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Kapitel 1

Einleitung

In der heutigen Welt wird die Verarbeitung grofier Mengen von Daten immer wichtiger. Da-
bei wird eine Vielzahl von Technologien, Frameworks und Software-Losungen eingesetzt,
die explizit fir den Big-Data-Bereich konzipiert wurden oder aber auf Big-Data-Systeme
portiert werden konnen. Ziel dieser Projektgruppe (PG) ist der Erwerb von Expertenwis-
sen hinsichtlich aktueller Tools und Systeme im Big-Data-Bereich anhand einer realen,
wissenschaftlichen Problemstellung. Vom Wintersemester 2015/2016 bis zum Ende des
Sommersemesters 2016 beschéftigte sich diese Projektgruppe mit der Verarbeitung und
Analyse der Daten des durch den Fachbereich Physik auf der Insel La Palma betriebenen
First G-APD Cherenkov Telescope (FACT). Dieses liefert tdglich Daten im Terabyte-
Bereich, die mit Hilfe des Clusters des Sonderforschungsbereiches 876 zunichst indiziert
und dann auf effiziente Weise verarbeitet werden miissen, sodass diese Projektgruppe im
besten Falle die Téatigkeit der Physiker mit ihren Ergebnissen unterstiitzen kann. Wie ge-
nau dies geschehen soll, sei auf den nachfolgenden Seiten genauer beleuchtet - begonnen
mit dem dezidierten Anwendungsfall, unter Beriicksichtigung der notwendigen fachlichen

sowie technischen Grundlagen, bis hin zu den finalen Ergebnissen.

1.1 Aufbau der Arbeit

Zunichst beschreiben wir die Grundlagen zum Anwendungsfall und die fiir uns relevan-
ten Analyseziele der Physiker. Weiterhin werden die bisherigen Ansétze der Physiker zur
Erreichung dieser Ziele und die FACT Tools vorgestellt, mit deren Hilfe die aktuelle Ana-
lysekette durchgefithrt wird. Der Rest des Endberichts ist in vier Teile gegliedert.

Der erste Teil befasst sich mit dem Thema Big Data Analytics. Zunéchst wird in die Big
Data Thematik eingefithrt, wobei nicht nur der Begriff geklart wird, sondern auch erlautert
wird, welche Herausforderungen Big Data mit sich bringt und warum es sich lohnt, auf die-

se Herausforderungen einzugehen. Danach folgt eine Beschreibung der Lambda-Architektur,

1



2 KAPITEL 1. EINLEITUNG

welche typischerweise fiir Big Data Anwendungen umgesetzt wird. In den darauffolgen-
den drei Kapiteln wird ndher darauf eingegangen, mit welchen Methoden und mit welcher
Software die Architektur verwirklicht werden kann. Abschliefend zu diesem Teil folgt eine

Einfiihrung in das maschinelle Lernen.

Der zweite Teil gibt einen Einblick in die Architektur unserer Software und die Umsetzung
derselben. Dazu wird dargestellt, wie wir die Rohdaten mit Hilfe verschiedener Datenban-
ken indexieren, wie die REST-API umgesetzt wird und welche Erweiterungen wir aus

welchen Griinden am streams-Framework vorgenommen haben.

Der dritte Teil widmet sich der Evaluation unserer Software zum Ende der Projektgrup-
pe. Dabei geht es zuerst um die Verbesserungen, die mit einer verteilen Ausfithrung von
streams-Prozessen moglich sind. Anschlieffend werden verschiedene Modelle entsprechend
des Anwendungsfalles trainiert und evaluiert. Auflerdem fassen wir abschliefend zusam-
men, welche Ergebnisse wir in den zwei Semestern der Projektgruppe erzielt haben, und

geben einen kurzen Ausblick tiber denkbare Erweiterungen.

Das Benutzerhandbuch mit Informationen zur Installation und Ausfithrung im Cluster
sowie zur Web-Oberfliche und einigen Tipps zum maschinellen Lernen findet sich im
letzten Teil.

1.2 Anwendungsfall

Ein Teilgebiet der Astrophysik ist die Untersuchung von Himmelsobjekten, welche hoch-
energetische Strahlung ausstoflen. Beim Eintritt dieser Strahlung in die Erdatmosphére
werden Lichtimpulse erzeugt, die sogenannte Cherenkov-Strahlung, welche mithilfe von
Teleskopen aufgezeichnet und analysiert werden koénnen. Ein Teil der Analyse umfasst
das Erstellen von Lichtkurven, welche das emittierte Licht in Relation zur Zeit stellen, so-
dass Eigenschaften des beobachteten Himmelsobjektes hergeleitet werden kénnen. Mithilfe

solcher Kurven kénnen dann unter anderem Supernovae klassifiziert werden [21, 86].

Das auf der kanarischen Insel La Palma aufgebaute FACT dient der Beobachtung dieser
Gammastrahlung im TeV Bereich ausstoflenden Himmelsobjekte. Es setzt sich aus einer
mit 1440 geiger-mode avalanche photodiods (G-APD) Pixel ausgeriisteten Kamera zusam-
men, welche die Cherenkov-Strahlung in der Atmosphére aufzeichnen kann. Ein Ziel des
FACT Projekts ist es, herauszufinden, ob die G-APD Technologie zur Beobachtung von

Cherenkov-Strahlung eingesetzt werden kann [3].

Cherenkov-Strahlung entsteht, wenn energiereiche geladene Teilchen, z.B. Gammastrah-
lung, die Erdatmosphére mit sehr hoher Geschwindigkeit durchqueren. Dabei kollidieren
diese Teilchen mit Partikeln der Atmosphére, wodurch neue geladene Teilchen aus die-

ser Kollision entstehen, welche wiederum Lichtblitze erzeugen und mit weiteren Partikeln
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kollidieren kénnen. Ein solche Kaskade von Kollisionen wird unter anderem als Gamma-
Schauer bezeichnet. Die Lichtblitze konnen dann von Teleskopen wie dem FACT wahr-
genommen und analysiert werden, um z.B. den Ursprung der kosmischen Teilchen zu
bestimmen (siehe Abbildung 1.1).

Air Shower
Armosphere

Cherenkov Light

fil lelescope

Camera Samples (2000 MHz)

Abbildung 1.1: Visuelle Darstellung eines Gamma-Showers (oben links), welcher von Teleskopen
aufgezeichnet wird (unten links) und in Grafiken der einzelnen Aufnahmen dargestellt werden kann
(rechts) [17]

Ein Hauptproblem in diesem Unterfangen ist dabei die Klassifizierung der aufgezeichne-
ten Lichtblitze, denn neben der Cherenkov Strahlung wird durch Hintergrundrauschen das
aufgezeichnete Bild gestort. Die Einteilung der Cherenkov-Strahlung, hervorgerufen durch
die kosmische Gammastrahlung, und des Hintergrundrauschens wird zudem erschwert,
da die beiden Klassen stark ungleichméBig verteilt sind. Bockerman et al. [17] nennen
hier eine Gamma-Hadron Klassenverteilung von 1:1000 bis 1:10000. Aufgrund dieser stark
ungleichméfigen Verteilung ist eine sehr grofie Menge von Daten fiir eine relevante Klas-

sifizierung erforderlich.

Ein wichtiges Merkmal in der Klassifizierung dieser Daten ist, dass zum Lernen Simu-
lationen der eigentlichen Beobachtungen verwendet werden miissen, da sie selbst keine
Label besitzen. Dazu wird die Cosmic Ray Simulations for Kascade (CORSIKA) [44]
Monte-Carlo-Simulation verwendet, welche fiir eine Reihe von Eingaben eine statistische
Simulation eines in die Atmosphére eintreffenden Partikel, wie unter anderem Photonen
und Protonen, berechnet. Die Ausgaben einer solchen Simulation sind dann gelabelt und

koénnen als Trainingsdaten fiir Lernmodelle verwendet werden.

1.2.1 Datenanalyse

Die Auswertung von Beobachtungen solcher Schauer ist ein schwieriges Unterfangen. Nicht

nur wegen der ungleichméfliigen Verteilung, sondern auch aufgrund der gigantischen Masse
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an Daten, die analysiert werden muss. Ein mdogliches Vorgehen ist dabei, die Daten auf
ein beliebiges verteiltes Dateisystem zu lagern, sodass diese auf Abruf angefordert wer-
den konnen. Zugriffe auf diesen Daten kénnen dann iiber Ressourcenmanager, wie unter
anderem TORQUE (Terascale Open-source Resource and QUEue Manager) [1] einer ist,

verteilt werden.

=B8B8E
FhGFS

d ¥\

TORQUE

Abbildung 1.2: Beispielhafte Verwaltung mit TORQUE und FhGFS (jetzt BeeGFS)

Diese Vorgehensweise bietet die Moglichkeit, Datenspeicherung und Datenverarbeitung
voneinander zu trennen, hat jedoch den Nachteil, dass die Daten zunédchst an die Verar-

beitungsknoten gesendet werden miissen (Abbildung 1.2).

Code-2-Data Ein alternativer Ansatz verfolgt das Ziel, die Datenverarbeitung und -
speicherung miteinander zu kombinieren, wodurch eine performante Verarbeitung der Da-
ten ermoglicht werden kann. Apache bietet mit Hadoop (Kapitel 3.1.1) und Spark (3.1.2)

eine solche Umgebung an.

Abbildung 1.3 zeigt ein mogliches Konzept fiir die Datenanalyse von gespeicherten Daten
mittels HDFS und Spark. Hierbei wird versucht, die Datenanalyse an die Quelle zu bringen,
sodass keine Daten mehr zeitaufwéndig an die jeweiligen Rechenzentren geschickt werden
miissen. Der grofle Vorteil eines solchen Systems ist, dass zum Einen Daten direkt an den
Quellen bearbeitet werden kénnen, aber gleichzeitig noch die Mdoglichkeit besteht, Daten
aus benachbarten Knoten anzufordern. Dies wird meist im Falle von Systemausféllen und

Storungen benétigt, um die Fehlertoleranz der Datenanalyse zu verbessern.

Die Verteilung der Aufgaben kann hier zum Beispiel von YARN iibernommen werden.
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HDFS + Spark
SIS
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Abbildung 1.3: Code-2-Data mit Hadoop und Spark

Gleichzeitig kann eine API entworfen werden, welche die Schnittstelle zwischen Endnutzer

und Datenmanagement herstellt.

1.3 Analyseziele

Alle diese grundlegenden Informationen gingen aus einem Treffen mit einem Repriasentanten
der Physiker hervor, welches zu Beginn unserer Projektgruppe stattfand. Wir machten uns
nicht nur mit den physikalischen Hintergriinden bekannt, sondern legten auch gemeinsam
die exakten Analyseziele fest. Im Nachhinein fassten wir das gewonnene Wissen in User
Stories zusammen, welche nicht nur einen Uberblick iiber diese Ziele geben, sondern auch
das Entwickeln von Sprints vorbereiten sollten, so wie sie in Kapitel 12.1.3 iiber das Pro-
jektmanagement mit SCRUM beschrieben werden. Im Folgenden werden die aus unserer
Sicht wichtigsten Analyseziele zusammengefasst, welche wir mit unserer Software zum

Ende der Projektgruppe ermoglichen wollten.

Durchsuchbarkeit der Events Zuerst ist es wichtig, einen Uberblick iiber die Events
bekommen zu kénnen. Dazu soll man die Events nach ihren Metadaten durchsuchen
konnen. Mithilfe einer REST-API (zur Beschreibung siehe Unterabschnitt 3.3.2, fiir un-
sere Umsetzung siehe Kapitel 8) sollen vom Anwender Metadaten spezifiziert werden, zu
denen alle passenden Events zuriickgeliefert werden. Damit wird es einfach, alle Events zu

suchen, die beispielsweise in einem kontinuierlichen Zeitintervall liegen.

Normalisierung der Rohdaten Ein weiteres Anliegen ist die Normalisierung der Roh-
daten. Wie man in Kapitel 6.4 nachlesen kann, existiert zu jeder Aufnahmedatei eine
Drs-Datei zur Kalibrierung. Es ist miithsam, zu jeder Aufnahmedatei per Hand die passen-

de Drs-Datei zu finden. Um das System so benutzerfreundlich wie moglich zu gestalten,
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soll diese Kalibrierung daher selbststdndig durchgefiithrt werden, d.h., die passenden Drs-

Dateien werden automatisch gesucht und gefunden.

Gamma-Hadron-Separation FEine grofle Aufgabe bilden auflerdem die maschinellen
Lernaufgaben. Zum Einen soll die Gamma-Hadron-Separation ermdéglicht werden, sodass
aus den aufgezeichneten Teleskopdaten die fiir die Physiker interessanten Gammastrah-
lungen erkannt und separiert werden kénnen. Dabei ist es wieder praktisch, nach Metada-
ten durchsuchen zu kénnen, um beispielsweise alle Gammastrahlungen einer bestimmten
Region oder eines bestimmten Zeitraumes anzusehen. Da es viele verschiedene Klassifi-
kationsverfahren zur (bindren) Klassifikation gibt, sollen in unserer Software Methoden
enthalten sein, mit denen man verschiedene Lernverfahren einfach evaluieren kann, sodass
die Eignung der Verfahren im Bezug auf die Gamma-Hadron-Separation abgeschétzt wer-
den kann. Eine Ubersicht mit fiir uns moglicherweise interessanten Lernverfahren ist in

Kapitel 4 zu finden.

Energieschitzung Zu den Lernaufgaben gehort auflerdem die Energieschitzung, bei
welcher die Energie der gefundenen Gammastrahlungen beziehungsweise der darin invol-
vierten Partikel geschétzt wird. Dies soll iiber eine Graphical User Interface (GUI) oder
eine Application Programming Interface (API) einfach moglich sein, sodass die Schiatzung
mit nur einem Mausklick oder einem einfachen Aufruf angestofien werden kann. Die dabei

entstehenden Ergebnisse sollen sich aulerdem grafisch als Lichtkurven darstellen lassen.

Realzeitliche Verarbeitung Eine grole Rolle spielt die realzeitliche Einsetzbarkeit
unserer Software. Wenn die Teleskopdaten in Echtzeit gespeichert und weiterverarbeitet
werden, kann vor Ort iiber mogliche Gammastrahlungen in Echtzeit informiert werden,
um eventuelle weitere Arbeitsschritte auf die Daten anzuwenden, welche Gammastrahlun-
gen enthalten. Dazu gehort unter anderem auch realzeitliches Filtern. Dabei sollen Daten,
die offensichtlich nicht fiir die Analyse wertvoll sind und auf keinen Fall eine Gammastrah-
lung enthalten, sofort geloscht werden. Anstatt die Ressourcen zu verbrauchen, sollen diese
Daten gar nicht erst gespeichert und weiterverarbeitet werden. Fiir moglicherweise inter-
essante Daten soll eine automatische Speicherung und Indexierung erfolgen, sodass dieser
Teil der Arbeit nicht jeden Morgen nach der Aufzeichnung manuell angestoflen werden

muss. Einblicke in realzeitliches Arbeiten und Streamen gibt Abschnitt 3.2.

Instrumenten-Monitoring Mit Hilfe der kiirzlich aufgenommenen Daten soll dariiber
hinaus Instrumenten-Monitoring betrieben werden. Es soll gepriift werden, ob alle Instru-
mente einwandfrei funktionieren oder ob es Hinweise auf ein Versagen der Technik gibt.
In diesem Fall soll das System die Nutzer vor Ort warnen, sodass eine Reparatur oder ein

Austausch der beschidigten Teile moglichst schnell erfolgen kann.
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Inkrementelle Ergebnisausgabe Hinzu kommt, dass, abhédngig von der Lernaufgabe,
Teilergebnisse abgefragt werden sollen. Mochte der Nutzer nicht die komplette Laufzeit
abwarten, bis das Endergebnis komplett berechnet wurde, kann es sinnvoll sein, das Er-
gebnis wahrend des Rechenprozesses inkrementell zur Verfligung zu stellen, sofern das
Lernverfahren es zuldsst. So kénnen schon wéahrend der weiteren Verarbeitung erste Hy-
pothesen iiber die Daten angestellt werden und basierend darauf weitere Entscheidungen

zum Handling der Daten getroffen werden.

Datenexport Fiir alle Aufgaben ist es auflerdem wichtig, dass Dateien und Ergebnisse
exportiert werden kénnen. Dazu zahlt nicht nur der moglicherweise komprimierte Export
von Klassifikationsergebnissen, sondern auch der Export von Log-Dateien und Grafiken,

beispielsweise der Lichtkurven, welche bei der Schiatzung der Energie entstehen kénnen.

Insgesamt werden viele Forderungen an unsere Software gestellt, welche korrekt und be-
nutzerfreundlich umgesetzt werden miissen. In den folgenden beiden Unterkapiteln wird
kurz beschrieben, welche Methoden zu den Klassifikations- beziehungsweise Regressions-

aufgaben der oben aufgefithrten Analyseziele genutzt werden kénnen.
1.3.1 Gamma/Hadron-Klassifizierung

Im Gebiet des maschinellen Lernens gibt es viele unterschiedliche Ansétze zur bindren
Klassifizierung von Daten. Im Bereich der Klassifizierung von Gamma- und Hadron-Events
wurden Untersuchungen zu den wohl bekanntesten bereits durchgefiihrt. Dazu zéhlen unter

anderem

e Direct selection in the image parameters,
e Random Forest,
e Support Vector Machine (SVM) und

o Artificial Neural Network,

welche von Bock et al. [14] und Sharma et al. [82] ndher untersucht wurden, mit dem

Ergebnis, dass der Random Forest die besten Ergebnisse liefert.

Zum Vergleich der jeweiligen Methoden wurden verschiedene Qualitdtsmafle verglichen.

Ein wichtiges solches Maf ist der Qualitdtsfaktor @ = el , wobei €, die Anzahl der
ep

korrekt klassifizierten Gamma-Events und ep die Anzahl der als Gamma klassifizierten

Hadron-Events beschreibt. Der Q-Faktor ist damit vergleichbar mit der statistischen Si-
gnifikanz.
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1.3.2 Energie-Abschitzung

Ein weiteres Anwendungsgebiet fiir maschinelles Lernen ist die Abschatzung der Energie
von klassifizierten Gamma-Events. Da mithilfe der Energie viele physikalische Eigenschaf-
ten bestimmt werden kénnen, besteht eine wichtige Aufgabe darin, eine korrekte Energie-

angabe zu erhalten.

Die eigentliche maschinelle Lernaufgabe ist eine typische Regression, bei der ein Modell
gefunden werden muss, welches die Energie basierend auf einer Reihe von Features vor-
hersagen kann. Untersuchungen von Berger et al. [11] besagen, dass bereits das Feature

size fiir eine gute Einschitzung mithilfe eines Random Forest geniigt.

1.4 Analyse mit den FACT Tools

Nachdem die Analyseziele detailliert erlautert wurden, befasst sich dieser Abschnitt mit
den bisherigen Ansétzen der Physiker zur Analyse der Teleskopdaten. Fiir die Verarbeitung
von Flexible Image Transport System (FITS)-Dateien (siche Kapitel 6), die mit Hilfe
des FACT-Teleskops aufgenommen werden, wurden die FACT-Tools als Erweiterung des

streams-Frameworks implementiert.

Bei den FACT-Tools [17] wurden Inputs und Funktionalititen fiir streams implementiert,
die fiir die Verarbeitung der Teleskop-Rohdaten notwendig sind. Dabei wurde z.B. ein
Stream fact.io.fitsStream implementiert, der in der Lage ist, eine FITS-Datei von
einem Input zu lesen. Dariiber hinaus erméglichen es die FACT-Tools, eine Datenanalyse
mit allen Schritten, die fiir die Physiker von Wichtigkeit sind und in diesem Abschnitt
erlautert werden, durchzufiithren. Dazu gehoren alle Vorverarbeitungsschritte sowie das

Einbinden von Bibliotheken fiir maschinelles Lernen.

1.4.1 Analysekette

Die von dem FACT-Teleskop erzeugten Daten werden fiir die Erforschung der Gamma-
strahlen mit verschiedenen Methoden des maschinellen Lernens analysiert. In diesem Ab-
schnitt wird die Analysekette der Daten von der Aufnahme der Daten bis zu den ersten

Ergebnissen der Datenanalyse betrachtet.

Die Datenanalyse kann dabei in drei Schritte unterteilt werden: Datensammlung, Daten-

vorverarbeitung und Datenanalyse.
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Datensammlung

Bei dem Eintreten eines Teilchen in die Atmosphére wird ein Schauer erzeugt. Der Schauer
entsteht durch die Interaktion des Teilchens mit Elementen in der Atmosphére. Dieser
Schauer strahlt ein Licht aus, das von den Kameras des FACT-Teleskops aufgenommen

wird. Die entstandenen Bilder werden in den FITS-Dateien gespeichert.

Dabei werden nicht nur die Bilder des Schauers gespeichert, sondern auch andere niitzliche
Informationen wie zum Beispiel die Rauschfaktoren, die Stérke des Mondlichts und anderer
Lichtquellen etc. Diese Informationen konnen spéter bei der Auswertung der Daten von

groffter Wichtigkeit sein.

Datenvorverarbeitung

Nach der Datensammlung werden nun die Vorverarbeitungsschritte mithilfe der FACT-
Tools durchgefiihrt. Darunter fallen zum Beispiel das Imagecleaning, das Kalibrieren der

Daten sowie das Extrahieren von Features.

Unter Imagecleaning versteht man das Filtern der Rauschinformation. Es wird ermittelt,
welche Pixel der Aufnahme iiberhaupt Teil des Schauers sind. Alle anderen Pixel werden
entfernt. So wird vermieden, dass wertlose Informationen gespeichert werden, die unsere

Datenmenge noch zusétzlich vergrofiern.

Um die Daten fiir maschinelle Lernverfahren aufzubereiten, wird eine Feature-Extraktion
durchgefithrt. Dabei werden die bereinigten Bilddaten (Pixelintensitéten) zu numerischen
Merkmalen abstrahiert, wie etwa die Lénge und Breite eines ellipsenférmigen Schauers im
Bild. In den FACT-Tools ist die Extraktion einer ganzen Menge von Features implemen-

tiert.

Die FACT-Tools bieten allerdings nicht nur diese Verarbeitungsschritte an, sondern kénnen
je nach Analyseaufgabe auch verschiedene andere Vorverarbeitungsschritte durchfithren
[17]. Ist die Datenvorverarbeitung abgeschlossen, kann mit der eigentlichen Datenanalyse

begonnen werden.

Datenanalyse

Die Datenanalyse besteht in unserem Fall aus der Separation der Gamma- und Hadron-

Strahlen sowie der Energie Einschitzung der Gammastrahlen.

Gamma- /Hadron-Separation: Durch das Anwenden von Klassifikationsverfahren,
zum Beispiel RandomForest, konnen Gamma-Strahlen von anderen Events unterschieden
werden. Die Modelle werden dabei mithilfe der simulierten Daten (Monte-Carlo-Daten)

Abschnitt 6.3 trainiert. Danach werden sie auf die ,echten* Teleskop-Daten angewendet.
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Energie-Einschitzung: Mithilfe der Spektrumskurve und den aus der Datenanalyse

gewonnen Informationen kann nun die emittierte Energie vorhergesagt werden.

Datensammeln ‘|- Vorverarbeitung ‘|- EaES[\anilys_e
assifikation un nergie-

Aufneh ich FACT-Tool
(Aufnehmen und speichern) ‘ (FACT-Tools) Einschatzung)

Abbildung 1.4: Analysekette

Der Ablauf der Analysekette wird in Abbildung 1.4 veranschaulicht.

1.4.2 Grenzen von streams

Das FACT-Teleskop sammelt jede Nacht neue Daten, weshalb die Grofle der gesammelten
Daten sehr schnell wachst. Die Analyse dieser Daten ist also ein Big-Data-Problem und

es ist daher nicht sinnvoll, sie auf einem einzelnen Rechner durchzufiihren.

Da das streams-Framework von sich aus nicht verteilt ausfithrbar ist, stof3t es deshalb
bei dieser Datenmenge an seine Grenzen. Unsere Experimente haben gezeigt, dass auch
bei Ausfithrung der FACT-Tools auf einem Rechencluster die einzelnen Prozessoren im-
mer sequentiell ausgefithrt wurden. Daher wiirde eine interne verteilte Ausfithrung der
Prozessoren vom streams-Framework nicht gewéhrleistet. Deshalb scheint das streams-

Framework bzw. die FACT-Tools fiir unsere Aufgabe zunéchst ungeeignet.

Die Aufgabe der PG wird von daher sein, eine Erweiterung der FACT-Tools zu implemen-
tieren, die das Verteilen von Prozessen und somit das Ausfithren der FACT-Tools auf einem
Cluster erlaubt. Dies wiirde es erlauben, die FACT-Tools zur Bearbeitung von groien Da-
tenmengen zu nutzen. Eine solche Erweiterung besteht bereits fiir Apache Storm, in dieser

PG soll jedoch eine Spark-Erweiterung fiir die FACT-Tools entwickelt werden.
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Kapitel 2

Einfiihrung in Big Data Systeme

Fir den Begriff ,Big Data“ gibt es keine allgemeingiiltige Definition, vielmehr ist er ein

Synonym fiir stetig wachsende Datenmengen geworden, die mit herkémmlichen Systemen

nicht mehr effizient verarbeitet werden kénnen. Wird nach Charakteristika von Big Data

gefragt, werden oftmals die 5 Vs [62] zitiert, die in Abbildung 2.1 veranschaulicht sind:

Volume (Menge) Die Menge an Daten, die produziert werden, steigt in einen Be-
reich, der es fiir herkdmmliche Systeme schwer macht, diese zu speichern und zu

verarbeiten, und auch die Grenzen traditioneller Datenbanksysteme iiberschreitet.

Velocity (Geschwindigkeit) Die Geschwindigkeit, mit der neue Daten generiert wer-
den und sich verbreiten, steigt. Um diese (in Echtzeit) zu analysieren, benotigt es

neue Herangehensweisen.

Variety (Vielfalt) Die Daten stammen nicht mehr nur aus einer oder ein paar weni-
gen, sondern aus einer Vielzahl unterschiedlicher Quellen wie zum Beispiel Sensoren,

Serverlogs und nutzergenerierten Inhalten und sind strukturiert oder unstrukturiert.

Veracity (Vertrauenswiirdigkeit) Bei der Menge an produzierten Daten kann es
passieren, dass sie Inkonsistenzen aufweisen, unvollstédndig oder beschédigt sind. Bei

der Analyse gilt es, diese Aspekte zu berticksichtigen.

Value (Wert) Oftmals werden so viele Daten wie moglich gesammelt, um einen
Gewinn daraus zu schlagen. Dieser kann beispielsweise finanzieller Natur sein oder
darin bestehen, neue Erkenntnisse durch Datenanalyse fiir wissenschaftliche Zwecke

71 gewinnen.

In erster Hinsicht besteht die Herausforderung nun darin, diese Masse an Daten auf ir-

gendeine Art und Weise zu speichern, verfiigbar und durchsuchbar zu machen und effizient

zu analysieren. Die folgenden Abschnitte geben daher einen kurzen Einblick in die Anwen-

dungsgebiete von Big Data, erldutern die Probleme mit herkémmlichen Ansitzen und

beschéftigen sich mit Anforderungen an Big-Data-Systeme.

13
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Abbildung 2.1: Veranschaulichung der ersten vier Vs von Big Data. Von links nach rechts:
Volume, Velocity, Variety und Veracity [91]

2.1 Nutzen von Big Data

Der grofie Nutzen von Big Data besteht in den Ergebnissen der Datenanalyse. Diese kénnen
etwa dazu dienen, um personalisierte Werbung anzuzeigen oder wie in unserem Anwen-
dungsfall um neue, unbekannte Daten zu erkennen und zu klassifizieren. Eine Moglichkeit
der Analyse besteht in der Anwendung maschineller Lernverfahren, dessen Konzepte in
Kapitel 4 vorgestellt werden. Im Kern geht es dabei darum, in Datensétzen Muster und an-
dere Regelméfigkeiten zu finden. Es liegt nahe, dass, je grofler die bestehende Datenmenge
ist, Modelle genauer trainiert werden kénnen, wenn die Daten nicht hochst verschieden
sind. Um grofle Datenmengen effizient zu analysieren, benétigt es auch hier spezielle Ver-
fahren, die vor allem in Abschnitt 4.3 angesprochen werden und entsprechende Software,

die auf die Analyse von Big Data zugeschnitten ist (s. Abbildung 3.1.2).

2.2 Probleme mit herkbmmlichen Ansitzen

Bei einer handelsiiblichen Festplatte mit 2 TB Speicher und einer Lesegeschwindigkeit von
im Schnitt 120 MB/s dauert alleine das Lesen der Festplatte ungefahr 4,6 Stunden. Bei
noch groBleren Datenmengen und zeitkritischen Analysen ist diese Zeitspanne jedoch nicht
akzeptabel, weshalb Ansédtze darauf abzielen, die Daten und Berechnungen auf mehrere
Server zu verteilen, um nur einen Bruchteil dieser Zeit zu bendtigen. Ein wichtiger Begriff

in diesem Zusammenhang ist die Skalierbarkeit.

Skalierbarkeit beschreibt die Fahigkeit eines Systems, bestehend aus Soft- und Hardware,
die Leistung durch das Hinzufiigen von Ressourcen moglichst linear zu steigern. Generell
unterscheidet man hierbei zwischen vertikaler und horizontaler Skalierbarkeit (s. Abbil-
dung 2.2).

Unter vertikaler Skalierung spricht man dann, wenn sich eine Leistungssteigerung eines
einzelnen Rechners durch mehr Ressourcen, in etwa durch mehr Arbeitsspeicher, Prozes-
sorleistung oder Speicher, ergibt. Ein Nachteil dieses Verfahrens ist seine Kostspieligkeit,

da meistens nur die Anschaffung eines neueren, leistungsstiarkeren Systems moglich ist,
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Vertikale
Skalierung

Horizontale
Skalierung

Abbildung 2.2: Arten der Skalierung

wenn das alte an seine Grenzen st6fit. Fiirs Big Data Processing ist diese Art der Ska-
lierung somit eher ungeeignet, da es an irgendeinem Punkt nicht mehr moglich ist, sei es
aus technischer Sicht oder aus Griinden der Kosten, mehr Ressourcen in ein System ein-
zuspeisen. Auflerdem stellen die einzelnen Komponenten eines vertikalen Systems einen
single-point-of-failure dar. Dies bedeutet, dass der Ausfall einer Komponente den Ausfall
des ganzen Systems nach sich zieht, wodurch etwa komplexe Berechnungen nicht vollendet

werden konnen.

Im Gegensatz dazu spricht man von horizontaler Skalierung, wenn in ein bestehendes
System weitere Rechner eingespeist werden. Fiir so einen Cluster wird meistens kostengiin-
stige Serverhardware genommen, die iiber eine schnelle Netzwerkverbindung miteinander
verbunden ist. Ein Beispiel fiir eine derartige, horizontal skalierbare Architektur stellt die
A-Architektur dar, die in Kapitel 3 thematisiert wird. In Féllen von Big Data werden
horizontal skalierbare Losungen bevorzugt, da sie kostengiinstiger in der Anschaffung im
Verhéltnis zum Datenzuwachs sind und Ressourcen flexibel und je nach Bedarf hinzugefiigt
werden konnen [65, Kap. 1], [93]. Horizontal skalierte Systeme werden im Allgemeinen als
ausfallsicher angesehen, was meistens auf die genutzte Software zuriickzufiihren ist. Diese
sorgt dafir, dass selbst beim Ausfall von einzelnen Hardwarekomponenten, Knoten oder
im schlimmsten Fall von ganzen Netzwerkpartitionen Berechnungen zum Ende gebracht

werden.

2.3 Anforderungen an Big Data Systeme

Eine derartige Skalierung, wie sie im vorigen Abschnitt beschrieben ist, stellt auch neue
Anforderungen an die Datenmodellierung und an die verwendete Software. Gewtiinschte

Eigenschaften von Big-Data-Systemen sind unter anderem:

Fehlererkennung und -toleranz In einem verteilten System muss die Annahme gel-
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ten, dass zuféllig jede beliebige Komponente zu jedem beliebigen Zeitpunkt ausfallen
kann. Mit der Anzahl an Knoten in einem Cluster steigt dieses Risiko. Kann ein sol-
cher Fehler nicht zuverléssig erkannt werden, kénnen Endergebnisse verfilscht oder
nicht produziert werden. Infolgedessen miissen Big-Data-Systeme so konstruiert sein,
dass das Ausfallrisiko oder der Verlust von Daten miteinkalkuliert ist. Um Fehler-
toleranz zu gewahrleisten, wird meistens auf eine Kombination aus Datenredundanz
und wiederholter Ausfiithrung von fehlgeschlagenen Teilaufgaben gesetzt. Die Feh-
lererkennung selbst geschieht zumeist auf algorithmischer Basis und soll hier nicht

weiter vertieft werden [57, Kap. 15].

Geringe Latenzen Auch bei Datenmengen im Bereich von mehreren Tera- oder Pe-
tabyte sollen Daten so schnell wie moglich abrufbar sein. Dies wird oft {iber Da-
tenredundanzen realisiert. Motiviert von der groflen Varianz von Daten haben sich
nicht-relationale Datenbanken (s. Abschnitt 7.1, Abschnitt 7.2) etabliert, die eben-

falls verteilt arbeiten, um geringe Latenzen zu garantieren.

Skalierbarkeit Mit steigender Datenmenge soll das System horizontal mitskalieren, in-
dem mehr Ressourcen hinzugefiigt werden. Entsprechende Software wie Hadoop &
YARN (Abbildung 3.1.1) muss die neuen Ressourcen entsprechend verwalten und auf
Anwendungen verteilen. Eine skalierbare Architektur fiir Big-Data-Systeme wird mit

der A—Architektur in Kapitel 3 prisentiert.

Generalisierbarkeit Ein eigen konzipiertes Big-Data-System fiir jeden beliebigen An-
wendungsfall ist aus Sicht der Wartbarkeit und Interoperabilitdt nicht praktikabel.
Die A-Architektur bietet eine generelle Struktur und mit Software wie MapReduce
(Abbildung 3.1.1) und Spark (Unterabschnitt 3.1.2) lassen sich viele Probleme auf

einheitlicher Basis 16sen.

Bei der Datenverarbeitung in Big-Data-Systemen stellen sich neben den erwdhnten An-
forderungen noch weitere Herausforderungen. Etwa muss sich die Frage gestellt werden,
wie Daten in einem Cluster verteilt werden, sodass sie moglichst effizient verarbeitet wer-
den koénnen, und wie sich vorhandene Ressourcen fiir diese Aufgabe méoglichst gut nutzen
lassen. Dies soll jedoch nicht Gegenstand dieser Projektgruppe sein, da wir auf bereits

existierende Losungen setzen, die fiir diese Probleme Mechanismen integriert haben.

Was uns jedoch beschiftigt, ist die Portierung von bestehenden Softwareldsungen, um ge-
nau zu sein, des streams-Frameworks, auf Big Data Plattformen. Dazu gilt es zum Einen,
bestehenden Code so zu erweitern oder abzuéndern, dass er grundsétzlich verteilt aus-
gefiithrt werden kann, und zum Anderen miissen Schnittstellen zur Ausfithrungsplattform

(Hadoop & Spark) geschaffen und genutzt werden.



Kapitel 3

Lambda-Architektur

Im vorangegangenen Kapitel 1 wurde bereits die Herausforderung motiviert: Datenmengen
in der GroBenordnung von Tera- bis Petabyte miissen indiziert, angemessen verarbeitet
und analysiert werden. Bisher wurde im Rahmen der Projektgruppe eine Teilmenge der
Teleskopdaten auf dem verteilten Dateisystem eines Hadoop-Clusters (vgl. Abschnitt 3.1)
abgelegt und fiir die Verarbeitung herangezogen. Big-Data-Anwendungen zeichnen sich
jedoch nicht nur dadurch aus, dass sie eine grofle Menge persistierter Daten moglichst
effizient vorhalten, sodass Nutzeranfragen und damit verbundene Analysen zeitnah beant-
wortet werden konnen. Vielmehr ist auch die Betrachtung von Datenstromen ein essenti-
eller Bestandteil einer solchen Anwendung, um eintreffende Daten in Echtzeit verarbeiten
zu konnen. Im Folgenden soll verdeutlicht werden, wie eine solche Big-Data-Anwendung

im Sinne der sog. Lambda-Architektur umgesetzt wird.

Motivation Die Problematik besteht in der Vereinigung der persistierten Datenmenge
und der Daten des eintreffenden Datenstroms, der in Echtzeit verarbeitet werden soll.
Auch beansprucht die Beantwortung von Anfragen auf den wachsenden Datenmengen

zunehmend viel Zeit, sodass klassische Architekturansitze an ihre Grenzen kommen.

Bei der Ausfiihrung von Transaktionen sperren relationale Datenbanken bspw. betroffene
Tabellenzeilen oder die komplette Datenbank wiahrend der Aktualisierung der Daten, wo-
durch die Performanz und Verfiigbarkeit eines Systems voriibergehend reduziert werden.

Der Einfluss dieses Flaschenhalses kann mit Hilfe von Shardingansétzen reduziert werden.

Sharding beschreibt die horizontale Partitionierung der Daten einer Datenbank, sodass
alle Partitionen auf verschiedenen Serverinstanzen (z.B. innerhalb eines Clusters) verteilt
werden, um die Last zu verteilen. Die Eintrége einer Tabelle werden somit zeilenweise
auf separate Knoten ausgelagert, wodurch die Indexgrofie reduziert und die Performanz
deutlich gesteigert werden kann. Allerdings ist diese Methode auch mit Nachteilen ver-
bunden. Durch den Verbund der einzelnen Knoten zu einem Cluster ergibt sich eine starke

Abhéngigkeit zwischen den einzelnen Servern. Die Latenzzeit wird ggf. erhoht, sobald die

17
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Anfrage an mehr als einen Knoten im Rahmen einer Query gestellt werden muss. Insge-
samt leidet die Konsistenz bzw. die Strapazierfihigkeit des Systems, da die Komplexitét

des Systems steigt und somit auch die Anfélligkeit gegeniiber Fehlern.

Bisher wurde auf den Einsatz von Sharding verzichtet, obwohl die eingesetzten Datenbank-
systeme (vgl. Kapitel 7) diese Methode unterstiitzen, da die persistierten und indizierten

Event-Daten und die zugehérige Metadaten noch keine kritische Grofle erreicht hatten.

Daraus resultierend ergibt sich die Notwendigkeit einer alternativen Architektur bei der

Verarbeitung von besonders groflen Datenmengen im Big-Data-Umfeld.

Architektur Um dem Anspruch der simultanen Verarbeitung von Echtzeitdaten und
der historischen bzw. persistierten Daten gerecht zu werden, hat Nathan Marz die Lambda-
Architektur [65] eingefiihrt, die einen hybriden Ansatz verfolgt: Es werden sowohl Metho-
den zum Verarbeiten von Batches (also den historischen Daten, vgl. Abschnitt 3.1), als
auch zum Verarbeiten von Streams (Echtzeitdaten, vgl. Abschnitt 3.2) miteinander kombi-
niert. Durch die Anwendung von geeigneten Methoden fiir den entsprechenden Datensatz
wird eine Ausgewogenheit zwischen der Latenzzeit (latency), dem Durchsatz (throughput)

und der Fehlertoleranz (fault-tolerance) erreicht.

Der Unterschied zu klassischen Ansétzen beginnt bereits beim Datenmodell, welches sich
durch eine unverdnderliche Datenquelle auszeichnet, die lediglich durch das Hinzufiigen
neuer Eintrdge erweitert werden kann. Im vorliegenden Fall werden die Events aus den
Teleskopdaten bzw. den FACT-Dateien extrahiert (vgl. Kapitel 6), in die Datenbank
tiberfithrt und indiziert (vgl. Kapitel 7).

Allgemein besteht die Lambda-Architektur (Abbildung 3.1) aus drei Komponenten: Batch
Layer (Abschnitt 3.1), Speed Layer (Abschnitt 3.2) und Serving Layer (Abschnitt 3.3).

Storage Processing Serving
o
—— €S| 4
Historic
Data Batch Batch
Store Write
— e
[ Data Query [
uery
Queue Speed Random
Write
o e

Abbildung 3.1: Lambda-Architektur [50]
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Der Batch Layer enthilt die dauerhaft gespeicherten Daten in ihrer Gesamtform. Dies
sind zum Einen die auf dem Dateisystem vorliegenden Rohdaten im FITS-Format sowie
die extrahierten Events und ihre zugehorigen Metadaten. Durch die grole Menge an Daten,
die durch diesen Layer verwaltet werden, steigen die Latenzzeiten, sodass die Performanz
dieses Layers nicht besonders hoch ist. Wahrend eine Berechnung auf diesem Datenbestand
durchgefiihrt wird, werden neu hinzugefiigte Daten bei der Berechnung nicht betrachtet.
Auch werden entsprechende Ansichten auf den Datenbestand {iber diese Schicht erstellt
und zur Verfiigung gestellt. Wurden neue Daten hinzugefiigt, so werden auch die entspre-

chenden Views aktualisiert bzw. neu berechnet.

Der Speed Layer verarbeitet Datenstrome in Echtzeit und vernachlassigt den Anspruch
des Batch Layers hinsichtlich der Vollstandigkeit und Korrektheit der Ansichten auf die
aktuell verarbeiteten Daten, die von dieser Schicht bereitgestellt werden. Die neu ein-
gelesenen Daten werden tempordr zwischengespeichert und stehen zur Ausfithrung von
Berechnungen bereit. Sobald die temporér gespeicherten Daten des Speed Layers auch im

Batch Layer zur Verfiigung stehen, werden diese aus dem Speed Layer entfernt.

Die Komplexitdat des Speed Layers entsteht durch die Aufgabe, die temporér zwischenge-
speicherten Daten aus dem Datenstrom mit dem bereits persistierten Datenbestand des

Batch Layers zusammenzufiihren.

Werden neue Teleskopdaten an den Cluster iibergeben, so sollen die Events in Echtzeit
eingelesen und der Prozesskette hinzugefiigt werden, um in den anstehenden Analysen
(vgl. Abschnitt 1.4) bereitzustehen.

Der Serving Layer dient als Schnittstelle fiir Abfragen, die nach erfolgter Berechnung ein
Ergebnis zur Folge haben. Diese Ergebnisse werden aufgrund der hohen Latenz des Batch
Layers zwischengespeichert, um das Ergebnis bei erneuter Abfrage schneller ausliefern zu
kénnen. Dabei werden die ausgewerteten Daten sowohl von Speed- als auch Batch-Layer

indiziert, um die Abfragen zu beantworten.

Eine abgeschlossene Berechnung fiihrt schliellich dazu, dass alle Daten im Serving Layer
mit den neuberechneten ersetzt werden. Dadurch entfallen unnétig komplexe Updateme-

chanismen und die Robustheit gegeniiber fehlerhaften Implementierungen werden erhéht.

Um die Events geméfl bestimmten Kriterien bereitzustellen und analysieren zu kénnen,
wird eine REST-Schnittstelle (vgl. Unterabschnitt 3.3.2) zur Verfiigung gestellt, iiber die

die Anwendung u.a. auch von auflerhalb angesprochen werden kann.
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3.1 Batch Layer

Wie im eben beschrieben, werden im Batch-Layer mithilfe eines verteilten Systems grofie
Mengen an Daten verarbeitet. In diesem Zusammenhang sind wéhrend der initialen Se-
minarphase verschiedene Technologien vorgestellt und evaluiert worden. Im Folgenden
werden daher das Okosystem um Apache Hadoop und Apache Spark vorgestellt, dessen
Konzepte veranschaulicht, Vor- und Nachteile besprochen und die Wahl der spater ge-

nutzten Software begriindet.

3.1.1 Apache Hadoop

Bei dem Apache-Hadoop-Projekt handelt es sich um ein Open Source Framework, das An-
wendern ermdglicht, schnell eine verteilte Umgebung bereitzustellen, mit der sich Hardware
Ressourcen in einem Rechen-Cluster verwalten und grofie Mengen an Daten speichern und

verteilt verarbeiten lassen.

MapReduce Others

(data processing) (data processing)

YARN

(cluster resource management)

Abbildung 3.2: Architektur des Apache Hadoop Projekts [73]

Wie in Abbildung 3.2 zu sehen ist, setzt sich das Projekt aus drei modularen Komponenten
zusammen, dessen Konzepte und Nutzen fiir unseren Anwendungsfall in den folgenden

Abschnitten thematisiert werden.

HDFS

Fiir den Storage-Layer in einem Rechnercluster zeichnet sich das Hadoop Distributed File
System (HDF'S) verantwortlich und basiert auf dem Google File System [40]. Dieses eignet
sich insbesondere fiir den Bereich des Data Warehousing, also Einsatzzwecke, wo es darauf
ankommt, eine grofle Menge an Daten iiber eine lange Zeit hinweg hoch verfiighar und

ausfallsicher vorzuhalten.
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Metadata (Name, replicas, ...):
/home/ffoo/data, 3, ...

Metadata ops ~| Namenode

Block ops
Read Datanodes Datanodes
J | |
OO 8 = Replication @ e =
o = J Blocks
Rack 1 Wite Rack 2

Abbildung 3.3: Funktionsweise eines HDFS Clusters

Der Aufbau eines HDFS-Clusters ist in Abbildung 3.3 illustriert. Wie zu erkennen ist,
werden Daten auf sogenannten Datanodes in gleich groflien Blocks gespeichert. Um Aus-
fallsicherheit zu garantieren, besitzt das System einen Replikationsmechanismus, bei dem
Blocks bei Bedarf mehrfach redundant (bestimmt durch einen Replikationsfaktor) auf ver-
schiedenen Datanodes und Racks gespeichert werden. Im Falle eines Ausfalls kann so der
Replikationsfaktor von betroffenen Blocken durch Neuverteilung im Cluster wiederherge-

stellt werden, vorausgesetzt die nétigen Kapazititen sind vorhanden.

Beim Namenode handelt es sich um eine dedizierte Einheit, auf der keine Daten gespeichert
werden. Dieser enthélt Informationen iiber den Zustand des Systems, was das Wissen iiber
den Aufenthaltsort von Blécken und dessen Replikationen im Cluster beinhaltet. Durch
einen periodisch ausgefithrten Heartbeat werden alle Datanodes kontaktiert und aufge-
fordert, einen Zustandsbericht iiber gespeicherte Daten zu senden. Schliagt ein Heartbeat
mehrmals fehl, gilt der Zielknoten als tot und der beschriebene Replikationsmechanismus
greift ein. Dariiber hinaus kann der Namenode selbst repliziert werden, da er sonst einen

single-point-of-failure in diesem System darstellt.

Der Zugriff auf Daten von einem Klienten geschieht je nach dem, welche Operation aus-
gefithrt werden soll. Bei Leseoperationen einer Datei wird zunédchst der Namenode ange-
fragt, da dieser iiber ein Verzeichnis iiber alle Daten im Cluster verfiigt. Dieser gibt dann
den Ort der angefragten Datei an. Schreiboperationen werden typischerweise direkt auf
den Datanodes durchgefiihrt. Mittels der Heartbeats wird der Namenode schliefllich von
den Anderungen informiert und veranlasst die Replikation der neu geschriebenen Daten.
Weiterhin wird fiir Klienten eine einfache Programmierschnittstelle angeboten, die die
Verteilung der Daten nach auflen hin abstrahiert und somit wie ein einziges Dateisystem

wirkt.

Fiir die Projektgruppe wurde zu Anfang ein aus sechs Rechnern bestehendes Hadoop-

Cluster vom LS8 mit dem HDFS zur Verfligung gestellt. Im zweiten Semester ist das
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Projekt auf ein grofleres Cluster zwecks mehr Speicherkapazitidt und Rechenleistung um-
gezogen. Das Dateisystem kommt in unserem Anwendungsfall hauptséchlich fiir die Persi-
stenz der in Kapitel 6 beschriebenen Teleskopdaten zum Einsatz. Das verteilte Dateisystem
erwies sich bereits als sehr zuverlédssig in Bezug auf Ausfallsicherheit [40] und wird in Pro-
duktivsystemen zum Speichern und Verarbeiten mehrerer Petabyte genutzt, womit es eine

solide Grundlage fiir den Anwendungszweck darstellt.

YARN

Yet Another Resource Allocator (YARN) wirkt als Mittelsmann zwischen dem Ressourcen-
management im Cluster und den Anwendungen, die gegebene Ressourcen fiir Berechnun-
gen nutzen mochten. Die Architektur setzt sich aus einem dedizierten RessourceManager
(RM) und mehreren NodeManager (NM) zusammen, wobei auf jedem Rechner im Cluster
ein NM lauft. Der RM stellt Anwendungen Ressourcen als sogenannte Container, also logi-
sche, auf einen Rechner bezogene Recheneinheiten zur Verfiigung, die den Anforderungen
der Anwendung, wenn moglich, entsprechen. Ein von der Anwendung eingereichter Job
wird dann im Container verarbeitet. Nach Beendigung gibt der RM die Ressourcen wieder

frei.

Aufgrund dieser offenen Struktur sind Ressourcen in einem Hadoop-Cluster nicht nur
fiir Software aus dem selben Okosystem zuginglich, sondern kénnen auch von Dritt-

Programmen wie Apache Spark und Apache Storm reserviert und genutzt werden [89].

MapReduce

Bei Hadoop MapReduce handelt es sich um eine YARN-basierte Umgebung zum parallelen
Verarbeiten von Datenmengen in einem Hadoop-Cluster. Die Idee basiert auf einem Ver-
fahren aus der funktionalen Programmierung, bei der es eine map und eine reduce Funktion
gibt. Erstere wird auf jedes Element einer Menge unabhéngig voneinander durchgefiihrt,
die errechneten Ergebnisse mit letzterer Funktion zusammengefiithrt. MapReduce macht
sich insbesondere die Unabhingigkeit der Daten zunutze, um beide Funktionen massiv

parallel auszufithren, sodass sich folgendes Verfahren ergibt:

group reduce

(k1,v1) =2 list(ky, vy) 2B (ky, list(vg)) === list(vg).

Um das Prinzip zu veranschaulichen, kann das Zéhlen von Events pro Nacht benutzt wer-
den. Rechner, die einen map-Job ausfiihren (Mapper), erhalten als Eingabe jeweils eine
fits-Datei (s. Kapitel 6), zédhlen die Events und speichern jeweils eine Liste list(night, 1) als
Zwischenergebnis ab. MapReduce gruppiert die Zwischenergebnisse aller Mapper, was zu

einer Menge von (night;, list(1,1,...)) fithren wiirde. Rechner, die fiir den reduce-Funktion
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ausgewahlt worden sind (Reducer), wiirden die Zwischenergebnisse zusammenfiithren und
Daten der Form (night;,n;) abspeichern, wobei n; die Anzahl aufgenommener Events der
Nacht night; beschreibt. Es ist anzumerken, dass ,selbst wenn einer der Jobs fehlschla-
gen sollte, der gesamte Prozess nicht abgebrochen, sondern der entsprechende Job ggf.
auf einem anderen Rechner erneut ausgefithrt wird. Die Erkennung eines toten Knotens
geschieht durch stdndige Statusanfragen des Masters an Mapper und Reducer. In Experi-
menten zeigte sich, dass dieses Prinzip eine hohe Wahrscheinlichkeit fiir die Terminierung
aufweist [26].

Hadoop MapReduce hat in der Projektgruppe keine Anwendung gefunden, wofir sich zwei
Griinde angeben lassen. Zum Einen haben direkte Vergleiche gezeigt, dass andere Frame-
works wie Apache Spark Vorteile bezogen auf die Performance haben, was auch darauf
zuriickzufiihren ist, dass bei MapReduce viele Lese- und Schreibzugriffe auf das Spei-
chermedium ausgefiihrt werden, anstatt Daten im Arbeitsspeicher vorzuhalten. Weiterhin
gestaltet sich die Suche nach einem MapReduce basierten Framework zum verteilten, ma-
schinellen Lernen als schwierig. Zwar existiert mit Apache Mahout eine entsprechende,
ausgereifte Losung, nach Angaben der Entwickler wird die Entwicklung des Frameworks

sich jedoch aus Griinden der Performance auf Apache Spark konzentrieren.

3.1.2 Apache Spark

Bei Apache Spark handelt es sich um ein Cluster Computing Framework, mit dessen
Hilfe Aufgaben auf mehrere Knoten eines Clusters (Rechnerverbunds) verteilt und somit
parallel verarbeitet werden kénnen. Dies hat einen deutlichen Geschwindigkeitsvorteil ge-
geniiber der Berechnung auf einem einzelnen Knoten zur Folge, was insbesondere bei der
Verarbeitung grofiler Datenmengen deutlich wird. Im Gegensatz zu Apache Hadoop setzt
Apache Spark auf die Vorhaltung und Verarbeitung der Daten im Hauptspeicher und
erzielt so einen Perfomancevorteil, durch den Berechnungen bis zu hundertmal schneller

durchgefiihrt werden kénnen [94].

Das Framework setzt sich grundlegend aus vier Komponenten zusammen: Spark Core,
Spark SQL, Spark Streaming, GraphX, sowie der MLIlib Machine Learning Library. Mit
diesen Komponenten werden somit die essentielle Bestandteile des Projekts (Clustering,
Querying, Streaming und Datenanalyse) prinzipiell abgedeckt, sodass Apache Spark eine
besonders interessante Option als Systemgrundlage darstellt. Ebenso wird eine Vielzahl
an verteilten Dateisystemen unterstiitzt, wodurch die Anbindung des Frameworks an ver-

schiedene Datenquellen erheblich vereinfacht wird.
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Spark Core

Spark Core bildet die Grundlage von Apache Spark und ist mitunter fir die folgenden
Aufgaben verantwortlich: Speichermanagement, Fehlerbeseitigung, Verteilung der Aufga-
ben an die einzelnen Knoten, das Prozessscheduling und die Interaktion mit verteilten

Dateisystemen.

Ferner definiert Spark Core die Programmierschnittstelle, um auf dem Cluster zu arbei-
ten und Aufgaben zu definieren. Dabei handelt es sich um sog. resilient distributed da-
tasets (kurz: RDDs), die wiederum Listen von einzelnen Elementen représentieren, deren
Partitionen auf die einzelnen Knoten verteilt und parallel auf allen Knoten manipuliert
werden kénnen, wie es in Abbildung 3.4 ersichtlich wird. Die Verteilung und die paralle-
le Ausfithrung der Operationen wird dabei vom Framework selbst iibernommen. Dies ist
ein weiterer Vorteil von Apache Spark: Urspriinglich komplexe Aufgaben wie das Verteilen
und parallele Ausfithren von Prozessen auf mehreren Knoten werden durch das Framework

vollkommen abstrahiert und somit stark vereinfacht.

Node A Node B Node C Node D

RDD 1 RDD 1 RDD 1 RDD 1
Partition 1 Partition 2 Partition 3

RDD 2 RDD 2
BuD Partition 1 Partition 3

RDD 3 RDD 3 RDD 3 RDD 3 RDD 3
Partition 1 Partition 2 Partition 3 Partition 4

Abbildung 3.4: Verteilung der Partitionen eines RDDs auf unterschiedliche Knoten [92]

Die Daten kénnen zum einen, wie bereits erwahnt, aus statischen Dateien eines (verteilten)
Dateisystems bezogen werden oder aber auch aus anderen Datenquellen wie Datenbanken

(MongoDB, HBase, ...) und Suchmaschinen wie Elasticsearch.

Es wird zwischen zwei Arten von Operationen unterschieden, die auf den RDDs ausgefiihrt
werden konnen. Transformationen (wie das Filtern von Elementen) haben ein neues RDD
zur Folge, auf dem weitere Operationen ausgefithrt werden. Transformationen werden je-
doch aus Griinden der Performanz nicht direkt ausgefiihrt, sondern erst wenn das finale
Ergebnisse nach einer Reihe von Transformationen ausgegeben werden soll. Diese Technik

wird Lazy Fvaluation genannt und bietet den Vorteil, dass die Kette von Transformatio-
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nen zunéchst einmal vom Framework sinnvoll gruppiert werden kann, um die Scans des
Datensatzes zu reduzieren. Aktionen berechnen (wie das Zihlen der Elemente in einem
RDD) ein Ergebnis und liefern dieses an den Master Node zuriick oder halten es in einer

Datei auf einem verteilten Dateisystem fest.

Spark SQL

Spark SQL unterstiitzt die Verarbeitung von SQL-Anfragen, um sowohl die Daten der
RDDs als auch die externer Quellen in strukturierter Form zu manipulieren. Dadurch
wird nicht nur die Kombinationen von internen und externen Datenquellen (JSON, Apa-
che Hive, Parquet, JDBC (und somit u.a. MySQL und PostgreSQL), Cassandra, Elastic-
Search, HBase, u.v.m.) erleichtert, sondern ebenfalls die Persistierung von Ergebnissen,
Parquet-Dateien oder Hive-Tabellen und somit die Zusammenfiithrung mit anderen Daten

ermoglicht.

Eine zentrale Komponente ist das DataFrame, welches an das data frame-Konzept aus der
Programmiersprache R anlehnt und die Daten wie in einer relationalen Datenbank in einer
Tabelle bestehend aus Spalten und Zeilen repréasentiert. Dabei wird dieses DataFrame
analog zu den RDDs dezentral auf die bereitstehenden Knoten verteilt. Analog zu den
RDDs konnen auf den DataFrames Transformationen, wie map () und filter () aufgerufen
werden, um die Daten zu manipulieren. Technisch gesehen besteht ein DataFrame auf
mehreren Row-Objekten, die zusétzliche Schemainformationen wie z.B. die verwendeten

Datentypen fiir jede Spalte enthalten.

Hinsichtlich der Performance schickt sich Spark SQL an, aufgrund der héheren Abstraktion

durch SQL und den zusétzlichen Typinformationen besonders effizient zu sein.

Spark MLIib

Da Apache Spark nicht nur zum Ziel hat, Daten effizient zu verteilen, sondern diese auch
zu analysieren, existiert die Bibliothek MLIib als weitere Komponente, um Algorithmen
des maschinellen Lernens auf den eingelesenen Daten ausfithren zu kénnen. Dabei werden

prinzipiell nur Algorithmen angeboten, die auch dafiir ausgelegt sind, verteilt zu arbeiten.

Allgemein existieren mehrere Arten von Lernproblemen wie Klassifikation, Regression oder
Clustering, deren Losungen verschiedene Ziele verfolgen. Alle Algorithmen bendétigen ei-
ne Menge an Merkmalen fiir jedes Element, das dem Lernalgorithmus zugefiihrt wird.
Betrachtet man beispielsweise das Problem der Identifizierung von Spamnachrichten, das
eine neue Nachricht als Spam oder Nicht-Spam klassifizieren soll, so konnte ein Merkmal
z.B. der Server sein, von dem die Nachricht versandt wurde, die Farbe des Texts und wie

oft bestimmte Worter verwendet wurden.
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Die meisten Algorithmen sind darauf ausgelegt, lediglich numerische Merkmale zu betrach-
ten, sodass die Merkmale in entsprechende numerische Werte iibersetzt beziehungsweise

in entsprechende Vektoren transformiert werden miissen.

Mithilfe dieser Vektoren und einer mathematischen Funktion wird schlussendlich ein Mo-
dell berechnet, um neue Daten zu klassifizieren. Zum Trainieren des Modells wird der
bestehende und bereits klassifizierte Datensatz in einen Trainings- und Testdatensatz auf-
geteilt. Mit Ersterem wird das Modell trainiert und mit Letzterem schliellich die Vorher-

sage evaluiert, wie es in Abbildung 3.5 dargestellt wird.

, madel
featurization training . e #
spam avaluation /
free money now! - 1
_
by this maoney i & L, e
free savings $5§ . by
<
nOn-GpAm 2 - 5
how are you? "
thal Spark job . *
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Phasl Spark job LN
Training Data Feature Vectors Model Best Moded

Abbildung 3.5: Maschinelles Lernen mit Spark MLIib [87]

Mithilfe der von MLIib bereitgestellten Klassen konnen die Schritte zum Losen eines Lern-
problems in einer Apache-Spark-Applikation nachvollzogen werden und die Algorithmen
darauf trainiert werden. Auch zur Evaluierung der Vorhersage stellt MLlib entsprechende

Methoden zur Verfiigung.

Modell
@ Aufbereitung Modell @
ungelabelte Daten »Transformer” »Estimator” Daten mit Vorhersage

Abbildung 3.6: Pipeline-Struktur von Spark ML

Die MLlib-Bibliothek gliedert sich in zwei Pakete: spark.mllib ist das urspriingliche Paket,
welches auf Basis der zuvor vorgestellten RDDs arbeitet. Es wird nicht mehr weiterent-
wickelt, allerdings noch unterstiitzt. spark.ml ist die neue Version, die aktuell weiterent-
wickelt wird. Das Paket arbeitet auf Basis von den in Spark SQL eingefiihrten DataFrames.
Auflerdem werden alle Arbeitsschritte in einer Pipeline zusammengefasst. Fine solche Pi-

peline besteht aus Stages, welche sequentiell ausgefithrt werden. Daten werden also von
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Stage zu Stage gereicht. Eine Stage kann ein Transformer oder ein FEstimator sein. Ein
Transformer implementiert die transform()-Methode, welche einen gegebenen Datak-
rame verdndert. Beispiele fiir typische Transformer ist die Merkmalsselektion oder die
Klassifikation. Ein Estimator implementiert die fit ()-Methode, welche ein Modell auf
Basis eines DataFrames trainiert. Das Konzept einer solchen Pipeline ist in Abbildung
3.6 dargestellt, ein konkretes Beispiel liefert Abbildung 3.7. Ein Dokument soll in Worte
zerlegt werden, welche dann in numerische Merkmale tiberfiihrt werden. Anschlieflend soll
ein Modell mit Hilfe der logistischen Regression trainiert werden. Die Transformer sind
blau umrandet, der Estimator rot. Generell kann es auch mehrere Estimator in einer Pi-
peline geben. Jeder dieser Lerner wird in der Pipeline auf den Trainingsdaten trainiert.
Wird auf dem Modell, welches aus einer solchen Pipeline hervorgeht, klassifiziert, erhélt

der Anwender auch mehrere Klassifikationsergebnisse, ndmlich genau eines pro Lerner.

Pipeline [ . ] [ . ] Logistic
(Estimator) Tokenizer | W | HashingTF | = Regression

Logistic
. = - = . = Regression

Pipeline.fi |
ipeline.fitl) Raw Words Feature Mode

text vectors

Abbildung 3.7: Konkretes Beispiel fiir eine Pipeline in Spark ML [6]

Spark MLIib besteht insgesamt aus zwei Paketen: Die dltere Version MLIlib, die der Bi-
bliothek den Namen gab, und die neuere Version ML, welche aktuell auch weiterentwickelt
wird. Zu Beginn der Projektgruppe erfolgten einige Experimente, in welchen die Eignung
der beiden Pakete fiir unsere Zwecke untersucht wurde. Das Ergebnis ldsst sich in Ka-
pitel 10 nachlesen. Dort wird auflerdem beschrieben, wie die Bibliothek letztendlich in

unsere Software integriert wurde.
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3.2 Speed Layer

Im Unterschied zum Batch Layer wird mittels eines Speed Layers versucht, sich der echt-
zeitlichen Datenanalyse zu approximieren. Neu eintreffende Daten sollen dabei unmittelbar

nach ihrer Ankunft verarbeitet und an den bzw. die Klienten weitergeleitet werden.

