dem foreach-Operator die kompletten Daten geladen und in
zwei DataFrames aufgeteilt wurden, welche unter den Namen trainingData und testData
abgespeichert wurden.

Dieses abwechselnde Laden von Trainings- und Testdaten bildet eine gute Verbindung
zum zweiten Anwendungsfall für ein manuelles Training: Es kann durchaus sein, dass ein
Anwender das gleiche Modell mit mehreren verschiedenen Trainingsdatensätzen trainieren
möchte. Auch dafür kann man einen foreach-Operator einsetzen und immer wieder andere
DataFrames für das Training laden, sofern man diese vorher entsprechend abgespeichert
hat.

19.2.2 Evaluation

Nachdem Training und Anwendung eines Modells im vorherigen Unterabschnitt ausführlich
erläutert wurden, geht es im Folgenden um die Evaluation eines Modells. Zunächst werden

19.2. MODELLTRAINING UND EVALUATION 203

die Operatoren von TELEPhANT zur Evaluation vorgestellt, anschließend wird erläutert, wie
Evaluationsergebnisse gespeichert werden können.

Evaluation einer binären Klassifikation Da es sich bei unserem Anwendungsfall um
eine binäre Klassifikation in Gamma- und Hadronstrahlungen handelt, stellt unser Pro-
dukt Möglichkeiten zur Evaluation eines binären Klassifikators zur Verfügung. Zunächst
können mithilfe des EvaluateBinaryClassifier-Operators die Werte TP (true positives), TN
(true negatives), FP (false positives) und FN (false negatives) ausgerechnet werden. Dieser
Operator berechnet auch gleichzeitig die jeweils zugehörigen Raten. Wichtig ist, dass es
bei diesem Operator zwei Parameter gibt: Die Spalte mit den korrekten Klassenbezeich-
nungen und die Spalte mit den Klassifikationsergebnissen. Diese beiden Spalten werden
miteinander verglichen und sollten deswegen vom Typ her übereinstimmen. Es ist daher
ratsam bereits die indexierte Label-Spalte als Eingabe zu verwenden, da sonst zunächst
eine Rückkonvertierung der Klassifikationsergebnisse zu den ursprünglichen Klassenbe-
zeichnungen stattfinden muss. Die Ergebnisse des Operators werden in die Logdateien
geschrieben und zusätzlich im Kontext abgelegt, sodass sie später komfortabel in eine
CSV-Datei geschrieben werden können. Es folgt eine kurze Beispielanwendung:

1 <stream .pg594. operators . EvaluateBinaryClassifier labelCol ="
labelIndexed " predictionCol =" prediction " />

Listing 19.10: Evaluation eines binären Klassifikators (erstes Beispiel)

Der zweite Operator zur Evaluation eines binären Klassifikators ist der EvaluateBina-
ryClassifierRaw-Operator, welcher zusätzliche Metriken bereitstellt. Dies sind die Area
Under ROC, oft auch ROC-Kurve genannt, und die Area under Precision-Recall-Curve.
Auch hier werden zwei Parameter gefordert: Die Spalte mit den korrekten Klassenbezeich-
nungen und die Spalte mit noch nicht normalisierten Wahrscheinlichkeiten für jede Klasse.
Bei den meisten Klassifikationsproblemen (Entscheidungsbäumen, Random Forests, Lo-
gistischer Regression und Naive Bayes) erzeugt die Anwendung eines Modells nicht nur
eine neue Spalte mit Namen prediction, sondern noch zwei weitere, nämlich rawPredicti-
on und probability. Diese beiden Spalten enthalten jeweils einen Vektor der Länge 2 (für
genau 2 Klassen bei einem binären Klassifikationsproblem). In prediction stehen jeweils
die genauen Wahrscheinlichenkeiten dafür, dass diese Zeile Klasse 0.0 beziehungsweise 1.0
zugeordnet werden sollte. Die Wahrscheinlichkeiten sind normalisiert, sodass deren Sum-
me genau 1 ergibt. Die Spalte rawPrediction, welche für die Evaluation benötigt wird,
enthält diese Wahrscheinlichkeiten in noch nicht normalisiertem Zustand. Für Random
Forests sind beispielsweise in den Vektorkomponenten jeweils zu sehen, wie viele Bäume
im Wald für die jeweilige Klasse gestimmt haben. Nur für Klassifikatoren, welche diese
“rohen”Vorhersagen ausgeben, kann der EvaluateBinaryClassifierRaw-Operator genutzt

204 KAPITEL 19. MASCHINELLES LERNEN MIT TELEPHANT

werden. Auch hier werden die beiden Werte in den Log geschrieben und im Kontext ab-
gespeichert. Außerdem sollte nach Möglichkeit wieder die bereits indexierte Spalte mit
Klassenbezeichnungen genutzt werden. Eine beispielhafte Anwendung sieht folgenderma-
ßen aus:

1 <stream .pg594. operators . EvaluateBinaryClassifierRaw labelCol =

" labelIndexed " rawPredictionCol =" rawPrediction " />

Listing 19.11: Evaluation eines binären Klassifikators (zweites Beispiel)

Natürlich kann man die Spalten predictionCol und rawPredictionCol nach Belieben bei
der Definition des Klassifikators umbenennen, indem man den jeweiligen Parameter in der
Pipeline setzt.

Evaluation eines Regressors Für die Energieschätzung wird eine Regression durch-
geführt, deswegen stellt TELEPhANT auch Evaluationsmöglichkeiten für die Regression be-
reit. Der EvaluateRegressor-Operator funktioniert ganz ähnlich und benötigt zwei Para-
meter: Die Spalte mit der wahren Energie und die mit der geschätzten. Auf dieser Basis
werden die Werte RMSE (Root-Mean Squared Error) und R2 berechnet, ins Log geschrie-
ben und im Kontext abgelegt. Das folgende Beispiel zeigt die XML-Anwendung:

1 <stream .pg594. operators . EvaluateRegressor labelCol =" energy "
predictionCol =" prediction " />

Listing 19.12: Evaluation eines Regressors

Zum Abschluss dieses Unterabschnittes wird im Folgenden erläutert, wie die Ergebnisse
aus dem Kontext in eine CSV geschrieben werden können. Dazu wird der AppendToCSV -
Operator genutzt. Dieser nimmt zwei Parameter entgegen, zum Einen die URL, unter
welcher die CSV abgelegt werden soll, zum Anderen die Werte, die in der CSV gespeichert
werden sollen. Dabei hat der Anwender die Möglichkeit einen beliebigen Wert abzulegen
(zum Beispiel type=RandomForest) oder einen Wert aus dem Kontext zu holen (zum
Beispiel AreaUnderROC).

19.2. MODELLTRAINING UND EVALUATION 205

1 <stream .pg594. operators . AppendToCSV columns ="type=
RandomForest , numTrees =30, AreaUnderROC ,
AreaUnderPrecisionRecallCurve ,TP ,TN ,FP ,FN ,TPrate ,TNrate ,
FPrate , FNrate " url="hdfs ://.../ eval.csv"/>

Listing 19.13: Darstellen der Evaluationsergebnisse in einer CSV

Dieser in Listing 19.13 beschriebene Schritt kann durchaus mehrfach ausgeführt werden,
sodass die unter der URL angegebene CSV-Datei beim ersten Zugriff erzeugt und bei
danach folgenden Zugriffen nur noch erweitert wird. Mithilfe eines foreach-Operators wie
in Listing 19.9 können so statistische Schwankungen bei der Modellerzeugung beobachtet
und gesichert werden. Auch für Parameterstudien kann die Dokumentation der Ergebnisse
in einer CSV-Datei vorteilhaft sein, wie der nächste Unterabschnitt zeigen wird.

19.2.3 Parameterstudie

Mit Hilfe von großen Parameterstudien kann dasselbe Lernverfahren auf verschiedenen
Parametern getestet werden. Eine besonders komfortable Möglichkeit zum Design solcher
Studien gibt es dafür leider nicht, dafür ist die Auswertung solcher Studien mit Hilfe des
AppendToCSV -Operators relativ elegant.

In der Pipeline können tatsächlich beliebig viele Estimator-Stages stehen. Jeder Klassi-
fikator wird trainiert und kann evaluiert werden. Wichtig ist bei der Verwendung von
mehreren Lernverfahren in einer Pipeline allerdings die korrekte Parameterbenennung.
Üblicherweise entscheiden sich die Lerner dafür, ihre Vorhersage in eine Spalte namens
prediction zu schreiben. Für den ersten Lerner der Pipeline funktioniert das auch noch
sehr gut, für den zweiten jedoch kommt es zum Problem, da diese Spalte, die er eigentlich
an den DataFrame anfügen sollte, schon existiert. Es muss also darauf geachtet werden,
dass die Parameter predictionCol, rawPredictionCol und probabilityCol für Klassifikatoren
und lediglich predictionCol für Regressoren immer wieder für jeden Lerner individuell be-
nannt werden müssen. Der folgende XML-Auszug zeigt einen möglichen Aufbau für eine
Parameterstudie:

1 <pipeline modelName =" gammaHadronModel " automaticTraining ="
true">

2 <!-- beliebige Aufbereitungsschritte -->

3 <estimator stage=" RandomForestClassifier " numTrees ="5"
featuresCol =" features " labelCol =" IsGammaIndexed "
rawPredictionCol ="raw1" probabilityCol ="prob1"
predictionCol =" IsGamma1 " />

206 KAPITEL 19. MASCHINELLES LERNEN MIT TELEPHANT

4 <!-- Trainiere N Random Forests mit jeweils unterschiedlicher
Waldgroesse -->

5 <estimator stage=" RandomForestClassifier " numTrees ="50"
featuresCol =" features " labelCol =" IsGammaIndexed "
rawPredictionCol ="rawN" probabilityCol ="probN"
predictionCol =" IsGammaN " />

6 </ pipeline >

7 <!-- Lade Testdaten und wende Modell an -->

8 <stream .pg594. operators . EvaluateBinaryClassifier modelName ="
gammaHadronModel " predictionCol =" IsGamma1 " labelCol ="
IsGammaIndexed " />

9 <stream .pg594. operators . EvaluateBinaryClassifierRaw modelName

=" gammaHadronModel " rawPredictionCol ="raw1" labelCol ="
IsGammaIndexed " />

10 <stream .pg594. operators . AppendToCSV columns ="type=
RandomForestClassifier , numTrees =${ numTrees1 }, AreaUnderROC ,
AreaUnderPrecisionRecallCurve ,TP ,TN ,FP ,FN ,TPrate ,TNrate ,
FPrate , FNrate " url="hdfs ://.../ eval.csv"/>

11 <!-- Evaluiere N Random Forests und schreibe Ergebnis in CSV
wie gezeigt -->

12 </task >

Listing 19.14: Parameterstudie

Zu beachten ist, dass bei der Ausführung von Listing 19.14 N Zufallswälder trainiert
werden. Anschließend wird auf diesem großen Modell klassifiziert, sodass insgesamt 3 ·N
Spalten angefügt werden: Für jeden Zufallswald die Spalten rawPrediction, probability und
prediction. Außerdem werden bei jeder Evaluation die Ergebnisse im Kontext (also FP,
TP, AreaUnderROC,...) überschrieben.

So mühsam auch der Aufbau einer solchen Studie ist, so komfortabel lassen sich anschlie-
ßend die verschiedenen Evaluationsergebnisse und darauf basierend die perfekten Para-
meter für den Lerner aus der CSV-Datei ablesen. Mit Hilfe der property-Tags müssen
die Parameter nicht hart in die Pipeline kodiert werden, so wird wenigstens ein wenig
Flexibilität in den Studien erreicht. Im Folgenden wird nun der in TELEPhANT enthalte-
ne TreeParser vorgestellt, mit welchem baumbasierte Modelle weiterführend analysiert
werden können, wenn die bis hier vorgestellten Evaluationsmethoden nicht ausreichen.

