mySVM - Manual

Stefan Riiping
Computer Science Department, AT Unit
University of Dortmund
rueping@ls8.cs.uni-dortmund.de

October 30, 2000

Contents
1 Introduction 2
2 The Optimisation Algorithm 2
2.1 SVMs 2
2.2 Decomposition algorithms o000 3
2.3 A Decomposition algorithm for regression 3
3 Installation and Usage 4
3.1 Usingmysvim. e 4
4 Input Formats 4
4.1 How inputisread by mySVM 4
4.2 mySVM parameters 5
4.2.1 SVM definition 5
4.2.2 Optimizer parameters 6
4.2.3 Global parameters L. 6
4.2.4 Training algorithms 0L 6
4.3 Kernel definitiono 7
43.1 dotkernel 7
4.3.2 polynomial kernelo 7
4.3.3 radial kernelo 7
4.3.4 mneural kernelo 7
435 anovakernel oo oL 8
4.3.6 wuser kernel 8
4.3.7 wuser kernel 2 8
4.3.8 aggregationkernels 8
4.4 Example definition 9
45 Output of mySVM 10

1 Introduction

mySVM is an implementation of the support vector machine (see [Vapnik, 1998]
for details) based on the algorithm presented in [Joachims, 1999]. Tt supports
pattern recognition and regression estimation SVMs, v-SVMs ([Scholkopf et al.,
2000a]) and SV distribution support estimation ([Scholkopf et al., 2000b]).
mySVM works with linear or quadratic and even asymmetric loss functions.
An advantage of mySVM are the multiple input formats for the examples files,
which in many cases reduce the need for converting your data into the SVM
format.

NOTE: mySVM is still under development, so some things might not work
as expected (and this manual certainly is one of those things). Please send me
an email if you find any bugs.

2 The Optimisation Algorithm
2.1 SVMs

To calculate the SVM for a given set of examples (z;, ;) and a capacity constant
C one has to solve the following optimisation problem:

Minimize l l
D(w,6,6) = ¢ (w"w) + C (Zé‘* +Z€)
i=1 i=1

with respect to

(waEi)‘i‘b > yi_E_E‘; i=1,...n (1)
(meZ-)—i—b < yi+e+& i=1,...,n (2)
& > 0 ,i=1,...,n (3)
& > 0 ,i=1,....n (4)

Equivalently one can solve the dual formulation of the optimization problem:
Maximize

Wiaa?) = =3 3 (af —ai)af - aj)(ai ;)
lz,]:l
+ E yi(af — a;) — Za(a;‘ + ;) (5)
i=1 i=1
with respect to
0<a;,af <C i=1,...,n (6)
! !
S = Y)
i=1 i=1

2.2 Decomposition algorithms

Instead of solving the dual optimization problem directly, it proves to be better
to iteratively decompose the problem into a small working set S and minimize
the target function on the working set only, keeping the other variables fixed
(see [Osuna et al., 1997]).

The idea of [Joachims, 1999], which is implemented in mySVM, is to compute
the working set on the basis of feasible directions, 1.e. a direction with only q
non-zero elements that will minimize the target function the most. The working
set then consists of the q non-zero elements

2.3 A Decomposition algorithm for regression

The drawback of the regression formulation of the SVM compared to the pattern
recognition formulation is that the regression formulation contains two variables
a and o for each example while the pattern recognition formulation contains
only one variable a for each example. The reason for this is that in the pattern
recognition case one can replace the constraints

(wlha)+b > 1—¢Fiffy; =1 (8)
(wha)+b < —14&iffy; = -1 (9)
& > 0 i=1,...,n (10)
&L > 0 i=1,...,n (11)
in the primal formulation by
yi((whez;) +b) —1+& >0 (12)
&L > 0 yi=1,...,n (13)

However, in the regression case it is clear that only on of the slack variables
& and &7 can be positive and therefore in the dual formulation only one of the
vartiables a; and o is non-zero. So it suffices to solve the SVM optimization
problem for n variables instead of all 2*n variables.

The problem with this approach is that one does not know if a; or o} will
be zero in the optimal solution of the SVM problem. The solution is to solve
this problem iteratively during the optimization:

1. Compute the q feasible directions D.

2. For each feasible direction i: If one of a;, a is non-zero, put this variable
into the working set. Else put one the variables into the working set,
whose KKT condition is not fulfilled.