Im Rahmen dieser Projektgruppe wurden Informationen zu géingigen Werkzeugen, die fiir
die realzeitliche Verarbeitung von Datenstromen infrage kommen, gesammelt, um somit

Stiick fiir Stiick den Speed Layer zu entwickeln.

3.2.1 Apache Storm

Apache Storm ist ein Open-Source-Tool, welches zur realzeitlichen Analyse von Daten

genutzt werden kann.

Abbildung 3.8 zeigt eine Ubersicht der in Storm vorhandenen Komponenten, Spouts und
Bolts, welche an spéaterer Stelle ndher betrachtet werden. Storm-Aufgaben werden iiber
gerichtete, azyklische Graphen spezifiziert. Dabei werden die Spouts und Bolts als Knoten
realisiert und die Kanten als Datenstreams zwischen den Knoten. Derartige Aufgaben

werden in Storm als Topologie bezeichnet.
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Abbildung 3.8: Beispiel einer Storm Topologie als DAG. Zu sehen sind Spouts (links, erste
Ebene) und Bolts (rechts, ab zweite Ebene) [63]

Storm Topologien

Wie bereits erwahnt, handelt es sich bei Topologien um die Spezifikationen von Storm-
Aufgaben in Graphenform. Sie bestehen aus zwei Knotentypen sowie einer Menge von

Kanten, die als Datenstreams zu verstehen sind und eine endlose Sequenz von Tupeln
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darstellen. Abbildung 3.8 zeigt eine solche Beispieltopologie. In diesen Abschnitt werden

die Komponenten nochmals ndher betrachtet.

Spout Ein Spout realisiert eine Quelle fiir Datenstreams und liest im Wesentlichen Ein-
gaben ein, welche er im Anschluss in Form von Datenstreams an die folgenden Knoten
weitergibt. Spouts konnen als reliable oder unreliable markiert werden, wodurch das Ver-
fahren im Falle eines Lesefehlers festgelegt wird. Wie in Abbildung 3.8 zu sehen ist, kann

ein Spout auch mehr als einen Stream erzeugen.

Bolt Ein Bolt-Knoten dient zur Verarbeitung der Daten in Storm. Ahnlich zum Map-
Reduce Ansatz konnen iiber Bolts Filterung, Funktionen, Aggregationen, Joins usw.

durchgefithrt werden. Bolts konnen mehrere Streams einlesen, aber auch ausgeben.

Storm-Cluster

Ein Storm-Cluster hat Ahnlichkeit mit einem Hadoop-Cluster (siehe Unterabschnitt 3.1.1),
unterscheidet sich aber in der Ausfithrung. Auf Hadoop werden MapReduce Aufgaben
verarbeitet, wohingegen in Storm Topologien ausfithrt werden. Die Konzepte unterschei-
den sich vor allem darin, dass MapReduce Aufgaben irgendwann enden miissen. Storm-

Topologien werden solange ausgefiihrt, bis von auen ein ,,Stopp“ (kill) gesendet wird.

Knoten im Cluster Innerhalb eines Storm-Clusters existieren zwei Typen von Knoten:
Master Node und Worker Node. Abbildung 3.9 stellt den Aufbau eines solchen Clusters

dar.

Master Node Der Master Node ist verantwortlich fiir die Verteilung des Codes, die
Fehleriiberwachung und die Aufgabenverteilung. Zu diesem Zweck lduft im Hintergrund

ein Programm namens Nimbus.

Worker-Knoten Die Worker Nodes fithren die eigentliche Arbeit aus. Worker sind ver-
teilt auf mehrere Maschinen und fithren immer Teile einer Topologie aus. Auf diese Weise
kann eine Topologie auf mehreren Worker verteilt abgearbeitet werden. Auf jedem Worker

Node lduft ein Supervisor Daemon.

Zookeeper Zwischen Master-Knoten und Worker-Knoten gibt es einen Koordinator, der
Zookeeper genannt wird. Alle Zustandsinformationen werden im Zookeeper gespeichert,
sodass es moglich ist, einen laufenden Nimbus oder Supervisor zu stoppen, ohne dass
das ganze Programm angehalten werden muss. Gleichzeitig kénnen die Daemons erneut

gestartet werden und mit ihrer Arbeit von Neuem beginnen.
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Supervisor
Zookeeper Supervisor
Nimbus Zookeeper Supervisor
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Abbildung 3.9: Aufbau eines Storm Clusters [63]

3.2.2 Apache Trident

Trident ist eine High-Level-Abstraktion auf Basis von Storm und kann als Alternative
zum Storm-Interface verwendet werden. Es erméglicht die Verarbeitung von vielen Daten
sowie die Verwendung von zustandsbasierter Datenstreambearbeitung. Im Unterschied zu
Storm erlaubt Trident eine exactly-once-Verarbeitung, transaktionale Datenpersistenz und
eine Reihe von verbreiteten Operationen auf Datenstreams, welche sich in 5 Kategorien

unterteilen lassen:

e lokale Operationen ohne Netzwerkbelastung

Repartitionierung der Daten tiber das Netzwerk

Aggregation als Teil einer Operation mit Netzwerkbelastung

Gruppierung

Merges und Joins

Trident-Topologien

Trident-Topologien werden mittels eines Compilers in optimale Storm-Topologien kom-
piliert. Abbildung 3.10 zeigt eine Trident-Topologie, welche mit zwei Datenstreams, also
bereits aus Storm bekannten Spouts, initialisiert wird. Diese werden iiber lokale Opera-
tionen (hier each) bearbeitet und anschlieend gruppiert bzw. partitioniert. Der obere

Stream wird anschlieflend in einen Zustand persistiert, sodass der untere Stream aus Que-
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ries Informationen des oberen erhalten und mitverarbeiten kann. Zudem ist zu sehen, dass

mehrere Streams iiber den join-Operator miteinander kombiniert werden kénnen.

group by persistentAggregate TridentState

. T_‘ group by state quenr

‘\. partition
b!

Abbildung 3.10: Beispielhafte Trident Topologie [64]

Abbildung 3.11 stellt die kompilierte Storm-Topologie dar. Dabei werden die Datenstreams
wieder als die bekannten Spouts initialisiert. Damit die kompilierte Topologie maximal op-
timiert wird, miissen Dateniibertragungen nur stattfinden, wenn Daten {iber das Netzwerk
iibertragen werden. Aufgrund dessen wurden lokale Operationen in Bolts zusammenge-
fasst. Die Gruppierung und die Partitionierung der Daten sind daher als Teil der Kanten

in der Storm-Topologie und somit als Datenstrome zu interpretieren.

3.2.3 Spark Streaming

Als Datenstrom wird ein kontinuierlicher Fluss von Datensétzen bezeichnet, dessen En-
de nicht abzusehen ist. Die Daten werden verarbeitet, sobald sie eintreffen, wobei die
Grofle der Menge an Datensétzen, die pro Zeiteinheit verarbeitet wird, nicht festgelegt ist.
Datenstrome unterscheiden sich von statischen Daten insofern, als dass die Daten in fe-
ster, zeitlich vorgegebener Reihenfolge eintreffen und nicht an beliebiger Stelle manipuliert
werden konnen. Die Datenstrome werden also nur Satz fiir Satz fortlaufend (sequentiell)

verarbeitet und lediglich bei ihrem Eintreffen um neue Informationen erweitert.

Mit Spark Streaming steht eine Komponente zur Verarbeitung innerhalb des Apache Spark

Framework bereit, die eine Micro-Batch Architektur implementiert: Streams werden als
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Abbildung 3.11: Abbildung 3.10 als kompilierte Storm Topologie [64]

eine kontinuierliche Folge von Batchberechnungen aufgefasst, wie es in Abbildung 3.12
dargestellt wird. Neue Batches werden immer in regelméafligen Abstdnden erstellt und alle
Daten, die innerhalb eines solchen Intervalls ankommen, werden dem Batch hinzugefiigt.
Bei den Batches handelt es sich um die bereits im Abschnitt 3.1.2 eingefiihrten RDDs.

Spark Streaming unterstiitzt verschiedenste Eingangsquellen (z.B. Flume, Kafka, HDFS),
fiir die sog. receiver gestartet werden, die die Daten von diesen Eingangsquellen sammeln
und in RDDs speichern. Im Sinne der Fehlertoleranz wird das RDD im Anschluss auf einen
weiteren Knoten repliziert und die Daten werden im Speicher des Knotens zwischengespei-
chert, wie es auch bei gewohnlichen RDDs der Fall ist. In periodischen Abstdnden wird
schliefflich ein Spark Job gestartet, um diese RDDs zu verarbeiten und mit den vorange-

gangenen RDDs zu konkatenieren.
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Abbildung 3.12: Verarbeitung von Datenstromen zZu Batches (Quelle:
https://databricks.com/blog/2015/07/30/diving-into-spark-streamings-execution-model.html)
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Auf technischer Ebene baut Spark Streaming auf dem Datentyp DStream auf, der eine
Folge von RDDs {iber einen bestimmten Zeitraum kapselt, wie es in der Abbildung 3.13
veranschaulicht wird. Ahnlich wie bei den RDDs kénnen DStreams transformiert werden,
woraus neue DStream Instanzen entstehen. Oder es werden die bereitstehenden Ausgabe-

operationen genutzt, um die Daten zu persistieren.

DStream

Abbildung 3.13: DStream als Datentyp zur Kapselungen von RDDs (Quelle:
http://www.slideshare.net /frodriguezolivera/apache-spark-streaming)

Um die eingegangenen Daten zu verarbeiten, stehen zwei Arten von Transformationen zur
Verfiigung. Mit den zustandslosen Transformationen werden die tiblichen Transformatio-
nen wie Mapping oder Filtern bezeichnet. Diese Transformationen werden auf jedem RDD
ausgefiihrt, das von dem betreffenden DStream gekapselt wird. Die zustandlose Transfor-
mierung ist unahéngig von dem vorangegangen Batch, wodurch sie sich von der zustandbe-
hafteten Transformierung unterscheidet. Die zustandsbehaftete Transformation hingegen
baut auf den Daten des vorangegangenen Batches auf, um die Ergebnisse des aktuellen
Batches zu berechnen. Es wird zwischen zwei Typen von Transformationen unterschieden:

Windowed Transformations und UpdateStateByKey Transformation.

Bei den Windowed Transformations wird ein Zeitintervall betrachtet, das {iber die zeitliche
Lénge eines Batches hinausgeht. Es wird also ein Fenster festgelegt, das eine gewisse
Anzahl an Batches umfasst, sodass die entsprechende Berechnung auf den Batches in
diesem Fenster ausgefiihrt wird. Dieses Fenster wiederum wird immer um ein bestimmtes

Verschiebungsintervall verschoben und die Berechnung erneut ausgefiihrt.

Die UpdateStateByKey Transformation dient dazu, einen Zustand iiber mehrere Batches
hinweg zu erhalten. Ist ein DStream bestehend aus (Schliissel,Event) Tupeln gegeben, so
kann mit dieser Transformation ein DStream bestehend aus (Schliissel,Zustand) Tupeln
erzeugt werden. Dabei wird, dhnlich wie bei der ReduceByKey Operation, eine Funktion
iibergeben, die definiert, wie der Zustand fiir jeden Schliissel aktualisiert wird, wenn ein

neues Event eintritt.

Ein Beispiel hierfiir wéiren Seitenbesuche als Events und eine Session- oder Nutzer-1D als
Schliissel, tiber den die Seitenbesuche aggregiert werden. Die resultierende Liste bestiinde
aus den jeweiligen Zustdnden fiir jeden Nutzer, die wiederum die Anzahl der besuchten

Seiten reflektieren wiirden.

Spark Streaming stellt demnach ein méchtiges Tool zur Verarbeitung von Datenstrémen



34 KAPITEL 3. LAMBDA-ARCHITEKTUR

dar und integriert sich nahtlos in eine bestehende Apache Spark Applikation. Durch
die Unterstiitzung verschiedenster Datenquellen, insbesondere dem verteilten Dateisystem
HDFS, bietet es sich insbesondere zur Verarbeitung von eingehenden Events in Echtzeit

an.

3.2.4 streams-Framework

Das streams-Framework [16] ist eine in Java entwickelte Bibliothek, welche eingesetzt
werden kann, um Datenstréme zu verarbeiten. Die Verarbeitung der Daten wird iiber
Prozesse geregelt, welche unter anderem fiir das Klassifizieren der Daten eingesetzt werden
kénnen. Dafiir wurde das existierende Softwarepaket Massive Online Analysis (MOA) [12]

integriert und ein Plugin fiir RapidMiner entwickelt.

Prozesse werden in streams iiber eine XML Datei spezifiziert. Es kénnen auch eigene Pro-
zesse in Java geschrieben und fiir die Verarbeitung verwendet werden. Die grundlegenden

Elemente von streams sind <container>, <stream>, <process> und <service>.

Der Container ist der Vater aller weiteren Elemente und definiert den eigentlichen stream

Prozess. Nur Elemente innerhalb eines Container werden ausgefiihrt.

container

{ stream J[ queue ] service
A

processor i

service

processor N

processor N

Abbildung 3.14: Schematischer Aufbau eines Container [15]

Der Stream wird genutzt, um die Quellen der Daten zu definieren. Ein Stream liest einen

Strom von Daten, welcher dann beispielsweise an Prozesse weitergegeben werden kann.

Das Process Element besteht aus einer Reihe von Prozessoren, welche den Strom von
Daten abarbeiten. Dafiir wird der Strom in Datenpakte aufgeteilt, welche nacheinander
durch Prozessoren geschoben werden. Prozessoren kénnen die einzelnen Datenpakte lesen,

verdndern oder komplett neue erstellen und an die néchsten Prozessoren weitergeben.

Service Elemente erlauben das Abrufen von Funktionen in jeder Phase der Verarbeitung.
Ein Service kann so z.B. dafiir eingesetzt werden, um innerhalb eines Prozessors Daten-

bankanfragen zu stellen.
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Abbildung 3.15: Funktionsweise eines Stream [15]

processor N

Abbildung 3.16: Arbeitsschritte eines Process [15]
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3.3 Serving Layer

Die letzte Schicht der in diesem Kapitel beschriebenen Lambda-Architektur ist der Serving
Layer. Wahrend der Batch Layer und der Speed Layer sich vor allem um die Verarbeitung
der Daten gekiimmert haben, iibernimmt diese Schicht die Kommunikation mit den Nut-
zern. Die zugrundeliegenden Daten werden dazu iiblicherweise indexiert und gewonnene
Ergebnisse aus den anderen Schichten werden (zwischen-)gespeichert, damit auch grofiere
Datenmengen und komplexere Anfragen den Anwendern schnell zur Verfiigung gestellt

werden konnen.

Hierzu werden in diesem Abschnitt verschiedene Datenbank-Systeme présentiert, wobei
ein Schwerpunkt auf sogenannte ,Not only SQL (NoSQL)“-Systeme gelegt wird. Weiterhin

wird das Prinzip eines Service-Interfaces mithilfe einer RESTful API ertrtert.

3.3.1 Datenbanken

Fiir eine spatere Anwendung, die die vom Teleskop erzeugten Daten verarbeiten soll, ist
nicht pragmatisch, jedes Mal die Daten aus den einzelnen Dateien auszulesen. Daher bietet

es sich an, die haufig benttigten Daten in einer Datenbank zu erfassen.

Die verwendete Datenbank muss mit groflen Datenmengen zurechtkommen und idealer-

weise erlauben, den Inhalt der Datenbank auf mehrere Knoten im Netzwerk zu verteilen.

Im Folgenden werden daher einige aktuelle Datenbanksysteme vorgestellt und auf ihre

Eignung hin tiberpriift.

MongoDB

Die MongoDB zihlt zu den dokumentenbasierten Datenbanksystemen. Im Gegensatz zu
einer relationalen Datenbank, die Tabellen mit fester Struktur und festen Datentypen
enthélt, verwaltet MongoDB Collections von potenziell unterschiedlich strukturierten Do-
kumenten. Dies bedeutet auch, dass Anfragen an die MongoDB nicht per SQL sondern
mit einer eigenen Anfragesprache [70] durchgefiithrt werden. Somit z&hlt MongoDB zu den
NoSQL-Datenbanksystemen.

MongoDB unterstiitzt mehrere Konzepte, die die Verfiigbarkeit der Daten und die Skalier-
barkeit der Datenbank begiinstigen. Beim Sharding wird eine Collection in mehrere Teile
(Shards) partitioniert, die dann auf jeweils einem Rechner abgelegt werden. Auf diesem

Weg konnen auch groie Datenmengen gespeichert und durchsucht werden.

Dieses Konzept ist in der Datenbank-Community bereits unter dem Namen horizontale

Skalierung bekannt. Horizontale Skalierung steht der bisher oft anzutreffenden vertikalen
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Skalierung entgegen, bei der ein einzelner Rechner im Falle von zu geringer Leistung durch

einen einzelnen, leistungsfihigeren Rechner ersetzt wird.

Die Replication erlaubt es, dieselben Daten auf mehreren Rechnern abzulegen. Sollte ein
Rechner nicht verfiigbar sein, konnen Lese- und Schreibanfragen dann auf den verbliebe-
nen Kopien durchgefithrt werden. Dadurch bleibt die Verfiighbarkeit der Datenbank auch
bei technischen Ausfillen von Teilen des Netzwerks oder einigen Rechnern gewéhrleistet.
Zusétzlich konnen Leseanfragen auf die verfiigbaren Kopien verteilt werden, sodass die
Latenzen und der Gesamtlesedurchsatz verbessert werden. Allerdings miissen Schreiban-
fragen auf alle Kopien dupliziert werden, sodass ein trade-off zwischen dem Lesedurchsatz
und dem Schreibdurchsatz stattfindet.

Da Sharding und Replication beliebig kombinierbar sind, muss je nach den Anforderungen

des Projekts eine zugeschnittene Feinjustierung vorgenommen werden.

Elasticsearch

Bei Elasticsearch handelt es sich um eine von Shay Bannon im Jahr 2010 entwickelte,
verteilte, hochskalierbare Such-Engine, die auf der Suchmaschine Apache Lucene basiert.
Die Speicherung der Daten erfolgt bei Elasticsearch ebenso wie bei MongoDB dokumen-
tenbasiert, daher bezeichnet man die kleinste durchsuchbare Einheit als document. Jedes
document ist von einem ganz bestimmten type und bildet gemeinsam mit vielen weiteren
documents - oder im Zweifelsfall auch allein - einen Index. Vergleicht man diesen Aufbau
mit jenem herkémmlicher Datenbanken, so ldsst sich ein Inder mit einer Datenbank, ein
type mit einer Tabelle und ein document mit einer einzelnen Tabellenzeile gleichsetzen.
Jeder Index lasst sich in mehrere sogenannte shards unterteilen, die, falls Elasticsearch
auf mehreren Rechenknoten betrieben wird, auf ebendiese aufgeteilt werden kénnen, um
die Geschwindigkeit sowie bei redundanter Verteilung ebenfalls die Ausfallsicherheit zu

erhohen. Jeder shard wird intern mittels eines Lucene-Index realisiert.

Elasticsearch kann entweder auf einem oder auf mehreren Rechenknoten, sogenannten
Nodes, betrieben werden. Verwendet man lediglich einen einzigen Node, so bildet dieser
den gesamten Cluster. Werden hingegen mehrere Nodes verwendet, so muss ein Master-
Node spezifiziert werden, der die tibrigen Nodes koordiniert und dariiberhinaus als Erster
alle Queries entgegennimmt, um sie daraufhin an einen oder mehrere entsprechende andere

Nodes weiterzupropagieren.

Das Formulieren von Suchabfragen an Elasticsearch erfolgt mit Hilfe einer RESTful API,
an welche die jeweilige Query als JSON-Dokument gesendet wird. Die daraufhin erhalte-
ne Response befindet sich ebenfalls im JSON-Format. Fiir diese RESTful API existiert
zudem eine Unterstiitzung durch Spring Data, die es ermdglicht, das Formulieren nativer
JSONSs zu umgehen und das Stellen von Queries sowie die Verarbeitung der Responses zu

vereinfachen. Dies sei an spéterer Stelle genauer erldutert.
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Es lasst sich also feststellen, dass Elasticsearch geradezu ideal fiir die Zwecke dieser Pro-
jektgruppe ist, da es verteilt einsetzbar und zudem hochskalierbar ist, was im Bereich
des Big Data unabdingbar ist, und da dariiberhinaus eine komfortable Java-Anbindung
gegeben ist, sodass Elasticsearch ohne groflen Aufwand in das Projekt integriert werden

kann.

Cassandra

Ein weiteres NoSQL-Datenbanksystem, das sich fiir die Zwecke dieser Projektgruppe ein-
setzen liefle, ist Apache Cassandra. Dabei handelt es sich um eine hochskalierbare, sehr
ausfallsichere, verteilte Datenbank, die zur Persistierung von Daten eine Kombination aus
Key-Value-Store und spaltenorientiertem Ansatz nutzt. Ersteres bedeutet in grundlegen-
der Form, dass zur Speicherung von Daten nicht wie bei herkémmlichen Datenbanken
Tabellen verwendet werden, sondern jedem zu speichernden Wert (value) ein eindeutiger
Schliissel (key) zugeordnet wird, mittels dessen auf den entsprechenden Datensatz zuge-
griffen werden kann. Jeder derartige Datensatz wird in einer sogenannten Spalte (column)
abgelegt und mit einem Zeitstempel versehen. Mehrere columns lassen sich - analog zu
einer Tabelle bezogen auf relationale Datenbanken - zu einer column family zusammenfas-
sen. Eine column kann dariiber hinaus als super column markiert werden, sodass sie nicht
nur mit Hilfe von Schliisselwerten, sondern auch anhand der Zeitstempel sortiert werden

kann.

Auf technischer Ebene besteht ein Cassandra-Cluster aus einer Menge von Nodes, die
mittels des Gossip Protocol kommunizieren. Dies funktioniert analog zu der dem Proto-
kollnamen entsprechenden Kommunikation im realen Leben folgendermaflen: Jeder Re-
chenknoten tauscht mit einem oder mehreren ihm bekannten Knoten sein Wissen aus,
welche wiederum auf ebendiese Weise verfahren, bis schliellich alle Nodes denselben Wis-

sensstand besitzen.

Hi mates!
This is what |
know...

Hi mates!

Hi mates!
This is what |
know...

Abbildung 3.17: Veranschaulichung des Gossip Protocol [2]

Die Menge der persistierten Datensétze eines sogenannten Keyspace, also einer Menge

von Schliisselwerten, ist als Ring zu betrachten, fiir die Verwaltung dessen Teilmengen
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jeweils ein Node zustdndig ist. Die Zuweisung der Zustédndigkeiten erfolgt dabei durch
einen Partitioner. Jeder Cassandra-Cluster besitzt einen oder mehrere Keyspaces, fiir die
jeweils ein sogenannter Replication Factor festgelegt wird. Dieser bestimmt die Anzahl
verschiedener Rechenknoten, auf denen die Speicherung eines Datensatzes erfolgen muss,

und dient zur Erh6hung der Redundanz und somit der Ausfallsicherheit der Datenbank.

Zur Replikation von Datensétzen existieren zwei verschiedene Ansétze, deren einfachere
Variante in der Simple Replication Strategy besteht. Geméafl dieses Verfahrens wird ein
Datensatz in jeweils einem Knoten gespeichert und daraufhin im Uhrzeigersinn durch eine
dem Replication Factor entsprechende Anzahl von Knoten repliziert. Bei der Network To-
pology Strategy handelt es sich um eine Replikationsstrategie fir groflere Cluster. In diesem
Fall gilt der Replication Factor pro Datacenter, sodass jeder Datensatz durch eine dem
Replication Factor entsprechende Zahl von Nodes eines anderen Racks, also Teilbereiches,

des Datacenters repliziert werden muss.

Wihrend zur Durchfithrung einer Read/Write-Operation in der Simple Replication Strat-
egy ein beliebiger Knoten angesprochen und die Daten unmittelbar weiterpropagiert wer-
den koénnen, fungiert der in der Variante der Network Topology Strategy angesprochene
Knoten als Coordinator, der mit den sogenannten Local Coordinators der jeweiligen Data-
centers kommuniziert, welche wiederum dort fiir ein lokales Weiterpropagieren der Daten

sorgen.

Es ist moglich, das Konsistenzlevel einer Read/Write-Operation festzulegen, indem eine
Anzahl von Knoten bestimmt wird, die dem Coordinator geantwortet haben miissen, bevor
dieser eine Antwort an den die Operation ausfithrenden Client weitergeben kann. An dieser
Stelle befindet sich ein Schwachpunkt von Cassandra, da mit wachsender Konsistenz die
Geschwindigkeit, mit der eine Operation durchgefiihrt werden kann, sinkt, eine steigende

Geschwindigkeit jedoch Einbuflen in der Konsistenz zur Folge hat.

PostgreSQL

Eine weitere Moglichkeit ist der Einsatz einer klassischen relationalen Datenbank. Eine

solche bietet verschiedene Vorteile:

Maichtige Anfragesprache Das relationale Modell und die damit verbundene Anfrage-
sprache SQL erlaubt die Formulierung von einer Vielzahl von deklarativen Anfra-
gen. Auch komplexe Datenanalysen kénnen von einem relationalen Datenbanksystem
durchgefithrt werden, was beispielsweise mit Cassandra aufgrund der restriktiveren

Anfragesprache im Allgemeinen nicht moglich ist.

Jahrzehntelange Optimierung Relationale Datenbanken sind seit Jahrzehnten der Stan-

dard im Datenbankbereich, und dementsprechend hoch entwickelt. Somit kénnen sie
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architekturbedingte Nachteile unter Umsténden durch geschickte Optimierung wett-

machen.

Transaktionssicherer Betrieb Im Gegensatz zu anderen Systemen bieten relationale
Datenbanken eine Vielzahl von Garantien, was die Ausfall- und Transaktionssicher-

heit angeht.

Relationale Datenbanken stehen oft unter dem Ruf, dass diese Vorteile dadurch erkauft
werden, dass die Verarbeitung von sehr grofien Datenmengen nicht effizient moglich ist.
In der Tat haben relationale Datenbanken zwei Eigenschaften, die sie fiir den Big-Data-
Kontext als nicht sehr geeignet erscheinen lassen. Zum Einen verfiigen sie liber ein starres
Datenbankschema, das genau definiert, welche Typen die Eintréage in der Datenbank haben
miissen. Es ist also schwierig, mit nachtriiglichen Anderungen oder schwach strukturierten
Daten umzugehen. Zum Anderen sind die meisten grofien relationalen Datenbanksysteme
auf den Betrieb auf einem einzelnen Rechner ausgelegt. Dies limitiert die Skalierbarkeit

des Systems.

Data Warehousing Es ist allerdings moglich, diese Nachteile ein Stiick weit auszu-
gleichen, wenn die Datenbank so konzipiert ist, dass die Ausfiihrung der vorgesehenen
Analysen effizient moglich ist. Dafiir bestimmte Prinzipien werden seit den 90er Jahren

unter den Begriffen Data Warehousing und Dimensional Modelling zusammengefasst [53].

Die Essenz dieser Verfahren besteht darin, dass der Fokus, anders als bei herkémmlichen,
auf Normalisierung basierenden Datenbankdesigns, nicht auf der Vermeidung von Redun-
danz, sondern auf der Minimierung des Rechenaufwands fiir Analyseanfragen liegt. Vor
allem Join-Operationen zwischen grofien Tabellen werden zu vermeiden versucht. Um dies
zu erreichen, wird bei dimensionaler Modellierung zwischen zwei Tabellentypen unter-
schieden: Faktentabellen, deren Eintrage zu den Ereignissen korrespondieren, die primér
analysiert werden sollen, und deutlich kleineren Dimensionstabellen, die die moglichen
Auspragungen dieser Ereignisse darstellen. Diese werden iiblicherweise sternférmig ange-
ordnet, sodass Joins jeweils immer nur zwischen einer Fakten- und einer Dimensionstabelle

durchgefithrt werden miissen. Ein typisches Schema ist in Abbildung 3.18 dargestellt.

Eine Konsequenz dieser Modellierung ist, dass Daten mitunter redundant gespeichert wer-
den. Beispielsweise kénnte in einer Dimensionstabelle derselbe String in verschiedenen
Tupeln wiederholt vorkommen. Dies wird in Kauf genommen, um die Analyseperformanz

zu verbessern.

PostgreSQL PostgreSQL wird gemeinhin als das am héchsten entwickelte relationa-
le Open-Source Datenbanksystem betrachtet [28]. Es unterstiitzt den gesamten SQL-
Standard sowie das ACID-Paradigma zur Transaktionssicherheit. Es ist somit unter den

relationalen Datenbanken die offensichtliche Wahl fiir den Einsatz in der PG.
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Date Dimension Daily Sales Facts Product Dimension
Date Key (FK) Date Key (PK) Product Key (PK)
Date Attributes... Product Key (FK) — Product Attributes...
Store Key (FK)
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Store Dimension

Store Key (PK)
Store Attributes...

Abbildung 3.18: Ein typisches Datenbankschema nach dimensionaler Modellierung, hier am
Beispiel einer Vertriebsdatenbank [53]

PostgreSQL ist zudem attraktiv, weil es JSON als Datentyp unterstiitzt. JSON-Dokumente
koénnen nicht nur in relationalen Tabellen abgelegt werden, sondern auch iiber spezielle
Operatoren modifiziert und ausgewertet werden. Dies kann eingesetzt werden, um auch

weniger strukturierte Daten mit PostgreSQL zu verarbeiten.

Ein interessanter Ableger von PostgreSQL ist Postgres-XL. Hierbei handelt es sich um
ein Projekt mit dem Ziel, PostgreSQL fiir den Betrieb als verteilten Datenbankcluster
zu erweitern. Es fithrt dazu Mechanismen fiir Sharding ein, also fir das Aufspalten von
Tabellen auf mehrere Clusterknoten. Gleichzeitig bewahrt es die Vorteile von PostgreSQL,
wie zum Beispiel die ACID-Garantien. Fiir Félle, in denen die Datenmengen zu grof fiir

eine einzelne Maschine sind, stellt Postgres-XL eine mogliche Losung dar.

3.3.2 RESTful APIs

In diesem Abschnitt soll nun gezeigt werden, wie die Indexdaten und zwischengespeicher-
ten Ergebnisse aus den Datenbanken Nutzern zur Verfiigung gestellt werden kénnen. Dazu
wird die Idee eines Service-Interfaces verdeutlicht und danach werden die Grundlagen einer
RESTful APIs vorgestellt.

Grundlegende Idee

Mit der weiteren Verbreitung von unterschiedlichen Endgeréten werden die Anforderungen
an Software-Projekte immer komplexer. Reichte es frither aus, nur eine klassische Desktop-
Anwendung bereitzustellen, wird heute auch eine Webseite, eine App usw. gewiinscht.
Somit muss die Geschéftslogik an drei oder mehr unterschiedlichen Stellen implementiert
werden. Dies ist offensichtlich alles andere als einfach zu warten und ein Fehler in einer
Anwendung kann die Logik einer anderen beeintrichtigen, da alle auf denselben Daten
arbeiten. Schon seit etlichen Jahren hat es sich in der Praxis als niitzlich erwiesen, wenn
die Geschéaftslogik und die Anzeige der Daten getrennt voneinander implementiert werden.

Wenn man nun diese Trennung nicht nur intern in einer Anwendung beachtet, sondern die
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Geschaftslogik zentral auf einem Server bereitstellt und die unterschiedlichen Anwendun-
gen als Clients darauf zugreifen ldsst, umgeht man das Problem der verteilten Logik und

kann dennoch fiir jeden Anwendungsfall die passende Darstellung erzielen.

Dartiberhinaus hat es sich in der Praxis bewéhrt, wenn solche Schnittstellen keine klassi-
schen Sitzungen pro Nutzer haben, sondern Stateless sind. Hierdurch konnen komplizierte
Mechanismen zur Sitzungsverwaltung und die sonst nétigen groflen Zwischenspeicher fur
die Sessions entfallen. Somit wird die Implementierung der APIs deutlich einfacher und
die Nutzer dieser Schnittstellen kénnen einem eindeutig definierten Verhalten pro Aufruf,

ohne Blick auf die Sitzungshistorie, vertrauen.

Dabei beschreibt Representational State Transfer (REST) keine festen Regeln oder gar
ein starres Protokoll, sondern ist mehr als eine Liste von Vorschlagen zu verstehen, wie
man eine solche APT designen sollte. Halt man sich méglichst genau an diese Vorschlége,
ist es auch fiir Auflenstehende einfacher, sich in eine fiir sie neue API einzuarbeiten. Auch
wenn die Vorschldge die meisten Anwendungsfille abdecken, so kann es immer Situationen
geben, in denen es moglicherweise besser ist, den Standard nicht zu beachten. REST ist
somit duBerst flexibel [31, 76].

HTTP

Grundlegend fiir RESTful APIs ist hierbei die Kommunikation tiber das Hyper Text Trans-
fer Protocol (HTTP). Dies ist heutzutage moglich, denn fast alle Geréte verfiigen tiber
einen Internetanschluss, der sich als Basis fiir den Austausch zwischen dem Server und
den Client eignet. Da das HTTP umfangreich ist und sich als ein Standard-Protokoll fiir
den Austausch von Daten iiber das Internet etabliert hat, kénnen die nétigen Operatio-
nen dariiber abgewickelt werden, ohne das ein neues Protokoll designt und implementiert
werden muss. HTTP ist dabei ein klassisches Client-Server-Protokoll, bei dem die Kom-
munikation immer vom Client aus gestartet wird. HI'TP regelt dabei die Syntax und
Semantik der gesendeten Daten und baut auf TCP/IP auf.

HTTP-Anfragen Eine Anfrage an einen HTTP-Server enthélt nicht nur die IP-Adresse
des Servers sondern auch einen Server-Pfad, der die gewiinschte Ressource nédher be-

schreibt. Diese Kombination wird auch als Uniform Resource Locator (URL) bezeichnet.

Neben der URL wird ein Header-Teil mitgeschickt, der zusétzliche Meta- und Zusatz-
Informationen enthélt. Dazu kénnen Daten zur Authentifizierung, die gewiinschten For-
matierung der Antwort oder auch die Grofie des Datenfeldes zéhlen. Eine der wichtigsten
Header-Informationen ist hierbei die gewiinschte Methode, die der Server unter der URL

ausfiithren soll:

POST Driickt aus, dass die im Body des Request gesendeten Daten erstellt werden sollen.



3.3. SERVING LAYER 43

Code | Text Beschreibung

200 OK Driickt aus, dass die Anfrage erfolgreich war.

201 CREATED Wird oft zuriick gegeben wenn ein Datensatz
erfolgreich erstellt wurde.

400 BAD REQUEST Die Anfrage konnte nicht vom Server gelesen

werden, da sie falsch formatiert war oder
anders als fehlerhaft erkannt wurde.

404 NOT FOUND Die Anfrage konnte nicht erfolgreich
bearbeitet werden, da die Resource nicht
gefunden wurde.

500 INTERNAL SERVER ERROR | Der Server hat intern einen
(schwerwiegenden) Fehler und kann daher
die Anfrage nicht richtig beantworten.

Tabelle 3.1: Ubersicht von geliufigen HTTP Status Codes

GET Wird verwendet, wenn Daten vom Server gelesen werden sollen.
PUT Leitet ein Update von schon bestehenden Daten ein.
DELETE Bittet den Server bestimmte Daten zu léschen.

OPTIONS Fragt den Server, welche (anderen) Methoden fiir eine bestimmte URL zuléssig

sind.

Durch diese Methoden werden die grundlegenden Create, Read, Update and Delete (CRUD)-

Operationen unterstiitzt.

Abschlielend kann die Anfrage auch Daten enthalten, welche aus reinem Text bestehen,
jedoch beliebig formatiert sein kénnen. Dies ist besonders bei POST- und PUT-Aufrufen
wichtig, um dem Server die zu erstellenden bzw. zu aktualisierenden Daten mitzuteilen.
Bei GET- und DELETE-Aufrufen bleiben diese Daten zumeist leer.

HTTP-Antworten Die Antwort des Servers enthédlt auch einen Header-Teil, in dem
der Server bestimmte Meta- und Zusatz-Informationen zuriickschickt. Ublicherweise zéhlen
dazu das Datum und die aktuelle Uhrzeit, die Grofle der Antwort im Datenfeld und welches
Format dieses hat. Hierbei spielt der Status Code eine besondere Rolle, da dieser eine

Antwort zu Erfolg, Problemen und Misserfolg der Anfrage liefert (vgl. Tabelle 3.1).

Ahnlich zur Anfrage kann natiirlich auch die Antwort Daten enthalten, welche bei allen
Methoden entstehen kénnen. Auch diese Daten sind reiner Text, kénnen jedoch unter-

schiedlich formatiert sein [32].

JSON

Auch wenn es keine vorgeschriebene Art bzw. Formatierung gibt, wie Daten iiber eine
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RESTful API ausgetauscht werden sollen, so wird in der Praxis hdufig die Extensible
Markup Language (XML) oder die JavaScript Object Notation (JSON) verwendet.

Da beide Optionen relativ dhnlich in ihrer Ausdrucksstarke sind, liegt die Wahl, ob man
eine der beiden oder gar eine dritte Moglichkeit verwendet, beim Designer der Schnitt-
stelle. In fritheren APIs wurde stark auf XML gesetzt, sodass viele Anwendungen dieses
auch heute noch bevorzugen. In letzter Zeit ist jedoch ein Trend hin zu JSON zu be-
obachten. Dies liegt darin begriindet, dass viele Clients Single-Site-Webapplications sind,
die in JavaScript implementiert wurden und JSON als Teil der JavaScript-Welt so direkt
interpretiert werden kann. Somit bleibt ein aufwéindiger und langsamer Parser erspart.
JSON ist dariiberhinaus auch noch recht einfach von Menschen zu lesen, sodass auch eine

Interaktion mit der API ohne speziellen Client moglich ist.

Im Kern besteht ein JSON-Dokument aus Key-Value-Paaren, die in Objekten zusammen-
gefasst sind. Der Schiissel dieses Paares ist dabei immer ein Text, wihrend der Wert
unterschiedlichste Typen annehmen kann. Dazu zdhlen Text, Nummern (ganzzahlig oder
mit FlieBkomma), boolsche Werte (true und false), ein Array oder wiederum ein Objekt

[24]. Ein Beispiel fiir ein solches JSON-Dokument wird in Listing 3.1 gezeigt.

{

"hello": "world",
"true": false,
"array": [
1, 2, 3
1,
"kord": {
"x": 1.23,
"y": 4.56

Listing 3.1: Ein Beispiel fiir ein JSON Dokument



Kapitel 4

Maschinelles Lernen

Das letzte Kapitel im Teil Big Data Analytics bildet das maschinelle Lernen. Wie in Ka-
pitel 2 erldutert, besteht der Zweck des Umgangs mit den riesigen Datenmengen in der
Analyse. Das bedeutet, dass automatisch erlernt werden soll, wie sich die gegebenen Infor-
mationen verallgemeinern lassen. Dieser Schritt ist wichtig, damit das Erlernte auf neue,
bisher noch nicht betrachtete Daten angewendet werden kann und nicht nur fir die be-
reits angeschauten Daten gilt. Die gefundenen Regelméfligkeiten sollen dementsprechend
ermoglichen, dass automatisiert Erkenntnisse {iber neue Daten erlangt werden koénnen.
Zuerst soll es in diesem Kapitel um die Grundbegriffe des maschinellen Lernens und die
formalen Konzepte zur Datenanalyse gehen. Die dafiir ben6tigten Grundlagen wurden aus
[72], [96] und [35] zusammengetragen. Anschlieflend folgen einige vertiefende Abschnit-
te, welche Verfahren diskutieren, die speziell auf Big Data zugeschnitten sind. SchlieB-
lich bildet die Analyse von riesigen Datenmengen neue Herausforderungen an maschinelle

Lernverfahren, wie in Kapitel 2 gezeigt wurde.

(Un-)Uberwachtes Lernen Man unterscheidet zuerst zwischen iiberwachtem und un-
iiberwachten Lernen. Beim iiberwachten Lernen liegen zusédtzlich zu den gesammelten
Daten auch Informationen dariiber vor, in welche Klassen oder Kategorien man die Daten
einteilen kann. Genau diese Zuteilung soll zukiinftig fiir neu beobachtete Daten vorherge-
sagt werden. Meistens entsteht die Annotation der vorliegenden Daten mit einer passenden
Klasse durch einen Experten. Beim uniiberwachten Lernen hingegen liegen diese Klassen-
informationen zu den gesammelten Daten nicht vor. Mit speziellen Lernverfahren wird
versucht, die vorliegenden Daten in passende Klassen einzuteilen. Die Einteilung basiert
nur auf den in den Daten gefundenen Regelméfligkeiten und geschieht automatisch. In
den nun folgenden einfithrenden Worten soll es genau um das iiberwachte Lernen gehen.

Abschnitt 4.2 beschéftigt sich schlieflich mit den Formalien beim uniiberwachten Lernen.

Die Lernaufgabe FEtwas formaler besteht die Lernaufgabe aus dem Trainieren eines

Modells, welches das gelernte Wissen repréasentieren soll, und aus der Anwendung des

45
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Modells auf neue Daten. Fiir das Training werden annotierte Trainingsdaten

T ={(@1,y1), (T2,92), ., (TN, yn)} C X XY

benotigt, wobei X fiir das gesamte Universum moglicher Daten steht und Y fiir die Men-
ge an verfligbaren Klassen. Bei einer Klassifikation sind dies endlich viele vorgegebene
Klassen, bei einer Regression sind dies die reellen Zahlen. Jedes Datum besteht aus einem
Vektor #;, welcher die Merkmale des individuellen Datums représentiert, und aus einer
Annotation y;. Unter einem Merkmal (engl. Feature) versteht man eine fiir die Vorher-
sage niitzliche Grofle. Merkmale kénnen direkt physikalisch messbar oder aus messbaren
Groflen berechenbar sein. Beispielsweise konnen fiir die Klassifizierung von Texten die
Vorkommen bestimmter Worter (direkt zéhlbar) oder das Vorkommen von Wortstdmmen
(daraus ableitbar) Merkmale darstellen. Die Annotation steht fiir die Klasse, zu der das
betrachtete Datum gehort. Sie ist essentiell fiir das iiberwachte Lernen und den Erfolg der

maschinellen Lernverfahren.

In unserer Projektgruppe fillt mit der Gamma-Hadron-Separation eine typische Klassifika-
tionsaufgabe an. Dabei bilden die durch die Monte-Carlo-Simulation erlangten Daten den
Trainingsdatensatz. Die Klassen sind in unserem Fall Y = {gamma, hadron} und sind An-
notationen solcher Aufnahmen, welche mit Hilfe der Simulation entweder als Gamma- oder
als Hadronstrahlung eingeordnet wurden. Mit diesem Trainingsdatensatz werden maschi-
nelle Lernverfahren trainiert und mit den resultierenden Modellen wollen wir versuchen,
fiir Rohdaten vorherzusagen, ob in einer Aufnahme eine fiir die Physiker interessante Gam-
mastrahlung vorliegt oder nicht. Aulerdem liegt mit der anschliefenden Energieschéitzung
fiir die Partikel einer gefundenen Gammastrahlung eine Regressionsaufgabe vor, welche

ebenfalls mit maschinellen Lernverfahren gelost werden kann.

Qualitdtsmafle Es gibt etliche Lernverfahren, mit denen sich Modelle trainieren lassen.
Um das beste Modell fiir die Lernaufgabe zu finden, sollte die Generalisierungsleistung des
Modells im Auge behalten werden. Darunter versteht man die Anwendbarkeit auf neue
Daten, fiir welche die Klasse unbekannt ist. Die sogenannte Fehlklassifikationsrate kann
dazu beitragen, die Generalisierungsleistung eines Modells zu quantifizieren. Haufig werden
Modelle nicht auf dem gesamten verfiigbaren Trainingsdatensatz trainiert, sondern es wird
eine Teilmenge der Trainingsdaten zuriickgehalten. Diese bilden die Testdaten, welche von
dem trainierten Modell klassifiziert werden. Im Nachhinein kénnen vorhergesagte und
wahre Klasse verglichen werden, um die Fehler dieses Modells auf unbekannten Daten
einschétzen zu konnen. Um die Fehlklassifikationsrate zuverlissig zu bestimmen, miissten
unendlich viele Testdaten klassifiziert werden, sodass man in der Praxis auf empirische

Schitzungen wie folgende zuriickgreift:

e(h) = Eenpll(h(z) # f(2))]  [96]
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wobei h ein trainiertes Modell, E, .p[g(x)] der Erwartungswert der Funktion g(z), wenn
x nach D verteilt ist und I(g(z)) die Indikatorfunktion (1, wenn g(x) = true und 0 sonst).
Gewéhlt wird der Lerner h, welcher den Fehler ¢(h) minimiert. Weitere Qualitédtsmafle
werden in Unterabschnitt 4.6.2 beleuchtet.

Dieser kurzen Einfithrung in das maschinelle Lernen folgen nun Vertiefungen. Es werden
Lernverfahren und Techniken beleuchtet, welche sich in der Praxis bewiesen haben und
daher fiir unsere Projektgruppe interessant sein konnen. Dabei wird vor allem Wert dar-
auf gelegt, dass diese Techniken fiir Big Data anwendbar sind. Grofle Datenmengen sollen
nicht nur schnell bearbeitet werden, es sollen auch die Vorteile eines Rechenclusters ausge-
nutzt werden kénnen. Es soll besonders darauf eingegangen werden, wie sich Lernverfahren
parallelisieren lassen, sodass verteilt gelernt und auch klassifiziert werden kann. Einen wei-
teren Aspekt bilden die inkrementellen Verfahren, bei welchen die Trainingsdaten nicht
zwingend komplett zu Beginn des Trainings vorliegen miissen. Da wir uns mit riesigen
Datenmengen beschéftigen, konnte es ein Vorteil sein, diese Daten nach und nach vom
Lerner unserer Wahl bearbeiten zu lassen. Ein weiteres Problem unserer Trainingsdaten
ist auflerdem, dass tliblicherweise sehr viele Hadronstrahlungen, aber nur wenige Gamma-
strahlungen vorliegen. Deswegen soll das Lernen mit nicht balancierten Klassen ebenfalls
vertieft werden. Den Abschluss dieses Kapitels bilden Techniken, mit denen die Daten vor
dem Lernen organisiert werden kénnen. Dazu gehort zum Einen die Extraktion von Merk-
malen, welche besonders gut fiir die Vorhersage der Klassen geeignet ist, zum Anderen
die passende Einteilung in Trainings- und Testdatensétze. Schliefflich sollen die trainierten
Modelle zum Schluss evaluiert werden, sodass eine Aussage iiber deren Qualitdt moglich

ist.

4.1 Ensemble Learning

Die Idee des Ensemble Learnings ist, auf viele Modelle zuriickzugreifen, anstatt sich nur
auf die Vorhersagen eines Modells zu verlassen. Nach Dietterich [27] sind die drei meist-

genannten Griinde fiir das Nutzen von Ensembles die folgenden:

Statistik Ahnlich unserem realen Leben soll mehreren Expertenmeinungen anstatt nur
einer vertraut werden. Es kann schwierig sein, sich fiir genau ein Modell zu entschei-
den, welches moglicherweise nur zufillig auf dem gerade genutzten Testdatensatz
die kleinste Fehlerrate hat. Auflerdem konnen durchaus mehrere Modelle mit einer
dhnlich akzeptablen Fehlerrate fiir den Anwender interessant sein. Im Ensemble soll

nicht strikt ein Modell ausgesucht werden, sondern eine Kombination entstehen.

Berechnung Zum Training einiger Modelle wird eine Optimierung durchgefiihrt, welche
in lokale Optima enden kann. Trainiert man Modelle von verschiedenen Startpunkten

aus und kombiniert diese, kann es zu einer Verbesserung kommen.
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Reprisentierbarkeit Manchmal kann die gesuchte wahre Funktion nicht von den Mo-
dellen im Hypothesenraum représentiert werden. Auch hier kann eine Kombination

von Modellen dazu beitragen, den Raum darstellbarer Funktionen zu vergrofiern.

In dieser Einfiihrung wird davon ausgegangen, dass den Modellen dasselbe Lernverfahren
zugrunde liegt. Meist ist dieses Verfahren von recht einfacher Struktur, sodass mehrere
schwache Lerner zu einem starken Lerner durch eine gemeinsame Entscheidungsregel zur
Klassifikation neuer Daten kombiniert werden. Die einfachen Lerner sollen dabei moglichst
verschieden sein, damit eine Kombination erst sinnvoll wird. Um verschiedenartige Lerner
eines gleichen Basisalgorithmus zu erzielen, gibt es verschiedene Anséitze. Im Folgenden
stehen Bagging (insbesondere Random Forests nach [59]) und Boosting (insbesondere Ada-
Boost nach [34]) im Fokus. Neben diesen beiden Quellen wurden auch Grundlagen aus [96],
[27] und [75] iiber das Ensemble Learning entnommen und kénnen fiir weitere Informa-
tionen nachgeschlagen werden. Die Grundideen der beiden Ensemble Learning Methoden

sollen erldutert werden, sowie deren moglicher Einsatz in unserer Projektgruppe.

4.1.1 Bagging

Beim Bagging (Bootstrap Aggregation) werden fiir jeden Lerner Bootstrap-Stichproben
genutzt. Das bedeutet, dass fiir jeden Lerner neue Trainingsdaten generiert werden, indem
n Beispiele aus den originalen n Beobachtungen mit Zuriicklegen gezogen werden. Manche
Beispiele kénnen somit mehrfach in einem Trainingsdatensatz vorkommen, andere gar
nicht.

Ein prominenter Vertreter der Bagging-Methoden ist der Random Forest oder auch
Zufallswald. Der Basislerner zu einem solchen Zufallswald ist ein Entscheidungsbaum,

wie er beispielhaft in Abbildung 4.1 zu sehen ist.

2
& 2

[class 2} [Class 3]

Abbildung 4.1: Beispielhafter Entscheidungsbaum
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Data : Trainingsdatensatz T = {(Z1, 1), (Z2,¥2), ..., (TN, yn)},

Anzahl T' der Baume im Wald,

Anzahl M der Merkmale, die fiir Splits verwendet werden sollen
Result : T trainierte Entscheidungsbédume, welche den Zufallswald bilden
Ziehe T Bootstrap-Stichproben mit Zuriicklegen;
fort=1,...,T do

Trainiere einen Baum mit der Bootstrap-Stichprobe ¢ mit folgender
Modifikation: Ziehe zufillig M Merkmale aus den Originalmerkmalen der
Beobachtungen. Fiir die Splits werden nur diese gezogenen Merkmale
betrachtet.

Entstehender Baum wird nicht gestutzt.
end
Algorithmus 1 : Konstruktion von Zufallswildern [59]

Die Blatter in einem solchen Baum entsprechen den Klassen, die inneren Knoten entspre-
chen Splits anhand von Merkmalen. Die Splits werden jeweils so gewéhlt, dass moglichst
viele Beobachtungen getrennt werden kénnen. Es werden so lange neue Splits gewéhlt, bis

die aktuell betrachtete Beobachtungsmenge nur noch aus einer Klasse stammt.

Jeder Baum im Wald wird mit einer Bootstrap-Stichprobe trainiert. Auflerdem werden
fiir Splits nicht alle Attribute des Trainingsdatensatzes genutzt, sondern nur eine zuféllige
Teilmenge. So entstehen mdoglichst viele verschiedene Entscheidungsbdume, welche zusam-
men den Zufallswald bilden. Die Vorgehensweise fiir die Konstruktion eines Zufallswaldes

ist in Algorithmus 1 zu sehen.

Neue Daten werden von jedem Baum Kklassifiziert, anschliefend erfolgt ein Mehrheitsent-
scheid. Je mehr Baume im Wald sind, desto besser fiir die Klassifikation. Im Gegensatz zu
einem einzelnen Baum besteht das Problem des Overfittings nicht, da fiir jeden Baum eine
zuféllige Teilmenge der Merkmale ausgewéhlt wird. Fithrt man dies nicht durch und nimmt
beispielsweise an, dass es zwei Merkmale mit einem sehr starken Beitrag zur Klassentren-
nung gibt, dann wiirden alle Baume im Wald genau diese Merkmale fiir ihre Splits wéahlen.
Daraus folgt eine starke Korrelation zwischen den Bdumen, was genau zum Overfitting
fiihrt. Wahlt man nun aber wie oben beschrieben fiir jeden Baum eine zuféllige Teilmenge
an Merkmalen aus, dann taucht keine starke Korrelation auf und der Mehrheitsentscheid
ist stabil. Auflerdem sind Zufallswéalder praktisch bei vielen Merkmalen, welche nur einen
kleinen Beitrag zur Klassentrennung liefern und durch diese zuféllige Merkmalsauswahl
genau die gleiche Chance, haben fiir einen Split gewéhlt zu werden wie andere Merkmale,

welche einen moéglicherweise grofieren Beitrag liefern.

Fiir unsere Projektgruppe konnte auflerdem von Vorteil sein, dass sowohl Konstruktion
als auch Klassifikation mit Zufallswéldern gut parallelisierbar ist. Die Konstruktion erfolgt
unabhéngig von den anderen trainierten Badumen und die Ergebnisse vieler Baume auf

verschiedenen Rechnern kénnen am Schluss gemeinsam ausgewertet werden.

Ein Nachteil der Zufallswéalder ist allerdings, dass die Verstdndlichkeit verloren geht, die
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Data : Trainingsdatensatz 7 = {(Z1,v1), (Z2,y2), ..., (Zn,yn)} mit y; € {—1,+1},
Anzahl T der Lerner und deren Basisalgorithmus

Result : H(Z) = sign (Z%F:l atht(:f)>

Di(i) = 1/N als initiale Gewichte;

fort=1,...,7 do

Trainiere Lerner h; mit Datensatz 7 und den aktuellen Gewichten in Dy;

Berechne den Fehler ¢; = Pr;p, [h(Z;) # vil ;

1 1-
Setze das Gewicht des Basislerners ¢t auf oy = 3 In Et);
€t

Dy(i) - exp(—auyihi(Z;))
Zy

Updaten der Gewichte: Dyyq(7) =

dabei wird Z; zur Normalisierung genutzt ;

end
Algorithmus 2 : AdaBoost [34]

ein entscheidender Vorteil bei der Wahl von einzelnen Entscheidungsbédumen sein kann.
Durch die grafische Darstellung erschliefit sich die Klassifikation auch Laien gut, was bei

einem Zufallswald von 100 oder mehr BaAumen nicht mehr der Fall ist.

4.1.2 Boosting

Beim Boosting werden Gewichte fiir jedes Trainingsbeispiel eingefiihrt. Initial werden
Gleichgewichte gewdhlt, im Laufe des Trainings sollen die ,schwierigen* Beispiele, wel-
che immer wieder falsch klassifiziert werden, hoher gewichtet werden. Entscheidet man
sich im Vorfeld fiir ein Ensemble aus T einfachen Lernern, so gibt es T' Trainingsrunden,
in denen jeweils ein Lerner mit den gewichteten Beispielen trainiert wird. Nach jeder dieser
Runden erfolgt eine Evaluation und Anpassung der Gewichte. Das entstehende Ensemble

wird zugunsten der schwierigen Beobachtungen im Lerndatensatz adaptiert.

Populér ist der Ansatz AdaBoost von Freund und Schapire. Im Folgenden soll die ur-
sprungliche Version von 1997 fiir ein Zwei-Klassen-Problem vorgestellt werden, fiir welche

die Vorgehensweise in Algorithmus 2 abgebildet ist.

Einfache Lerner werden nach ihrer Qualitit gewichtet. Ist der Fehler €; < 0.5, so ist das Ge-
wicht oy > 0. Je kleiner der Fehler, desto gréfler das Gewicht des Lerners. Beobachtungen
werden nach ihrer Schwierigkeit gewichtet. Der neue Wert hiangt nach jeder Trainingsrun-
de von dem Term exp(—ayy;hi(Z;)) ab. Wenn richtig klassifiziert wurde, ist y;h(%;) = 1,
dann wird der Term exp(—ay) klein und so auch das neue Gewicht. Wenn allerdings falsch
klassifiziert wurde, ist y;hi(%;) = —1, dann wird der Term exp(«a;) groB und das neue
Gewicht ebenso. Nach dem Ablauf aller Trainingsrunden erfolgt die Klassifikation neuer

Daten durch einen gewichteten Mehrheitsentscheid.

Parallelisieren lassen sich Boosting-Ansétze nur schwer, da in jeder Trainingsrunde eine

Abhéngigkeit zur vorhergehenden Runde besteht. Aulerdem wéchst das Risiko des Over-
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fitting mit der Anzahl T der Lerner. Die Lerner sollten in der Lage sein, Verteilungen der
Trainingsdaten zu beachten, ansonsten muss der Trainingsdatensatz in jeder Iteration der

Verteilung angepasst werden.

4.1.3 Fazit

Es gab mehrere Versuche, Bagging und Boosting miteinander zu vergleichen. Dietterich
[27] fand heraus, dass AdaBoost viel besser als Bagging-Ensembles abschnitt, sofern die
Trainingsdaten wenig bis kein Rauschen aufwiesen. Sobald jedoch 20% kiinstliches Rau-
schen hinzugefiigt wurde, schnitt AdaBoost plotzlich sehr viel schlechter ab. Quinlan [75]
experimentierte mit unterschiedlichen Lernerzahlen T'. Ist T klein, scheint AdaBoost die
bessere Wahl zu sein. Je gréfler jedoch T wird, desto schlechter wird das Ergebnis der

Boosting-Methode und desto brauchbarer werden Zufallswélder.

Die Ergebnisse lassen sich damit erkléren, dass Zufallswilder robust gegen Overfitting sind,
wohingegen AdaBoost cher anfillig dafiir ist. Beim Boosting wird zu viel Fokus auf die
schwierigen Beobachtungen gelegt, denn deren Gewicht wird nach jeder Iteration erhoht.
Nach und nach verschwinden die einfachen Beispiele, wodurch Lerner in hohen Trainings-
runden mit einem stark angepassten Trainingsdatensatz arbeiten. Die Konsequenz ist das

Overfitting fiir grofle 7.

Insgesamt lésst sich sagen, dass Ensembles das Gesamtergebnis erheblich verbessern kénn-
en. Die populédrsten Verfahren Bagging und Boosting wurden mit ihren Vor- und Nachtei-
len vorgestellt. Fiir unsere Projektgruppe riicken die Zufallswélder in den Fokus. Sie sind
nicht nur gut parallelisierbar und robust gegeniiber Overfitting, sondern werden aktuell
von den Physikern fiir ihre Klassifikationen verwendet. Daher ist es essentiell fiir unsere
Anwendung, sich ebenfalls mit Zufallswildern auseinanderzusetzen und diese Moglichkeit

der Klassifikation im Endprodukt anzubieten.

4.2 Clustering und Subgruppenentdeckung

In diesem Kapitel wird hauptsichlich das uniiberwachte Lernen erlautert. Dabei werden
die zwei Lernverfahrensmethoden Clustering und die Subgruppen-Entdeckung erldutert.
Wahrend beim iiberwachten Lernen Hypothesen gesucht werden, die moglichst gute Vor-
hersagen iiber bestimmte schon vorgegebene Attribute geben, wird bei uniiberwachten

Lernmethoden nach unbekannten Mustern gesucht.



52 KAPITEL 4. MASCHINELLES LERNEN

4.2.1 Clustering

Clustering [49] ist eine uniiberwachte Lernmethode. Sie ist die am meisten verwendete
Methode fiir das Entdecken von Wissen aus einer grolen Datenmenge. Bei ihr geht es im
Allgemeinen darum, dass Objekte, die dhnliche Eigenschaften besitzen, in einer Gruppe
zusammengefasst werden. Dabei werden neue Klassen identifiziert. Die einzelnen Gruppen

werden Cluster genannt.

Es gibt verschiedene Arten von Clustering-Verfahren, die sich in ihren algorithmischen

Vorgehensweisen unterscheiden. Dazu zéhlen:

e Partitionierende Verfahren, z.B. der k-means Algorithmus.
e Hierarchische Verfahren, die entweder bottom-up oder top-down vorgehen.

e Dichtebasierte Verfahren, z.B. der DBSCAN Algorithmus.

e Kombinierte Verfahren, bei welchen Methoden aus den oben vorgestellten Verfahren

kombiniert werden.

Partitionierende Verfahren

Bei den partitionierenden Verfahren muss die Anzahl der gesuchten Klassen bzw. Cluster
am Anfang festgelegt werden. Die Verfahren, die dieser Methodik folgen, starten meistens
mit einem zufilligen Partitionieren der Objekte. Im Laufe der Ausfiihrung wird diese
Partitionierung schrittweise optimiert. Der k-means Algorithmus [90] gehort beispielsweise

zu diesen Verfahren und soll im Folgenden erlédutert werden.

Sei & = {dy,da,...,d,} ein Vektor, der ein Objekt im Merkmalsraum représentiert. Die
Distanz zwischen zwei Vektoren # und ¥ ist durch |7 — ¢ = /> " o(7; — y;)? definiert.
Der Mittelpunkt ji einer Menge ¢; von Vektoren ist durch i = \711| > zee, T definiert. Sei k
die Anzahl der gesuchten Cluster. Am Anfang des Algorithmus wird k entweder zufillig
oder nach der Durchfiihrung eines Optimierungsverfahren festgelegt. Aulerdem werden k
Punkte als Cluster-Zentren ausgewéhlt und die restlichen Objekte dem Cluster mit dem
niachsten Zentrum zugewiesen. Bei jedem Durchlauf des Algorithmus werden die Mittel-
punkte [ neu berechnet und die Objekte wieder dem Cluster mit dem néchsten Zentrum

zugewiesen. Es wird immer weiter iteriert, bis alle Cluster stabil sind.

Der k-means Algorithmus ist fiir numerische Daten gedacht. Er ist effizient und leicht an-
zuwenden. Dagegen hat der Algorithmus gewisse Nachteile, da die Cluster stark von k und
den am Anfang ausgewéhlten Cluster-Zentren abhidngen. Dariiberhinaus zeigt der Algo-
rithmus eine Schwéche, wenn die Daten kugelformig verteilt sind oder grofle Abweichungen

in Dichte und Grofle aufweisen.
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Hierarchische Verfahren

Die beliebte Alternative zu den partitionierenden Verfahren sind die hierarchischen Ver-
fahren [23]. Bei ihnen werden die identifizierten Cluster hierarchisch angeordnet. Es wird
ein Baum erzeugt, in dem jeder Elternknoten Zweige mit seinen Teil-Clustern besitzt. Die
Wurzel représentiert den Cluster mit allen Objekten (oberste Ebene). Bei der Identifi-
zierung von Clustern unterscheidet man zwei Vorgehensweisen, ndmlich bottom-up oder

top-down.

