

Uberblick

Architektur

EJB In der Praxis

Dienste und Probleme / Nachteile

Motivation fur Applikation Server

,Die Auseinandersetzung wird sich in diesem Jahrzehnt bei
Middleware abspielen, nicht Betriebssystemen®

John Swainson,
General Manager in der IBM Software Group

Mainframe Architektur

B s

Terminal

Grolirechner

(Mﬁj

Terminal

Terminal

Ny
SlPEIUIsIEZINUEG

-

“«<— ™ Datenbank

~—

Geschafts-
| logik

3-Schicht Architektur

Datenbanken, Dateien

Benutzerschnittstelle

Anforderungen an Application Server

Erweiterbarkeit
Skalierbarkeit
flexibel hinsichtlich Lastenverteilung

Hochverflugbarkeit

Java-basierte Application Server

Anforderungen:
standardisierte Schnittstellen
transparente Services
Transaktionssicherheit ?Q*

Komponentenbasiert

g

Enterprise Architektur

Was ist die Enterprise Architektur?

Architektur flr eine Serverseitige Plattform, die verteilte
Komponenten zur Verfligung stellt

“a standard for multi-tier, server-oriented,
component development”.

Dienste: “lifecycle”, Transaktionen, Sicherheit,
Verbindung zum Client, Datenbankzugriff, “Pooling”,...

Entwickler soll sich auf die Business-Logik
konzentrieren kdnnen

Quelle: Sun’s Enterprise JavaBeans™ spec

Enterprise Architekture

Server-Side Searver-Side nterprise
Presentation IEua_'.m-nss La:-gu:. nformation

B rowser

Fure
HTAIL

Java
Applet

Deaktop

Java . Java
Application Serviet
L]

Other Device

J2EE
Client

' J2EE Application Model

Quelle: Sun’s Enterprise JavaBeans™ spec

Was sind "Enterprise JavaBeans” (EJB)?

Serverseitig wiederverwendbare

Java Komponenten

Enterprise JavaBeans werden

vom J2EE Server ausgefihrt

Server bietet Dienste, die von
Programmierer schwer

Implementiert werden kénnen

einmal schreiben, in jedem Server

laufen lassen

10

Entwicklung von EJB

Die EJB 1.0 Spezifikation wurde auf der JavaOne ‘98 Conference
veroffentlicht.

Die Spezifikation wurde von Sun mit vielen Firmen erarbeitet:
Sybase
BEA
Oracle
IBM
Netscape
Novell
Tandem
Viele Andere
2.0 Spezifikation Aktuell (22. Aug. 2001)

11

J2EE Server Architektur

Kann in Container und Server aufgeteilt werden.
Container
Bietet High-Level Dienste flr das EJB

Server

Bietet Low-Level Dienste, z.B. Netzwerkverbindung

Der Server soll viele Protokolle wie RMI, IIOP oder DCOM
unterstitzen.

Clients kdnnen in jeder Sprache geschrieben
werden

12

J2EE Server Architektur

Firewall

Client

Client

Client

Client Tier

> < .
| EJE Container

/ia';;tTETprise

bean

/é;;;rpl’i 52

bean

fgr:t;_rprise

fContainer.

JSP Pages,
THTMLIXML)®

JINDIT,
JMS,
Javaviail

I (Serviets, '

Middle Tier

Enterprise
Information
=ystems

(RDEMS,
ERP, Legacy
Applications)

EIS Tier

13

Server and Container Dienste

Remote-Zugriff moglich, sobald Komponente im
Server

Multi-Client Unterstitzung - Kopie pro Client

Ressourcen Management (Thread, Sockets, DB-
Verbindung)

Komponenten Lebenszyklus \
Persistenz von Objekten
Sicherheit

Lokale Transparenz durch JNDI
(,Java Naming and Directory Interface”)

Transaktions-Management

14

Clustering

Skalierbarkeit

Einen Server hinzufigen = mehr Leistung

Hoch Verfagbarkeit

Wenn einer ausfallt, sind die anderen Server noch verfugbar

06
p.:o e

15

Automatische Lastverteilung

Clustering ist unsichtbar fur den Entwickler

Hersteller

Ein Hersteller muss die EJB Spezifaktion erflllen und die
Container zur Verfugung stellen

Durch die Spezifikation ist sichergestellt, das eine EJB-
Anwendung in jedem EJB-Server lauft
EJB Container/Server Hersteller:

BEA WebLogic Tengah

NetDynamics

IBM WebSphere Advanced Edition

Oracle8i, Oracle Application Server

Persistence Power Tier

Progress Apptivity

Jboss (Open Source)

Forte, Informix, Netscape, Gemstone, Bluestone, Inprise und

viele andere...