()

3. Replace the constraints a;

sufficiently small £ > 0.

> 0 on the subproblem by ozz(.*) > —¢ for a

4. Solve the new subproblem on the working set.

5. For each new «; from the working set: If a; < 0 set af = —a; and a; = 0.
Replace each o} from the working set correspondingly.
After the optimization converged, all ozl(»*) with |ozl(*)| < ¢ are set to zero.
It is easy to see that the KKT conditions for the g-dimensional subprob-
lem are the same as the corresponding equations from the whole optimization
problem, so if the «a; from the optimal solution is non-zero, but «; is non-zero
during the optimization process, then at some point o will be pushed against
its lower bound and thus a; will become positive in the next iteration. By this
the optimization will finally converge to the optimal solution.

3 Installation and Usage

The installation of mySVM is very simple: Put the mySVM files into a directory
of your choice (let’s assume mySVM for this tutorial) and type make to compile
mySVM. This will compile the programs mysvm and predict and put them into
a subdirectory of mySVM/bin/ that corresponds to your machine and OS type.
mysvm is used to train a SVM and to test the result. predict is used to predict
more examples with an already trained SVM.

3.1 Using mysvm

As already said, mysvm is used to train a SVM on a given example set and to
test the resulting SVM on some other example sets. You need to supply the
following information:

1. The parameters of the SVM and the training process
2. A kernel definition

3. A training set

4. example sets to predict or test the SVM on (optional)

You can pass this input to mysvm in one or more files. If no input files are
given, the input is read from STDIN. The input formats are explained in section

4.

4 Input Formats

4.1 How input is read by mySVM

There are three types of input: SVM parameters, kernel parameter and example
sets. Each type of input has to be given in an own section of the input files,
beginning with the keywords @parameters, @kernel or @examples, respectively.
There can be multiple input section per file, but one input section cannot be

split-ted into multiple files. In all input section lines beginning with # are being
ignored.

You need to supply the SVM parameters and at least one example set as
the training set. If no kernel definition is given, a dot kernel is assumed. If you
enter more than one example set, the first set is taken as the training set and
the following example sets are either used as test sets (if y-values are given) or
the classification of the examples in these sets are predicted (if no y-values are
given).

If no input files are given or the filename

STDIN.

"-"is given, the data is read from

4.2 mySVM parameters

The SVM parameters can be divided into three types: Parameters, that de-
fine the SVM itself, parameters, that influence the optimization process of the
training and parameters, that define different ways of training.

4.2.1 SVM definition

The definition of the SVM itself:

C <float>: The capacity parameter of the SVM (must be positive). NOTE:
The given C is divided by the number of examples for training!

pattern: Use pattern recognition SVM.
regression: Use regression recognition SVM (default).

nu <float>: Use the nu-SVM algorithm instead of the normal SVM algorithm
with the given value for nu (see [Scholkopf et al., 2000a] for details on
nu-SVMs).

distribution: Do SV estimation of the support of the examples (see [Scholkopf
et al., 2000b]). Nu must be set.

The definition of the loss function of the SVM:

L+ <float>: factor that positive deviation (prediction too high) is penalized by
(must be non-negative).

L- <float>: factor that negative deviation (prediction too small) is penalized
by (must be non-negative).

epsilon+ <float>: positive insensitivity. Constant that the prediction can be
higher than the functional value without being penalized (must be non-
negative).

epsilon- <float>: negative insensitivity. Constant that the prediction can be
smaller than the functional value without being penalized (must be non-
negative).

epsilon <float>: insensitivity. Constant that the prediction can deviate from
the functional value without being penalized. Sets both epsilon+ and
epsilon- (must be non-negative).

quadraticLoss+: Use quadratic loss for positive deviation.
quadraticLoss-: Use quadratic loss for negative deviation.

quadraticLoss: Use quadratic loss for both positive and negative deviation.

4.2.2 Optimizer parameters

working_set_size <integer>: Number of examples in working set (must be
greater than 1).

max_iterations <integer>: Stop after this many iterations (default 1000000)..

shrink_const <integer>: Shrink a variable if it is optimal this many iterations

(default 100).
is_zero <float>: Numeric precision (default: le-10).

descend <float>: The minimum descend the target function has to make in
each iteration step (default: le-10).

convergence_epsilon <float>: Precision that the KKT constraints must be

fulfilled with (default le-3).

kernel_cache <integer>: Size of the kernel cache im MB. Set as large as will
fit into the main memory (default 40).