19.3 Der TreeParser

In unseren Experimenten stellte sich das Verwenden von Random Forests als sehr erfolg-

19.3. DER TREEPARSER 207

reiche Methode zur Klassifikation heraus. Da Spark ML es erlaubt, gewonnene Random-
Forest-Modelle in Textform zu speichern, kann der TreeParser benutzt werden um die
Textdatei für weitere Analysen wieder in eine Datenstruktur zu überführen.

19.3.1 Struktur der Lernbäume

Betrachten wir zunächst als Beispiel einen Auszug aus einem beliebigen Random Forest.
Jeder Baum des Waldes beginnt mit der Zeile ”Tree X (weight Y.Z)”, dann folgt die Wurzel
des Baumes in der nächsten Zeile. Die Knoten des Baumes sind entweder Entscheidungs-
knoten, an denen eine Bedingung geprüft und dann eines der Kinder gewählt wird, oder
Vorhersageknoten, die die Blätter des Baumes darstellen und eine Klasse wählen.

In unserem Fall ist die Wurzel des Baumes ein Entscheidungsknoten, der zwischen den
Fällen ”Ist Feature 30 kleiner als 49.42404654253062” oder ”Ist Feature 30 größer als
49.42404654253062”, entscheidet. Zu dem If eines Knotens gehört also immer ein Else, das
allerdings meistens sehr viel später im Baum folgt. Leider sorgt dieses Format dafür, dass
die Bäume für Menschen relativ schwierig zu lesen sind, dafür sind sie mit dem TreeParser
umso leichter zu verarbeiten. Betrachtet man die If -Zweige als rechte und die Else-Zweige
als linke Kinder des Knotens, so kann der Baum innerhalb eines Durchlaufs analysiert
werden. Dazu werden, von der Wurzel ausgehend, zunächst alle If -Zeilen rekursiv als
rechte Kinder des Vorgängers in den Baum eingefügt, bis eine Vorhersage-Zeile auftritt.
Diese stellt den Rekursionsanker dar. Nach der Else-Zeile folgt ein rekursiver Aufruf für
den linken Teilbaum des letzten Entscheidungsknotens. Ist dieser abgearbeitet folgt das
Else, und damit der linke Teilbaum des nächsthöheren Knotens.

1 Tree 0 (weight 1.0):

2 If (feature 30 <= 49.42404654253062)

3 If (feature 17 <= 0.082960642675512)

4 Predict : 0.0

5 Else (feature 17 > 0.082960642675512)

6 Predict : 1.0

7 Else (feature 30 > 49.42404654253062)

8 Predict : 0.0

9 Tree 1 (weight 1.0):

10 If (feature 30 <= 13)

11 Predict : 0.0

12 Else (feature 30 > 13)

13 Predict : 1.0

Listing 19.15: Auszug aus einem kleinen RandomForest

208 KAPITEL 19. MASCHINELLES LERNEN MIT TELEPHANT

19.3.2 Die Parser-Klasse

Der TreeParser kann nun genutzt werden, um eine genauere Analyse des Random Forests
durchzuführen. Dazu wird der Baum zunächst wieder, wie beschrieben, in eine Daten-
struktur überführt. Nach dem Aufruf der Main-Methode der Parser Klasse, legt diese ein
Array mit den Bäumen des Random Forests an, die jeweils ihren Wurzel-Knoten als auch
Gewicht und Nummer enthalten. Außerdem können diese erweitert werden, um in ihnen
weitere Daten, die für die Analyse wichtig sind, zu speichern. Die Knoten selber unterteilen
sich in DecisionNodes und PredictionNodes, die den Entscheidungs- und Vorhersage-
knoten entsprechen. Das Einlesen des Baumes geschieht, wie bereits beschrieben, rekursiv,
die DecisionNodes erstellen also ihre Kinderknoten, sobald sie erstellt werden. Der Par-
ser muss lediglich mit der ersten Zeile des jeweiligen Baumes den Wurzelknoten erstellen.
Ist die TreeList erstellt worden, kann nun die eigentliche Analyse beginnen.

19.3.3 CombinedTreeFeatures

Zuletzt betrachten wir noch CombinedTreeFeatures, ein Beispiel für ein Analysever-
fahren das auf dem durch den Parser gewonnenen Random Forest durchgeführt werden
kann. Angenommen, wir wollen herausfinden, wie häufig ein Feature pro Baum oder Wald
vorkommt. Hierzu erweitern wir die Tree Klasse um die Klasse Tupel, die zwei Integer
enthält sowie eine HashMap und ein Array aus Tupeln.
Wird nun die Methode featureCounting() des Baumes aufgerufen, zählt dieser zunächst
rekursiv alle Features die ihn ihm vorkommen mit Hilfe der HashMap. Dabei sind die
Feature-Nummern die Keys, während die Values die Häufigkeit des Features repräsentieren.
Sind die Features in der HashMap gesammelt werden sie dann zwecks besserer Sortier-
barkeit in das Array übertragen, welches dann sortiert wird. Ebenso können wir jetzt
im Parser die Methode combinedTreeFeatures() verwenden, um die HashMaps des ge-
samten Random Forest nach demselben Prinzip zu kombinieren und in einen Array zu
übertragen.
Es ist also zu erkennen, dass die rekursive Datenstruktur, in der der Random Forest nun
gespeichert ist, es relativ problemlos erlaubt, neue Analyseverfahren zu implementieren.
Somit ist die Grundlage gegeben, auch interessantere Analyseverfahren als das einfache
Zählen von Features durchzuführen.

Anhang A

Liste der Operatoren

Im Folgenden werden alle verwendeten Operatoren mit Name und Funktion aufgelistet.
Die Namen der zu verwendenden Parameter sind dabei jeweils in Anführungszeichen an-
gegeben.

AppendToCSV Fügt einen String (”columns”) an eine CSV-Datei (”url”)
an.

ApplyModel Lädt das angegebene Modell (”modelName”) und wendet es
auf den InputFrame an.

ComputeAbsoluteError Berechnet den absoluten Fehler aus zwei vorgegebenen Spal-
ten (”correctCol” und ”predictionCol”) und fügt ihn als
zusätzliche Spalte (”outputCol”) hinzu

CountRows Zählt die Reihen des DataFrames
CountRowsWhere Zählt die Reihen des DataFrames, an denen eine Bedingung

(”condition”) gilt.
CrossValidator Führt entweder eine Klassifikation oder eine Regression (”ty-

pe”) mit wahren (”labelcol”) und vorhergesagten (”predic-
tionCol”) Werten durch. Dabei wird die Metrik (”metricNa-
me”) verwendet.

EvaluateBinaryClassifier Evaluiert eine binäre Klassifikation mit wahren (”labelCol”)
und vorhergesagten(”predictionCol”) Werten.

EvaluateRegressor Evaluiert eine Regression mit wahren (”labelCol”) und vor-
hergesagten(”predictionCol”) Werten.

ExplainPipeline Gibt die aktuelle Pipeline mit Erklärungen aus.
ExportDataFrame Speichert den DataFrame auf die gewünschte Art (”saveMo-

de”) im Dateisystem (”url”).

209

210 ANHANG A. LISTE DER OPERATOREN

ExportDataFrameParquet Speichert den DataFrame als Parquet-File im Dateisystem
(”url”).

ExportModel Speichert ein Modell (”modelName”) im Dateisystem
(”url”).

ExportModelToBinaryFile Speichert ein Modell (”modelName”) als binäre Datei im
Dateisystem (”url”).

FilterDataFrame Entfernt alle Zeilen aus dem DataFrame, die eine Bedingung
(”condition”) nicht erfüllen.

ForEach Führt die enthaltenen Prozessoren mehrfach aus. Der Para-
meter ”header” muss folgende Form haben: ”%variable% in
[val1,val2,...,valn]“. Beispiel: header=”i in [10,20,30]“

ImportModel Importiert ein Modell (”modelName”) aus dem Dateisystem
(”url”).

ImportModelFromBinaryFile Importiert ein als binäre Datei gespeichertes Modell (”mo-
delName”) aus dem Dateisystem (”url”).

IndexToStringConversion Wenn ein Modell (”modelName”) mit StringIndexer verwen-
det wurde, übernimmt dieser Operator die Rückübersetzung
der Spalte ”inputCol” zu ”outputCol”.

LoadDataFrame Lädt einen DataFrame (”url”) aus dem Dateisystem.
LogTimestamp Schreibt eine Nachricht (”message”) und die aktuelle Zeit in

Millisekunden in den Log.
PrintDataFrame Gibt den Inhalt des DataFrames aus.
RenameColumn Ändert den Namen einer Spalte im DataFrame vom alten

(”oldName”) in einen neuen (”newName”).
SafeDataFrame Speichert den DataFrame im DateiSystem (”url”).
SelectColumnsSQL Wählt die vorgegeben Spalten (”columns”) aus. Die einzel-

nen Spalten sind mit Kommata zu trennen, z.B. (col1, col2,
col3), zusätzlich können SQL Ausdrücke verwendet werden.

SplitDataFrame Erstellt eine Partition des DataFrame und speichert die-
se unter neuem Namen (”newName”). Die Größe (”ratio”)
muss festgelegt werden.

StartTimeMeasurement Legt einen Zeitmesser (”timerName”) an und setzt seine
Startzeit.

StopTimeMeasurement Gibt die Differenz zwischen der aktuellen Zeit und dem
Start-Zeitmesser des selben Namens (”timerName”) an.

SwitchDataFrame Speichert gegebenfalls den aktuellen DataFrame (”safeCur-
rentDataFrameAs”), und lädt dann einen neuen (”loadDa-
taFrame”).

TrainModel Wendet die aktuelle Pipeline auf den DataFrame an. Das so
gewonnene Modell wird gespeichert (”modelName”).

TrainModelWithParameters Trainiert die Pipeline und setzt für diese Ausführung
zusätzliche Parameter. ”parameters” muss folgende Form
haben: ”%stage%.%Param%=%variable%”

Anhang B

XMLs zum Kapitel ”Modellqualität“

B.1 Experiment 14.1: Vergleich von Klassifikationsmodel-
len

1 <container >
2
3 <input id="1" class =" stream .io. CSVInput " url=" hdfs :// s876cn01 .cs.uni - dortmund .de :8020/ pg594 / datasets /

gammahadron - balanced /" />
4
5 <task id="2" input ="1">
6
7 <pipeline modelName =" gammaHadronModel " automaticTraining =" false ">
8 <transformer stage =" VectorAssembler " inputCols =" numPixelInShower ,Size , M3Long , M3Trans ,M4Long , M4Trans

,COGx ,COGy , Length ,Width ,Delta ,m3l ,m3t , numIslands , Concentration_onePixel , Concentration_twoPixel
, ConcCore , concCOG , Leakage , Leakage2 , Timespread , Timespread_weighted , Slope_long , Slope_trans ,
Slope_spread , Slope_spread_weighted ,Disp ,Alpha , Distance , CosDeltaAlpha ,Theta , Energy " outputCol ="
features " />

9 <estimator stage =" StringIndexer " inputCol =" IsGamma " outputCol =" IsGammaIndexed " />
10
11 <estimator stage =" RandomForestClassifier " cacheNodeIds =" true " featuresCol =" features " labelCol ="

IsGammaIndexed " rawPredictionCol =" raw1 " probabilityCol =" prob1 " predictionCol =" prediction1 " />
12 <estimator stage =" GBTClassifier " cacheNodeIds =" true " featuresCol =" features " labelCol ="

IsGammaIndexed " predictionCol =" prediction2 " /> <!-- no rawPredictionCol , no probabilityCol -->
13 <estimator stage =" MultilayerPerceptronClassifier " featuresCol =" features " labelCol =" IsGammaIndexed "

predictionCol =" prediction3 " />
14
15 </ pipeline >
16
17 <stream . pg594 . operators . GenerateLayersMPC stage ="4" numFeatures ="32" numLabels ="2" numInnerLayers ="20"