16

Java Naming and Directory Interface (JNDI)

Einheitliches Namensschema zum Zugriff auf:
Netzwerkrechner
Dateien im Dateisystem

Objekte im Applikationserver (Servlets, JSPs,
EJBS)

JNDI wird benoétigt, um auf EJBs zuzugreifen
Bsp: jndi name: ejb/nameBean, ejb/Other/a

ejb
—

Other nameBean

a b
17

Architektur N/

EJBs >

Beans Ubersicht

Wie implementiert man EJB's ?

19

Enterprise Java Beans — Ubersicht

Bean Typen
Entity Session
Container Bean
Stateful
Managed Managed Stateless
= CMP = BMP

Quelle: Sun’s Enterprise JavaBeans™ spec 20

Enterprise Java Beans — Ubersicht

Entity Beans

Persistente Daten — meistes
DB - Zustand

Finder Methoden
PrimaryKey

Container Managed
Persistence (CMP)

Bean Managed Persistence
(BMP)

Session Beans

Uberdauern nur eine
Benutzersitzung

Applikations Logik
Statefull Session Beans
Stateless Session Beans

21

Enterprise Java Beans — Ubersicht

Warum verschiedene Session-Beans?

Statefull

Haben Uber
Methodenaufrufe hinweg
einen Zustand

Sind fr eine Sitzung
spezifisch

Z.B. Abwicklung eines
Workflows

Z.B. Warenkorb
des aktuellen Beutzers

Stateless

Speichern keinen Zustand

Vergleichbar mit statischen
Methoden einer Klasse

Eine Bean kann von
verschiedenen Benutzern
gleichzeitig genutzt werden

Z.B. Loginmanager, oder
Druckdienste anbieten

22

Enterprise Java Beans — Prinzip

Container \\

EJB Home
(client view)

Database
Or
TP Monito

Enterprise
JavaBeans™
Component

EJB Object
(bean id)

/

EJB Server\\ -

Kann Session- oder Entity-Bean sein

23

Das Abstract Factory Pattern

Hinter Java-Bans steckt das Abstract Factory
Pattern. Ziel: Nutzung eines Interfaces um Objekte
zu Kreieren ohne deren konkrete Implementierung

ZUu kennen.

Home- |\J>AbstractFactory

Interface r %createProductA()

%createProductB()

Remote-
0. Local-

ﬁ K AbstractProductA
ConcreteFactoryl ConcreteFactory?2 ﬁ \
ProductAl ProductA2

Client

nterface

..

AbstractP(oductB

ProductB1 ProductB2

)
L=

EJB Basilert auf Factories

Enterprise Beans bestehen aus mindestens zwel
unabhangigen Interfaces

Home Interface: definiert eine Menge von Factory-
Methoden

Der Client ruft diese Methoden auf um Instanzen zu
erzeugen

Der Container erzeugt die Konkreten Instanzen
transparent

Remote/Local Interface: Hier werden die Methoden
far den Zugriff definiert. Der Client greift niemals
direkt auf ein Bean zu!

25

Home Interface

Factory zum Erzeugen von Instanzen

Namenskonvention:
DeinBeanNameHome.java

Extends EJBHome

public MeinBeanHome extends EJBHome {

.
Methoden zum Erzeugen von Beans

public void create(...) throws java.rmi_RemoteException, evtl. andere
Exceptions

26

Remote/Local Interface

Interface fur die ausfuhrbaren Methoden des Beans

Namenskonvention:
DeinBeanName.java /DeinBeanNameLocal.java

Extends EJBODbject /EJBLocalObject

public MeinBeanHome extends EJBHome {
public Object getPrimaryKey() throws RemoteException;
public boolean isldentical (EJBObject obj) throws ..
public void remove() throws RemoteException ..

}
Enthalt weiter die Business Methoden

27

Persistence und Beziehungen

Wie implementiert man EJB's ?

28

Entity-Bean = 1 DB Tupel

Entity-Objekt

Datenbank
Name Vorname
Vera Mustermann
Klaus Kinkel

Name=Mustermann
Vorname=Vera

29

Alle Beans werden vom Container verwaltet

Der Container verwaltet einen Pool von Objekten

Pooled | nstances Ready | nstances
Korrespondieren nicht mit den Korrespondieren mit den
“aktuellen Daten”. Verabeiten “aktuellen Daten”
keine Anfragen. Nur leere Sind zu einem echten EJB-
Objekt-Hulsen eines Typs Obj ekt assoziert. Bearbeiten

Anfragen.