4.2.3 Global parameters

verbosity [1..5]: Amount of messages the SVM gives. Ranges from 1 (almost
none messages) over 3 (default) to 5 (flood, for debugging purposes only).

format and delimiter: You can set a default for the examples file format. See
the description in section 4.4.

4.2.4 Training algorithms

cross_validation <integer>: Do cross validation on the training examples.
The examples are divided into the given number of chunks and each chunk
is predicted by the classificator learned on the remaining chunks.

cv_inorder: Do cross validation in the order that the examples are given. Oth-
erwise the examples will be randomly permuted before cross validation.

cv_window <integer>: Do cross validation by moving a window of the given
number of chunks through the examples and predicting the following chunk
of examples. Useful for time series prediction.

search_C [amg[: Find the optimal C in the range of cmin to cmax. If the
parameter a is given, cdelta is added to C in each iteration. With m,
C is multiplied with cdelta in each iteration. The parameter g searches
C with using the method of the golden ration up to a relative error of
cdelta (Warning: it is assumed that the function C' — loss is convex,
which generally is correct only up to a certain degree. Use it if you have
no idea where the optimal C will lie).

cmin <float>: Parameter used with search_C.
cmax <float>: Parameter used with search_C.

cdelta <float>: Parameter used with search_C.

4.3 Kernel definition

The kernel definition has to begin with the line type <kernel-type>, where
<kernel-type> is one of dot, polynomial, radial, neural, anova, user,
user2, prod_aggregation, sum_aggregation.

4.3.1 dot kernel
The dot kernel is defined by
k(z,y) =zx*y

1.e. 1t is the inner product of x and y.

4.3.2 polynomial kernel
The dot kernel is defined by
k(z,y) = (xxy+1)°

with the parameter degree <integer>.

4.3.3 radial kernel
The radial kernel is defined by
k(z,y) = exp(—lle — ylI*)
with the parameter gamma <float>.

4.3.4 neural kernel
The neural kernel is defined by
k(z,y) = tanh(az *x y + b)

with the parameters a <float> and b <float>. Note that not all choices of
a and b lead to a valid kernel function.

4.3.5 anova kernel
The anova kernel is defined by
k(z,y) = (Y exp(—y(zi — %:)))*

with the parameters gamma <float> and degree <inleger>.

4.3.6 user kernel

You can enter your own kernel definition in the file kernel.cpp in the method
kernel_user_c::calculate_K. The following parameters are provided:

param_i_1 ... param_i_5 <integer>

param_f_1 ... param_f_5 <float>

4.3.7 user kernel 2

You can enter your own kernel definition in the file kernel.cpp in the method
kernel_user2_c::calculate_K. As parameters two arrays of size number_param
(defined in kernel_user2_c::kernel_user2_c()) are provided: param_i for
integer values and param_f for float values.

4.3.8 aggregation kernels
Tt is known that if k(z, y) is a kernel, then also

kagg((x1, 22, %3), (Y1, Y2, y3)) = k(x2, y2)

is a kernel. Also the sum and the product of two kernels is a kernel. Therefore
the following functions are kernels too:

(21, 2n), (11, 90)) = Zki(m(r),m(y))
and
(21, @n), (1,5 90)) = H’fi(m(m),m(y))

where the m; are projections. Aggregation kernels are defined as follows:
First the number of kernels to be aggregated has to be given: number_parts
<wnteger>.

Then for every kernel part the range of the attributes to take hast to be
given: range <integer> <integer>.

Following that all part kernels are defined separately as usual, each beginning
with the line @kernel.

4.4 Example definition

Examples can be given in two different formats: sparse and dense. In the
sparse format, only non-zero attributes are given whereas in the dense format
all attributes have to be given.

The following parameters exist in both cases:

dimension <integer>: Number of attributes of the examples. If not given, then
in the sparse case the the dimension is set to the maximal index occuring.
In the dense case the number of attributes in the first line containing an
example 1s used.

number <integer>: Total number of examples. This parameter is optional, but
reading the examples is faster if it is given. If a wrong number of examples
is read, a warning is issued.

b <float>: The additional constant of the hyperplane.

format <string>: Format of the examples. <string> can be sparse for the
sparse format or one of x, xy, yx, xya, xay, yxa, yax, axy, xyx for
the dense format. When using the dense format, the string gives the order
of the x-, y- and alpha-values of the examples. You can set a default
format in the parameters definition, otherwise the default format is yx.

delimiter char: Character by which the attributes of an example are sepa-
rated (default: space). You can also set a default delimiter in the param-
eters definition.