Top-down Clustering auch devisives Clustering genannt. Am Anfang gehdren alle
Objekte zu einem Cluster. Dieser wird schrittweise aufgeteilt, bis jeder Cluster nur noch
ein Objekt enthélt.

Bottom-up Clustering auch agglomerativ genannt. Bei diesem Verfahren enthélt jeder
Cluster am Anfang nur ein Objekt. Danach werden die Cluster im Laufe des Verfahrens

vereinigt.

Dichtebasierte Verfahren

Cluster bestehen grundsétzlich aus Objekten, die dicht aneinander sind. Die dichteba-
sierten Verfahren nutzen diese Eigenschaft aus, um Cluster aufzufinden. Der DBSCAN-

Algorithmus [13] ist ein Vertreter und soll nun genauer betrachtet werden.

Um den DBSCAN-Algorithmus zu veranschaulichen, werden zuerst einige Definitionen
eingefithrt. Eine e-Umgebung definiert die Anzahl der Punkte in einem bestimmten Radius
€. MinPts ist die Mindestanzahl der Punkte in einer - Umgebung. Ein Kernpunkt ist
ein Punkt, der mindestens MinPts in seiner Umgebung hat. Ein Randpunkt ist ein Punkt
in der e-Umgebung, der kein Kernpunkt ist. Ein Rauschpunkt ist ein Punkt aulerhalb
der e-Umgebung. Zwei Punkte p und ¢ sind Dichte-erreichbar, wenn p ein Kernpunkt
und ¢ in der e-Umgebung von p ist. Es gibt direkte und indirekte Dichte-Erreichbarkeit.
Wenn p von p; direkt Dichte-erreichbar ist und p; ist direkt Dichte-erreichbar von ¢, dann
ist p indirekt Dichte-erreichbar von g. Aber die andere Richtung gilt nicht.

Die Parameter € und MinPts werden vor der Ausfithrung des Algorithmus festgelegt. Sie
kénnen entweder zufillig gewahlt oder durch die Anwendung heuristischer Verfahren be-
stimmt werden. Der DBSCAN-Algorithmus iteriert iiber alle Objekte in der Datenmenge
und wenn ein Objekt noch nicht klassifiziert und das Objekt ein Kernobjekt ist, dann
werden alle von diesem Punkt aus Dichte-erreichbaren Objekte (Punkte) in einem Cluster
zusammengefasst. Wenn dies nicht der Fall ist, dann wird das Objekt als Rauschpunkt

markiert. Es wird solange iteriert, bis alle Punkte betrachtet wurden.
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Kombinierte Verfahren

Man kann die vorgestellten Clustering-Verfahren kombinieren. Das kann niitzlich sein, um
Parameter eines anderen Verfahrens zu bestimmen. Zum Beispiel fiihrt man eine hierarchi-
sche Clusteranalyse durch, um die Anzahl k£ der Cluster zu bestimmen, die man spéter als
Eingabeparameter an k-means tiibergibt. Das hat den Vorteil, dass eine optimale Anzahl
von Clustern ermittelt wird. Leider ist dieses Verfahren sehr speicher- und zeitaufwendig,

da zwei Verfahren immer gleichzeitig angewendet werden miissen.

4.2.2 Subgruppenentdeckung

Die bekannteste Methode zur Erkennung von Mustern mit vorgegebenen Eigenschaften ist
die Subgruppenentdeckung. Zum ersten Mal wurde sie von Kloesgen und Wrobel [54, 55]
eingefiihrt. Die Subgruppenentdeckung [61] liegt zwischen den zwei Bereichen des maschi-
nellen Lernens, da bei der Subgruppenentdeckung die Vorhersage genutzt werden soll, um
eine Beschreibung der Daten zu liefern. Andere Data-Mining-Methoden zur Erkennung

von Mustern sind in [18] zu finden.

Definition der Subgruppenentdeckung

Sei D ein Datensatz, der aus Datenitems d; besteht. Ein Datenitem d; = (d,t) ist ein
Paar aus Attributen {a1, as, ..., a;, }, die mit @ bezeichnet werden, und einem Zielattribut
t. In dieser Arbeit werden die Begriffe Datenitem und Transaktion die gleiche Bedeutung
haben. Das Zielattribut definiert die eingegebene Eigenschaft, fir die die Daten erklart
werden sollen. Das Zielattribut muss binér sein, jedoch hat jedes Attribut a,, einen Wert
aus einer Doméne dom(A). Die Werte der Attribute kénnen binér, nominal oder numerisch
sein. Beispiele fiir Doménen sind dom(A;,) = {0,1}, |[dom(An,)| € Ng oder dom(A,,) = R.
J;- wird das i-te Datenitem genannt. Auflerdem bezeichnen @' und ¢ den i-ten Vektor
der Attribute und das i-te Zielattribut. Die Grofie der Datenmenge wird mit N = |D|

bezeichnet.

Nun benétigt man die Definition einer Regel, um eine Subgruppe definieren zu koénnen.
Eine Regel ist eine Funktion p : P(A) x dom(A) — {0,1}, wobei P(A) die Potenzmenge
der Attribute darstellt. Mit P bezeichnet man die Menge aller Regeln. Man sagt, eine
Regel p tuberdeckt einen Datenitem di genau dann, wenn p(a_;;) = 1 ist. Die Attribute

werden miteinander konkateniert, um @ zu konstruieren. Eine Regel hat die Form:
Bedingung — Wert der Regel.

Die Bedingung einer Regel ist die Konkatenation von Paaren (Attribut,Wert). Der Wert
der Regel wird das Zielattribut darstellen.



4.2. CLUSTERING UND SUBGRUPPENENTDECKUNG 95

Definition (Subgruppe) Eine Subgruppe G ist die Menge aller Datenitems, die von
der Regel p iiberdeckt werden.

G, = {d, € Dlp(a’) = 1}

Das Komplement einer Subgruppe G ist G und enthélt alle d; ¢ G, d.h alle Datenitems,
die von p nicht iiberdeckt werden. Mit n und 7 wird die Anzahl der Elemente in G und G

gekennzeichnet, wobei n = N — n.

Die Subgruppenentdeckung arbeitet in zwei Phasen, ndmlich dem Auffinden der Kandi-
daten der Regeln sowie dem Bewerten der Regeln. Es werden zuerst Regeln mit einer
kleineren Komplexitéit (allgemeine Regeln) aufgefunden, von denen im Laufe des Sub-
gruppenentdeckungsprozesses immer komplexere (konkretere) Regeln generiert werden.
Die Komplexitdt der Regeln ist durch die Anzahl der betrachteten Attribute bedingt.

Zuerst werden Kandidaten mit der Komplexitéit 1 aufgefunden. Danach werden Kandida-
ten mit hoher Komplexitdt bottom-up generiert. Mit Hilfe einer Qualitdtsfunktion werden

die Regeln bewertet.

Qualititsfunktion

Die Qualitatsfunktion [46, 58] spielt eine wichtige Rolle bei der Subgruppenentdeckung.

Sie bestimmt die Giite der Regeln. Damit kann man die besten Regeln ausgeben.

Definition (Qualitidtsfunktion) Eine Qualitdtsfunktion ist eine Funktion ¢: P — R,
die jeder Regel einen Wert (die Giite) zuweist.

Man kann die Auswahl der besten Regeln nach verschiedenen Kriterien treffen. Entweder
werden die Regeln nach ihrer Giite sortiert und dann die besten k& Regeln ausgegeben
oder die Ausgabe wird durch einen minimalen Wert der Qualitdtsfunktion beschrankt.
Auflerdem kann man eine minimale Menge von Regeln mit maximaler Qualitdt suchen.
Diese Verfahren fiir die Auswahl der besten Regeln sollen hier nicht weiter betrachtet

werden.

Es gibt viele Qualitdtsfunktionen und es ist schwer zu sagen, welche allgemein am be-
sten sind. Die Wahl der Qualitdtsfunktionen wird von den Datenanalytikern getroffen.
Entscheiden ist die aktuelle Aufgabe. Im folgenden Abschnitt wird eine Auswahl von Qua-

litdtsfunktionen préasentiert.

e Coverage: liefert den Prozentanteil der Elemente der Datenmenge, die von einer Re-
gel {iberdeckt sind.
_ TP+FP
CO'U(R) =N

mit TP bezeichnet man, wie oft war eine Regel falsch war und richtig vorhergesagt
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wurde. Dagegen gibt FP eine Aussage dariiber, wie oft eine Regel wahr war, aber

falsch vorhergesagt wurde.

e Precision: liefert den Anteil der tatsdchlichen richtig vorhergesagten Regeln, wenn
die Regel wahr war.
Pr(R) = wpi7p
e Recall: liefert den Anteil aller wahren Regeln, die richtig vorhergesagt wurden, von
allen wahr vorhergesagten Regeln.

Re(R) = rpiry

wobei FN die Anzahl der falschen Regeln ist, die falsch vorhergesagt wurden.

e Accuracy: liefert den Anteil der richtigen vorhergesagten Regeln von allen Regeln.

Acc(R) = TN

e Weighted Relative Accuracy (WRAcc) [84]: Diese Giitefunktion gibt eine Aussa-
ge iiber die Ausgewogenheit zwischen der Uberdeckung und der Genauigkeit einer
Regel. WRAcc ist die am meisten verwendete Qualitdtsfunktion bei der Subgrup-

penentdeckung.

_ TP+FN _ TP+TN
WRAcc(R) = Cov(R) ( ¥ N )
wobei TN die Anzahl der falschen Regeln ist, die richtig vorhergesagt wurden. Dieses
Maf} wird verwendet, da die einzelne Betrachtung von Accuracy zu falschen Schliissen
fiihren konnte.

e F'1-Score [77]: das harmonische Mittel von Precision und Recall.

2+ Pr(R)*Re(R
Fsr(R) = 4Pr(1(%)—?-Re(g%))

Suchstrategien

Die Anzahl der aufgefundenen Kandidaten bei der Subgruppenentdeckung kann exponen-
tiell wachsen. Das kann beim Generieren der Regeln mit hoher Komplexitét einen sehr
hohen Speicher- und Rechenbedarf bedeuten. Deshalb koénnen algorithmische Techniken
eingesetzt werden, die den Suchraum verkleinern. Hierbei kann eine heuristische Suche
durchgefiihrt werden, z.B. Beam-search [95]. Dariiberhinaus kann man zwei Parameter
einstellen, um den Suchraum zu beschréanken oder die maximale Komplexitét einer Regel
festlegen. Weiterhin kann man nur bestimmte Kandidaten betrachten, beispielsweise die

von einer Qualitdtsfunktion am besten bewerteten Regeln.

Fazit

In diesem Kapitel haben wir uns mit maschinellen Lernmethoden, die zu dem uniiberwach-
ten Lernen gehéren, beschéftigt. Vorgestellt wurden klassische Clustering und Subgrup-
penentdeckung Methoden. Die Methoden erzielen gute FErgebnisse auf kleinen Datenmen-

gen. Fir Big Data existieren verschiedene Ansétze, die diese Algorithmen erweitern, da-
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mit sie parallel bzw. verteilt arbeiten. In den folgenden Abschnitten werden diese Ansétze

erldutert.

4.3 Verteiltes Lernen

Eine Grundannahme des maschinellen Lernens ist die vollstdndige Verfiigbarkeit des Da-
tensatzes an einem Ort. Diese Annahme ist in vielen Féllen zutreffend, weil traditionell
Datensétze auf einem leistungsstarken Computer gespeichert und auf Anfrage verarbeitet
werden. Im Laufe der Zeit entstanden aber Anwendungsfille, die maschinelles Lernen in
einem verteilten Kontext betreiben und unter dem Begriff Verteiltes Lernen zusammenge-
fasst werden. Die prominentesten Vertreter sind wireless sensor networks sowie Rechen-

cluster.

Ein wireless sensor network ist ein Netzwerk aus datenerzeugenden Knoten. Ublicherweise
wird angenommen, dass die einzelnen Knoten eine stark beschrinkte Rechenleistung und
Speicher haben. Jeder Knoten verfiigt oder generiert z.B. durch Auslesen eines Sensors

einen Teil der gesamten Datenmenge.

Hingegen wird bei Rechenclustern von potenziell hoher Rechenleistung und Speicherka-
pazitit ausgegangen. Hier wird die Verteilung genutzt, um sehr grofie Datenséitze zu be-
arbeiten, die auf einem einzelnen Rechner nicht praktikabel gespeichert und verarbeitet

werden konnen.

Verteiltes Lernen kann somit als Querschnittsdisziplin aus Maschinellem Lernen und Ver-
teilten Systemen verstanden werden und fufit auf den Grundlagen beider Gebiete. So
weisen verteilte Algorithmen einige Besonderheiten auf, die bei sequentiellen Algorith-
men iiblicherweise nicht auftreten. Bei ihrem beim Entwurf sollten daher unter anderem

folgende Aspekte [67] berticksichtigt werden:

e Rechenknoten: Gibt es verschiedene Rollen fiir die Rechenknoten? Ist ein gesonderter
Koordinator-Knoten notwendig? Gibt es ein Minimum oder Maximum fiir die Zahl

der beteiligten Rechenknoten?

e Nachrichtentypen: Welche Nachrichtentypen sind in welchen Phasen des Algorithmus
erlaubt? Wie muss ein Knoten auf eine Nachricht in Abhéngigkeit seines Zustands

reagieren?

e Anforderungen an das Nachrichtentransportsystem: Ist es zum Gelingen des Algo-

rithmus notwendig, dass Nachrichten zuverlédssig ankommen?

e Konvergenz: Kann garantiert werden, dass alle Knoten ein gemeinsames Endergebnis

in endlicher Zeit erreichen?

e Terminierungserkennung: Wann ist der Algorithmus beendet? Wie erkennt ein Re-

chenknoten die Terminierung?
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e Netzwerkkosten: Wie viele Nachrichten werden im Worst-Case verschickt und wie

grof} ist das Gesamtvolumen der versendeten Daten?

Im Folgenden werden zwei populdre verteilte Lernalgorithmen vorgestellt, ndmlich der
Peer-to-Peer-K-Means (auch P2P-K-Means genannt) und Distributed random forests. Ab-
schlieffend wird auf die Modellkompression mittels Fouriertransformation, ein weiteres

niitzliches Verfahren des Verteilten Lernens, eingegangen.

4.3.1 Peer-to-Peer-K-Means

Der P2P-K-Means von Bandyopadhyay et al. [9] ist ein verteilter Lernalgorithmus, der fiir
wireless sensor networks konzipiert wurde. Er geht davon aus, dass der Datensatz bereits
iiber die einzelnen Knoten verteilt und ein Verschieben der Daten zu aufwendig ist. Jeder

Knoten durchlduft die folgenden Phasen:

Initialization. Ein herausgehobener Initiator-Knoten setzt den Algorithmus in Gang,
indem er zuféllig Startwerte fiir die K Zentren zieht und diese in einer Initialisierungsnach-
richt an alle Knoten schickt. Da angenommen wird, dass der Initiator selbst auch iiber eine

Datenpartition verfiigt, wechselt er wie alle anderen Knoten in die Computation-Phase.

Computation. Jeder Knoten fiihrt eine Iteration des klassischen k-Means durch (siehe
Unterabschnitt 4.2.1) und erhélt neue Positionen fir die K Zentren. Dabei wird auflerdem
die Grofle jedes Clusters in Bezug auf die eigenen Datenpunkte bestimmt. Anschlielend

wechselt der Algorithmus in die Polling-Phase.

Polling. Jeder Knoten zieht eine zufillige Auswahl aus allen beteiligten Knoten und
erfragt deren neu ermittelte Zentren und Groéflen. Es wird gewartet, bis alle Antworten

eingetroffen sind oder ein Timeout eintritt. Dann wird in die Merging-Phase gewechselt.

Merging. Die eigenen Zentren werden mit den Zentren aus den Antworten verglichen,
wobei die jeweils mitgelieferten Clustergréfien eine Gewichtung liefern. Wenn die Zentren
hinreichend nah beieinander liegen, wechselt der aktuelle Knoten in die Terminated-Phase
und behélt seine Zentren dauerhaft bei. Andernfalls beginnt der aktuelle Knoten mit der

Computation-Phase die nichste Iteration.

Terminated. Die Terminated-Phase ist kein Terminierungszustand im engeren Sinn, da

der Knoten weiterhin Poll-Nachrichten beantwortet.

In [25] wurde fir den Worst Case der Speicherbedarf und das Netzwerkvolumen des Al-

gorithmus untersucht. Sei n die Anzahl der Knoten, I die Anzahl an Iterationen, bis alle
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Knoten zu Terminated gewechselt sind, L die grofite Zahl an Nachbarn, die ein Knoten
hat, und K die Anzahl der Zentren des k-means. Dann benétigt der P2P-K-Means auf
allen Knoten zusammen O(nlI(K + L)) Speicher und verursacht ein Netzwerkvolumen von

O(nILK).

4.3.2 Distributed random forests

Random forests werden im Bereich des maschinellen Lernens héufig verwendet und sind
daher in vielen ML-Bibliotheken zu finden. Der Grundalgorithmus ist sequentiell, birgt

aber das Potential, einige Arbeitsschritte verteilt auszufiithren.

In Spark ML findet sich eine auf Rechencluster ausgelegte Implementierung, die sich fol-

gende Ideen zunutze macht [19, 20]:

e Trainieren ganzer Baum-Ebenen. Es werden alle Knoten mit gleicher Tiefe
gleichzeitig trainiert. Dadurch werden die Iterationen iiber die Trainingsdaten besser

ausgenutzt und die Anzahl an benétigten Iterationen wird reduziert.

e Quantilschitzungen. Im sequentiellen Algorithmus werden die Daten sortiert. Dies
ist bei einem verteilten Datensatz mit hohem Aufwand verbunden und wird vermie-
den. Stattdessen wird das benétigte Quantil des Datensatzes geschétzt und eine

leichte Abweichung in Kauf genommen.

e Vorberechnete Feature-Bins. Kontinuierliche Features miissen in Halbraume un-
terteilt werden (,if feature 11 <= 8.736%). Diese konnen zum Teil vorberechnet

werden und sparen spéter in jeder Iteration Zeit ein.

Damit eignet sich diese Implementierung fiir das Ziel dieser PG, Big Data Analytics auf
einem Rechencluster zu betreiben. Im Kapitel 14 untersuchen daher wir unter anderem, in-
wiefern die Random forest Implementierung von Spark ML von steigender Worker-Anzahl

profitiert.

4.3.3 Kompression von Entscheidungsbidumen

Zum Bereich des Verteilten Lernen gehéren neben Lernalgorithmen auch Verfahren, die

den Umgang mit Modellen in Verteilten Systemen vereinfachen.

Das Kompressionsverfahren von Kargupta und Park [52] wendet die aus der Elektrotechnik
bekannte Fouriertransformation auf einen gegebenen Entscheidungsbaum an. Dabei wird
die Klassifizierungsfunktion durch eine gewichtete Summe von Basisfunktionen dargestellt.
Der Nutzen dieses Verfahrens besteht zum Einen darin, dass die Basisfunktionen und

die Gewichte sich mit weniger Aufwand im Netzwerk versenden lassen als eine ganze
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Baumtopologie. Zum Anderen lasst sich aus dem Ergebnis der Fouriertransformation leicht
ablesen, welche Basisfunktionen einen groflen Einfluss auf die Klassifizierung haben und
welche nur selten relevant sind. Dadurch kann der Nutzer entscheiden, ob Basisfunktionen
mit wenig Einfluss iiberhaupt {iber das Netzwerk iibertragen werden sollen. Der am Zielort
rekonstruierte Entscheidungsbaum ist dann zwar keine exakte Kopie des Originals, enthélt

dafiir aber nur die wichtigen Ebenen und ist in der Anwendung somit schneller.

4.4 Statisches und Inkrementelles Lernen

Grundlegend fiir das statische oder auch batch genannte Lernen ist, dass die Trainings-
Daten vorher bekannt sind. Oftmals wird dies auch weiter eingeschriankt, indem ange-
nommen wird, dass die Daten komplett in den Hauptspeicher passen. Da diese Annahme

offensichtlich vieles vereinfacht, beruhen viele klassische Verfahren darauf.

Beim inkrementellen oder online Lernen kommen die Test-Daten nacheinander in der
Reihenfolge ihres Entstehens, z.B. ihres Auftretens, Messens usw., beim Lerner an und
werden dort sofort verarbeitet. Dabei wird so wenig wie moglich zwischengespeichert, was

auch als Data stream mining bezeichnet wird.

Das auffilligste Problem beim statischen Lernen ist die Annahme, dass die Daten voll-
standig in den Hauptspeicher geladen werden konnen. Dieser ist relativ begrenzt und
besonders im Big-Data-Umfeld {ibersteigen die Daten den zur Verfiigung stehenden Platz
um ein Vielfaches, z.B. umfangreiche Log-Files von groflien Webseiten, Sensordaten, Inter-
net of Things usw. Um Beschréankungen durch zu kleinen Hauptspeicher zu umgehen, gibt
es auch Algorithmen bzw. Anpassung von bestehenden Algorithmen, die Sequenzen von
der Festplatte lesen und auf diesen dann batch-artig lernen. Diese Klasse von Algorithmen
sind zwar eine Mischung aus batch- und online-Lernen, werden aber meistens zum stati-
schen Lernen gezéahlt. Wiinschenswert wére daher ein Online-Algorithmus, dessen Ergebnis

dquivalent zu einem Ergebnisses eines Batch-Lerners wére.

4.5 Concept Drift und Concept Shift

Beim kontinuierlichen Beobachten von Daten stellt man haufig fest, dass die Daten sich sy-
stematisch tiber einen bestimmten Zeitraum verdndern bzw. verschieben. Dies kann durch
Veranderungen in den Rohdaten an sich oder auch durch die Messgeréte verursacht werden,
wenn sich diese zum Beispiel im Betrieb erwédrmen und so bei gleichen Rohdaten dennoch
unterschiedliche Werte liefern. Durch dieses Verschieben kann die Qualitdt der Klassifikati-
on der angelernten Lernverfahren abnehmen, da die bisher verwendeten (Trainings-)Daten

nun nicht mehr zu den neuen Messdaten passen.
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Abbildung 4.2: Unterscheidung Realer Drift vs. Virtueller Drift [37]

Daher wird sich in diesem Abschnitt etwas genauer mit Concept Drift bzw. Concept Shift
beschéftigt, das heifit, die Auswirkungen dieser etwas ndher erortert, die unterschiedlichen

Arten néher beschrieben und angesprochen, wie man das Verschieben erkennen kann [29].

Realer Drift vs. Virtueller Drift

Waéhrend sich die Daten verschieben, kann man im Wesentlichen zwei wichtige Falle un-
terscheiden: Das Verschieben beeintrachtigt unsere Klassifikation oder es ist fiir die Klas-
sifikation nicht weiter von Bedeutung. Betrachtet man alle Features iiber einer Menge
von Rohdaten, so sind nicht immer alle Features entscheidend fiir die Klassifikation durch
maschinelles Lernen. Oft sind die Algorithmen auch darauf ausgerichtet, eine moglichst
einfache Unterscheidung, das heifit, mit moglichst wenigen Features, der Klassen zu finden.
Findet nun ein Drift in einem oder mehreren Features statt, die zur Klassifikation nicht
notwendigerweise gebraucht werden, ist der Drift nicht weiter relevant. In diesem Fall wird
auch vom wvirtuellen Drift gesprochen (vgl. Abbildung 4.2 links und rechts). Verschieben
sich die Daten jedoch so, dass ein zur Klassifikation notiges Feature betroffen ist und die
Daten die bisherigen Unterteilungskriterien nicht mehr erfiillen, spricht man von realem
Drift (vgl. Abbildung 4.2 links und Mitte). In diesem Fall muss der Lerner angepasst oder

gar neu antrainiert werden.

Auftreten von Shifts

Diese Verdnderung der Daten kann zeitlich betrachtet recht unterschiedlich passieren (vgl.
Abbildung 4.3):

Plotzlich (engl. sudden / abrupt) Ab einem bestimmten Zeitpunkt fallen die Daten ein-

fach anders aus oder zeigen andere Charakteristika.

Schleichend (engl. incremental) Dies bezeichnet den Vorgang, wenn sich die Daten lang-

sam in einen anderen Bereich verschieben.

Wiederauftretend (engl. reoccuring concepts) Die Daten alternieren zwischen zwei be-
stimmten Werten, wobei es keine festen Zeitpunkte fiir den Wechsel zwischen den

Werten geben muss.
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Abbildung 4.3: Schematische Darstellung vom unterschiedlichen Auftreten von Concept Drift
37]

Ausreifler (engl. outlier) Es konnen vereinzelte Datenpunkte auBerhalb des erwarteten
Bereiches liegen, dies ist jedoch kein Shift / Drift, sondern einfach eine (Mess-)
Ungenauigkeit.

Erkennen von Shift

Das Erkennen von Shift verlangt sténdiges Beobachten der Daten und Validieren der Klas-
sifikationen. Plotzlich auftretende Verdnderungen und auch Ausreifler lassen sich noch
relativ einfach, auch durch einfache Algorithmen, erkennen. Schleichenden oder wieder-
auftretenden Shift zu erkennen erfordert dagegen komplexere statische Modelle oder Al-
gorithmen. In beiden Féllen koénnen maschinelle Lernmethoden angewendet werden, um

einen moglichen Shift zu erkennen und um die Nutzer entsprechend zu informieren [37].

4.6 Learning with Imbalanced Classes

Bei vielen realen Klassifikationsproblemen geht es darum, seltene Ereignisse in einer Masse

aus uninteressanten Vorkommnissen zu entdecken [36]. Beispiele hierfiir sind zum Beispiel:

e Die Diagnose von seltenen Krankheiten auf Basis der Daten von gréfitenteils nicht

betroffenen Patienten
e Die Erkennung von betriigerischen Finanztransaktionen

e Die Gamma-Hadron Separation, die ein entscheidender Teil der Analysekette in der
Cherenkov Astronomie ist (sieche Abschnitt 1.2)

Fiir die Klassifikation bedeutet dies, dass ein starkes Ungleichgewicht zwischen der Hau-
figkeit des Auftretens von Vertretern der unterschiedlichen Klassen besteht. Vielfach wird
in diesem Zusammenhang auch von einer positiven, seltenen Minoritdtsklasse und einer
negativen, haufigen Majoritdtsklasse gesprochen. Die damit verbundene Festlegung auf
nur zwei Klassen ist ohne Beschrankung der Allgemeinheit mdoglich, da eine Problem-
stellung mit mehr Klassen immer als Klassifikationsaufgabe zwischen einer Gruppe von
héufigen und einer Gruppe von seltenen Klassen gesehen werden kann. Von entscheiden-
der Bedeutung ist hierbei das Verhéltnis zwischen der Haufigkeit der beiden Klassen. Dies

quantifiziert alle Aussagen, die hier getroffen werden.
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4.6.1 Einfluss auf Klassifikatoren

Der Einfluss, den das Klassenungleichgewicht auf die Leistung von Klassifikatoren hat,
wurde in verschiedenen Studien empirisch untersucht [51]. Die Ergebnisse lassen sich
wie folgt zusammenfassen: Das Ungleichgewicht fiithrt nicht dazu, dass Standardlerner
zwangsldufig nicht mehr funktionieren, sondern sorgt vielmehr dafiir, dass sich die Schwel-
len hinsichtlich der benétigten Menge an Trainingsdaten und der maximalen Modell-
komplexitdt verschieben. Das Problem ldsst sich also dadurch l6sen, dass einfach die
herkémmlichen Lerner mit zusétzlichen Trainingsdaten verwendet werden — ungiinstiger-

weise ist das bei vielen Anwendungen aber ohnehin der limitierende Faktor.

4.6.2 Bewertung von Klassifikatoren

Ein wichtiger Punkt, der bei stark verschobenen Klassenverhéltnissen bedacht werden
muss, ist, wie Klassifikatoren eigentlich zu bewerten und zu vergleichen sind. Ein na-
tirlicher Ansatz fiir die Darstellung der Performanz eines binidren Klassifikators ist eine
Wahrheitsmatrix, wie in Abbildung 4.4 dargestellt. Mit gegebenem Validationsdatensatz
lasst sich eine solche Tabelle durch simples Zahlen der Antworten des Klassifikators und
der tatsédchlichen Klassen befiillen. Offen ist aber, wie Leistungen verschiedener Lerner,

also verschiedene Tabellen dieser Art, miteinander verglichen werden koénnen.

H Positive Klasse ‘ Negative Klasse

Positive Voraussage | Richtig positiv (TP) | Falsch positiv (FP)

Negative Voraussage || Falsch negativ (FN) | Richtig negativ (TN)

Abbildung 4.4: Schematischer Aufbau einer Wahrheitsmatrix

Ein verbreitetes Vergleichskriterium ist die Fehlerrate FERR = (FP + FN)/(TP + FP +
FN+TN), also der Anteil der Datenpunkte, die falsch klassifiziert wurden. Wenn die Mi-
noritdtsklasse nun aber sehr selten ist, konnen Lerner sehr geringe Fehlerraten erreichen,
indem sie einfach alle Eingaben der Majoritédtsklasse zuordnen. Da ein solcher Klassifi-
kator aber vollkommen nutzlos ist, ist dieses Vorgehen bei stark verschobenen Klassen-
verhéltnissen offensichtlich inaddquat. Dies hat damit zu tun, dass die Anzahl der falsch po-
sitiven und falsch negativen Datenpunkte in der Fehlerrate schlicht addiert werden. Da es
von der negativen Klasse aber wesentlich mehr Instanzen gibt, werden die falsch positiven
Datenpunkte die Fehlerrate hochstwahrscheinlich dominieren. Ein sinnvolles Vergleichs-
kriterium muss daher die Klassifikatorleistung auf den einzelnen Klassen unabhéngig von

der Anzahl der jeweils vorliegenden Instanzen ins Verhéltnis setzen.

Eine Moglichkeit, dies zu tun, ist, tiber die richtig-positiv-Rate T Pyqte = TP/(TP + FN)
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und die richtig-negativ-Rate T'N, 4. = TN/(TN + FP), die angeben, welcher Anteil der
jeweiligen Klassen richtig klassifiziert wurde. Um ein wirkliches Vergleichskriterium zu
erhalten, miissen diese beiden Werte aber noch geeignet ins Verhéltnis gesetzt werden.
Ein Weg, die beiden Metriken zu kombinieren, ist die Visualisierung in einer Receiver
Operating Characteristic (ROC) Grafik [30] wie in Abbildung 4.5.

100% =

80% ¢

g.
P
b

True Positive Rate
S
b

20% #

0%
0% 20% 40% 60% 80% 100%

False Positive Rate

Abbildung 4.5: Eine ROC Kurve [36]

Die Klassifikatorleistung kann so als ein Punkt in diesem zweidimensionalen Raum darge-
stellt werden. Hierbei bedeutet ein Punkt, der sich weiter oben und weiter links befindet,
einen strikt besseren Klassifikator. Mogliche daraus abgeleitete Metriken sind das arith-

metische und geometrische Mittel von T P,qte und T Nyqge:

TPrate + TNrate
2

Gmean = \/TPrate * TNrate

AUC =

Diese Metriken behandeln T' P4t und T N;qte symmetrisch. In manchen Anwendungsfillen
ist die Performanz auf einer Klasse (iiblicherweise der Minoritatsklasse) aber wichtiger als
auf der anderen. In diesem Fall bietet es sich an, eine asymmetrische Metrik zu verwenden,

etwa den Index of balanced accuracy (IBA) [38].

IBA = (1 + a(TPyate — TNyate)) * Gmean?
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Dieser Index fithrt den Asymmetriefaktor « ein, iiber den sich steuern lasst, wie viel starker

die T Pyt gegeniiber der T'N,qte gewichtet werden soll.

4.6.3 Verbesserung von Klassifikatoren

Zur Verbesserung der Performanz von Klassifikatoren auf unausgewogenen Trainingsdaten
gibt es verschiedene Ansétze, die in drei Kategorien eingeteilt werden koénnen: interne,

externe, und auf Ensemble-Learning basierende Ansétze [36, 39)].

Eine Moglichkeit besteht darin, den Lernalgorithmus selbst zu verdndern. Denkbar wére
etwa, die Kostenfunktion anzupassen, um dafiir zu sorgen, dass der Algorithmus seine
Ausgabe mit Blick auf die gewéhlte Metrik optimiert. Diese auch als intern bezeichneten
Ansitze stehen vor dem Problem, dass sie ein genaues Versténdnis des Lernalgorithmus
und des Problems erfordern. Des Weiteren beziehen sich die vorgenommenen Anpassungen
jeweils nur auf einen Algorithmus und lassen sich in der Regel nicht auf andere Verfahren

verallgemeinern.

Eine anderer, attraktiver Ansatz besteht daher darin, in einem Vorverarbeitungsschritt
die Trainingsdaten so zu verdndern, dass das Problem der unausgeglichenen Klassen ge-
ringer wird. Diese externen Ansétze haben den Vorteil, dass sie sich mit jedem beliebigen

Klassifikator kombinieren lassen.

Over-Sampling

Eine mogliches externes Verfahren besteht darin, zuséitzliche synthetische Instanzen der
Minoritétsklasse in den Trainingsdatensatz einzufiigen, um so den wenigen vorhandenen
Datenpunkten mehr Gewicht zu verleihen. Die wird Ower-Sampling genannt und kann

durch verschiedene Strategien umgesetzt werden:

o Zufillig ausgewéhlte vorhandene positive Datenpunkte kénnen repliziert werden

e Es kann zwischen vorhandenen Datenpunkten interpoliert werden, um Instanzen zu

erzeugen, die neu, aber gleichzeitig konsistent mit den bisherigen Daten sind

e Andere Ansétze sind moglich, etwa kann versucht werden, Datenpunkte in der Grenz-

region der Klasse zu erzeugen

Alle diese Ansétze haben ihre Vor- und Nachteile, abhéngig davon, ob die tiber die Da-
ten getroffenen Annahmen stimmen oder nicht. Ein iibergreifendes Problem ist aber das
Owerfitting, also das Phanomen, dass ein Klassifikator die spezifische Verteilung der Trai-
ningsdaten lernt, anstatt der dahinter liegenden Muster, und deswegen schlecht auf ande-
re Daten generalisiert. Dadurch, dass die wenigen Datenpunkte der Minoritdtsklasse beim
Oversampling vervielfacht werden, wird dieses Problem verstarkt. Ein weiterer Nachteil ist

der erhohte Rechenaufwand durch die kiinstliche Vergréfierung des Trainingsdatensatzes.
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Under-Sampling

Das dem Over-Sampling entgegengesetzte Verfahren wird Under-Sampling genannt und
besteht darin, zuféllig Instanzen der Majoritédtsklasse aus dem Trainingsdatensatz zu
16schen. Der Effekt ist auch hier, dass das Ungleichheitsverhéltnis so kiinstlich verringert

wird. Auch hierfiir gibt es verschiedene Umsetzungsmoglichkeiten:

e Entfernen von zufilligen negativen Datenpunkten

e Entfernen von ,redundanten“ Datenpunkten, also etwa solchen, in deren Néhe sich

noch andere Punkte der selben Klasse befinden

e Entfernen von Datenpunkten in der Grenzregion zur Minoritdtsklasse

Der grofie Nachteil dieser Verfahren ist, dass durch das Loschen von Datenpunkten unter
Umsténden wichtige Informationen verloren gehen, und die Klassifikatorleistung dadurch
abnimmt. Insgesamt lasst sich aber sagen, dass beide Resampling-Varianten in aller Re-
gel zu einer Leistungssteigerung fithren. Dank ihrer universellen Einsetzbarkeit sind diese
Verfahren daher sehr attraktiv.

Ensemble Learning

Ein weiterer Ansatz besteht darin, die in Abschnitt 4.1 vorgestellten Ensemble Learning
Verfahren zu adaptieren. Auch hierzu gibt es verschiedene Strategien, die allesamt das Ziel

haben, der Minoritétsklasse ein grofleres Gewicht zu verleihen. Einige Beispiele sind:

e Quver-/Under-Bagging. Bei dieser Variante des Bagging werden die Teildatensitze

nicht zuféllig gezogen, sondern unter Benutzung von Over-/Under-Sampling

e SMOTFEBoost. Diese Variante von AdaBoost (Algorithmus 2) generiert nach jeder
Iteration durch Interpolation zusétzliche Datenpunkte und fiigt diese in den Daten-

satz ein

e AdaCost. Diese andere Variante von AdaBoost veriandert die Updatefunktion der

Gewichte so, dass positive Datenpunkte schneller an Gewicht zunehmen als negative

Welches Verfahren das beste ist, lasst sich letztendlich nur durch den empirischen Ver-
gleich entscheiden. Die durchgefiithrten Studien deuten aber darauf hin, dass Resampling-

Verfahren in der Regel lohnenswert sind.

4.7 Feature Selection

Feature Selection (Merkmalsauswahl) versucht, moglichst geeignete Merkmale fiir ein ge-

gebenes Vorhersageproblem zu identifizieren. Als ungeeignet betrachtete Merkmale kénnen
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ignoriert werden, wodurch sich die Dimensionalitdt der Daten reduzieren lasst. Dabei wird
die Auswahl nur unter den Originalmerkmalen vorgenommen (die hier nicht betrachtete
Merkmals-Extraktion hingegen erzeugt neue Merkmale, um die Datendimensionalitidt zu

reduzieren).

Die Vorteile von Dimensionsreduktion und Feature Selection insbesondere werden in Un-
terabschnitt 4.7.1 vorgestellt. Es wird eine formale Problemstellung aus den Eigenschaften
abgeleitet, die ein ,geeignetes® Merkmal erfiillen sollte (siehe Unterabschnitt 4.7.2). Eine
Ubersicht der Ansiitze zur Feature Selection wird vorgestellt und Qualitétsmerkmale von
Auswahl-Algorithmen werden identifiziert (sieche Unterabschnitt 4.7.3). Als prominentes
Beispiel wird der korrelationsbasierte Algorithmus CFS (Correlation-based Feature Se-
lection) nach Hall [43] intensiv betrachtet (Unterabschnitt 4.7.5). Dessen Erweiterung zu
Fast-Ensembles wird ebenfalls vorgestellt (siche Unterabschnitt 4.7.6).

4.7.1 Vorteile

Die Reduktion der Datendimensionalitdt kann im {iberwachten Lernen sowohl die Trai-
ningszeiten als auch die Anwendungszeiten der verwendeten Modelle reduzieren. Die trai-
nierten Modelle sind aufgrund der geringeren Dimension kompakter und damit, falls es der
Modelltyp hergibt, leichter interpretierbar. Ein besonderer Vorteil der Dimensionsreduk-
tion ist aber, dass dem Fluch der hohen Dimension entgegengewirkt werden kann. Dieser
besagt, dass hochdimensionale Modelle bei geringer Anzahl verfligbarer Beispiele stark
{iberangepasst werden. Uberangepasste Modelle generalisieren schlecht auf unbekannten
Daten und resultieren daher in schlechter Vorhersage-Performanz. Dimensionsreduktion
schrinkt die Variabilitdt der Modelle ein, sodass der Informationsgehalt kleiner Stichpro-

ben besser repréasentiert und damit die Generalisierungsfdhigkeit erhoht wird.

Besteht die Dimensionsreduktion aus der Auswahl von Originalmerkmalen, konnen weitere
Vorteile gewonnen werden. So lassen sich Datenvisualisierungen auf wichtige Merkmale fo-
kussieren, was das Verstédndnis der Daten erhohen kann. Auflerdem miissen bei zukiinftigen
Datenerfassungen nicht alle Merkmale erfasst werden, was die Kosten solcher Datenerfas-
sungen senken kann. Natiirlich werden auch, wenn pro Beispiel weniger zu speichern ist,

auch die Speicheranforderungen geringer ausfallen.

Uberdies hat sich Feature Selection auch als eigenstéindiges bzw. priméres Analysewerk-
zeug etabliert: Einige Probleme sind bereits dadurch gelost, dass wichtige Merkmale identi-
fiziert werden. Beispielsweise sollen in der Analyse von Genexpressionsdaten fiir Krankhei-
ten relevante Gene ausfindig gemacht werden. Die Auspriagungen der Gene stellen Merk-
male dar. Mit Krankheiten stark korrelierte Ausprdgungen koénnen ein Indiz fiir einen

Zusammenhang sein.

Im Anwendungsfall interessiert uns die Auswahl von Features, da bestehende Analysen

eine grofle Anzahl teils redundanter Merkmale extrahieren. Die Relevanz dieser Merkma-
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le fir die Gamma-Hadron-Separation und die Energy Estimation ist fraglich. Wenn wir
Merkmale identifizieren konnen, die nicht weiter betrachtet werden miissen, kénnen wir
die Analyse beschleunigen, indem wir die Berechnung unwichtiger Merkmale iiberspringen.

Sdmtliche der oben genannten Vorteile konnen ebenfalls geltend gemacht werden.

4.7.2 Problemstellung

Niitzliche Merkmale zeichnen sich durch zwei Eigenschaften aus: Sie sollten zum Einen fiir
das gegebene Vorhersageproblem relevant sein, also eine gewisse Vorhersagekraft besitzen.
Moglicherweise ergibt sich diese Vorhersagekraft nur durch Zusammenspiel mit anderen
Merkmalen. Zum Anderen sollte die durch das Merkmal kodierte Information sich nicht
mit der Information anderer Merkmale tiberschneiden. Selektierte Merkmale sollten also

nicht redundant zueinander sein.

Es lasst sich daher nicht fiir jedes Merkmal isoliert entscheiden, ob es gewéhlt werden
sollte oder nicht. Wir miissen die Qualitdt von Merkmalsmengen (genauer: Teilmengen
der Original-Merkmalsmenge) abschétzen. Koller und Sahami [56] priagten die Vorstellung

einer optimalen Merkmalsmenge wie folgt:

Definition 4.1 (Optimale Merkmalsauswahl) Die minimale Teilmenge G C F der
Original-Merkmale F', so dass:

P(C |G = fg) und P(C | F = f) so dhnlich, wie moglich

betrachten wir als optimal, wobei P die wahre Wahrscheinlichkeits- Verteilung tiber den

Klassen C, f eine Realisierung von F und fg die Projektion von [ auf G.

Damit ist die optimale Merkmalsauswahl eine minimal grofie Menge, welche die (wah-
re) Wahrscheinlichkeitsverteilung tiber der Zielvariable so gut wie moglich erhélt. Es soll
also das zu l6sende Vorhersageproblem durch die Beschrankung auf eine Teilmenge der
Merkmale nicht wesentlich verzerrt werden. Eine oft verwendete alternative Definition
beschreibt die optimale Auswahl als die minimal grofle Menge, welche die Vorhersage-
Performanz maximiert. Damit ist allerdings die wahre Verteilung ignoriert und das eigent-

liche Problem nicht korrekt wiedergegeben.

Da es bei Merkmalsauswahl um den Erhalt der wahren Verteilung geht (welche wir nicht
kennen), lasst sich das Problem im Allgemeinen nicht optimal l6sen. Selbst die Verwen-
dung der alternativen Definition iiber die Vorhersageperformanz lasst Merkmalsauswahl
nicht zu einem einfachen Problem werden: Um das Zusammenspiel aller Merkmale zu
berticksichtigen, miissten wir alle moglichen Merkmalsmengen (2‘F | Moglichkeiten) auspro-
bieren, was fiir viele Probleme schlicht nicht realisierbar ist. Daher ist allen Merkmalsauswahl-

Algorithmen gemein, dass sie einige Merkmalsmengen (Kandidaten) heuristisch auswerten.
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Kandidaten werden dabei durch eine Such-Strategie (z.B. Vorwirts-Suche, randomisierte

Suchen, ...) im Raum der moglichen Losungen erzeugt.

4.7.3 Arten von Algorithmen

Algorithmen zur Auswahl von Merkmalen unterscheiden sich hauptséichlich durch die von
ihnen genutzte Heuristik zur Bewertung moglicher Losungen. Oft genannte Arten von

Algorithmen sind:

Wrapper nutzen die Accuracy (Anteil korrekter Vorhersagen auf Testdaten) von Mo-
dellen, die mit der betrachteten Merkmalsmenge trainiert wurden. Es wird also in
jedem Suchschritt durch den Raum moglicher Teilmengen ein Modell eingepasst,
was einen hohen Berechnungsaufwand mit sich fiihrt. Durch Wrapper ausgewéhlte
Merkmale sind allerdings nahe an der optimalen Merkmalsmenge, da die Accura-
cy auf unbekannten Daten eine gute Abschitzung fiir die Erhaltung der wahren

Verteilungsfunktion darstellt.

Eingebettete Methoden verwenden interne Informationen von Modellen, die auf der
gesamten Merkmalsmenge eingepasst werden. So kénnen beispielsweise Merkmale
gewéhlt werden, die in einem Random Forest viele oder besonders gute Splits erzeu-
gen. Eingebettete Methoden sind effektiv, da der Raum méglicher Merkmalsmengen
und Modelle zugleich durchsucht wird, verzerren die Losung aber zum verwendeten
Modell hin. Durch einen Random Forest ausgewihlte Merkmale kénnen z.B. fiir die

Verwendung in einer SVM ungeeignet sein.

Filter agieren unabhingig von jedem Lernalgorithmus durch explizite Verwendung von
Heuristiken, wie etwa Korrelationen zwischen Merkmalen. Sie sind daher besonders
effektiv.

Uber diese Arten hinaus existieren hybride Verfahren, die etwa Filter fiir eine Voraus-
wahl verwenden, um im Anschluss einen Wrapper die Endauswahl treffen zu lassen. Wir
wollen hier Filter fokussieren, da sie das allgemein effektivste Verfahren darstellen. Durch
Beriicksichtigung von zusammenspielenden Features konnen sie bereits sehr gute Ergeb-
nisse liefern. Die Qualitat eines Algorithmus lasst sich tiberdies an folgenden Eigenschaften

messen [80]:

Begiinstigung des Lernens Die Accuracy des trainierten Modells sollte im besten Fall

erhoht, aber zumindest nicht wesentlich gesenkt werden.

Geschwindigkeit Der Auswahl-Algorithmus sollte in der Anzahl der Originalmerkmale

skalierbar sein.
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Multivarianz Das Zusammenspiel von Merkmalen (bzgl. Vorhersagerelevanz und Red-

undanz) sollte beriicksichtigt werden.

Stabilitdt Die ausgewéhlte Merkmalsmenge sollte robust gegeniiber der Varianz der ver-
wendeten Daten sein. Insbesondere sollten fiir unterschiedliche Stichproben nicht
génzlich unterschiedliche Merkmale ausgewéahlt werden. Nur stabile Verfahren kénnen
ein Vertrauen in die Auswahl schaffen, das es erlaubt, Feature Selection zur Wissens-

generierung zu verwenden.

4.7.4 Korrelation als Heuristik

Bevor wir in Unterabschnitt 4.7.5 mit CFS ein korrelationsbasiertes Verfahren zur Merk-
malsauswahl kennen lernen, wollen wir zunéchst die heuristische Natur von Korrelation
zwischen Merkmalen bzw. Korrelation zwischen Merkmalen und der Zielvariablen als Maf3

fiir die Qualitat einer Merkmalsmenge untersuchen.

Korrelation und Redundanz

Abbildung 4.6 zeigt zwei mégliche Verteilungen von Beispielen in R?. Mit den beiden Di-
mensionen gibt es also zwei Merkmale, von denen moglicherweise eines ausgewéhlt werden
konnte. Wir wollen mit der Auswahl die Klasse von Beispielen vorhersagen, wobei Beispie-
le entweder aus der orangenen oder der griinen Klasse stammen. Bei perfekter Korrelation
zwischen den Merkmalen (Abbildung 4.6a) ist es egal, ob wir ein Merkmal oder beide
verwenden, die Klassen lassen sich nicht trennen. Damit sind die Merkmale redundant zu-
einander. Bei einer ,lediglich“ sehr hohen Korrelation muss es jedoch nicht sein, dass beide
Merkmale redundant zueinander sind: In Abbildung 4.6b erlaubt die Verwendung beider
Merkmale eine lineare Separation der Klassen, was mit nur einem der Merkmale nicht
moglich wére. In diesem Fall hinkt die Heuristik also. Fiir reale Probleme funktioniert

Korrelation als Heuristik aber sehr gut [42].

Korrelation und Kausalitit

Weiterhin ist anzumerken, dass Korrelation nicht gleich Kausalitit ist: Welches zweier
Merkmale der Ausloser fiir die Auspragung des anderen Merkmals ist, kann Korrelation
nicht erfassen. Moglicherweise sind die Auspragungen beider Merkmale auch gemeinsamer
Effekt eines dritten Merkmals. Die Offenlegung (probabilistisch) kausaler Zusammenhénge
kann tiefgehende Erkenntnisse bringen, ist aber auflerhalb dieser Betrachtung von Merk-

malsauswahl (fiir weitere Informationen, siehe [41]).
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Abbildung 4.6: Korrelation als Heuristik
4.7.5 CFS

Wir wollen im Folgenden einen prominenten Vertreter von korrelationsbasierten Filter-
Verfahren zur Merkmalsselektion auf seine Qualitdt hin untersuchen, die Correlation-based
Feature Selection nach Hall [43].

Idee

Die Idee von CF'S ist recht simpel: In jedem Schritt j+1 wird das Merkmal f € F'\ F; mit
dem besten Verhaltnis von Relevanz und Redundanz zur bisherigen Auswahl F; hinzu-
genommen. Damit beschreibt CFS eine Vorwértssuche durch den Raum moglicher Merk-
malsmengen. Relevanz und Redundanz werden heuristisch ermittelt, indem die Relevanz
als Korrelation zwischen Merkmal f und Zielvariablen y und die Redundanz als Korrela-
tion zwischen Merkmal f und Merkmalen g € F}; der vorherigen Auswahl F}; abgeschétzt

wird:

Fjy1=F;U {arg max g Corl}.y) }
fEF\Fj ; ZgGFj COT(f7g)

Fiir das Maf3 Cor existieren verschiedene Definitionen basierend darauf, ob die Eingabe-
Merkmale numerisch oder nominal sind (siehe [41]). Diese sollen hier aber nicht weiter

betrachtet werden.

Beispiel-Ablauf

Abbildung 4.7 zeigt einen Beispiel-Ablauf des CFS-Algorithmus: Im ersten Schritt wird fiir

jedes Merkmal dessen Korrelation mit der Zielvariablen bestimmt. Das Merkmal mit der
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Abbildung 4.7: Beispiel-Ausfiihrung CFS [80]

hochsten Korrelation (hier X2) wird gewéhlt. In den weiteren Schritten miissen zusétzlich
die Korrelationen mit zuvor gewahlten Merkmalen berechnet werden, um die Redundanz
abzuschétzen. Einmal berechnete Korrelationen kénnen gecached werden, um das Verfah-
ren zu beschleunigen. Dies passiert hier mit dem Korrelationen (X1,X2), (X3,X2) und
(X5,X2). Diese miissen kein zweites Mal berechnet werden. Das Verfahren kann bei einer
festgelegten Anzahl Merkmale terminieren oder wenn keine relative Verbesserung grofier

als eine festgelegte Konstante erreicht wird.

Qualitit

Der CFS-Algorithmus ist vielversprechend: Experimente zeigen, dass sich die Accuracy von
auf den Merkmalen trainierten Modellen erhohen lésst [43]. Durch die hochstens einmalige
Berechnung der (|F| 4+ 1)? Korrelationen zwischen Merkmalen und Zielvariablen ist der
Algorithmus zudem schnell. Da er das Zusammenspiel von Merkmalen beziiglich ihrer
Redundanz beriicksichtigt, erfiillt er auch das Multivarianz-Kriterium. Ein Problem von
CFS ist allerdings, dass alle verwendeten Mafle Cor auf Varianz basieren und damit anféllig
fiir eine hohe Varianz der Stichprobe und gegeniiber Ausreifiern sind. CFS ist also nicht
stabil.

4.7.6 Fast-Ensembles

Um die Stabilitdt eines Klassifikators zu erhohen, lassen sich mehrere Klassifikatoren zu
einem Ensemble zusammenfassen (siehe Abschnitt 4.1). Dieselbe Idee ldsst sich auf Feature
Selection iibertragen, um die Stabilitit der ausgewédhlten Merkmalsmengen zu erhéhen
[79]. Dazu wird ein Merkmalsauswahl-Algorithmus auf unterschiedlichen Teilmengen der
Stichprobe trainiert, wodurch mehrere Merkmalsmengen erzeugt werden. Die aggregierte

Merkmalsauswahl ist die Merkmalsmenge, die aus hdufig selektierten Features besteht.

Problematisch bei der Anwendung von Ensembles zur Feature Selection ist, dass im
Ensemble mehrere Merkmalsmengen ausgewéhlt werden miissen. Damit sind Ensembles
tiblicherweise nicht schnell. Fiir CFS-Ensembles haben Schowe und Morik [80] aber ein
Verfahren entwickelt, dass durch die Bildung eines Ensembles nahezu keine zusétzliche

Laufzeit erzeugt. Der Fast-Ensembles genannte Merkmalsselektor besitzt damit alle Vor-
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teile von CFS, ist aber zudem stabil (CFS wurde bereits in Unterabschnitt 4.7.5 kennen
gelernt).

Idee

Die Grundlegende Idee zur Beschleunigung von CFS-Ensembles ist, die Korrelations-Mafle
Cor in eine Summe aus voneinander unabhéngigen Teilsummen aufzuspalten. Die Teilsum-
men kénnen dann wiederverwendet werden, um alle im Ensemble bendtigten Abschétzun-
gen der Korrelation zu berechnen: Dass CFS im Ensemble ausgefithrt wird, erzeugt dann
kaum zusétzliche Laufzeit. Alle Abschétzungen einer Korrelation kénnen wie im Single-

CFS in einem Durchlauf {iber die Stichprobe erzeugt werden.

Wir wollen beispielhaft die Zerlegung des Pearson’s Correlation Coefficient in unabhéngige
Teilsummen betrachten. Die Idee ist aber auch auf alle anderen in CFS verwendeten Mafle

fiir Korrelation anwendbar.

Cov(X Y)
VVar(X) - Var(Y)

Corpec(X,Y) = (Pearson’s Correlation Coefficient)

Wobei Cov(X,Y) := E[(X —E(X))(Y —E(Y))] = E(XY)—-E(X)EY).

displ. law

Wegen Var(X) = Cov(X, X) beschranken wir unsere Betrachtungen im Folgenden auf
Cov, welches wir anhand der gegebenen Beispiele (x;,4;),1 < i < n,z; € X,y; € Y

schatzen wollen:

CAOU(X7Y>: szyz - *Z Zyz
=1

*

= szyz + Z TiYi Z zyz

i=mi+1 1=Me_1+1
H/—/ H—/
s1(X)Y) s2(X,Y) se(X)Y)

Wir sehen: Es lassen sich voneinander unabhingige Teilsummen s;(X,Y),1 < j < e
durch Partitionierung der Beispiele an willkiirlichen Grenzen m; erzeugen. Der mit %
bezeichnete Term wird analog zum dargestellten ersten Term in die Teilsummen s;(X)
und s;(Y) zerteilt. Bei der ebenfalls analogen Zerteilung der Varianz-Schétzungen Var

werden zusitzlich die Teilsummen s;(X?) und s;(Y?2) erlangt.

Um eine Menge von e Ensemble-Schétzungen zu erzeugen, brauchen lediglich fiir jede
Schétzung die j-ten unabhéngigen Teilsummen weggelassen werden. Damit ist der j-te Teil

der Stichprobe im j-ten Teil des Ensembles ignoriert. Alle anderen Teilsummen werden
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Training Data
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Abbildung 4.8: Berechnung von Ensemble-Korrelationen in Fast-Ensembles
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Abbildung 4.9: Beispiel-Ausfithrung Fast-Ensembles [80]

aufaddiert, um die Gesamtsummen zu ergeben, mit denen sich die Schitzung von Corp.
berechnen lasst. Wir erhalten e unterschiedliche Schétzungen fiir die Korrelation zweier
Merkmale bzw. eines Merkmals mit der Zielvariablen. Abbildung 4.8 fasst die Schétzung

der Korrelation im Ensemble zusammen.

Beispiel-Ausfithrung

Es werden nun, wie im Single-CFS, einmal berechnete Korrelationen gecached, sodass sie
kein zweites Mal berechnet werden miissen. Fast-Ensembles berechnen durch das oben
vorgestellte Schema jedoch nicht nur eine Ensemble-Schitzung pro Korrelation, sondern

gleich alle Schétzungen des Ensembles.

Abbildung 4.9 stellt dar, wie dadurch bei Einpassung eines Ensembles nur wenige zusétz-
liche Korrelationen (im Gegensatz zum Single-CFS) berechnet werden miissen. Part 1 in
der Abbildung ist bereits aus Unterabschnitt 4.7.5 bekannt. Part 2 und 3 miissen nun ihre
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Schéatzungen der Korrelationen mit der Zielvariablen nicht mehr berechnen, da diese bereits
durch Part 1 auf Basis der unabhéngigen Teilsummen mitberechnet wurden. Auch andere
Korrelationen kénnen ohne Mehraufwand wiederverwendet werden. Da die unterschiedli-
chen Schétzungen unterschiedliche Entscheidungen des Algorithmus hervorrufen kénnen,
gibt es natiirlich einige zusétzlich zu berechnende Korrelationen ((X1,X3), (X5,X3) und
(X1,X5)). Im Gegensatz zu einer kompletten Neuberechnung aller Korrelationen stellt
das Verfahren aber eine enorme Beschleunigung dar. Damit erfiillen Fast-Ensembles alle

in Unterabschnitt 4.7.3 vorgestellten Qualitatskriterien.

4.8 Sampling und Active Learning

Bisher haben wir uns in diesem Kapitel mit den eigentlichen Lernverfahren beschéftigt.
Zum Beispiel haben wir gelernt, was ein Modell ist, wie Merkmale ausgewéhlt werden
etc. Jetzt wollen wir zum Abschluss noch das sogenannte Sampling betrachten. Wollen
wir einen Algorithmus verwenden, um ein Modell zu lernen, stellt sich namlich die Frage,
welche Daten wir diesem iiberhaupt iibergeben und auf welchen Teilen des Datensatzes
das Modell angelernt werden soll. Angenommen, wir haben einen Datensatz der Form
(1,91), -+, (Tn, yn) gegeben, wobei &; ein Merkmalsvektor und y; die Klasse des Vektors

ist. Diese Daten wollen wir nun nutzen, um unser Modell zu trainieren.

4.8.1 Der naive Ansatz

Am einfachsten bzw. logischsten erscheint es nun, den gesamten Datensatz zum Lernen
zu verwenden. Schliefilich bedeuten mehr Daten auch mehr Informationen und je mehr
Informationen wir dem Lernverfahren geben, desto besser sollte unser gelerntes Modell

sein.

Das Problem bei diesem Ansatz ist, dass wir nicht nur ein Modell lernen wollen, son-
dern unser gelerntes Modell auch testen miissen. Schliellich miissen wir auch herausfin-
den kénnen, wie gut das Modell iiberhaupt ist, gerade wenn wir zwischen verschiedenen
entscheiden miissen. Wir brauchen also definitiv einen Datensatz, an dem wir das Ge-
lernte ausprobieren und testen konnen. Verwenden wir hierfiir ndmlich den bereits zum
Lernen verwendeten Datensatz einfach nochmal, werden unsere gelernten Modelle zwar
alle erstaunlich akkurat sein, allerdings testen wir auch nur, wie gut sie darin sind, den
Datensatz, auf dem sie basieren, zu klassifizieren. Wir lernen also nicht die ,,wahre* Klas-
senverteilung, sondern nur die Testdaten auswendig. Dieses Problem wird als Owerfitting
bezeichnet. Was wir brauchen, ist ein zweiter, unabhéngiger Datensatz, auf dem wir unsere
Modelle testen kénnen. Ein besserer Ansatz wére daher, die gegeben Daten vor dem Ler-

nen zuféllig in Test- und Trainingsdaten zu unterteilen. Eine typische Einteilung hierfiir
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wére, zwei Drittel der Daten zum Lernen zu nutzen und das gelernte Modell dann auf dem
letzten Drittel zu testen. Und tatséchlich gibt uns dieser Ansatz erstmal die Moglichkeit,
ein Modell zu lernen und es dann fair beurteilen zu kénnen. Schade ist nur, dass jetzt
ein betrachtlicher Anteil unserer Daten gar nicht zum Lernen verwendet wird und somit

Informationen ungenutzt bleiben.

4.8.2 Re-Sampling

Nachdem wir die Probleme dieser simpleren Ansétze betrachtet haben, iiberlegen wir nun,
wie diese vermieden werden konnen. Dazu betrachten wir das sogenannte Re-Sampling
in Form der Methoden der k-fachen Kreuzvalidierung und des Bootstrappings, die uns
Losungen fiir diese Probleme geben kénnen. Die Idee dieser Ansétze ist, die Daten zwar

wie zuvor in Trainings- und Testdaten zu teilen, dies aber dann mehrmals zu wiederholen.

k-fache Kreuzvalidierung

Bei der k-fachen Kreuzvalidierung wird unsere Datenmenge in k Teile geteilt, von denen
dann k — 1 zum Trainieren des Klassifikators verwendet werden. Das gelernte Modell wird
dann auf dem letzten Teil getestet. Dieser Vorgang wird k£ mal durchgefiihrt, wobei jeder
Teil des Datensatzes einmal zum Testen verwendet wird. Schlieflich wird die durchschnitt-
liche Fehlerrate der einzelnen Modelle betrachtet, um die erhaltenen k Klassifikatoren zu
bewerten. Durch diese mehrfache Ausfithrung haben wir erreicht, dass wir zwar immer auf
unabhéngigen Testdaten testen konnten, aber trotzdem jeder Teil der Daten gleich starken
Einfluss auf das Modell hat.

D Validation Set

- Training Set
Round 1 Round 2 Round 3 Round 10
Validation g3, 90% 91% 95%

Accuracy:
Final Accuracy = Average(Round 1, Round 2, ...)

Abbildung 4.10: k-fache Kreuzvalidierung [68]
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Bootstrapping

Ein alternativer Ansatz zur Kreuzvalidierung ist das sogenannte Bootstrapping. Hier wird
die Datenmenge nicht in k Blocke unterteilt, sondern es wird zuféllig eine Menge von
Daten mit zuriicklegen aus dem Datensatz gezogen. In der gewéhlten Menge von Daten
koénnen nun also bestimmte Daten mehrfach auftreten, alle Daten, die nie gewéhlt wur-
den, werden wie zuvor zum Testen verwendet. Der Vorteil dieser Methode ist, dass sich
bessere Riickschliisse auf die Verteilung, die den Daten zugrundeliegt, machen lassen, al-
lerdings werden auch deutlich mehr Durchldufe benétigt. Bootstrapping ist also in der

Regel deutlich rechenintensiver.

