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Überblick

! Architektur

! EJB in der Praxis

! Dienste und Probleme / Nachteile
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Motivation für Applikation Server

„Die Auseinandersetzung wird sich in diesem Jahrzehnt bei 
Middleware abspielen, nicht Betriebssystemen“

John Swainson, 
General Manager in der IBM Software Group
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Mainframe Architektur
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3-Schicht Architektur
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Anforderungen an Application Server

! Erweiterbarkeit

! Skalierbarkeit

! flexibel hinsichtlich Lastenverteilung

! Hochverfügbarkeit
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Java-basierte Application Server

! Anforderungen:

"standardisierte Schnittstellen

"transparente Services

"Transaktionssicherheit

"Komponentenbasiert

Enterprise Architektur



8

Was ist die Enterprise Architektur?

! Architektur für eine Serverseitige Plattform, die verteilte 
Komponenten zur Verfügung stellt 
" “a standard for multi-tier, server-oriented, 

component development”.
! Dienste: “lifecycle”, Transaktionen, Sicherheit, 

Verbindung zum Client, Datenbankzugriff, “Pooling”,…
!! Entwickler soll sich auf die BusinessEntwickler soll sich auf die Business--Logik Logik 

konzentrieren könnenkonzentrieren können

Quelle: Sun’s Enterprise JavaBeans™ spec
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Enterprise Architekture



10

Was sind ”Enterprise JavaBeans” (EJB)?

! Serverseitig wiederverwendbare 

Java Komponenten

! Enterprise JavaBeans werden 

vom J2EE Server ausgeführt

! Server bietet Dienste, die von 

Programmierer schwer 

implementiert werden können

" einmal schreiben, in jedem Server 

laufen lassen
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Entwicklung von EJB

! Die EJB 1.0 Spezifikation wurde auf der JavaOne ‘98 Conference
veröffentlicht.

! Die Spezifikation wurde von Sun mit vielen Firmen erarbeitet:
" Sybase
" BEA
" Oracle
" IBM
" Netscape
" Novell
" Tandem
" Viele Andere

! 2.0 Spezifikation Aktuell (22. Aug. 2001)
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J2EE Server Architektur

! Kann in Container und Server aufgeteilt werden.
"Container

!Bietet High-Level Dienste für das EJB

"Server
!Bietet Low-Level Dienste, z.B. Netzwerkverbindung
!Der Server soll viele Protokolle wie RMI, IIOP oder DCOM 

unterstützen.

! Clients können in jeder Sprache geschrieben 
werden
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J2EE Server Architektur
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Server and Container Dienste

! Remote-Zugriff möglich, sobald Komponente im 
Server

! Multi-Client Unterstützung # Kopie pro Client
! Ressourcen Management (Thread, Sockets, DB-

Verbindung)
! Komponenten Lebenszyklus
! Persistenz von Objekten
! Sicherheit 
! Lokale Transparenz durch JNDI

(„Java Naming and Directory Interface”)
! Transaktions-Management
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Clustering

! Skalierbarkeit

" Einen Server hinzufügen # mehr Leistung

! Hoch Verfügbarkeit

" Wenn einer ausfällt, sind die anderen Server noch verfügbar

! Automatische Lastverteilung

! Clustering ist unsichtbar für den Entwickler
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Hersteller
! Ein Hersteller muss die EJB Spezifaktion erfüllen und die 

Container zur Verfügung stellen
! Durch die Spezifikation ist sichergestellt, das eine EJB-

Anwendung in jedem EJB-Server läuft
! EJB Container/Server Hersteller:

" BEA WebLogic Tengah
" NetDynamics
" IBM WebSphere Advanced Edition
" Oracle8i, Oracle Application Server
" Persistence Power Tier
" Progress Apptivity
" Jboss (Open Source)
" Forte, Informix, Netscape, Gemstone, Bluestone, Inprise und 

viele andere…
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Java Naming and Directory Interface (JNDI)

! Einheitliches Namensschema zum Zugriff auf:
"Netzwerkrechner
"Dateien im Dateisystem
"Objekte im Applikationserver (Servlets, JSPs, 

EJBs)
! JNDI wird benötigt, um auf EJBs zuzugreifen
! Bsp: jndi name: ejb/nameBean, ejb/Other/a

ejb

nameBeanOther

a b
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Architektur

EJBs
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Beans Übersicht

Wie implementiert man EJB´s ?
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Enterprise Java Beans – Übersicht

Bean Bean TypenTypen

SessionSessionEntityEntity

BeanBean
ManagedManaged

= = BMPBMP

ContainerContainer
ManagedManaged

= = CMP

StatefulStateful StatelessStateless

CMP

Quelle: Sun’s Enterprise JavaBeans™ spec
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Enterprise Java Beans – Übersicht

Entity Beans Session Beans

! Persistente Daten – meistes
DB - Zustand

! Finder Methoden
! PrimaryKey
! Container Managed

Persistence (CMP)
! Bean Managed Persistence

(BMP)

! Überdauern nur eine 
Benutzersitzung

! Applikations Logik
! Statefull Session Beans
! Stateless Session Beans
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Enterprise Java Beans – Übersicht

Warum verschiedene Session-Beans?

