
Enterprise Java Beans

2

Überblick

! Architektur

! EJB in der Praxis

! Dienste und Probleme / Nachteile

3

Motivation für Applikation Server

„Die Auseinandersetzung wird sich in diesem Jahrzehnt bei
Middleware abspielen, nicht Betriebssystemen“

John Swainson,
General Manager in der IBM Software Group

4

Mainframe Architektur

5

3-Schicht Architektur

6

Anforderungen an Application Server

! Erweiterbarkeit

! Skalierbarkeit

! flexibel hinsichtlich Lastenverteilung

! Hochverfügbarkeit

7

Java-basierte Application Server

! Anforderungen:

"standardisierte Schnittstellen

"transparente Services

"Transaktionssicherheit

"Komponentenbasiert

Enterprise Architektur

8

Was ist die Enterprise Architektur?

! Architektur für eine Serverseitige Plattform, die verteilte
Komponenten zur Verfügung stellt
" “a standard for multi-tier, server-oriented,

component development”.
! Dienste: “lifecycle”, Transaktionen, Sicherheit,

Verbindung zum Client, Datenbankzugriff, “Pooling”,…
!! Entwickler soll sich auf die BusinessEntwickler soll sich auf die Business--Logik Logik

konzentrieren könnenkonzentrieren können

Quelle: Sun’s Enterprise JavaBeans™ spec

9Quelle: Sun’s Enterprise JavaBeans™ spec

Enterprise Architekture

10

Was sind ”Enterprise JavaBeans” (EJB)?

! Serverseitig wiederverwendbare

Java Komponenten

! Enterprise JavaBeans werden

vom J2EE Server ausgeführt

! Server bietet Dienste, die von

Programmierer schwer

implementiert werden können

" einmal schreiben, in jedem Server

laufen lassen

11

Entwicklung von EJB

! Die EJB 1.0 Spezifikation wurde auf der JavaOne ‘98 Conference
veröffentlicht.

! Die Spezifikation wurde von Sun mit vielen Firmen erarbeitet:
" Sybase
" BEA
" Oracle
" IBM
" Netscape
" Novell
" Tandem
" Viele Andere

! 2.0 Spezifikation Aktuell (22. Aug. 2001)

12

J2EE Server Architektur

! Kann in Container und Server aufgeteilt werden.
"Container

!Bietet High-Level Dienste für das EJB

"Server
!Bietet Low-Level Dienste, z.B. Netzwerkverbindung
!Der Server soll viele Protokolle wie RMI, IIOP oder DCOM

unterstützen.

! Clients können in jeder Sprache geschrieben
werden

13

J2EE Server Architektur

14

Server and Container Dienste

! Remote-Zugriff möglich, sobald Komponente im
Server

! Multi-Client Unterstützung # Kopie pro Client
! Ressourcen Management (Thread, Sockets, DB-

Verbindung)
! Komponenten Lebenszyklus
! Persistenz von Objekten
! Sicherheit
! Lokale Transparenz durch JNDI

(„Java Naming and Directory Interface”)
! Transaktions-Management

15

Clustering

! Skalierbarkeit

" Einen Server hinzufügen # mehr Leistung

! Hoch Verfügbarkeit

" Wenn einer ausfällt, sind die anderen Server noch verfügbar

! Automatische Lastverteilung

! Clustering ist unsichtbar für den Entwickler

16

Hersteller
! Ein Hersteller muss die EJB Spezifaktion erfüllen und die

Container zur Verfügung stellen
! Durch die Spezifikation ist sichergestellt, das eine EJB-

Anwendung in jedem EJB-Server läuft
! EJB Container/Server Hersteller:

" BEA WebLogic Tengah
" NetDynamics
" IBM WebSphere Advanced Edition
" Oracle8i, Oracle Application Server
" Persistence Power Tier
" Progress Apptivity
" Jboss (Open Source)
" Forte, Informix, Netscape, Gemstone, Bluestone, Inprise und

viele andere…

17

Java Naming and Directory Interface (JNDI)

! Einheitliches Namensschema zum Zugriff auf:
"Netzwerkrechner
"Dateien im Dateisystem
"Objekte im Applikationserver (Servlets, JSPs,

EJBs)
! JNDI wird benötigt, um auf EJBs zuzugreifen
! Bsp: jndi name: ejb/nameBean, ejb/Other/a

ejb

nameBeanOther

a b

18

Architektur

EJBs

19

Beans Übersicht

Wie implementiert man EJB´s ?

