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ABSTRACT

In order to solve task 2 of the KDD Cup 2002, we exploited
various available information sources. In particular, use of
relational information describing the interactions among genes
and information automatically extracted from scientific abstracts
improves the accuracy of our predictions.
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1. INTRODUCTION

KDD Cup 2002 task 2 asked for models that predict some specific
cellular activity (the AHR signaling pathway) of yeast after the
knockout of certain genes. For the proteins encoded by the genes,
information about function, localization, and protein classes were
given, as well as data about pairwise interactions between them.
In addition, several thousand abstracts of research papers on those
genes and proteins were provided as a further source of data
More details on the task can be found in an overview article by
Craven (thisissue).

Our solution is greatly benefiting from an approach to deal with
relational information on the interaction of genes by a
propositionalization agorithm [1]; we had used this same
algorithm successfully for tasks 2 and 3 of the preceding KDD
Cup 2001. We could achieve a further improvement by using an
information extraction algorithm that allowed us to utilize the
scientific abstracts effectively.

2. PROPOSITIONALIZATION
Propositiondization is the process of the transformation of a
multi-relational representation of data — as it can be found in
relational databases — into the form of a single table. RELAGGS
(RELational AGGregationS) [3] computes severa joins of the
input tables according to their foreign key relationships. These
joins are compressed using equivaent functions to SQL avg,
count, max, min, and sum, specific to the data types of the table
columns, such that there remains a single row for each example,
here for each gene. Results of severa such join compressions are
concatenated example-wise. The result is an appropriate input for
conventional data mining agorithms.

For the task at hand, we designed a new schema of a database that
could serve as input for RELAGGS. We designed a table “ Gene’
to contain the names of al genes that were spread over the
original tables. Information contained in the names - cf.
http://www.uni-frankfurt.de/fb15/mikro/euroscarf/stra_des.html —
aswell asthe class |abels were included in this table, see Figure 1.
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Figure 1. Data set representation as 6 linked tables

Tables “Train-class’ and “Test-instances’ (with class information
given after the Cup as “Test-class’) are in fact materialized views
of table “Gene”, containing just the training and test examples,
respectively.

For information about function (5 levels of hierarchy),
locdlization (2 levels), and protein class (4 levels), we introduced
columns per level. These columns contain the appropriate values
won from a split of the original representation of this information.
In the original variant, values of different hierarchy level where
concatenated in a special way.

For interactions, we made symmetry explicit. We included a line
to state that gene B interacts with gene A if there was the fact that
A interacts with B contained in the origina table. We aso
included rows for certain transitivity assumptions. For instance,
for second level interactions, we included rows that express that
gene A interacts with gene C, if there are entries for interactions
between A and B and between B and C in the original table.

RELAGGS produced joins of those tables along foreign links [4]
(indicated by the arrows in Figure 1) and compressed these mainly
by just counting the different possible values per training and test
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genelprotein, respectively. It concatenated these results and thus
finally output a table with about 1,000 columns for further
analysis using Joachim's SVM"9" [2].

3. TEXT MINING

In order to exploit the abstracts provided for anaysis, we
experimented with two different approaches. text classification
and information extraction. Since there were many missing values
in the tables, the latter approach was especially intended to find
more values for function, localization and protein classes.

For text classification, we put together abstracts per gene, applied
a stemming algorithm, and formed a TFIDF representation as an
input to SVM"9™ The decision function values output by this
learner served as an additional attribute for the corresponding
RELAGGS results.

For information extraction, we again merged the abstracts per
gene and implemented a tool to efficiently find search terms.
These were produced from the hierarchy files of possible values
for function, localization, and protein classes according to a few
simple rules, such as the addition of plural forms to the origina
lists, e.g. “nucleé” in addition to “nucleus’. On finding values
from our search term list, the corresponding origina values were
included in the appropriate input tables for RELAGGS.

4. RESULTS

As asolution for KDD Cup 2002 task 2, we handed in the results
of amode for the so-called “narrow class problem” as one of the
two subtasks of task 2 that included the additional name
information, interaction information up to the second level, and
results of information extraction. With these predictions, we could
achieve the best result on this subtask, and with the very same
predictions, the result on the “broad class problem” was still good
enough for agood overall result.

With class information for test examples available now, we tried
to find out the influence of the different experimental conditions
here. For the additiona information from gene names as well as
text classification information, we can not observe relevant
differences. However, using interaction information and data from
information extraction improved the predictive power of the
models, cf. Fig. 2 and 3.

5. CONCLUSION

The approach of propositionalization in combination with text
mining techniques seems promising as indicated by our
experimental results. As an addition, we plan to perform
experiments with a co-learning agorithm.
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Figure 2. Influence of interaction information on ROCs.
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Figure 3. Influence of information extraction on ROCs.
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