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Zeitaspekte — Uberblick

« Zeitreihen (engl. time series)
« Zeitphdnomene >~[Morik/2000a]
* Lernaufgaben und Reprasentation der Eingabedaten |
« Clustering [Das et al.]

« Beziehungen zwischen Zeit-Intervallen lernen [Hoppner]




Messwerte von einem Prozess*
— Intensivmedizin

— Aktienkurse

— Wetterdaten

— Roboter [Morik/etal/99b]
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Beispiele fur Zeitreihen (1/2)
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Kontinuierliche Messung in z.B. Tagen, Stunden, Minuten, Sekunden

*[Morik/2000a]

3




Univariat - Multivariat

Univariat - ein Attribut pro Zeit (Herzfrequenz)

b teq
Multivariat - k Attribute (Herzfrequenz, Atemfrequenz Blutdruck)
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Beispiele fur Zeitreihen (2/2)

« Datenbankrelationen
— Vertragsdaten, Verkaufsdaten, Benutzerdaten
— Lebenssituation (Einkommen, Alter)

Verkaufe | Monat Anzahl Verkaufer
Juni 256 Meier

Ereignisse mit Zeitangaben in Jahren, Monaten, Tagen




Zeitphanomene

‘ ‘ ‘ ‘ ‘ Sequenzen

‘ ‘ | Ereignisse
Attribute

Zeit




Lernaufgaben (1/2)

* Univariat
— Vorhersagen der k+n-ten Beobachtung
— einen allgemeinen Trend erkennen (alle Elemente steigen)
— Lokale Trends finden (Zyklen, lokal steigende Werte)
— Finde von einem Standard abweichende Werte (Ausreilder)

— Clustering: Fasse ahnliche Bereiche von aufeinanderfolgen
Werte zu Clustern zusammen

 Multivariat
— Finde zusammen auftretende Werte
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w Reprasentation der Eingabedaten (1/2)

Multivariat: | <t,, aiq, ... , Q>
<t2, 821, ey a2k>

<t|, a|1, ey a|k>
Univariat: | <t,, a,>
<t,, a,>

<ti, a;>




Lernaufgaben (2/2)

Lernaufgaben bei einer gegebenen Sequenz von
Ereignissen: (Menge von Ereignissen in partieller
/Ordnung)
— Finde haufige Episoden in Sequenzen [Mannila et al.]
 Wenn A auftritt, dann tritt B in der Zeit T auf [Das et al.]
— Beziehungen zwischen Zeit-Intervallen lernen
[HOoppner]
» A startet vor B, B und C sind gleich
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‘- Reprasentation der Eingabedaten (2/2)

Ein Ereignis ist ein Tripel (Zustand, Start, Ende).

Der Zustand kann ein Wert oder ein Label (Trend bzw. eine
Eigenschaft) sein.

Beispiele.: (Steigend, 3, 5); (Fallend, 7, 9); (Stabil, 10, 14)

* Moglichkeiten der Darstellung
— Sequenz Vektor: |- T,A,,..., TA (1)
— Fakten: P, T, To,A- Ag) (2)
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Problem: Wie finde ich die Ereignisse in
| Zeitreihen?

* Fenster fester Lange w
— vorgebende oder erlernte Muster
— Problem: w ist abhangig vom Anwendungsfall

* Inkrementelle Analyse der Zeitreihe nach vorgegebenen
Mustern [Morik/etal/99b]

— Bsp.: Roboter
— Vorteil: Dynamische Lange

« Diskretisierung, z.B. mittels Clustering [Das et al.]
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Clustering - (1/3) [Das et al ]

1) aufteilen

X

> Schritt 2

3

Fenster der Bereite w
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Clustering - (2/3)

Distanzmal’ d(s;s;): Entfernung zwischen zwei Subsequenzen
Bsp.: Euklidischer Abstand (Z(x.-y,)?)%°

Konstante d > 0: gibt an, wie grol3 der Unterschied zwischen den
Subseauenzen sein darf

al= /\ Cluster C,,...C,
az2= \/

/ Jeder Cluster erhalt ein Symbol a,,..a, (,Shapes®)
a3=

Bilde aus der Menge aller Subsegenzen

13




)
w Clustering - (3/3)

Die Serie s = (X4,...,X,) kann jetzt mit Hilfe der shapes beschrieben
werden (,diskretisiert”)

___________________ - - - T- - - - -°aO- - - - - - - -r - - =

al=

a2=

a3=

N <D

Original time series = (1,2, 1,2,1,2,3,2,3,4,3,4)  Primitive shapes after
lusteri
Window width =3 Clustering

Discretized series = (al, a2, al, a2, a3, al, a2, a3, al, a2)
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Regeln in diskreten Sequenzen

* Regeln der Form
Wenn A auftritt, dann tritt B in der Zeit T auf einfach ableitbar
« Berechnung in der Zeit m*k? moglich

— (k=Anzahl der Symbole, m = #verschiedene Maoglichkeiten fur T)
« Erweiterung:

— Wenn A,und A, und ... und A, innerhalb der Zeit V auftritt, dann tritt
B in der Zeit T auf

— Microsoft | (1), Microsoft T (2) + Intel — (2) = IBM — (3)
— Problem: Anzahl der Regeln steigt stark an
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w Beziehungen zwischen Ereignissen

« Von James F. Allen wurden 13 verschiedene
Intervallbeziehungen festgelegt:

— A uberlappt B, A beendet B, A vor B, A enthalt B, ...
Bsp.: A beendet B

(A, StartA, EndeA)
f

(B, StartB, EndeB)

StartB<StartA, EndeA = EndeB,
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Beziehungen zwischen Zeit-
Intervallen lernen [Hoppner]

state interval sequence:

C D C F C
A B A B A E B
__________________________________________________________________ time
Darstellung der Beziehungen als Matrix:
A B R2 - A BC
R1  Al=b T~ Al=0bo
> >
B |a = B|la =io
C|io 0 =

(abbreviations: a=afier, b=before, o=overlaps, io=is-overlapped-by)
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. Wie sehen hier die Regeln aus?

state interval sequence:

C D C 3 C
A B A B A E B
_______________________________________________________________ [imeh

Die Regeln sind von der Form P - R
Pramisse P A B Regel R~ _ ABC
\\\\4 A — b \\‘ A — b o
B|la = B = io
C |0 0 =

Beispiel: A, B, C sind Vertrage verschiedener Kategorien
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Haufige Muster finden

Muster muss im Fenster der Lange t_ ., beobachtbar sein

max

sliding window

| time

Der maximale Abstand zwischen den Ereignissen eines Muster ist begrenzt
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w Was bedeutet haufig?

Als Mal} fur die Haufigkeit von Mustern dient der ,Support”

--------------------------------------

B |
A | |
P time

- support "

Ein Muster wird als haufig A B
erachtet, wenn es einen Support >

Suppmin hat Als °
B |io =
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w Algorithmus [Agrawal et al.]

Ermittle den Support aller 1-Muster

Im k-ten Lauf:
— entferne alle Muster mit supp<suppi,

— generiere aus den verbliebenen k-Mustern eine Menge
von Kandidaten fur k+1-Muster

— ermittle den Support der Kandidaten im nachsten Lauf

Wiederhole diese Schritte, bis keine haufigen Muster mehr
gefunden werden konnen

Generiere die Regeln aus den haufigen Mustern
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