In both cases there must be one example per line. In the dense case the
line consists of all x-attributes, y-value and alpha-value (if given) in the defined
order, separated by white-space. In the sparse case, the lines consists of entries
of the format <integer>:<float>>, where the integer gives the attribute number
(starting at 1). The alpha-value is given by a:<float> and the y-value is given
by y:<float> or simply <float>.

example: The following three example files are equivalent:

Qexamples
format xy
dim 2

112

-114

200
Qexamples
format sparse
1:1 2:1 y:2
2:1 y:4 1:-1
0 1:2

211
4 -1 1
020

4.5 Output of mySVM
Here 1s a sample output of mySVM. Let’s walk through 1t step by step.

> mysvm TRAIN.dat TEST.dat PARAM.dat
Reading TRAIN.dat

read 53 examples, dimension = 24.
Reading TEST.dat

read 5 examples, dimension = 24.
Reading PARAM.dat

The SVM has successfully read in a training set of 53 examples, a test set
of b examples and the parameters.

Training started with C = (1,1).
*** Convergence
Done training: 8 iteratioms.

The training has converged, now some statistics are given.

Target function: -4.92116964
Average loss : 7.77034764 (loo-estim: 495.949566)
Max. loss pos : 33.5115981
Max. loss neg : 29.7526961
Support Vectors : 27

Bounded SVs 21

min SV: -0.0188679245

max SV: 0.0188679245

lwl = 0.648979262

max |x| = 158.12337

VCdim <= 10530.6156

The values given are: The value of the function to minimize, the average
loss and a predictor for the leave-one-out loss, the maximal and minimal loss
of a single example, the number of support vectors and the number of support
vectors at the upper bound, the minimal and maximal value of the alphas, the
2-norm of the hyperplane vector, the maximum size of the examples and an
estimator of the VCdim computed from the last two values.

What you cannot see is that this is a regression SVM. Had it been a pattern
recognition SVM, also the training results and leave-one-out estimators for recall
and precision would have been printed.

If there are less than 30 attributes, the full hyperplane vector is printed:

10

w[0] = 0.174969116

w[23] = 0.00362512157
b = 90.6365681

Saving trained SVM to TRAIN.dat.svm

The optimization result is saved in the file <filename>.svm. It is in the
example file format with the alpha-values given, so you can use the trained
SVM again by taking this file and the original parameters.

Starting tests
Testing examples from file TEST.dat

The examples from the other example files are used for testing the SVM
(the result is given in the same format as above) or, if no y-values are given, are
predicted and saved in the file <filename>.svm.

Note: Special SVM algorithms such as »-SVM and SV distribution support
estimation may give additional information!

References

[Joachims, 1999] Joachims, T. (1999). Making large-scale SVM learning practi-
cal. In Schélkopf, B., Burges, C., and Smola, A., editors, Advances in Kernel
Methods - Support Vector Learning, chapter 11. MIT Press, Cambridge, MA.

[Osuna et al., 1997] Osuna, E., Freund, R., and Girosi, F. (1997). An improved
training algorithm for support vector machines. In Principe, J., Giles, L.,
Morgan, N., and Wilson, E., editors, Neural Networks for Signal Processing
VII — Proceedings of the 1997 IEEE Workshop, pages 276 — 285, New York.
IEEE.

[Scholkopf et al., 2000a] Scholkopf, B., Smola, A. J., Williamson, R. C., and
Bartlett, P. L. (2000a). New support vector algorithms. Neural Computation,
12:1207-1245.

[Scholkopf et al., 2000b] Schélkopf, B., Williamson, R. C., Smola, A. J., and
Shawe-Taylor, J. (2000b). Sv estimation of a distribution’s support. In Solla,
S., Leen, T., and Miiller, K.-R.., editors, Neural Information Processing Sys-
tems 12. MIT Press. forthcoming.

[Vapnik, 1998] Vapnik, V. (1998). Statistical Learning Theory. Wiley, Chich-
ester, GB.

11