Statefull Stateless

! Haben über 
Methodenaufrufe hinweg 
einen Zustand

! Sind für eine Sitzung 
spezifisch

! Z.B. Abwicklung eines 
Workflows

! Z.B. Warenkorb
des aktuellen Beutzers

! Speichern keinen Zustand
! Vergleichbar mit statischen 

Methoden einer Klasse
! Eine Bean kann von 

verschiedenen Benutzern 
gleichzeitig genutzt werden

! Z.B. Loginmanager, oder 
Druckdienste anbieten
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Enterprise Java Beans – Prinzip

Client

Container

EJB Server

Enterprise
JavaBeans™
Component

EJB Object
(bean id)

EJB Home
(client view)

Database
Or

TP Monitor

business
methods

create, 
find, 
remove

Kann Session- oder Entity-Bean sein
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Das Abstract Factory Pattern

! Hinter Java-Bans steckt das Abstract Factory
Pattern. Ziel: Nutzung eines Interfaces um Objekte 
zu Kreieren ohne deren konkrete Implementierung 
zu kennen.

ConcreteFactory1

ProductA1 ProductA2

ConcreteFactory2

AbstractProductA

AbstractFactory

createProductA( )
createProductB( )

ProductB1 ProductB2

AbstractProductB

Client
Home-

Interface

Remote-
o. LocaI-
nterface
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EJB Basiert auf Factories

! Enterprise Beans bestehen aus mindestens zwei 
unabhängigen Interfaces

! Home Interface: definiert eine Menge von Factory-
Methoden
"Der Client ruft diese Methoden auf um Instanzen zu 

erzeugen
"Der Container erzeugt die Konkreten Instanzen 

transparent
! Remote/Local Interface: Hier werden die Methoden 

für den Zugriff definiert. Der Client greift niemals 
direkt auf ein Bean zu!
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Home Interface

! Factory zum Erzeugen von Instanzen

! Namenskonvention: 
"DeinBeanNameHome.java

! Extends EJBHome
" public MeinBeanHome extends EJBHome { 

…
}

! Methoden zum Erzeugen von Beans
" public void create(...) throws java.rmi.RemoteException, evtl. andere 

Exceptions
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Remote/Local Interface

! Interface für die ausführbaren Methoden des Beans

! Namenskonvention: 
" DeinBeanName.java /DeinBeanNameLocal.java

! Extends EJBObject /EJBLocalObject
" public MeinBeanHome extends EJBHome { 

public Object getPrimaryKey() throws RemoteException;
public boolean isIdentical(EJBObject obj) throws … 
public void remove() throws RemoteException …

}

! Enthält weiter die Business Methoden
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Persistence und Beziehungen

Wie implementiert man EJB´s ?
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Entity-Bean = 1 DB Tupel

Datenbank Entity-Objekt

KinkelKlaus

MustermannVera

VornameName

Name=Mustermann
Vorname=Vera
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Alle Beans werden vom Container verwaltet

! Der Container verwaltet einen Pool von Objekten

Pooled Instances Ready Instances

Korrespondieren mit den 
“aktuellen Daten”
Sind zu einem echten EJB-
Objekt assoziert. Bearbeiten
Anfragen.

Korrespondieren nicht mit den 
“aktuellen Daten”. Verabeiten
keine Anfragen. Nur leere
Objekt-Hülsen eines Typs

# Daten-Verwaltung / Synchronisation mir einer DB muss vom Container 
gesteuert werden
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Vom Pool zum “bereiten” Bean

! Instanzen werden mit gültigen Daten gefüllt wenn 
der Container ein weiters Bean benötigt

! Erzeugen: ejbCreate() and ejbPostCreate() 
"Werden aufgerufen wenn ein “neues” Objekt erzeugt 

wird. (Wenn es dieses also in der DB noch nicht gab)
"z. B. eine create() Methode kann vom Home-Objekt

aufgerufen werden
! Aktivieren: ejbActivate()

"Werden aufgerufen wenn das Objekt bereits logisch 
(z.B. in der DB) existiert.