20

Enterprise Java Beans – Übersicht

Bean Bean TypenTypen

SessionSessionEntityEntity

BeanBean
ManagedManaged

= = BMPBMP

ContainerContainer
ManagedManaged

= = CMP

StatefulStateful StatelessStateless

CMP

Quelle: Sun’s Enterprise JavaBeans™ spec

21

Enterprise Java Beans – Übersicht

Entity Beans Session Beans

! Persistente Daten – meistes
DB - Zustand

! Finder Methoden
! PrimaryKey
! Container Managed

Persistence (CMP)
! Bean Managed Persistence

(BMP)

! Überdauern nur eine
Benutzersitzung

! Applikations Logik
! Statefull Session Beans
! Stateless Session Beans

22

Enterprise Java Beans – Übersicht

Warum verschiedene Session-Beans?

Statefull Stateless

! Haben über
Methodenaufrufe hinweg
einen Zustand

! Sind für eine Sitzung
spezifisch

! Z.B. Abwicklung eines
Workflows

! Z.B. Warenkorb
des aktuellen Beutzers

! Speichern keinen Zustand
! Vergleichbar mit statischen

Methoden einer Klasse
! Eine Bean kann von

verschiedenen Benutzern
gleichzeitig genutzt werden

! Z.B. Loginmanager, oder
Druckdienste anbieten

23

Enterprise Java Beans – Prinzip

Client

Container

EJB Server

Enterprise
JavaBeans™
Component

EJB Object
(bean id)

EJB Home
(client view)

Database
Or

TP Monitor

business
methods

create,
find,
remove

Kann Session- oder Entity-Bean sein

24

Das Abstract Factory Pattern

! Hinter Java-Bans steckt das Abstract Factory
Pattern. Ziel: Nutzung eines Interfaces um Objekte
zu Kreieren ohne deren konkrete Implementierung
zu kennen.

ConcreteFactory1

ProductA1 ProductA2

ConcreteFactory2

AbstractProductA

AbstractFactory

createProductA()
createProductB()

ProductB1 ProductB2

AbstractProductB

Client
Home-

Interface

Remote-
o. LocaI-
nterface

25

EJB Basiert auf Factories

! Enterprise Beans bestehen aus mindestens zwei
unabhängigen Interfaces

! Home Interface: definiert eine Menge von Factory-
Methoden
"Der Client ruft diese Methoden auf um Instanzen zu

erzeugen
"Der Container erzeugt die Konkreten Instanzen

transparent
! Remote/Local Interface: Hier werden die Methoden

für den Zugriff definiert. Der Client greift niemals
direkt auf ein Bean zu!

26

Home Interface

! Factory zum Erzeugen von Instanzen

! Namenskonvention:
"DeinBeanNameHome.java

! Extends EJBHome
" public MeinBeanHome extends EJBHome {

…
}

! Methoden zum Erzeugen von Beans
" public void create(...) throws java.rmi.RemoteException, evtl. andere

Exceptions

27

Remote/Local Interface

! Interface für die ausführbaren Methoden des Beans

! Namenskonvention:
" DeinBeanName.java /DeinBeanNameLocal.java

! Extends EJBObject /EJBLocalObject
" public MeinBeanHome extends EJBHome {

public Object getPrimaryKey() throws RemoteException;
public boolean isIdentical(EJBObject obj) throws …
public void remove() throws RemoteException …

}

! Enthält weiter die Business Methoden

28

Persistence und Beziehungen

Wie implementiert man EJB´s ?

29

Entity-Bean = 1 DB Tupel

Datenbank Entity-Objekt

KinkelKlaus

MustermannVera

VornameName

Name=Mustermann
Vorname=Vera

30

Alle Beans werden vom Container verwaltet

! Der Container verwaltet einen Pool von Objekten

Pooled Instances Ready Instances

Korrespondieren mit den
“aktuellen Daten”
Sind zu einem echten EJB-
Objekt assoziert. Bearbeiten
Anfragen.