4.8.3 VLDS-Ada?Boost

Als niichstes betrachten wir nun den VLDS(Very Large Data Set)-Ada®Boost Algorith-
mus. Dieser ist eine Variation des AdaBoost-Algorithmus 2 aus dem Boosting Kapitel. Im
Kontext von Big Data stellt sich nun ndmlich eine vollig neue Frage. Bisher war unser
Datensatz kostbar und wir haben versucht, ihn mdéglichst effizient zu nutzen, doch was
tun wir, wenn das Gegenteil auftritt? Wie gehen wir vor, wenn unser Datensatz so grof3
ist, dass es unmoglich ist, alle Daten zum Lernen zu verwenden? Natiirlich kénnte man
einfach nur einen Teil der Daten zum Lernen nutzen und die restlichen Daten ignorie-
ren, der VLDS-Ada?Boost Algorithmus zeigt allerdings eine Méglichkeit, doch noch einen
Vorteil aus der groflen Datenmenge zu ziehen. Betrachten wir zundchst den Pseudocode
des Algorithmus aus der Diplomarbeit von Marius Helf [45]. Hierbei ist zu beachten, dass
der in dem Paper behandelte Algorithmus, der Ada?Boost Algorithmus, eine Variante des
normalen AdaBoost-Algorithmus ist. Fiir den VLDS Part des Algorithmus ist dies aber

nicht weiter relevant.

Die Idee dieser Version des Algorithmus ist es, alle R Durchldufe einmal den kompletten
Satz an Trainingsdaten auszutauschen. Die neuen Trainingsdaten durchlaufen dann noch

einmal dieselben Schritte wie die alten, danach fahrt der Algorithmus fort.

Der Else-Pfad des Algorithmus entspricht deshalb dem normalen Ada?Boost-Algorithmus.
Ein schwacher Klassifikator wird trainiert, danach werden die Datenpunkte neu gewichtet,
sodass ein groflerer Fokus auf schwierige Félle gelegt werden kann. Die spéteren Klassi-
fikatoren konzentrieren sich dann héufig auf ebendiese. Am Ende wird eine gewichtete

Kombination der einzelnen Lerner zum Bilden von Modellen genutzt.

Der Unterschied zum urspriinglichen Algorithmus liegt im if-Teil. Hier wird alle R Durch-
ldufe einmal der Datensatz durch einen vollig neuen, zufilligen Datensatz aus unserer
groflen Datenmenge ersetzt. Die neuen Daten werden zunéchst wieder mit 1 gewichtet,
dann werden alle bisher verwendeten Klassifikatoren 1,...,¢ noch einmal durchlaufen, um

nacheinander die Daten neu zu gewichten. Die Klassifikatoren werden also auf die neuen
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Data : Zeiger auf grofie Beispielmenge £
Grofle m der Arbeitsmenge
Anzahl der Iterationen k
Resampling Intervall R
Gewichtungsregel W : X xY xR - R

Result : Modell h: X -+ R

Initialisiere Arbeitsmenge &

Initialisiere Gewichte wq; := 1
fort=1,..k do

if t/R € N then
& := random_subset(E, m)
wp,i:=1Vie{l,..,m}
for j=1,..,t—1do
| (@i, yi) € & s wjy = wi—1 - Wi, yi, hy(24))
end
end
else
gt = gt—l
if ¢ > 1 then
| Y(xs, ) € &t wii = wj—1 - W(xs, yi, he—1(24))
end
end
Trainiere neues Basismodell h; : X — Rauf&;

end

return i : X — R mit h(x) = h(h1(x), .., hi(z))

Algorithmus 3 : VLDS-Ada? Boost [45]

Daten angewendet, auf denen sie allerdings nicht trainiert wurden. Wichtig ist, dass die
bereits gelernten Klassifikatoren dabei nicht mehr gedndert werden, nur die Gewichte der

Beispiele werden bearbeitet und fiir den ¢ + 1-ten Klassifikator angepasst.

Der VLDS-Ada? Boost Algorithmus tauscht also regelmifig die ihm zugrunde liegenden
Daten aus und kann dadurch einen beliebig groflen Teil der vorhandenen Daten zum
Lernen verwenden. Wichtig ist, dass schon gelernte Klassifikatoren dabei immer wieder auf
neuen Daten angewendet werden, der Algorithmus ist also nicht dquivalent zum normalen
AdaBoost auf der kombinierten Datenmenge. Stattdessen testet er seine bereits gelernten
Klassifikatoren immer wieder auf neuen Daten. Somit kénnen eventuelle Tendenzen in
einzelnen Datenblécken durch Umgewichtung in spateren Klassifikatoren korrigiert werden
und es gibt deutlich weniger Owerfitting. Auch ist es aus praktischen Griinden natiirlich

hilfreich, dass nicht der gesamte Datensatz dauerhaft im Speicher vorhanden sein muss.
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4.8.4 Active Learning

Zum Schluss beschéftigen wir uns noch mit der Idee des active learnings. Bisher war es
immer unsere Aufgabe, mit einer begrenzten Menge an klassifizierten Daten einen Klas-
sifikator zu trainieren. Nun stellt sich jedoch die Frage, ob dies iiberhaupt realistisch ist.
Woher kriegen wir iiberhaupt diese perfekt klassifizierten Daten, auf denen wir lernen? Ge-
rade im Kontext von Big Data erhalten wir stattdessen héufig riesige Mengen an Daten,
die (noch) nicht klassifiziert sind. Wollen wir diese Daten nutzen, miissen wir sie also erst
selber klassifizieren. Aber war unser Ziel nicht gerade, mit den Daten einen Klassifikator

zu finden? Was nun?

Uberlegungen

Héaufig gibt es auch andere Moglichkeiten, die Klasse eines Datenpunkts zu erfahren. So
kénnen zum Beispiel im Fall von Diagnosen weitere Tests an einem Patienten durchgefiihrt
werden, es kann ein Experte gefragt werden oder Ahnliches. Das Problem hierbei ist nur,
dass dies hdufig teuer und zeitaufwéindig ist. Wollen wir eine sehr grofie Menge Daten
klassifizieren, konnen wir nicht erwarten, dass unser Experte die Zeit hat (oder wir das Geld
haben), jeden Datenpunkt einzeln zu klassifizieren. Genau deshalb soll ja ein automatischer
Klassifikator gefunden werden. Es stellt sich nun die Frage, wie wir aus einer begrenzten
Anzahl an Beispielen, die wir dem Experten zeigen kénnen, méoglichst viele Informationen

fiir unseren Klassifikator erhalten konnen.

Querys und Experten

Genau mit dieser Frage, welche Daten lasse ich klassifizieren, um daraus zu lernen, be-
schéftigt sich active learning. Hierbei werden sogenannte Querys formuliert, die einem
Oracle, also dem Experten, iibergeben werden. Dabei verfolgen wir einen gierigen Ansatz,
wir fragen uns also stets nur welche Anfrage uns genau in diesem néchsten Schritt den

grofiten Informationsgewinn liefert.

Gehen wir davon aus, dass wir zu einem beliebigen Zeitpunkt ¢ bereits Querys gesendet
haben, haben wir dadurch auch eine Menge £ von klassifizierten Daten. Jetzt wéahlen
wir entweder einen einzelnen Datenpunkt oder eine Gruppe von Punkten, die wir als
néchstes iibergeben. Dazu brauchen wir eine Funktion, die den niitzlichsten Datenpunkt,
gegeben irgendwelcher Kriterien und der Menge £, aussucht. Diesen Punkt lassen wir dann

klassifizieren und fiigen ihn in £ ein.

Die eigentliche Aufgabe beim active learning ist also, eine ideale Strategie fiir die Auswahl-
funktion zu finden. Hierzu werden héufig die zwei folgenden Kriterien betrachtet, andere

sind natirlich auch denkbar.
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learn a model

machine learning
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Abbildung 4.11: Active learning als Kreislauf [81]

Informativeness Wie sehr hilft der Punkt bei der Verbesserung meines Modells?

Representativeness Wie repréasentativ ist der Punkt fiir die Verteilung D, die ich suche?

Uncertainty Sampling

Eine Beispiel fiir eine sehr einfache Art, eine Query zu formulieren, ist das sogenannte
uncertainty sampling. Hier wird immer der Datenpunkt zur Klassifikation gewéhlt, der
fiir das Modell mit der bisherigen Punktemenge £ am schwersten vorherzusagen ist. Beim
Formulieren der Query wird also nur auf die Informativeness geachtet. Leider fiihrt dieses
Vorgehen wieder zu dem bekannten Overfitting-Problem, da wir unsere Klassifikatoren
nur mit Ausreiflern und Spezialféllen trainieren. Sie lernen also nur die Besonderheiten
des aktuellen Datensatzes auswendig, lernen dabei aber wenig iiber die reprisentativeren
Punkte. Dieses kurze Beispiel reicht aber, um zu zeigen, dass das Formulieren von Querys

nicht trivial ist und dass solche einfachen Ansétze keine akzeptable Losung sind.

Fazit

Wichtig ist, dass active Learning kein Gegensatz zu anderen Sampling-Strategien ist. Statt-
dessen beschéftigt es sich mit neueren Problemen, die durch die immer gréfiere Menge an
gewonnenen Daten auftreten. Active learning kann auch als eine Art Vorbereitung fiir das
eigentliche Sampeln betrachtet werden. Hier erstellen wir aus den noch nicht klassifizierten
Rohdaten einen Datensatz, auf den andere Sampling-Methoden wie die Kreuzvalidierung

angewandt werden konnen.
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Kapitel 5

Komponenten und Architektur

Bei Betrachtung der fiir den Anwendungsfall zu analysierenden Daten (siehe auch Kapi-
tel 6) wird deutlich, dass zur Umsetzung der Analyseziele ein Big-Data-System bendotigt
wird. Mehrere Eigenschaften von Big Data (vgl. Kapitel 2) treffen auf die Problemstellung

zZu:

e Volume. Die Menge der Daten iiberschreitet mit teilweise hunderten Gigabyte pro

Tag das, was von herkémmlichen Systemen gestemmt werden kann.

e Velocity. Das FACT-Teleskop zeichnet kontinuierlich Daten auf und diese sollen

idealerweise in Echtzeit verarbeitet werden.

e Variety. Wie in Kapitel 6 gesehen, werden von verschiedensten Sensoren Daten

gesammelt, die anschlieflend in der Analyse kombiniert werden miissen.

Unser System basiert daher auf der in Kapitel 3 vorgestellten Lambda-Architektur fiir
Big-Data-Systeme. Eine Ubersicht iiber die verwendeten Software-Komponenten ist in
Abbildung 5.1 dargestellt.

Den Kern des Systems bildet ein Apache Hadoop Cluster (vgl. Unterabschnitt 3.1.1). Die-
ser bietet zum einen das verteilte Dateisystem HDFS, mit dem grofle Datenmengen redun-
dant und effizient abrufbar gespeichert werden kénnen. Aufgrund dieser Eigenschaften wird
es von uns zur Ablage der Rohdaten, also der in Kapitel 6 beschriebenen FITS-Dateien,
verwendet. Um diese Daten und etwaige Zwischenergebnisse allerdings durchsuchbar zu
machen, miissen sie indexiert werden. Hierfiir verwenden wir das dokumentenbasierte Da-
tenbanksystem MongoDB. Unsere Losung sowie andere von uns in Betracht gezogene

Systeme werden in Kapitel 7 vorgestellt.

Zum Anderen bildet Hadoop auch die Grundlage fiir das verteilte Rechnen auf dem Clu-
ster, da es liber den Ressourcen-Manager YARN die Moglichkeit bietet, verschiedenartige
verteilte Rechenaufgaben auf dem Cluster auszufiithren. Hierzu verwenden wir das Cluster
Computing Framework Apache Spark, welches es erlaubt, verteilte Datensétze tiber den

Hadoop Cluster zu verarbeiten (vgl. Unterabschnitt 3.1.2).
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Benutzer

REST-API

streams-Erw.
Verteilte ML-
Prozesse Integration

streams fact-tools

Mongo HDFS Apache Spark
R—
-DBEverﬁdex Rohdaten ApaChe Hadoop

Datenhaltung Datenverarbeitung

Abbildung 5.1: Uberblick iiber die verwendeten Software-Komponenten

Um die verteilte Ausfiithrung moglichst vieler Analyseaufgaben zu ermoglichen, erweitern
wir das streams-Framework (vgl. Unterabschnitt 3.2.4) zur Ausfithrung unter Apache
Spark. Dieser Ansatz hat den Vorteil, dass die von streams vorgesehene XML-Schnittstelle
zur Spezifikation von beliebigen Analyseprozessen auch fir die verteilte Ausfithrung ver-
wendet werden kann. Insbesondere kann die Analysekette zur Vorverarbeitung der Tele-
skopdaten (siehe Unterabschnitt 1.4.1) mit geringen Anpassungen auf dem Cluster aus-
gefiihrt werden. Um das zu erreichen, fithrt unsere Erweiterung die Moglichkeit ein, Pro-
zesse als verteilt zu definieren, sodass diese dann verteilt auf dem Cluster ausgefiihrt

werden.

Die Ausfithrung kann hierbei auf zwei Arten geschehen. Eine Méglichkeit ist die Verarbei-
tung eines statischen Datensatzes, der bereits zu Beginn der Laufzeit vollstdndig vorliegt
(zum Beispiel im HDFS). In diesem Fall sprechen wir von einem Batch-Prozess, weil die
Daten in einem Schub verarbeitet werden. Die Implementierung dieser Funktion wird in
Abschnitt 9.5 beschrieben. Die andere Moglichkeit ist die Verarbeitung eines Datenstroms.
Hierbei werden die Daten erst wiahrend der Laufzeit des Prozesses gelesen und fortlaufend
verarbeitet. Unsere Umsetzung dieser Funktionalitdt basiert auf Spark Streaming (vgl.
Unterabschnitt 3.2.3) und wird in Abschnitt 9.6 beschrieben. Diese beiden Komponenten

stellen unsere Umsetzung von Batch- und Speed-Layer dar.

Zusétzlich integriert unsere Erweiterung die von Spark zur Verfiigung gestellte Bibliothek

fiir maschinelles Lernen in das streams-Framework. Damit lassen sich Lern- und Klas-
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sifikationsaufgaben via XML definieren, sodass auch die ML-basierte Analyse der Tele-
skopdaten (vgl. Unterabschnitt 1.4.1) iiber dieselbe Schnittstelle spezifiziert werden kann.
Néheres zur Implementierung und zu den Anderungen an der XML-Schnittstelle wird in
Kapitel 10 erlautert.

Um dem Benutzer eine einheitliche Schnittstelle zu unserem System zu bieten, verwenden
wir eine REST-API (vgl. Unterabschnitt 3.3.2). Diese erlaubt es einerseits, Anfragen an
die MongoDB zu stellen, um zum Beispiel bestimmte Datenpunkte zu selektieren. An-
dererseits bietet sie ein Webinterface, iber das Jobs an den Cluster geschickt und ihre
Ausfithrung tiberwacht werden kann. Weiteres zu Design und Implementierung der API

wird in Kapitel 8 beschrieben.






Kapitel 6

Datenbeschreibung

In diesem Kapitel werden die verwendeten Daten nédher beschrieben. Dazu zdhlt sowohl
eine Einfithrung in das zugrundeliegende Dateiformat als auch eine etwas ausfiihrlichere

Beschreibung der logischen Struktur der Dateien und deren Inhalt.

6.1 FITS-Dateiformat

Das FITS-Format [33] wurde 1981 von der National Aeronautics and Space Administration
(NASA) als Austausch- und Transportformat von astronomischen Bilddaten entwickelt.
Dabei ist dieses Format modular aufgebaut und es gibt verschiedene Ezxtensions, welche

die eigentliche Datenreprasentation in der Datei vorschreiben.

Eine FITS-Datei hat zunéchst einen 2880 Byte groflien Header-Block, den sogenannten
Primary-Header, wobei dieser die weiteren Daten in der Datei beschreibt. Dazu besteht
der Header aus Key-Value-Paaren, denen ein optionaler Kommentar folgen kann. Pro
Key-Value-Paar stehen jedoch nur 80 Byte zur Verfiigung, von denen zehn dem Schliissel
zugeteilt sind und 70 Byte sich der Wert und der Kommentar teilen. Sollte der Header
nicht die kompletten 2880 Byte brauchen, so bleiben die restlichen Bytes leer. Im Primary-
Header sind bestimmte Felder vorgeschrieben, zum Beispiel eine Checksumme iiber den
Header und ob sich an den FITS-Standard gehalten wird oder nicht. Dieser Header gibt

auch Auskunft dariiber, ob Extensions in der Datei verwendet werden.
Nach dem Primary-Header folgt das erste Datenfeld, welches auch leer sein kann.

Hiernach folgt der Secondary-Header, der &hnlich zum Primary-Header aufgebaut ist, je-
doch auch angibt, welche Eztension verwendet wird und noch weitere Informationen fiir
diese enthéilt. Als Beispiel fir eine solche Erweiterung sei hier die Extension ,BINTABLE®
erwahnt. Dafiir wird im Secondary-Header auch angegeben, wie viele Zeilen diese Tabel-
le enthéalt, wie viele Spalten es gibt, wie diese Spalten heiflen und welchen Datentyp sie

haben. Dieser Header wird auch in 2880 Byte grofien Blocks gespeichert.
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Nach diesen Header-Blocks folgt dann die Datentabelle.

Dariiberhinaus werden grofie FITS-Dateien mit GZip komprimiert und diese Dateien tra-

gen die Endung .fits.gz.

6.2 Rohdaten

Die Daten des FACT werden in FITS-Dateien mit der Erweiterung ,BINTABLE" gespei-
chert. Dazu schreibt das Teleskop die auftretenden Events in einer Zeitspanne von etwa
fiinf Minuten in sogenannte Runs. Diese Dateien werden in einer hierarchischen Ordner-
Struktur pro Nacht zusammengefasst, zum Beispiel ,raw/2013/09/29/0130929_232.fits.gz"
fiir den Run mit der Nummer ,,232“ am 29.09.2013. Innerhalb eines Runs gibt es nun eine
Tabelle mit etwa 3000 Zeilen, wobei jede Zeile ein Event beschreibt. Dazu zéhlen unter
anderem die Eventnummer, der Zeitpunkt des Auftretens und die Daten der einzelnen
Pixel, ein Datenfeld aus 432000 16bit-Integern.

6.3 Monte-Carlo-Daten

Monte-Carlo-Daten werden im Gegensatz zu den anderen Daten per Simulation erzeugt.
Bei dieser Simulation trifft ein Teilchen von festgelegter Energie auf die Atmosphére und

erzeugt ein Cherenkov-Licht, das von einem simulierten Teleskop aufgenommen wird.

Der grofle Vorteil dieses Vorgehens liegt darin, dass im resultierenden Datensatz sowohl
die Features der Aufnahme als auch die Energie des verursachenden Teilchens vorliegen.
Deswegen werden die Monte-Carlo-Datenséitze dazu verwendet, Modelle zu trainieren, die

anhand der Features die Energie des zugrundeliegenden Teilchens vorhersagen.

6.4 Drs-Daten

Die analogen Signale, die an den Fotodioden der Teleskopkamera gemessen werden kénnen,
werden mithilfe von Domino-Ring-Samplern (DRS) digitalisiert. Ohne Kalibierung sind die
Messungen jedoch, wie in Abbildung 6.1 (links) zu sehen, stark verrauscht. Dies liegt zum
Einen am einfallenden Hintergrundlicht und zum Anderen an temperaturbedingen Span-
nungsianderungen. Um Events besser erkennen zu koénnen, wird eine DRS-Kalibrierung
durchgefiihrt. Diese wird in regelméfligen Zeitabstdnden vor einem Run durchgefithrt und

dessen Ergebnisse mit den folgenden Aufnahmen verrechnet.

Die Drs-Daten, die ebenfalls im FITS-Format abgespeichert werden, beinhalten neben di-

versen Kalibrierungskonstanten zwei Aufnahmen: Ein Bild wird bei geschlossener Klappe
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aufgenommen und eins wird vom Nachthimmel gemacht. Aus den Informationen dieser
Aufnahmen kann das Hintergrundrauschen fiir folgende Aufnahmen zuverlédssig herausge-
rechnet werden (s. Abbildung 6.1 (rechts)).

[5], [3], [4]
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Abbildung 6.1: Event vor (links) und nach (rechts) der DRS Kalibrierung. Die Spitzen entspre-
chen den Signalen einer einzelnen Fotodiode [5]

6.5 Aux-Daten

Neben den eigentlichen Rohdaten werden von verschiedenen weiteren Sensoren Daten auf-
genommen, die dabei helfen sollen, die Rohdaten besser zu interpretieren oder Anpassun-
gen an dem Messvorgang zur Laufzeit durchzufiithren. Diese Hilfsdaten (Auxiliary Data)
werden je nach Sensor in bestimmten Intervallen im FITS-Format abgespeichert und bein-
halten zum Beispiel Informationen iiber Wetter- und Sichtverhéltnisse zum Zeitpunkt einer
Aufnahmereihe. So kénnen etwa Informationen iiber die Wolkendichte oder Nebel von In-
teresse sein, da bei dichtem Himmel, schlechten Sichtverhéltnissen oder Schneefall nur
ein Bruchteil des Cherenkov-Lichts am Teleskop ankommt. Weiterhin kann beispielsweise
Regen einen Wasserfilm auf der Kamera hinterlassen, der eingehendes Licht reflektiert,
und starker Wind kann die Lage des Teleskops verdndern, sodass Anpassungen an dessen

Antriebssystem gemacht werden kénnen [69].

Fiir den Anwendungsfall sind die Aux-Daten insofern interessant, als dass man durch deren
Indexierung in einer Datenbank eine genauere Eventselektion und Eventanalyse erreichen
kann. So kénnen zum Beispiel Anfragen der Art ,Finde alle Events aus Nacht n, wo die
Temperatur unter y°C liegt* gestellt werden, um bessere Modelle fiir maschinelle Lern-
verfahren zu erzeugen. Bei Anfragen dieser Art werden geeignete Strategien bendtigt, um
Event-Daten und Aux-Daten zusammenzufiihren, da nicht sichergestellt werden kann, dass

zum Zeitpunkt t, der Aufnahme eines Events e auch Sensordaten aufgezeichnet wurden.
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20130921: Humidity
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Abbildung 6.2: Statistik zur Luftfeuchtigkeit in der Nacht des 21.09.2013 aufgenommen von zwei
Sensoren: TNG (oben) und MAGIC (unten)

Meistens befindet sich ¢, ndmlich irgendwo zwischen zwei aufgezeichneten AuzPoints a;
und a;, also t,, <t. <1, i In solchen Féllen wird e mit dem AuxPoint zusammengefiihrt,

dessen Aufnahme am néchsten an ¢, liegt, um moglichst genaue Informationen zu erhalten.

Fiir Analysezwecke wurde von uns ein Tool (AuzViewer) entwickelt, mit dessen Hilfe sich
Diagramme indizierter Aux-Daten fiir eine bestimmte Nacht generieren lassen. Eine bei-
spielhafte Analyse der Wetterdaten ergab, dass verschiedene Sensoren unterschiedliche
Aufnahmeintervalle haben, wie die Statistiken zur gemessenen Luftfeuchtigkeit einer Nacht
in Abbildung 6.2 zeigt. Fiir eine genauere Eventselektion gilt es also herauszufinden, welche
Sensordaten besser geeignet sind, falls verschiedene Sensoren das selbe Merkmal aufzeich-

nen.

Eine stichprobenartige Uberpriifungen mehrerer Sensoren zu unterschiedlichen N#chten
zeigte weiterhin, dass die Sensoren anscheinend zuverldssig arbeiten. Die Werte werden in
regelméfligen Abstanden ausgelesen, Definitionsliicken durch Ausfélle wurden nicht ver-
zeichnet und Sensoren, die dasselbe Merkmal aufnehmen, liefern in etwa die selben Werte
(siche z.B. Abbildung 6.2).



Kapitel 7

Indexierung der Rohdaten

Der Ausgangspunkt fiir unsere Datenanalyse sind die vielen Hundert Gigabyte von Roh-
daten, die im FITS-Format vorliegen und von uns in dem verteilten Dateisystem HDFS
abgelegt wurden (vgl. Kapitel 6). Unser System soll dem Nutzer erlauben, anhand von
Suchanfragen bestimmte Teildatensétze daraus auszuwéhlen, um diese dann weiterzuver-
arbeiten. Diese Anfragen beziehen sich nicht auf die vom Teleskop gemachten Bilder selbst,
sondern auf die Metadaten zu diesen Bildern, also etwa den Zeitpunkt der Aufnahme, die

Ausrichtung des Teleskops oder die Auflentemperatur.

Eine effiziente Bearbeitung solcher Anfragen ist nur dann mdoglich, wenn diese Daten in
einer fiir die Suche geeigneten Datenstruktur vorliegen. Andernfalls miisste fiir jede An-
frage der gesamte Datensatz durchlaufen werden. Aus diesem Grund indexieren wir die
Metadaten mithilfe von Datenbanksystemen. Ausgenommen sind hierbei die eigentlichen
Bilddaten, welche einen Grofiteil der Datenmenge ausmachen, jedoch fiir die Auswertung
der Suchanfragen nicht relevant sind. Zweck der Datenbanken ist es, die Menge der auf-
gezeichneten Datenpunkte (Events) zu finden, die den durch den Nutzer formulierten
Bedingungen geniigen. Anschliefend kénnen dann gezielt die zugehorigen Bilddaten aus

dem HDFS geladen und weiterverarbeitet werden.

Die drei von uns untersuchten Systeme sind die dokumentenbasierte verteilte Datenbank
MongoDB, die verteilte Suchmaschine ElasticSearch und die relationale Datenbank Post-
greSQL. Die Art und Weise, wie wir jedes dieser Systeme auf das Problem angewendet

haben, wird im Folgenden erlautert.

7.1 MongoDB

Das Ziel, einen Index fiir die Rohdaten zu erstellen, kann in MongoDB (siehe Unter-
abschnitt 3.3.1) auf sehr unterschiedliche Art und Weise erreicht werden. Eine mogliche

Realisierung besteht in dem Anlegen einer Collection, die fiir jedes Event ein einzelnes
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Dokument besitzt. Genauso gut ist es moglich, mehrere Events zu aggregieren und als ein

Dokument zu speichern. Wir gehen im Folgenden auf beide Varianten ein.

Ein Dokument pro Event. Dieser Ansatz ist sehr naheliegend und nutzt die simple
key-value-Struktur der JSON-Dokumente. Ein grofler Vorteil liegt in dem einfachen Hin-
zufiigen von zusétzlichen Attributen, wenn weitere Informationen zu den Events gespei-
chert werden sollen. Diese flache Dokumentenstruktur fithrt auch zu sehr iibersichtlichen
Suchanfragen, da eine Suchanfrage bei MongoDB ebenfalls ein JSON-Objekt ist, das die-

selbe Struktur wie das Dokument besitzt.

Aggregation von mehreren Events. Ein MongoDB-Dokument darf Arrays, einge-
bettete Dokumente sowie Arrays von eingebetteten Dokumenten beinhalten. Daher ist es
moglich, mehrere Events in einem Dokument zusammenzufassen. Dabei kann die Gra-
nularitdt frei gewdhlt werden. So kénnen zum Beispiel fiir jede Sekunde alle Events, die
in dieser Sekunde aufgenommen wurden, zu einem Dokument zusammengefasst werden.
Durch Aggregation sinkt die Anzahl der Dokumente in der Collection, wodurch die Grofie
der Indices sinkt. Auflerdem liegen dann die Events, die in der gleichen Sekunde aufgenom-
men wurden, in der gleichen Datei. Wenn also oft Events aus einem zusammenhéngenden
Zeitraum angefragt werden, sinkt die Anzahl der zu durchsuchenden Dokumente, was die

Performanz vermutlich erhoht. Dafiir steigt aber auch die Komplexitiat der Suchanfragen.

Beide Varianten der Indexierung wurden von uns mithilfe des streams-Frameworks imple-
mentiert. Bei den bisher durchgefithrten Tests wurde die MongoDB bisher nur auf einem
einzelnen Knoten gestartet, weshalb noch keine abschlieende Beurteilung moglich ist. Es
hat sich insbesondere bei der Variante ,Ein Dokument pro Event* gezeigt, dass der Job
mehr Zeit in Anspruch nimmt, als es fiir das reine Auslesen der Ursprungsdateien nétig

wére. Dieses Problem koénnte durch ein verteiltes Setup der Datenbank gelost werden.

Dariiber hinaus ist es uns gelungen, die Aux-Daten in die indexierten Meta-Daten zu inte-
grieren. Dabei wurde die in Abschnitt 6.5 erlduterte Strategie zum Finden des passenden

Messwertes fiir ein Event eingesetzt.

7.2 Elasticsearch

Um die Performanz verschiedener Datenbanken hinsichtlich des Anwendungsfalles die-
ser Projektgruppe gegeneinander abwéagen zu kénnen, wurde als zweite Persistenzlosung
Elasticsearch eingesetzt. Der Cluster pgd94-cluster gliedert sich in drei Indizes, ndmlich
metadatainder, drsinder und auxinder. Der metadatainder enthélt Dokumente des Typs
metadata, in denen die Metadaten zu den jeweiligen Events abgelegt sind. Im drsindez

befinden sich die Kalibrationsdaten aus den DRS-Dateien und im auzindex in analoger
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Weise die in den AUX-Dateien befindlichen Informationen. Fiir den pgd94-cluster wurde
Elasticsearch lediglich auf einem einzigen Rechenknoten betrieben, eine Alternative dazu
wére jedoch gewesen, auf jedem verfiigharen Knoten des Clusters des Sonderforschungs-

bereiches 876 einen Elasticsearch-Node zu betreiben.

7.3 PostgreSQL

Als dritte mogliche Losung haben wir ein PostgreSQL System aufgesetzt, also ein her-
kommliches relationales Datenbankmanagementsystem (vgl. Abbildung 3.3.1). Dies ist
unter anderem dadurch motiviert, dass die Grofle der Metadaten sich in Grenzen halt.
Es ist anzunehmen, dass der verbrauchte Speicherplatz pro Event selbst mit zusétzlichen
Aux-Daten und berechneten Features 2 KB nicht iiberschreiten wird. Fiir die zwei Mil-
lionen Events, die aktuell den Cluster fiillen, sind das gerade einmal 4 GB. Insofern ist
es durchaus realistisch, die Metadaten auch auf lange Sicht in einer monolithischen re-
lationalen Datenbank zu verwalten. Des Weiteren bietet Postgres-XL im Zweifelsfall die

Moglichkeit, auf eine verteilte Losung umzusteigen.

Eine groflere Herausforderung stellt das Design eines Schemas dar, das alle in Zukunft
benottigten Funktionalitdten bereitstellt. Insbesondere das Abspeichern der berechneten
Features ist nicht einfach, da jederzeit neuartige Features hinzukommen kénnen. Eine
Moglichkeit, dies umzusetzen, ist, eine eins-zu-viele-Relation zu verwenden, die Events und
Features verbindet. Diese wiirde allerdings dazu fithren, dass fiir viele Anfragen teure Join-
Operationen noétig wéren, und so die Prinzipien der dimensionalen Modellierung verletzen
(vgl. Abbildung 3.3.1). Eine andere Moglichkeit ist der Einsatz des JSON-Datentyps, den
PostgreSQL anbietet. Neue Features kénnten dann einfach in bestehende Tabellenzeilen

eingefligt werden.

7.4 Auswahl der Datenbank

Nachdem im ersten Semester der Projektgruppe drei verschiedene Datenbanken in einer
experimentellen Phase parallel zueinander verwendet wurden, entwickelte sich im zweiten
Semester ein deutlicher Trend zur Nutzung der MongoDB. Dies ist zum Einen damit zu
begriinden, dass eine dokumentenbasierte Losung im Gegensatz zu einem herkémmlichen
relationalen Datenbankmodell fiir unseren Anwendungsfall zweckdienlicher ist, da Erstere
es ermoglicht, jederzeit ohne grofien Aufwand neue Attribute hinzuzufiigen. Ein solches
Vorgehen ist beispielsweise dann notwendig und relevant, wenn Berechnungen auf den
Events durchgefiihrt werden, deren Ergebnisse langerfristig Giltigkeit haben bzw. haufig

benotigt werden und somit nicht bei jedem Zugriff neu kalkuliert werden sollen. Zum
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Anderen setzen auch die Physiker zur Indexierung ihrer Rohdaten eine MongoDB ein,
sodass durch die Fokussierung auf diese Datenhaltungslésung ein leichter Umstieg auf die

Datenbank der Physiker oder aber eine Fusionierung der Datenbanken ermdoglicht wird.



Kapitel 8

RESTful API

Zum Erreichen der Analyseziele, namentlich die Normalisierung der Rohdaten, die Durch-
suchbarkeit von Events und deren Analyse mittels maschineller Lernverfahren, ist eine
RESTful API implementiert worden. Insbesondere soll mit ihr sowohl der Zugriff auf den
Rohdaten-Index, als auch die Ausfithrung, die Uberwachung und die Steuerung von ver-

teilten Jobs iiber ein einheitliches HTTP Interface vereinfacht werden.

Fiir die angesprochenen Punkte sind Schnittstellen entworfen und implementiert worden,
die im Laufe der folgenden Abschnitte detaillierter besprochen werden. Neben der Do-
kumentation der einzelnen Schnittstellen wird gleichzeitig auf die technischen Aspekte
der Implementierung eingegangen. Weiterhin wird eine Webanwendung présentiert, die
zusammen mit der RESTful API ausgeliefert wird und deren Funktionalititen iiber eine

komfortable Oberfliche zur Verfiigung stellt.

8.1 Design

Zur Umsetzung der RESTful API (vgl. Unterabschnitt 3.3.2) ist es zunéchst wichtig, diese
Schnittstelle zu planen. Dazu werden wir die notwendigen URLs festlegen und das Format
der Daten definieren. Weiterhin wird beschrieben, wie diese Informationen auch auflerhalb

dieses Berichts dokumentiert wurden. [66]

8.1.1 Endpunkte

Die Endpunkte der REST API sind so gewéhlt, dass der Zugriff auf indizierte Daten in

den in der PG genutzten Datenbank MongoDB mehr anwendungsfallbezogen verlauft.

Die in Tabelle 8.1 aufgelisteten Schnittstellen sind fiir den Zugriff auf Metadaten von

Events konzipiert. Die Angabe der GET-Parameter ist optional. Hierbei kann iiber format
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URL GET-Parameter
GET /api/events format, filter
GET /api/events/count filter

Tabelle 8.1: Schnittstellen der REST API fir Metadaten

"EVENTNUM?”: 7”47, 1
?TRIGGERNUM”: ”4”, 2 {
"NIGHT”: 7201309217, 3 "path”: ”.../hdfs/fact/raw/2013/08/21/....fits.gz”,
4 ?eventNums”: [20, 22, 24, 50, ...]”

3, 5 }

{ 6 {
"EVENTNUM”: 7”57, 7 ?path”: ”.../hdfs/fact/raw /2013/09/06/....fits.gz”,
»TRIGGER.NUM?”: 747, 8 "eventNums”: [2, 22, 120, 121, ...]”
"NIGHT”: ”20130921”, 9 },
10

11 ]
]
(a) JSON (b) Minimal

Abbildung 8.1: Die Riickgabeformate der REST API

das Riickgabeformat einer Antwort bestimmt werden (s. Unterabschnitt 8.1.2). Uber den
Parameter filter lasst sich ein Filterausdruck iibergeben, mit dem die Metadaten selektiert
werden konnen (s. Unterabschnitt 8.2.2).

Im Laufe des zweiten Semesters sind weitere Endpunkte erstellt worden, mit denen sich
etwa komfortabel Jobs verwalten und ausfithren lassen. Diese sollen hier jedoch nicht alle
aufgezédhlt werden, da sie im Verlauf des Kapitels, in Kapitel 18 und in einer separaten

Software-Dokumentation erlautert sind.

8.1.2 Riickgabeformate

Die Ausgabe von Anfragen, die iiber die REST API gestellt werden, kénnen fiir verschie-
dene Zwecke anders formatiert werden. Das Riickgabeformat lédsst sich dabei mit dem
GET-Parameter format iiber die URL festlegen. Mogliche Werte fiir diesen Parameter
sind json und min. Falls der Formatierungsparameter nicht iibergeben wird, wird der
Wert standardmafBig auf json gesetzt. Das Riickgabeformat erméglicht so ein einheitliches
Format, sodass Anfragen unabhéngig von der angesprochenen Datenbank eine einheitli-
che Antwort erzeugen. Eine Beschreibung der unterschiedlichen Formate sowie mdogliche

Beispiele zur Benutzung und mogliche Ausgaben ist im Folgenden gegeben.

JSON Eine Anfrage, die den Parameter format=json iibergibt, bekommt als Antwort
eine Liste aller Events mit allen Attributen, wie sie in der Datenbank vorkommen, im
JSON-Format. Dadurch wird ein direkter Zugriff auf die indexierten Metadaten ermdglicht.

Eine beispielhafter Request an die API kénnte wie folgt aussehen:
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GET http://[...]/api/events/ filter=|...|&format=json

Die Antwort wiirde in diesem Fall aussehen, wie in Abbildung 8.1a gezeigt, wobei die Fel-
der ,EVENT _NUM*“, ,TRIGGER_NUM*“ und ,NIGHT* den Namen der entsprechenden

Dokumenten in der Datenbank entsprechen.

Minimal Anstatt alle Felder der Metadaten zuriickzugeben, besteht der Sinn dieses Pa-
rameters darin, an die eigentlichen Rohdaten zu kommen, die zu dem in der URL gegebe-
nen Filterausdruck passen. Wie in Abbildung 8.1b zu sehen, wird die Antwort ebenfalls im
JSON-Format zuriickgegeben. Zu jedem Event, das auf den Filter zutrifft, wird die Event-
Nummer innerhalb der entsprechenden FITS-Datei in eine Liste eingefiigt. Ein HTTP

Request sollte nach folgendem Muster gestellt werden:

GET http://[...]/api/events/?filter=]...|&format=min

Dieser Parameter eignet sich insbesondere fiir den Fall, zu einer gestellten Anfrage die
Rohdaten aus den fits Dateien zu erhalten, um diese anschliefend in einem Stream zu
verarbeiten. Durch der Angabe der einzelnen Event-Nummern kann im Stream innerhalb

einer fits-Datei genau nach passenden Events gesucht werden.

8.1.3 Dokumentation

Da diese API nicht nur von Mitgliedern dieser PG verwendet werden soll, ist eine gute
Dokumentation unerlésslich. Natiirlich erfiillt dieser Bericht auch diese Funktion, jedoch

wére es wiinschenswert die Dokumentation naher an die Anwendung zu bringen.

Um diese Anforderungen zu erfiillen, wurde sich fiir das Swagger-Projekt entschieden. Dort
wurde eine Spezifikation, die mittlerweile von der Open API Initative betreut wird, ent-
wickelt, mit der sich RESTful APIs mithilfe von JSON beschreiben lassen [74]. Rund um
diese Dokumentation sind unterschiedliche Tools entstanden, z.B. der Text-Editor Swagger
Editor, mit dem das JSON, welches die API beschreibt, einfach bearbeitet werden kann.
Noch hilfreicher ist jedoch die Swagger Ul, die aus der JSON-Definition eine dynamische
Website generiert, welche die Dokumentation iibersichtlich und mit einer modernen Ober-
fliche anzeigt. Dariiber hinaus kann man die angegebenen REST-Endpunkte auch direkt
ansprechen und bekommt die Anfrage- und Antwort-Informationen detailliert prasentiert
(vgl. Screenshot). Diese Website kann nun mit zusammen mit der eigentlichen API auf

einem Server bereitgestellt werden.
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8.2 Implementierung

Zur Implementierung der REST API wurde auf Java-basierte Losungen gesetzt, fiir die
bereits entsprechendes Know-How unter dem Team Mitgliedern vorhanden war. Dies sollte
eine schnelle und zuverlédssige Implementierung ermdéglichen. Im Folgenden werden die

verwendeten Softwareprodukte kurz vorgestellt.

8.2.1 Spring Framework

Bei der Implementierung der RESTful API wurde das Spring-Framework verwendet. Dabei
handelt es sich um ein sich aus verschiedenen, separat nutzbaren Modulen bestehendes
OpenSource-Framework fiir die Java-Plattform. Fiir den Einsatz in dieser Projektgruppe
wurden aus dem vielfaltigen Angebot an Modulen des Spring-Frameworks Spring Boot

sowie Spring Data fiir MongoDB ausgewéhlt, welche im Folgenden nédher erldutert werden.

Spring Boot Spring Boot ermoglicht es, auf einfache Weise und mit minimalem Kon-
figurationsaufwand Stand-Alone-Anwendungen zu entwickeln. Bei mit Spring Boot ent-
wickelten Anwendungen entfallt zum Einen jegliche iiber die pom.xml herausgehende
XML-Konfiguration sowie zum Anderen die Notwendigkeit, die Anwendung als War-File
zu deployen, da Spring Boot bereits einen Application-Server - wahlweise Tomcat, Jetty

oder Undertow - mitliefert, sodass die Anwendung nur noch gestartet werden muss.

Zur Einbindung von Spring Boot miissen lediglich die bendtigten Dependencies zur Pro-

jektkonfigurationsdatei des entsprechenden Dependency-Management-Systems hinzugefiigt

werden.

<parent>
<groupld>org.springframework.boot</groupld>
<artifactld >spring—boot—starter —parent</artifactId >
<version >1.3.3.RELEASE</version>

</parent>

<dependencies>
<dependency>

<groupld>org.springframework.boot</groupld>
<artifactId >spring—boot—starter —web</artifactId >
</dependency>
</dependencies>

Listing 8.1: Einbindung von Spring Boot mittels Maven durch Hinzufiigen der Dependencies zur

pom.xml

Das Herzstiick einer mit Spring Boot entwickelten Anwendung ist die Application-Klasse,
die im Falle der REST API folgendermaflen aussieht:
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@SpringBootApplication
public class Application {
public static void main(Stringl[] args) {

SpringApplication.run(Application.class, args);

Listing 8.2: Application-Klasse bei Spring Boot

Die Annotation @SpringBootApplication deklariert die Anwendung als Spring Boot

Application und ermoglicht den Einsatz folgender weiterer Annotationen:

e Durch die Annotation @Configuration wird eine annotierte Klasse als mogliche

Quelle fiir Bean-Definitionen im Application-Context erkannt.

e Die Annotation @QEnableAutoConfiguration ermoglicht, wie der Name bereits er-
kennen ldsst, eine automatisierte Spring-Konfiguration, im Zuge welcher Beans auf
Basis von Classpath-Settings generiert sowie diverse weitere Einstellungen vorgenom-
men werden. Uber das vollstindige Funktionsspektrum klért die Projekt-Homepage

von Spring Boot auf.

e Falls von Spring Boot eine entsprechende Dependency in der Projektkonfigurations-
datei des Dependency-Management-Systems erkannt wurde, wird die Anwendung

automatisch als Web-Anwendung gekennzeichnet.

e Durch Einsatz der Annotation @ComponentScan sucht Spring Boot automatisiert

nach weiteren Komponenten, Services sowie Konfigurationsdateien.

Die main ()-Methode der Application-Klasse nutzt Spring Boots SpringApplication.run()-
Methode, um die Anwendung zu starten, welche den Application-Context und somit auch

alle automatisiert und manuell erstellten Beans zuriickgibt.

Spring Data Bei Spring Data handelt es sich um ein Modul des Spring-Frameworks,
mittels dessen Boilerplate-Code beim Datenbank-Zugriff durch Nutzung sogenannter CRUD-
Repositories reduziert werden kann. Dieses wird nachfolgend in Kapitel 1.5.2.2 ndher in

Augenschein genommen.

8.2.2 Filterung

Der Ansatz der Implementierung einer Schnittstelle mit Hilfe von REST ressourcenbasiert

auf der Uberlegung bestimmte Funktionen zu kapseln und als Services bereitzustellen,
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die von anderen Teilen der Anwendung oder von auflerhalb angesprochen werden kénnen,
um z.B. die Metadaten der Events bereitzustellen, die wiederum zur Selektion von Events
genutzt werden koénnen, die bestimmten Kriterien geniigen. Im Falle der Events handelt

es sich bei den Kriterien um eine Vielzahl von Attributen, die jedes Event inne hat.

Herausforderungen Bei der Implementierung der Filterung stellen sich einem mehre-
re Herausforderungen. Die Filterung muss in der Lage sein, eine Anfragesprache (engl.
domain specific language (DSL)) verarbeiten und interpretieren zu konnen, sodass auch
komplexere Anfragen an das System gestellt werden konnen. Es wire noch verhdltnismafig
leicht gewesen, die Selektion von Events zu implementieren, deren Attribut exakt den vor-
gegebenen Werten entsprechen. Womoglich mochte der Anwender aber den Wertebereich
eines Attributs nicht auf einen bestimmten Wert, sondern auf ein Intervall eingrenzen und
womoglich sollen einige Datenséitze prinzipiell ausgeschlossen werden. Und vielleicht soll
ein Wert nicht nur innerhalb eines, sondern zweier Intervalle liegen. Der Komplexitét einer
Anfrage sind je nach Anwendungsfall also keine Grenzen gesetzt und die Implementierung
eines geeigneten Interpreters ein anspruchsvolles Unterfangen gewesen. Es wird also eine
Anfragesprache verlangt, die zum Einen hinsichtlich der Ausdruckskraft z.B. der Daten-
banksprache SQL nahekommt und zum Anderen vom Anwender leicht anzuwenden und

somit moglichst nah an die natiirlichen Sprache angelehnt ist.

SQL (engl. Structured Query Language) ist eine Anfragesprache, die auf der relationalen
Algebra basiert und den Umgang mit den Daten eines relationalen Datenbankmanage-
mentsystems ermoglichen. Eine wichtige Komponente der SQL ist die sog. Query, die der
Beschreibung der gewiinschten Daten dient und vom Datenbanksystem interpretiert wird,
um die gewiinschten Daten bereitzustellen. Listing 8.3 stellt eine solche SQL-Anfrage bei-
spielhaft dar, die den Pfad (event_path) aller Events ausgeben soll, deren Eventnummer
(event_num) entweder zwischen 5 und 10 oder zwischen 50 und 100 liegt und deren Trig-
gernummer (trigger-num) grofer als 10 ist. Bei der vorliegenden Anfrage ist die WHERE
clause von Interesse, da diese beschreibt, welche Eigenschaften die gewiinschten Events

besitzen sollen, und nach diesen Kriterien gefiltert wird.

SELECT event_path FROM events WHERE (
(event _num >= 5 AND event_num <= 10) OR
(event_num >= 50 AND event_num <= 100)

) AND trigger_num > 10

Listing 8.3: Beispiel fir eine SQL-Anfrage

Die Ausfithrung einer tibergebenen SQL-Anfrage wére moglich, aber bringt mehrere Nach-
teile mit sich. Die Persistierungsebene wird nicht abstrahiert und der Anwender ist ge-

zwungen mit dieser insofern direkt zu interagieren, als dass er sich unnétigerweise mit
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dem Aufbau des Datenbankschemas vertraut machen muss. Wie eingangs erwéhnt, wer-
den mehrere Systeme zur Datenhaltung eingesetzt, die nicht allesamt auf SQL als Anfrage-
sprache setzen. MongoDB setzt ganz im Gegenteil auf ein JSON-basiertes Anfrageformat,

dessen Pendant zum o.g. SQL-Ausdruck in Listing 8.4 dargestellt wird.

{ $and: [
{ $or: [
{ event_num: { $gte: 5, $1lte: 10 }},
{ event_num: { $gte: 50, $lte: 100 }}
17,
{

trigger_num: { $gt: 10 }

1}

Listing 8.4: Beispiel fiir eine Anfrage an eine MongoDB Datenbank

Da die REST API JSON-basiert ist und die Anfragesprache von MongoDB alle benotigten
Eigenschaften einer ausdrucksstarken Anfragesprache in Form eines JSON-Dokuments
mitbringt, liegt der Gedanke nahe, diese Syntax zur Filterung der Events zu {ibernehmen.
Die Problematik bestiinde jedoch darin, diese Anfrage in das jeweilige Anfrageformat der
anderen Systeme (Elasticsearch und PostgreSQL) iibersetzen zu miissen, was einen gewal-

tigen Overhead an zusétzlicher Programmierarbeit zur Folge hétte.

Es wird also eine Losung bendtigt, um die Anfrage iber den Filter moglichst automatisiert

in eine kompatible Anfrage fiir die jeweilige Engine zu tibersetzen.

Architektur Architektonisch besteht die Filterung aus drei Schichten: Schnittstelle,
Service-Layer und Persistierungs-Layer. Wie in Unterabschnitt 8.1.1 erwahnt, steht jeweils
ein Endpunkt fiir jede Engine zur Verfiigung, der einen Filterausdruck iiber die aufgerufe-
ne URL entgegennimmt. Jeder Endpunkt bzw. jede Engine, die durch diesen représentiert
wird, verwendet einen eigenen Service, der die Geschéftslogik fiir die jeweilige Engine im-
plementiert. Uber die Geschiiftslogik der Services wird schlieBlich auf den Persistierungs-

Layer zugegriffen, welcher den Zugriff auf die persistierten Daten ermdglicht.

Der Kern des Spring-Frameworks, welches in Unterabschnitt 8.2.1 eingefiihrt wurde, kann
um das Modul Spring Data JPA erweitert werden, welches auf der Java Persistence
API (JPA) aufbaut und die Zuordnung zwischen Java-Objekten und den persistierten
Daten vereinfacht. Man spricht hier auch von einem bidirektionalen Mapping, sodass
Verdnderungen der Daten auf die korrespondierenden Java-Objekte iibertragen und gleich-

zeitig Anderungen der Attribute der Java-Objekte in den Daten reflektiert werden. Die
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grundlegende Idee besteht darin, sog. Repositories bereitzustellen, die als Interfaces um-
gesetzt wurden und iiber die grundlegende Methoden zur Datenverarbeitung (CRUD -
Create, Read, Update, Delete) zur Verfiigung gestellt werden. Ebenso wird iiber die Re-
positories der Datentyp festgelegt, der fiir das Mapping zwischen Daten und Objekten

genutzt werden soll.

Da JPA mit den verschiedensten Datenbanktreibern kompatibel ist und die Repositories
fir alle drei Datenbankengines genutzt werden kénnen, wurde der Zugriff auf die Persi-
stierungsebene vereinheitlicht. Diese Vereinheitlichung stellt auch die Grundlage fiir eine

einheitliche Losung zur Filterung von Eventdaten dar.

Um die Events filtern zu kénnen, wird das Framework QueryDSL eingesetzt, das typsiche-
re, SQL-dhnliche Anfragen an unterschiedliche Datenquellen, wie JPA, MongoDB, SQL,
Java Collections u.v.m. erméglicht. Dabei ist das Format der Anfrage unabhédngig von der

verwendeten Datenquelle und somit die Anwendung des Filters vereinheitlicht.

Implementierung Fiir jedes Datenbanksystem steht ein dedizierter Service zur Verfiigung,

der die Businesslogik kapselt. Dabei soll die Filterung der Events unabhangig vom ver-
wendeten System sein bzw. jedes System die Filterung unterstiitzen. Zu diesem Zweck
implementieren alle Services ein Interface, welches die Methode zur Filterung der Events
definiert (vgl. Listing 8.5).

public interface EventService {

Iterable<Metadata> filterEvents(String filterExpression);

Listing 8.5: Service Interface

Dem Riickgabewert der Methode filterEvents(...) ist ein Iterable des Datentyps
Metadata. Metadata ist ein sog. POJO (Plain Old Java Object), welches die Metadaten
der Events aus der Datenbank als Java-Objekt reprasentiert. Somit ist die Klasse Metadata
auch diejenige Klasse, die von QueryDSL modifiziert wird, um entsprechende Anfragen an
eine Liste mit Instanzen dieser Klasse stellen zu kénnen. Eine Anfrage konnte beispielsweise

wie in Listing 8.6 aussehen.

((

eventNum.gte (5) .and (eventNum.1lte (10))
) .or(

eventNum.gte (50) .and (eventNum.1lte (100))
)) .and(

triggerNum.gt (10)
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Listing 8.6: Anfrage

Hier représentieren eventNum und triggerNum Attribute der Klasse Metadata, die aber in
dem POJO als Integer definiert sind und somit nicht iiber die Methoden gte (), 1te o.4.
verfiigen. Mittels eines Praprozessors wird beim Bauen des Projekts eine Klasse QMetada-
ta.class erzeugt, die die Attribute der Klasse um die entsprechenden Methoden erweitert,
die Anfragen, wie die o.g. erlauben. Ebenso wird durch das Beispiel ersichtlich, dass es
sich hierbei um Methodenaufrufe auf einem Java-Objekt handelt, jedoch der Anfrage zur

Filterung der Events als String tibergeben wird (vgl. Listing 8.5).

Der Ausdruck muss also zur Laufzeit in ausfithrbaren Java-Code iibersetzt werden, was
mittels der Ausdruckssprache M VEL erreicht wird. Diese Ausdruckssprache ist an die Java-
Syntax angelehnt, sodass der String mit dem Filterausdruck dquivalent zu Java-Code ist.
Um nun ein Predicate-Objekt zu erhalten, welches vom QueryDSL-Framework benétigt
wird, um die Abfrage an die Datenbank zu stellen, wird eine Java-HashMap erstellt, der
als Schliissel giiltige Variablennamen {ibergeben werden, die in dem Ausdruck vorkommen
diirfen, sowie deren entsprechendes Klassenattribut als Wert, wie man es beispielhaft in
Listing 8.7 nachvollziehen kann. MVEL wertet den Ausdruck aus, ordnet die Variablen im
Ausdruck denen der Zielklasse zu und erzeugt das gewiinschte Objekt, in diesem Fall das

Predicate.

1 public static Predicate toPredicate(final String

filterExpression){

2 Map<String, Object> vars = new HashMap<>();

3 vars.put ("eventNum", QMetadata.metadata.eventNum) ;

4 vars.put ("triggerNum", (QMetadata.metadata.triggerNum);
5

6 return (Predicate) MVEL.eval(filterExpression, vars);
7}

Listing 8.7: Evaluation der Anfrage

Nach der Erzeugung des Predicate Objekts kann dieses an das entsprechende Repository
iibergeben werden, wie es beispielsweise in Listing 8.8 umgesetzt wurde. Die Methode
findA11(...) dient der Suche aller Events (bzw. Metadaten), die dem Prédikat gentigen.

1 Q@Override
2 public Iterable<Metadata> filterEvents (String

filterExpression) {
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return metadataRepository.findAll (Metadata.toPredicate(

filterExpression));

Listing 8.8: Service Implementierung

Fiir gewohnlich akzeptiert diese Methode des Spring-Repositorys kein Predicate-Objekt
als Parameter. Daher muss das Repository insofern angepasst werden, als dass es ein wei-
teres Interface (QueryDslPredicateExecutor<Metadata>) implementiert, das von Que-
ryDSL bereitgestellt wird und dem Repository die Fahigkeit verleiht, Pradikate zur Fil-
terung von Datenbankeintrigen zu nutzen. Damit der QueryDs1PredicateExecutor das
Pradikat fiir das jeweilige Datenbanksystem ausfithren kann, muss lediglich die entspre-
chende Maven Dependency eingebunden werden, die die noétige Logik enthélt. Eine solche
Depedency ist fiir die populédrsten Systeme vorhanden, sodass eine Integration problemlos

und schnell umgesetzt werden kann.

Ein Spring-Repository zeichnet sich dadurch aus, dass es ein Interface ist, dessen definierte
Methoden zur Ubersetzungszeit des Projekts automatisch vom Spring-Framework imple-
mentiert werden, wie dem Beispiel in Listing 8.9 zu entnehmen ist. Durch diesen Mecha-
nismus garantiert die Einbindung des QueryDs1PredicateExecutors, dass die benttigten
Methoden wie findAll(Predicate predicate) ohne zusédtzliche Arbeit implementiert

werden.

public interface MetadataRepository extends MongoRepository<
Metadata, String>,
QueryDslPredicateExecutor <Metadata>

Listing 8.9: Metadata Repository fiir die MongoDB

Fazit Mit der Kombination verschiedener Frameworks und Bibliotheken ist es gelungen,
einen Ansatz zu entwickeln, der den Zugriff auf die Persistierungsebene und die Auswer-
tung der Anfragen vereinheitlicht und sich somit generisch an verschiedenste Datenbank-
systeme anpassen ldsst. Der Vorteil dieses Ansatz liegt insbesondere in der Wartbarkeit,
Anpassbarkeit und der Reduktion des Codes zur Implementierung der bendtigten Featu-
res. Im Vordergrund steht hierbei insbesondere die automatisierte Auswertung komplexerer

Anfragen zur Filterung der persistierten Daten.

Bisher wurde jedoch nur von dem Fall ausgegangen, dass der Filter korrekt angewandt
wurde. Durch eine fehlerhafte oder absichtlich boswillige Query kénnte Schadcode inji-

ziert werden, was bisher nicht tberpriift wird, sodass der aktuelle Fortschritt eher als
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HTTP-Methode URL Beschreibung

POST /jobs/start  Starten einen im Body iibergebenen Job.

GET /jobs/active  Gibt eine Liste aller aktiven Jobs im Cluster zurtick.
POST /jobs Speichert einen Job als Template.

GET /jobs Gibt eine Liste aller gespeicherten Jobs zuriick.
GET /jobs/id Gibt einen gespeicherten Job zuriick.

DELETE /jobs/id Loscht einen gespeicherten Job.

Tabelle 8.2: Schnittstellen der REST API fir Jobs

Proof of Concept bezeichnet werden kann. In einer weiteren Iteration miisste tiberpriift
werden, ob der iibergeben Ausdruck tatsichlich in ein Pradikat iibersetzt werden kann
und die Eingabe auf die Pradikatausdriicke beschrankt werden. Im Fehlerfall muss mit

einer Exception o.4. reagiert werden.

8.2.3 Jobs

Dies RESTfull API soll jedoch nicht nur das Durchsuchen von Events ermoglichen, sondern
insbesondere auch die Interaktion mit dem Apache Spark Cluster vereinfachen. Daher
wurden in der Schnittstelle auch Wege umgesetzt um Jobs zu starten, verwalten, speichern
und auch Ausfithrungen zu planen. Durch diese Abstraktion des Clusters kann mit diesem
interagiert werden, ohne dass spezielle Software auf dem Client installieren werden muss

oder besondere Einstellungen getroffen werden miissen.

Ein Job bezeichnet dabei eine durch ein Stream-XML definierte Aufgabe, die per Stre-
ams auf Apache Spark ausgefithrt werden soll. Neben dem XML koénnen noch weitere
Ausfithrungsparameter wie die Anzahl von Cores, der zuverwendende Arbeitsspeicher usw.
festgelegt werden. Dies hilft, die zur Verfiigung stehenden Resourcen effektiv zu nutzen,

oder beim Testen der Skalierbarkeit.

Apache Spark bzw. YARN stellen ihrerseits schon umfangreiche und teilweise auch REST-
basierte Werkzeuge bereit. Die im folgenden beschriebene API soll diese nicht ersetzten
oder in Konkurrenz zu diesen sein, sondern ist mehr eine Ergdnzung, die auf die Auf-
gabenstellung zugeschnittene Optionen anbietet. Bei manchen Endpunkten werden im

Hintergrund auch die mitgelieferten Tools verwendet.

Eine Ubersicht der Endpunkte ist in Tabelle 8.2 aufgelistet.

Starten

Das Starten von Jobs erfolgt per HTTP-POST-Aufruf von /api/jobs/start mit einer Job-
Beschreibung als JSON im Body. Diese Job-Beschreibung enthélt einen eindeutigen Namen
fir den Job, das Streams-XML, die Anzahl von Spark Executors, der zu verwendende

Haupstpeicher fiir die Excecutors und die Spark Driver sowie die Anzahl der Kerne fiir

die Executors und fir die Driver.
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Neben diesen Parametern fiir den Spark-Kontext kann noch optional eine Jar-Datei ibergeben

werden. Dies ermoglicht es, neue Prozessoren, Operatoren etc. auszuprobieren, ohne die
REST API verindern zu miissen. Diese Idee entstand aus dem Wunsch, dass unterschied-

liche Arbeitsgruppen der PG verschiedene Funktionen testen wollten.

Auf dem Server, auf welchem die REST API gestartet wurde, liegt eine Standard-Jar-

Datei, die verwendet wird, wenn keine explizit iibergeben wird,

Nachdem versucht wurde, den Job zu starten, wird eine Antwort zuriickgegeben, die Aus-
kunft iiber den Erfolg oder Misserfolg enthélt (vgl. Listing 8.10).

"name”: ”Test Job?”,
“error ”: false ,
"message”: ”The job started successfully.”,

PstartDate”: 7201309217

Listing 8.10: Beispeil Antwort

Die Implementierung dieser Endpunkte wurde auch iiber das Spring Framework umgesetzt.
Die Kommunikation mit Spark erfolgt jedoch nicht iiber eine spezielle Java-API, sondern
verwendet ein externes Shell-Skript. Das iibergebene XML wird in eine temporidre Datei

geschrieben und aus den anderen Parametern der entsprechende Skript-Aufruf generiert.

Verwalten

Das Webinterface bietet auf der Startseite als Hauptmerkmal eine einfache Moglichkeit
zum Starten von Jobs und erleichtert somit die Interaktion mit dem Cluster. Nach dem
Starten eines Jobs méchte der Nutzer naturgeméf iiber den Zustand seines ausgefiihrten
Jobs im Bilde bleiben, um beispielsweise entsprechend reagieren zu kénnen, wenn die-
ser erfolgreich beendet oder mit einem Fehler abgebrochen wurde. Dazu bietet YARN,
welches die Ressourcen des Clusters dynamisch fiir die verschiedenen Jobs verwaltet, un-
terschiedliche Informationen iiber sein eigenes Webinterface an. Jedoch wird bei kontinu-
ierlicher Nutzung des Webinterfaces recht deutlich, dass ein Wechsel zum Interface des
YARN-Clusters umstindlich ist und das Interface oft mehr Informationen anbietet als
grundséatzlich von Interesse sind. Daher lag es nahe, eine entsprechende Ubersicht mit
den laufenden und bereits terminierten Jobs in das Webinterface zu integrieren und die

gewiinschten Informationen tabellarisch darzustellen.

