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Abstract

The aim of this project is to apply Machine Learning methods in or-
der to improve the performance of ProPlanT. Machine Learning is applied
to find patterns in the communication among the agents. These pattern
are used to provide a human user of ProPlanT with useful information,
enabling him to optimize the system. A framework of tools has been devel-
oped, that allows the application of different transformation and learning
methods. This framework has been applied to the problem of finding reg-
ularities concerning the formation and development of bottlenecks in the
system resources. This should help the user to decide which resources to
add to the system.
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Introduction

Multi-Agent Systems have gained an increasing importance in the last
years. While they are successfully applied in many domains, it showed
that the ability to learn and to adapt to new situations is a central point
in the development of Multi-Agent Systems. This work investigates the
possibilities to apply Machine Learning methods to communication be-
tween agents in a special Multi-Agent System for distributed planning,
the ProPlanT system. The basic idea is to observe the communication be-
tween the agents in this system and to find pattern in this communication,
which can be used further to optimize the performance of the system.

The documentation is split into three parts:

L

II.

I1I1.

Theoretical background.

This part gives a brief overview of Multi-Agent Systems and
ProPlanT, Machine Learning and some basic problems of Ma-
chine Learning in Multi-Agent Systems. After this, the idea
to apply Machine Learning methods to the communication of
Multi-Agent Systems is presented as well as the benefits and
limitations of such an approach. At the end of this part, the
basic possibilities to apply this methods to ProPlanT are an-
alyzed.

A Framework of tools

In order to make it possible to perform different experiments, a
framework of tools was developed. These tools are abstract and
simple enough to support different kinds of applications, but on
the other hand they can save the user a lot of effort and allow
him to focus on his work, rather than on technical details of the
ProPlanT System. The documentation contains an analysis,
which tools are necessary and how they work together and
then proceeds with a description of the individual programs
and libraries.

Detection and prediction of bottlenecks in ProPlanT

In this section, one of the possibilities to use Machine Learning
in ProPlanT is investigated further: the detection and predic-
tion of bottlenecks. This should also demonstrate, how the
different tools, which are described in the second part, can
work together to support a complex analysis of the system’s
behavior. While the first and the second part do not presume
special limitations for the setting, in which learning is applied,
for the experiments in the third part, we assume a simplified
setting. Mainly only communities, which contain only one top-
level agent (in ProPlanT a Production Planning Agent), and
which have a fixed structure of task-decompositions, are con-
sidered. Furthermore the decomposition-tree cannot contain
any alternative decompositions (contains no OR-nodes). Fi-
nally only the time needed for the execution of the resulting
plan is considered, not the cost. To keep the system as general
as possible, the time between two requests to the system is
not considered as well, which means, that we assume, that the
system is driven in batch-mode.



Part I
Theoretical Background

1 Agents and Multi-Agent Systems

As the word says, Multi-Agent Systems are collections of agents. What
is an agent? The are many different definitions for the term "agent".
Some of the most common characteristics of agents are however that they
have their own goals and beliefs, and are to some degree autonomous,
rational and social. Autonomy does not only mean that every agent has
some degree of freedom, but also that he is able to give himself rules
and then to follow these rules. This is important, because if an agent
were only free in some way, it would be impossible for the outside world
to rely on this agent. Whereas an agent, that is autonomous, is able to
agree to commitments with other agents and then to act according to these
commitments. Rationality means that the agent tries to achieve his goal in
an optimal way, that all of his actions are optimal to reach his goal. Social
behavior means that agents are able to communicate with other agents, to
co- operate with them, to negotiate, to share knowledge, etc. Multi-Agent
Systems can be seen as a collection of entities, which have their own goals
and beliefs, which are to some degree autonomous, rational and social and
are able to co-operate with each other.

1.1 Why should Multi-Agent Systems be used?

Although most problems that can be solved with Multi-Agent Systems,
could also be solved in a "classical" way, there are several benefits of
designing a system as a Multi-Agent System:

e It is easier to cope with a complex system, which is split up in smaller
units. This may be also true for modular programming, but Multi-
Agent Systems have the additional advantage, that within the in-
dividual agents are encapsulated not only objects or functions, but
also goals, knowledge, etc.

o It is often difficult to make use of parallelism in centralized systems.
Multi-Agent Systems can make use of parallel computing in a natural
way. This helps to increase the performance of the whole system.

e Multi-Agent Systems are often more tolerant against errors. If one
unit (one agent) looses some capabilities, the agent can be replaced
or the tasks of this agent can be performed by another agent. In a
centralized system it is mostly very complicated to proceed after a
unit of the system was damaged.

e Some systems are Multi-Agent Systems because of their structure,
for example groups of robots.