/>
18 <stream . pg594 . operators . SaveDataFrame name=" original " />
19
20 <stream . pg594 . operators . ForEach header ="i in [1 ,2 ,3 ,4 ,5]">
21 <stream . pg594 . operators . LoadDataFrame name=" original " />
22 <stream . pg594 . operators . SplitDataFrame ratio =" 0.1 " newName =" testData "/>
23 <stream . pg594 . operators . SaveDataFrame name=" trainingData " />
24 <stream . pg594 . operators . CountRowsWhere name=" trainingEvents " />
25 <stream . pg594 . operators . TrainModel modelName =" gammaHadronModel " />
26 <stream . pg594 . operators . LoadDataFrame name=" testData " />
27 <stream . pg594 . operators . ApplyModel modelName =" gammaHadronModel " />
28
29
30 <!-- Evaluate every forest and append result to csv -->
31 <stream . pg594 . operators . IndexToStringConversion modelName =" gammaHadronModel " inputCol =" prediction1 "

outputCol =" IsGamma1 "/>
32 <stream . pg594 . operators . EvaluateBinaryClassifierRaw labelColIndexed =" IsGammaIndexed "

rawPredictionCol =" raw1 "/>
33 <stream . pg594 . operators . EvaluateBinaryClassifier labelCol =" IsGamma " predictionCol =" IsGamma1 " />

211

212 ANHANG B. XMLS ZUM KAPITEL ”MODELLQUALITÄT“

34 <stream . pg594 . operators . AppendToCSV columns =" type =RF , trainingEvents , AreaUnderROC ,
AreaUnderPrecisionRecallCurve ,TP ,TN ,FP ,FN ,TPrate , TNrate ,FPrate , FNrate " url=" hdfs :// s876cn01 .cs
.uni - dortmund .de :8020/ pg594 / classificationexperiment . csv"/>

35
36 <stream . pg594 . operators . IndexToStringConversion modelName =" gammaHadronModel " inputCol =" prediction2 "

outputCol =" IsGamma2 "/>
37 <!-- GBT doesn ’t have rawPrediction <stream . pg594 . operators . EvaluateBinaryClassifierRaw

labelColIndexed =" IsGammaIndexed " rawPredictionCol =" raw2 "/> -->
38 <stream . pg594 . operators . EvaluateBinaryClassifier labelCol =" IsGamma " predictionCol =" IsGamma2 " />
39 <stream . pg594 . operators . AppendToCSV columns =" type =GBT , trainingEvents , AreaUnderROC =0,

AreaUnderPrecisionRecallCurve =0,TP ,TN ,FP ,FN , TPrate ,TNrate , FPrate , FNrate " url=" hdfs :// s876cn01 .
cs.uni - dortmund .de :8020/ pg594 / classificationexperiment .csv "/>

40
41 <stream . pg594 . operators . IndexToStringConversion modelName =" gammaHadronModel " inputCol =" prediction3 "

outputCol =" IsGamma3 "/>
42 <!-- MPC doesn ’t have rawPrediction ... -->
43 <stream . pg594 . operators . EvaluateBinaryClassifier labelCol =" IsGamma " predictionCol =" IsGamma3 " />
44 <stream . pg594 . operators . AppendToCSV columns =" type =MPC , trainingEvents , AreaUnderROC =0,

AreaUnderPrecisionRecallCurve =0,TP ,TN ,FP ,FN , TPrate ,TNrate , FPrate , FNrate " url=" hdfs :// s876cn01 .
cs.uni - dortmund .de :8020/ pg594 / classificationexperiment .csv "/>

45 </ stream . pg594 . operators . ForEach >
46 </task >
47
48 </ container >

Die von den einzelnen Modellen verwendeten Parameter können der folgenden Übersicht
entnommen werden:

1 Pipeline parameters :
2 stages : stages of the pipeline (current : [Lorg. apache . spark .ml. PipelineStage ; @778eb85f)
3
4 stage 0: class org. apache . spark .ml. feature . VectorAssembler
5 inputCols : input column names (current : [Ljava .lang. String ; @6ac94488)
6 outputCol : output column name (default : vecAssembler_3b2ea5eb1698__output , current : features)
7
8 stage 1: class org. apache . spark .ml. feature . StringIndexer
9 handleInvalid : how to handle invalid entries . Options are skip (which will filter out rows with bad values), or

error (which will throw an errror). More options may be added later . (default : error)
10 inputCol : input column name (current : IsGamma)
11 outputCol : output column name (default : strIdx_af29aa3fde7a__output , current : IsGammaIndexed)
12
13 stage 2: class org. apache . spark .ml. classification . RandomForestClassifier
14 cacheNodeIds : If false , the algorithm will pass trees to executors to match instances with nodes . If true , the

algorithm will cache node IDs for each instance . Caching can speed up training of deeper trees . (default :
false , current : true)

15 checkpointInterval : set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the cache
will get checkpointed every 10 iterations (default : 10)

16 featureSubsetStrategy : The number of features to consider for splits at each tree node. Supported options : auto
, all , onethird , sqrt , log2 (default : auto)

17 featuresCol : features column name (default : features , current : features)
18 impurity : Criterion used for information gain calculation (case - insensitive). Supported options : entropy , gini

(default : gini)
19 labelCol : label column name (default : label , current : IsGammaIndexed)
20 maxBins : Max number of bins for discretizing continuous features . Must be >=2 and >= number of categories for

any categorical feature . (default : 32)
21 maxDepth : Maximum depth of the tree. (>= 0) E.g., depth 0 means 1 leaf node; depth 1 means 1 internal node + 2

leaf nodes . (default : 5)
22 maxMemoryInMB : Maximum memory in MB allocated to histogram aggregation . (default : 256)
23 minInfoGain : Minimum information gain for a split to be considered at a tree node. (default : 0.0)
24 minInstancesPerNode : Minimum number of instances each child must have after split . If a split causes the left

or right child to have fewer than minInstancesPerNode , the split will be discarded as invalid . Should be
>= 1. (default : 1)

25 numTrees : Number of trees to train (>= 1) (default : 20)
26 predictionCol : prediction column name (default : prediction , current : prediction1)
27 probabilityCol : Column name for predicted class conditional probabilities . Note: Not all models output well -

calibrated probability estimates ! These probabilities should be treated as confidences , not precise
probabilities (default : probability , current : prob1)

28 rawPredictionCol : raw prediction (a.k.a. confidence) column name (default : rawPrediction , current : raw1)
29 seed: random seed (default : 207336481 , current : -2221372633937965731)
30 subsamplingRate : Fraction of the training data used for learning each decision tree , in range (0, 1]. (default :

1.0)
31 thresholds : Thresholds in multi - class classification to adjust the probability of predicting each class . Array

must have length equal to the number of classes , with values >= 0. The class with largest value p/t is
predicted , where p is the original probability of that class and t is the class ’ threshold . (undefined)

32

B.1. EXPERIMENT 14.1: VERGLEICH VON KLASSIFIKATIONSMODELLEN 213

33 stage 3: class org. apache . spark .ml. classification . GBTClassifier
34 cacheNodeIds : If false , the algorithm will pass trees to executors to match instances with nodes . If true , the

algorithm will cache node IDs for each instance . Caching can speed up training of deeper trees . (default :
false , current : true)

35 checkpointInterval : set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the cache
will get checkpointed every 10 iterations (default : 10)

36 featuresCol : features column name (default : features , current : features)
37 impurity : Criterion used for information gain calculation (case - insensitive). Supported options : entropy , gini

(default : gini)
38 labelCol : label column name (default : label , current : IsGammaIndexed)
39 lossType : Loss function which GBT tries to minimize (case - insensitive). Supported options : logistic (default :

logistic)
40 maxBins : Max number of bins for discretizing continuous features . Must be >=2 and >= number of categories for

any categorical feature . (default : 32)
41 maxDepth : Maximum depth of the tree. (>= 0) E.g., depth 0 means 1 leaf node; depth 1 means 1 internal node + 2

leaf nodes . (default : 5)
42 maxIter : maximum number of iterations (>= 0) (default : 20)
43 maxMemoryInMB : Maximum memory in MB allocated to histogram aggregation . (default : 256)
44 minInfoGain : Minimum information gain for a split to be considered at a tree node. (default : 0.0)
45 minInstancesPerNode : Minimum number of instances each child must have after split . If a split causes the left

or right child to have fewer than minInstancesPerNode , the split will be discarded as invalid . Should be
>= 1. (default : 1)

46 predictionCol : prediction column name (default : prediction , current : prediction2)
47 seed: random seed (default : -1287390502 , current : 6076594278666838564)
48 stepSize : Step size to be used for each iteration of optimization . (default : 0.1)
49 subsamplingRate : Fraction of the training data used for learning each decision tree , in range (0, 1]. (default :

1.0)
50
51 stage 4: class org. apache . spark .ml. classification . MultilayerPerceptronClassifier
52 blockSize : Block size for stacking input data in matrices . Data is stacked within partitions . If block size is

more than remaining data in a partition then it is adjusted to the size of this data. Recommended size is
between 10 and 1000 (default : 128)

53 featuresCol : features column name (default : features , current : features)
54 labelCol : label column name (default : label , current : IsGammaIndexed)
55 layers : Sizes of layers from input layer to output layer E.g., Array (780 , 100 , 10) means 780 inputs , one hidden

layer with 100 neurons and output layer of 10 neurons . (default : [I@7b50010 , current : [I@1666fc8e)
56 maxIter : maximum number of iterations (>= 0) (default : 100)
57 predictionCol : prediction column name (default : prediction , current : prediction3)
58 seed: random seed (default : -763139545 , current : 2387178402411159171)
59 tol: the convergence tolerance for iterative algorithms (default : 1.0E -4)

214 ANHANG B. XMLS ZUM KAPITEL ”MODELLQUALITÄT“

B.2 Experiment 14.4: Parameterstudie zur Waldgröße von
Random Forests

1 <container >
2 <input id="1" class =" stream .io. CSVInput " url=" hdfs :// s876cn01 .cs.uni - dortmund .de :8020/ pg594 / datasets /

gammahadron - balanced /"/>
3
4 <task id="2" input ="1">
5
6 <pipeline modelName =" gammaHadronModel " automaticTraining =" false ">
7 <transformer stage =" VectorAssembler " inputCols =" numPixelInShower ,Size , M3Long , M3Trans ,M4Long , M4Trans

,COGx ,COGy , Length ,Width ,Delta ,m3l ,m3t , numIslands , Concentration_onePixel , Concentration_twoPixel
, ConcCore , concCOG , Leakage , Leakage2 , Timespread , Timespread_weighted , Slope_long , Slope_trans ,
Slope_spread , Slope_spread_weighted ,Disp ,Alpha , Distance , CosDeltaAlpha ,Theta , Energy " outputCol ="
features "/>

8 <estimator stage =" StringIndexer " inputCol =" IsGamma " outputCol =" IsGammaIndexed " />
9 <estimator stage =" RandomForestClassifier " maxDepth ="25" featuresCol =" features " labelCol ="