Als Untermenge der von YARN bereitgestellten Informationen bot sich u.A. die ID des
laufenden Jobs sowie sein Name an. Der Name wird beim Starten des Jobs vergeben und
an YARN ibermittelt, wihrend die ID von Nutzen ist, um weitere Informationen iiber
einen Job von YARN anzufordern. Fiir den Abruf (weiterer) Informationen stellt YARN
entsprechende Endpunkte tiber eine Schnittstelle zur Verfiigung. Die bereitstehenden In-
formationen werden im Folgenden erldutert, wihrend die Details zur Kommunikation mit
der Schnittstelle im Abschnitt 8.3.2 ndher betrachtet werden.
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Zudem enthélt die Tabelle Eintrige, die den Startzeitpunkt eines Jobs dem Anwender of-
fenbaren und der aktuelle Fortschritt des Jobs wird als Prozentzahl ausgedriickt. Uber die-
sen Wert kann in Kombination mit dem Startzeitpunkt im laufenden Betrieb insbesondere
die Geschwindigkeit der Verarbeitung des Jobs durch den Anwender abgeschitzt werden
und stellt somit eine sinnvolle Metrik dar. Der Zustand (,state“) kann folgende Werte an-
nehmen: ,NEW, NEW_SAVING, SUBMITTED, ACCEPTED, RUNNING, FINISHED,
FAILED und KILLED“ Die interessantesten Attribute sind hier sicherlich RUNNING,
FINISHED und FAILED. Mit ihnen wird ausgegeben, ob der jeweilige Job ausgefiihrt
wird, beendet wurde oder die Ausfithrung fehlgeschlagen ist. Dabei bezieht sich dieser Zu-
stand auf die Ausfiihrung des Jobs durch den Ressourcemanager. Auch ein erfolgreich aus-
gefiihrter Job kann im Endeffekt fehlgeschlagen sein, wenn das auszufithrende Programm,
welches durch den Job ausgefithrt wurde, mit keinem erfolgreichen Resultat beendet wur-
de. Dies wird durch den finalen Status (,finalStatus®) ausgedriickt, der den Status des
Jobs ausgibt, der von dem auszufiihrenden Programm bzw. dem Job zuriickgegeben wur-
de. Der Status kann die Werte ,UNDEFINED, SUCCEEDED, FAILED und KILLED*

annehmen.

Der Vollstandigkeit halber wird in der Tabelle 8.3 auf weitere, mogliche Attribute ein-
gegangen. Aus dieser Tabelle wird schnell ersichtlich, dass die wichtigsten Werte fiir den

jeweiligen Job bereits im Webinterface einzusehen sind.

Neben den jobspezifischen Parametern stehen auch Metriken zum Clusterzustand zur
Verfiigung. Darunter féllt beispielsweise das Attribut dctivesNodes”, welches die Anzahl
der aktiven Knoten ausgibt oder die Attribute lostNodes " und tinhealthynodes ™ Sie weisen
auf moglicherweise ausgefallene Knoten hin, die dem Cluster nicht mehr zur Verfiigung
stehen oder auf Knoten, die sich in einem Zustand befinden, in dem sie nicht in der La-
ge sind Teile eines Jobs auszufithren. Besonders im Hinblick auf die Verlasslichkeit eines
Clusters konnte anhand dieser Parameter entschieden werden, ob dem Cluster neue Jobs
zugefiihrt werden sollten oder eine verringerte Verarbeitungsgeschwindigkeit der Jobs auf
einen fehlerhaften Cluster zuriickzufiithren sind. Somit wére die Einbindung dieser Attri-

bute im Webinterface eine potentielle Verbesserung.

Im Folgenden werden mégliche Verbesserungen konzeptuell diskutiert, die das Entfaltungs-
potential und die Notwendigkeit einer differenzierten Jobverwaltung iiber das Webinterface

hervorheben und unterstreichen.

Momentan wird die Untermenge an dargestellten Informationen bzw. Attributen eines
Jobs vorgegeben. Vorstellbar wére, dass ein Anwender die fiir ihn relevanten Attribute
auswahlt und die Tabellenansicht entsprechend angepasst wird. So wird kann die Anwen-

dung benutzerspezifischer gestaltet werden.

Die Tabelle, die die Jobs und ihre jeweiligen Attributen beinhaltet, wird lediglich durch
das Neuladen der Browserseite oder durch das Driicken des Buttons am Kopfende der

Seite aktualisiert. Um den Komfort zu erhOhen, wére ein automatisiertes Aktualisieren
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id Eine eindeutige Job ID
user Der Name des Nutzers, der den jeweiligen Job ausgefiihrt
hat
name Der Name der Applikation, der iiber das Interface mitgege-

ben wird

Application Type

Die Art der Applikation

queue Die Warteschlange, in der der Job eingereiht wurde

state der Zustand der Applikation im Ressourcemanager

finalStatus Der Status, der von der Applikation bzw. dem Job
zuriickgemeldet wurde

progress Der Fortschritt der Verarbeitung des Jobs als Prozentzahl

trackingUI Ort der Logs: Application Master oder History Server, auf
den die Logs ausgelagert wurden

trackingUrl Die URL zu dem YARN Interface, iiber die der Zustand des
Jobs bereitgestellt wird

diagnostics Detaillierte Diagnoseinformationen

clusterld Die ID des Clusters, auf dem der Job ausgefiihrt wird

started Time Die Zeit, zu der der Job gestartet wurde

finished Time Die Zeit, zu der der Job beendet wurde

elapsedTime Die Zeit (in ms), die vergangenen ist, seitdem der Job gest-
artet wurde

amContainerLogs Die URL der Container Logs

amHostHttpAddress URL des Application Servers

allocatedMB Der Speicherplatz, der fiir die Container zur Ausfithrung des
Jobs reserviert wurde

allocatedVCores Die Anzahl virtueller Kerne, die reserviert wurden

runningContainers Die Anzahl der Container, die fiir den Job ausgefiihrt werden

memorySeconds Den Speicherplatz, den die Applikation/der Job belegt hat

vcoreSeconds Die Anzahl der CPU Ressourcen, die die Applikation belegt

hat

Tabelle 8.3: Abrufbare Attribute eines YARN Jobs
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der Seite wiinschenswert. Noch besser wére es, wenn die Seite lediglich dann aktualisiert
wiirde, wenn tatséchlich eine Anderung stattgefunden hiitte. Vorstellbar wére hier eine
feingranulare Beobachtung der Attribute hinsichtlich jeder Anderung wie beispielsweise
dem Fortschritt oder eine grobgranularere Beobachtung, bei der die Seite lediglich hin-
sichtlich von Status und/oder Zustandsédnderungen eines Jobs aktualisiert wird, um die

Anfragen an den YARN Server zu verringern.

Um den Nutzer wiahrend einer Ausfithrung langer andauernder Jobs iiber den aktuellen
Status im Bilde zu halten, wire ein Benachrichtigungssystem vorstellbar, welches auf ver-
schiedene, womdglich vom Nutzer definierte, Attributsénderungen mit einer Benachrich-
tung des Nutzers reagiert. Diese Benachrichtigung kénnten klassisch per E-Mail erfolgen
oder iiber sog. Push Notifications, die von modernen Browsern wie Safari oder Chrome
angeboten werden. Dabei handelt es sich um Echtzeitbenachrichtigungen, die von einem
Server an Nutzer gesendet werden konnen, die sich fiir solche Benachrichtigungen interes-
sieren. Diese Art von Benachrichtigungen sind bereits von mobilen Endgeriten wie Smart-
phones oder Tablets bekannt, die den Eingang einer kurzen Nachricht fiir gewéhnlich am
oberen Bildschirmrand fiir einen kurzen Zeitraum einblenden und daraufhin verschwin-
den. Ahnlich funktioniert es am Computer im Browserumfeld: Selbst wenn der Nutzer
sich nicht auf der Website befindet, iiber die der Nutzer die Benachrichtigungen abonniert
hat, so werden die Nachrichten dennoch dhnlich wie beim Smartphone in einem system-
nativen Fenster in der rechten Ecke am oberen Bildschirmrand eingeblendet. Im Fall des
Safari Browsers muss der Browser nicht einmal aktiv sein, damit der Nutzer weiterhin
iiber Neuigkeiten benachrichtigt wird. Somit kénnte ein Anwender zeitnah tiber beende-
te oder fehlgeschlagene Jobs informiert werden und wére von der Pflicht entbunden, in

regelméfigen Abstdnden selber nach dem Status des Jobs schauen zu miissen.

Auch wenn sich diese Technik womoglich langfristig durchsetzen wird, so sind aktuel-
le Losungen meist browserspezifisch und an einen Anbieter (z.B. Apple) gebunden. Um
Push Notifications nutzen zu kénnen, muss zunéchst ein Zertifikat (beispielsweise von Ap-
ple) angefordert werden, welches die Anwendung eindeutig identifiziert. Im zweiten Schritt
wird ein sog. Push Package auf dem Webserver generiert, welches mit dem Zertifikat si-
gniert und an den Browser des Nutzers ausgeliefert wird. Dieses Push Package wird an
den Nutzer ausgeliefert. Mit Hilfe des Push Packages wird Safari auf das Empfangen von
Push-Nachrichten der entsprechenden Webanwendung vorbereitet. Méchte der Betreiber
der Anwendung nun eine Benachrichtigung an seine Nutzer senden, so wird die Nachricht
signiert an den Apple Push Notification Server gesendet, welcher wiederum eine Verbin-
dung zum Client aufbaut und fiir das Auslésen der entsprechenden Benachrichtigung beim

Nutzer verantwortlich ist.

So interessant und geeignet dieses Verfahren fiir die vorgestellte Applikation ist, so um-
stdndlich ist es, dieses fiir mehrere Browser einzurichten. Auch werden lediglich aktuel-

le Browserversionen unterstiitzt, da es sich dabei um ein verhéltnisméflig neues Feature
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HTTP-Methode URL Beschreibung

POST /tasks Plant einen Job.

GET /tasks Gibt eine Liste aller geplanten Jobs zuriick.
PUT /tasks Aktualisiert einen geplanten Job.

DELETE /tasks/id Loscht einen geplanten Job.

Tabelle 8.4: Schnittstellen der REST API fiir geplante Jobs

handelt. Im Abschnitt 8.3.2 wird jedoch beispielhaft auf die Implementierung von Local
Notifications unter Beriicksichtigung des Safari Browsers eingegangen. Diese sind insofern
eine vereinfachte Ausfithrung von Push Notifications, als dass sie durch ein JavaScript
der aufgerufenen Website ausgefithrt bzw. an den Anwender gesendet werden. Der Nach-
teil hierbei ist jedoch, dass die Webseite und der Browser definitiv getffnet sein miissen,
damit der Nutzer die Nachrichten empfangen kann. Jedoch stellt dieses Verfahren eine
passable Alternativlosung zu den Push Notifications dar. Insbesondere im Bezug auf den

reduzierten Implementierungs- und Verwaltungsaufwand.

Speichern Neben dem einfachen Starten und Uberwachen von
Jobs gibt es Aufgaben, die, vielleicht nur leicht veréndert, 6fters ausgefithrt werden sollen.
Denkbare wére hier die Standard-Analyse-Kette, die im Wesentlichen unverdndert bleibt,
jedoch auf unterschiedlichen Daten aufgerufen werden soll. Ein anderes Beispiel ist das
Testen der Skalierbarkeit, bei dem ein Job mit unterschiedlichen Spark-Parametern aufge-
rufen wird oder das Ausprobieren von verschiedenen Implementierungen von Prozessoren,
bei der sich nur die PG-Jar-Datei &ndert.

Daher wurde die Moglichkeit geschaffen, Jobs zu Speichern und diese gespeicherten Jobs
zu verwalten. Eine Liste der dazugehérenden Endpunkte ist ebenfalls in Tabelle 8.2 auf-
gelistet. Diese sind im wesentlichen Klassische CRUD-Operationen, die mit dem Spring

Framework und der MongoDB als Datenbank umgesetzt wurden.
Scheduling

Als Erweiterung von vordefinierten Jobs bietet es sich an, diese auch automatisch zu
bestimmten Zeitpunkten zu starten. Dies Ermdoglicht eine bessere Auslastung des Clusters,

da die Jobs nun von den klassischen Arbeitszeiten der Nutzer entkoppelt sind.

Ein geplanter Job oder Task wird dabei iiber einen Namen definiert und enthilt die Id des
Jobs, welcher gestartet werden soll, ob der Task aktiviert ist oder nicht und zu welchen
Zeitpunkten dieser ausgefithrt werden soll, wenn er aktiv ist. Zum Definieren der Zeit-
punkte wurde sich dabei an der Syntax des aus der Unix-Welt bekannten Cron-Deamon
orientiert, welche Zeitpunkte iiber Minuten, Stunden, Tag im Monat, Monaten und Wo-

chentag beschreibt, wobei auch Wildcards erlaubt sind.

Die Endpunkte wurden dabei auch wieder mit dem Spring Framework und der MongoDB

als Datenspeicher umgesetzt. Eine Ubersicht der Endpunkte findet sich in Tabelle 8.4.
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8.3 Ein Beispiel-Client: Die Web-UlI

Wie weiter oben in der Einfithrung zu REST APIs beschrieben, bietet eine RESTful API
den Vorteil, dass diese auf das weit verbreitetet HI'TP aufbauen und damit im Allgemei-
nen einfach verwendet beziehungsweise in andere Anwendungen integriert werden kénnen.
Jedoch ist die Kommunikation fiir Menschen {iber HTTP nicht wirklich intuitiv. Es gibt
allgemeine Tools, die speziell fiir die Interaktion mit unterschiedlichen REST APIs aus-
gerichtet sind, wobei diese natiirlich nicht auf spezielle Anforderungen der verschieden

Anwendungsfille eingehen koénnen.

Daher wurde neben der eigentlichen API auch ein Client entwickelt, der die API verwendet
und dabei speziell auf die Analyse- Anforderungen zugeschnitten wurde. Um den Vorteil der
Plattformunabhéngigkeit und Portabilitdt nicht zu verlieren, wurde sich fiir eine Web-UI
entschieden, da diese nur einen modernen Browser bei den Anwendern voraussetzt, welcher
bei den meisten Systemen im Allgemeinen vorhanden ist (vgl. Kapitel 18). Dariiber hinaus
lauft die REST API schon auf einem Server, sodass fiir das Bereitstellen der Web-UI kein

grofler zusétzlicher Aufwand auf der Server-Seite betrieben werden muss.

8.3.1 Single Page Applications

Ein populédres Konzept fiir solche Web-Uls sind sogenannte Single Page Application. Wie
der Name es vermuten ldsst, liefert der Server nur eine HTML-Seite aus, die dann beim
Client im Browser dynamisch iiber JavaScript angepasst wird und so auch den Eindruck
von mehreren Seiten erzeugen kann. Wéahrend der erste Aufruf der Seite also wahrschein-
lich etwas ldnger dauert als bei klassischen Webservices mit mehreren Seiten, so ist die
Interaktion mit der Single Page Application danach deutlich schneller, da die zum An-
zeigen bendtigten Daten schon beim Client sind und nur noch die Daten vom Server
nachgeladen werden miissen. Dieses Nachladen kann dabei natiirlich auch durch spezielle
Warte-Animationen verdeutlicht werden, was fiir Benutzer ein insgesamt fliissigeren Nut-
zererlebnis erzeugt. Weiterhin wird damit die Last des Servers reduziert, da dieser nur eine
statische HTML-Seite und die Daten iiber API ausliefern, jedoch nicht das Anzeigen der
Daten bearbeiten muss. In Kombination mit einer RESTful API bedeutet dies auch, dass

der Zustand der Nutzer-Sitzung beim Client gespeichert werden kann.

8.3.2 Implementierung

Fiir Singe Page Applications gibt es viele JavaScript-Frameworks. Fiir die Web-UI wird

das von Google unterstiitze AngularJS verwendet.
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Zunéchst sei erwdhnt, dass wir den Node Package Manager (NPM) verwenden, um Angu-
larJS und die anderen benétigten Abhéngigkeiten zu verwalten. Dies erlaubt es uns, die
verwendeten Bibliotheken in der richtigen Version mittels des Befehls npm install herun-

terzuladen, ohne dass wir mit diesen unser Projektrepository iiberladen.

Weiterhin wird Grunt als Build Managment Tool verwendet, um die Web UI zu bauen.

Grunt ist selber in JavaScript geschrieben und kann auch mittels NPM verwaltet werden.

Um ein modernes Design zu erreichen, wurde das CSS Framework Bootstrap verwendet.
Bootstrap wurde urspriinglich von einem Team von Twitter entwickelt, jedoch kommt es
nun, auch wegen seiner OpenSource Lizenz, iiberall bei unterschiedlichsten Projekte zum
Einsatz und ist eines der populédrsten CSS Frameworks der Welt. Seine Stéarke liegt in un-
terschiedlichsten, vordefinierten Komponenten, die durch einfache (Klassen-) Annotationen

an bestehendes HTML angehédngt werden kénnen.

Um die unterschiedlichen Anforderungen wie Jobs zu starten oder zu verwalten auch
in der Oberflache zu trennen, wurde das sogenannte Rounting von AngularJS verwen-
det. Dabei wird jedem Zustand der Oberfliche eine eigene Sub-URL nach dem Muster
http://...app.hitml#/jobs gegeben. Was zunédchst wie ein Widerspruch zu einer Single Pa-
ge Application aussieht, hilft jedoch, die Vorteile von Webseiten mit vielen Seiten in diese
zu integrieren. Da sich nur der Teil der URL hinter der Raute verdndert, bleibt es bei
einer Single Page Application. Jedoch ist es auch so moglich, bestimmte Bereiche direkt

anzusprechen, zum Beispiel als Link oder Bookmark.

Ein wesentlicher Aspekt der Web Ul wird es auch das Angeben der Streams-XMI-Definitionen
sein. Daher wurde auf das Projekt ACFE als Editor-Komponente zuriickgegriffen. Anders
als ein einfaches, grofles Texteingabefeld ermoglicht ACE, mittels einer Syntax-Definition
wichtige Schliisselworter hervorzuheben oder Fehler in der Eingabe direkt zu markieren.
Dadurch wird die Spezifikation des XML-Texts fiir Streams einfacher und weniger feh-

leranfillig.

Abschlieflend wurde eine eigene Upload-Komponente entwickelt, um die PG-Jar-Datei an
die REST API als BLOB zu tibergeben.

Jobs verwalten

Die Verwaltung der Jobs verteilt sich in Hinblick auf die Implementierungsdetails auf zwei
Bereiche. Zum Einen bedarf es der visuellen Darstellung der Informationen im Webinter-
face (Frontend) und zum Anderen des Abrufens, Parsens und Bereistellung der benétigten

Informationen (Backend).

Frontend AngularJS implementiert das MVVM (Model-View-ViewModel) Pattern. Das
View ist hierbei die Tabelle, welche fiir die Anzeige der Daten verantwortlich ist, die von

einem Controller bereitgestellt werden.
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Die Tabelle wird dabei als Template in der Single-Page-Application eingebunden. Das
Template ist in einem <script>-Tag eingebettet und repriasentiert reguliren HTML Code
mit zusitzlichem Markup. Dieser wird von AngularJS beim Start der Applikation verar-
beitet und in eine iibliche DOM-Struktur iiberfithrt, die vom Browser interpretiert werden

kann.

Der Controller stellt die bendtigten Methoden in einem isolierten Scope bereit, auf den
vom Template aus zugegriffen werden kann. Eine solche Methode ist z.B. das Abrufen
der benétigten Informationen vom Backend iiber ein asynchrones XML Http Request, wel-
ches von AngularJS durch den $http-Service ausgefithrt werden kann. Dem $http-Service
wird ein Konfigurationsobjekt iibergeben, mit dem eine HT'TP-Anfrage generiert wird und
das schliellich in der Riickgabe eines Promise-Objekts resultiert. Dieses représentiert im
Prinzip einen Proxy fiir einen Wert, der zum Zeitpunkt seiner Erstellung noch nicht (unbe-
dingt) bekannt ist. Im Prinzip versteht sich das Objekt als Platzhalter fiir den tatséchlichen
Wert und verspricht somit implizit, dass dieser Wert nicht unbedingt zum momentan Zeit-
punkt, aber irgendwann in der Zukunft bereitstehen wird. Durch die Verwendung eines
solchen Proxyobjekts wird ein asynchroner Programmablauf in einem sonst synchronen
Code erméglicht. Die Asynchronitéit hat zur Folge, dass die Applikation wéhrend der An-
frage an den Server weiterhin genutzt werden kann und nicht blockiert. Ein Promiseobjekt
kann sich in den Zustdnden pending (initialer Status), fulfilled (Ausfithrung der Operation
war erfolgreich) oder rejected (Operation ist gescheitert) befinden. In diesem Fall bedeutet
der Zustand pending, dass der HTTP-Request abgesendet, aber noch nicht beantwortet
wurde. Wird der Zustand fulfilled erreicht, so hat der Endpunkt der REST-API eine Ant-
wort geliefert, die in diesem Fall die Informationen zu den jeweiligen Jobs umfasst und

iiber den isolierten Scope bereitgestellt wird.

In AngularJS werden Components als Alternative zu den sonst {iblichen Direktiven einge-
setzt, um eine Single-Page-Application besser zu strukturieren. Dazu werden Components
iiber die module-Methode des globalen AngularJS-Objekts in die Applikation eingebunden
und kapseln das View sowie seine Daten und den assoziierten Controller. Der Job History
Component stellt dem View beispielsweise die Jobs und ihre entsprechenden Attribute als

Model zur Verfiigung.

Backend Das Backend, sprich die REST-API, stellt einen Endpunkt zur Verfiigung,
der auf einen HIT'TP-GET-Request mit den Jobinformationen im JSON-Format antwor-
tet. Die Informationen miissen vom YARN Cluster bezogen werden, der selbst wiederum
eine REST-API anbietet, um die entsprechenden Informationen anzufragen. Der erste
Gedanke wére die YARN API direkt vom Frontend aus anzusprechen und diese iiber
Controller-Logik des Job History Components zu verarbeiten. Jedoch scheitert dieser Ver-
such an der Same-Origin-Policy, die ein browserseitiges Sicherheitsfeature ist, die den
Zugriff auf andere Objekte (JavaScript, Grafiken, CSS Stylesheets u.v.m.) und Websites
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anderen Ursprungs untersagt. Damit sollen Angriffe durch das Einbinden fremder Skripte

unterbunden werden, jedoch fithrt dies auch leider zu den o.g. Einschrankungen.

CORS und JSONP Unter Cross-Origin Resource Sharing (CORS) wird eine Methode
verstanden, die die auferlegten Restriktionen der Same-Origin-Policy des Browsers aufhe-
ben ldsst. Damit ein solcher Cross-Origin-Request erfolgreich durchgefiithrt werden kann,
muss der Server mit der abweichenden Domain den Header seiner HT'TP-Response anpas-
sen. Durch das Hinzufligen des Access-Control-Allow-Origin Schliissels wird der Aufruf von
Seiten ausnahmsweise erlaubt, die unter die Domain fallen, die als Wert des Schliissels
gesetzt wird. Die Funktionalitit dieser Losung ist wie so oft bei der Frontendentwick-
lung von der Art und Version des eingesetzten Browsers abhéngig. CORS wird auch von
YARN Schnittstelle unterstiitzt, muss jedoch gesondert konfiguriert werden und steht
standardméflig nicht zur Verfiigung, sodass ohne weitere Mafinahmen kein Zugriff auf die-

se Schnittstelle direkt aus dem Frontend heraus erfolgen kann.

Als Alternative zu CORS existiert auerdem JSONP (JSON mit Padding), der eine Aus-
nahme in der Same-Origin-Policy zum Nachladen weiterer Inhalte eines anderen Servers
ausnutzt. Browser erlauben namlich die Referenzierung beliebiger URLs im src Attribut
eines <script> Tags. Somit wird eine Ubermittlung von Daten auch iiber Domaingrenzen
hinweg ermdglicht. Wird auf diese Weise ein Endpunkt referenziert, der JSON-basierte Da-
ten zuriickliefert, hat dies jedoch keinen Effekt und kann nicht vom Entwickler ausgenutzt
werden, um die Daten in sein Model (0.A.) einzubinden. Hier kommt der Zusatz Padding
ins Spiel: Der URL im src Attribut wird als Query String (bzw. GET Parameter) der
Name einer JavaScript-Funktion, die bereits im Frontendcode vorhanden ist, hinzugefiigt.
Es handelt sich also um eine Art Callback-Funktion. Der Server wiederum antwortet mit
JavaScript Code, der die angefragten Informationen (JSON-Daten) kapselt und iiber das
script-Tag eingebunden wird. Der vom Server iibertragene JavaScript-Code ruft schlie3-
lich die Funktion als Callback auf, deren Namen zuvor iibertragen wurde, und iibergibt

die gekapselten Daten iiber einen Paramter dieser Callback-Funktion.

Der $http-Service von AngularJS unterstiitzt JSONP-Anfragen iiber die gleichnamige
jsonp-Methode, jedoch hat dies im Zusammenspiel mit der YANR REST API nicht
funktioniert. Schlussendlich schien nach der Abwigung der Vor- und Nachteile,die Im-
plementierung eines zusétzlichen Endpunkts, der sich um die Anfrage und Verarbeitung

der Informationen des YARN Clusters kiimmert, am sinnvollsten.

Kommunikation mit YARN Der YARN RessourceManager erlaubt es, clusterbezo-
gene Informationen iiber eine eigene REST API zu beziehen. Dabei kann der Zustand des
Clusters, Metriken zum Cluster, Scheduler und Node Informationen sowie Informationen

zu den ausgefiihrten und auszufithrenden Jobs erfragt werden.
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Unter der URL http://<rmhttpaddress:port>/ws/vl/cluster/apps wird ein verschach-
teltes JSON-Objekt zuriickgeliefert, welches unter dem Wurzelschliissel apps einen weite-
ren Schliissel app enthélt, der wiederum als Wert ein Array aus Objekten annimmt, die
die einzelnen Jobs repréisentieren, die vom RessourceManager verwaltet wurden und wer-
den. In den Job-Objekten stehen alle Informationen bereit, die bereits in der Tabelle 8.3

aufgefiihrt wurden.

Zum Aufruf der YARN API wird der jersey-client genutzt, iiber den der Header der An-
frage an die YARN API insofern manipuliert wird, als dass der Wert des Schliissels Accept
auf application/json gesetzt wird, um die Schnittstelle zur Ausgabe von JSON-basierten
Daten zu zwingen. Mithilfe der von Google bereitgestellten gson-Bibliothek werden die
JSON Daten geparst, das Job-Array traversiert und die gewiinschten Informationen ex-
trahiert. Im Anschluss wird ein neues JSON-Objekt aus einem POJO (Plain Old Java

Object) erzeugt, welches als Attribute die extrahierten Informationen enthilt.

Notifications Um den Anwender tiber Job-Status-Updates zu informieren, sind zwei
Kommunikationswege vorstellbar. Die simplere Variante verfolgt den Ansatz des Pollings,
bei dem das Frontend in vorgegebenen Zeitintervallen Anfragen an den Endpunkt der
REST API sendet, um iiber neue Updates in Kenntnis gesetzt zu werden. Neben dem Pol-
ling ist aber auch eine Socketverbindung vorstellbar, die beispielsweise mit der socket.io-
JavaScript-Bibliothek umgesetzt werden kénnte. Das Frontend baut eine dauerhaft beste-
hende Verbindung zum Backend auf, iiber die sowohl Frontend als auch Backend Nach-
richten senden kénnen, die wiederum zeitnah beim Eintreffen der Nachricht verarbeitet
werden. Ein Vorteil der o.g. Bibliothek ist auch, dass sie Fallbackstrategien anbietet, so-
fern Socketverbindungen vom Browser nicht unterstiitzt werden und der implementierte
Socketendpunkt im Backend diese auch implementiert hat. Leider bietet YARN lediglich
eine REST API an und ldsst keine Socketverbindungen zu, sodass zumindest im Backend
Polling betrieben werden miisste, um aktuelle Informationen {iber Jobs abzurufen. Im
Endeffekt wiirde sich also leider der Mehraufwand fiir die Implementierung einer Socket-
verbindung zwischen Frontend und Backend nicht lohnen. Dadurch, dass Jobs aber i.d.R.
eine ganze Weile laufen und sich der Status i.d.R. nicht in kurzen Abstdnden &ndert, ist

das Polling eine akzeptable Umsetzung.

Um Anderungen des Models im Frontend feststellen zu kénnen, muss bei jeder periodischen
Anfrage der Daten am Backend das aktuell vorhandene Model mit den eingehenden JSON-
Daten verglichen werden. Die JavaScript-Bibliothek Lodash bietet hierfiir die Methode
isEqual(value, other) an, die einen Vergleich zweier JavaScript-Objekte mit beliebiger
Tiefe ermoglicht. Im betrachteten Fall werden zwei Arrays bzw. die Schliissel-Wert-Paare
der beinhalteten Job-Objekten verglichen. Bei der Anderung eines Wertes wird (beispiel-
haft im Falle des Safaribrowsers) ein Notification-Objekt erstellt, dem ein Titel und eine
Nachricht tibergeben wird. Damit jedoch Notifications durch das Notificationcenter ange-

zeigt werden, wird zundchst eine Erlaubnis iiber die Methode Notification.requestPermission()
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erfragt. Wenn der Nutzer Notifications durch die Website erlaubt, werden diese in Zukunft
rechts am oberen Bildschirmrand eingeblendet. Dafiir muss die Website lediglich in einem

Browsertab gedffnet sein, allerdings nicht aktiv genutzt werden.

Events zihlen

Mit dem Reststream wurde ein Stream entwickelt, der u.a. als Parameter einen Filter-
ausdruck entgegennimmt und die FITS-Dateien zu denjenigen Events zuriickliefert, de-
ren Metadaten dem gegebenen Filterausdruck gentigen, wie es bereits im Abschnitt 8.2.2
erlautert wurde. Das Webinterface wurde um die Funktionalitdt erweitert, einen solchen
Filterausdruck vor dem Einsatz in der Analysekette auszufiihren, um zum Einen die Kor-
rektheit der Syntax tberpriifen zu kénnen und zum Anderen a priori eine Riickmeldung
dariiber zu bekommen, wie viele Events von der gegebenen Anfrage betroffen sind und ob

eine Analyse somit tiberhaupt lohnenswert ist.

Das Userinterface fiir diese Funktion ist bewusst einfach gehalten und besteht aus ei-
nem Eingabefeld fiir den Filterausdruck und einer Ausgabe mit der Anzahl der gezdhlten
Events, die von dem Filterausdruck erfasst werden. Dabei erscheint die Ausgabe erst,
sobald das Ergebnis, sprich die Anzahl der gezéhlten Events zur Verfiigung steht. Dafiir
wird auch an dieser Stelle von dem zuvor vorgestellten Promise-Objekt des $http-Services
Gebrauch gemacht. Beim Klick auf den Button wird die zugehérige Beschriftung solange
gedndert bis ein Ergebnis vorliegt bzw. die iibergebene Callbackfunktion vom Promise-

Objekt aufgerufen wird.

Im Backend wird die Anfrage dhnlich ausgewertet, wie es auch im Abschnitt 8.2.2 erldutert
wird. Lediglich zum Zahlen der Events wird im Spring Repository auf die count()-
Methode zuriickgegriffen, die dynamisch vom Spring Framework fiir alle Datenbankan-

fragen zur Verfiigung gestellt wird und eine effiziente Zahlung ermoglicht.
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Verteilung von Streams-Prozessen

Das fiir unsere Erweiterung verwendete Apache Spark verteilt die Last der Datenver-
arbeitung iiber ein Rechencluster. Dieses Konzept skaliert sehr gut horizontal, d.h., die
Performanz ldsst sich durch Anbindung weiterer Cluster-Knoten steigern. Da horizontale
Skalierbarkeit eine Schliisseleigenschaft von Big-Data-Anwendungen darstellt (siche Ab-
schnitt 2.3), wollen wir die Verarbeitung der Daten im Streams-Framework geeignet mit

Spark verteilen.

9.1 Nebenlaufigkeit der Verarbeitung

Im Streams-Framework werden Daten in sogenannten Prozessen verarbeitet. Ein Pro-
zess besteht dabei aus einer Kette von Prozessoren, die jeweils Datenelemente transfor-
mieren oder Seiteneffekte erzielen (wie z.B. Speicherung von Elementen oder Logging).
Jedes Datenelement durchlduft diese Verarbeitungs-Kette sequentiell. Prozessoren sind
iiblicherweise stateless, wodurch die Verarbeitung jedes Datenelementes unabhingig von

der Verarbeitung anderer Datenelemente ist (siehe Unterabschnitt 3.2.4).

Teilt man die eingehenden Datenelemente in disjunkte Teilmengen (Partitionen) auf, so
lésst sich jede dieser Partitionen unabhéngig von den anderen verarbeiten. Damit erlaubt
die Unabhéngigkeit der Datenelemente zueinander eine beliebig nebenlédufige Verarbeitung
der Daten. Mit Ausnahme der Zusammenfithrung der Teilergebnisse ist tiberdies keine Syn-
chronisation zwischen nebenldufigen Verarbeitungspfaden notwendig. Das Gesamtergebnis

wird durch die Vereinigung der verarbeiteten Partitionen dargestellt.

Eine verteilte Ausfithrung eines Streams-Prozess lasst sich also wie folgt umsetzen:
e Datenelemente werden in Partitionen aufgeteilt
e Die Partitionen werden auf Worker-Nodes verteilt verarbeitet

e Die verarbeiteten Partitionen werden zum Gesamtergebnis vereinigt

117
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Den hier vorgestellten Ansatz zur Verteilung der Last werden wir zur Demonstration mit
Spark und Spark Streaming umsetzen (siehe Abschnitt 9.5 und Abschnitt 9.6). Die zur
Nebenldufigkeit der Verarbeitung gewonnenen Erkenntnisse beschrinken sich allerdings
nicht auf diese Plattformen: Die Partitionierung der Datenstréome kann fiir die Verteilung

auf beliebigen Infrastrukturen verwendet werden.

9.2 XML-Spezifikation verteilter Prozesse

Zur Spezifikation verteilter Streams-Prozesse empfiehlt es sich, moglichst nahe an iiblichen
XML-Konfigurationen fiir Streams zu bleiben. Dies ermoglicht Anwendern einen schnelle-
ren Einstieg in Streams auf Spark und kann auch den Implementierungs-Aufwand senken.
Wie wir sehen werden, miissen bestehende XML-Konfigurationen nur minimal verdndert

werden, um unsere Erweiterung zu nutzen.

Dazu verwenden wir die bestehenden Tags stream, sink und processor aus dem Streams-
Framework wieder, sie verhalten sich damit komplett identisch zu den Framework-Tags.
Die einzig neuen Tags zur Verteilung von Streams-Prozessen sind distributedProcess
(fiir Streaming-Prozesse) und batchProcess (fiir Batch-Prozesse). Sie unterscheiden sich
von Default-Prozessen lediglich durch die Verteilung der Verarbeitung auf Worker-Knoten

im Cluster.

Damit ein Prozess verteilbar ist, erwarten wir einen MultiStream als Input. MultiStreams
sind Teil des Streams-Frameworks und werden verwendet, um mehrere innere Streams zu-
sammenzufassen, sie z.B. sequentiell abzuarbeiten. Fiir die Verteilung von Prozessen stellt
der MultiStream fiir uns die Partitionierung der Daten dar (vgl. Abschnitt 9.1). Jeder in-
nere Stream kann unabhéngig von den anderen inneren Streams verarbeitet werden. Wird
kein MultiStream als Eingang verwendet, so besteht keine verniinftige Partitionierung und
der Prozess wird auf dem Driver (ohne eine Verteilung vorzunehmen) als Standard-Prozess

ausgefiihrt.

Listing 9.1 stellt die Konfiguration einer verteilt ausgefithrten Streams-Applikation in XML
beispielhaft dar. Es ldsst sich gut erkennen, wie wenig sie sich von einer iiblichen Streams-
Spezifikation unterscheidet: Der Input-MultiStream, die Senke und die Prozessoren sind
beliebig. Insbesondere kénnen sémtliche bestehenden Streams, Senken und Prozessoren in

einer verteilten Ausfiithrung auf Spark verwendet werden.

Im BigData-Umfeld ist es tblich, ausgesprochen viele Streams zu erzeugen, wie etwa zur
Verarbeitung hunderter .fits-Dateien. Weiterhin kann es sinnvoll sein, die Ausgabe verteilt
auszufithren. Wir haben dazu einige Implementationen der Sink- und Source-Interfaces

entwickelt, die eine verteilte Ein- und Ausgabe erméglichen (siehe Kapitel 11).
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<stream id="IN" class="..."> <!-- ardbitrary multistream -->
<stream id="s1" class="..." />
<stream id="s2" class="..." />

</stream>
<sink id="0UT" class="..." /> <!-- arbitrary sink -->
<distributedProcess id="PP" input="IN" output="0UT">

<!-- arbitrary processors -->
</distributedProcess>

Listing 9.1: Beispiel-XML fiir die Nutzung eines DistributedProcess

9.3 Verarbeitung der XMUL-Spezifikation

Damit die neuen Tags distributedProcess und batchProcess verwendet werden kénnen,
mussten wir Handler fiir XML-Elemente dieser Tags schreiben. Der bestehende Parser er-
zeugt Objekte solcher Elemente, welche dann von den neuen Handlern verarbeitet werden.
Die Handler haben je eine Factory aufzurufen, die verteilte Streaming- oder Batch-Prozesse

erzeugt.

Fiir die Implementierung der beiden Factories reichte es aus, Methodenaufrufe an die
Default-Factory weiterzudelegieren und die Riickgaben anzupassen. Es musste also keine
Factory von Grund auf neu implementiert werden. Zunéchst erzeugt die Default-Factory
Prozess-Konfigurationen, die sich anpassen lassen. So konnten wir den Namen der Klas-
se, von der ein Prozess-Objekt erzeugt werden soll, in diesen Konfigurationen &ndern. In
einem zweiten Schritt erzeugt die Default-Factory aus den (geédnderten) Konfigurationen
Prozess-Objekte. Mit den korrigierten Konfigurationen zeigt diese Erzeugung bereits das
gewiinschte Verhalten: Es werden Objekte der Typen DistributedProcess und BatchPro-

cess erzeugt.

Fiir die Umsetzung von Streams, Senken und Prozessoren ist weder ein Handler noch eine
Factory erforderlich. Die Angabe des Klassennamens im XML-Element (class="...")
realisiert die Erzeugung von Objekten der genannten Klasse bereits. Dieses Verhalten

haben wir durch die komplette Wiederverwendung der Tags erzielt.

9.4 Verteilung der Daten

Wie bereits erwahnt, gehen wir davon aus, dass die Daten bereits partitioniert vorlie-
gen als eine Menge von Streams. Offen ist aber die Frage, wie die einzelnen Teile auf

die Clusterknoten verteilt werden sollen. Dies ist fiir die Performanz aus verschiendenen
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Griinden entscheidend. Zum Einen sollte die Verteilung so gleichméflig wie moglich sein,
damit die einzelnen Clusterknoten die ihnen zugeteilte Arbeit moglichst gleichzeitig ab-
schlieBen und nicht aufeinander warten miissen. Zum Anderen sollten die Daten nach dem
Code-to-Data Prinzip moglichst auf denjenigen Knoten verarbeitet werden, auf denen sie
auch gespeichert sind, um Netzwerkressourcen zu sparen und Verzdgerungen zu vermei-
den. Es besteht daher das Potential, die Performanz der Analyse gegeniiber der trivialen
Reihum-Verteilung signifikant zu verbessern. Unsere Architektur bietet die Moglichkeit,
basierend auf Speicherort und Grofle der Daten eigene Verteilungsstrategien zu definieren.
Solche Strategien zu entwickeln und zu untersuchen ist ein Ansatz, um die Performanz des

Systems in Zukunft weiter zu verbessern.

Um den Arbeiterknoten mitzuteilen, welche Daten fiir sie bestimmt sind, werden die IDs
der betreffenden Streams iibermittelt. Zusétzlich wird die ID des auszufiithrenden Prozesses
und die Beschreibung des Jobs als XML-Objektbaum an alle Knoten gesendet. Jeder
Knoten hat so die Méglichkeit, seine Daten aufzurufen und den auszufithrenden Prozess

zu bestimmen.

9.5 Verteilte Batch-Prozesse

Als ersten Ansatz zur Verteilung von Streams-Prozessen mit Apache Spark verwenden wir
das ,reine“ Spark, in Abgrenzung zu Spark-Streaming. Die Core-Engine von Spark zeich-
net sich insbesondere dadurch aus, dass sie ausschliefllich Batch-Verarbeitung adressiert.
Diese Eigenschaft stellt sich als problematisch heraus, wenn wir mit Datenstrémen arbei-
ten wollen. Es lasst sich jedoch bereits bei diesem Ansatz ein hoher Performanzgewinn

gegeniiber einer nicht-verteilten Ausfithrung feststellen.

Wir diskutieren die Umsetzung von verteilten Streams-Prozessen mit der Spark Core-
Engine, evaluieren dessen Performanz und nutzen die auftretenden Probleme als Motiva-

tion fiir den Einsatz von Spark-Streaming.

9.5.1 Daten- und Kontrollfluss

Um mit Spark verteilte Operationen auf einem Datensatz durchfithren zu kénnen, muss
dieser zunéchst auf die Arbeiterknoten verteilt werden. Hierzu stellt Spark den Daten-
typ RDD zu Verfiigung, mit dem benutzerdefinierte Operationen auf verteilten Daten
ausgefiihrt werden koénnen. Der erste Schritt des Batch-Prozesses besteht daher darin,
die Liste der gegebenen Streams mit Hilfe der parallelize-Methode auf die Worker zu
verteilen, um so eine RDD von Streams zu erhalten. Hierbei kénnen benutzerdefinier-

te Verteilungsstrategien verwendet werden, wie in Abschnitt 9.4 erlautert. Dieser und
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Abbildung 9.1: Datenfluss bei verteilten Batch-Prozessen

die folgenden Schritte sind in Abbildung 9.1 dargestellt. Anschliefend muss auf den Ar-
beiterknoten der eigentliche Prozess ausgefiihrt werden, also die Daten aus den Streams
gelesen und durch die Prozessoren verarbeitet werden. Da aus einem verteilten Daten-
satz ein neuer, ebenfalls verteilter Datensatz errechnet werden soll, kommt hier eine der
von Spark angebotenen RDD-Transformationen zum Einsatz. In diesem Fall wird jedem
Stream (Eingabe) eine Menge von Datenelementen (Ausgabe) zugeordnet, weshalb es sich
um eine flatmap-Transformation handelt. Was genau auf jedem Knoten passiert, um diese

Transformation durchzufiithren, wird im kommenden Abschnitt erlautert.

Als dritter Schritt miissen die Ergebnisdaten an den Driver geschickt werden, um dort
eventuell auf herkémmliche Art weiterverarbeitet zu werden. Die liber die Knoten verteil-
ten Inhalte der Ergebnis-RDD miissen also eingesammelt und zusammengefiithrt werden.
Dies geschieht durch die collect-Operation. Hat der Driver die Ergebnisse erhalten, kann
er sie einfach in die im XML-Dokument spezifizierte Ausgabe des verteilten Prozesses

schreiben.

Eine andere Moglichkeit, die von uns zwischenzeitlich zur Riickfiihrung der Ergebnisse
genutzt wurde, ist die Spark-Datenstruktur Accumulable. Diese erlaubt es, Daten von allen
Knoten zu sammeln, und im Driver auszulesen. Allerdings wird von Spark empfohlen, fiir
den Hauptdatenfluss RDDs zu benutzen, und Accumulables nur fir Zusatzinformationen
wie etwa Logs zu verwenden. Da sich auflerdem experimentell gezeigt hat, dass RDDs

performanter sind als Accumulables, haben wir von deren Nutzung Abstand genommen.

9.5.2 Instanziierung von Streams in den Workern

Wie oben gesehen, besteht die Aufgabe eines jedes Knotens darin, einen gegebenen sta-
tischen Datensatz zu verarbeiten. Diese Aufgabe wird durch ein XML-Dokument, die 1D
des auszufithrenden Prozesses, und die IDs der zu verwenden Streams spezifiziert, und
muss im Rahmen der oben beschriebenen flatmap-Operation geschehen. Um dieses Ver-

halten umzusetzen, ist es vorteilhaft, die streams-Klassen zur Verarbeitung des XML-
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Dokuments wiederzuverwenden. Andernfalls miissten grofie Teile des streams-Codes zur
Erzeugung der Ausfiithrungsumgebung reimplementiert werden. Irgendwie muss allerdings
gewihrleistet werden, dass nicht alle Prozesse, sondern nur der mit der gegebenen Prozess-
ID ausgefiihrt wird, und dass dieser die korrekte Eingabe bekommt. Daraus ergeben sich

im Wesentlichen folgende drei Moglichkeiten der Implementierung;:

Reimplementierung von ProcessContainer Die Klasse ProcessContainer ist bei
streams dafiir zustdndig, die im XML-Dokument spezifizierten Prozesse in einer
Liste zu sammeln und ihre Ausfithrung anzustoflen. Eine Mdoglichkeit wére gewesen,
diese so zu reimplementieren, dass sie statt ihres aktuellen Verhaltens nur einen
Prozess ausfithren. Aufgrund des grofien Umfangs der Klasse und der Menge an

Code, die schlicht hétte kopiert werden miissen, erschien diese Option nicht ratsam.

Manipulation des XML-Dokuments Eine weitere Option wére gewesen, das XML-
Dokument so zu manipulieren, dass alle Prozesse aufler dem gewiinschten gelGscht
werden und dessen Input entsprechend umgeleitet wird. Es ist allerdings schwierig,
sicherzustellen, dass dieser Ansatz fiir beliebige legale XML-Eingaben korrekt arbei-
tet. Auflerdem ist er unflexibel, fiir den Fall, dass sich die XML-Spezifikation einmal
dndern sollte. Ein weiteres Problem besteht darin, dass fiir jeden Knoten ein eigenes

XML-Dokument erstellt werden muss, was Overhead verursacht.

Manipulation der vom ProcessContainer erstellten Objekte Wir haben uns da-
her dafiir entschieden, den regulédren ProcessContainer auf dem gegebenen XML-
Dokument zu initialisieren. Damit werden fir die entsprechenden Tags Prozess-,
Stream-, Prozessor-Objekte usw. erzeugt. Uber unseren ElementHandler sorgen wir
dafiir, dass der verteilte Prozess in jedem Worker wie ein regulédrer Prozess behandelt
wird. Dessen Eingabe wird aber von dem im XML-Dokument spezifizierten Multi-
stream auf die jeweilig gewiinschten Substreams gedndert. Es werden damit die nicht
gewiinschten Substreams ignoriert. Weitere Prozesse im XML, die nicht der aktu-
ellen Lastverteilung unterliegen, werden aus dem ProcessContainer entfernt. Diese
Manipulationen sorgen dafiir, dass die gewiinschte Semantik durch einen schlichten
execute ()-Aufruf beim ProcessContainer erreicht wird: Eine Instanz des verteilten
Prozesses lauft auf jedem Worker und bearbeitet genau die jeweilige Partition der
Daten.

Ein Problem dieser Losung besteht in der Initialisierung der Streams. Bei der Verarbeitung
groBer Datenmengen kann es leicht passieren, dass das gleichzeitige Offnen aller gegebenen
Streams auf einer Maschine nicht moglich ist, etwa weil dadurch zu viel Arbeitsspeicher
verbraucht wird. Weiterhin existiert eine Beschrankung der Anzahl Dateien, die gleichzeitig
aus dem HDFS gelesen werden konnen. Aus diesem Grund haben wir den Zeitpunkt der

Stream-Initialisierung so verdndert, dass diese erst passiert, wenn auch wirklich von dem
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Stream gelesen werden soll. Das hat zur Folge, dass auf dem Driver gar keine Streams
initialisiert werden und auf den Arbeiterknoten jeweils nur die, die auch verarbeitet werden

sollen.

9.6 Verteilte Streaming-Prozesse

Als Alternative zur Batch-Verarbeitung bietet unsere Erweiterung die Méglichkeit, Daten
als kontinuierlichen Strom verteilt zu verarbeiten. Dieser Ansatz hat im Wesentlichen zwei
Vorteile. Zum Einen erlaubt er die Analyse von Echtzeit-Daten, also von Daten, die erst
wéhrend der Laufzeit des Prozesses verfiigbar werden. So kann zum Beispiel ein IP-Port
als Eingabestrom genutzt werden, sodass dort ankommende Daten direkt weiterverarbeitet
werden. Streaming-Prozesse konnen also genutzt werden, um einen Speed-Layer umzuset-
zen (vgl. Abschnitt 3.2).

Zum Anderen gewéhrleistet die kontinuierliche Verarbeitung, dass zu jedem Zeitpunkt nur
ein kleiner Teil der Daten im System ist. Dies steht im Gegensatz zur Batch-Verarbeitung,
bei der simtliche Ergebnisse gleichzeitig an den Driver geschickt werden. Dadurch ist dort
die maximale Datenmenge, die verarbeitet werden kann, durch die Gréfle des Arbeitsspei-
chers des Drivers limitiert. Mit unserer Streaming-Losung hingegen werden kontinuierlich
kleine Teile der Daten gelesen, verarbeitet und weggeschrieben, sodass es moglich ist, die
Datenmenge und die Anzahl Worker ohne harte Limits zu skalieren. Es kann also sinnvoll
sein, Streaming-Prozesse auch fiir Daten zu verwenden, die bereits vollstandig vorliegen.

Unsere Loésung basiert auf Spark-Streaming und wird im Folgenden im Detail erldutert.

9.6.1 Datenfluss

Wie bereits in Unterabschnitt 3.2.3 vorgestellt, basiert Spark Streaming darauf, dass der
Eingabestrom in eine Sequenz von Minibatches zerstiickelt wird, die dann durch herkémm-
liche Spark-Transformationen verarbeitet werden kénnen. Es erscheint daher naheliegend,
Streaming-Prozesse wie in Abbildung 9.2 dargestellt zu implementieren: Der ankommende
Datenstrom wird von einem Receiver entgegengenommen, der nichts weiter tut als ankom-
mende Daten zu speichern und in einem regelméfigen Intervall als Minibatch-RDD wei-
terzugeben. Gegebenenfalls konnen auch mehrere Receiver verwendet werden, die reihum
Daten aus dem Datenstrom nehmen und jeweils eine RDD-Sequenz erzeugen. Die so ent-
stehenden RDDs kénnen dann wie beim Batch-Prozess verarbeitet werden, indem in einer
Spark-Transformation das streams-Framework instantiiert wird, um den spezifizierten
Prozess auszufiihren. Anschliefend kénnen die Ergebnis-RDDs zunéchst durch die union-

Operation zusammengefithrt und dann mittels collect im Driver gesammelt werden.
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Abbildung 9.2: Datenfluss nach dem Konzept von Spark Streaming

Leider hat diese Losung einige schwerwiegende Probleme. Das gréfite besteht darin, dass
das System zusammenbricht, wenn {iber l&ngere Zeit Daten schneller eingelesen als ver-
arbeitet werden. Fiir den Fall, dass Echtzeitdaten verarbeitet werden, ist das schwer zu
andern - schlieflich macht die Echtzeit-Analyse nur dann Sinn, wenn die ankommenden
Daten auch in Echtzeit verarbeitet werden kénnen. Eine der Motivationen fiir Streaming-
Prozesse war ja aber, damit auch Daten verarbeiten zu kénnen, die bereits vorliegen (z.
B. im HDF'S), um eine bessere Skalierbarkeit zu ermoglichen. In diesem Fall pumpen die
Receiver ungebremst Daten ins System, was frither oder spéter den Arbeitsspeicher der
Knoten fiillt und das System zum Erliegen bringt. Der einzige Weg, das System auf diese
Weise zu betreiben, ist, aufwéandig auszutesten, mit welcher Rate Daten verarbeitet werden
kénnen und die Leserate der Receiver kiinstlich auf einen geringeren Wert zu limitieren.

Daher ist dieser Ansatz zur Analyse von Bestandsdaten kaum praktikabel.

Ein weiteres Problem dieser Losung besteht darin, dass die Eingabedaten, nachdem sie
von den Receivern verarbeitet wurden, noch einmal durch das Netzwerk geschickt wer-
den miissen, bevor sie verarbeitet werden. Das verschwendet unnoétig Ressourcen, und
fallt bei unserem Anwendungsfall besonders ins Gewicht, da hier die Eingabedaten um
Groflenordnungen grofier als die Ausgabedaten sind. Zusétzlich hat diese Losung das prak-
tischen Problem, dass fiir jede RDD das streams-Framework neu initialisiert werden muss,
da jeweils ein neuer Spark-Task erzeugt wird. Dies sorgt fiir einigen Overhead und fiithrt

zu einer unteren Schranke fiir das Batch-Intervall.

Aus diesen Griinden haben wir uns entschieden, von dieser Architektur Abstand zu neh-
men. Stattdessen fiihren wir die Verarbeitung der Daten bereits im Receiver durch, wie in
Abbildung 9.3 dargestellt. Dies eliminiert die oben genannten Probleme: Dank der Pull-
Semantik des streams-Frameworks werden Daten nur so schnell eingelesen wie sie auch
verarbeitet werden, die Eingabedaten miissen nicht nochmal verschickt werden und das
streams-Framework kann dauerhaft initialisiert bleiben. Moglich wird diese Losung da-
durch, dass das streams-Framework bereits von sich aus fiir die Verarbeitung von kontinu-

ierlichen Datenstromen ausgelegt ist. Es kann sehr natiirlich in den Receivern instantiiert



9.6. VERTEILTE STREAMING-PROZESSE 125

'EE union /

Receiver 1 [E gl
p——— —

eceiver > BN ey
=
Receiver 3 —
e
|

Minibatches (RDDs)
von Ergebnisdaten

Abbildung 9.3: Datenfluss von unserer Streaming-Lésung

werden und die vorherige Stiickelung in Minibatches ist unnétig.

Dadurch, dass auf diese Weise fast die ganze Arbeit in den Receivern erledigt wird, sollte
auch ein Grofiteil der verfiighbaren Ressourcen fiir die Receiver alloziert werden. Es wird
allerdings weiterhin eine geringe Zahl Worker benétigt, um die ankommenden RDDs zu-
sammenzufithren. Dadurch, dass diese Operationen wenig Overhead pro RDD verursachen,
kann das Batch-Intervall klein gehalten werden. Wir haben daher ein Intervall von 500ms

gewahlt. Die Implikationen fiir die Performanz werden in Abschnitt 13.2 analysiert.

9.6.2 Arbeitsweise der Receiver

Zentral zur Umsetzung dieser Losung ist es, einen benutzerdefinierten Receiver zu imple-
mentieren, der einen streams-Prozess ausfithrt. Hierzu wird bei Initialisierung des Re-
ceivers das streams-Framework instantiiert, genau wie bereits in Unterabschnitt 9.5.2
beschrieben. Anders als bei den Batch-Prozessen miissen die Ergebnisse des Prozesses al-
lerdings in die Ausgabe des Receivers umgeleitet werden. Dort werden sie dann von Spark
automatisch in RDDs verpackt. Hierzu verwenden wir eine Senke, die Daten automatisch

entsprechend weiterleitet, wenn sie vom Prozess ausgegeben werden.

Etwas problematisch ist, zu entscheiden, wann der Streaming-Prozess beendet ist. Spark
Streaming ist zur Verarbeitung von Echtzeitdaten ausgelegt, die prinzipiell endlos in das
System hineinstromen. Sollen jedoch statische Daten verarbeitet werden, ist es wiinschens-
wert, dass die Analyse stoppt, wenn alle Daten abgearbeitet sind. Dazu bieten wir die
Moglichkeit, den Prozess zu beenden, sobald eine gewisse Anzahl der eingelesenen RDDs
in Folge leer waren. Ist der Eingabestrom des Prozesses versiegt, wird das auf jeden Fall
passieren und die Analyse wird wie gewiinscht stoppen. Um zu verhindern, dass Schwan-

kungen im Datendurchsatz zum unerwiinschten Herunterfahren des Systems fithren, bieten
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wir dem Benutzer die Moglichkeit, die maximale Anzahl leerer RDDs iiber den Parameter

maxEmptyRDDs festzulegen.
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Einbindung von Spark ML

Zur Arbeit unserer Software wird unter anderem die Gamma-Hadron-Separation und die
Energieschitzung gehoren. Beide Aufgaben beinhalten maschinelle Lernverfahren, sodass
wir eine M6glichkeit finden mussten, die Spark-MLIlib-Methoden in streams zur Verfiigung
zu stellen. Dazu gehoren nicht nur die Klassifikation und Regression, sondern auch die
Merkmalsextraktion, die Vorverarbeitung der Daten und die Evaluation der gewé&hlten
Lernverfahren. Momentan werden Vorverarbeitung und Merkmalsextraktion von dem im
vorherigen Abschnitt 9.5 vorgestellten BatchProcess durchgefithrt. Mit unserer Erweite-
rung soll es jedoch auch méglich sein, MLIib-Methoden zu nutzen, wenn dies gewiinscht

ist.

Bevor das Design unserer Erweiterung erldutert wird, soll Spark MLIlib noch einmal genau-
er beleuchtet werden. Die grundlegenden Konzepte wurden in Abbildung 3.1.2 beschrieben,
nun soll ndher betrachtet werden, welches Paket aus Spark MLIib fiir unsere Projektgrup-
pe das bessere ist. Dabei soll im Folgenden genauer auf die Unterschiede zwischen den

Paketen eingegangen werden.

10.1 Spark ML vs. MLIlib

In einer zweiwdchigen Experimentierphase zu Beginn der Projektgruppe beschéftigten wir
uns mit der Frage, welches Paket der Spark-MLlib-Bibliothek besser fiir unsere Zwecke ge-
eignet sein wiirde, entweder die dltere Version MLIlib oder die neuere ML, welche auch noch
aktiv weiterentwickelt wird. Zunédchst wahlten wir einige Datenséitze aus dem UC Irvine
Machine Learning Repository [60] aus, anhand welcher die Modelle trainiert und evaluiert
werden sollten. Diese Datensétze waren leicht zu beschaffen und sollten eine erste Basis
fiir die Experimente darstellen. Im spéteren Verlauf der Experimentierphase verwendeten

wir auBerdem einen Ausschnitt der Monte-Carlo-Simulationsdaten (siehe Abschnitt 6.3),
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welche auch in der endgiiltigen Software den Trainingsdatensatz bilden werden. Einen gu-
ten Einstieg bildet der Spark Machine Learning Library Guide [6], welcher nicht nur jedes
einzelne Verfahren detailliert erklért, sondern auch die Grundlagen der Spark MLIlib Bi-
bliothek darstellt und einige Beispielimplementierungen liefert. Dank dieser erzielten wir
recht schnell Ergebnisse, stieffen jedoch auch auf einige Probleme, die im Folgenden kurz

geschildert werden sollen.

Zuerst informierten wir uns, welche Algorithmen von den einzelnen Paketen implementiert
werden. Unsere Ergebnisse sind in der nachfolgenden Tabelle zu sehen und entsprechen
dem Stand von Apache Spark 1.6.0 (4. Januar 2016):

MLLib | ML
Feature Extraction, Transformation and Selection v
Lineare SVM v
Entscheidungsbaum v v
RandomForest v v
GradientBoosted Trees v v
Logistische Regression v v
Naive Bayes v
Methode kleinster Quadrate v
Lasso Regression v v
Ridge Regression v v
Isotonic Regression v
Neuronales Netzwerk v

Die von den Physikern bereits genutzten Entscheidungsbdume und Zufallswalder sind in
beiden Paketen enthalten. Dennoch fillt in der Ubersicht auf, dass ML einen entscheiden-
den Vorteil bietet, ndmlich die Méglichkeiten zur Merkmalsselektion, -transformation und
-extraktion. Dies ist fiir unseren Anwendungsfall wichtig, da eine Aufgabe unter anderem

darin besteht, die fir das Training und die Klassifikation besten Merkmale zu finden.

Bei der Implementierung war es zunéchst problematisch, Datensétze einzulesen, welche
nicht dem des MLLib-Paketes bevorzugten Einleseformat LIBSVM [22] entsprachen. Dement-

sprechend sollten die Daten wie folgt organisiert sein:
label featurel:valuel feature2:value2 ...

Die dem Repository entnommenen Datensétzen entsprachen leider nicht dem gewiinschten
Format, sodass wir Methoden schreiben mussten, die die von uns ausgewahlten Datei-
en analysierten und in JavaRDDs konvertierten. Generell kann zwar jedes beliebige Da-

teiformat eingelesen werden, doch das Parsen muss bei Verwendung des Pakets MLLib
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selbst iibernommen werden. Das Paket ML hingegen arbeitet auf Grundlage von DataFra-
mes. Diese kénnen unter anderem aus Datenbanken oder JSON-Dateien gelesen werden.
Da uns das streams-Framework bereits die Moglichkeit zum JSON-Export bot, konnten
wir einfach einen Ausschnitt der Monte-Carlo-Simulationsdaten (siehe Abschnitt 6.3) als
JSON-Datei exportieren und in unseren Tests als DataFrame importieren. Dies ist ein
entscheidender Vorteil des ML-Paketes.

Auf ein weiteres Problem stieflen wir bei dem Versuch, ein Modell mit Daten zu trai-
nieren, deren Attribute nicht ausschliefflich numerischer Natur waren. Bei Nutzung des
MLLib-Paketes gingen die Algorithmen von Daten in Form eines LabeledPoint aus. Dieser
besteht aus einem numerischen Label und einem Vektor numerischer Features. Nutzt man
die Methoden aus dem Paket ML, gibt es zwar beim Ablegen von nominalen Attributen in
einem DataFrame keine Probleme, jedoch gibt es Klassifikationsalgorithmen, welche nur
mit numerischen Merkmalen trainieren und klassifizieren kénnen. Das Problem der Trans-
formation blieb also bestehen. Das Paket MLLib bietet keine Moglichkeiten, um diese

Transformation durchzufithren, bei ML fanden wir sehr schnell die benétigten Methoden.

Auch die Label unterliegen einer Einschrénkung. Sie sollen beginnend von Null durchnum-
meriert werden, sollen also nicht nominal sein oder mit +1 und -1 gekennzeichnet sein, wie
es bei bindren Klassifikationen oft der Fall ist. Es stellte sich ebenfalls heraus, dass ML
uns Arbeit durch Bereitstellung geeigneter Methoden abnehmen konnte, MLLib jedoch
nicht.

Fiir unseren Anwendungsfall ist es wichtig, dass sich Modelle abspeichern, im HDF'S hin-
terlegen und nach Belieben wieder laden lassen. Aulerdem sollen gespeicherte Modelle
gestreamt werden kénnen. Das Paket ML bietet bereits einige Methoden, um Pipelines
abzuspeichern. Dabei muss darauf geachtet werden, dass in der Pipeline ein Modell trai-
niert oder genutzt wird, fiir welches diese Speichermethoden bereits funktionieren. Generell
scheint es jedoch kein Problem zu sein, Modelle abzulegen und wiederzuverwenden, was
ein grofler Vorteil des ML-Paketes ist.