Korrespondieren nicht mit den
“aktuellen Daten”. Verabeiten
keine Anfragen. Nur leere
Objekt-Hülsen eines Typs

Daten-Verwaltung / Synchronisation mir einer DB muss vom Container
gesteuert werden

31

Vom Pool zum “bereiten” Bean

! Instanzen werden mit gültigen Daten gefüllt wenn
der Container ein weiters Bean benötigt

! Erzeugen: ejbCreate() and ejbPostCreate()
"Werden aufgerufen wenn ein “neues” Objekt erzeugt

wird. (Wenn es dieses also in der DB noch nicht gab)
"z. B. eine create() Methode kann vom Home-Objekt

aufgerufen werden
! Aktivieren: ejbActivate()

"Werden aufgerufen wenn das Objekt bereits logisch
(z.B. in der DB) existiert.

"Z.B. wenn die Methode findXXX() vom Home
Interface aufgerufen wurde

32

Vom “bereiten” Bean zum Pool

! Wenn eine der beiden Methoden aufgerufen wird,
wird die Instanz wieder zum Pool hinzugefügt
"ejbRemove() wenn das zugehörige Logische-Objekt

gelöscht wurde (z.B. ein Löschen in der DB)
"ejbPassivate() wenn das zugehörige Logische-Objekt

existiert, aber das Bean deaktiviert werden soll. (z.B.
weil es eine längere Zeit nicht mehr benutzt wurde)

33

Persistence Modelle – CMP/BMP

Es gibt zwei Modelle um Daten dauerhaft zu speichern ?

34

BMP - Die Persistence wird vom Bean
verwaltet

! Man muss nun selbst das Finden, Laden, Speichern,
Erzeugen, Aktivieren und Passivieren der Beans
kodieren

! Die entsprechenden SQL Befehle sind alle selbst zu
schreiben

! ejbCreate, ejbLoad, ejbRemove, and ejbStore
Methoden müssen implementiert werden

35

CMP - Die Persistence wird vom Container
verwaltet

! Der EJB-Container übernimmt das Datenbank-
Mapping

! Der SQL-Code wird vom Container selbst generiert

! Für die Finder Methoden werden sogenannte EJB
QL -Anfragen verwendet

36

CMP- Beispiel

! Der Code für die Persitence-Felder, welche vom
Container verwaltet werden sollen sieht folgender
maßen aus

! public abstract setXXXX() und getXXX()

public abstract class BaseattribBean implements EntityBean {
...
public abstract void setBa_ID(java.math.BigDecimal baId);
public abstract void set Ba_Name(java.lang.String baName);

...
}

public abstract class BaseattribBean implements EntityBean {
...
public abstract void setBa_ID(java.math.BigDecimal baId);
public abstract void set Ba_Name(java.lang.String baName);

...
}

37

CMP- Beispiel – der zugehörige EJB-Descriptor

<entity>

<ejb-name>Baseattrib</ejb-name>

<local-home>compiler.ejb.entity.BaseattribHome</local-home>

<local>compiler.ejb.entity.Baseattrib</local>

<ejb-class>compiler.ejb.entity.BaseattribBean</ejb-class>

<cmp-field>

<field-name>Ba_ID</field-name>

</cmp-field>

<cmp-field>

<field-name>Ba_Name</field-name>

</cmp-field>

</entity>

38

EJB QL

Wie werden Objekte gefunden? Abfragen?

39

EJB Abfrage - Sprache: EJB QL

! Standardsprache zum definieren von finderXXX()-
Methoden

! Teilmange von SQL92 Standard mit einigen
Erweiterungen

! SQL: Select .. From … Where Klauseln
! EJB QL :: = [Select_Klausel] From_Klausel

[Where_Klausel]

40

Beispiel eines Finders

public interface CaseHome extends javax.ejb.EJBLocalHome {
public Case create(BigDecimal caId) throws ...;
public Case findBa_ID (double caId) throws ...;

}

<query>
<query-method>
<method-name>findBa_ID</method-name>
<method-params>
<method-param>int</method-param>

</method-params>
</query-method>
<ejb-ql>
<where baId = ?1>

</ejb-ql>
</query>

Methodenname
im Home

Parameter der
Methode findXXXX()

41

EJB Abfrage-Sprache: EJB QL

! EJB QL Parameter korrespondieren zu den
Parametern welche in einer find/select Methode
definiert wurden

! Entity-Beans müssen einen sogenannten “abstract
schema name” besitzen, der in der Anfrage
verwendet wird

! Bei Namensänderungen z.B Bean-Name muss die
EJB QL Anfrage nicht verändert werden

42

EJB Abfrage-Sprache: EJB QL

FROM Buchhandlung L, IN (L.buecher) b
WHERE b.author.vorname = ‘Katharina’ AND
b.author.nachname = ‘Morik’

CMR Feld 1:n

CMR Feld 1:1

Buchhandlung

Buch

Author

1

n

n

1

1

1

43

Beziehungen in EJB

Wie werden Beziehungen definiert?