IsGammaIndexed " cacheNodeIds =" true "/>
10 </ pipeline >
11
12 <stream . pg594 . operators . SaveDataFrame name=" original " />
13
14 <stream . pg594 . operators . ForEach header ="i in [1 ,2 ,3 ,4 ,5]">
15 <stream . pg594 . operators . LoadDataFrame name=" original " />
16 <stream . pg594 . operators . SplitDataFrame ratio =" 0.1 " newName =" testData " />
17 <stream . pg594 . operators . SaveDataFrame name=" trainingData " />
18 <stream . pg594 . operators . CountRowsWhere condition ="" name=" trainingEvents " />
19
20 <stream . pg594 . operators . ForEach header =" numTrees in [10 ,20 ,40 ,60 ,80 ,100] ">
21 <stream . pg594 . operators . LoadDataFrame name=" trainingData " />
22 <stream . pg594 . operators . StartTimeMeasurement timerName =" trainingTime " />
23 <stream . pg594 . operators . TrainModelWithParameters modelName =" model " parameters ="2. numTrees =

numTrees "/>
24 <stream . pg594 . operators . StopTimeMeasurement timerName =" trainingTime " />
25
26 <stream . pg594 . operators . LoadDataFrame name=" testData " />
27 <stream . pg594 . operators . ApplyModel modelName =" model " />
28 <stream . pg594 . operators . IndexToStringConversion modelName =" model " inputCol =" prediction "

outputCol =" IsGammaPrediction "/>
29 <stream . pg594 . operators . EvaluateBinaryClassifier rawPredictionCol =" rawPrediction "

labelColIndexed =" IsGammaIndexed " predictionCol =" IsGammaPrediction " labelCol =" IsGamma " />
30 <stream . pg594 . operators . AppendToCSV columns =" type = RandomForestClassifier , trainingEvents ,

numTrees , maxDepth =25 , trainingTime , AreaUnderROC , AreaUnderPrecisionRecallCurve ,TP ,TN ,FP ,FN ,
TPrate , TNrate , FPrate , FNrate " url=" hdfs :// s876cn01 .cs.uni - dortmund .de :8020/ pg594 /
parameterstudyexperiment1 .csv " />

31 </ stream . pg594 . operators . ForEach >
32 </ stream . pg594 . operators . ForEach >
33
34 </task >
35
36 </ container >

B.3. EXPERIMENT 14.2: VERGLEICH VON REGRESSIONSMODELLEN 215

B.3 Experiment 14.2: Vergleich von Regressionsmodellen

1 <container >
2
3 <input id="1" class =" stream .io. CSVInput " url=" hdfs :// s876cn01 .cs.uni - dortmund .de :8020/ pg594 / datasets /

gammahadron /" />
4
5 <task id="2" input ="1">
6 <pipeline modelName =" energyestimator " automaticTraining =" false ">
7 <transformer stage =" VectorAssembler " inputCols =" numPixelInShower , photonchargeMean , arrivalTimeMean ,

phChargeShower_mean , phChargeShower_max , phChargeShower_min , phChargeShower_kurtosis ,
phChargeShower_variance , phChargeShower_skewness , arrTimeShower_mean , arrTimeShower_max ,
arrTimeShower_min , arrTimeShower_kurtosis , arrTimeShower_variance , arrTimeShower_skewness ,
maxSlopesShower_mean , maxSlopesShower_max , maxSlopesShower_min , maxSlopesShower_kurtosis ,
maxSlopesShower_variance , maxSlopesShower_skewness , arrTimePosShower_mean , arrTimePosShower_max ,
arrTimePosShower_min , arrTimePosShower_kurtosis , arrTimePosShower_variance ,
arrTimePosShower_skewness , maxSlopesPosShower_mean , maxSlopesPosShower_max ,
maxSlopesPosShower_min , maxSlopesPosShower_kurtosis , maxSlopesPosShower_variance ,
maxSlopesPosShower_skewness , maxPosShower_mean , maxPosShower_max , maxPosShower_min ,
maxPosShower_kurtosis , maxPosShower_variance , maxPosShower_skewness ,Size , M3Long , M3Trans ,M4Long ,
M4Trans ,COGx ,COGy , Length ,Width ,Delta ,m3l ,m3t , numIslands , Concentration_onePixel ,
Concentration_twoPixel , ConcCore , concCOG , Leakage , Leakage2 , Timespread , Timespread_weighted ,
Slope_long , Slope_trans , Slope_spread , Slope_spread_weighted ,Disp , AzTracking , ZdTracking ,
AzPointing , ZdPointing , AzSourceCalc , ZdSourceCalc ,Alpha , Distance , Alpha_Off_1 , Distance_Off_1 ,
Alpha_Off_2 , Distance_Off_2 , Alpha_Off_3 , Distance_Off_3 , Alpha_Off_4 , Distance_Off_4 , Alpha_Off_5 ,
Distance_Off_5 , CosDeltaAlpha , CosDeltaAlpha_Off_1 , CosDeltaAlpha_Off_2 , CosDeltaAlpha_Off_3 ,
CosDeltaAlpha_Off_4 , CosDeltaAlpha_Off_5 ,Theta , Theta_Off_1 , Theta_Off_2 , Theta_Off_3 , Theta_Off_4 ,
Theta_Off_5 " outputCol =" features " />

8 <estimator stage =" RandomForestRegressor " cacheNodeIds =" true " featuresCol =" features " labelCol ="
Energy " />

9 </ pipeline >
10
11 <stream . pg594 . operators . SaveDataFrame name=" original " />
12
13 <stream . pg594 . operators . ForEach header ="i in [1 ,2 ,3 ,4 ,5]">
14 <stream . pg594 . operators . LoadDataFrame name=" original " />
15 <stream . pg594 . operators . SplitDataFrame ratio =" 0.1 " newName =" testData "/>
16 <stream . pg594 . operators . SaveDataFrame name=" trainingData " />
17 <stream . pg594 . operators . CountRowsWhere name=" trainingEvents " />
18 <stream . pg594 . operators . StartTimeMeasurement timerName =" trainingTime " />
19 <stream . pg594 . operators . TrainModel modelName =" energyestimator " />
20 <stream . pg594 . operators . StopTimeMeasurement timerName =" trainingTime " />
21 <stream . pg594 . operators . LoadDataFrame name=" testData " />
22 <stream . pg594 . operators . CountRowsWhere name=" testEvents " />
23 <stream . pg594 . operators . StartTimeMeasurement timerName =" regressionTime " />
24 <stream . pg594 . operators . ApplyModel modelName =" energyestimator " />
25
26 <!-- Evaluate every forest and append result to csv -->
27 <stream . pg594 . operators . EvaluateRegressor labelCol =" Energy " predictionCol =" prediction " />
28 <stream . pg594 . operators . StopTimeMeasurement timerName =" regressionTime " />
29 <stream . pg594 . operators . AppendToCSV columns =" type =RF , trainingEvents , trainingTime , testEvents ,

regressionTime ,rmse ,r2" url=" hdfs :// s876cn01 .cs.uni - dortmund .de :8020/ pg594 /
regressionexperiment . csv"/>

30 </ stream . pg594 . operators . ForEach >
31 </task >
32
33 </ container >

1 ...
2 stage 1: class org. apache . spark .ml. regression . RandomForestRegressor
3 cacheNodeIds : If false , the algorithm will pass trees to executors to match instances with nodes . If true , the

algorithm will cache node IDs for each instance . Caching can speed up training of deeper trees . (default :
false , current : true)

4 checkpointInterval : set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the cache
will get checkpointed every 10 iterations (default : 10)

5 featureSubsetStrategy : The number of features to consider for splits at each tree node. Supported options : auto
, all , onethird , sqrt , log2 (default : auto)

6 featuresCol : features column name (default : features , current : features)
7 impurity : Criterion used for information gain calculation (case - insensitive). Supported options : variance (

default : variance)
8 labelCol : label column name (default : label , current : Energy)

216 ANHANG B. XMLS ZUM KAPITEL ”MODELLQUALITÄT“

9 maxBins : Max number of bins for discretizing continuous features . Must be >=2 and >= number of categories for
any categorical feature . (default : 32)

10 maxDepth : Maximum depth of the tree. (>= 0) E.g., depth 0 means 1 leaf node; depth 1 means 1 internal node + 2
leaf nodes . (default : 5)

11 maxMemoryInMB : Maximum memory in MB allocated to histogram aggregation . (default : 256)
12 minInfoGain : Minimum information gain for a split to be considered at a tree node. (default : 0.0)
13 minInstancesPerNode : Minimum number of instances each child must have after split . If a split causes the left

or right child to have fewer than minInstancesPerNode , the split will be discarded as invalid . Should be
>= 1. (default : 1)

14 numTrees : Number of trees to train (>= 1) (default : 20)
15 predictionCol : prediction column name (default : prediction)
16 seed: random seed (default : 235498149 , current : 8821372440605673783)
17 subsamplingRate : Fraction of the training data used for learning each decision tree , in range (0, 1]. (default :

1.0)

1 <container >
2
3 <input id="1" class =" stream .io. CSVInput " url=" hdfs :// s876cn01 .cs.uni - dortmund .de :8020/ pg594 / datasets /

gammahadron /" />
4
5 <task id="2" input ="1">
6 <pipeline modelName =" energyestimator " automaticTraining =" false ">
7 <transformer stage =" VectorAssembler " inputCols =" numPixelInShower , photonchargeMean , arrivalTimeMean ,

phChargeShower_mean , phChargeShower_max , phChargeShower_min , phChargeShower_kurtosis ,
phChargeShower_variance , phChargeShower_skewness , arrTimeShower_mean , arrTimeShower_max ,
arrTimeShower_min , arrTimeShower_kurtosis , arrTimeShower_variance , arrTimeShower_skewness ,
maxSlopesShower_mean , maxSlopesShower_max , maxSlopesShower_min , maxSlopesShower_kurtosis ,
maxSlopesShower_variance , maxSlopesShower_skewness , arrTimePosShower_mean , arrTimePosShower_max ,
arrTimePosShower_min , arrTimePosShower_kurtosis , arrTimePosShower_variance ,
arrTimePosShower_skewness , maxSlopesPosShower_mean , maxSlopesPosShower_max ,
maxSlopesPosShower_min , maxSlopesPosShower_kurtosis , maxSlopesPosShower_variance ,
maxSlopesPosShower_skewness , maxPosShower_mean , maxPosShower_max , maxPosShower_min ,
maxPosShower_kurtosis , maxPosShower_variance , maxPosShower_skewness ,Size ,M3Long , M4Long ,COGx ,COGy
, Length ,Width ,Delta ,m3l ,m3t , numIslands , Concentration_onePixel , Concentration_twoPixel , ConcCore ,
concCOG , Leakage , Leakage2 , Timespread , Timespread_weighted , Slope_long , Slope_trans , Slope_spread ,
Slope_spread_weighted ,Disp , AzTracking , ZdTracking , AzPointing , ZdPointing , AzSourceCalc ,
ZdSourceCalc ,Alpha , Distance , Alpha_Off_1 , Distance_Off_1 , Alpha_Off_2 , Distance_Off_2 , Alpha_Off_3 ,
Distance_Off_3 , Alpha_Off_4 , Distance_Off_4 , Alpha_Off_5 , Distance_Off_5 , CosDeltaAlpha ,
CosDeltaAlpha_Off_1 , CosDeltaAlpha_Off_2 , CosDeltaAlpha_Off_3 , CosDeltaAlpha_Off_4 ,
CosDeltaAlpha_Off_5 ,Theta , Theta_Off_1 , Theta_Off_2 , Theta_Off_3 , Theta_Off_4 , Theta_Off_5 "
outputCol =" features " /> <!-- M3Trans , M4Trans raised exception : java . lang .
RuntimeException : No bin was found for continuous feature . This error can occur when given
invalid data values (such as NaN). Feature index : 42 -->

8
9 <estimator stage =" GBTRegressor " cacheNodeIds =" true " featuresCol =" features " labelCol =" Energy " />