- Daten-Verwaltung / Synchronisation mir einer DB muss vom Container 3o
gesteuert werden

Vom Pool zum “bereiten” Bean

Instanzen werden mit gultigen Daten gefullt wenn
der Container ein weiters Bean benotigt

Erzeugen: ejbCreate() and ejbPostCreate()

Werden aufgerufen wenn ein “neues” Objekt erzeugt
wird. (Wenn es dieses also in der DB noch nicht gab)

z. B. eine create() Methode kann vom Home-Objekt
aufgerufen werden

Aktivieren: ejbActivate()

Werden aufgerufen wenn das Objekt bereits logisch
(z.B. Iin der DB) existiert.

Z.B. wenn die Methode findXXX() vom Home
Interface aufgerufen wurde

31

Vom “bereiten” Bean zum Pool

Wenn eine der beiden Methoden aufgerufen wird,
wird die Instanz wieder zum Pool hinzugeflgt

ejbRemove() wenn das zugehorige Logische-Objekt
geldscht wurde (z.B. ein Ldschen in der DB)

ejbPassivate() wenn das zugehorige Logische-Objekt
existiert, aber das Bean deaktiviert werden soll. (z.B.
well es eine langere Zeit nicht mehr benutzt wurde)

32

Persistence Modelle — CMP/BMP

Es gibt zawvel Modelle um Daten dauer haft zu speichern ?

33

BMP - Die Persistence wird vom Bean
verwaltet

Man muss nun selbst das Finden, Laden, Speichern,
Erzeugen, Aktivieren und Passivieren der Beans
kodieren

Die entsprechenden SQL Befehle sind alle selbst zu
schreiben

ejbCreate, ejbLoad, ejpbRemove, and ejbStore
Methoden mussen implementiert werden

34

CMP - Die Persistence wird vom Container
verwaltet

Der EJB-Container Ubernimmt das Datenbank-
Mapping

Der SQL-Code wird vom Container selbst generiert

Fur die Finder Methoden werden sogenannte EJB
QL -Anfragen verwendet

35

CMP- Beispiel

Der Code fur die Persitence-Felder, welche vom
Container verwaltet werden sollen sienht folgender
malden aus

public abstract setXXXX() und getXXX()

public abstract class BaseattribBean implements EntityBean {

public abstract void setBa_ID(java.math.BigDecimal bald);
public abstract void set Ba_Name(java.lang.String baName);

36

CMP- Beispiel — der zugehorige EJB-Descriptor

<entity>
<ejb-name>Baseattrib</ejb-name>
<local-home>compiler.ejb.entity.BaseattribHome</local-home>
<local>compiler.ejb.entity.Baseattrib</local>
<ejb-class>compiler.ejb.entity.BaseattribBean</ejb-class>
<cmp-field>
<field-name>Ba_|D</field-name>
</cmp-field>
<cmp-field>
<field-name>Ba_Name</field-name>
</cmp-field>

</entity>
37

EJB QL

Wie werden Objekte gefunden? Abfragen?

38

EJB Abfrage - Sprache: EJB QL

Standardsprache zum definieren von finderXXX()-
Methoden

Tellmange von SQL92 Standard mit einigen
Erweiterungen

SQL: Select .. From ... Where Klauseln

EJB QL :: = [Select Klausel] From_Klausel
[Where_Klausel]

39

Beispiel eines Finders

public interface CaseHome extends javax.ejb.EJBLocalHome {

}

public Case create(BigDecimal cald) throws ...;
public Case findBa_ID (double cald) throws ...;

Methodenname
im Home

<query>
<guery-method>
<method-name>findBa_ID</method-name>

<method-params>
<method-param>i1nt</method-param>

</method-params> k
</query-method>

<ejb-gl> Parameter der
<Where bald = 21> Methode flndXXXX()
</ejb-ql>

</query>

40

EJB Abfrage-Sprache: EJB QL

EJB QL Parameter korrespondieren zu den
Parametern welche in einer find/select Methode

definiert wurden

Entity-Beans mussen einen sogenannten “abstract
schema name” besitzen, der in der Anfrage
verwendet wird

Bel Namensanderungen z.B Bean-Name muss die
EJB QL Anfrage nicht verandert werden

41

EJB Abfrage-Sprache: EJB QL

CMR Feld 1:n

/

FROM Buchhandlung L, IN (L.buecher) b
WHERE b.author.vorname = ‘Katharina AND
b.author.nachname = ‘Morik’

Buch
1 n

1

Buchhandlung

1 1

CMR Feld 1:1

Author

42

Beziehungen in EJB

Wie werden Beziehungen definiert?

lr

'\9 p

43

Wie werden Beziehungen definiert?