44

Wie werden Beziehungen definiert?

Wir wollen folgende Beziehung definieren!

Buchhandlung

Buch

Author

1

n

n

1

1

1

45

Wie werden Beziehungen definiert?
<ejb-relation>

<ejb-relation-name>Buchhandlungen_haben_Buecher</ejb-relation-name>

<ejb-relationship-role>

<ejb-relationship-role-name>Buchhaen_Rolle</ejb-relationship-role-name>

<multiplicity>One</multiplicity>

<relationship-role-source>

<ejb-name>Buchhandlung</ejb-name>

</relationship-role-source>

<cmr-field>

<cmr-field-name>buecher</cmr-field-name>

<cmr-field-type>java.util.Collection</cmr-field-type>

</cmr-field>

</ejb-relationship-role>

Buchhandlung

Buch
1

n

Quelle: Sun’s Enterprise JavaBeans™ spec

46

Wie werden Beziehungen definiert?

<ejb-relationship-role>

<ejb-relationship-role-name>Buch_Rolle</ejb-relationship-role-name>

<multiplicity>Many</multiplicity>

<relationship-role-source>

<ejb-name>Buch</ejb-name>

</relationship-role-source>

</ejb-relationship-role>

</ejb-relation>
Buchhandlung

Buch
1

n

Quelle: Sun’s Enterprise JavaBeans™ spec

47

Der zugehörige Code im Entity-Bean

public abstract class Buchhandlung implements
EntityBean {

….

public abstract Collection getBuecher();

….

} CMR Felder fangen stets
Mit dem Schlüsselwort

getXXX an!

48

Architektur
EJBs
Dienste, Probleme

49

Message Driven Beans

! Problem: Nachrichten wurden bisher synchron
verarbeitet

! Asynchrone Verarbeitung: Message Driven Beans
"Point – to – point (Queue) (Client # Bean)
"Publish – subscribe (Topic) (Client # Verteiler)
"Es ist sichergestellt, das die Nachricht auch ankommt

50

Senden einer Nachricht

Sicht des Client

Topic oder
Queue

Quelle: Sun’s Enterprise JavaBeans™ spec

51

Was ist eine Transaktion?

! Eine Folge von Aktionen soll atomar sein

"Entweder alle Aktionen werden wirksam

"Oder keine Aktion soll ein Wirkung haben

Was bedeutet das bei einem EJB-
Server?

52

Das Problem (1/2)

Operation 1 Operation 2 Operation 3

Was passiert bei einem
Fehler?

Quelle: Sun’s Enterprise JavaBeans™ spec

53

Das Problem (2/2)

Operation 1 Operation 2

Was passiert bei einem
Fehler?

Quelle: Sun’s Enterprise JavaBeans™ spec

54

Die Lösung: Trasaktionsunterstützung bei J2EE

! J2EE-Server hat einen Transaktions-Monitor
"Transaktionen werden im ”Transaction context”

ausgeführt
! ”Transaction context”

"Zugriff vom Client oder vom Bean über das
UserTransaction Interface

55

UserTransaction Interface

! public void begin()

! public void commit()

! public void rollback()

! public void setRollbackOnly()

! public int getStatus()

! public void setTransactionTimeout(int timeout)

STATUS_ACTIVE
STATUS_MARKED_ROLLBACK
STATUS_PREPARED
STATUS_PREPARING
STATUS_UNKNOWN
STATUS_COMMITTED
STATUS_COMMITTING
STATUS_ROLLEDBACK
STATUS_ROLLING_BACK
STATUS_NO_TRANSACTION

56

Transaktionen im Einsatz

begin()

UpdateData()

commit()

oder

rollback()
UpdateData()

57

Nachteile - Effizienz

! Overhead: Alle Beans sind
Transactionsfähig, Thread-sicher,
verteilt
"Dies sollte Optional sein, wie z.B. bei

COM+
! Hoher Aufwand: Vergleich zur

normalen RMI Implementation
"Mehr Code (Interfaces,…)
"Mehr Denken (Welche Beans?, Welche

Interfaces?,…)

Performanz

Zeitaufwand

58

CMP – Problematik

! EJB-QL unterstützt nur eine Teilmenge der Funktionen in
wirklichen DB-Systemen (keine Aggregatfunktionen)

! Effizienzprobleme # DB ist schneller
" Keine Informationen für den jeweiligen DB-Optimizer verfügbar

(Bsp. Oracle: Index explizit angeben, „First_Rows“)
" Nutzung von internen DB-Funktionen nicht möglich

! Abfrage fest definiert (Descriptor)
" Keine dynamischen Abfragen vom Client

! EntityBean kann nur auf eine Tabelle gemappt werden.
Spezielle OR-Mapping Tools sind viel mächtiger.