10 </ pipeline >
11
12 <stream . pg594 . operators . SaveDataFrame name=" original " />
13
14 <stream . pg594 . operators . ForEach header ="i in [1 ,2 ,3 ,4 ,5]">
15 <stream . pg594 . operators . LoadDataFrame name=" original " />
16 <stream . pg594 . operators . SplitDataFrame ratio =" 0.1 " newName =" testData "/>
17 <stream . pg594 . operators . SaveDataFrame name=" trainingData " />
18 <stream . pg594 . operators . CountRowsWhere name=" trainingEvents " />
19 <stream . pg594 . operators . StartTimeMeasurement timerName =" trainingTime " />
20 <stream . pg594 . operators . TrainModel modelName =" energyestimator " />
21 <stream . pg594 . operators . StopTimeMeasurement timerName =" trainingTime " />
22 <stream . pg594 . operators . LoadDataFrame name=" testData " />
23 <stream . pg594 . operators . CountRowsWhere name=" testEvents " />
24 <stream . pg594 . operators . StartTimeMeasurement timerName =" regressionTime " />
25 <stream . pg594 . operators . ApplyModel modelName =" energyestimator " />
26
27
28 <!-- Evaluate every forest and append result to csv -->
29 <stream . pg594 . operators . EvaluateRegressor labelCol =" Energy " predictionCol =" prediction " />
30 <stream . pg594 . operators . StopTimeMeasurement timerName =" regressionTime " />
31 <stream . pg594 . operators . AppendToCSV columns =" type =GBT , trainingEvents , trainingTime , testEvents ,

regressionTime ,rmse ,r2" url=" hdfs :// s876cn01 .cs.uni - dortmund .de :8020/ pg594 /
regressionexperiment . csv"/>

32
33 </ stream . pg594 . operators . ForEach >
34 </task >
35
36 </ container >

B.3. EXPERIMENT 14.2: VERGLEICH VON REGRESSIONSMODELLEN 217

1 ...
2 stage 1: class org. apache . spark .ml. regression . GBTRegressor
3 cacheNodeIds : If false , the algorithm will pass trees to executors to match instances with nodes . If true , the

algorithm will cache node IDs for each instance . Caching can speed up training of deeper trees . (default :
false , current : true)

4 checkpointInterval : set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the cache
will get checkpointed every 10 iterations (default : 10)

5 featuresCol : features column name (default : features , current : features)
6 impurity : Criterion used for information gain calculation (case - insensitive). Supported options : variance (

default : variance)
7 labelCol : label column name (default : label , current : Energy)
8 lossType : Loss function which GBT tries to minimize (case - insensitive). Supported options : squared , absolute (

default : squared)
9 maxBins : Max number of bins for discretizing continuous features . Must be >=2 and >= number of categories for

any categorical feature . (default : 32)
10 maxDepth : Maximum depth of the tree. (>= 0) E.g., depth 0 means 1 leaf node; depth 1 means 1 internal node + 2

leaf nodes . (default : 5)
11 maxIter : maximum number of iterations (>= 0) (default : 20)
12 maxMemoryInMB : Maximum memory in MB allocated to histogram aggregation . (default : 256)
13 minInfoGain : Minimum information gain for a split to be considered at a tree node. (default : 0.0)
14 minInstancesPerNode : Minimum number of instances each child must have after split . If a split causes the left

or right child to have fewer than minInstancesPerNode , the split will be discarded as invalid . Should be
>= 1. (default : 1)

15 predictionCol : prediction column name (default : prediction)
16 seed: random seed (default : -131597770 , current : 9103996764841619817)
17 stepSize : Step size to be used for each iteration of optimization . (default : 0.1)
18 subsamplingRate : Fraction of the training data used for learning each decision tree , in range (0, 1]. (default :

1.0)

218 ANHANG B. XMLS ZUM KAPITEL ”MODELLQUALITÄT“

B.4 Experiment 14.3: Trainingszeit in Abhängigkeit der Clu-
sterressourcen

1 <container >
2
3 <property name=" executors " value ="8" />
4 <property name=" cores " value ="8" />
5
6 <input id="1" class =" stream .io. CSVInput " url=" hdfs :// s876cn01 .cs.uni - dortmund .de :8020/ pg594 / datasets /

gammahadron /" />
7
8 <task id="2" input ="1">
9

10 <pipeline modelName =" gammaHadronModel " automaticTraining =" false ">
11 <transformer stage =" VectorAssembler " inputCols =" numPixelInShower ,Size , M3Long , M3Trans ,M4Long , M4Trans

,COGx ,COGy , Length ,Width ,Delta ,m3l ,m3t , numIslands , Concentration_onePixel , Concentration_twoPixel
, ConcCore , concCOG , Leakage , Leakage2 , Timespread , Timespread_weighted , Slope_long , Slope_trans ,
Slope_spread , Slope_spread_weighted ,Disp ,Alpha , Distance , CosDeltaAlpha ,Theta , Energy " outputCol ="
features " />

12 <estimator stage =" StringIndexer " inputCol =" IsGamma " outputCol =" IsGammaIndexed " />
13 <estimator stage =" RandomForestClassifier " cacheNodeIds =" true " maxDepth ="25" numTrees ="80"

featuresCol =" features " labelCol =" IsGammaIndexed " predictionCol =" prediction " />
14 </ pipeline >
15
16
17 <stream . pg594 . operators . SplitDataFrame ratio =" 0.1 " newName =" testData "/>
18 <stream . pg594 . operators . SaveDataFrame name=" trainingData " />
19 <stream . pg594 . operators . CountRowsWhere name=" trainingEvents " />
20 <stream . pg594 . operators . StartTimeMeasurement timerName =" trainingTime " />
21 <stream . pg594 . operators . TrainModel modelName =" gammaHadronModel " />
22 <stream . pg594 . operators . StopTimeMeasurement timerName =" trainingTime " />
23 <stream . pg594 . operators . LoadDataFrame name=" testData " />
24 <stream . pg594 . operators . CountRowsWhere name=" testEvents " />
25 <stream . pg594 . operators . StartTimeMeasurement timerName =" classificationTime " />
26 <stream . pg594 . operators . ApplyModel modelName =" gammaHadronModel " />
27 <stream . pg594 . operators . CountRowsWhere condition =" prediction > 0.5 " name=" counter " />
28 <stream . pg594 . operators . StopTimeMeasurement timerName =" classificationTime " />
29
30 <stream . pg594 . operators . AppendToCSV columns =" type =RF , executors =${ executors }, cores =${ cores },

trainingEvents , trainingTime , testEvents , classificationTime " url=" hdfs :// s876cn01 .cs.uni - dortmund .de
:8020/ pg594 / distributionexperiment . csv "/>

31 </task >
32
33 </ container >

Anhang C

Liste der referenzierten Software

AngularJS https://angularjs.org/

Apache Cassandra https://cassandra.apache.org/

Apache Hadoop https://hadoop.apache.org/

Apache Spark https://spark.apache.org/

Apache Storm https://storm.apache.org/

Apache YARN https://hadoop.apache.org/docs/r2.6.2/

hadoop-yarn/hadoop-yarn-site/YARN.html

Atlassian JIRA https://de.atlassian.com/software/jira

Docker https://www.docker.com/

Elasticsearch https://www.elastic.co/de/products/

elasticsearch

FACT Tools https://sfb876.de/fact-tools/

MongoDB https://www.mongodb.org/

MongoDB Docker-Image https://hub.docker.com/_/mongo/

MVEL https://github.com/mvel/mvel

OpenAPI Initiative https://openapis.org/

OpenAPI Spezifikationen https://github.com/OAI/OpenAPI-Specification

PostgreSQL http://www.postgresql.org/

Postgres-XL http://www.postgres-xl.org/

QueryDSL https://github.com/querydsl/querydsl

RapidMiner https://rapidminer.com/

Spring Boot http://projects.spring.io/spring-boot/

streams Framework https://sfb876.de/streams/

Swagger Editor http://swagger.io/swagger-editor

Swagger Projekt http://swagger.io

Swagger Tools http://swagger.io/open-source-integrations

Swagger UI http://swagger.io/swagger-ui

219

https://angularjs.org/
https://cassandra.apache.org/
https://hadoop.apache.org/
https://spark.apache.org/
https://storm.apache.org/
https://hadoop.apache.org/docs/r2.6.2/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/r2.6.2/hadoop-yarn/hadoop-yarn-site/YARN.html
https://de.atlassian.com/software/jira
https://www.docker.com/
https://www.elastic.co/de/products/elasticsearch
https://www.elastic.co/de/products/elasticsearch
https://sfb876.de/fact-tools/
https://www.mongodb.org/
https://hub.docker.com/_/mongo/
https://github.com/mvel/mvel
https://openapis.org/
https://github.com/OAI/OpenAPI-Specification
http://www.postgresql.org/
http://www.postgres-xl.org/
https://github.com/querydsl/querydsl
https://rapidminer.com/
http://projects.spring.io/spring-boot/
https://sfb876.de/streams/
http://swagger.io/swagger-editor
http://swagger.io
http://swagger.io/open-source-integrations
http://swagger.io/swagger-ui

Abkürzungsverzeichnis

API Application Programming Interface

CRUD Create, Read, Update and Delete

DAG Directed Acyclic Graph

DoD Definition of Done

FACT First G-APD Cherenkov Telescope

FITS Flexible Image Transport System

GUI Graphical User Interface

HDFS Hadoop Distributed File System

HTTP Hyper Text Transfer Protocol

IBA Index of balanced accuracy

IBL Impediment Backlog

JSON JavaScript Object Notation

NASA National Aeronautics and Space Administration

NoSQL Not only SQL

NPM Node Package Manager

PBL Product Backlog

PG Projektgruppe

PO Product Owner

REST Representational State Transfer

ROC Receiver Operating Characteristic

221

222 ANHANG C. LISTE DER REFERENZIERTEN SOFTWARE

SBL Sprint Backlog

SM Scrum Master

URL Uniform Resource Locator

WiP Work In Progress

XML Extensible Markup Language

YARN Yet Another Resource Negotiator

Abbildungsverzeichnis

1.1 Visuelle Darstellung eines Gamma-Showers (oben links), welcher von Te-
leskopen aufgezeichnet wird (unten links) und in Grafiken der einzelnen
Aufnahmen dargestellt werden kann (rechts) [17] 3

1.2 Beispielhafte Verwaltung mit TORQUE und FhGFS (jetzt BeeGFS) 4

1.3 Code-2-Data mit Hadoop und Spark . 5

1.4 Analysekette . 10

2.1 Veranschaulichung der ersten vier Vs von Big Data. Von links nach rechts:
Volume, Velocity, Variety und Veracity [91] 14

2.2 Arten der Skalierung . 15

3.1 Lambda-Architektur . 18

3.2 Architektur des Apache Hadoop Projekts [73] 20

3.3 Funktionsweise eines HDFS Clusters . 21

3.4 Apache Spark Resilient Distributed Datasets 24

3.5 Maschinelles Lernen mit Spark MLlib . 26

3.6 Pipeline-Struktur von Spark ML . 26

3.7 Konkretes Beispiel für eine Pipeline in Spark ML 27

3.8 Beispiel einer Storm Topologie als DAG. Zu sehen sind Spouts (links, erste
Ebene) und Bolts (rechts, ab zweite Ebene) [63] 28

