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• Zeitreihen (engl. time series) 
• Zeitphänomene
• Lernaufgaben und Repräsentation der Eingabedaten
• Clustering [Das et al.]
• Beziehungen zwischen Zeit-Intervallen lernen [Höppner]

Zeitaspekte – Überblick

[Morik/2000a]
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Beispiele für Zeitreihen (1/2)
• Messwerte von einem Prozess*

– Intensivmedizin
– Aktienkurse 
– Wetterdaten
– Roboter [Morik/etal/99b]

Kontinuierliche Messung in z.B. Tagen, Stunden, Minuten, Sekunden

*[Morik/2000a]
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Univariat - Multivariat
Univariat - ein Attribut pro Zeit (Herzfrequenz)

Multivariat - k Attribute (Herzfrequenz, Atemfrequenz, Blutdruck)

Zeit
t1 t2 ti tm tm+1

Zeit
t1 t2 ti  tm tm+1

1
k
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Beispiele für Zeitreihen (2/2)

• Datenbankrelationen
– Vertragsdaten, Verkaufsdaten, Benutzerdaten
– Lebenssituation (Einkommen, Alter)

Ereignisse mit Zeitangaben in Jahren, Monaten, Tagen

Verkäufe Monat Anzahl Verkäufer ...

...

............
256 MeierJuni
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Zeitphänomene

Ereignisse

Sequenzen

Zeit
t1 t2 ti tm tm+1

Attribute
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Lernaufgaben (1/2)

• Univariat
– Vorhersagen der k+n-ten Beobachtung
– einen allgemeinen Trend erkennen (alle Elemente steigen)
– Lokale Trends finden (Zyklen, lokal steigende Werte)
– Finde von einem Standard abweichende Werte (Ausreißer)
– Clustering: Fasse ähnliche Bereiche von aufeinanderfolgen 

Werte zu Clustern zusammen
• Multivariat

– Finde zusammen auftretende Werte
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Repräsentation der Eingabedaten (1/2)

Multivariat: il : <t1, a11, ... , a1k>
<t2, a21, ... , a2k>

...
<ti, ai1, ... , aik>

Univariat: il : <t1, a1>
<t2, a2>

...
<ti,   ai>
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Lernaufgaben (2/2)

Lernaufgaben bei einer gegebenen Sequenz von 
Ereignissen:

– Finde häufige Episoden in Sequenzen [Mannila et al.]
• Wenn A auftritt, dann tritt B in der Zeit T auf [Das et al.]

– Beziehungen zwischen Zeit-Intervallen lernen 
[Höppner]

• A startet vor B, B und C sind gleich

(Menge von Ereignissen in partieller 
Ordnung)

(1)

(2)
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Repräsentation der Eingabedaten (2/2)

Ein Ereignis ist ein Tripel (Zustand, Start, Ende).
Der Zustand kann ein Wert oder ein Label (Trend bzw. eine 

Eigenschaft) sein. 
Beispiele.: (Steigend, 3, 5); (Fallend, 7, 9); (Stabil, 10, 14)

• Möglichkeiten der Darstellung
– Sequenz Vektor: I : T1A1,..., TiAi (1)
– Fakten: P(I1,Tb,Te,Ar,..As) (2)
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Problem: Wie finde ich die Ereignisse in 
Zeitreihen?

• Fenster fester Länge w 
– vorgebende oder erlernte Muster 
– Problem: w ist abhängig vom Anwendungsfall

• inkrementelle Analyse der Zeitreihe nach vorgegebenen 
Mustern [Morik/etal/99b]
– Bsp.: Roboter
– Vorteil: Dynamische Länge 

• Diskretisierung, z.B. mittels Clustering [Das et al.]
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Clustering - (1/3) [Das et al.]

Zeitreihe s = (x1,...,xn) in Subsequenzen si = (xi,...,xi+w-1) aufteilen 

Fenster der Bereite w = 3

Schritt 2
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Clustering - (2/3) 

Distanzmaß d(si,sj): Entfernung zwischen zwei Subsequenzen 
Bsp.: Euklidischer Abstand (Σ(xi-yi)2)0,5

Konstante d > 0: gibt an, wie groß der Unterschied zwischen den 
Subsequenzen sein darf

Bilde aus der Menge aller Subseqenzen
Cluster C1,...Ck

Jeder Cluster erhält ein Symbol a1,..ak („Shapes“)
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Clustering - (3/3) 
Die Serie s = (x1,...,xn) kann jetzt mit Hilfe der shapes beschrieben 
werden („diskretisiert“)
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Regeln in diskreten Sequenzen

• Regeln der Form 
Wenn A auftritt, dann tritt B in der Zeit T auf einfach ableitbar

• Berechnung in der Zeit m*k2 möglich  
– (k=Anzahl der Symbole, m = #verschiedene Möglichkeiten für T)

• Erweiterung: 
– Wenn A1 und A2 und ... und Ah innerhalb der Zeit V auftritt, dann tritt 

B in der Zeit T auf 
– Microsoft ↓ (1), Microsoft ↑ (2) + Intel → (2) ⇒ IBM → (3)
– Problem: Anzahl der Regeln steigt stark an
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Beziehungen zwischen Ereignissen

• Von James F. Allen wurden 13 verschiedene 
Intervallbeziehungen festgelegt: 
– A überlappt B, A beendet B, A vor B, A enthält B, ...

• Bsp.: A beendet B
(A, StartA, EndeA)

(B, StartB, EndeB)

StartB<StartA, EndeA = EndeB, 
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Beziehungen zwischen Zeit-
Intervallen lernen [Höppner]

Darstellung der Beziehungen als Matrix: 

R1 R2
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Wie sehen hier die Regeln aus?

Prämisse P Regel R

Die Regeln sind von der Form P →→→→ R

Beispiel: A, B, C sind Verträge verschiedener Kategorien
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Häufige Muster finden

Muster muss im Fenster der Länge tmax beobachtbar sein

Der maximale Abstand zwischen den Ereignissen eines Muster ist begrenzt
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Was bedeutet häufig?

Als Maß für die Häufigkeit von Mustern dient der „Support“

A B

A = o

B io =

Ein Muster wird als häufig 
erachtet, wenn es einen Support > 
suppmin hat
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Algorithmus [Agrawal et al.]

• Ermittle den Support aller 1-Muster
• Im k-ten Lauf:

– entferne alle Muster mit supp<suppmin
– generiere aus den verbliebenen k-Mustern eine Menge 

von Kandidaten für k+1-Muster
– ermittle den Support der Kandidaten im nächsten Lauf

• Wiederhole diese Schritte, bis keine häufigen Muster mehr 
gefunden werden können

• Generiere die Regeln aus den häufigen Mustern
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