59

Hersteller

! Spezialisierte Container können zusätzliche Dienste zu denen
in der EJB Spezifikation bieten

Ein Enterprise Bean das einen solchen Dienst nutzt, kann nur
in einem Container eingesetzt werden, der diesen Dienst
bietet

! Hoher Preis: ca. 12000 €
! Probleme bei freien J2EE Servern?

" Keine Technische Unterstützung
" Schwere zu benutzen (keine Grafische Oberfläche ...)
" Keine Integration zu Entwicklungstools tools (z.B., Jbuilder)
" Bugs? Probleme während des Projektes?

60

Literatur

! Linda G. DeMichiel, L. Ümit Yalçinalp, Sanjeev Krishnan. Enterprise
JavaBeansTM Specification, Version 2.0, EJB web site. Sun Microsystems,
Inc. 2001.

! Designing Enterprise Applications with the Java 2 Platform, Enterprise
Edition. EJB web site. Sun Microsystems, Inc. 2000.

! Enterprise JavaBeans web site. http://java.sun.com/products/ejb
! Matena, Vlada., Harper, Mark. Enterprise JavaBeans Specification, v1.1.

EJB web site. Sun Microsystems, Inc. 1999.
! Roman, Ed. Mastering Enterprise JavaBeans and the Java 2 Platform

Enterprise Edition. John Wiley and Sons Inc. 1999.
! Thomas, Anne. Enterprise JavaBeans Technology Server Component

Model for the Java Platform. EJB web site. Patricia Seybold Group. 1998.
! Java Enterprise in a Nutshell – David Flanagan
! Core Servlets and Java ServerPages – Marty Hall
! Designing Enterprise Applications with J2EE – Nicholas Kassem
! Enterprise JavaBeans – Richard Monson-Haefel

61

Ende

	Enterprise Java Beans
	Überblick
	Motivation für Applikation Server
	Mainframe Architektur
	3-Schicht Architektur
	Anforderungen an Application Server
	Java-basierte Application Server
	Was ist die Enterprise Architektur?
	Enterprise Architekture
	Was sind ”Enterprise JavaBeans” (EJB)?
	Entwicklung von EJB
	J2EE Server Architektur
	J2EE Server Architektur
	Server and Container Dienste
	Clustering
	Hersteller
	Java Naming and Directory Interface (JNDI)
	Beans Übersicht
	Enterprise Java Beans – Übersicht
	Enterprise Java Beans – Übersicht
	Enterprise Java Beans – Übersicht
	Enterprise Java Beans – Prinzip
	Das Abstract Factory Pattern
	EJB Basiert auf Factories
	Home Interface
	Remote/Local Interface
	Persistence und Beziehungen
	Entity-Bean = 1 DB Tupel
	Alle Beans werden vom Container verwaltet
	Vom Pool zum “bereiten” Bean
	Vom “bereiten” Bean zum Pool
	Persistence Modelle – CMP/BMP
	BMP - Die Persistence wird vom Bean verwaltet
	CMP - Die Persistence wird vom Container verwaltet
	CMP- Beispiel
	CMP- Beispiel – der zugehörige EJB-Descriptor
	EJB QL
	EJB Abfrage - Sprache: EJB QL
	Beispiel eines Finders
	EJB Abfrage-Sprache: EJB QL
	EJB Abfrage-Sprache: EJB QL
	Beziehungen in EJB
	Wie werden Beziehungen definiert?
	Wie werden Beziehungen definiert?
	Wie werden Beziehungen definiert?
	Der zugehörige Code im Entity-Bean
	Message Driven Beans
	Senden einer Nachricht
	Was ist eine Transaktion?
	Das Problem (1/2)
	Das Problem (2/2)
	Die Lösung: Trasaktionsunterstützung bei J2EE
	UserTransaction Interface
	Transaktionen im Einsatz
	Nachteile - Effizienz
	CMP – Problematik
	Hersteller
	Literatur
	Ende