3.9 Aufbau eines Storm Clusters [63] . 30

3.10 Beispielhafte Trident Topologie [64] . 31

3.11 Abbildung 3.10 als kompilierte Storm Topologie [64] 32

3.12 Apache Spark Streaming . 32

3.13 Spark Streaming - DStream . 33

223

224 ABBILDUNGSVERZEICHNIS

3.14 Schematischer Aufbau eines Container [15] 34

3.15 Funktionsweise eines Stream [15] . 35

3.16 Arbeitsschritte eines Process [15] . 35

3.17 Veranschaulichung des Gossip Protocol [2] 38

3.18 Ein typisches Datenbankschema nach dimensionaler Modellierung, hier am
Beispiel einer Vertriebsdatenbank [53] . 41

4.1 Beispielhafter Entscheidungsbaum . 48

4.2 Unterscheidung Realer Drift vs. Virtueller Drift [37] 61

4.3 Schematische Darstellung vom unterschiedlichen Auftreten von Concept
Drift [37] . 62

4.4 Schematischer Aufbau einer Wahrheitsmatrix 63

4.5 Eine ROC Kurve [36] . 64

4.6 Korrelation als Heuristik . 71

4.7 Beispiel-Ausführung CFS [80] . 72

4.8 Berechnung von Ensemble-Korrelationen in Fast-Ensembles 74

4.9 Beispiel-Ausführung Fast-Ensembles [80] . 74

4.10 k-fache Kreuzvalidierung [68] . 76

4.11 Active learning als Kreislauf [81] . 80

5.1 Überblick über die verwendeten Software-Komponenten 84

6.1 Event vor (links) und nach (rechts) der DRS Kalibrierung. Die Spitzen
entsprechen den Signalen einer einzelnen Fotodiode [5] 89

6.2 Statistik zur Luftfeuchtigkeit in der Nacht des 21.09.2013 aufgenommen von
zwei Sensoren: TNG (oben) und MAGIC (unten) 90

8.1 Die Rückgabeformate der REST API . 96

9.1 Datenfluss bei verteilten Batch-Prozessen 121

9.2 Datenfluss nach dem Konzept von Spark Streaming 124

9.3 Datenfluss von unserer Streaming-Lösung 125

10.1 Klassendiagramm mit zugehörigen Klassen für DataFrameInput und DataFrameStream

. 136

ABBILDUNGSVERZEICHNIS 225

10.2 Übersicht der Klassen zuständig für die Erstellung von Pipelines und Stages 138

10.3 Übersicht der Klassen zuständig für die Verarbeitung von Pipelines und
Stages . 139

12.1 Der Sprint in Scrum . 149

12.2 Das Kanban-Board . 152

13.1 Eventraten der Feature Extraction auf MC-Daten 161

13.2 Eventraten der Feature Extraction auf Teleskop-Daten 162

14.1 Die True-Positive-Rate, True-Negative-Rate und die Präzision der verschie-
denen Klassifikationsverfahren. Eingezeichnet ist der Mittelwert aus 5 Re-
plikationen und die einfache Standardabweichung. Die Werte für den MPC
sind in den beiden letzten Grafiken erheblich schlechter und werden daher
nicht aufgeführt. 167

14.2 Der root mean squared error und der R2 Wert für die Regressionsverfah-
ren. Eingezeichnet ist der Mittelwert aus 5 Replikationen und die einfache
Standardabweichung. 169

14.3 Trainingsdurchsatz und Klassifikationsdurchsatz in Abhängigkeit von ver-
wendeten Rechenknoten und Prozessoren. 171

14.4 Durchsatz in Abhängigkeit der Größe des RandomForest. Eingezeichnet ist
der Mittelwert aus 5 Replikationen und die einfache Standardabweichung. . 172

14.5 Die erzielte True-Positive-Rate, True-Negative-Rate und die Präzision in
Abhängigkeit der Größe des RandomForest. Eingezeichnet ist der Mittel-
wert aus 5 Replikationen und die einfache Standardabweichung. 173

18.1 Konfigurationsseite der Web-UI . 190

18.2 Interface zum Managen von Jobs . 190

18.3 Konfiguration eines Jobs . 191

18.4 Auflistung aller gestarteten Jobs . 192

18.5 Übersichtseite der Tasks . 192

18.6 Übersichtseite des Event . 193

18.7 Übersichtseite des Event Ergebnis . 194

18.8 Konfigurationsseite der Web-UI . 194

Literaturverzeichnis

[1] Adaptive Computing: TORQUE . http://www.adaptivecomputing.com/

products/open-source/torque/ (13.08.2016).

[2] Alberto Diegeo Prieto Löfkrantz: Do you know Cassandra?. http://blogs.

atlassian.com/2013/09/do-you-know-cassandra/ (19.10.2016).

[3] Anderhub, H., M. Backes, A. Biland, V. Boccone, I. Braun, T. Bretz,
J. Buß, F. Cadoux, V. Commichau, L. Djambazov, D. Dorner, S. Einecke,
D. Eisenacher, A. Gendotti, O. Grimm, H. von Gunten, C. Haller, D. Hil-
debrand, U. Horisberger, B. Huber, K. S. Kim, M. L. Knoetig, J. H. Köhne,
T. Krähenbühl, B. Krumm, M. Lee, E. Lorenz, W. Lustermann, E. Lyard,
K. Mannheim, M. Meharga, K. Meier, T. Montaruli, D. Neise, F. Nessi-
Tedaldi, A. K. Overkemping, A. Paravac, F. Pauss, D. Renker, W. Rhode,
M. Ribordy, U. Röser, J. P. Stucki, J. Schneider, T. Steinbring, F. Tem-
me, J. Thaele, S. Tobler, G. Viertel, P. Vogler, R. Walter, K. Warda,
Q. Weitzel und M. Zänglein: Design and operation of FACT – the first G-APD
Cherenkov telescope. Journal of Instrumentation, 8(06):P06008, 2013.

[4] Anderhub, H., M. Backes, A. Biland, A. Boller, I. Braun, T. Bretz,
V. Commichau, L. D. Jambazov, D. Dorner, C. Farnier, A. Gendotti,
O. Grimm, H. von Gunten, D. Hildebrand, U. Horisberger, B. Huber,
K.-S. Kim, J.-H. Köhne, T. Krähenbühl, B. Krumm, M. Lee, J.-P. Lenain,
E. Lorenz, W. Lustermann, E. Lyard, K. Mannheim, M. Meharga, D. Nei-
se, F. Nessi-Tedaldi, A.-K. Overkemping, F. Pauss, D. Renker, W. Rhode,
M. Ribordy, R. Rohlfs, U. Röser, J.-P. Stucki, J. Schneider, J. Thaele,
O. Tibolla, G. Viertel, P. Vogler, R. Walter, K. Warda und Q. Weitzel:
Status of the First G-APD Cherenkov Telescope (FACT). In: Proceedings of the 32nd
International Cosmic Ray Conference (ICRC2011), Bd. 9, S. 203–206, Peking, China,
2011.

[5] Anderhub, H., A. Biland, I. Braun, S. Commichau, V. Commichau,
O. Grimm, H. v. Gunten, D. M. Hildebrand, U. Horisberger,

227

http://www.adaptivecomputing.com/products/open-source/torque/
http://www.adaptivecomputing.com/products/open-source/torque/
http://blogs.atlassian.com/2013/09/do-you-know-cassandra/
http://blogs.atlassian.com/2013/09/do-you-know-cassandra/

228 LITERATURVERZEICHNIS

T. Krähenbühl, W. Lustermann, F. Pauss et al.: Calibrating the camera for
the First G-APD Cherenkov Telescope (FACT). In: Proceedings of the 32nd Interna-
tional Cosmic Ray Conference (ICRC2011), Bd. 9, S. 30–33, Peking, China, 2011.

[6] Apache Software Foundation: Apache Spark Machine Learning Library Guide,
2016. https://spark.apache.org/docs/1.6.1/mllib-guide.html (08.07.2016).

[7] Apache Software Foundation: Overview. Apache Spark 1.6.1 Java API, 2016.
http://spark.apache.org/docs/1.6.1/api/java/index.html (08.10.2016).

[8] Apache Software Foundation: RandomForestClassifier . Apache Spark 1.6.1 Java
API, 2016. http://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/

ml/classification/RandomForestClassifier.html (08.10.2016).

[9] Bandyopadhyay, S., C. Giannella, U. Maulik, H. Kargupta, K. Liu und
S. Datta: Clustering distributed data streams in peer-to-peer environments. Infor-
mation Sciences, 176(14):1952–1985, 2006.

[10] Beck, K. et al.: Manifesto for Agile Software Development, 2001. http://www.

agilemanifesto.org/ (08.02.2016).

[11] Berger, K., T. Bretz, D. Dorner, D. Hoehne und B. Riegel: A robust way
of estimating the energy of a gamma ray shower detected by the magic telescope. In:
Proceedings of the 29th International Cosmic Ray Conference, S. 100–104, 2005.

[12] Bifet, A., G. Holmes, R. Kirkby und B. Pfahringer: Moa: Massive online
analysis. The Journal of Machine Learning Research, 11:1601–1604, 2010.

[13] Birant, D. und A. Kut: ST-DBSCAN: An algorithm for clustering spatial–temporal
data. Data & Knowledge Engineering, 60(1):208–221, 2007.

[14] Bock, R., A. Chilingarian, M. Gaug, F. Hakl, T. Hengstebeck, M. Jiřina,
J. Klaschka, E. Kotrč, P. Savickỳ, S. Towers et al.: Methods for multidimen-
sional event classification: a case study using images from a Cherenkov gamma-ray
telescope. Nuclear Instruments and Methods in Physics Research Section A: Accele-
rators, Spectrometers, Detectors and Associated Equipment, 516(2):511–528, 2004.

[15] Bockermann, C.: The streams Framework. https://sfb876.de/streams/

(17.01.2016).

[16] Bockermann, C. und H. Blom: The streams Framework. Techn. Ber. 5, TU Dort-
mund, Dezember 2012.

[17] Bockermann, C., K. Brügge, J. Buss, A. Egorov, K. Morik, W. Rhode und
T. Ruhe: Online Analysis of High-Volume Data Streams in Astroparticle Physics.

https://spark.apache.org/docs/1.6.1/mllib-guide.html
http://spark.apache.org/docs/1.6.1/api/java/index.html
http://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/classification/RandomForestClassifier.html
http://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/classification/RandomForestClassifier.html
http://www.agilemanifesto.org/
http://www.agilemanifesto.org/
https://sfb876.de/streams/

LITERATURVERZEICHNIS 229

In: Bifet, A., M. May, B. Zadrozny, R. Gavalda, D. Pedreschi, F. Bon-
chi, J. Cardoso und M. Spiliopoulou (Hrsg.): Machine Learning and Knowledge
Discovery in Databases (ECML PKDD 2015), Bd. 3, S. 100–115. Springer, 2015.

[18] Boulicaut, J.-F., K. Morik und A. Siebes (Hrsg.): Local Pattern Detection -
International Seminar Dagstuhl Castle, Germany, April 12-16, 2004, Revised Selected
Papers. Springer Berlin Heidelberg, 2005.

[19] Bradley, J. K.: Decision Trees on Spark, September 2014. https://speakerdeck.

com/jkbradley/mllib-decision-trees-at-sf-scala-baml-meetup (15.08.2016).

[20] Bradley, J. K. und M. Amde: Scalable Decision Trees in MLlib. Da-
tabricks Blog, September 2014. https://databricks.com/blog/2014/09/29/

scalable-decision-trees-in-mllib.html (15.08.2016).

[21] Cappellaro, E. und M. Turatto: Supernova types and rates. In: Vanbeveren, D.
(Hrsg.): The influence of binaries on stellar population studies, S. 199–214. Springer,
2001.

[22] Chang, C.-C. und C.-J. Lin: LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software
available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

[23] Corpet, F.: Multiple sequence alignment with hierarchical clustering. Nucleic acids
research, 16(22):10881–10890, 1988.

[24] Crockford, D.: The application/json Media Type for JavaScript Object Notation
(JSON). RFC 4627, RFC Editor, Juli 2006. http://www.rfc-editor.org/rfc/

rfc4627.txt (08.07.2016).

[25] Datta, S., C. Giannella und H. Kargupta: K-Means Clustering Over a Large,
Dynamic Network. In: Ghosh, J., D. Lambert, D. B. Skillicorn und J. Sri-
vastava (Hrsg.): Proceedings of the Sixth SIAM International Conference on Data
Mining, April 20-22, 2006, Bethesda, MD, USA, S. 153–164. SIAM, 2006.