"Z.B. wenn die Methode findXXX() vom Home
Interface aufgerufen wurde
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Vom “bereiten” Bean zum Pool

! Wenn eine der beiden Methoden aufgerufen wird, 
wird die Instanz wieder zum Pool hinzugefügt
"ejbRemove() wenn das zugehörige Logische-Objekt  

gelöscht wurde (z.B. ein Löschen in der DB)
"ejbPassivate() wenn das zugehörige Logische-Objekt 

existiert, aber das Bean deaktiviert werden soll. (z.B. 
weil es eine längere Zeit nicht mehr benutzt wurde)
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Persistence Modelle – CMP/BMP

Es gibt zwei Modelle um Daten dauerhaft zu speichern ?
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BMP - Die Persistence wird vom Bean
verwaltet

! Man muss nun selbst das Finden, Laden, Speichern, 
Erzeugen, Aktivieren und Passivieren der Beans 
kodieren

! Die entsprechenden SQL Befehle sind alle selbst zu 
schreiben

! ejbCreate, ejbLoad, ejbRemove, and ejbStore
Methoden müssen implementiert werden



35

CMP - Die Persistence wird vom Container 
verwaltet

! Der EJB-Container übernimmt das Datenbank-
Mapping

! Der SQL-Code wird vom Container selbst generiert 

! Für die Finder Methoden werden sogenannte EJB 
QL -Anfragen verwendet
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CMP- Beispiel

! Der Code für die Persitence-Felder, welche vom 
Container verwaltet werden sollen sieht folgender 
maßen aus

! public abstract setXXXX() und getXXX()

public abstract class BaseattribBean implements EntityBean {
...
public abstract void setBa_ID(java.math.BigDecimal baId);
public abstract void set Ba_Name(java.lang.String baName);

...
}

public abstract class BaseattribBean implements EntityBean {
...
public abstract void setBa_ID(java.math.BigDecimal baId);
public abstract void set Ba_Name(java.lang.String baName);

...
}
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CMP- Beispiel – der zugehörige EJB-Descriptor

<entity>

<ejb-name>Baseattrib</ejb-name>

<local-home>compiler.ejb.entity.BaseattribHome</local-home>

<local>compiler.ejb.entity.Baseattrib</local>

<ejb-class>compiler.ejb.entity.BaseattribBean</ejb-class>

<cmp-field>

<field-name>Ba_ID</field-name>

</cmp-field>

<cmp-field>

<field-name>Ba_Name</field-name>

</cmp-field>

</entity>
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EJB QL

Wie werden Objekte gefunden? Abfragen?
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EJB Abfrage - Sprache: EJB QL

! Standardsprache zum definieren von finderXXX()-
Methoden

! Teilmange von SQL92 Standard mit einigen 
Erweiterungen

! SQL: Select .. From … Where Klauseln
! EJB QL :: = [Select_Klausel] From_Klausel

[Where_Klausel]
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Beispiel eines Finders

public interface CaseHome extends javax.ejb.EJBLocalHome {
public Case create(BigDecimal caId) throws ...;
public Case findBa_ID (double caId) throws ...;

}

<query>
<query-method>
<method-name>findBa_ID</method-name>
<method-params>
<method-param>int</method-param>

</method-params>
</query-method>
<ejb-ql>
<where baId = ?1>

</ejb-ql>
</query>

Methodenname 
im Home

Parameter der 
Methode findXXXX()
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EJB Abfrage-Sprache: EJB QL

! EJB QL Parameter korrespondieren zu den 
Parametern welche in einer find/select Methode 
definiert wurden

! Entity-Beans müssen einen sogenannten “abstract
schema name” besitzen, der in der Anfrage 
verwendet wird

! Bei Namensänderungen z.B Bean-Name muss die 
EJB QL Anfrage nicht verändert werden
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EJB Abfrage-Sprache: EJB QL

FROM Buchhandlung L, IN (L.buecher) b
WHERE b.author.vorname = ‘Katharina’ AND
b.author.nachname = ‘Morik’

CMR Feld 1:n

CMR Feld 1:1

Buchhandlung

Buch

Author

1

n

n

1

1

1
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Beziehungen in EJB 

Wie werden Beziehungen definiert?
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Wie werden Beziehungen definiert?

Wir wollen folgende Beziehung definieren!

Buchhandlung

Buch

Author

1

n

n

1

1

1
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Wie werden Beziehungen definiert?
<ejb-relation>

<ejb-relation-name>Buchhandlungen_haben_Buecher</ejb-relation-name>

<ejb-relationship-role>

<ejb-relationship-role-name>Buchhaen_Rolle</ejb-relationship-role-name>

<multiplicity>One</multiplicity>

<relationship-role-source>

<ejb-name>Buchhandlung</ejb-name>

</relationship-role-source>

<cmr-field>

<cmr-field-name>buecher</cmr-field-name>

<cmr-field-type>java.util.Collection</cmr-field-type>

</cmr-field>

</ejb-relationship-role>

Buchhandlung

Buch
1

n

Quelle: Sun’s Enterprise JavaBeans™ spec
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Wie werden Beziehungen definiert?