Wir wollen folgende Beziehung definieren!

1

Buchhandlung

Author

Wie werden Beziehungen definiert?

<gb-relation>

<gjb-relation-name>Buchhandlungen _haben Buecher</gjb-rel ation-name>

<gjb-relationship-role>

<gjb-relationship-role-name>Buchhaen_Rolle</gb-rel ationship-role-name>

<multiplicity>One</multiplicity>

<relationship-role-source>
<gjb-name>Buchhandlung</gb-name>

</relationship-role-source>

<cmr-field>

1

Buchhandlung

<cmr-field-name>buecher</cmr-field-name>

<cmr-field-type>java.util.Collection</cmr-fiel d-type>

</cmr-field>

</gjb-relationship-role>

A 4

Buch

Quelle: Sun’s Enterprise JavaBeans™ sp‘ésc

Wie werden Beziehungen definiert?

<gjb-relationship-role>
<gjb-relationship-role-name>Buch_ Rolle</gjb-rel ationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source>

<gjb-name>Buch</gb-name>

</rel ationship-role-source> n Buch

A 4

1
Buchhandlung

</gb-relationship-role>

</gb-relation>

Quelle: Sun’s Enterprise JavaBeans™ éf)ec

Der zugehorige Code im Entity-Bean

public abstract class Buchhandlung implements
EntityBean {

public abstract Collection geﬂ?:gher();

} CMR Felder fangen stets
Mit dem Schllisselwort
getXXX an!

a7

Architektur \/

EJBs \/

Dienste, Probleme)

Message Driven Beans

Problem: Nachrichten wurden bisher synchron
verarbeitet

Asynchrone Verarbeitung: Message Driven Beans
Point — to — point (Queue) (Client - Bean)
Publish — subscribe (Topic) (Client - Verteller)
Es ist sichergestellt, das die Nachricht auch ankommt

49

Senden einer Nachricht

Sicht des Client

Message-
driven bean
instances

Client Destination

Topic oder
Queue

Quelle: Sun’s Enterprise JavaBeans™ spec S0

Was Ist eine Transaktion?

Eine Folge von Aktionen soll atomar sein
Entweder alle Aktionen werden wirksam

Oder keine Aktion soll ein Wirkung haben

U

Was bedeutet das bei einem EJB-
Server?

51

Das Problem (1/2)

client EJB Server

Operation 1 Operation 2 Operation 3

_— h

Was passiert bei einem
Fehler? —

—

database A database B database C

Quelle: Sun’s Enterprise JavaBeans™ spec 52

Das Problem (2/2)

client EJB Server EJB Server
= GO0
X Y
c
Operation 1 ']

Was passiert bei eine
Fehler?

database A database B

Quelle: Sun’s Enterprise JavaBeans™ spec 53

Die LOosung: Trasaktionsunterstutzung bei J2EE

J2EE-Server hat einen Transaktions-Monitor

Transaktionen werden im "Transaction context”
ausgefuhrt

"Transaction context”

Zugriff vom Client oder vom Bean Uber das
UserTransaction Interface

54

UserTransaction Interface

public void begin() STATUS ACTIVE
STATUS MARKED_ROLLBACK
public void commit() STATUS PREPARED

STATUS PREPARING
_ _ STATUS UNKNOWN
public void rollback() STATUS COMMITTED
STATUS COMMITTING
STATUS ROLLEDBACK
STATUS ROLLING BACK

STATUS NO_TRANSACTION

public void setRollback®nly()

public int getStatus()

public void setTransactionTimeout(int timeout)

55

Transaktionen im Einsatz

client

EJB Server

EIB Server
begin()
= x)
commit() ’—/
oder
UpdateD
rollback()

database A

database B

56

a()

Nachteile - Effizienz

Overhead: Alle Beans sind
Transactionsfahig, Thread-sicher,
verteilt

Dies sollte Optional sein, wie z.B. bel
COM+

Hoher Aufwand: Vergleich zur
normalen RMI Implementation
Mehr Code (Interfaces,...)

Mehr Denken (Welche Beans?, Welche
Interfaces?,...)