[26] Dean, J. und S. Ghemawat: MapReduce: Simplified Data Processing on Large Clu-
sters. Communications of the ACM, 51(1):107–113, Januar 2008.

[27] Dietterich, T. G.: Ensemble methods in machine learning. In: Multiple classifier
systems, S. 1–15. Springer, 2000.

[28] Douglas, K. und S. Douglas: PostgreSQL: a comprehensive guide to building,
programming, and administering PostgreSQL databases. SAMS, 2003.

[29] Dries, A. und U. Rückert: Adaptive concept drift detection. Statistical Analysis
and Data Mining, 2(5-6):311–327, 2009.

https://speakerdeck.com/jkbradley/mllib-decision-trees-at-sf-scala-baml-meetup
https://speakerdeck.com/jkbradley/mllib-decision-trees-at-sf-scala-baml-meetup
https://databricks.com/blog/2014/09/29/scalable-decision-trees-in-mllib.html
https://databricks.com/blog/2014/09/29/scalable-decision-trees-in-mllib.html
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.rfc-editor.org/rfc/rfc4627.txt
http://www.rfc-editor.org/rfc/rfc4627.txt

230 LITERATURVERZEICHNIS

[30] Fawcett, T.: An introduction to ROC analysis. Pattern recognition letters,
27(8):861–874, 2006.

[31] Fielding, R. T.: Architectural styles and the design of network-based software ar-
chitectures. Doktorarbeit, University of California, Irvine, 2000.

[32] Fielding, R. T., J. Gettys, J. C. Mogul, H. F. Nielsen, L. Masinter,
P. J. Leach und T. Berners-Lee: Hypertext Transfer Protocol – HTTP/1.1 .
RFC 2616, RFC Editor, Juni 1999. http://www.rfc-editor.org/rfc/rfc2616.txt

(08.07.2016).

[33] FITS Working Group et al.: Definition of the flexible image transport system
(FITS), version 3.0 , 2008. http://fits.gsfc.nasa.gov/fits_standard.html

(11.07.2016).

[34] Freund, Y. und R. E. Schapire: A Short Introduction to Boosting. Journal of
Japanese Society for Artificial Intelligence, 14(5):771–780, 1999.

[35] Friedman, J., T. Hastie und R. Tibshirani: The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer Series in Statistics, 2001.

[36] Galar, M., A. Fernandez, E. Barrenechea, H. Bustince und F. Herrera: A
review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-
based approaches. IEEE Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews, 42(4):463–484, 2012.

[37] Gama, J., I. Žliobaitė, A. Bifet, M. Pechenizkiy und A. Bouchachia: A
survey on concept drift adaptation. ACM Computing Surveys (CSUR), 46(4):44,
2014.

[38] Garćıa, V., R. A. Mollineda und J. S. Sánchez: Index of balanced accura-
cy: A performance measure for skewed class distributions. In: Araujo, H., A. M.
Mendonça, A. J. Pinho und M. I. Torres (Hrsg.): Pattern Recognition and Image
Analysis (IbPRIA 2009), S. 441–448. Springer, 2009.

[39] Garćıa, V., J. S. Sánchez und R. A. Mollineda: On the effectiveness of pre-
processing methods when dealing with different levels of class imbalance. Knowledge-
Based Systems, 25(1):13–21, 2012.

[40] Ghemawat, S., H. Gobioff und S.-T. Leung: The Google File System. In: Pro-
ceedings of the Nineteenth ACM Symposium on Operating Systems Principles (SOSP
’03), S. 29–43, New York, NY, USA, 2003. ACM.

[41] Guyon, I., C. Aliferis und A. Elisseeff: Causal feature selection. In: Liu, H.
und H. Motoda (Hrsg.): Computational methods of feature selection, Data Mining

http://www.rfc-editor.org/rfc/rfc2616.txt
http://fits.gsfc.nasa.gov/fits_standard.html

LITERATURVERZEICHNIS 231

and Knowledge Discovery Series, S. 63–86. Chapman and Hall/CRC, Boca Raton,
FL, 2007.

[42] Guyon, I. und A. Elisseeff: An introduction to variable and feature selection. The
Journal of Machine Learning Research, 3:1157–1182, 2003.

[43] Hall, M. A.: Correlation-based feature selection for machine learning. Doktorarbeit,
The University of Waikato, 1999.

[44] Heck, D., G. Schatz, J. Knapp, T. Thouw und J. Capdevielle: CORSIKA:
A Monte Carlo code to simulate extensive air showers. Wissenschaftlicher Bericht
FZKA 6019, Forschungszentrum Karlsruhe GmbH, Karlsruhe, 1998.

[45] Helf, M.: Gamma-Hadron-Separation im MAGIC Experiment durch verteilungs-
gestütztes Sampling. Diplomarbeit, TU Dortmund, 2011.

[46] Herrera, F., C. J. Carmona, P. González und M. J. del Jesus: An overview
on subgroup discovery: foundations and applications. Knowledge and information
systems, 29(3):495–525, 2011.

[47] InterFace AG: Das KANBAN-Plakat. http://www.kanban-plakat.de/

(03.11.2015).

[48] InterFace AG: Das SCRUM-Plakat. http://www.scrum-plakat.de/ (03.11.2015).

[49] Jain, A. K., M. N. Murty und P. J. Flynn: Data Clustering: A Review. ACM
Computing Surveys (CSUR), 31(3):264–323, September 1999.

[50] Jain, R.: How Lambda Architecture Can Analyze Big Data Bat-
ches in Near Real-Time, Oktober 2013. http://data-informed.com/

lambda-architecture-can-analyze-big-data-batches-near-real-time/

(01.03.2016).

[51] Japkowicz, N. und S. Stephen: The Class Imbalance Problem: A Systematic Study.
Intelligent Data Analysis, 6(5):429–449, Oktober 2002.

[52] Kargupta, H. und B. Park: A Fourier Spectrum-Based Approach to Represent
Decision Trees for Mining Data Streams in Mobile Environments. IEEE Transactions
on Knowledge and Data Engineering, 16(2):216–229, Februar 2004.

[53] Kimball, R. und M. Ross: The data warehouse toolkit: the complete guide to di-
mensional modeling. John Wiley & Sons, 2011.

[54] Klösgen, W.: Explora: a multipattern and multistrategy discovery assistant. In: Fa-
yyad, U. M., G. Piatetsky-Shapiro, P. Smyth und R. Uthurusamy (Hrsg.):
Advances in Knowledge Discovery and Data Mining, S. 249–271. American Associa-
tion for Artificial Intelligence, Menlo Park, CA, USA, 1996.

http://www.kanban-plakat.de/
http://www.scrum-plakat.de/
http://data-informed.com/lambda-architecture-can-analyze-big-data-batches-near-real-time/
http://data-informed.com/lambda-architecture-can-analyze-big-data-batches-near-real-time/

232 LITERATURVERZEICHNIS

[55] Klösgen, W.: Applications and research problems of subgroup mining. In: Raś,
Z. W. und A. Skowron (Hrsg.): Foundations of Intelligent Systems (ISMIS’99), Bd.
1609 d. Reihe Lecture Notes in Computer Science, S. 1–15. Springer Berlin Heidelberg,
1999.

[56] Koller, D. und M. Sahami: Toward Optimal Feature Selection. In: Saitta, L.
(Hrsg.): Proceedings of the Thirteenth International Conference on Machine Learning
(ICML’96), S. 284–292. Morgan Kaufmann, 1996.

[57] Kshemkalyani, A. D. und M. Singhal: Distributed Computing: Principles, Algo-
rithms, and Systems. Cambridge University Press, März 2011.

[58] Lavrač, N., B. Kavšek, P. Flach und L. Todorovski: Subgroup discovery with
CN2-SD. The Journal of Machine Learning Research, 5:153–188, 2004.

[59] Liaw, A. und M. Wiener: Classification and Regression by RandomForest. R News,
2(3):18–22, Dezember 2002.

[60] Lichman, M.: UCI Machine Learning Repository. University of California, Irvine,
School of Information and Computer Sciences, 2013. http://archive.ics.uci.edu/

ml (12.07.2016).

[61] Mampaey, M., S. Nijssen, A. Feelders und A. Knobbe: Efficient algorithms
for finding richer subgroup descriptions in numeric and nominal data. In: IEEE
International Conference on Data Mining, S. 499–508, 2012.

[62] Marr, B.: Big Data: The 5 Vs Everyone Must
Know, 2014. https://www.linkedin.com/pulse/

20140306073407-64875646-big-data-the-5-vs-everyone-must-know

(13.03.2016).

[63] Marz, N.: A Storm is coming: more details and plans for relea-
se. Twitter Blog, August 2011. https://blog.twitter.com/2011/

a-storm-is-coming-more-details-and-plans-for-release (25.03.2016).

[64] Marz, N.: Trident: a high-level abstraction for realtime computati-
on. Twitter Blog, August 2012. https://blog.twitter.com/2012/

trident-a-high-level-abstraction-for-realtime-computation (25.03.2016).

[65] Marz, N. und J. Warren: Big Data: Principles and best practices of scalable real-
time data systems. Manning Publications, Mai 2015.

[66] Masse, M.: REST API design rulebook. O’Reilly Media, 2011.

[67] Mattern, F.: Verteilte Basisalgorithmen, Bd. 226 d. Reihe Informatik-Fachberichte.
Springer, 1989.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://www.linkedin.com/pulse/20140306073407-64875646-big-data-the-5-vs-everyone-must-know
https://www.linkedin.com/pulse/20140306073407-64875646-big-data-the-5-vs-everyone-must-know
https://blog.twitter.com/2011/a-storm-is-coming-more-details-and-plans-for-release
https://blog.twitter.com/2011/a-storm-is-coming-more-details-and-plans-for-release
https://blog.twitter.com/2012/trident-a-high-level-abstraction-for-realtime-computation
https://blog.twitter.com/2012/trident-a-high-level-abstraction-for-realtime-computation

LITERATURVERZEICHNIS 233

[68] McCormick, C.: K-Fold Cross-Validation, With MATLAB Co-
de, August 2013. http://mccormickml.com/2013/08/01/

k-fold-cross-validation-with-matlab-code/ (08.07.2016).

[69] Meier, K. J.: FACT - The First G-APD Cherenkov Telescope, Mai 2014.
http://www.astro.uni-wuerzburg.de/en/research/fact/fact-introduction

(23.02.2016).

[70] MongoDB, Inc.: MongoDB CRUD Operations. https://docs.mongodb.org/

manual/crud/ (25.03.2016).

[71] MongoDB Inc: Install MongoDB Community Edition, 2016. https://docs.

mongodb.com/manual/administration/install-community/ (07.10.2016).

[72] Morik, K. und C. Weihs: Wissensentdeckung in Datenbanken. Folien zur gleichna-
migen Vorlesung an der TU Dortmund, 2015.

[73] Murthy, A. C.: Apache Hadoop YARN - Enabling Next Generati-
on Data Applications, 2013. http://de.slideshare.net/hortonworks/

apache-hadoop-yarn-enabling-nex (23.03.2016).

[74] OpenAPI Initiative: OpenAPI Specification Version 2.0 , 2014. https://github.

com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md (07.10.2016).

[75] Quinlan, J. R.: Bagging, Boosting, and C4.5 . In: Proceedings of the Thirteenth
National Conference on Artificial Intelligence (AAAI-96), Bd. 1, S. 725–730, 1996.

[76] Richardson, L. und S. Ruby: RESTful web services. O’Reilly Media, 2008.

[77] Rijsbergen, C. J. V.: Information Retrieval. Butterworth-Heinemann, Newton,
MA, USA, 2. Aufl., 1979.