Insgesamt stellte sich heraus, dass die Spark MLIib Bibliothek sehr konkrete Annahmen
iber Eingabeformate und die Formatierung der Daten macht. Nutzt man das Paket ML,
treten dabei jedoch keine Nachteile auf. Wir wollen primér aus Datenbanken lesen oder
die Trainingsdaten, welche als JSON-Datei vorliegen, importieren. Fiir die Vorbereitung
und Formatierung der Daten fiir den Trainings- und Klassifikationsablauf stellt das Paket
ML viele Methoden bereit. Es scheint nicht nur komfortabler, primér auf das Paket ML zu
setzen, die Nutzung wird von Apache sogar ausdriicklich empfohlen, da das Paket MLLib
gar nicht mehr weiterentwickelt wird. Obwohl es auch noch unterstiitzt wird, haben wir
uns daher entschieden, auf die Pipeline-Struktur von ML aufzubauen und die in diesem
Paket enthaltenen Methoden zur Vorverarbeitung und Klassifikation unserer Daten zu
nutzen. Auflerdem funktioniert das Speichern und Laden von Modellen, welche wir dann

problemlos streamen koénnen. Nachdem die Entscheidung fir das ML-Paket gefallen ist,
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folgt nun die detaillierte Beschreibung unserer Einbindung.

10.2 XML-Spezifikation

Beim Design unserer Erweiterung stand vor allem im Fokus, dass das Spark-ML-Paket
auf DataFrames arbeitet. Wahrend in der Basisvariante des streams-Frameworks die zu
verarbeitenden Daten in Data-Items gestreamt werden, mussten wir einen Weg finden,
diese in DataFrames zu konvertieren oder die Daten direkt in DataFrames zu laden, damit
diese dann an die Spark-MLIlib-Methoden weitergegeben werden kénnen. Auflerdem spielt
die Pipelinestruktur, welche im ML-Paket von Spark MLIlib verwendet wird, eine zentra-
le Rolle in unserer Spezifikation. Sie dhnelt stark der Prozess-und-Prozessoren-Struktur
des streams-Frameworks. Wihrend Prozesse diverse Prozessoren enthalten konnen, durch
die die Daten sequentiell durchgereicht werden, konnen die in Spark ML verwendeten Pi-
pelines diverse Stages enthalten. Auch dort werden die Daten sequentiell von Stage zu
Stage weitergereicht. Wir entschieden uns dieses Konzept in unsere XML-Spezifikation
zu Ubernehmen, schliellich soll die Anwendung fiir die Physiker, welche bisher nur das
streams-Framework kennen, einfach zu erlernen sein. Durch den &hnlichen Aufbau in-
tegriert sich unsere Erweiterung nicht nur optisch, sondern auch inhaltlich gut in das
Framework. Die Spezifikation und die Implementation der neu eingefithrten Tags soll in

den folgenden Unterkapiteln néher erldutert werden.

XML-Spezifikation von input

Ein input-Tag dient dazu, eine Datenquelle zu spezifizieren, die einen DataFrame (siehe
Abbildung 3.1.2) zuriickgibt. Im Gegensatz zu einem <stream> miissen die Daten also

nicht zeilenweise, sondern als ganze Tabelle zuriickgegeben werden.

Als Datenquelle kann jede Unterklasse von stream.io.DataFrameStream verwendet wer-
den. Jeder input muss ein Attribut id mit einem eindeutigen Wert besitzen. Ein input-
Tag muss auf der obersten Ebene eines Containers stehen. Ein Beispiel hierfiir findet sich
in Listing 10.1.

XML-Spezifikation von task & operator

Das Task-Tag wird genutzt, um neue Arbeitsabldufe zu modellieren. Es befindet sich in-
nerhalb des container-Tags, zusammen mit den input-Tags. Ein Task hat die Argumente
ID=... und input=.... Letzteres erlaubt ihm, auf die vorher verwendeten input-Tags Be-

zug nehmen. Dann fiihrt er den in ihm spezifizierten Arbeitsablauf auf den im Input
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angegeben Daten aus. Dazu kann der Nutzer innerhalb des Tasks eine Kombination der
Tags pipeline und operator verwenden, um die Daten zu bearbeiten, Modelle zu lernen
und anzuwenden, Ergebnisse anzuzeigen etc. Dafiir muss jeder Operator eine Unterklasse
von stream.runtime.AbstractOperator angeben, die die Arbeitsschritte auf dem Da-
taFrame enthélt. Operatoren und Pipelines werden sequentiell ausgefiihrt und der jeweils

resultierende DataFrame an den Nachfolger weitergereicht.

Interessant ist hierbei, dass Task bzw. Operator genau dem Prozess bzw. den Prozesso-
ren von Streams entsprechen. Da wir allerdings die SparkML- bzw. SparkMLib-Bibliothek
verwenden wollen, miissen wir, wie bereits erwahnt, die Daten in Form von DataFrames
anstelle der von Streams verwendeten Data-Klasse speichern. Task und Operatoren tun
genau dies, sie sind also dquivalent zu den jeweiligen Streams-Klassen, arbeiten aber auf ei-
nem anderen Typ von Daten. Dies erméglicht es uns, die Algorithmen der Spark-Bibliothek

zu verwenden, ohne dass sich an der Struktur des XMLs viel d&ndert.

Eine wirkliche Neuerung stellt also nur das Pipeline-Tag, mit dem Pipelines der Spark
Bibliotheken verwendet werden koénnen, dar. Es dient dazu, komplexere Ablaufe in der
Datenvorverarbeitung einmalig zu modellieren, die so modellierte Pipeline kann dann von

den auf sie folgenden Operatoren verwendet werden.

<container>

<input id="1" class="someInput" />

<task id="2" dinput="1">

<pipeline modelName="model">

</pipeline>

<operator class="ApplyModelOperator" modelName="model" />
<operator class="PrintDataFrameOperator" />
</task>

</container>

Listing 10.1: Ein Beispiel XML - Mehr Informationen zu den einzelnen Tags sind in den folgenden
Abschnitten zu finden

XML-Spezifikation von pipeline

Wie bereits erwéihnt, wurde das <pipeline>-Tag eingefiihrt, damit die von Spark ML
bereitgestellt Pipeline-Struktur als XML-Format definiert werden kann. Dazu wird das



ot s W

~N O

10

11

132 KAPITEL 10. EINBINDUNG VON SPARK ML

Tag innerhalb eines Tasks definiert und kann dann durch Spezifizierens eines Namens im

weiteren Verlauf verwendet werden (Listing 10.1).

<task ...>

<pipeline modelName="model">

<stage class="MyStage" />
<transformer ... />
<transformer ... />
<estimator ... />

</pipeline>

<operator class="ExportModelOperator" exportURL="..."
modelName="model" />

</task>

Listing 10.2: Beispiel-XML einer reduzierten Pipeline innerhalb einer Task

Listing 10.2 stellt beispielhaft dar, wie eine Pipeline innerhalb eines Task erstellt werden
kann, um dann spéiter im ExportModelOperator wieder abgerufen zu werden. Dazu muss
lediglich der Name der zu exportierenden Pipeline im Parameter modelName angegeben
werden. Durch die Einfiihrung eines Namens wird es zeitgleich ermdoglicht, mehrere defi-
nierte Pipelines innerhalb eines Task voneinander zu unterscheiden. Dabei sei allerdings
anzumerken, dass eine Pipeline iiberschrieben wird, sollte derselbe Name spéater wieder

verwendet werden.

Innerhalb einer Spark ML Pipeline existieren zwei unterschiedliche Komponenten: Estimator
und Transformer, welche im Allgemeinen als Stages bezeichnet werden. Die Beschreibung
ihrer XML-Spezifikation folgt im nichsten Unterabschnitt.

XML-Spezifikation von stages

Nachdem der pipeline-Tag genauer ausgefithrt wurde, soll es nun um die Estimator und
Transformer gehen, deren Uberbegriff Stage ist. Sie bilden das Herzstiick der Pipeline und

legen fest, welche Arbeitsschritte in der Pipeline auf den Daten ausgefithrt werden sollen.

Ein Estimator ist eine Klasse, welche einen DataFrame bekommt und basierend auf einem
Lernalgorithmus ein Modell erzeugt. In Spark ML stehen dafiir zahlreiche Klassifikations-
und Regressionsmethoden, aber auch Methoden fiir die Mermalsextraktion und das Clu-

stering zur Verfiigung. Um diese Funktionalitit nutzen zu kénnen, spezifizierten wir einen
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estimator-Tag. Die gewlinschte Klasse soll im Parameter stage angegeben werden, danach

konnen beliebig viele Parameter fiir genau diese Klasse folgen.

<estimator stage="RandomForestRegressor" numTrees="20"

labelCol="1label" featuresCol="features" />

Listing 10.3: Beispiel-XML fiir die Verwendung des estimator-Tags

In Listing 10.3 wird beispielsweise ein Estimator der Klasse RandomForestRegressor er-

zeugt, wobei die Attribute numTrees, labelCol und featuresCol gesetzt werden.

Ein Transformer ist eine Klasse, welche einen DataFrame bekommt und verdndert, mei-
stens durch Anfiigen einer neuen Spalte. Damit kénnen Vorverarbeitungsschritte oder
auch eine Klassifikation, also eine Anwendung eines erlernten Modells, gemeint sein. Ana-
log zum estimator-Tag erstellten wir einen transformer-Tag, wobei im Parameter stage
die gewiinschte Klasse angegeben werden soll. Danach koénnen wiederum beliebig viele

Parameter folgen, um die gewiinschten Attribute zu setzen.

<transformer stage="Binarizer" inputCol="Length" outputCol=

"newLength" threshold="2" />

Listing 10.4: Beispiel-XML fiir die Verwendung des transformer-Tags

In Listing 10.4 wird beispielsweise ein Transformer der Klasse Binarizer erzeugt, wobei

die Attribute inputCol, outputCol und threshold gesetzt werden.

Insgesamt kann man auf diese Weise alle von Spark ML bereitgestellten Estimator und
Transformer in einer Pipeline instantiieren. Wichtig ist, dass diese beiden Tags nur in-
nerhalb einer pipeline-Umgebung stehen, denn sie werden in Spark ML immer als Teil
einer groflen Pipeline ausgefiihrt. Die Reihenfolge der Ausfithrung wird mit der Reihenfol-
ge der Tags im XML festgelegt und die Stages werden sequentiell durchlaufen. Aufilerdem
konnen pro Pipeline mehrere Modelle trainiert werden. Es ist auch moglich, dass nach
einem estimator-Tag wieder transformer-Tags folgen, beispielsweise um im weiteren Ver-
lauf der Pipeline ein Modell auf Grundlage eines noch weiterverarbeiteten DataFrames zu
trainieren. Weiterhin gibt es keine Limitierung fiir die Anzahl von Stages. Nachfolgend
steht ein abschliefendes Beispiel fiir den Aufbau einer Pipeline durch Transformer und

Estimator:

<container>

<input id="1" class="stream.pgb94.example.MCInput"/>
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<task id="2" input="1">
<pipeline modelName="RFRegressor">
<transformer stage="VectorAssembler" inputCols="Length
,Width ,Delta ,Distance,Alpha,Disp,Size" outputCol="
features"/>
<!-- arbitrary transformers and estimators -->
<estimator stage="VectorIndexer" inputCol="features"
outputCol="indexedFeatures" maxCategories="10"/>
<estimator stage="RandomForestRegressor" numTrees="20"
labelCol="MCorsikaEvtHeaderfTotalEnergy"
featuresCol="indexedFeatures"/>
</pipeline>
</task>

</container>

Listing 10.5: Beispiel-XML fiir die Verwendung der estimator- und transformer-Tags innerhalb

einer Pipeline

10.3 Umsetzung

In diesem Abschnitt werden die Schritte der Umsetzung néher erlautert. Dazu werden die

Klassen zur Instantiierung und Verarbeitung von Spark-ML-Aufgaben beleuchtet.

Implementierung von task & operator

Nun wird die Implementierung der gerade beschriebenen XML-Elemente skizziert. Dabei
ist es das Ziel, die streams-Architektur zu erhalten und lediglich an einigen Stellen zu

erweitern.

Das task-Element soll wie das process-Element auf der obersten Hierarchie-Ebene eines
streams Container stehen. Deshalb muss zuerst ein TaskElementHandler beim XML-

Parser registriert werden.

Aufgrund der syntaktischen Aquivalenz von task und process ist es moglich, den Code
von process wiederzuverwenden. Hierzu missen die task-Datentypen von den process-
Datentypen erben. Auf diesem Weg entfillt das Problem, den streams Scheduler anzupas-
sen, da die task-Blocke von der streams Laufzeitumgebung automatisch wie process-Blocke

ausgefiihrt werden.

Das bedeutet aber auch, dass der Inhalt eines task-Blocks kompatibel zu den Inhalten

eines process-Blocks sein muss. Dies wird erreicht, indem der Operator-Datentyp von dem
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Processor-Datentyp erbt. Dazu muss jeder Operator eine Methode Data process( Data
input ) implementieren. Dies steht scheinbar im Widerspruch zum Konzept, dass je-
der Operator einen DataFrame erhélt, diesen bearbeitet und den verédnderten DataFrame

zuriickgibt.

Diese beiden Anforderungen kénnen zusammengefiithrt werden, indem das Bearbeiten des
eigentlichen DataFrames in eine abstrakte Methode ausgelagert wird, die einen DataFra-
me erhélt und den verdnderten DataFrame wieder zuriickgibt. Diese abstrakte Methode
wird dann von jedem einzelnen Operator anwendungsspezifisch iiberschrieben. Hingegen
wird die Data process( Data input ) fiir alle Operatoren einheitlich implementiert. Sie
liest den DataFrame aus dem gegebenen Data-Objekt aus, ldsst ihn von der operator-
spezifischen Methode bearbeiten und schreibt den verdnderten DataFrame zuriick in das
Data-Objekt. Auf diesem Weg verhélt sich ein Operator aus der Sicht von streams wie ein
Processor, bietet aber dem Nutzer die neue Schnittstelle zur Bearbeitung von DataFrames

an.

Implementierung von input

Das <input>-Tag wurde eingefiithrt, damit DataFrame Objekte in die bisherige streams-
Architektur eingepflegt werden konnten. Dazu wurden zwei neue Klassen entwickelt: DataFrameInput
und DataFrameStream. Abbildung 10.1 stellt die einzelnen Klassen dar, die bei der Ver-

arbeitung von Input-Elementen beteiligt sind.

Zunéchst ist anzumerken, dass fiir die Verarbeitung von DataFrame-Instanzen im streams-
Framework die instantiierten Objekte an die zugehorigen Prozesse gesendet werden miissen.
Nativ wird dies vom streams-Framework ermdglicht, sofern eine neue Klasse als Spezia-

lisierung von Source definiert wird.

Aufgrund der Ahnlichkeit zu normalen Datenstreams wurde hier eine direkte Speziali-
sierung zur Klasse AbstractStream hergestellt. Jedoch sollte vermerkt werden, dass fiir
eine bessere Abgrenzung von normalen Datenstreams eine Spezialisierung zur Schnitt-
stelle Stream hergestellt werden sollte. Dies war jedoch fiir den ersten Prototypen keine

Prioritat.

Das Interface DataFrameInput wurde erstellt, damit eine bessere Abgrenzung von nor-
malen Datenstreams erméglicht wird. Der Vorteil einer solchen Schnittstelle findet sich
schnell, wenn die Instanziierung der Klassen betrachtet wird. Derzeit wird noch der vom
streams-Framework bereitgestellt StreamElementHandler genutzt, um Input-Elemente
zu erstellen. Jedoch wére es angebrachter, hier ein eigensténdigen InputElementHandler
zu implementieren, welcher nur Streams erzeugt die eine Spezialisierung von DataFrameInput
darstellen, sodass eine bessere Abgrenzung zu dem bereits vorhandenen <stream> Tag

ermoglicht wird.
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Abbildung 10.1:
DataFrameStream

Klassendiagramm mit zugehorigen Klassen fiir DataFrameInput und

String
DataFrame
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Die Klasse DataFrameStream bietet die Moglichkeiten eines normalen Streams und er-
weitert diesen, um die von der DataFrameInput-Schnittstelle bereitgestellten Methode
nextDataFrame (). Ziel dieser Methode ist es, dem DataFrameStream zu ermdoglichen, eine
Reihe von DataFrame Instanzen abzuarbeiten. Dazu muss zunéchst ein EOF fiir einen
Stream von DataFrames definiert werden, sodass beim Erreichen dessen der Stream en-
det. In der readNext () Methode wird dann jedes Mal nextDataFrame () aufgerufen und
solange der Stream noch nicht den EOF Status erreicht hat, wird ein neues Data-Objekt
erstellt, welchem das néchste Dataframe hinzugefiigt wird. Auf diese Weise kénnen Dataf-
rames als Datastream im streams-Framework weitergeleitet und bearbeitet werden. Auch
hier sei anzumerken, dass der derzeitige EOF Status noch nicht vollstédndig definiert und
implementiert wurde, weshalb nur ein einziges DataFrame-Objekt in einem Input-Element
erzeugt wird. Dies kann allerdings durch Implementieren von spezialisierten Klassen um-

gehen werden, indem die Methode nextDataFrame () iiberschrieben wird.

Implementierung von pipeline und stages

Mithilfe von einer <pipeline> koénnen die aus SparkML bereitgestellten Pipelines ge-
nutzt werden. Damit diese Klassen im erweiterten streams-Framework abgerufen werden
konnen, mussten Klassen zur Erstellung (Abb. 10.2) und Verarbeitung (Abb. 10.3) bereit-

gestellt werden.

Zur Erstellung von Spark ML Pipelines wurden im Wesentlichen zwei Factories implemen-
tiert. Die PipelineFactory erzeugt AbstractPipeline-Instanzen, fiir jedes spezifizierte
<pipeline> Tag. Mittels der Methode createNestedStage () werden die definierten Sta-
ges erzeugt und der Pipeline zugewiesen. Hierbei wurden ein Ansatz iiber eine Erstellung
iiber ObjectCreator gewéhlt. ObjectCreator sind Bestandteile der ObjectFactory, wel-
che Teil des streams-Frameworks ist. Der ObjectFactory wird das zu erstellende XML-
Element tibergeben, welche dann innerhalb der Erstellung tiberpriift, ob ein ObjectCreator

existiert, der dieses Element bearbeitet.

Abbildung 10.3 zeigt eine Ubersicht der so erstellten Pipeline und Stage-Instanzen. Hier-
bei sei anzumerken, dass wiahrend der Entwicklung des Prototypen verschiedene Ansétze
verfolgt wurden und sich diese Variante als intuitiv sinnvollste herausgestellt hat, da durch
die Weiterverwendung der streams-Prozessoren wenig Anderungen an der Konstruktion

dieser durchgefiihrt werden mussten.

Eine instantiierte Pipeline, wie beispielsweise eine DefaultPipeline, verarbeitet DataFra-
me-Objekte, weswegen sie als Spezialisierung des AbstractOperator implementiert wur-
de. Da Pipelines spezialisierte Prozessoren sind, kann die streams-Implementierung ge-

nutzt werden, um Daten zu verarbeiten und im Fall der Pipeline Dataframes. In der
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Abbildung 10.2: Ubersicht der Klassen zusténdig fiir die Erstellung von Pipelines und Stages

DefaultPipeline wird so fiir jeden Bearbeitungsphase ein neues Model trainiert und
dem Datenstream iibergeben. Damit die erstellten Modelle weiter genutzt werden kénnen,

muss jeder Pipeline {iber den Parameter modelName ein Name zugewiesen werden, womit

die weitergegebenen Modelle identifiziert werden.

Pipelinestages werden iiber eine extra Ebene abstrahiert, um die aus streams bekannte
Struktur, d.h. Prozesse (Pipelines) besitzen Prozesseoren (Stages), beizubehalten. Da Pi-
pelines bereits als Prozessoren instanziiert werden, musste eine zustézliche Ebene erstellt

werden, um Stages einzubinden. Zugleich kénnen diese Klassen genutzt werden, um unter

anderen von Spark unabhéngige Pipelinestages zu verfassen.
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Abbildung 10.3: Ubersicht der Klassen zusténdig fiir die Verarbeitung von Pipelines und Stages
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Verteilte Ein- und Ausgabe

Zur verteilten Ausfithrung von Prozessen ist es nétig, die zu verarbeitenden Daten auf-
zuteilen, sodass jeder Worker eine Teilmenge der Gesamtdaten verarbeiten kann. Nach
Abschluss der Datenverarbeitung miissen die einzelnen Ergebnisdaten wiederum zu einer
Gesamtheit zusammengefiithrt werden. Zudem soll die Moglichkeit bestehen, Ergebnisse
(verteilt) im CSV-Format zu persistieren, um dieses Output als Basis fiir weitere Arbeits-
schritte zu nutzen. Im Folgenden werden die zu diesem Zwecke erarbeiteten Losungen der

Projektgruppe vorgestellt.

11.1 MultiStream-Generatoren

Die verteilte Ausfiihrung der Prozesse erfordert die Verfiighbarkeit von mehreren Daten-
stromen. Damit kénnen die Prozesse mehrere Datenstrome gleichzeitig verteilt verarbeiten.

Dafiir wurde der MultiStreamGenerator implementiert.

Der MultistreamGenerator ist eine Erweiterung des Streams-Framework MultiStreams.
Er wird zum Erzeugen von Datenstromen fiir eine verteilte Verarbeitung verwendet. Au-
Berdem ist er auch in der Lage, mehrere Mengen von Datenstrémen zu erzeugen. Da
der MultiStreamGenerator eine Erweiterung der Klasse SequentielMultiStream des
Streams-Frameworks ist, ist man so in der Lage, zwischen einer lokalen (nicht verteilten)

und verteilten Datenstromverarbeitung zu unterscheiden.

Durch den MultiStreamGenerator ist es moglich, verschiedene Datenstromgeneratoren
zu implementieren, zum Beispiel wurde im Rahmen der PG ein FitsStreamGenerator
verwendet, der aus fits-Dateien Datenstrome generieren kann. Aus einer Ordnerstruktur,
die aus vielen Dateien besteht, werden verschiedene Datenstrome erzeugt. Der Vorteil ist,
dass es geniigt, den Pfad des Oberordners anzugeben. Auflerdem kann man durch die

Eingabe reguldrer Ausdriicke nicht erwiinschte Dateien filtern. Will man fiir Testzwecke
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oder aufgrund von Speichermangel die Anzahl der generierten Datenstréme begrenzen, er-
laubt der FitsStreamGenerator dies durch das Setzen der Parameter streamLimits und
maxNumStreams. streamLimits definiert die Lange der einzelnen Datenstrome. maxNumStreams

setzt die Anzahl der generierten Datenstrome fest.

Durch Erweiterung von MultiStream durch den MultiStreamGenerator ist man also in

der Lage, mit einer Zeile mehrere Datenstromquellen zu definieren (siehe Listing 11.1).

<application>
<stream id="fact" class="stream.io.multi.
FitsStreamGenerator" url="${infilel}"
regex=".x\.fits\.gz" maxNumStreams="1000" />

</application>

Listing 11.1: Beispiel Multistream Eingabe

11.2 REST-Stream

Das REST-Interface 8 stellt Schnittstellen zur Verfiigung, um FITS Dateien ausfindig
zu machen, die Beobachtungen umfassen, deren Metadaten bestimmten Kriterien 8.2.2
entsprechen. Um die gefilterten Dateien bzw. die Beobachtungen im Sinne der Prozesskette
verarbeiten zu koénnen, wurde der REST-Stream entwickelt und wird nun im Folgenden

vorgestellt.

11.2.1 RestFulStream

Der Stream ist so aufgebaut, dass dieser zwei Parameter (url, filter) annimmt. Mittels
url wird die Url zu der entsprechenden Schnittstelle des REST-Interfaces ibergeben und
iiber den Paramter filter konnen die Kriterien zur Filterung der einzelnen Metadaten
bzw. Dateien als einfacher String festgelegt werden. In 11.2 wird die wesentliche Verwen-
dung des Streams verdeutlicht. Der Stream ist fiir die Verbindung zur REST-Schnittstelle
verantwortlich und liefert als Ergebnis die einzelnen Events zuriick, deren Metadaten den
Kriterien des Filters geniigen. Diese Events konnen innerhalb des process-Tags mit Pro-
zessoren des streams-Frameworks weiterverarbeitet werden. Die Events werden mit Hilfe

des Paramteres input und dem Wert events referenziert.
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the input file -->

stream.

dortmund.de:6060/api/

and (eventNum.1lt (10)) .

<!-- Name of the stream and url to
<stream id="events"
class="edu.udo.reststreams.
RestfulEventStream"
url="http://1s8cb01.cs.uni-
events/"
filter="night.eq(20130801) .
and (eventNum.gt (0))" />
<process input="events">
<!-- Process filtered events applying processors -—->
</process>
</application>

Listing 11.2: Beispiel RestFullStream Eingabe

11.2.2 RestFulMultiStream

Die aus der REST-API zu Verfiigung gestellten Daten, kénnen als Mulltistrem mit dem

RestFulEventMultiStreanm fiir den Input geliefert werden. RestFulEventMultiStream

ist eine Erweiterung der Klasse SequentiellMultiStream. Aus den von der REST-API

gelieferten JSON-Dateien werden die URLSs der gewiinschten Daten gelesen. Anhand die-

ser URL werden die einzelnen FitsStream erstellt und der Multistream angebunden. Ein

Beispiel fiir die Verwendung eines RestFulEventMultiStream ist in Listing 11.3 zu fin-

den.

<application>

<!-- Name of the stream and url to the input file -->

<stream id="events"

class="stream.io.multi.RestfullEventMultiStream"

streamLimits="5" maxNumStreams="3"

url="http://1s8cb01l.cs.uni-

events/"
filter="night.eq(20130801)
and (eventNum.gt (0))" />

dortmund.de:6060/api/

.and (eventNum.1t (10)) .
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10 <distributedProcess id="DO" input="events" >
11

12 <!-- Do something -->

13

14 </distributedProcess >

15

16 </application>

Listing 11.3: Beispiel RestFullMultiStream Eingabe

Man kann wie auch beim einzelnen Stream einen Filter verwenden. Auflerdem ist es
moglich, die Anzahl der gelieferten Datenstrome sowie die Anzahl der gelieferten Events
per Datenstrom einzustellen. In dem Beispiel werden drei Datenstrome geliefert mit jeweils

finf Events.

Mit dem RestFulEventMultiStream ist eine effiziente verteilte Verarbeitung der Daten,
die auch aus der REST-API geliefert werden, moglich.

11.3 Verteilte CSV-Ausgabe

Um ein Modell trainieren zu kénnen, miissen die Daten davor entsprechend vorberei-
tet werden. Man muss in der Lage sein, aufbereitete Daten exportieren kénnen, um sie
spater fiir ein Modelltraining zu verwenden oder um einfach die Daten nach einer Feature-
Extraction anzusehen. Aus diesem Grund erméglicht unser Framework einen Export der

von den Workern verarbeiteten Daten sowie von den Dataframes als CSV-Dateien

Export der Daten

Bei der Aufbereitungsphase werden entweder die Rohdaten anhand des FitsstreamGenarator
gelesen oder iiber den REST-API geliefert. Anhand des DistributedCsvWriter koénnen
die Daten, die von den einzelnen Workern verarbeitet wurden, direkt nach der Aufbe-
reitungsphase in CSV-Dateien geschrieben werden. Die einzelnen Dateien bekommen als
Namen die IDs der einzelnen Worker. Da ein interner Zugriff auf den IDs der Workern
nicht moglich ist, werden die eingegebenen Daten mit der Worker-ID versehen. Der Pa-
rameter WorkerIdKex in dem Input-Tag bekommt das Attribut @worker zugewiesen. In
diesem Attribut wird die ID der fiir die Verarbeitung dieser Daten zusténdigen Wor-
ker gespeichert und von dem DistributedCsvWriter verwendet. Auflerdem muss man

einen Link eines Ordners eingeben, in dem die Dateien gespeichert werden sollen. Ein
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Beispiel ist in Listing 11.4 der XML zu sehen. Dabei werden die Daten mit Hilfe des
RestfulEventMultiStream aus der MongoDB gelesen und von den einzelnen Workern in
die CSV-Dateien geschrieben.

<application>

<!-- Name of the stream and url to the input file -->
<stream id="events"
class="stream.io.multi.RestfulEventMultiStream"
streamLimits="3" maxNumStreams="3"
url="http://1s8cb01l.cs.uni-dortmund.de:6060/api/
events/"
filter="night.eq(20130801) .and (eventNum.1t (10)).
and (eventNum.gt (0))" />
<BatchProcess 1id="DO0" input="events" workerIdKey="
@worker" maxEmptyRDDs="0">
<stream.io.DistributedCsvWriter url="hdfs://
1s8cb01.cs.uni-dortmund.de:9000/user/
hadoop/CsvWriterTest/" workerIdKey="
@worker" />
</BatchProcess >
</application>

Listing 11.4: Beispiel von der Anwendung eines DistributedCsvWriter

Export von Dataframe

Man kann nicht nur die extern gelesenen Daten als CSV exportieren sondern auch die schon
in Dataframes gespeicherten Daten. Dafiir ist der Operator ExportDataframe zusténdig.
Fiir den Export muss einen CSV-Ordner eingegeben, in den die einzelnen Dateien ge-
schrieben werden sollen. Man ist auch in der Lage, die Anzahl der ausgegebenen Dateien
zu definieren. In dem Parameter numFiles wird die Anzahl der ausgegeben Dateien einge-
geben. In Listing 11.5 ist eine Beispiel- XML zu sehen, bei der ein Operator ein Dataframe

in zehn Dateien schreiben soll.
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<application>
<queue class="stream.io.RddQueue" id="queue"/>
<task id="Export" input="queue" persistDataFrameIn="
MEMORY_ONLY">
<stream.pgb94.operators.ExportDataFrame url="hdfs://
1s8cb01.cs.uni-dortmund.de:9000/demo/ features.
csv" numFiles="10"/>

</task>

</application>

Listing 11.5: Beispiel von der Anwendung eines DistributedCsvWriter

Mit der verteilten Ausgabe ermdglicht das Framework ein verteiltes Wiedereinlesen der
Daten. Das kann von Vorteil sein, wenn man schon verarbeitete Daten oder vorhergesagte

Daten wieder braucht.
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Organisation

Das umzusetzende Projekt der Big-Data-Analyse auf FACT-Teleskopdaten besitzt eine
Laufzeit von zwei Semestern und wird durch uns, ein Team aus 12 Studentinnen und Stu-
denten, umgesetzt. Damit besitzt das Projekt unter Organisations-Aspekten eine gewisse
Komplexitat: Wie ldsst sich die Arbeit sinnvoll zergliedern? Wie gehen wir mit Abhén-
gigkeiten zwischen den Arbeitspaketen um? Wie strukturieren wir die Arbeit so, dass wir

unsere Ziele bestmoglich umsetzen kénnen?

Damit die Beantwortung solcher Fragen nicht zum Problem wird, ist es wichtig, sich bereits
im Vorhinein auf Methoden zu einigen, die sinnvolle Antworten festlegen. Vorgehensmo-
delle und andere Projektmanagement-Praktiken geben Teams solche Methoden an die
Hand.

Wir haben zu Beginn der PG eine kleine Auswahl agiler Verfahren kennengelernt, die wir
in Abschnitt 12.1 einfithren wollen. Unsere konkrete Umsetzung dieser Verfahren wird in
Abschnitt 12.2 vorgestellt. Eine Retrospektive dieser Umsetzung findet sich iibrigens in
Abschnitt 15.3.

12.1 Agiles Projektmanagement

Agile Projektmanagement-Verfahren kénnen den Arbeitsablauf optimieren, indem sie ei-
nige der Probleme klassischer (also nicht-agiler bzw statischer) Verfahren vermeiden. Wir
diskutieren hier zunéchst einige dieser Probleme (siehe Unterabschnitt 12.1.1), und wie
das agile Manifest sie adressiert (siehe Unterabschnitt 12.1.2). Als kleine Auswahl agiler
Verfahren stellen wir Scrum und Kanban vor (siehe Unterabschnitt 12.1.3 und Unterab-
schnitt 12.1.4).
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12.1.1 Probleme Nicht-Agiler Verfahren

Klassische Verfahren reagieren in der Regel nur unzureichend auf Anderungen in Anfor-
derungen und Terminen, da die zugrundeliegenden Pléne fiir den gesamten Entwicklungs-
prozess erstellt werden. Da klassische Verfahren Plandnderungen nicht im Entwicklungs-
prozess vorsehen (oder fiir sie ein biirokratisch aufwéndiges Teilverfahren definieren), wird

die Notwendigkeit solcher Anderungen gerne verkannt.

Héufig stellen sich die zu Beginn des Projektes erstellten Pléine als nicht-optimal heraus,
weil sie spéter erworbene Informationen oder Anderungsbedarf nicht vorhersehen konnten.
Daher eignen sich klassische Verfahren insbesondere nicht, um Projekte zu managen, deren
Anforderungen zu Beginn unklar sind. Leider lisst sich die Klarheit der Anforderungen

nicht immer sofort entscheiden.

Ein weiteres Problem ist, dass die in klassischen Verfahren geforderte Vielfalt an Doku-
menten oft nur pro forma erstellt wird. So gibt es Dokumente, die nur beinhalten, was
ohnehin bereits abgestimmt wurde, oder die zu einem Zeitpunkt gefordert waren, an de-
nen noch keine ideale Lésung zu finden war. Solche Dokumente werden méglicherweise nie

gelesen oder veralten, bevor sie einen Nutzen darstellen konnten.

Prominente Vertreter klassischer Projektmanagement-Verfahren sind das Wasserfallmo-
dell, sowie die Modelle V und VXT. Sie alle basieren auf dem Prinzip, zunéchst alle An-
forderungen festzulegen, basierend darauf Entwiirfe zu erstellen, und zuletzt Implemen-
tierungsarbeiten aufzunehmen. Im Wasserfallmodell werden Tests erst am Ende durch-
gefiihrt, was im V-Modell durch Testen auf jeder Entwicklungsstufe verbessert wurde.
Das VXT-Modell erweitert V durch Ausschreibungen und Einbettung in {ibergeordnete
Projekte. Durch diesen weiten Horizont entsteht aber ein enormer Umfang an Rollen und

Artefakten, wodurch Projekte auch behindert werden kénnen.

12.1.2 Das Agile Manifest

Das agile Manifest stellt die Grundprinzipien jedes agilen Projektmanagement-Verfahrens
dar. Es korrigiert dabei die Annahmen klassischer Verfahren und leitet daraus explizite

Regeln ab. Das agile Manifest lautet wie folgt [10]:

Reagieren auf Anderungen ist wichtiger, als einem Plan zu folgen. Pline fokussie-
ren die nahe Zukunft, da langfristige Planungen nur vorldufig sein kénnen und

moglicherweise notwendigen Anderungen unterliegen.

Funktionierende Software ist wichtiger als eine umfangreiche Dokumentation. Doku-

mentation sollte nicht pro forma erstellt werden, sondern einen Zweck erfiillen.
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Abbildung 12.1: Der Sprint in Scrum

Individuen und Interaktionen ist ein hoherer Stellenwert einzurdumen als Prozessen
und Tools. Unzureichende Interaktionen zwischen Projektbeteiligten gefihrden Pro-

jekte, egal, welche Prozesse verwendet werden.

Partizipation des Kunden bringt mehr als Vertrags-Verhandlungen. Eine enge Einbin-
dung des Kunden macht Anderungsbedarf frithzeitig erkennbar und steigert damit
den Nutzen des Produktes.

12.1.3 Scrum

Scrum [48] ist ein prominenter Vertreter agiler Projektmanagement-Verfahren. Zentral fir
Scrum ist der Sprint, ein kurzer Entwicklungszyklus (2 — 4 Wochen), welcher ein Produkt-
Inkrement erzeugt. Ein solches Inkrement sollte einen Mehrwert fiir den Kunden darstellen.
Wihrend eines Sprints diirfen sich keine Anderungen der fiir den Sprint definierten Ziele
ergeben, damit der Sprint geordnet abgearbeitet werden kann. Im schlimmsten Fall ist es

moglich, einen Sprint vorzeitig abzubrechen und einen neuen Sprint aufzusetzen.

Abbildung 12.1 stellt einen Uberblick iiber Scrum dar. Abgebildet sind die verschiedenen
Rollen und Artefakte und ihre Einbettung in den Sprint. Zudem definiert Scrum einige

Meetings. Alle diese Elemente werden im Folgenden vorgestellt.

Rollen

Der Product Owner (PO) stellt die Interessengruppen aufierhalb des Teams dar. Insbe-
sondere das Interesse des Kunden ist hier widergespiegelt, idealerweise aber auch andere,

moglicherweise widerspriichliche Interessen. Der PO soll aus diesen Interessen die Vision
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des Endproduktes formen und diese auf das Team tibertragen. Dazu managt er mit dem
Product Backlog eines der Artefakte.

Der Scrum Master (SM) coacht das Team in der Ausfithrung von Scrum, kann dazu die
Moderation in den Meetings {ibernehmen und den PO in der Priorisierung des Product
Backlog unterstiitzen. Aulerdem 16st er simtliche Probleme (Impediments), die das Team
von der Arbeit abhalten. Die Rolle des SM ist nicht gleichzusetzen mit einem Projekt-
leiter mit Entscheidungsgewalt. Sdmtliche Entscheidungen werden gemeinsam im Team

getroffen.

Das Team iibernimmt die Umsetzung eines Projektes. Dazu sollte es die Vision des End-
produktes verstehen. Es organisiert sich selbst, weshalb eine hohe Teilnahme der einzelnen
Mitglieder gefordert ist. Die Moglichkeit, durch Selbstorganisation am Projekterfolg teil-
zuhaben, kann die Mitglieder motivieren und den Projekterfolg erhéhen. Idealerweise setzt

sich das Team interdisziplinir aus 5 — 9 Personen zusammen.

Artefakte

Das vom PO verwaltete Product Backlog (PBL) soll samtliche gewiinschte Features
und Ergebnisse als User Stories vorhalten. Aufgrund sich &ndernder Anforderungen ist das

PBL aber jederzeit anpassbar.

User Stories erkliren den Nutzen des jeweiligen Features fiir einen Endnutzer. Aufgrund
dieses Nutzens lassen User Stories sich priorisieren. Auflerdem lésst sich der Umfang jeden
Features schitzen. Aufgrund von Umfang und Prioritdt lassen sich User Stories aus dem

PBL auswéhlen, um im kommenden Sprint erledigt zu werden.

Fiir einen Sprint werden Teilaufgaben (Tasks) ausgewahlter User Stories in den Sprint
Backlog (SBL) tibernommen. Fiir jeden Task ist eine Definition of Done (DoD) formu-
liert, die aussagt, wann der Task abgeschlossen ist. Das SBL stellt damit die Basis fiir
die Organisation der Arbeit durch das Team dar. Es darf wihrend eines Sprints nicht

verandert werden.

Damit der SM die Behinderungen des Teams beseitigen kann, verwaltet er ein Impedi-
ment Backlog (IBL), in welchem Teammitglieder Probleme einstellen und priorisieren
konnen. Er kann diese Behinderungen selbst auflosen, oder deren Auflosung weiterdelegie-

remn.

Meetings

Die verschiedenen Scrum-Meetings ermoglichen die Umsetzung des Verfahrens und eine
Abschéitzung des Projektfortschritts. Sie haben einen jeweils fest definierten Zweck, wo-

durch die Zeit, die fiir Meetings verwendet wird, reduziert werden soll.
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Um einen kommenden Sprint zu planen, wird jeweils ein Sprint Planning Meeting ab-
gehalten. Es beinhaltet die Schitzung (moglicherweise die Neu-Schéitzung) der Items des
PBL und eine Auswahl von Items fiir die Ubernahme in den neuen Sprint. Die Auswahl
wird auf Basis von Aufwand und Priorisierung der Elemente durch Konsens im Team ge-
troffen. Dariiber hinaus werden die Elemente des PBL in Tasks, wohldefinierte Arbeitspa-
kete, zergliedert. Tasks werden Verantwortlichen zugewiesen und in das SBL eingetragen.

Moglichst alle Termine fiir den kommenden Sprint werden festgelegt.

Um den Fortschritt des aktuellen Sprints festzustellen und Probleme (Impediments) zu
identifizieren wird ein tégliches Daily Meeting oder kurz ,Daily“, abgehalten. Es soll
dort lediglich beantwortet werden, was zuletzt getan wurde und was als néchstes getan

wird. Das Daily sollte eine Dauer von 15 Minuten nicht iiberschreiten.

Der Erfolg eines Sprints wird in einem Review und Sprint Retrospective ermittelt.
Zum Review zdhlen die Vorstellung des Produkt-Inkrements sowie die Abnahme desselben
durch den PO. In der Retrospektive wird die Qualitidt des Entwicklungsprozesses gemes-
sen. Hier soll beantwortet werden, was gut und schlecht im letzten Sprint lief und wie
moglicherweise Verbesserungen zu erreichen sind. Wie die Qualitidt gemessen werden soll,
lasst Scrum offen. An dieser Stelle ldsst sich Scrum hervorragend mit Kanban kombinieren,

da Kanban die Messung der Prozessqualitét stark fokussiert (sieche Unterabschnitt 12.1.4).

12.1.4 Kanban

Kanban [47] ist, anders als Scrum, kein Vorgehensmodell. Es schreibt daher keinen Ent-
wicklungsprozess vor, beinhaltet aber Praktiken, welche die Qualitéit bestehender Prozesse
messen und verbessern konnen. Es wird ein Entwicklungsprozess angestrebt, der Inkremen-

te regelméfig, schnell und mit hoher Qualitdt ausliefern kann.

Das Verfahren modelliert dazu bestehende Prozesse als Kette von Arbeitsstationen, die
jedes Produktinkrement durchlaufen muss (z.B. Analyse, Implementierung, Testing,...).
Wichtig ist insbesondere, Abhéngigkeiten innerhalb des Prozesses zu identifizieren, um
Verzogerungen zu vermeiden. Dadurch lédsst sich der Durchfluss optimieren, indem Bott-

lenecks identifiziert und aufgelost werden.

Zentral fiir Kanban ist das Kanban-Board, auf dem der Prozess modelliert und sein Fort-
schritt sichtbar gemacht wird. Abbildung 12.2 zeigt einen Uberblick iiber Kanban mit dem
Board im Zentrum. Man erkennt die in Spalten angeordneten Stationen, sowie zusétzliche
Spalten fiir Prozess-Input (in naher Zukunft geplante Features) und Prozess-Output (zur

Abnahme freigegebene Features). Die Regeln von Kanban werden im Folgenden erlautert.
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Abbildung 12.2: Das Kanban-Board

Regeln

Die grundlegende Regel in Kanban ist, dass die Anzahl Items in jeder Station, die Work In
Progress (WiP), streng limitiert ist. Die jeweiligen Obergrenzen sollten in jeder Spalte
des Kanban-Boards eingetragen werden. Jede Station hat einen eigenen Input und Output.
Im Input liegen aktuell bearbeitete Tickets, im Output fertige Tickets. Die Prozesskette
funktionert nach dem Pull-Prinzip. Damit kénnen Features nur weiterwandern, wenn die

nachfolgende Arbeitsstation das Feature in seinen Input ,zieht*.

Durch diese einfachen Regeln lassen sich Bottlenecks des Prozesses schnell identifizieren:
Sollte ein Flaschenhals existieren, werden davor liegende Stationen aufgrund des Limits
blockiert. Denn da die Station, die den Flaschenhals erzeugt, keine weiteren Tickets zie-
hen kann, dirfen auch frithere Stationen, wenn sie ihr Limit erreicht haben, keine weiteren
Tickets annehmen. Dann kann die Ressourcenzuteilung zu den Stationen verbessert wer-

den, sodass der Durchfluss steigt.

Damit die Anzahl der Tickets die tatséchliche Arbeit angemessen quantifiziert, sollten alle
Tickets einen dhnlichen Arbeitsaufwand erzeugen. Dies kann z.B. durch Zergliederung von

Features erreicht werden.

Optional konnen verschiedene Service-Klassen eingefiihrt werden, welche die Tickets prio-
risieren. Verbreitet ist z.B. eine Aufteilung in Standard, Expedite, Vague und Fixed.
Expedite-Tickets wird eine eigene Bahn durch den Prozess zugeordnet, die nicht zu den
Limits der Stationen zéhlt. So kénnen z.B. wichtige Bugfixes vorrangig behandelt werden
(siche die roten Tickets in Abbildung 12.2). Vague-Tickets sollten nur durch die Kette
wandern, wenn Kapazitdten des gesamten Prozesses frei sind. Fixed-Tickets kénnen so

durch den Prozess gefithrt werden, dass sie zu festen Terminen fertiggestellt sind.
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Bewertung der Prozess-Qualitit

Die Prozessqualitét lasst sich zunéchst daran messen, ob Bottlenecks in der Prozesskette
existieren. Diese verringern den Durchfluss und weisen auf eine nicht-optimale Ressourcen-
verteilung hin. Wie bereits angemerkt, lassen sich Bottlenecks dadurch identifizieren, dass
sie Tickets aufstauen und es dadurch vorigen Stationen nicht erlaubt ist, weitere Tickets

anzunehmen.

Eine weitere Metrik zur Abschétzung der Qualitit ist die Zeit, die fiir einzelne Tickets seit
dem letzten Fortschritt vergangen ist. Solche Tickets sind moglicherweise blockiert, d.h.,
es sind Behinderungen aus dem Weg zu schaffen, damit das Ticket erfolgreich abgearbeitet
werden kann. Weitere Metriken zur Messung des Durchflusses und dem Aufwand einzelner

Tickets existieren dariiber hinaus.

Wie Scrum verwendet auch Kanban Dailies und Reviews (siehe Unterabschnitt 12.1.3),
um den Projektfortschritt zu kommunizieren. Anders als in Scrum miissen Reviews aber

nicht regelméfig abgehalten werden.

12.2 Wahl des Verfahrens

Scrum und Kanban (siehe Unterabschnitt 12.1.3 und Unterabschnitt 12.1.4) stellen nur
Rahmenwerke mit vielen Optionen zur Verfiigung. Die Implementierung der Verfahren

obliegt letztendlich dem Anwender. Fiir uns stellten sich folgende Fragen:

e Welches der Verfahren wéahlen wir? Nehmen wir eine Kombination vor?
e Wie lange sollen Sprints dauern?
e Wie sind die Rollen zu besetzen?

e Welche Software konnen wir fir unser Verfahren verwenden?

Initial haben wir uns darauf geeinigt, lediglich Scrum zu verwenden und Kanban bei Bedarf
zur Prozessbewertung und -optimierung hinzuzuziehen. Auf diese Weise wollten wir uns
auf die Arbeit konzentrieren und die uns neuen agilen Projektmanagement-Verfahren ne-
benbei erlernen. Da Kanban kein Vorgehensmodell darstellt, sondern auf die Optimierung

bestehender Prozesse abzielt, ldsst sich ein solches Vorgehen gut implementieren.

Wir haben zwei Scrum-Master gewéhlt, um die Arbeit an den Impediments aufteilen zu
koénnen und bei Bedarf die Arbeit auf zwei Scrum-Teams aufzuteilen. Als Product Owner
sollten die Betreuer herhalten. Sprints sollten zunéchst eine Woche dauern, um dem hohen
Abstimmungsaufwand am Anfang des Projektes zu begegnen, spéter sollten sie langer

dauern.
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Um das PBL zu pflegen, verwenden wir Atlassian JIRA. Uber die Kommentar-Funktio-
nen dieser Projektmanagement-Software fiir User Stories und Tasks kénnen wir Losungen

diskutieren und unseren Fortschritt dokumentieren.
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Kapitel 13

Verteilte Streams-Prozesse

Die im Rahmen dieser PG umgesetzte Erweiterung des streams-Frameworks erlaubt die
verteilte Ausfiihrung von streams-Prozessen in einem Spark-Cluster (siehe Kapitel 9 bis
Abschnitt 9.6). Dabei ist es moglich, die Gesamtheit der Eingabedaten als Batch zu ver-
arbeiten. Alternativ lassen sich Mini-Batches streamen, um kontinuierlich Ergebnisse zu

erhalten.

Es soll hier zunéchst konzeptionell evaluiert werden, welche Vorteile und Grenzen unsere
Erweiterungen mit sich bringen (siehe Abschnitt 13.1 und Abschnitt 13.2). Dariiberhinaus
sollen die Skalierungseigenschaften des Systems beleuchtet werden, indem wir die Ausfithrungszeiten

fiir verschiedene Konfigurationen des Clusters heranziehen (siehe Abschnitt 13.3).

13.1 Batch-Prozesse

In einem Batch-Prozess wird fiir jeden zu verarbeitenden Datenstrom ein Spark-Task er-
stellt. Spark iibernimmt das Scheduling solcher Tasks auf die verfiigharen Cores des Clu-
sters. Sobald ein Task (beziehungsweise Datenstrom) abgearbeitet ist, wird dem freiwer-

denden Core ein neuer Task zugeteilt (vgl. Abschnitt 9.5).

13.1.1 Rechenleistung

Durch Sparks Task-Scheduling sind die Cores des Clusters sehr gut ausgelastet. Werden
mehr Cores zur Verfiigung gestellt, konnen auf sie ebenfalls Datenstrome geschedulet wer-
den und die Analysen werden friither fertig gestellt. Das System l&sst sich also beziiglich der
Rechenleistung, also der Anzahl und Geschwindigkeit der CPU-Kerne, horizontal skalieren
- eine Schliisseleigenschaft von Big Data-Systemen (vgl. Abschnitt 2.3).

Allerdings werden natiirlich nur maximal so viele Cores verwendet, wie Eingabe-Daten-

strome spezifiziert wurden. Die Anzahl der Eingabestrome stellt also eine Grenze fiir die
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horizontale Skalierbarkeit dar. Da fiir Big Data ein hohes Datenvolumen angenommen wird
(siehe Kapitel 2), besteht diese Grenze fur praktische Anwendungen aber moglicherweise
gar nicht. Im Zweifelsfall ist es moglich, durch eine Vorverarbeitung Daten auf mehrere
Strome aufzuteilen. Dadurch ist prinzipiell eine beliebige horizontale Skalierbarkeit der

Batch-Prozesse moglich.

Problematisch ist auch, wenn die Grofle der Eingabestrome stark variiert. Da Spark die
Grofle der Strome nicht kennt, kann es die Groflie beim Scheduling nicht heranziehen. Es
kann dann passieren, dass zum Ende einer Batch-Analyse nicht mehr alle Kerne ausge-
lastet sind, weil manche Kerne ihre kurzen Datenstrome abgearbeitet haben und andere
mit langeren Datenstromen noch arbeiten miissen. Durch eine geeignete Vorverarbeitung

konnen Eingabe-Datenstrome mit anndhernd gleicher Grofle erzeugt werden.

13.1.2 Arbeitsspeicher

Eine schwerwiegendere Grenze der horizontalen Skalierbarkeit unseres Systems findet sich
im Arbeitsspeicher des Driver-Knotens: Da sdmtliche Ergebnisse als Batch, also zur glei-
chen Zeit gesammelt werden, kann der Speicher des Drivers beim Sammeln der Daten
iiberlaufen. Dies ist der Fall, wenn das Ergebnis-Volumen die Kapazitit des reservier-
ten RAM iiberschreitet. Das Sammeln der Daten im Driver geschieht, damit sdmtliche

bestehenden Senken des streams-Frameworks wiederverwendet werden konnen.

Ist ein Speicheriiberlauf zu befiirchten, sollte man statt einer zentralen Senke zur Aus-
gabe Prozessoren verwenden, welche eine dquivalente Aufgabe iibernehmen. Prozessoren
werden in jedem Knoten erzeugt und erlauben somit eine verteilte Ausgabe der Ergebnis-
se. Beispielsweise kdnnen mit Prozessoren mehrere Dateien verteilt ins HDFS geschrieben
werden, statt durch eine Senke zentral eine einzelne grofie Datei zu erzeugen. Ist es moglich,
eine Analysekette auf diese Weise zu spezifizieren, miissen keine Daten im Driver gesam-
melt werden und ein Speicheriiberlauf ist nicht zu befiirchten. In diesem Falle skaliert der

Arbeitsspeicher des Systems problemlos horizontal.

13.1.3 Fehlertoleranz und Generalisierbarkeit

Da Spark verfehlte Tasks (beispielsweise bei einem Hardware-Ausfall) neu schedulet, ist der
Fehlertoleranz- Anforderung (siehe Abschnitt 2.3) in diesem Sinne beigekommen. Weiterhin
ist unsere Erweiterung generalisierbar, da sémtliche streams-Prozesse als Batch ausgefiihrt

werden konnen.
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13.2 Streaming-Prozesse

Streaming-Prozesse verarbeiten die Daten in Spark Receivern. Dadurch werden sdmtliche
Daten in derselben JVM verarbeitet, in der sie auch eingelesen werden. Es miissen also kei-
ne Daten (nachdem sie eingelesen wurden) durch das Cluster transportiert werden (siehe
Abschnitt 9.6). Durch die Wahl von 500ms als Lidnge eines Mini-Batches werden die Er-
gebnisse in subsekiindlicher Aktualitdt gestreamt. Geniigend Rechenleistung vorausgesetzt

konnen also auch realzeitliche Analysen gefahren werden.

13.2.1 Rechenleistung

Die Spark Streaming Engine geht davon aus, dass zusétzlich zu den Receivern Cores fiir
anschlieBende Transformationen der Daten zur Verfiigung stehen. Leider miissen diese Co-
res zwingend alloziiert werden, auch wenn sie keine Transformation vornehmen und sich
damit im Leerlauf befinden (siehe Abschnitt 9.6). Da nicht alle Cores verwendet wer-
den konnen, skalieren Streaming-Prozesse in unserer Implementierung also schlechter als

Batch-Prozesse: Sie nutzen niemals die gesamte zur Verfiigung stehende Rechenleistung.

Eigentlich sollen Receiver lediglich zum Einlesen der Daten verwendet werden und darauf-
folgende Tasks die Daten verarbeiten. In diesem Fall muss das Verhéltnis von Receivern
zu Tasks durch Ausprobieren eingestellt werden, damit nicht zu viele und nicht zu wenige
Eingabedaten von den Receivern in das System gespeist werden. Wir haben uns gegen
diesen ublichen Weg entschieden, weil die eingelesenen Daten schlicht zu grof3 waren und
die Puffer, die zwischen Receivern und Tasks bestehen, in der Folge tiberliefen. Jetzt wer-
den lediglich die (wesentlich kleineren) Ergebnisse verschickt und zwar zum Driver, wo sie
ohnehin hin sollen. Die niemals ganz ausgenutzte Rechenleistung ist der Preis, den wir in

Spark Streaming gegen einen Pufferiiberlauf bezahlen miissen.

Auch die Leistung der durch die Receiver verwendeten Cores ist nicht immer optimal
ausgenutzt: Da die Parameter eines Spark-Receivers nicht mehr geédndert werden kénnen,
wenn er einmal lduft, muss die Verteilung der Eingabe-Datenstrome vor dem Start der
Receiver geschehen (siehe Abschnitt 9.6). Sollte sich diese Verteilung als unausgewogen
herausstellen, stellen die Receiver ihre Analysen zu auseinanderliegenden Zeitpunkten fer-
tig. Zum Ende der Laufzeit befinden sich also mehr und mehr Rechenkerne im Leerlauf, die
Geschwindigkeit der Analyse stagniert. Unausgewogene Verteilungen der Eingabestréme
ergeben sich beispielsweise, falls als Eingabe Dateien stark variierender Grofle verwendet

werden.
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13.2.2 Arbeitsspeicher

Einen besonderen Vorteil gegeniiber den Batch-Prozessen genieflen Streaming-Prozesse
mit Blick auf den Arbeitsspeicher: Da die Ergebnisse als Mini-Batches alle 500ms zum
Driver gestreamt werden, muss keiner der Nodes viel Arbeitsspeicher besitzen. Es miissen
lediglich die Daten in den Speicher eine Node passen, die von ihr in einer halben Sekunde
abgearbeitet werden konnen (plus natiirlich fiir die Verarbeitung nétige Datenstrukturen).
Das ein sehr geringes Volumen. Kann der Driver alle Daten der letzten halben Sekunde

sofort wegschreiben, braucht auch er nicht viel RAM.

13.2.3 Fehlertoleranz

Spark Receiver sind nicht so fehlertolerant wie Tasks. Sollte ein Receiver fehlschlagen,
wird auch er neu gestartet, da er aber bereits Daten in das System gespeist hat, kann es
passieren, dass er dieselben Daten ein zweites Mal liefert. Dies ist beispielsweise der Fall,
wenn die Eingabestrome aus Dateien im HDFS erzeugt werden: Wird ein Receiver neu

gestartet, nachdem er eine halbe Datei gelesen hat, beginnt er wieder von vorn.

Erzeugt man einen Receiver fiir eine Datenquelle, die nicht sémtliche Daten ein zweites Mal
liefern kann, besteht dieses Problem nicht. Dann trigt der Neustart eines fehlgeschlagenen
Receivers zur Fehlertoleranz bei. Eine solche Datenquelle ist beispielsweise ein IP-Port, der
online immer genau die gerade eintreffenden Daten liefert. Genau fiir solche Settings sind

unsere Streaming-Prozesse geeignet.

13.3 Performanz der Erweiterungen

Die Erweiterungen, die wir in der PG an streams vorgenommen haben, zielen darauf ab,
grofle Datenmengen effektiv zu verarbeiten. Daher sind wir insbesondere daran interessiert,
welche Geschwindigkeit das Cluster fiir unterschiedliche Konfigurationen (Anzahl Cores
und Menge an Arbeitsspeicher) erreicht. Wir messen diese Geschwindigkeit in Form von

Eventraten, also wie viele Events durchschnittlich pro Sekunde verarbeitet werden.

Es werden die Eventraten unserer Erweiterungen fiir verschiedene Konfigurationen der
Clusterressourcen verglichen. Fiir Teleskop-Daten beziehen wir auch die Geschwindigkeit

zweier Konfigurationen im Torque-Cluster ein.

13.3.1 Feature Extraction auf MC-Daten

Zur Verfiigung standen Monte-Carlo-simulierte Daten. Wir haben die Standard-Feature

Extraction fiir MC-Daten mit verschiedenen Konfigurationen des Clusters fiir 2000 fits-
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Abbildung 13.1: Eventraten der Feature Extraction auf MC-Daten

Dateien (22.789 Events) ausgefithrt. Fiir jedes Event haben wir den Eintreffzeitpunkt der

Ergebnisse am Driver aufgezeichnet.

Die Anzahl der Events geteilt durch die Gesamtzeit der Ausfithrung liefert uns eine mittlere
Eventrate fiir die Standard-Feature Extraction auf MC-Daten. Abbildung 13.1 stellt die
Eventraten fiir verschiedene Konfigurationen des Clusters dar. Die Konfigurationen sind
nach dem Schema Anzahl Workernodes x Anzahl Kerne pro Node benannt und visuell
nach der Gesamtanzahl Cores gruppiert. Der Umfang des Arbeitsspeichers machte fiir die

Raten keinen Unterschied und ist deshalb nicht dargestellt.

Wie sich in Abbildung 13.1 erkennen ldsst, erhoht sich die Geschwindigkeit der Analy-
se erwartungsgeméfl mit der Anzahl der zur Verfiigung stehenden Rechenkerne. Es zeigt
sich dabei als durchaus relevant, auf wie viele Maschinen die Kerne verteilt sind. Ins-
besondere fiir Streaming-Prozesse ist eine Verteilung der Kerne auf wenige Maschinen
vorzuziehen. Der Grund dafiir liegt in dem Receiver-Konzept (siehe Abschnitt 9.6): Da die
Leerlauf-Cores pro Maschine alloziert werden miissen, bedeuten weniger Maschinen we-
niger Rechenkerne im Leerlauf. Fiir Batch-Prozesse erscheint es besser, mehr Maschinen

mit weniger Kernen zu haben. Der Unterschied féllt hier aber geringer aus.

In Unterabschnitt 13.1.1 und Unterabschnitt 13.2.1 wurde bereits erortert, dass bei einer
unausgewogenen Verteilung der Eingabe-Datenstrome zum Ende der Laufzeit die Even-
traten stagnieren konnen. Da bei Batch-Prozessen die Tasks erst zugeordnet werden, wenn

ein Core den vorigen Tasks abschlieit, fallt der Effekt dort geringer aus, als bei Streaming-
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Abbildung 13.2: Eventraten der Feature Extraction auf Teleskop-Daten

Prozessen. Dort wird die Aufteilung der Eingabestrome bereits zu Beginn der Ausfithrung

festgelegt.

Da bei jeder Ausfiihrung eine andere Aufteilung der Datenstrome vorgenommen werden
kann, unterliegen die hier vorgestellten Ergebnisse also einer gewissen Schwankung, denn
manche Aufteilungen sind besser als andere. Beispielsweise ldsst die Ausfithrung 2 x 8 in
Abbildung 13.1 vermuten, dass die Streaming-Variante schneller sei als der Batch. In den
meisten Féllen sollte dies nicht der Fall sein. Aufgrund der Schwankungen kam es aber zu
dem hier geplotteten Ergebnis. Auf eine umfassendere Messung mehrerer Ausfiithrungen
mit Bestimmung von Mittelwert und Standardabweichung der Raten mussten wir aus

Zeitgriinden leider verzichten.

13.3.2 Feature Extraction auf Teleskop-Daten

In einem zweiten Experiment haben wir die Standard-Feature Extraction fiir reale, vom
Teleskop gelieferte Daten zur Messung der Performanz verwendet. Der verwendete Daten-
satz umfasst sdmtliche Events, die im August 2013 aufgezeichnet wurden. Er setzt sich
aus 38 Dateien (110.441 Events) zusammen, wobei die Dateigroien zwischen 64,5 MB und

10,6 GB eine enorm grofle Spannweite abdecken.

Die Eventraten der Analyse sind in Abbildung 13.2 dargestellt. Da wir aus der Evaluation
auf MC-Daten (siehe Unterabschnitt 13.3.1) bereits wissen, wie die Rechenkerne fiir Batch-
und Streaming-Prozesse am besten auf Maschinen zu verteilen sind, haben wir die jeweils
beste Aufteilung gewéhlt. Im Vergleich zur MC-Analyse fallen die Eventraten insgesamt

geringer aus, vermutlich weil die Feature Extraction hier aufwandiger ist.