Performanz @

Zeitaufwand ﬁ

57

CMP — Problematik

EJB-QL unterstutzt nur eine Teilmenge der Funktionen in
wirklichen DB-Systemen (keine Aggregatfunktionen)
Effizienzprobleme - DB ist schneller

Keine Informationen fur den jeweiligen DB-Optimizer verflgbar
(Bsp. Oracle: Index explizit angeben, ,First Rows")

Nutzung von internen DB-Funktionen nicht moglich
Abfrage fest definiert (Descriptor)
Keine dynamischen Abfragen vom Client

EntityBean kann nur auf eine Tabelle gemappt werden.
Spezielle OR-Mapping Tools sind viel machtiger.

58

Hersteller

Spezialisierte Container kénnen zusatzliche Dienste zu denen
In der EJB Spezifikation bieten

—> Ein Enterprise Bean das einen solchen Dienst nutzt, kann nur
In einem Container eingesetzt werden, der diesen Dienst
bietet

Hoher Preis: ca. 12000 €

Probleme bei freien J2EE Servern?
Keine Technische Unterstlitzung
Schwere zu benutzen (keine Grafische Oberflache ...)
Keine Integration zu Entwicklungstools tools (z.B., Jbuilder)
Bugs? Probleme wahrend des Projektes?

59

Literatur

Linda G. DeMichiel, L. Umit Yalginalp, Sanjeev Krishnan. Enterprise
JavaBeansTM Specification, Version 2.0, EJB web site. Sun Microsystems,
Inc. 2001.

Designing Enterprise Applications with the Java 2 Platform, Enterprise
Edition. EJB web site. Sun Microsystems, Inc. 2000.

Enterprise JavaBeans web site. http://java.sun.com/products/ejb

Matena, Vlada., Harper, Mark. Enterprise JavaBeans Specification, v1.1.
EJB web site. Sun Microsystems, Inc. 1999.

Roman, Ed. Mastering Enterprise JavaBeans and the Java 2 Platform
Enterprise Edition. John Wiley and Sons Inc. 1999.

Thomas, Anne. Enterprise JavaBeans Technology Server Component
Model for the Java Platform. EJB web site. Patricia Seybold Group. 1998.

Java Enterprise in a Nutshell — David Flanagan

Core Servlets and Java ServerPages — Marty Hall

Designing Enterprise Applications with J2EE — Nicholas Kassem
Enterprise JavaBeans — Richard Monson-Haefel

60

Ende

61

	Enterprise Java Beans
	Überblick
	Motivation für Applikation Server
	Mainframe Architektur
	3-Schicht Architektur
	Anforderungen an Application Server
	Java-basierte Application Server
	Was ist die Enterprise Architektur?
	Enterprise Architekture
	Was sind ”Enterprise JavaBeans” (EJB)?
	Entwicklung von EJB
	J2EE Server Architektur
	J2EE Server Architektur
	Server and Container Dienste
	Clustering
	Hersteller
	Java Naming and Directory Interface (JNDI)
	Beans Übersicht
	Enterprise Java Beans – Übersicht
	Enterprise Java Beans – Übersicht
	Enterprise Java Beans – Übersicht
	Enterprise Java Beans – Prinzip
	Das Abstract Factory Pattern
	EJB Basiert auf Factories
	Home Interface
	Remote/Local Interface
	Persistence und Beziehungen
	Entity-Bean = 1 DB Tupel
	Alle Beans werden vom Container verwaltet
	Vom Pool zum “bereiten” Bean
	Vom “bereiten” Bean zum Pool
	Persistence Modelle – CMP/BMP
	BMP - Die Persistence wird vom Bean verwaltet
	CMP - Die Persistence wird vom Container verwaltet
	CMP- Beispiel
	CMP- Beispiel – der zugehörige EJB-Descriptor
	EJB QL
	EJB Abfrage - Sprache: EJB QL
	Beispiel eines Finders
	EJB Abfrage-Sprache: EJB QL
	EJB Abfrage-Sprache: EJB QL
	Beziehungen in EJB
	Wie werden Beziehungen definiert?
	Wie werden Beziehungen definiert?
	Wie werden Beziehungen definiert?
	Der zugehörige Code im Entity-Bean
	Message Driven Beans
	Senden einer Nachricht
	Was ist eine Transaktion?
	Das Problem (1/2)
	Das Problem (2/2)
	Die Lösung: Trasaktionsunterstützung bei J2EE
	UserTransaction Interface
	Transaktionen im Einsatz
	Nachteile - Effizienz
	CMP – Problematik
	Hersteller
	Literatur
	Ende