[78] Ryza, S.: How-to: Tune Your Apache Spark Jobs (Part 2). Cloude-
ra Engineering Blog, März 2015. http://blog.cloudera.com/blog/2015/03/

how-to-tune-your-apache-spark-jobs-part-2/ (06.09.2016).

[79] Saeys, Y., T. Abeel und Y. Van de Peer: Robust feature selection using en-
semble feature selection techniques. In: Walter Daelemans, Bart Goethals,
K. M. (Hrsg.): Machine learning and knowledge discovery in databases (ECML PKDD
2008), Bd. 2, S. 313–325. Springer, 2008.

[80] Schowe, B. und K. Morik: Fast-ensembles of minimum redundancy feature se-
lection. In: Okun, O., G. Valentini und M. Re (Hrsg.): Ensembles in Machine
Learning Applications, S. 75–95. Springer, 2011.

[81] Settles, B.: Active Learning Literature Survey. Computer Sciences Technical Re-
port 1648, University of Wisconsin-Madison, 2009.

http://mccormickml.com/2013/08/01/k-fold-cross-validation-with-matlab-code/
http://mccormickml.com/2013/08/01/k-fold-cross-validation-with-matlab-code/
http://www.astro.uni-wuerzburg.de/en/research/fact/fact-introduction
https://docs.mongodb.org/manual/crud/
https://docs.mongodb.org/manual/crud/
https://docs.mongodb.com/manual/administration/install-community/
https://docs.mongodb.com/manual/administration/install-community/
http://de.slideshare.net/hortonworks/apache-hadoop-yarn-enabling-nex
http://de.slideshare.net/hortonworks/apache-hadoop-yarn-enabling-nex
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
http://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-2/
http://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-2/

234 LITERATURVERZEICHNIS

[82] Sharma, M., J. Nayak, M. K. Koul, S. Bose und A. Mitra: Gamma/hadron se-
gregation for a ground based imaging atmospheric Cherenkov telescope using machine
learning methods: Random Forest leads. Research in Astronomy and Astrophysics,
14(11):1491, 2014.

[83] Taniar, D., C. H. C. Leung, J. W. Rahayu und S. Goel: High Performance
Parallel Database Processing and Grid Databases. John Wiley & Sons, 2008.

[84] Todorovski, L., P. Flach und N. Lavrač: Predictive performance of weighted re-
lative accuracy. In: Zighed, D. A., J. Komorowski und J. Żytkow (Hrsg.): Prin-
ciples of Data Mining and Knowledge Discovery (PKDD 2000), S. 255–264. Springer,
2000.

[85] TU Dortmund, Fakultät für Informatik: Modulhandbuch Master-Studiengänge
Informatik und Angewandte Informatik, April 2016. http://www.cs.tu-dortmund.

de/nps/de/Studium/Ordnungen_Handbuecher_Beschluesse/Modulhandbuecher/

Master_Inf/gesamtes_Modulhandbuch/Modulhandbuch_MSc_INF_1.pdf

(08.07.2016).

[86] Turatto, M.: Classification of supernovae. In: Weiler, K. W. (Hrsg.): Supernovae
and Gamma-Ray Bursters, S. 21–36. Springer, 2003.

[87] Tyagi, U.: Data Science & Spark :- Logistic Regression implementation for
spam dataset. knoldus Blog, Mai 2015. https://blog.knoldus.com/2015/05/25/

data-science-spark-logistic-regression-implementation-for-spam-dataset/

(11.07.2016).

[88] Unyelioglu, K.: Using Artificial Neural Networks to Predict Emergency
Department Deaths. DZone, Mai 2016. https://dzone.com/articles/

apache-spark-machine-learning-using-artificial-neu (18.08.2016).

[89] Vavilapalli, V. K., A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed und E. Baldeschwieler: Apache Hadoop
YARN: Yet Another Resource Negotiator . In: Proceedings of the 4th Annual Sym-
posium on Cloud Computing (SoCC’13), S. 5:1–5:16, New York, NY, USA, 2013.
ACM.

[90] Wagstaff, K., C. Cardie, S. Rogers, S. Schrödl et al.: Constrained k-means
clustering with background knowledge. In: Proceedings of the Eighteenth International
Conference on Machine Learning (ICML ’01), S. 577–584. Morgan Kaufmann, 2001.

[91] Walker, M.: Data Veracity, 2012. http://www.datasciencecentral.com/

profiles/blogs/data-veracity (13.03.2016).

http://www.cs.tu-dortmund.de/nps/de/Studium/Ordnungen_Handbuecher_Beschluesse/Modulhandbuecher/Master_Inf/gesamtes_Modulhandbuch/Modulhandbuch_MSc_INF_1.pdf
http://www.cs.tu-dortmund.de/nps/de/Studium/Ordnungen_Handbuecher_Beschluesse/Modulhandbuecher/Master_Inf/gesamtes_Modulhandbuch/Modulhandbuch_MSc_INF_1.pdf
http://www.cs.tu-dortmund.de/nps/de/Studium/Ordnungen_Handbuecher_Beschluesse/Modulhandbuecher/Master_Inf/gesamtes_Modulhandbuch/Modulhandbuch_MSc_INF_1.pdf
https://blog.knoldus.com/2015/05/25/data-science-spark-logistic-regression-implementation-for-spam-dataset/
https://blog.knoldus.com/2015/05/25/data-science-spark-logistic-regression-implementation-for-spam-dataset/
https://dzone.com/articles/apache-spark-machine-learning-using-artificial-neu
https://dzone.com/articles/apache-spark-machine-learning-using-artificial-neu
http://www.datasciencecentral.com/profiles/blogs/data-veracity
http://www.datasciencecentral.com/profiles/blogs/data-veracity

LITERATURVERZEICHNIS 235

[92] Wampler, D.: Apache Spark Resilient Distributed Datasets. http://www.

lightbend.com/activator/template/spark-workshop (01.03.2016).

[93] Wikipedia: Scalability, 2016. https://en.wikipedia.org/wiki/Scalability

(22.02.2016).

[94] Xin, R. S., J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker und I. Stoica:
Shark: SQL and rich analytics at scale. In: Proceedings of the 2013 ACM SIGMOD
International Conference on Management of data, S. 13–24. ACM, 2013.

[95] Zhang, W.: Complete Anytime Beam Search. In: Proceedings of the Fifteenth Natio-
nal/Tenth Conference on Artificial Intelligence/Innovative Applications of Artificial
Intelligence (AAAI ’98/IAAI ’98), S. 425–430, Menlo Park, CA, USA, 1998. Ameri-
can Association for Artificial Intelligence.

[96] Zhou, Z.: Ensemble Methods: Foundations and Algorithms. Chapman and Hall/CRC,
2012.

http://www.lightbend.com/activator/template/spark-workshop
http://www.lightbend.com/activator/template/spark-workshop
https://en.wikipedia.org/wiki/Scalability

	Einleitung
	Aufbau der Arbeit
	Anwendungsfall
	Datenanalyse

	Analyseziele
	Gamma/Hadron-Klassifizierung
	Energie-Abschätzung

	Analyse mit den FACT Tools
	Analysekette
	Grenzen von streams

	I Big Data Analytics
	Einführung in Big Data Systeme
	Nutzen von Big Data
	Probleme mit herkömmlichen Ansätzen
	Anforderungen an Big Data Systeme

	Lambda-Architektur
	Batch Layer
	Apache Hadoop
	Apache Spark

	Speed Layer
	Apache Storm
	Apache Trident
	Spark Streaming
	streams-Framework

	Serving Layer
	Datenbanken
	RESTful APIs

	Maschinelles Lernen
	Ensemble Learning
	Bagging
	Boosting
	Fazit

	Clustering und Subgruppenentdeckung
	Clustering
	Subgruppenentdeckung

	Verteiltes Lernen
	Peer-to-Peer-K-Means
	Distributed random forests
	Kompression von Entscheidungsbäumen

	Statisches und Inkrementelles Lernen
	Concept Drift und Concept Shift
	Learning with Imbalanced Classes
	Einfluss auf Klassifikatoren
	Bewertung von Klassifikatoren
	Verbesserung von Klassifikatoren

	Feature Selection
	Vorteile
	Problemstellung
	Arten von Algorithmen
	Korrelation als Heuristik
	CFS
	Fast-Ensembles

	Sampling und Active Learning
	Der naive Ansatz
	Re-Sampling
	VLDS-Ada2Boost
	Active Learning

	II Architektur und Umsetzung
	Komponenten und Architektur
	Datenbeschreibung
	FITS-Dateiformat
	Rohdaten
	Monte-Carlo-Daten
	Drs-Daten
	Aux-Daten

	Indexierung der Rohdaten
	MongoDB
	Elasticsearch
	PostgreSQL
	Auswahl der Datenbank

	RESTful API
	Design
	Endpunkte
	Rückgabeformate
	Dokumentation

	Implementierung
	Spring Framework
	Filterung
	Jobs

	Ein Beispiel-Client: Die Web-UI
	Single Page Applications
	Implementierung

	Verteilung von Streams-Prozessen
	Nebenläufigkeit der Verarbeitung
	XML-Spezifikation verteilter Prozesse
	Verarbeitung der XML-Spezifikation
	Verteilung der Daten
	Verteilte Batch-Prozesse
	Daten- und Kontrollfluss
	Instanziierung von Streams in den Workern

	Verteilte Streaming-Prozesse
	Datenfluss
	Arbeitsweise der Receiver

	Einbindung von Spark ML
	Spark ML vs. MLlib
	XML-Spezifikation
	Umsetzung

	Verteilte Ein- und Ausgabe
	MultiStream-Generatoren
	REST-Stream
	RestFulStream
	RestFulMultiStream

	Verteilte CSV-Ausgabe

	Organisation
	Agiles Projektmanagement
	Probleme Nicht-Agiler Verfahren
	Das Agile Manifest
	Scrum
	Kanban

	Wahl des Verfahrens

	III Evaluation und Ausblick
	Verteilte Streams-Prozesse
	Batch-Prozesse
	Rechenleistung
	Arbeitsspeicher
	Fehlertoleranz und Generalisierbarkeit

	Streaming-Prozesse
	Rechenleistung
	Arbeitsspeicher
	Fehlertoleranz

	Performanz der Erweiterungen
	Feature Extraction auf MC-Daten
	Feature Extraction auf Teleskop-Daten

	Modellqualität in Spark ML
	Vergleich der Klassifikationsmodelle
	Vergleich der Regressionsmodelle
	Trainingszeit von Modellen
	Einfluss der Waldgröße auf die Modellqualität

	Fazit
	Ergebnisse
	Ausblick
	Retrospektive der Organisation
	Projekt-Initialisierung
	Organisation im ersten Semester
	Organisation im zweiten Semester
	Abschließende Bewertung

	IV Benutzerhandbuch
	Vorbereitung eines Clusters
	Verfügbarkeit von Dependencies
	Starten der REST API & Web-UI
	Standard
	Docker

	Shell-Script
	Web-UI
	Konfiguration
	Starten und Managen von Jobs
	Schedulen von Jobs
	Testen von Filtern
	Einsehen der REST-API Dokumentation

	Maschinelles Lernen mit TELEPhANT
	Datenaufbereitung
	Modelltraining und Evaluation
	Training und Klassifikation
	Evaluation
	Parameterstudie

	Der TreeParser
	Struktur der Lernbäume
	Die Parser-Klasse
	CombinedTreeFeatures

	Liste der Operatoren
	XMLs zum Kapitel „Modellqualität“
	Experiment 14.1: Vergleich von Klassifikationsmodellen
	Experiment 14.4: Parameterstudie zur Waldgröße von Random Forests
	Experiment 14.2: Vergleich von Regressionsmodellen
	Experiment 14.3: Trainingszeit in Abhängigkeit der Clusterressourcen

	Liste der referenzierten Software
	Abkürzungsverzeichnis
	Abbildungsverzeichnis
	Literaturverzeichnis