Ebenfalls dargestellt ist die Geschwindigkeit zweier Konfigurationen des Torque-Clusters.
Wie eindeutig ersichtlich ist, 1duft das Torque-Cluster insgesamt langsamer als unsere

Erweiterungen. Der hauptséchliche Grund dafiir liegt in der Architektur von Torque: Da
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die Daten nicht wie in Hadoop auf den Rechenknoten gespeichert werden — das Code-to-
Data Prinzip also nicht umgesetzt werden kann — miissen grofie Datenvolumen durch das
Netzwerk wandern. Damit wird das Einlesen und Abspeichern von Daten zum Flaschenhals
fiir das Cluster. Wie wir beobachten konnten, wurden die einzelnen Rechenkerne so zu nur
jeweils 50% ausgelastet. Die Auslastung der Kerne im Spark-Cluster lag stets bei iiber
80%.

Die stark variierende Grofie der Dateien ist problematisch fiir eine verniinftige Verteilung
der Dateistrome auf die zur Verfiigung stehenden Rechenkerne (siehe Unterabschnitt 13.1.1
und Unterabschnitt 13.2.1). Damit sind auch stédrker variierende Eventraten als fiir die MC-
Daten zu erwarten, wo die Dateigroflen noch anndhernd gleich waren. Der grofie Sprung
der Raten des Streaming-Prozesses fir 32 und 64 Cores ldsst sich durch diese Varianz

erklaren. Auch hier war die Zeit fir eine umfangreichere Evaluation nicht gegeben.

Ein weiteres Problem fiir die Verteilung der Dateien auf Rechenkerne ist deren geringe
Anzahl. Da der Batch-Prozess nur so viele Cores nutzen kann, wie Eingabestréme zur
Verfiigung stehen, ergibt sich fiir 38 Dateien nur ein geringer Unterschied zwischen 32 und
64 Cores: Bei 64 Cores bleiben 26 Cores ungenutzt.

Diese Ergebnisse zeigen, wie wichtig eine geeignete Vorverarbeitung der Daten ist: Die
zu prozessierenden Dateien sollten anndhernd gleich grof§ sein, damit deren Verteilung

gleichméaflig und mit geringer Varianz der Laufzeit geschehen kann.






Kapitel 14

Modellqualitiat in Spark ML

Mit unserer Software TELEPhANT wird streams um Funktionalititen erweitert, die es
erlauben, Spark ML Modelle zu trainieren und anzuwenden (vgl. Kapitel 10). Da Spark
ML eine vielfdltige Palette an nutzbaren Modellen und zugehorigen Parametern besitzt,
wird in den nachfolgenden Abschnitten anhand einiger Beispiele gezeigt, wie sich die Mo-
dellvarianten von Spark ML auf den Daten des Anwendungsfalls verhalten. Insbesondere
soll die Qualitat der Klassifikations- und Regressionsmodelle sowie die bendtigte Dauer
des Trainiervorgangs in Abhéngigkeit der Clusterressourcen gemessen werden. Gleichzei-
tig soll gezeigt werden, dass derartige Experimente recht einfach mit XMLs spezifiziert
werden konnen, weshalb die zur Erhebung der Daten verwendeten XMLs im Anhang B

eingesehen werden konnen.

14.1 Vergleich der Klassifikationsmodelle

Nachfolgend soll zunéchst erldutert werden, in welcher Art und Weise die Qualitiat der
jeweiligen Klassifikationsmodelle bestimmt wird, und daraufthin genauer auf die einzelnen

Ergebnisse eingegangen werden.

Qualitdtsbestimmung Zur Qualitdatsbestimmung der Klassifikationsmodelle sind ge-
labelte Daten zu verwenden. In diesem Fall handelt es sich dabei um einen Datensatz von
etwa 140.000 MonteCarlo-Events, welcher sich in etwa 80.000 Gamma- und etwa 60.000
Hadron-Events gliedert. Fiir die verteilte Verarbeitung wird der Datensatz in 20 Partitio-
nen aufgeteilt und in einem HDFS, das sich iiber einen Cluster mit 10 Rechnern erstreckt,
gespeichert. Als Replication Factor wurde hier 3 gewéhlt, um Wartezeiten durch das Ver-

senden von Daten iiber das Netzwerk zu vermeiden.

Die eingesetzten Modelle sollen die korrekte Zuordnung der Events anhand von 32 ganz-

zahligen sowie reellen Features voraussagen, wobei zu beachten ist, dass Spark ML grund-
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sitzlich alle Features als reellwertig interpretiert. Diese Eigenschaft stellt hinsichtlich des
Anwendungsfalls jedoch kein Problem dar. Da lediglich zwischen Gamma- und Hadron-
Events unterschieden wird, handelt es sich also um eine bindre Klassifikationsaufgabe (vgl.
Kapitel 4), bei welcher Gamma-Events als ,,Positiv¢ und Hadron-Events entsprechend als

»Negativ® definiert werden.

Zur Messung der Qualitit der jeweiligen Modelle sind die True-Positive-Rate (,Recall®),
die True-Negative-Rate (,Specifity“) sowie die Prézision der Vorhersage zu bestimmen.
Dies geschieht in einer solchen Weise, dass 90% der Daten zum Trainieren des Modells
verwendet werden, welches anschliefend auf die verbleibenden 10% des Datensatzes ange-
wendet wird. Die aus dem Modell resultierende Vorhersage wird daraufhin mit dem bereits
bekannten Label verglichen, dessen Korrektheit als gegeben anzusehen ist. Jede Konfigura-
tion wird fiinfmal ausgefithrt und aus den erhaltenen Ergebnissen ein Mittelwert gebildet.
Zudem wird in Abbildung 14.1 die einfache Standardabweichung eingezeichnet, um die
Schwankung der Werte zu visualisieren. Bei der Ausfiihrung werden die Klassifikationsmo-
delle RandomForest sowie GradientBoostedTrees in den Standardeinstellungen belassen,
es wird lediglich die Option cacheNodeIds zum Zwecke des Performanzgewinns aktiviert.
Die konkreten Werte der Standardeinstellungen kénnen ebenso wie die verwendete XML
im Anhang B.1 nachgeschlagen werden. Bei der Verwendung des MultilayerPerceptron-
Classifier muss die Netzgrofle manuell festgelegt werden, in diesem Fall werden dort 20

Ebenen mit 32 Knoten sowie eine Ausgabeebene mit zwei Knoten verwendet.

Naive Bayes Da der in Spark ML unterstiitzte ,Naive Bayes“-Klassifikator auf boole-
sche Features ausgelegt ist, kann dieser nicht auf sinnvolle Weise eingesetzt werden. Zwar
ist in einschligiger Fachliteratur eine Variante fiir reellwertige Features (,,Gaussian Naive

Bayes*) zu finden, diese steht allerdings in Spark ML bis jetzt noch nicht zur Verfiigung.

RF und GBT RandomForest und GradientBoostedTrees liefern an dieser Stelle ver-
gleichbare Ergebnisse. GBT erkennt (unter Beibehaltung der Standardeinstellungen) Ha-
dron-Events zuverlédssiger als dies bei RF der Fall ist (vgl. True-Negative-Rate in Abbil-
dung 14.1), ist jedoch hinsichtlich der Erkennung von Gamma-Events weniger verlasslich

(vgl. True-Positive-Rate).

MPC Der MultilayerPerceptronClassifier legt ein sehr extremes Verhalten an den Tag,
welches sich darin duflert, dass er alle Events als Gamma-Events klassifiziert. Dies resul-
tiert zwar in einer perfekten True-Positive-Rate von 1.0, jedoch zugleich in einer True-
Negative-Rate von 0.0 sowie einer Prézision von 57%, was dem Verhéltnis von Gamma-
und Hadron-Events in dem Testdatensatz entspricht. Da dieses Verhalten auch von an-
deren Anwendern beobachtet wurde [88], ist wie dort zu vermuten, dass zu viele nicht
aussagekraftige Features betrachtet werden und zudem die Features nicht normiert wur-

den.



14.1. VERGLEICH DER KLASSIFIKATIONSMODELLE 167

1.00- ——
0.99-

]

< 0.98-

o
= 0.97-

0.96 - —

0.95- I

GBT MPC RF
Klassifikationsverfahren

0.92 - {

0.86 -

GBT MPC RF
Klassifikationsverfahren

0.94 - {

0.92 -

0.90 - I

GBT MPC RF
Klassifikationsverfahren

Prazision

Abbildung 14.1: Die True-Positive-Rate, True-Negative-Rate und die Préazision der verschiede-
nen Klassifikationsverfahren. Eingezeichnet ist der Mittelwert aus 5 Replikationen und die einfache
Standardabweichung. Die Werte fiir den MPC sind in den beiden letzten Grafiken erheblich schlech-
ter und werden daher nicht aufgefiihrt.
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14.2 Vergleich der Regressionsmodelle

Nach einem Vergleich der Klassifikationsmodelle sollen nun die verschiedenen Regressions-
modelle evaluiert werden. Zu diesem Zweck wird eine Energie-Abschiatzung (vgl. Unter-
abschnitt 1.3.2) auf Basis eines erweiterten Datensatzes mit etwa 550.000 Events durch-
gefiihrt. Dieser Datensatz weist ein erhebliches Ungleichgewicht zwischen Gamma- und
Hadronen-Events auf und konnte daher bei den bisherigen Experimenten, die auf eine
gleichermaflen prézise Erkennung von Gamma- und Hadronen-Events abzielen, nicht ver-
wendet werden. Im Rahmen einer Regression eignet er sich aber aufgrund seines Umfangs
an Trainingsdaten hervorragend. Analog zum vorherigen Datensatz wird auch dieser in 20

Partitionen geteilt und in einem HDFS verteilt gespeichert.

Der RandomForest-Regressor und der GradientBoosted Trees-Regressor werden hier in den
jeweiligen Standardeinstellungen verwendet, welche im Anhang B.3 eingesehen werden
konnen. Da Spark ML mit dem root mean squared error sowie R? zwei Bewertungsfunk-
tionen zur Verfiigung stellt, konnen anhand der Ergebnisse ebendieser die verwendeten
Regressoren bewertet werden (vgl. Abbildung 14.2). Im betrachteten Fall schneidet der
GBT-Regressor deutlich besser ab, da sein root mean squared error bei etwa 1410 liegt,
wohingegen der RF-Regressor sich in einem Bereich von etwa 1575 verorten lasst. Hin-
sichtlich des Faktors R? weist GBT einen etwas besseren Wert auf, jedoch schneidet auch
RF noch akzeptabel ab.

14.3 Trainingszeit von Modellen

Im Folgenden wird die Performanz des Trainierens von Modellen in Abhéngigkeit von
der Anzahl der verwendeten Rechenknoten und Prozessoren untersucht. Um den Effekt
steigender Zahlen von Knoten und Prozessoren deutlicher sichtbar zu machen, wird an
dieser Stelle in Form eines RandomForest-Klassifikatiors mit 80 Badumen und einer Maxi-
maltiefe von 25 ein recht aufwendiges Modell verwendet. Gleichzeitig wird wieder auf den
erweiterten Datensatz zuriickgegriffen, da hier nicht die Klassifikationsqualitit gemessen

wird.

Bei dieser Messreihe wird auf die Moglichkeit des Spark Shell-Scripts zuriickgegriffen, die
Anzahl der beteiligten Rechenknoten (,Executors“) sowie die Anzahl an Prozessoren pro

Rechenknoten (,,Cores“) einzustellen (vgl. Kapitel 17).

Aus Abbildung 14.3 ist ersichtlich, dass der Trainingsdurchsatz mit wachsender Knoten-
und Prozessorzahl deutlich ansteigt. Allerdings resultiert aus doppeltem Ressourcenein-
satz nicht eine Verdopplung der Leistung. Dieses Phénomen wird im Bereich der paralle-

len und verteilten Datenbanken als ,sub-linear speed-up* bezeichnet [83]. Griinde hierfiir
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Abbildung 14.2: Der root mean squared error und der RZ Wert fiir die Regressionsverfahren.

Eingezeichnet ist der Mittelwert aus 5 Replikationen und die einfache Standardabweichung.
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konnen in einer ungleichen Verteilung der Arbeitslast oder in hohen Anteilen an nicht-

parallelisierbaren Aufgaben liegen.

Auffillig ist, dass die Performanz ab einer Zahl von vier Rechenknoten mit jeweils acht
Prozessoren kaum noch wéchst. Es wird vermutet, dass die Aufteilung des Datensatzes
in 20 Partitionen hier limitierend wirkt. Laut [78] wird jede Partition zu einem eigenen
wtask®, wobei jeder Prozessor einen task gleichzeitig bearbeiten kann. Damit brauchte eine
Konfiguration von 8 Rechenknoten mit 8 Prozessoren einen Datensatz mit 64 Partitionen,
um alle Prozessoren sinnvoll auszulasten. Dies sollte beim spéteren Einsatz von Apache

Spark beachtet werden.

Die Messung des Klassifikationsdurchsatzes ist schwieriger als beim Trainingsdurchsatz,
weil Spark lazy evaluation anwendet. Dabei wird die Anweisung, das Modell auf den
Datensatz anzuwenden, erst dann ausgefiihrt, wenn eine Operation mit anschliefender
Ausgabe diese Klassifikation benotigt. Eine Zeitmessung, die das nicht berticksichtigt,
wiirde nur die Zeit zum Absenden des Klassifikationsauftrags, nicht jedoch die eigentliche

Dauer der Klassifikation messen.

Daher wurde eine zusétzliche Leseoperation eingefiigt, die zdhlt, wie oft die Klasse 1.0
vergeben wurde. Das Ergebnis dieser Operation ist nicht von Interesse, sie wird ledig-
lich eingesetzt, um eine Klassifikation mithilfe des Modells zu garantieren. Es wird also
die Dauer dieser beiden Operationen zusammen gemessen, wobei es im Nachhinein nicht
trivial moglich ist, den Zeitanteil fiir die reine Klassifikation herauszurechnen. Die hier an-
gegebenen Klassifikationsraten sind also als vorsichtige untere Schranken zu interpretieren.
Wie in Abbildung 14.3 erkennbar steigt die Klassifikationsrate zundchst kaum merklich,
wéchst aber ab einer Knotenzahl von zwei mit jeweils acht Prozessoren rapide. Interessan-
terweise ist in diesem Fall keine Limitierung durch die Verwendung von 20 Partitionen zu
beobachten.

14.4 Einfluss der Waldgrofle auf die Modellqualitét

Da durch die Standardeinstellungen des RandomForest-Klassifikators noch nicht die ge-
wiinschte Modellqualitidt erzielt wird, soll untersucht werden, wie die Qualitidt des Mo-
dells bei Beibehaltung des Datensatzes aus Abschnitt 14.1 durch geeignete Parameter-
wahl optimiert werden kann. Zu diesem Zweck wird mittels der Variation der Anzahl von
Béaumen der Einfluss ebendieser auf die True-Positive-Rate, True-Negative-Rate sowie auf
die Préazision gemessen. Um realitdtsnahe Ergebnisse zu erzielen, wird bei allen Konfigu-

rationen die maximale Tiefe der Baume auf einen Wert von 25 gesetzt.

Des Weiteren wird untersucht, wie die Anzahl der Baume die Trainingszeit beeinflusst, was
anhand des Trainingsdurchsatzes, der als die Anzahl von Trainingsevents dividiert durch

die Trainingszeit in Sekunden definiert ist, beschrieben wird. Dabei wurden im Cluster
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Abbildung 14.3: Trainingsdurchsatz und Klassifikationsdurchsatz in Abhéngigkeit von verwen-
deten Rechenknoten und Prozessoren.
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Abbildung 14.4: Durchsatz in Abhéngigkeit der Gréle des RandomForest. Eingezeichnet ist der
Mittelwert aus 5 Replikationen und die einfache Standardabweichung.

8 Rechenknoten mit jeweils 8 Prozessoren eingesetzt. Wie im bisherigen Klassifikationsex-
periment werden hier in fiinf Replikationen 90% des Datensatzes als Trainingsdaten und
10% als Testdaten verwendet.

Aus Abbildung 14.5 ist ersichtlich, dass die Anzahl der Bdume sich nicht signifikant auf
die True-Positive-Rate auswirkt. Die True-Negative-Rate hingegen steigt zunéchst sehr
stark, ab einer Waldgrofle von 40 Baumen jedoch nur noch langsam an. Dabei ist die
stochastische Schwankung recht gro8. Analog zur True-Negative-Rate steigt die Prézision
des Modells zunéchst stark, ab einer Anzahl von 40 Bdumen allerdings nur noch langsam
an. Zudem ist aus Abbildung 14.4 ersichtlich, dass der Trainingsdurchsatz des Modells mit

wachsender Zahl der Bdume rapide sinkt.
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Abbildung 14.5: Die erzielte True-Positive-Rate, True-Negative-Rate und die Prézision in
Abhéangigkeit der Grofle des RandomForest. Eingezeichnet ist der Mittelwert aus 5 Replikatio-
nen und die einfache Standardabweichung.






Kapitel 15

Fazit

15.1 Ergebnisse

Im Laufe der vergangenen beiden Semester konnte die Projektgruppe zahlreiche Erfolge
verzeichnen, iiber welche im Folgenden in resiimierender Weise ein kurzer Uberblick gege-
ben werden soll. Die Leistungen der Projektgruppe lassen sich unter einem einzigen, be-
deutenden Stichpunkt subsummieren, ndmlich der Erweiterung des streams-Frameworks
fiir die verteilte Ausfithrung mit Spark. Diese wiederum setzt sich aus verschiedenen Tei-

laspekten zusammen.

Zunichst ist hervorzuheben, dass die Rohdaten mittels einer MongoDB indexiert wurden
(vgl. Kapitel 7), um einerseits die Durchsuchbarkeit der Events zu gewéhrleisten und ande-
rerseits eine Steigerung der Performanz zu erreichen. Einen nicht unbedeutenden Beitrag
zu Letzterer leistet ebenfalls die verteilte Datenhaltung mit HDFS sowie die Realisierung
des Code-to-Data-Prinzips, welche eine Neuerung im Gegensatz zum TORQUE-Cluster
der Physiker darstellen (vgl. Abschnitt 3.1).

Eine weitere Innovation besteht im beliebig skalierbaren DistributedProcess, der eine Ver-
teilung der Rechenlast und abschlieend eine automatisierte Zusammenfiithrung der Teil-
ergebnisse ermdglicht. Eine solche Verteilung ist sowohl fiir Streaming als auch fiir Batch-

verarbeitung moglich (vgl. Kapitel 9).

Um verteilte Lernalgorithmen verfiighbar zu machen, wurde Spark ML als neues streams-
Element integriert, sodass sich die dadurch bereitgestellte Pipeline nun via XML kon-
figurieren lédsst. Auf Basis dieser Pipeline ist es nun moglich, Modelle zu trainieren, zu
speichern, zu laden und anzuwenden. Im Zuge der Integration der ML-Pipeline in das
streams-Framework wurde dieses zudem um die XML-Tags task und operator sowie die
damit verbundenen Funktionalitéten erweitert. Einen besonderen Stellenwert nimmt da-
bei der operator ein, der als neue Schnittstelle zur Bearbeitung von DataFrames fungiert
(vgl. Kapitel 10 und Kapitel 19).
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Im Vergleich zum Status Quo der Physiker sollte erwéhnt werden, dass durch die Einfiih-
rung einer REST-API sowie die zur Nutzung dieser geschaffene Web-Oberfléiche TELEPhANT
um ein Vielfaches einfacher und komfortabler hinsichtlich der Bedienung konzipiert wurde.
Ebendiese Web-Oberflache ermdéglicht nicht nur das unproblematische Starten von Jobs
durch das Submitten einer XML, sondern zudem das Managen von Jobs im Cluster und
bietet auBlerdem zahlreiche Konfigurationsoptionen. Details diesbeziiglich lassen sich im
Benutzerhandbuch finden (vgl. Kapitel 18).

Was den Umstieg auf TELEPhANT besonders einfach machen diirfte, ist die Tatsache, dass
bestehende streams-Funktionalitdten einfach weiterverwendet werden kénnen. Lediglich
die Verwendung einiger neuer XML-Tags muss erlernt werden. Ein Uberblick iiber diese
wird im Benutzerhandbuch gegeben (vgl. Unterabschnitt 19.3.3).

15.2 Ausblick

In den vergangenen beiden Semestern hat die Projektgruppe vieles erreicht - nichtsdesto-
trotz sind einige zusédtzliche Erweiterungen der Funktionalitdten denkbar, fiir welche die
verfiighare Zeit leider nicht mehr ausreichte. Die zur Indexierung der Rohdaten eingesetz-
te MongoDB lauft zurzeit lediglich auf einem einzigen Knoten, kénnte jedoch geshardet,
also auf mehreren Knoten verteilt eingesetzt werden, um die Ausfallsicherheit des Index zu
erhohen. Zudem erscheint es sinnvoll, die MongoDB der Projektgruppe sowie die der Physi-
ker auf einen Nenner zu bringen, sofern TELEPhANT tatséchlich in der Forschung eingesetzt
werden sollte. In welcher Weise dies geschehen sollte, ist noch zu klaren. Ein weiteres
mogliches Feature ist das Streaming von Daten nicht nur aus Fits-Dateien, sondern auch
aus anderen Quellen, beispielsweise von einem Forschungszentrum in der Schweiz, was
fiir die Physiker einige Arbeitsabldufe vereinfachen kénnte. Die Grundvoraussetzungen fiir
diese Funktionalitdt sind bereits vorhanden und miissten lediglich erweitert werden, falls
gewiinscht. Dies konnte dariiberhinaus mit Realzeitanalysen ebendieser gestreamten Daten
verbunden werden. Eine letzte Erweiterung, die wir in Betracht zogen, ist das Einfithren
einer umfangreichen Instrumentenmonitoring-Funktionalitéit, allerdings wére es zur Rea-
lisierung dieser vonnoten, die genauen Bediirfnisse und Wiinsche der Physiker in dieser

Hinsicht zu kennen, um tatséchlich ein sinnvolles Software-Feature zu gestalten.

15.3 Retrospektive der Organisation

Wie in Kapitel 12 beschrieben, haben wir zur Organisation der PG das agile Vorgehens-
modell SCRUM festgelegt. Wir haben unsere Umsetzung des Modells von der initialen

Parametrisierung ausgehend in den letzten zwei Semestern stéindig weiterentwickelt. Die
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Anderungen, die wir an unserer Umsetzung von SCRUM vorgenommen haben, spiegeln
die Losung von organisatorischen Problemen wider, die wir mit der Zeit identifiziert ha-
ben. Sie zeigen, dass wir in organisatorischer Hinsicht in den letzten zwei Semestern viel

lernen konnten.

Zu Beginn der PG hatten wir einige organisatorische Probleme, auf die zunéchst in Unter-
abschnitt 15.3.1 eingegangen werden soll. Anschliefend beschreiben wir die Anderungen,
die wir im ersten und zweiten Semester an unserer Umsetzung von SCRUM vorgenom-
men haben (siche Unterabschnitt 15.3.2 und Unterabschnitt 15.3.3). Eine abschlieBende

Bewertung wird in Unterabschnitt 15.3.4 vorgenommen.

15.3.1 Projekt-Initialisierung

Scrum fordert, dass im Team ein tiefgehendes Verstédndnis iiber die Vision des Endproduk-
tes vorliegt. Nur dadurch ist nachvollziehbar, was Teilziele fiir den Projekterfolg bedeuten,
und umrissen, was moglicherweise im Vorhinein fiir zukiinftige Arbeitspakete zu bedenken
ist. Wir haben uns zu Beginn des ersten Semesters schwer damit getan, die Product Vision
zu konkretisieren. Auch wenn abstrakt klar war, welche Prozesse zur Analyse der Daten
abzubilden sind, lag der Weg dahin lange Zeit im Dunkeln. Ein Grund dafiir war, dass
wir mit den verwendeten Technologien nur wenig Erfahrung besaflen. Erst im Laufe des

ersten Semesters konnten wir ein konkretes Bild der Product Vision schaffen.

Scrum nimmt weiterhin an, dass das Team die fiir das Projekt notige Expertise bereits
mitbringt, im Zweifelsfall durch im Vorhinein durchgefithrte Schulungen. Dadurch wer-
den Gliederungen auf geeigneter Abstraktionsstufe und zutreffende Aufwandsschétzungen
ermoOglicht. Auch lésst sich die Projektinitialisierung so schneller abwickeln. Fiir Projekt-
gruppen kann die Annahme umfangreicher Expertise allerdings nicht vollends zutreffen,
da dort das notige Wissen erst vermittelt werden soll. Uns fehlten zu Anfang insbesondere

Erfahrungen mit Spark und dem Streams-Framework.

15.3.2 Organisation im ersten Semester

Initial bestand aufgrund der inkonkreten Product Vision und den zunichst notwendigen
Lernerfolgen beziiglich Spark und Streams ein besonders hoher Abstimmungsaufwand.
Daher haben wir uns entschlossen, unsere Sprint-Meetings wochentlich abzuhalten. Wir
mussten dabei feststellen, dass Scrum fiir seine wochentlichen Sprint Planning Meetings
implizit einen hoheren Arbeitsumfang, als fiir die Projektgruppe vorgesehen, annimmt:
Waéhrend in einem reguldren Arbeitsleben etwa acht téagliche Arbeitsstunden {iblich sind,
sieht das Modulhandbuch des Masterstudiengangs Informatik acht Semesterwochenstun-

den fur die Projektgruppe vor [85]. Wir haben dadurch mit unserem wochentlichen Sprint
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Planning Meeting einen Umfang abgedeckt, fiir den von Scrum eigentlich ein Daily Meeting

angedacht ist.

Durch diesen {ibersichtlichen Sprint-Umfang erschien es zunéchst nicht zielfithrend, Scrum
formal durchzufiihren, also ein PBL, ein SBL oder ein IBL gewissenhaft zu fiihren. Da-
durch wurde allerdings der Abstimmungsaufwand weiter erhoht und wir mussten in den
wochentlichen Meetings besonders viele Inhalte abhandeln. Die Treffen wurden lénger als

vielleicht notig.

Zudem haben sich die meisten wochentlichen Meetings zu Arbeitsmeetings ausgewachsen,
die einzelne Probleme in einer Tiefe diskutiert haben, die nicht fiir alle Teilteams relevant
war. Erst spédter im Semester haben wir regelméflige Treffen der Teilteams etabliert, in
denen die Arbeit erledigt und teilthemenbezogene Abstimmung erzielt wurde. Dadurch

fielen die wochentlichen Hauptmeetings sinnvollerweise kiirzer aus.

Fir Sprint-Retrospektiven (,,Was lief gut, wie konnen wir den Prozess verbessern?) war
eine Woche kein ausreichender Sprint-Umfang. Ein dediziertes Meeting zur Bewertung des
Prozesses wurde auch nicht abgehalten. So haben wir nicht abstimmen kénnen, wie wir

unseren Entwicklungsprozess optimieren kénnen.

15.3.3 Organisation im zweiten Semester

Durch die fiir den Zwischenbericht angefertigte erste Retrospektive haben wir die organi-
satorischen Probleme identifiziert, die sich im ersten Semester ergeben haben. Wir haben

also Mafinahmen getroffen, um diese Probleme im zweiten Semester zu losen.

Ein wesentlicher Punkt war es, die Gruppentreffen weiter zu optimieren. Wir konnten
bereits zum Ende des ersten Semesters feststellen, dass Arbeitstreffen in den Teilteams
die Planungstreffen mit der gesamten Gruppe fokussieren konnten. Wir haben darauf
aufbauend beschlossen, weniger Planungstreffen zu veranstalten. Da wir so mehr Zeit zur
Implementierung zwischen zwei Treffen besaflen, wurde die formale Durchfiihrung eines
Sprints erstmals attraktiv. Einem hohen Teil des Abstimmungsaufwandes konnten wir

durch den intensivierten Einsatz von Atlassian JIRA beikommen.

Sicher wurden diese Entwicklungen dadurch begiinstigt, dass wir durch die Formulierung
des Zwischenberichtes die Product Vision ganz konkret festgelegt hatten. Der Ausblick
des Zwischenberichtes diente uns als Zielformulierung im zweiten Semester, sodass wir
ausgesprochen zielgerichtet arbeiten konnten. Arbeitspakete waren préziser planbar, weil
sie im Kontext bestehender Ergebnisse standen. Ein genaues Bild des Endproduktes im

Auge zu haben, hat iiberdies die Motivation der Gruppe regelrecht befliigeln kénnen.
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15.3.4 Abschlieflende Bewertung

Die angenommene Erfahrung mit verwendeten Technologien und die Annahme eines tief-
gehenden Verstandnisses der Product Vision haben Scrum fiir die Initialisierung des Pro-
jekts nicht so recht aufgehen lassen (siehe Unterabschnitt 15.3.1). Wir sind dadurch erst
recht spéat aus dieser Findungsphase ausgetreten. Insbesondere waren einige Zeit lang keine

sinnvollen Inkremente planbar.

Die von uns zunéchst gewéahlte Sprintlaufzeit von einer Woche lief§ eine formale Durchfiih-
rung (PBL, SBL, IBL) von Scrum nicht sinnvoll erscheinen. Durch die nicht von Scrum vor-
gesehene Durchfithrung unserer Treffen haben wir wir viel Zeit in den Treffen verbraucht,

wobei nicht immer alle von dieser Zeit profitieren konnten (siehe Unterabschnitt 15.3.2).

Im zweiten Semester sind wir die organisatorischen Probleme des ersten Semesters an-
gegangen. Seltenere fokussiertere Treffen mit der gesamten Gruppe machten die formale
Durchfithrung von Scrum erstmals attraktiv. Die Formulierung des Zwischenberichtes kon-
kretisierte die Product Vision, wodurch Arbeitspakete besser planbar wurden. Zusammen
mit den im ersten Semester gewonnenen Erfahrungen mit Spark und Streams ermoglichten
diese Umsténde ein weitaus effizienteres Arbeiten als noch im ersten Semester. Auch sind

wir heute als Team eingespielter als noch zu Beginn der Projektgruppe.

Es ldsst sich festhalten, dass wir in der Projektgruppe allerhand tiber die praktische
Durchfithrung von SCRUM gelernt haben. Insbesondere haben wir nun eine Vorstel-
lung davon, unter welchen Umstdnden SCRUM sinnvoll ist und unter welchen nicht. Ein
Projektmanagement-System wie JIRA zu kennen, kann den Einstieg in andere agil gefiihrte

Projekte erleichtern.

Da im zweiten Semester die in den Sprint Planning Meetings festgelegten Ziele meist er-
reicht wurden und wir dazu die von uns geforderte Arbeitszeit im Groflen und Ganzen
leisteten, hat sich nicht die dringende Notwendigkeit einer formal durchgefithrten kontinu-
ierlichen Prozessoptimierung ergeben. So haben wir Kanban nicht praktisch kennen lernen

koénnen.
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Kapitel 16

Vorbereitung eines Clusters

Die in dieser Projektgruppe entwickelte Bibliothek arbeitet gerade dann effizient, wenn
die Berechnung in einem ganzen Cluster ausgefithrt wird. Dazu miissen die folgenden

Vorbereitungsschritte einmalig erfolgen.

1. Vernetzung. Alle Rechner des Clusters sollten so eingerichtet werden, dass sie sich

in einem gemeinsamen, lokalen Netzwerk befinden.

2. Hadoop und Ressourcenmanager einrichten. Auf jedem Rechner des Clusters
muss Apache Hadoop 2.6.2 (oder eine kompatible spitere Version) installiert und
eingerichtet werden. Lediglich auf einem Rechner des Clusters wird ein Ressourcen-
manager installiert, der zu bearbeitende Jobs annimmt und im Cluster verteilt. Im

Rahmen der Projektgruppe wurde zu diesem Zweck Apache YARN eingesetzt.

3. Verteiltes Dateisystem einrichten. Damit alle Knoten des Clusters Zugriff auf
alle Daten haben, empfiehlt sich die Nutzung eines verteilten Dateisystems. Hierfiir
bietet sich das HDFS an, weil das Zusammenspiel mit Hadoop und Spark gut funk-
tioniert. Wie bei der zentralen Annahme der Jobs muss auch fiir das verteilte Datei-
system ein einzelner Rechner ausgewéhlt werden, der alle Anfragen entgegennimmt.
Auflerdem sollte vor dem Einspielen der Daten die Zahl der Replikationen geeignet
gewdhlt werden. Eine grofle Anzahl an Replikationen fiihrt zu einem hohem Speicher-
platzbedarf, verringert aber potenziell die Bearbeitungsdauer der Jobs, weil weniger

Dateien tiber das Netzwerk gesendet werden miissen.

4. Weitere Software im Cluster installieren. Nun kénnen weitere, optionale Kom-
ponenten installiert werden. Es empfiehlt sich, ein Datenbankmanagementsystem auf
jedem Rechner des Clusters zu installieren. Das Datenbankmanagementsystem darf
seine Daten aber nicht im verteilten Dateisystem ablegen, da die Rechner des Clu-
sters sonst ihre Datenbanken gegenseitig liberschreiben! Wenn gewtinscht ist, dass
sich alle Rechner im Cluster eine Datenbank teilen, miissen die entsprechenden Funk-

tionen des Datenbankmanagementsystems verwendet werden.
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Anschlielend muss jeder Rechner auflerhalb des Clusters, der Jobs an diesen schicken soll,
ebenfalls vorbereitet werden. Hierfiir reicht es aus, Hadoop 2.6.2 sowie Spark 1.6.2 zu

installieren und die jeweils genannten Einrichtungsschritte zu befolgen.

16.1 Verfiigbarkeit von Dependencies

Fiir die Erweiterung von Streams existieren einige Abhéngigkeiten zu verwendeten Biblio-

theken. Die folgenden Dependencies miissen zur Laufzeit im Cluster vorhanden sein:

Streams Die Maven-Module streams-core und streams-runtime beinhalten alle fiir die
Ausfithrung einer in XML spezifizierten Applikation notigen Funktionen. streams-
hdfs stellt einen Handler fiir URLs des HDFS-Protokolls zur Verfiigung, was fur das
Offnen von XML-Spezifikationen nétig ist.

FACT-Tools Das Projekt fact-tools ist eine Sammlung von Streams-Prozessoren und

weiteren Funktionen zur Analyse der FACT-Daten im Streams-Framework.

Spark spark-core stellt die Basis-Konzepte von Spark zur Verfiigung, die fiir eine ver-
teilte Ausfithrung im Cluster nétig sind. spark-mllib und spark-sql werden fiir
die Verwendung der Lernbibliothek MLIlib benétigt.

Hadoop hadoop-client ist, neben streams-hdfs nétig, um Dateien aus dem HDFS zu

lesen. mongo-hadoop-core ist fiir die Anbindung der MongoDB verantwortlich.

Damit nicht bei jeder Ausfithrung ein ,,Uber-jar, also ein Archiv mit sdamtlichen Depen-
dencies vom Client ins Cluster kopiert werden muss, haben wir ein Maven-Projekt fiir die
Sammlung dieser Dependencies erstellt. Das aus diesem Projekt erstellte jar-Archiv kann
dann fiir sémtliche Ausfithrungen, sofern keine Anderungen an den Abhingigkeiten notig

sind, verwendet werden.

Wir laden dazu die Dependency-Jar ins HDFS und iibergeben ihren Pfad bei jeder Ausfiih-
rung an spark-submit. Yarn erkennt den HDFS-Pfad und nimmt keine Kopie vom lokalen
System vor. Um einen Job auszufithren, muss damit lediglich ein kleines Archiv mit dem
aktuellen Stand unserer Streams-Erweiterung hochgeladen werden. Da die Abhéngigkeiten
in unserem Fall ein Archiv aus weit iiber 100MB ergeben, spart dieses Vorgehen eine Menge
Zeit, insbesondere wiahrend der Entwicklung, wenn im Minutentakt eine neue Programm-

version getestet werden muss.

16.2 Starten der REST API & Web-UI

Zum Starten der REST API auf dem Server gibt es im wesentlichen zwei Wege: ,,per Hand“
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und iiber Docker. Beide werden im Folgenden kurz beschrieben.

16.2.1 Standard

Dies ist der klassische Weg, der keine besonderen Voraussetzungen an den oder die Server
stellt.

MongoDB Zum Installieren der MongoDB sollte am besten der Anleitung auf der
MongoDB-Website gefolgt werden [71]. Es ist nicht zwingend notwendig, dass die Mon-
goDB und die REST API auf dem selben Server laufen, da die Verbindung zwischen den

Beiden iiber einen Kommandozeilenparameter gesteuert werden kann.

REST API Die Jar-Datei der REST API enthélt einen eingebauten Tomcat-Server,

sodass es iliber einen einfachen Java Befehl gestartet werden kann, z.B.

java -jar target/apiwebapp-1.0-SNAPSHOT.jar [--server.port=8080]
[--mongodb=mongodb://1s8cb01.cs.uni-dortmund.de:27017/fact]

Die MongoDB URI sollte hierbei natiirlich fiir die MongoDB aus dem vorherigen Schritt
gelten.

Da die REST API das Shell-Skript (vgl. Kapitel 17) verwendet, miissen die entsprechenden
Umgebungsvariablen auch gesetzt werden. Alternativ kénnen diese als weitere Parameter

beim Jar-Datei-tart iibergeben werden.

Nach dem Start der REST API ist diese unter dem Port 8080 (falls kein eigener Port

angegeben wurde) auf dem Server zu erreichen.
Zum Beenden der REST API kann im Prozess einfach Strg + C gedriickt werden.

Damit die REST API im Hintergrund gestartet wird und auch lauft, wenn man nicht mehr
mit dem Server verbunden ist, empfiehlt es sich das Programm screen zu verwenden. Dieses
Werkzeug startet mehrere virtuelle Sitzungen in einer Verbindung und erlaubt es, diese

von der eigentlichen Verbindung zu trennen und wieder aufzunehmen.

16.2.2 Docker

Alternativ zum Starten der Jar-Datei iiber den klassischen Weg kann auch Docker genutzt

werden. Hierzu ist es erforderlich, dass Docker bereits auf dem Server installiert ist.

MongoDB Hierzu kann einfach das offiziell MongoDB Image von Docker Hub genom-

men werden. Dieses Image ist auch ausreichend dokumentiert.
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REST API Zur REST API gibt es ein Dockerfile, welches es erlaubt ein Docker Image
fiir die REST API zu erstellen.

Dazu ist es zunéchst notig die REST API mittels mun clean package zu bauen. Anschlie-
Bend sollte mit dem Befehl cd docker ins entsprechende Unterverzeichnis gewechselt wer-
den. Als nichste Schritte miissen die notwendigen Komponenten vorbereitet werden: Durch
cp .. /target/rest-api-1.0-SNAPSHOT jar ., cp ../../streams-pg594 /streams-submit.sh . und
mkdir hadoop_conf. Ins letzte Verzeichnis muss nun die Hadoop Konfiguration, also z.B. die
core-site.xml, kopiert werden. Nun kann docker build -t rest-api:latest . aufgerufen werden

um das Image zu bauen.

Abschlielend muss dann dieses Image an den Server verschickt werden, da es nicht auf

Docker Hub zu finden ist und somit nicht einfach von Docker heruntergeladen werden kann.

Ist das Image auf dem Server verfiigbar kann die REST API mit docker run -p 8080:8080
rest-api:latest [~server.port=8080] [-mongodb=mongodb://Is8cb01.cs.uni-dortmund.de:27017/fact]
gestartet werden und ist unter http://localhost:8080 dann erreichbar.
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Shell-Script

Im Cluster des Lehrstuhls lauft Spark auf YARN, einem Tool zur Ressourcenverwaltung
in Rechenclustern. Mit dem Shell-Kommando spark-submit konnen Spark-Applikationen
YARN als Jobs iibergeben werden, sodass sie mit zu spezifizierenden Ressourcen (Anzahl

Cores, Hauptspeicher-Volumen, benétigte Dateien) ausgefithrt werden.

Um YARN einen Spark-Job zu iibergeben, muss spark-submit mit einigen Parametern
(Ressourcen, auszufiihrende Datei, zu verwendende XML-Spezifikation) aufgerufen wer-
den. Zudem muss sichergestellt sein, dass die gewlnschte XML-Spezifikation im HDFS
vorhanden ist. Um dem Benutzer die manuelle Spezifikation dieser Parameter und das
Hochladen der XML zu ersparen, haben wir ein recht umfangreiches Shell-Script geschrie-

ben, das diese Aufgaben tibernimmt. Listing 17.1 stellt die Verwendung des Scriptes vor.

Usage: ./streams—submit.sh [options] <xml file>

Options:
—num—executors NUM Number of executors
——driver —memory NUMg GB of memory in driver
——executor —memory NUMg GB of memory in executors
—executor—cores NUM Number of cores per executor
——driver—cores NUM Number of cores per driver
—max—result —size NUMg GB of the result of batchProcess and
distributedProcess
—mname STRING Name of the job displayed in YARN
—streams—jar STRING Path to the dependecies jar
—hdfs—root STRING URL of the hadoop cluster
—nowait Exit directly after the app is accepted
Example:
./ streams—submit.sh ——driver —memory 4g example.xml
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Listing 17.1: Verwendung des Shell-Scripts zur Ausfithrung im Cluster

Fiir jede der beschriebenen Optionen sind sinnvolle Standartwerte gesetzt. So wird etwa
angenommen, dass die Jar mit den Abhéngigkeiten im Hadoop Cluster unter einem fest
definiertem Pfad zu finden ist. Fiir Entwicklungszwecke kann jedoch auch eine abweichen-
de Jar-Datei mit der Option —streams-jar spezifiziert werden. Dies ist z.B. immer dann

notwendig, wenn neue Streams getestet werden sollen.

Das Script priift zunédchst, ob alle Systemvariablen auf der ausfithrenden Maschine korrekt
gesetzt sind. Nur so ist sichergestellt, dass spark-submit korrekt arbeitet. Dann wird ein
temporéres Verzeichnis im HDFS-Home-Directory des Hadoop-Benutzers angelegt, in wel-
ches die lokal vorliegende XML kopiert wird. In die temporéire Kopie wird ein Zeitstempel

in den Dateinamen geschrieben, um Konflikte zu verhindern.

Sind alle diese Vorarbeiten erledigt, kann spark-submit aufgerufen werden. Fiir die ver-
wendeten Ressourcen bestehen niedrige Standard-Werte (2 Executor, 2GB Speicher pro
Executor, ...), welche das Cluster nicht auslasten sollen. So kénnen mehrere Entwickler
gleichzeitig testen. Bei nicht zu aufwéindig gestalteten Test-Konfigurationen reichen diese
Ressourcen iiblicherweise aus. Fiir aufwindigere Berechnungen kénnen dem Script jedoch
auch einige der spark-submit-Parameter (siehe ,Options“ in Listing 17.1) tibergeben wer-

den. Es leitet diese weiter, sodass mehr Ressourcen verwendet werden.

Am Ende der Ausfiilhrung rdumt das Script auf. Es 16scht dazu die temporéir verwendete
XML-Konfiguration aus dem HDFS.
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Web-UI

Neben dem Shell-Script ist wiahrend des zweiten Semesters eine Weboberfliche erstellt
worden, mit der sich nicht nur Jobs komfortabel ausfiihren lassen, sondern auch das Ma-
nagen von Jobs im Cluster vereinfachen ldsst. Diese steht im direkten Zusammenhang
mit der REST-API und wird als Teil dieser mitgeschickt. In diesem Kapitel soll nun die

Bedienung der Oberflédche beschrieben werden.

Der gesamte Quellcode befindet sich im Order rest-api, wo sich auch das Dokument READ-
ME.md befindet. Darin enthalten sind auch Informationen zur Installation per Standalone-
jar oder per Docker, sowie die Systemvoraussetzungen zum Testen und Weiterentwickeln

der beiden Komponenten.

Sobald die REST-API gestartet ist, kann die Weboberfliche iiber die Root-URL / der
REST-API aufgerufen werden. Dort werden verschiedene Routen angeboten, die sich auf

die folgenden Sektionen beziehen.

URL Aufgabe
/# /config Konfiguration der Hadoop URL
/#/jobs Erstellen, starten und schedulen von Jobs

/#/events | Testen von Filter-Ausdriicken
/# /swagger | REST-Dokumentation

Daneben befinden sich in der rechts-oberen Ecke, wie beispielsweise auf Abbildung 18.1
zu sehen, zwei Navigationspunkte, die den Nutzer direkt zur Ubersichtsseite des YARN-

Clusters und die Startseite der Hadoop Weboberfliche weiterleitet.

18.1 Konfiguration

Zunéchst sollte die Basis-URL von Hadoop konfiguriert werden, da der Parameter an das

Shell-Script weitergegeben wird. Standardméflig wird der Wert hadoop.baseUrl aus der
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PG594 Jobs Events  Config REST API Hadoop YARN

Hadoop Base URL
hdfs://s876¢cn01.cs.uni-dorimund.de:9000

Should start with hafs./

Abbildung 18.1: Konfigurationsseite der Web-UI

Konfigurationsdatei application.properties genutzt, dessen Wert zunéchst auf
hdfs://s876¢cn01.cs.uni-dortmund.de:9000

gesetzt ist. Sollte sich die URL &ndern, muss sie entsprechend iiber die Oberflache {iber
den Navigationspunkt Config (s. Abbildung 18.1) angepasst werden, da Jobs ansonsten

nicht mehr korrekt gestartet werden kénnen.

18.2 Starten und Managen von Jobs

Das Managen von Jobs beinhaltet das Erstellen, Andern, Konfigurieren und Starten von
Jobs. Hierfiir bietet die Web-UT ein View an, das in Abbildung 18.2 abgebildet ist. Unter

@ wird eine Liste aller gespeicherten Jobs angezeigt.

PG594 Jobs Events Config REST API Hadoop  YARN

Starta job Job History Tasks

You have not saved any jobs yet. Drop the jar file here or click here.

The job as XML 9
1

Show configuration

Start Job Save ?

Abbildung 18.2: Interface zum Managen von Jobs
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Soll ein neuer Job erstellt werden, muss unter @ die aus dem Projekt generierte streams-
pg594.jar mit den entsprechenden Klassen per Drag-and-Drop oder per Klick ausgewahlt
werden. Dabei ist darauf zu achten, dass die gepackte jar-Datei die Klassen beinhalten
muss, die im XML verwendet werden. Andernfalls schlagt der Job fehl. Anschlieflend
wird in das vorgegebene Feld in @ die Definition des Jobs im XML-Format eingetragen.
Der Editor zeigt etwaige Syntaxfehler an. Durch das Klicken auf den angezeigten Link
Show configuration 6ffnet sich ein Formular (siehe Abbildung 18.3), um den Job nédher zu
konfigurieren. Die Parameter entsprechen den Argumenten des Shell-Scripts und haben
den selben Effekt. SchlieBlich kann der Job iiber den Button Start Job in @ gestartet

werden. Ein Popup informiert dariiber, ob der Job erfolgreich gestartet wurde.

Close configuration

Configuration

Job
Job name
Mongo Import
Executors
Number of executors Amount of cores per Amount of memory per
. executor executor (in Gb)
2 2
Driver
Number of cores in the driver Amount of memory in the driver (in Gb)

1 2

Abbildung 18.3: Konfiguration eines Jobs

Das Driicken des Save-Buttons speichert das Tripel aus Jar, XML und Konfiguration in
der MongoDB, sodass bei einer erneuten Ausfithrung die Jar-Datei nicht noch einmal
hochgeladen werden muss. Der entsprechende Eintrag erscheint dann in der Auflistung
unter @. BEs wird weiterhin empfohlen, einen aussagekriiftigen Namen fiir den Job zu

wahlen.

Alle gestarteten Jobs lassen sich in der Ubersicht anzeigen, die iiber den Tab Job History
erreichbar ist. Der Inhalt, der auf Abbildung 18.4 zu sehen ist, listet alle Jobs auf, die
gestartet wurden. Neben dem selbst gewdhlten Namen des Jobs werden auch Informatio-
nen zum Zustand und Fortschritt des Jobs angezeigt. Ein Klick auf den Refresh-Button
aktualisiert die Liste der Jobs. Neben jedem Eintrag befindet sich ein Link Details, der auf
die YARN-Ubersichtsseite des Jobs verweist, wo genauere Informationen abzulesen sind,

wie etwa einem Stacktrace bei einem fehlgeschlagenem Job.
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PG594 Jobs Events Config REST API Hadoop YARN

Start a job Job History Tasks

Job ID Name Started Progress  State Final Status

application_1467202867577_0020 demo 2016/07/06 at 13:33:19 100.0% FINISHED  SUCCEEDED Details
application_1467202867577_0019 Demo123 2016/07/06 at 12:20:17 100.0% FINISHED  FAILED Details
application_1467202867577_0022 demo 2016/07/06 at 13:36:28 100.0% FINISHED  SUCCEEDED Details
application_1467202867577_0021 demo 2016/07/06 at 13:33:44 100.0% FINISHED  SUCCEEDED Details
application_1467202867577_0024 demo 2016/07/06 at 13:48:32 100.0% FINISHED  FAILED Details
application_1467202867577_0023 demo 2016/07/06 at 13:41:39 100.0% FINISHED  SUCCEEDED Details

Abbildung 18.4: Auflistung aller gestarteten Jobs
18.3 Schedulen von Jobs

Manchmal ist es hilfreich, einen Job zu einem bestimmten Zeitpunkt immer wieder aus-
zufithren. So kénnte man etwa den Import neu aufgenommener Events in die Datenbank
manuell noch vor Arbeitsbeginn ausfiithren lassen. Fiir diesen Zweck bietet die Web-UI
das Erstellen von immer wiederkehrenden Tasks an. Die Ubersichtsseite ist iiber den Tab
Tasks erreichbar und auf Abbildung 18.5 abgebildet.

In @ ist das Formular zu sehen, mit dem ein neuer Tast erstellt wird. Ein Task ist definiert

PG594 Jobs Events Config REST API Hadoop  YARN

Start a job Job History Tasks
Qreate a new task All tasks 9

Name

[

Mongo Import Enable

Job 03071/12"

Delete

Cron Expression

« Task is enabled.

Create Task

Abbildung 18.5: Ubersichtseite der Tasks
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durch seinen Namen, den Job der ausgefiithrt werden soll und einem Cron-Ausdruck, der
bestimmt, in welchem Intervall der Job ausgefiihrt wird. So bedeutet der Ausdruck ,,0 30
71/1 * ¢ * etwa, dass ein Job jeden Tag um 7:30 Uhr gestartet werden soll. Zusétzlich
kann eingestellt werden, ob der Task direkt aktiviert werden soll. Durch das Klicken auf
den Button Create Task wird der Task erstellt und erscheint in der Liste @.

Unter dem Menii @ konnen Tasks aktiviert oder deaktiviert sowie vollstindig geldscht
werden. Falls ein aktiver Job aus der Datenbank entfernt wird, wird auch der entsprechende
Schedule beendet. Gleiches gilt, falls ein Job geloscht wird, der von Tasks referenziert

werden.

Weiterhin ist anzumerken, dass nach einem erwarteten oder unerwarteten Beenden der
Anwendung die Tasks nicht erneut manuell aktiviert werden miissen, da eine Routine in
der Anwendung dafiir sorgt, dass aktive Tasks beim Start der Anwendung automatisch

gescheduled werden.

18.4 Testen von Filtern

Méchte man tiber die REST-API Events filtern, etwa mit dem dafiir vorgesehenen REST-
fulBventStream, muss ein Filterausdruck angegeben werden, dessen Syntax bereits in Un-
terabschnitt 8.2.2 beschrieben wurde. In der Web-UI ist es moglich, diese Filterausdriicke
zu testen. Die entsprechende Seite ist auf Abbildung 18.6 zu sehen. In dem dafiir vorgese-
hen Feld wird ein Filterausdruck erwartet. Ein Klick auf dem Button Count Fvents fiihrt
diesen Ausdruck aus und liefert die Anzahl der gemachten Events zuriick, was dann fir

den Filterausdruck

night.eq(20130801).and(eventNum.lt(10)).and(eventNum.gt(0))

wie in Abbildung 18.7 aussieht. Der Ausdruck filtert alle Events der Nacht des 01.08.2013

mit einer Eventnummer zwischen 0 und 10.

PG594 Jobs Events Config REST API Hadoop YARN

Filter Expression Count Events

Abbildung 18.6: Ubersichtseite des Event
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PG594  Jobs  Events  Config

Filter Expression

night.eq(20130801).and(eventNum.lt(10)).and(eventNum.gt(0))
gnt.eq

REST API

135

events counted for the given filter expression.

KAPITEL 18. WEB-UI

Hadoop YARN

Count Events

Abbildung 18.7: Ubersichtseite des Event Ergebnis

18.5 Einsehen der REST-API Dokumentation

Wie bereits in Unterabschnitt 8.1.3 angesprochen, sind die Schnittstellen der REST-API
mithilfe von Swagger dokumentiert worden. Uber den Meniipunkt REST API ist diese,
wie beispielhaft auf Abbildung 18.8 dargestellt, erreichbar. Dort sind alle Schnittstellen
der REST-API mitsamt einer Beschreibung aufgelistet.

Sollte sich durch die Weiterentwicklung eine neue Schnittstelle ergeben, muss diese in

der Datei rest-api/src/main/resources/public/swagger.json gemaf der Spezifikation [74]

manuell definiert werden, damit sie in der Oberflache auftaucht.

PG594  Jobs  Events  Config

FACT API

REST API

Search in the FACT telescope data and run jobs on them!

Config
Jobs

O  /jobs

/jobs

pi=i3/ N  /jobs/{id}

fjobs/start
ljobs/active

Meta Data

[BASE URL: /api, API VERSION: 1.0.0, HOS

T: http:/localhost:8080)

Hadoop YARN

list operations eration:

open‘hide | list operations = expand operations

Save a new job.
Get all saved jobs
Delete a saved job.
Run a new job.
Show active jobs.

sl operations | expand operations

Abbildung 18.8: Konfigurationsseite der Web-UI



Kapitel 19

Maschinelles Lernen mit TELEPhANT

Nachdem in den vorherigen Kapiteln die Voraussetzungen fiir den Einsatz von TELEPhANT
geklart und das ShellScript sowie die Web-Oberfliche erldutert wurden, geht es im Fol-
genden um die XML-Gestaltung in Bezug auf das maschinelle Lernen. In diesem Kapitel
wird auf die Besonderheiten von Apache Spark hingewiesen, welche im Umgang mit den
von Spark ML bereitgestellten Lernverfahren beachtet werden sollten. Auflerdem wird ein
ausfiihrliches Beispiel fiir das Modelltraining, die Evaluation und eine Parameterstudie
gegeben. Abschlieffend folgt eine Erlduterung des in TELEPhANT enthaltenen TreeParsers

fiir die genaue Analyse der von Spark ML erzeugten Baummodelle.

19.1 Datenaufbereitung

Zunéchst soll es um die Datenaufbereitung gehen. Spark ML stellt sehr klare Anforderun-
gen an die zu verarbeitenden Daten, sodass in den meisten Féllen Aufbereitungsschritte

in der Pipeline nétig sind.

Numerische Merkmale Eine Voraussetzung fiir die korrekte Verarbeitung ist, dass
in den Daten nur numerische Merkmale verwendet werden. Enthalten die gewiinschten
Daten allerdings kategorische Merkmale, miissen diese in passende numerische Merkmale
konvertiert werden. Dabei ist zu beachten, dass diese Aufgabe keineswegs trivial ist. Num-
meriert man beispielsweise alle Strings im Wertebereich einfach durch, kann es sein, dass
einige Strings von Algorithmen als nahe beieinander liegend oder benachbart erkannt wer-
den, weil ihre Zahlenwerte nahe zueinander sind. Dies muss aber nicht der Fall sein, wenn
man nur die urspriinglichen Strings betrachtet. Daher ist die gemeinsame Verwendung des
Estimators StringIndexer und des Transformers OneHotEncoder im erste Pipeline-Schritt

empfehlenswert, wenn man kategorische Merkmale verwenden mdochte.
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Der StringIndexer bildet die Strings einer Spalte auf die Zahlenwerte 0.0 bis zur Anzahl
ihrer verschiedenen Strings ab. Dabei werden die Zahlenwerte nach Haufigkeit absteigend

vergeben, der hdufigste String erhélt daher den Zahlenwert 0.

<estimator stage="Stringlndexer" inputCol="category"

outputCol="categoryIndexed" />

Listing 19.1: Anwendung eines StringIndexer-Estimators

In Listing 19.1 ist die Verwendung des StringIndezers aufgefiithrt. Das folgende Beispiel fiir
die Umwandlung kategorischer Merkmale in Zahlenwerte ist dem Apache Spark ML-Guide

[6] entnommen und dient zur Demonstration:

id | category id | category categoryIndexed
0 |a 0 |a 0.0
1 |b 1 |b 2.0
2 |c StringIndexer 2 |c 1.0
3 |a 3 |a 0.0
4 |a 4 |a 0.0
5 | ¢ 5 | ¢ 1.0

Verwendet man nur den StringIndexer ergibt sich genau das Problem, dass nun die nu-
merischen Kategorien ¢ und ¢ néher beieinander liegen als a und b. Deswegen folgt
nun der Transformer OneHotFEncoder, welcher eine Spalte mit Indizes in eine Spalte mit
Binédrvektoren umwandelt. Diese Binédrvektoren enthalten genauso viele Komponenten,
wie es verschiedene Kategorien gibt, sodass genau eine Komponente fiir eine Kategorie
steht. Fiir jede Zeile enthélt der Bindrvektor an der Komponente eine 1, welche fiir die
Kategorie steht, zu welcher diese Zeile gehort. Alle anderen Komponenten sind 0. Da nun
jede Ausprigung ihre eigene Dimension im Vektor hat, gibt es keine Ahnlichkeiten mehr

zwischen den eigentlich kategorischen Merkmalen.

Der OneHotEncoder nutzt eine spéarliche Darstellung des Vektors: Anstatt einen Vektor
der Form (0.0,0.0,1.0,0.0,0.0) auszuschreiben wird dieser als (5, [2], [1.0]) dargestellt. Im
Vektor mit fiinf Komponenten steht an Index 2 die 1.0, der Rest wird mit 0.0 gefiillt. Bei
vielen verschiedenen Merkmalsauspriagungen ist diese Darstellung platzsparender als ein

Vektor mit zig Eintragen.

<transformer stage="OneHotEncoder" inputCol=

"categoryIndexed" outputCol="categoryVec" />

Listing 19.2: Anwendung eines OneHotEncoder-Transformers
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In Listing 19.2 ist die XML-Verwendung in der Pipeline aufgefithrt. Insgesamt kénnen
mit Hilfe dieser Kodierung kategorische Merkmale umgewandelt und in Spark ML korrekt
verarbeitet werden. Zum besseren Verstdndnis und zur Erkldrung einer weiteren Eigenheit

von Spark ML ein kurzes Beispiel:

id | category categoryIndexed id | categoryVec
0 |a 0.0 0 | (2,]0], [1.0])
1 |b 2.0 1 10,0

2 |c 1.0 OneHotEncoder | 2 | (2, [1], [1.0])
3 |a 0.0 3 | (2, [0], [1.0])
4 | a 0.0 4 | (2, [0], [1.0])
5 | ¢ 1.0 5 1 (2, [1], [1.0))

Auffillig ist, dass die Vektoren nur zwei Komponenten haben, aber insgesamt drei Kate-
gorien vertreten sind. Um sicherzustellen, dass die Vektoren linear abhingig sind, bildet
genau die Kategorie mit den wenigsten zugehorigen Zeilen (in diesem Fall b) auf den
Vektor (0.0,0.0) ab, anstatt auf (0.0,0.0,1.0). Mochte man genau die lineare Unabhéngig
zwischen den Bindrvektoren erreichen, fiigt man in die XML in Listing 19.2 zusétzlich den

Paramter dropLast="false" ein.

Merkmalsvektor Verfiigt man nun ausschlieflich iiber Merkmale beziehungsweise Spal-
ten mit numerischen oder booleschen Werten oder Vektoren, miissen all diese Merkmale
zu einem groflen Merkmalsvektor zusammengefasst werden. Die in Spark ML bereitgestell-
ten Lernverfahren verlangen ndmlich als Eingabe genau eine Merkmalsspalte. Dies kann
nur geliefert werden, wenn man alle Merkmale zu einem Vektor zusammenfasst. Genau zu

diesem Zweck wird der Transformer VectorAssembler bereitgestellt.

<transformer stage="VectorAssembler" outputCol="features"
inputCols=

"categoryVec ,numberA ,numberB ,boolA,..." />

Listing 19.3: Anwendung eines VectorAssembler-Transformers

In Listing 19.3 ist ein Beispiel fiir die Einbindung eines solchen VectorAssemblers in die
XML-Pipeline gegeben. Alle Spalten, die im Parameter inputCols angegeben werden,
werden in einen Vektor zusammengefasst. Wichtig ist dabei, dass diese Spalten wirklich
nur numerische, boolesche Werte oder Vektoren enthalten, sonst bricht die Prozedur mit
einem Fehler ab. Die Angabe des gebildeten Merkmalsvektors wird im spéteren Verlauf

des Kapitels in Abschnitt 19.2 genauer erldutert.
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Benennung der Label Auch die Spalte mit den wahren Klassen (Labels) bei den Trai-
ningsdaten unterliegt bestimmten Voraussetzungen: Die Klassen sollen durch ganzzahlige
Double-Werte startend bei 0.0 reprisentiert werden. In unserem Fall mit zwei Klassen
wiirde dies bedeuten, gamma und hadron als 0.0 und 1.0 darzustellen. Fir bindre Klassifi-
kationsprobleme tauchen oftmals auch die Bezeichnungen -1 und 1 fiir die beiden moglichen
Klassen auf. Auch diese miissen auf 0.0 und 1.0 abgebildet werden. Hilfe bei dieser Auf-
gabe bietet wieder der oben bereits erwahnte StringIndexer. Um garantieren zu kénnen,
dass die Label vom Lernverfahren richtig erkannt werden, sollte der StringIndexer immer
auf die Klassenspalte angewendet werden. Sollte das Label schon numerisch gewesen sein,
wird dieser numerische Wert in einen String umgewandelt und von dort aus auf gewohnte
Weise indiziert. Eine Einbindung des StringIndexers ist wie in Listing 19.1 gezeigt moglich
und eine klare Empfehlung von unserer Seite. Auch wenn die Klassen schon mit 0.0 und
1.0 benannt sind, ist die Verwendung eines StringIndexers ratsam, um einen reibungslosen

Ablauf garantieren zu kénnen.

Sollen nach der Klassifikation die Klassenlabel in die urspriinglichen zuriick konvertiert
werden, steht auch dazu ein Operator zur Verfiigung. Dieser Schritt kann jedoch nicht
in die Pipeline integriert werden, da fiir die korrekte Ausfithrung eine Datenstruktur not-
wendig ist, welche erst bei der Ausfithrung des in der Pipeline definierten Stringlndezers
erzeugt wird. Daher sollte der Operator IndexToStringConversion erst nach der Pipeline

und dem Training des Pipeline-Modells (siehe Abschnitt 19.2) aufgerufen werden.

<pipeline modelName="model"> ... </pipeline>
<!-- load test or raw data and apply model -->
<stream.pgb94 .operators.IndexToStringConversion modelName="

model" inputCol="prediction" outputCol="predictedLabel"/>

Listing 19.4: Umkehrung eines StringIndexers

Listing 19.4 zeigt eine beispielhafte XML-Gestaltung fiir die Integration einer Riickkonvertierung.