<ejb-relationship-role>

<ejb-relationship-role-name>Buch_Rolle</ejb-relationship-role-name>

<multiplicity>Many</multiplicity>

<relationship-role-source>

<ejb-name>Buch</ejb-name>

</relationship-role-source>

</ejb-relationship-role>

</ejb-relation>
Buchhandlung

Buch
1

n

Quelle: Sun’s Enterprise JavaBeans™ spec
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Der zugehörige Code im Entity-Bean

public abstract class Buchhandlung implements 
EntityBean {

….

public abstract Collection getBuecher();

….

} CMR Felder fangen stets
Mit dem Schlüsselwort 

getXXX an!
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Architektur
EJBs
Dienste, Probleme 
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Message Driven Beans

! Problem: Nachrichten wurden bisher synchron
verarbeitet

! Asynchrone Verarbeitung: Message Driven Beans
"Point – to – point (Queue) (Client # Bean)
"Publish – subscribe (Topic) (Client # Verteiler)
"Es ist sichergestellt, das die Nachricht auch ankommt
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Senden einer Nachricht

Sicht des Client

Topic oder 
Queue

Quelle: Sun’s Enterprise JavaBeans™ spec
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Was ist eine Transaktion?

! Eine Folge von Aktionen soll atomar sein

"Entweder alle Aktionen werden wirksam

"Oder keine Aktion soll ein Wirkung haben

Was bedeutet das bei einem EJB-
Server?
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Das Problem (1/2)

Operation 1 Operation 2 Operation 3

Was passiert bei einem 
Fehler?

Quelle: Sun’s Enterprise JavaBeans™ spec
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Das Problem (2/2)

Operation 1 Operation 2

Was passiert bei einem 
Fehler?

Quelle: Sun’s Enterprise JavaBeans™ spec
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Die Lösung: Trasaktionsunterstützung bei J2EE

! J2EE-Server hat einen Transaktions-Monitor
"Transaktionen werden im ”Transaction context” 

ausgeführt 
! ”Transaction context” 

"Zugriff vom Client oder vom Bean über das 
UserTransaction Interface
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UserTransaction Interface

! public void begin() 

! public void commit() 

! public void rollback() 

! public void setRollbackOnly() 

! public int getStatus() 

! public void setTransactionTimeout(int timeout) 

STATUS_ACTIVE 
STATUS_MARKED_ROLLBACK 
STATUS_PREPARED 
STATUS_PREPARING 
STATUS_UNKNOWN 
STATUS_COMMITTED 
STATUS_COMMITTING 
STATUS_ROLLEDBACK 
STATUS_ROLLING_BACK 
STATUS_NO_TRANSACTION 
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Transaktionen im Einsatz

begin()

UpdateData()

commit()

oder

rollback() 
UpdateData()
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Nachteile - Effizienz

! Overhead: Alle Beans sind 
Transactionsfähig, Thread-sicher, 
verteilt  
"Dies sollte Optional sein, wie z.B. bei 

COM+
! Hoher Aufwand: Vergleich zur 

normalen RMI Implementation
"Mehr Code (Interfaces,…)
"Mehr Denken (Welche Beans?, Welche 

Interfaces?,…)

Performanz 

Zeitaufwand
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CMP – Problematik

! EJB-QL unterstützt nur eine Teilmenge der Funktionen in 
wirklichen DB-Systemen (keine Aggregatfunktionen)

! Effizienzprobleme # DB ist schneller
" Keine Informationen für den jeweiligen DB-Optimizer verfügbar 

(Bsp. Oracle: Index explizit angeben, „First_Rows“)
" Nutzung von internen DB-Funktionen nicht möglich

! Abfrage fest definiert (Descriptor) 
" Keine dynamischen Abfragen vom Client

! EntityBean kann nur auf eine Tabelle gemappt werden. 
Spezielle OR-Mapping Tools sind viel mächtiger.
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Hersteller

! Spezialisierte Container können zusätzliche Dienste zu denen 
in der EJB Spezifikation bieten

# Ein Enterprise Bean das einen solchen Dienst nutzt, kann nur 
in einem Container eingesetzt werden, der diesen Dienst 
bietet

! Hoher Preis: ca. 12000 €
! Probleme bei freien J2EE Servern?

" Keine Technische Unterstützung
" Schwere zu benutzen (keine Grafische Oberfläche ...)
" Keine Integration zu Entwicklungstools tools (z.B., Jbuilder)
" Bugs? Probleme während des Projektes?
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