Weitere Moglichkeiten zur Datenvorverarbeitung Spark ML bietet nicht nur Trans-
former und Estimator zur Aufbereitung der Daten an, damit sie die von den bereitgestell-
ten Lernalgorithmen gestellten Voraussetzungen erfiillen kénnen. Mithilfe der implemen-
tierten Stages kann man auch eigene Anspriiche und Wiinsche an die Daten umsetzen.
Dazu sei auf die Seite http://spark.apache.org/docs/latest/ml-features.html ver-

wiesen, auf welcher alle Stages fiir die Merkmalsanpassung vorgestellt werden.

Abschlielend ist noch zu sagen, dass alle Aufbereitungs- und Vorverarbeitungsschritte, die
in einer Pipeline aufgefithrt werden, auch auf die spéteren Test- beziehungsweise Klassifika-

tionsdaten angewendet werden. Daher ist keine neue Aufbereitung der zu klassifizierenden
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Daten nétig. Solange dieselben Spalten mit denselben Namen wie im Trainingsdatensatz
existieren, ausgenommen natiirlich die Spalte mit den Klassen, treten keine Probleme auf.
Wurde beim Design der Pipeline darauf geachtet, dass kategorische in numerische Merk-
male konvertiert wurden und dass pro Zeile ein gesamter Merkmalsvektor gebildet wurde,
werden diese Schritte automatisch auch auf die zu klassifizierenden Daten angewendet,
bevor sie wirklich durch das Modell klassifiziert werden. Es ist daher nur essentiell darauf
zu achten, dass auch dieselben Merkmale mit denselben Namen vorhanden sind wie in den

Trainingsdaten.

19.2 Modelltraining und Evaluation

Nachdem die notigen Schritte zur Datenaufbereitung erldutert wurden, geht es in die-
sem Abschnitt um das Herzstiick des maschinellen Lernens, ndmlich den Einsatz des
gewiinschten Lerners und dessen Evaluation. Dieser Abschnitt ist in drei Unterabschnitte
gegliedert. Zundchst werden Training und Klassifikation eines Lernverfahrens thematisiert,
anschlieBend die Evaluation eines Modells und die Moglichkeiten der Durchfiithrung von

Parameterstudien.

19.2.1 Training und Klassifikation

Zu Beginn des Trainings ist es ratsam, die gegebenen Daten in Trainings- und Testdaten-
satz zu splitten. Meist wird ein Verhéltnis von circa 70 zu 30 Prozent gewédhlt. Auf dem
groferen Trainingsdatensatz wird das Pipeline-Modell trainiert, wahrend die restlichen

Daten zur Evaluation des Lerners genutzt werden.

<stream.pgb94.operators.SplitDataFrame ratio="0.3" newName="

testData"/>

Listing 19.5: Splitten in Trainings- und Testdaten

In Listing 19.5 ist zu sehen, wie diese Aufteilung im XML umgesetzt werden kann. Der
Operator SplitDataFrame schneidet in diesem Fall 30% des geladenen DataFrames ab und
speichert diesen unter dem Namen testData. Auf dem verbliebenen DataFrame wird das

Pipeline-Modell trainiert.

In der Pipeline stehen zuerst die verschiedenen Aufbereitungs- und Vorverarbeitungsschrit-
te, wie sie im vorangegangenen Abschnitt erklart wurden. Anschliefend kénnen ein oder
mehrere Lernverfahren definiert werden, welche trainiert werden sollen. Dabei wird in
Klassifikation und Regression unterschieden. Im Folgenden werden die von Spark ML be-

reitgestellten Lernverfahren aus den jeweiligen Kategorien kurz vorgestellt.



200 KAPITEL 19. MASCHINELLES LERNEN MIT TELEPHANT

Klassifikation Fiir die Klassifikation werden folgende Lernverfahren bereitgestellt: Lo-
gistische Regression, Entscheidungsbaum, Random Forest, Gradient-Boosted Trees, Mul-
tilayer Perceptron, One-vs-Rest-Klassifikator und Naive Bayes. Fiir die Gamma-Hadron-

Separation empfehlen sich besonders die baumbasierten Lernverfahren [6].

Regression Fiir die Regression werden folgende Lernverfahren bereitgestellt: Lineare
Regression, Entscheidungsbaum, Random Forest, Gradient-Boosted Trees, Survival Re-
gression und Isotonic Regression [6]. Fiir die Energieschidtzung haben sich in unseren Tests

erneut die baumbasierten Methoden am besten verhalten.

Die jeweiligen Parameter lassen sich aus der Spark ML-API [7] ablesen. Wie dies ge-
nau funktioniert, wird am Beispiel des RandomForestClassifiers [8] erlautert: In der API
befindet sich eine Zusammenfassung aller Methoden. Alle set-Methoden beschreiben Pa-
rameter, die gesetzt werden kénnen. Soll ein bestimmter Parameter in der XML gesetzt
werden, muss das set weggelassen und der erste Buchstabe des Parameters kleingeschrie-

ben werden.

<estimator stage="RandomForestClassifier" maxDepth="20"
numTrees="30" featuresCol="features" labelCol="

labelIndexed" predictionCol="prediction"/>

Listing 19.6: Definition eines Random Forest

In Listing 19.6 wird ein RandomForestClassifier in der Pipeline definiert. In der API zu
diesem Klassifikator kann nachgelesen werden, dass dieser unter anderem iiber Methoden
setMaxDepth(int value) und setNumTrees(int value) verfiigt. In Klammern wird an-
gegeben, wie viele Parameter von welchem Datentyp benotigt werden. Wie im Beispiel

gezeigt konnen die gewiinschten Parameter in der XML beschrieben werden.

Besonders wichtig ist es hier, immer die Parameter featuresCol und labelCol anzugeben,
damit das jeweilige Lernverfahren weif3, auf welchen Merkmalen und Klassen er trainieren
soll. Diese Parameter existieren unabhéngig davon, ob es sich um ein Klassifikations- oder
Regressionsverfahren handelt. Auflerdem kann der Parameter predictionCol angegeben
werden, um die Spalte zu benennen, in welcher die Anwendungsergebnisse des Lerners

gespeichert werden. Der Standardwert fiir diesen Parameter ist prediction”.

Auch die Pipeline enthélt Parameter. Neben dem Modellnamen, welcher relativ selbster-
klarend ist, spielt der Parameter automaticTraining eine wichtige Rolle. Ist dieser auf
true gesetzt, wird das Pipeline-Modell automatisch trainiert und kann danach abgespei-
chert werden und neue Daten klassifizieren. Es gibt jedoch auch Anwendungsfille, in de-
nen das Modell nicht sofort trainiert werden sollte und der Parameter auf false gestellt

werden kann. Anwendungsfille dafiir sind beispielsweise eine auf die Pipeline folgende
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Kreuzvalidierung oder ein gewiinschtes Training mit jeweils anderen Daten. Beide Fille
werden am Ende dieses Unterabschnittes besprochen. Zunéchst folgt ein XML-Ausschnitt

mit zugehoriger Erlduterung fiir das automatische Training:

<pipeline modelName="model" automaticTraining="True">

<!-- beliebige Transformer und Estimator zur Aufbereitung -->

<estimator stage="RandomForestClassifier" numTrees="30"
featuresCol="features" labelCol="labelIndexed"/>

</pipeline>

<stream.pgb94.operators.LoadDataFrame name="testData" />

<stream.pgb94 .operators.ApplyModel modelName="model" />

<stream.pgb94 .operators.ExportModelToBinaryFile modelName="
model" url="hdfs://..." />

Listing 19.7: Training und Anwendung eines Modells

Wie in Listing 19.7 zu sehen ist, wird zunéchst eine Pipeline gebaut, welche nach belie-
bigen Aufbereitungsschritten einen Klassifikator trainiert, in diesem Fall einen Random-
ForestClassifier mit 30 Baumen. Anschlieend wird der Testdatensatz geladen. Alternativ
konnen in diesem Schritt, wenn nicht getestet werden soll, die Rohdaten geladen werden,
welche klassifiziert werden sollen. Das Modell, welches am Ende der Pipeline automatisch
trainiert wurde, wird auf die Testdaten angewendet und an einen beliebigen Ort im HDFS
exportiert, sodass es fiir spatere Anwendungen wieder geladen werden kann. Das Modell
wird als modelName.model abgespeichert und kann mit Hilfe des ImportModelFromBi-
naryFile-Operators durch Angabe der URL und des gewiinschten Modelnamens wieder

geladen werden.

Es wird nun der Fall betrachtet, in welchem die Pipeline nicht automatisch trainiert wird.

Der erste Anwendungsfall ist eine Kreuzvalidierung, welche auf die Pipeline folgen soll.

<stream.pgb94 .operators.CrossValidator type="classification"
modelName="CrossValidatorModel" folds="4" labelCol="
labelIndexed" predictionCol="prediction" metricName="

recall"/>

Listing 19.8: Kreuzvalidierung

Wie in Listing 19.8 zu sehen ist, muss bei einer Kreuzvalidierung der Typ, also Klassifika-
tion oder Regression, angegeben werden. In diesem Fall wird eine vierfache Kreuzvalidie-
rung durchgefiihrt. Dabei wird das Modell viermal auf den gleichen Daten trainiert und

sofort evaluiert. Genau das Modell, welches bei den Evaluationen am besten abschneidet,



202 KAPITEL 19. MASCHINELLES LERNEN MIT TELEPHANT

wird zurilickgegeben und als CrossValidatorModel abgespeichert. Danach kann dieses wie
gewohnt zur Klassifikation genutzt, abgespeichert und evaluiert werden. Die Kreuzvali-
dierung ist hilfreich, um statistische Schwankungen zu reduzieren. Aufgrund der Nutzung
von random seeds innerhalb der meisten Algorithmen kann es durchaus vorkommen, dass
sich Modelle, die mit denselben Parametern und auf denselben Daten trainiert werden, in

ihrer Qualitdt unterscheiden.

Diese Schwankungen kénnen mit Hilfe unserer Operatoren auflerdem zu Analysezwecken
beobachtet werden. Dazu gibt es den foreach-Operator, welcher es mdoglich macht, das
Training eines Pipeline-Modells beliebig oft zu wiederholen, sofern automaticTraining auf
false gesetzt war. Werden in jedem Durchlauf die entsprechenden Evaluationsergebnisse
abgespeichert, werden die Schwankungen sichtbar. Der folgende XML-Auszug gibt einen
Einblick in das Konzept des foreach-Operators, die Evaluation und Speicherung ebendieser
Ergebnisse wird in Unterabschnitt 19.2.2 diskutiert.

<stream.pgb94.operators.ForEach header="i in [1,2,3,4,5]">
<stream.pgb94.operators.LoadDataFrame name="trainingData" />
<stream.pgb94.operators.TrainModel modelName="model" />
<stream.pgb94.operators.LoadDataFrame name="testData" />
<stream.pgb94.operators.ApplyModel modelName="model" />

<! -- evaluation -->

</stream.pgb94.operators.ForEach>

Listing 19.9: Mehrfaches Training eines Modells auf denselben Daten zur Beobachtungen der

statistischen Schwankungen

In Listing 19.9 wird fiinfmal trainiert und getestet. Voraussetzung fiir das Funktionieren
dieser XML ist, dass vor dem foreach-Operator die kompletten Daten geladen und in
zwei DataFrames aufgeteilt wurden, welche unter den Namen trainingData und testData

abgespeichert wurden.

Dieses abwechselnde Laden von Trainings- und Testdaten bildet eine gute Verbindung
zum zweiten Anwendungsfall fiir ein manuelles Training: Es kann durchaus sein, dass ein
Anwender das gleiche Modell mit mehreren verschiedenen Trainingsdatensétzen trainieren
mochte. Auch dafiir kann man einen foreach-Operator einsetzen und immer wieder andere
DataFrames fiir das Training laden, sofern man diese vorher entsprechend abgespeichert
hat.

19.2.2 Evaluation

Nachdem Training und Anwendung eines Modells im vorherigen Unterabschnitt ausfithrlich

erlautert wurden, geht es im Folgenden um die Evaluation eines Modells. Zunachst werden
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die Operatoren von TELEPhANT zur Evaluation vorgestellt, anschlieSend wird erlédutert, wie

Evaluationsergebnisse gespeichert werden koénnen.

Evaluation einer biniren Klassifikation Da es sich bei unserem Anwendungsfall um
eine bindre Klassifikation in Gamma- und Hadronstrahlungen handelt, stellt unser Pro-
dukt Moglichkeiten zur Evaluation eines bindren Klassifikators zur Verfigung. Zunéchst
konnen mithilfe des FvaluateBinaryClassifier-Operators die Werte TP (true positives), TN
(true negatives), FP (false positives) und FN (false negatives) ausgerechnet werden. Dieser
Operator berechnet auch gleichzeitig die jeweils zugehorigen Raten. Wichtig ist, dass es
bei diesem Operator zwei Parameter gibt: Die Spalte mit den korrekten Klassenbezeich-
nungen und die Spalte mit den Klassifikationsergebnissen. Diese beiden Spalten werden
miteinander verglichen und sollten deswegen vom Typ her iibereinstimmen. Es ist daher
ratsam bereits die indexierte Label-Spalte als Eingabe zu verwenden, da sonst zunéchst
eine Riickkonvertierung der Klassifikationsergebnisse zu den urspriinglichen Klassenbe-
zeichnungen stattfinden muss. Die Ergebnisse des Operators werden in die Logdateien
geschrieben und zusétzlich im Kontext abgelegt, sodass sie spéter komfortabel in eine

CSV-Datei geschrieben werden kénnen. Es folgt eine kurze Beispielanwendung;:

<stream.pgb94 .operators.EvaluateBinaryClassifier labelCol="

labelIndexed" predictionCol="prediction" />

Listing 19.10: Evaluation eines binidren Klassifikators (erstes Beispiel)

Der zweite Operator zur Evaluation eines bindren Klassifikators ist der FEwaluateBina-
ryClassifierRaw-Operator, welcher zusétzliche Metriken bereitstellt. Dies sind die Area
Under ROC, oft auch ROC-Kurve genannt, und die Area under Precision-Recall-Curve.
Auch hier werden zwei Parameter gefordert: Die Spalte mit den korrekten Klassenbezeich-
nungen und die Spalte mit noch nicht normalisierten Wahrscheinlichkeiten fiir jede Klasse.
Bei den meisten Klassifikationsproblemen (Entscheidungsbdumen, Random Forests, Lo-
gistischer Regression und Naive Bayes) erzeugt die Anwendung eines Modells nicht nur
eine neue Spalte mit Namen prediction, sondern noch zwei weitere, ndmlich rawPredicti-
on und probability. Diese beiden Spalten enthalten jeweils einen Vektor der Lénge 2 (fir
genau 2 Klassen bei einem binédren Klassifikationsproblem). In prediction stehen jeweils
die genauen Wahrscheinlichenkeiten dafiir, dass diese Zeile Klasse 0.0 beziehungsweise 1.0
zugeordnet werden sollte. Die Wahrscheinlichkeiten sind normalisiert, sodass deren Sum-
me genau 1 ergibt. Die Spalte rawPrediction, welche fiir die Evaluation bendtigt wird,
enthélt diese Wahrscheinlichkeiten in noch nicht normalisiertem Zustand. Fiir Random
Forests sind beispielsweise in den Vektorkomponenten jeweils zu sehen, wie viele Baume
im Wald fiir die jeweilige Klasse gestimmt haben. Nur fiir Klassifikatoren, welche diese

“rohen”Vorhersagen ausgeben, kann der FvaluateBinaryClassifierRaw-Operator genutzt
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werden. Auch hier werden die beiden Werte in den Log geschrieben und im Kontext ab-
gespeichert. Auflerdem sollte nach Moglichkeit wieder die bereits indexierte Spalte mit
Klassenbezeichnungen genutzt werden. Eine beispielhafte Anwendung sieht folgenderma-

Ben aus:

<stream.pgb94 .operators.EvaluateBinaryClassifierRaw labelCol=

"labelIndexed" rawPredictionCol="rawPrediction" />

Listing 19.11: Evaluation eines biniren Klassifikators (zweites Beispiel)

Natiirlich kann man die Spalten predictionCol und rawPredictionCol nach Belieben bei
der Definition des Klassifikators umbenennen, indem man den jeweiligen Parameter in der

Pipeline setzt.

Evaluation eines Regressors Fiir die Energieschitzung wird eine Regression durch-
gefiihrt, deswegen stellt TELEPhANT auch Evaluationsmoglichkeiten fiir die Regression be-
reit. Der FuvaluateRegressor-Operator funktioniert ganz &hnlich und benétigt zwei Para-
meter: Die Spalte mit der wahren Energie und die mit der geschitzten. Auf dieser Basis
werden die Werte RMSE (Root-Mean Squared Error) und R? berechnet, ins Log geschrie-
ben und im Kontext abgelegt. Das folgende Beispiel zeigt die XML-Anwendung:

<stream.pgb94 .operators.EvaluateRegressor labelCol="energy"

predictionCol="prediction" />

Listing 19.12: Evaluation eines Regressors

Zum Abschluss dieses Unterabschnittes wird im Folgenden erlautert, wie die Ergebnisse
aus dem Kontext in eine CSV geschrieben werden kénnen. Dazu wird der AppendToCSV -
Operator genutzt. Dieser nimmt zwei Parameter entgegen, zum Einen die URL, unter
welcher die CSV abgelegt werden soll, zum Anderen die Werte, die in der CSV gespeichert
werden sollen. Dabei hat der Anwender die M6glichkeit einen beliebigen Wert abzulegen
(zum Beispiel type=RandomForest) oder einen Wert aus dem Kontext zu holen (zum
Beispiel AreaUnderR0OC).
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1 <stream.pgb94.operators.AppendToCSV columns="type=
RandomForest ,numTrees=30, AreaUnderROC,
AreaUnderPrecisionRecallCurve ,TP,TN,FP,FN,TPrate, TNrate,
FPrate ,FNrate" url="hdfs://.../eval.csv"/>

Listing 19.13: Darstellen der Evaluationsergebnisse in einer CSV

Dieser in Listing 19.13 beschriebene Schritt kann durchaus mehrfach ausgefithrt werden,
sodass die unter der URL angegebene CSV-Datei beim ersten Zugriff erzeugt und bei
danach folgenden Zugriffen nur noch erweitert wird. Mithilfe eines foreach-Operators wie
in Listing 19.9 kénnen so statistische Schwankungen bei der Modellerzeugung beobachtet
und gesichert werden. Auch fiir Parameterstudien kann die Dokumentation der Ergebnisse

in einer CSV-Datei vorteilhaft sein, wie der ndchste Unterabschnitt zeigen wird.

19.2.3 Parameterstudie

Mit Hilfe von grofien Parameterstudien kann dasselbe Lernverfahren auf verschiedenen
Parametern getestet werden. Eine besonders komfortable Moglichkeit zum Design solcher
Studien gibt es dafiir leider nicht, dafiir ist die Auswertung solcher Studien mit Hilfe des

AppendToCSV-Operators relativ elegant.

In der Pipeline kénnen tatsdchlich beliebig viele Estimator-Stages stehen. Jeder Klassi-
fikator wird trainiert und kann evaluiert werden. Wichtig ist bei der Verwendung von
mehreren Lernverfahren in einer Pipeline allerdings die korrekte Parameterbenennung.
Ublicherweise entscheiden sich die Lerner dafiir, ihre Vorhersage in eine Spalte namens
prediction zu schreiben. Fir den ersten Lerner der Pipeline funktioniert das auch noch
sehr gut, fiir den zweiten jedoch kommt es zum Problem, da diese Spalte, die er eigentlich
an den DataFrame anfiigen sollte, schon existiert. Es muss also darauf geachtet werden,
dass die Parameter predictionCol, rawPredictionCol und probabilityCol fiir Klassifikatoren
und lediglich predictionCol fiir Regressoren immer wieder fiir jeden Lerner individuell be-
nannt werden miissen. Der folgende XML-Auszug zeigt einen moglichen Aufbau fiir eine

Parameterstudie:

1 <pipeline modelName="gammaHadronModel" automaticTraining="
true">

2 <!-- beliebige Aufbereitungsschritte —-->

3 <estimator stage="RandomForestClassifier" numTrees="5"
featuresCol="features" labelCol="IsGammalIndexed"
rawPredictionCol="rawl" probabilityCol="probl"

predictionCol="IsGammal" />
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<!-- Trainiere N Random Forests mit jeweils unterschiedlicher
Waldgroesse -->

<estimator stage="RandomForestClassifier" numTrees="50"
featuresCol="features" labelCol="IsGammalndexed"
rawPredictionCol="rawN" probabilityCol="probN"
predictionCol="IsGammaN" />

</pipeline>

<!-- Lade Testdaten und wende Modell an -->

<stream.pgb94 .operators.EvaluateBinaryClassifier modelName="
gammaHadronModel" predictionCol="IsGammal" labelCol="
IsGammaIndexed" />

<stream.pgb94 .operators.EvaluateBinaryClassifierRaw modelName
="gammaHadronModel" rawPredictionCol="rawl" labelCol="
IsGammaIndexed" />

<stream.pgb94.operators.AppendToCSV columns="type=
RandomForestClassifier ,numTrees=${numTrees1},ArealUnderR0OC,
AreaUnderPrecisionRecallCurve ,TP,TN,FP,FN,TPrate, TNrate,
FPrate ,FNrate" url="hdfs://.../eval.csv"/>

<!-- Evaluiere N Random Forests und schreibe Ergebnis in CSV
wie gezeigt -—-->
</task>

Listing 19.14: Parameterstudie

Zu beachten ist, dass bei der Ausfilhrung von Listing 19.14 N Zufallswilder trainiert
werden. Anschlieflend wird auf diesem grofien Modell klassifiziert, sodass insgesamt 3 - N
Spalten angefiigt werden: Fiir jeden Zufallswald die Spalten rawPrediction, probability und
prediction. Aulerdem werden bei jeder Evaluation die Ergebnisse im Kontext (also FP,
TP, AreaUnderROC,...) iiberschrieben.

So miihsam auch der Aufbau einer solchen Studie ist, so komfortabel lassen sich anschlie-
Bend die verschiedenen Evaluationsergebnisse und darauf basierend die perfekten Para-
meter flir den Lerner aus der CSV-Datei ablesen. Mit Hilfe der property-Tags miissen
die Parameter nicht hart in die Pipeline kodiert werden, so wird wenigstens ein wenig
Flexibilitdt in den Studien erreicht. Im Folgenden wird nun der in TELEPhANT enthalte-
ne TreeParser vorgestellt, mit welchem baumbasierte Modelle weiterfithrend analysiert

werden konnen, wenn die bis hier vorgestellten Evaluationsmethoden nicht ausreichen.

19.3 Der TreeParser

In unseren Experimenten stellte sich das Verwenden von Random Forests als sehr erfolg-
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reiche Methode zur Klassifikation heraus. Da Spark ML es erlaubt, gewonnene Random-
Forest-Modelle in Textform zu speichern, kann der TreeParser benutzt werden um die

Textdatei fiir weitere Analysen wieder in eine Datenstruktur zu iiberfiihren.

19.3.1 Struktur der Lernbiume

Betrachten wir zunéchst als Beispiel einen Auszug aus einem beliebigen Random Forest.
Jeder Baum des Waldes beginnt mit der Zeile "Tree X (weight Y.Z)”, dann folgt die Wurzel
des Baumes in der nichsten Zeile. Die Knoten des Baumes sind entweder Entscheidungs-
knoten, an denen eine Bedingung gepriift und dann eines der Kinder gewéhlt wird, oder

Vorhersageknoten, die die Blatter des Baumes darstellen und eine Klasse wéhlen.

In unserem Fall ist die Wurzel des Baumes ein Entscheidungsknoten, der zwischen den
Féllen "Ist Feature 30 kleiner als 49.42404654253062” oder "Ist Feature 30 grofler als
49.42404654253062”, entscheidet. Zu dem If eines Knotens gehort also immer ein Else, das
allerdings meistens sehr viel spater im Baum folgt. Leider sorgt dieses Format dafiir, dass
die Baume fiir Menschen relativ schwierig zu lesen sind, dafir sind sie mit dem TreeParser
umso leichter zu verarbeiten. Betrachtet man die If-Zweige als rechte und die Else-Zweige
als linke Kinder des Knotens, so kann der Baum innerhalb eines Durchlaufs analysiert
werden. Dazu werden, von der Wurzel ausgehend, zunéchst alle If-Zeilen rekursiv als
rechte Kinder des Vorgéngers in den Baum eingefiigt, bis eine Vorhersage-Zeile auftritt.
Diese stellt den Rekursionsanker dar. Nach der Else-Zeile folgt ein rekursiver Aufruf fir
den linken Teilbaum des letzten Entscheidungsknotens. Ist dieser abgearbeitet folgt das

Else, und damit der linke Teilbaum des ndchsthéheren Knotens.

Tree 0 (weight 1.0):
If (feature 30 <= 49.42404654253062)
If (feature 17 <= 0.082960642675512)
Predict: 0.0
Else (feature 17 > 0.082960642675512)
Predict: 1.0
Else (feature 30 > 49.42404654253062)
Predict: 0.0
Tree 1 (weight 1.0):
If (feature 30 <= 13)
Predict: 0.0
Else (feature 30 > 13)
Predict: 1.0

Listing 19.15: Auszug aus einem kleinen RandomForest
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19.3.2 Die Parser-Klasse

Der TreeParser kann nun genutzt werden, um eine genauere Analyse des Random Forests
durchzufithren. Dazu wird der Baum zunéchst wieder, wie beschrieben, in eine Daten-
struktur tiberfithrt. Nach dem Aufruf der Main-Methode der Parser Klasse, legt diese ein
Array mit den Badumen des Random Forests an, die jeweils ihren Wurzel-Knoten als auch
Gewicht und Nummer enthalten. Aulerdem konnen diese erweitert werden, um in ihnen
weitere Daten, die fiir die Analyse wichtig sind, zu speichern. Die Knoten selber unterteilen
sich in DecisionNodes und PredictionNodes, die den Entscheidungs- und Vorhersage-
knoten entsprechen. Das Einlesen des Baumes geschieht, wie bereits beschrieben, rekursiv,
die DecisionNodes erstellen also ihre Kinderknoten, sobald sie erstellt werden. Der Par-
ser muss lediglich mit der ersten Zeile des jeweiligen Baumes den Wurzelknoten erstellen.

Ist die TreeList erstellt worden, kann nun die eigentliche Analyse beginnen.

19.3.3 CombinedTreeFeatures

Zuletzt betrachten wir noch CombinedTreeFeatures, ein Beispiel fiir ein Analysever-
fahren das auf dem durch den Parser gewonnenen Random Forest durchgefithrt werden
kann. Angenommen, wir wollen herausfinden, wie hiufig ein Feature pro Baum oder Wald
vorkommt. Hierzu erweitern wir die Tree Klasse um die Klasse Tupel, die zwei Integer
enthilt sowie eine HashMap und ein Array aus Tupeln.

Wird nun die Methode featureCounting() des Baumes aufgerufen, zahlt dieser zunéchst
rekursiv alle Features die ihn ihm vorkommen mit Hilfe der HashMap. Dabei sind die
Feature-Nummern die Keys, wihrend die Values die Hiufigkeit des Features représentieren.
Sind die Features in der HashMap gesammelt werden sie dann zwecks besserer Sortier-
barkeit in das Array iibertragen, welches dann sortiert wird. Ebenso kénnen wir jetzt
im Parser die Methode combinedTreeFeatures() verwenden, um die HashMaps des ge-
samten Random Forest nach demselben Prinzip zu kombinieren und in einen Array zu
ibertragen.

Es ist also zu erkennen, dass die rekursive Datenstruktur, in der der Random Forest nun
gespeichert ist, es relativ problemlos erlaubt, neue Analyseverfahren zu implementieren.
Somit ist die Grundlage gegeben, auch interessantere Analyseverfahren als das einfache

Zahlen von Features durchzufiithren.



Anhang A

Liste der Operatoren

Im Folgenden werden alle verwendeten Operatoren mit Name und Funktion aufgelistet.

Die Namen der zu verwendenden Parameter sind dabei jeweils in Anfiihrungszeichen an-

gegeben.
AppendToCSV Fiigt einen String (”columns”) an eine CSV-Datei ("url”)
an.
ApplyModel Ladt das angegebene Modell ("modelName”) und wendet es

auf den InputFrame an.

ComputeAbsoluteError

Berechnet den absoluten Fehler aus zwei vorgegebenen Spal-
ten ("correctCol” und ”predictionCol”) und fiigt ihn als

zusatzliche Spalte ("outputCol”) hinzu

CountRows Zahlt die Reihen des DataFrames

CountRowsWhere Zahlt die Reihen des DataFrames, an denen eine Bedingung
("condition”) gilt.

CrossValidator Fiihrt entweder eine Klassifikation oder eine Regression ("ty-

pe”) mit wahren (”labelcol”) und vorhergesagten ("predic-
tionCol”) Werten durch. Dabei wird die Metrik ("metricNa-

me”) verwendet.

EvaluateBinaryClassifier

Evaluiert eine binire Klassifikation mit wahren (”labelCol”)

und vorhergesagten(”predictionCol”) Werten.

EvaluateRegressor Evaluiert eine Regression mit wahren (”labelCol”) und vor-
hergesagten(”predictionCol”) Werten.

ExplainPipeline Gibt die aktuelle Pipeline mit Erklarungen aus.

ExportDataFrame Speichert den DataFrame auf die gewiinschte Art ("saveMo-

de”) im Dateisystem ("url”).
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ExportDataFrameParquet

Speichert den DataFrame als Parquet-File im Dateisystem
(77ur177).

ExportModel

Speichert ein Modell ("modelName”) im Dateisystem
("url”).

ExportModelToBinaryFile

Speichert ein Modell ("modelName”) als bindre Datei im

Dateisystem ("url”).

FilterDataFrame Entfernt alle Zeilen aus dem DataFrame, die eine Bedingung
("condition”) nicht erfiillen.

ForEach Fiihrt die enthaltenen Prozessoren mehrfach aus. Der Para-
meter "header” muss folgende Form haben: ,%variable% in
[vall,val2,...,valn] Beispiel: header=,;i in [10,20,30]*

ImportModel Importiert ein Modell ("modelName”) aus dem Dateisystem

(77ur177) .

ImportModelFromBinaryFile

Importiert ein als bindre Datei gespeichertes Modell ("mo-

delName”) aus dem Dateisystem ("url”).

IndexToStringConversion

Wenn ein Modell ("modelName”) mit StringIndexer verwen-
det wurde, iibernimmt dieser Operator die Riickiibersetzung

der Spalte "inputCol” zu "outputCol”.

LoadDataFrame L&adt einen DataFrame ("url”) aus dem Dateisystem.

LogTimestamp Schreibt eine Nachricht ("message”) und die aktuelle Zeit in
Millisekunden in den Log.

PrintDataFrame Gibt den Inhalt des DataFrames aus.

RenameColumn Andert den Namen einer Spalte im DataFrame vom alten
("oldName”) in einen neuen ("newName”).

SafeDataFrame Speichert den DataFrame im DateiSystem (™url”).

Select ColumnsSQL Wiéhlt die vorgegeben Spalten (”columns”) aus. Die einzel-
nen Spalten sind mit Kommata zu trennen, z.B. (coll, col2,
col3), zusétzlich konnen SQL Ausdriicke verwendet werden.

SplitDataFrame Erstellt eine Partition des DataFrame und speichert die-

se unter neuem Namen ("newName”). Die Grofie ("ratio”)

muss festgelegt werden.

StartTimeMeasurement

Legt einen Zeitmesser (”"timerName”) an und setzt seine
Startzeit.

StopTimeMeasurement

Gibt die Differenz zwischen der aktuellen Zeit und dem

Start-Zeitmesser des selben Namens (”"timerName”) an.

SwitchDataFrame Speichert gegebenfalls den aktuellen DataFrame (”safeCur-
rentDataFrameAs”), und lddt dann einen neuen (”loadDa-
taFrame”).

TrainModel Wendet die aktuelle Pipeline auf den DataFrame an. Das so

gewonnene Modell wird gespeichert ("modelName”).

TrainModelWithParameters

Trainiert die Pipeline und setzt fir diese Ausfiilhrung
zusdtzliche Parameter. "parameters” muss folgende Form
haben: "%stage%.%Param%="%variable%"”
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Anhang B

XMLs zum Kapitel ,Modellqualitiat*

B.1 Experiment 14.1: Vergleich von Klassifikationsmodel-

len

<container>

<input id="1" class="stream.io.CSVInput" url="hdfs://s876cn01.cs.uni-dortmund.de:8020/pg594/datasets/

gammahadron-balanced/" />

<task id=

input="1">

<pipeline modelName="gammaHadronModel" automaticTraining="false">
<transformer stage="VectorAssembler" inputCols="numPixelInShower ,bSize,M3Long,M3Trans,h M4Long,hM4Trans
,C0Gx ,C0Gy ,Length ,Width ,Delta ,m31,m3t ,numIslands,Concentration_onePixel,Concentration_twoPixel
,ConcCore,concCO0G,Leakage ,Leakage2,Timespread ,Timespread_weighted ,Slope_long,Slope_trans,
Slope_spread,Slope_spread_weighted ,Disp,Alpha,Distance,CosDeltaAlpha,Theta,Energy" outputCol="
features" />
<estimator stage="StringIndexer" inputCol="IsGamma" outputCol="IsGammaIndexed" />

<estimator stage="RandomForestClassifier" cacheNodeIds="true" featuresCol="features" labelCol="
IsGammaIndexed" rawPredictionCol="rawl" probabilityCol="probl" predictionCol="predictioni" />

<estimator stage="GBTClassifier" cacheNodeIds="true" featuresCol="features" labelCol="
IsGammaIndexed" predictionCol="prediction2" /> </-- no rawPredictionCol, no probabilityCol -->

<estimator stage="MultilayerPerceptronClassifier" featuresCol="features" labelCol="IsGammalIndexed"
predictionCol="prediction3" />

</pipeline>

<stream.pgb594.operators.GeneratelLayersMPC stage="4" numFeatures="32" numLabels="2" numInnerLayers="20"
/>

<stream.pgb94.operators.SaveDataFrame name="original" />

<stream.pgb594.operators.ForEach header="i in [1,2,3,4,5]">
<stream.pg594.operators.LoadDataFrame name="original" />
<stream.pgh94.operators.SplitDataFrame ratio="0.1" newName="testData"/>
<stream.pgh94.operators.SaveDataFrame name="trainingData" />
<stream.pg594.operators.CountRowsWhere name="trainingEvents" />
<stream.pg594.operators.TrainModel modelName="gammaHadronModel" />
<stream.pgh94.operators.LoadDataFrame name="testData" />

<stream.pg594.operators.ApplyModel modelName="gammaHadronModel" />

<!-- Evaluate every forest and append result to csv -->
<stream.pgb594.operators.IndexToStringConversion modelName="gammaHadronModel" inputCol="predictionl"
outputCol="IsGammal"/>
<stream.pgb94.operators.EvaluateBinaryClassifierRaw labelColIndexed="IsGammalIndexed"
rawPredictionCol="rawl"/>

<stream.pg594.operators.EvaluateBinaryClassifier labelCol="IsGamma" predictionCol="IsGammal" />
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<stream.pg594.operators.AppendToCSV columns="type=RF,trainingEvents ,6 AreaUnderR0OC,
AreaUnderPrecisionRecallCurve ,TP,TN,FP,FN,TPrate ,TNrate ,FPrate ,FNrate" url="hdfs://s876cn01l.cs
.uni-dortmund.de:8020/pgb94/classificationexperiment.csv"/>

<stream.pgb594.operators.IndexToStringConversion modelName="gammaHadronModel" inputCol="prediction2"
outputCol="IsGamma2"/>

<!-- GBT doesn’t have rawPrediction <stream.pgb94.operators.EvaluateBinaryClassifierRaw
labelColIndezed="IsGammaIndezed" rawPredictionCol="raw2"/> -->

<stream.pg594.operators.EvaluateBinaryClassifier labelCol="IsGamma" predictionCol="IsGamma2" />

<stream.pgb94.operators.AppendToCSV columns="type=GBT,trainingEvents ,AreaUnderR0C=0,
AreaUnderPrecisionRecallCurve=0,TP,TN,FP,FN,TPrate,TNrate ,FPrate ,FNrate" url="hdfs://s876cn01.
cs.uni-dortmund.de:8020/pg594/classificationexperiment.csv"/>

<stream.pgb94.operators.IndexToStringConversion modelName="gammaHadronModel" inputCol="prediction3"
outputCol="IsGamma3"/>
<!-- MPC doesn’t have rawPrediction ... -->
<stream.pg594.operators.EvaluateBinaryClassifier labelCol="IsGamma" predictionCol="IsGamma3" />
<stream.pgb94.operators.AppendToCSV columns="type=MPC,trainingEvents,AreaUnderR0C=0,
AreaUnderPrecisionRecallCurve=0,TP,TN,FP,FN,TPrate ,TNrate ,FPrate ,FNrate" url="hdfs://s876cn01.
cs.uni-dortmund.de:8020/pg594/classificationexperiment.csv"/>
</stream.pgb94.operators.ForEach>
</task>

</container>

Die von den einzelnen Modellen verwendeten Parameter kénnen der folgenden Ubersicht
entnommen werden:

Pipeline parameters:
stages: stages of the pipeline (current: [Lorg.apache.spark.ml.PipelineStage;@778eb85f)

stage 0: class org.apache.spark.ml.feature.VectorAssembler
inputCols: input column names (current: [Ljava.lang.String;@6ac94488)
outputCol: output column name (default: vecAssembler_3b2eabeb1698__output, current: features)

stage 1: class org.apache.spark.ml.feature.StringIndexer

handleInvalid: how to handle invalid entries. Options are skip (which will filter out rows with bad values), or
error (which will throw an errror). More options may be added later. (default: error)

inputCol: input column name (current: IsGamma)

outputCol: output column name (default: strIdx_af29aa3fde7a__output, current: IsGammalndexed)

stage 2: class org.apache.spark.ml.classification.RandomForestClassifier

cacheNodeIds: If false, the algorithm will pass trees to executors to match instances with nodes. If true, the
algorithm will cache node IDs for each instance. Caching can speed up training of deeper trees. (default:
false, current: true)

checkpointInterval: set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the cache
will get checkpointed every 10 iterations (default: 10)

featureSubsetStrategy: The number of features to consider for splits at each tree node. Supported options: auto
, all, onethird, sqrt, log2 (default: auto)

featuresCol: features column name (default: features, current: features)

impurity: Criterion used for information gain calculation (case-insensitive). Supported options: entropy, gini
(default: gini)

labelCol: label column name (default: label, current: IsGammaIndexed)

maxBins: Max number of bins for discretizing continuous features. Must be >=2 and >= number of categories for
any categorical feature. (default: 32)

maxDepth: Maximum depth of the tree. (>= 0) E.g., depth O means 1 leaf node; depth 1 means 1 internal node + 2
leaf nodes. (default: 5)

maxMemoryInMB: Maximum memory in MB allocated to histogram aggregation. (default: 256)

minInfoGain: Minimum information gain for a split to be considered at a tree node. (default: 0.0)

minInstancesPerNode: Minimum number of instances each child must have after split. If a split causes the left
or right child to have fewer than minInstancesPerNode, the split will be discarded as invalid. Should be
>= 1. (default: 1)

numTrees: Number of trees to train (>= 1) (default: 20)

predictionCol: prediction column name (default: prediction, current: predictionl)

probabilityCol: Column name for predicted class conditional probabilities. Note: Not all models output well-
calibrated probability estimates! These probabilities should be treated as confidences, not precise
probabilities (default: probability, current: probil)

rawPredictionCol: raw prediction (a.k.a. confidence) column name (default: rawPrediction, current: rawl)

seed: random seed (default: 207336481, current: -2221372633937965731)

subsamplingRate: Fraction of the training data used for learning each decision tree, in range (0, 1]. (default:

1.0)

thresholds: Thresholds in multi-class classification to adjust the probability of predicting each class. Array
must have length equal to the number of classes, with values >= 0. The class with largest value p/t is
predicted, where p is the original probability of that class and t is the class’ threshold. (undefined)
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stage 3: class org.apache.spark.ml.classification.GBTClassifier

cacheNodeIds: If false, the algorithm will pass trees to executors to match instances with nodes. If true, the
algorithm will cache node IDs for each instance. Caching can speed up training of deeper trees. (default:
false, current: true)

checkpointInterval: set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the cache
will get checkpointed every 10 iterations (default: 10)

featuresCol: features column name (default: features, current: features)

impurity: Criterion used for information gain calculation (case-insensitive). Supported options: entropy, gini
(default: gini)

labelCol: label column name (default: label, current: IsGammaIndexed)

lossType: Loss function which GBT tries to minimize (case-insensitive). Supported options: logistic (default:
logistic)

maxBins: Max number of bins for discretizing continuous features. Must be >=2 and >= number of categories for
any categorical feature. (default: 32)

maxDepth: Maximum depth of the tree. (>= 0) E.g., depth O means 1 leaf node; depth 1 means 1 internal node + 2
leaf nodes. (default: 5)

maxIter: maximum number of iterations (>= 0) (default: 20)

maxMemoryInMB: Maximum memory in MB allocated to histogram aggregation. (default: 256)

minInfoGain: Minimum information gain for a split to be considered at a tree node. (default: 0.0)

minInstancesPerNode: Minimum number of instances each child must have after split. If a split causes the left
or right child to have fewer than minInstancesPerNode, the split will be discarded as invalid. Should be
>= 1. (default: 1)

predictionCol: prediction column name (default: prediction, current: prediction2)

seed: random seed (default: -1287390502, current: 6076594278666838564)

stepSize: Step size to be used for each iteration of optimization. (default: 0.1)

subsamplingRate: Fraction of the training data used for learning each decision tree, in range (0, 1]. (default:

1.0)

stage 4: class org.apache.spark.ml.classification.MultilayerPerceptronClassifier

blockSize: Block size for stacking input data in matrices. Data is stacked within partitions. If block size is
more than remaining data in a partition then it is adjusted to the size of this data. Recommended size is
between 10 and 1000 (default: 128)

featuresCol: features column name (default: features, current: features)

labelCol: label column name (default: label, current: IsGammaIndexed)

layers: Sizes of layers from input layer to output layer E.g., Array (780, 100, 10) means 780 inputs, one hidden

layer with 100 neurons and output layer of 10 neurons. (default: [I@7b50010, current: [I@1666fc8e)

maxIter: maximum number of iterations (>= 0) (default: 100)

predictionCol: prediction column name (default: prediction, current: prediction3)

seed: random seed (default: -763139545, current: 2387178402411159171)

tol: the convergence tolerance for iterative algorithms (default: 1.0E-4)




N =

N O Utk W

24
25
26
27
28

29

30

31
32
33
34
35
36

214 ANHANG B. XMLS ZUM KAPITEL ,MODELLQUALITAT*

B.2 Experiment 14.4: Parameterstudie zur Waldgréfie von

Random Forests

<container>

<input id="1" class="stream.io.CSVInput" url="hdfs://s876cn01.cs.uni-dortmund.de:8020/pg594/datasets/

gammahadron-balanced/"/>
<task id="2" input="1">

<pipeline modelName="gammaHadronModel" automaticTraining="false">
<transformer stage="VectorAssembler" inputCols="numPixelInShower ,bSize,M3Long,M3Trans,bM4Long,h M4Trans
,C0Gx ,C0Gy ,Length ,Width ,Delta ,m31,m3t ,numIslands,Concentration_onePixel,Concentration_twoPixel
,ConcCore,concC0G,Leakage ,Leakage2 ,Timespread ,Timespread_weighted,Slope_long,Slope_trans,
Slope_spread,Slope_spread_weighted ,Disp,Alpha,Distance,CosDeltaAlpha,Theta,Energy" outputCol="
features"/>
<estimator stage="StringIndexer" inputCol="IsGamma" outputCol="IsGammaIndexed" />
25" featuresCol="features" labelCol="

<estimator stage="RandomForestClassifier" maxDepth=
IsGammaIndexed" cacheNodeIds="true"/>

</pipeline>
<stream.pg594.operators.SaveDataFrame name="original" />

<stream.pg594.operators.ForEach header="i in [1,2,3,4,5]">
<stream.pg594.operators.LoadDataFrame name="original" />
<stream.pg594.operators.SplitDataFrame ratio="0.1" newName="testData" />
<stream.pg594.operators.SaveDataFrame name="trainingData" />

<stream.pg594.operators.CountRowsWhere condition="" name="trainingEvents" />

<stream.pgb594.operators.ForEach header="numTrees in [10,20,40,60,80,100]">
<stream.pg594.operators.LoadDataFrame name="trainingData" />
<stream.pg594.operators.StartTimeMeasurement timerName="trainingTime" />
<stream.pg594.operators.TrainModelWithParameters modelName="model" parameters="2.numTrees=
numTrees"/>
<stream.pg594.operators.StopTimeMeasurement timerName="trainingTime" />

<stream.pg594.operators.LoadDataFrame name="testData" />

<stream.pg594.operators.ApplyModel modelName="model" />

<stream.pg594.operators.IndexToStringConversion modelName="model" inputCol="prediction"
outputCol="IsGammaPrediction"/>

<stream.pgb94.operators.EvaluateBinaryClassifier rawPredictionCol="rawPrediction"
labelColIndexed="IsGammaIndexed" predictionCol="IsGammaPrediction" labelCol="IsGamma" />

<stream.pg594.operators.AppendToCSV columns="type=RandomForestClassifier ,trainingEvents,
numTrees ,maxDepth=25,trainingTime ,AreaUnderROC, AreaUnderPrecisionRecallCurve ,TP,TN,FP,FN,
TPrate ,TNrate ,FPrate ,FNrate" url="hdfs://s876cn01.cs.uni-dortmund.de:8020/pg594/
parameterstudyexperimentl.csv" />

</stream.pg594.operators.ForEach>
</stream.pg594.operators.ForEach>

</task>

</container>
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B.3 Experiment 14.2: Vergleich von Regressionsmodellen

<container>

<input id="1"

class="stream.io.CSVInput" url="hdfs://s876cn01.cs.uni-dortmund.de:8020/pgb94/datasets/

gammahadron/" />

<task id="2"

input="1">

<pipeline modelName="energyestimator" automaticTraining="false">

<transformer stage

VectorAssembler" inputCols="numPixelInShower ,photonchargeMean,arrivalTimeMean,
phChargeShower_mean ,phChargeShower_max ,phChargeShower _min,phChargeShower_kurtosis,
phChargeShower_variance ,phChargeShower_skewness ,arrTimeShower_mean ,arrTimeShower_max,
arrTimeShower_min,arrTimeShower_kurtosis ,arrTimeShower_variance ,arrTimeShower_skewness,
maxSlopesShower_mean ,maxSlopesShower_max ,maxSlopesShower_min ,maxSlopesShower_kurtosis,
maxSlopesShower_variance ,maxSlopesShower_skewness ,arrTimePosShower_mean,arrTimePosShower_max,
arrTimePosShower_min ,arrTimePosShower_kurtosis ,arrTimePosShower_variance,
arrTimePosShower_skewness ,maxSlopesPosShower_mean ,maxSlopesPosShower_max,
maxSlopesPosShower_min ,maxSlopesPosShower_kurtosis ,maxSlopesPosShower_variance,
maxSlopesPosShower_skewness ,maxPosShower_mean ,maxPosShower_max ,maxPosShower_min,
maxPosShower_kurtosis ,maxPosShower_variance ,maxPosShower_skewness ,Size,M3Long,M3Trans,b M4Long,
M4Trans ,C0Gx,COGy,Length,Width,Delta ,m31,m3t,numIslands,Concentration_onePixel,
Concentration_twoPixel, ConcCore,concC0G,Leakage,Leakage2,Timespread,Timespread_weighted,
Slope_long,Slope_trans,Slope_spread,Slope_spread_weighted ,Disp,AzTracking,ZdTracking,
AzPointing ,ZdPointing,AzSourceCalc ,ZdSourceCalc,Alpha,Distance ,Alpha_0ff_1,Distance_0ff_1,
Alpha_0ff_2,Distance_O0ff_2,Alpha_O0ff_3,Distance_Off_3,Alpha_Off_4 ,Distance_0ff_4 ,Alpha_0ff_5,
Distance_0ff_5,CosDeltaAlpha,CosDeltaAlpha_Off_1,CosDeltaAlpha_0ff_2,CosDeltaAlpha_O0ff_3,
CosDeltaAlpha 0ff_4 ,CosDeltaAlpha O0ff_5,Theta,Theta_0ff_1,Theta_0ff_2,Theta_0ff_3,Theta 0ff_4,
Theta_O0ff_5" outputCol="features" />

<estimator stage="RandomForestRegressor" cacheNodeIds="true" featuresCol="features" labelCol="

Energy" />

</pipeline>

<stream.pg594.operators.SaveDataFrame name="original" />

<stream.pgb94.operators.ForEach header="i in [1,2,3,4,5]">

<stream.pgh94.operators.LoadDataFrame name="original" />

<stream.pgh94.operators.SplitDataFrame ratio="0.1" newName="testData"/>

<stream.pg594.operators.SaveDataFrame name="trainingData" />

<stream.pg594.operators.CountRowsWhere name="trainingEvents" />

<stream.pgh94.operators.StartTimeMeasurement timerName="trainingTime" />

<stream.pg594.operators.TrainModel modelName="energyestimator" />

<stream.pg594.operators.StopTimeMeasurement timerName="trainingTime" />

<stream.pg594.operators.LoadDataFrame name="testData" />

<stream.pg594.operators.CountRowsWhere name="testEvents" />

<stream.pg594.operators.StartTimeMeasurement timerName="regressionTime" />

<stream.pg594.operators.ApplyModel modelName="energyestimator" />

<I--

Evaluate every forest and append result to csv -->

<stream.pg594.operators.EvaluateRegressor labelCol="Energy" predictionCol="prediction" />

<stream.pg594.operators.StopTimeMeasurement timerName="regressionTime" />

<stream.pg594.operators.AppendToCSV columns="type=RF,trainingEvents ,trainingTime,btestEvents,

regressionTime ,rmse,r2" url="hdfs://s876cn01.cs.uni-dortmund.de:8020/pg594/

regressionexperiment.csv"/>

</stream.pgb94.operators.ForEach>

</task>

</container>

stage 1: class org.apache.spark.ml.regression.RandomForestRegressor

cacheNodeIds:

If false, the algorithm will pass trees to executors to match instances with nodes. If true, the

algorithm will cache node IDs for each instance. Caching can speed up training of deeper trees. (default:

false, current: true)

checkpointInterval: set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the cache

will get checkpointed every 10 iterations (default: 10)

featureSubsetStrategy: The number of features to consider for splits at each tree node. Supported options: auto
, all, onethird, sqrt, log2 (default: auto)

featuresCol:

features column name (default: features, current: features)

impurity: Criterion used for information gain calculation (case-insensitive). Supported options: variance (

default:

variance)

labelCol: label column name (default: label, current: Energy)
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maxBins: Max number of bins for discretizing continuous features. Must be >=2 and >= number of categories for
any categorical feature. (default: 32)

maxDepth: Maximum depth of the tree. (>= 0) E.g., depth O means 1 leaf node; depth 1 means 1 internal node + 2
leaf nodes. (default: 5)

maxMemoryInMB: Maximum memory in MB allocated to histogram aggregation. (default: 256)

minInfoGain: Minimum information gain for a split to be considered at a tree node. (default: 0.0)

minInstancesPerNode: Minimum number of instances each child must have after split. If a split causes the left
or right child to have fewer than minInstancesPerNode, the split will be discarded as invalid. Should be
>= 1. (default: 1)

numTrees: Number of trees to train (>= 1) (default: 20)

predictionCol: prediction column name (default: prediction)

seed: random seed (default: 235498149, current: 8821372440605673783)

subsamplingRate: Fraction of the training data used for learning each decision tree, in range (0, 1]. (default:

1.0)

<container>

<input id="1" class="stream.io.CSVInput" url="hdfs://s876cn01.cs.uni-dortmund.de:8020/pg594/datasets/
gammahadron/" />

<task id="2" input="1">
<pipeline modelName="energyestimator" automaticTraining="false">

<transformer stage="VectorAssembler" inputCols="numPixelInShower ,photonchargeMean,arrivalTimeMean,
phChargeShower_mean ,phChargeShower_max ,phChargeShower_min ,phChargeShower_kurtosis,
phChargeShower_variance ,phChargeShower_skewness ,arrTimeShower_mean ,arrTimeShower_max,
arrTimeShower_min ,arrTimeShower_kurtosis ,arrTimeShower_variance ,arrTimeShower_skewness,
maxSlopesShower_mean ,maxSlopesShower_max ,maxSlopesShower_min ,maxSlopesShower_kurtosis,
maxSlopesShower_variance ,maxSlopesShower_skewness ,arrTimePosShower_mean,arrTimePosShower_max,
arrTimePosShower_min,arrTimePosShower_kurtosis ,arrTimePosShower_variance,
arrTimePosShower_skewness ,maxSlopesPosShower_mean ,maxSlopesPosShower_max,
maxSlopesPosShower_min ,maxSlopesPosShower_kurtosis ,maxSlopesPosShower_variance,
maxSlopesPosShower_skewness ,maxPosShower_mean ,maxPosShower_max ,maxPosShower_min,
maxPosShower_kurtosis ,maxPosShower_variance ,maxPosShower_skewness ,b Size,M3Long,M4Long,bC0Gx,COGy
,Length,Width,Delta,m31,m3t ,numIslands,Concentration_onePixel ,Concentration_twoPixel,b ConcCore,
concCOG,Leakage ,Leakage2,Timespread ,Timespread_weighted,Slope_long,Slope_trans,Slope_spread,
Slope_spread_weighted ,Disp,AzTracking,ZdTracking,AzPointing,ZdPointing,AzSourceCalc,
ZdSourceCalc ,Alpha,Distance ,Alpha_0ff_1,Distance_Off_1,Alpha_ Off_2,Distance_0ff_2,Alpha 0ff_3,
Distance_O0ff_3,Alpha_Off_4 ,Distance_O0ff_4 ,Alpha_O0ff_5,Distance_0ff_5,CosDeltaAlpha,
CosDeltaAlpha_0ff_1,CosDeltaAlpha_O0ff_2,CosDeltaAlpha_0ff_3,CosDeltaAlpha_0ff_4,
CosDeltaAlpha 0ff_5,Theta,Theta _0ff_1,Theta 0ff_2,Theta 0ff_3,Theta 0ff_4,Theta 0ff_5"
outputCol="features" /> <!-- M3Trans, M4Trans raised exzception: java.lang.
RuntimeEzception: No bin was found for continuous feature. This error can occur when given
invalid date values (such as NaN). Feature index: 42-->

<estimator stage="GBTRegressor" cacheNodeIds="true" featuresCol="features" labelCol="Energy" />
</pipeline>

<stream.pgb94.operators.SaveDataFrame name="original" />

<stream.pg594.operators.ForEach header="i in [1,2,3,4,5]">
<stream.pg594.operators.LoadDataFrame name="original" />
<stream.pgh94.operators.SplitDataFrame ratio="0.1" newName="testData"/>
<stream.pg594.operators.SaveDataFrame name="trainingData" />
<stream.pg594.operators.CountRowsWhere name="trainingEvents" />
<stream.pg594.operators.StartTimeMeasurement timerName="trainingTime" />
<stream.pg594.operators.TrainModel modelName="energyestimator" />
<stream.pg594.operators.StopTimeMeasurement timerName="trainingTime" />
<stream.pg594.operators.LoadDataFrame name="testData" />
<stream.pg594.operators.CountRowsWhere name="testEvents" />
<stream.pgb94.operators.StartTimeMeasurement timerName="regressionTime" />
<stream.pg594.operators.ApplyModel modelName="energyestimator" />

<!-- Evaluate every forest and append result to csv -->
<stream.pg594.operators.EvaluateRegressor labelCol="Energy" predictionCol="prediction" />
<stream.pg594.operators.StopTimeMeasurement timerName="regressionTime" />
<stream.pgb594.operators.AppendToCSV columns="type=GBT,trainingEvents ,trainingTime, testEvents,
regressionTime ,rmse,r2" url="hdfs://s876cn01.cs.uni-dortmund.de:8020/pg594/
regressionexperiment.csv"/>

</stream.pg594.operators.ForEach>
</task>

</container>
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stage 1: class org.apache.spark.ml.regression.GBTRegressor

cacheNodeIds: If false, the algorithm will pass trees to executors to match instances with nodes. If true, the
algorithm will cache node IDs for each instance. Caching can speed up training of deeper trees. (default:
false, current: true)

checkpointInterval: set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the cache
will get checkpointed every 10 iterations (default: 10)

featuresCol: features column name (default: features, current: features)

impurity: Criterion used for information gain calculation (case-insensitive). Supported options: variance (
default: variance)

labelCol: label column name (default: label, current: Energy)

lossType: Loss function which GBT tries to minimize (case-insensitive). Supported options: squared, absolute (
default: squared)

maxBins: Max number of bins for discretizing continuous features. Must be >=2 and >= number of categories for
any categorical feature. (default: 32)

maxDepth: Maximum depth of the tree. (>= 0) E.g., depth O means 1 leaf node; depth 1 means 1 internal node + 2
leaf nodes. (default: 5)

maxIter: maximum number of iterations (>= 0) (default: 20)

maxMemoryInMB: Maximum memory in MB allocated to histogram aggregation. (default: 256)

minInfoGain: Minimum information gain for a split to be considered at a tree node. (default: 0.0)

minInstancesPerNode: Minimum number of instances each child must have after split. If a split causes the left
or right child to have fewer than minInstancesPerNode, the split will be discarded as invalid. Should be
>= 1. (default: 1)

predictionCol: prediction column name (default: prediction)

seed: random seed (default: -131597770, current: 9103996764841619817)

stepSize: Step size to be used for each iteration of optimization. (default: 0.1)

subsamplingRate: Fraction of the training data used for learning each decision tree, in range (0, 1]. (default:

1.0)
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B.4 Experiment 14.3: Trainingszeit in Abhingigkeit der Clu-
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<container>

<property name="executors" value="8" />

<property name="cores" value="8" />

<input id="1" class="stream.io.CSVInput" url="hdfs://s876cn0l.cs.uni-dortmund.de:8020/pg594/datasets/
gammahadron/" />

<task id="2" input="1">

<pipeline modelName="gammaHadronModel" automaticTraining="false">

<transformer stage="VectorAssembler" inputCols="numPixelInShower ,bSize,M3Long,M3Trans,bM4Long,hM4Trans

,C0Gx ,C0Gy ,Length ,Width ,Delta ,m31,m3t ,numIslands,Concentration_onePixel,Concentration_twoPixel

,ConcCore,concCO0G,Leakage ,Leakage2 ,Timespread ,Timespread_weighted,Slope_long,Slope_trans,

Slope_spread,Slope_spread_weighted ,Disp,Alpha,Distance,CosDeltaAlpha,Theta,Energy" outputCol="

features" />
<estimator stage="StringIndexer" inputCol="IsGamma" outputCol="IsGammalndexed" />
<estimator stage="RandomForestClassifier" cacheNodeIds="true" maxDepth="25" numTrees="80"
featuresCol="features" labelCol="IsGammaIndexed" predictionCol="prediction" />

</pipeline>

<stream.pg594.operators.SplitDataFrame ratio="0.1" newName="testData"/>
<stream.pg594.operators.SaveDataFrame name="trainingData" />
<stream.pg594.operators.CountRowsWhere name="trainingEvents" />
<stream.pgb94.operators.StartTimeMeasurement timerName="trainingTime" />
<stream.pg594.operators.TrainModel modelName="gammaHadronModel" />
<stream.pg594.operators.StopTimeMeasurement timerName="trainingTime" />
<stream.pg594.operators.LoadDataFrame name="testData" />
<stream.pg594.operators.CountRowsWhere name="testEvents" />
<stream.pgh94.operators.StartTimeMeasurement timerName="classificationTime" />
<stream.pg594.operators.ApplyModel modelName="gammaHadronModel" />
<stream.pg594.operators.CountRowsWhere condition="prediction > 0.5" name="counter" />
<stream.pg594.operators.StopTimeMeasurement timerName="classificationTime" />

<stream.pg594.operators.AppendToCSV columns="type=RF,executors=${executors},cores=${cores},

trainingEvents ,trainingTime ,testEvents,classificationTime" url="hdfs://s876cn0l.cs.uni-dortmund.

:8020/pgh94/distributionexperiment.csv"/>
</task>

</container>

de




Anhang C

Liste der referenzierten Software

AngularJS https://angularjs.org/

Apache Cassandra https://cassandra.apache.org/

Apache Hadoop https://hadoop.apache.org/

Apache Spark https://spark.apache.org/

Apache Storm https://storm.apache.org/

Apache YARN https://hadoop.apache.org/docs/r2.6.2/
hadoop-yarn/hadoop-yarn-site/YARN.html

Atlassian JIRA https://de.atlassian.com/software/jira

Docker https://www.docker. com/

Elasticsearch https://www.elastic.co/de/products/
elasticsearch

FACT Tools https://sfb876.de/fact-tools/

MongoDB https://www.mongodb.org/

MongoDB Docker-Image https://hub.docker.com/_/mongo/

MVEL https://github.com/mvel/mvel

OpenAPI Initiative https://openapis.org/

OpenAPI Spezifikationen https://github.com/0AI/OpenAPI-Specification

PostgreSQL http://www.postgresql.org/

Postgres-XL http://www.postgres-x1l.org/

QueryDSL https://github.com/querydsl/querydsl

RapidMiner https://rapidminer.com/

Spring Boot http://projects.spring.io/spring-boot/

streams Framework https://sfb876.de/streams/

Swagger Editor http://swagger.io/swagger-editor

Swagger Projekt http://swagger.io

Swagger Tools http://swagger.io/open-source-integrations

Swagger Ul http://swagger.io/swagger-ui
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Abkiirzungsverzeichnis

API

CRUD

DAG

DoD

FACT

FITS

GUI

HDFS

HTTP

IBA

IBL

JSON

Directed Acyclic Graph

Definition of Done

Graphical User Interface
Hadoop Distributed File System
Hyper Text Transfer Protocol
Index of balanced accuracy
Impediment Backlog

JavaScript Object Notation

Application Programming Interface

Create, Read, Update and Delete

First G-APD Cherenkov Telescope

Flexible Image Transport System

NASA National Aeronautics and Space Administration

NoSQL Not only SQL

NPM

PBL

PG

PO

REST

ROC

Node Package Manager
Product Backlog
Projektgruppe

Product Owner

Representational State Transfer

Receiver Operating Characteristic
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SBL  Sprint Backlog

SM Scrum Master

URL  Uniform Resource Locator
WiP  Work In Progress

XML Extensible Markup Language

YARN Yet Another Resource Negotiator
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