1.2 Classification of Multi-Agent Systems

There are many possible ways to classify Multi-Agent Systems. In [4]
the author distinguishes three different aspects of Multi-Agent Systems:



environment, agent-agent relation and the agents themselves.

1. Environment
Some possible properties of the environment, that have been taken
into consideration: (see [4] p. 4)

e To what extend is the environment known to the agent?

e Is the environment predictable for the agent?

e In which way can the agent control its environment?

e Is the environment historical? This means, do future states
depend on the entire history?

e Can the environment change, while the agent is deliberating?

2. Agent-Agent relation
In most cases the agents in a Multi-Agent System have to commu-
nicate to reach their individual goals or at least to reach them more
efficiently. There are many different possibilities of agent-agent in-
teraction, these are some basic properties:

(a) frequency of interaction
(b) persistency of interaction
(c) pattern of interaction

(d) purpose of interaction

In order to communicate, the agents have to have a common lan-
guage. While this is easy if all of the agents in the Multi-Agent Sys-
tem are homogeneous it can be quite difficult if agents from different
origins, and with different abilities have to communicate. Therefore
the Knowledge Query and Manipulation Language (KQML) and the
Knowledge Interchange Format (KIF) where developed. KQML is
a speech-act-based language, which can be used for all kinds of co-
ordination among agents. KIF is a language to represent knowledge
in an agent independent way.

3. The agents

Some of the fundamental properties of agents were described above,
but to what extend an agent is autonomous, social or rational or
how his beliefs and goals are represented can vary significantly. Some
systems consist of few, very sophisticated agents, others of a large
amount of very simple agents. The agents in a system can be all of
the same structure or of different structure, homogeneous or hetero-
geneous. The role that an agents fulfills can be fixed or dynamic.The
agents in a Multi-Agent System can all work on the same goal or
their goals can be conflicting.

This section should only give a brief overview on the subject of Multi-

Agent Systems. For a detailed representation of the basics of Multi-Agent
Systems as well as many advanced issues see [2].

2 Machine Learning

2.1 Definition of Machine Learning

There are many different definitions for the term "Machine Learning". In
the simplest case, learning means only storing data. But normally it is



expected that the learner generalizes from its experience and finds a more
abstract hypothesis. The underlying assumption is that the experience
the learner makes is governed by some regularity and that the learner can
find this regularity. Otherwise it would make no sense to try to generalize
over the observed data, because every new experience would be completely
random to the learner. It is also possible that there is already a theory that
describes parts of the domain in which learning takes place. In this case it
is possible for the learner to use this "background knowledge" in learning.
In fact human learning seems to rely on the synthesis of experience and
background knowledge. It is important to keep this in mind, because
many Machine Learning methods do not provide the possibility to use
background knowledge and it is much harder to learn only from experience
without any knowledge about the domain, which is the source of this
experience. As this work is not so much concerned with the theory of
Machine Learning, but with its application, the remainder of the section
gives only a brief overview on Machine Learning. The basic problem is,
how to define a learning problem in such a way, that it can be "solved" by
a program, which means that there exists an algorithm that solves it. I will
refer to the following definition taken from the book "Machine Learning"
by T. Mitchell:

"A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if
its performance at tasks in T, as measured by P, improves with
experience E"([1] S.10)

Using this definition, defining a learning problem, means finding proper
definitions for T, E and P.

o The class of tasks T
The definition for T has to be stated in some formal way, for example
as a mathematical function. How T is defined depends completely
on the learnig problem and the domain, but in general it must be
defined such that it can be learned from experience E.

e The performance measure P

While it is easy to find a performance measure in some settings, in
other cases it could be less obvious. A program that learns to play
chess would be said to perform better, if it wins more often, but what
should be the performance measure for a program that should learn
how to write poems? Furthermore in many settings we don’t have
a deterministic environment and so the performance measure must
be defined in a way that reflects this. For example a program that
learns to play Backgammon. It could be just luck that the program
wins all the time, after it has been trained. In these cases statistical
methods have to be used to decide whether it should be said that the
program has learned. It’s not possible just to compare the number
of games won.

e The experience £
E defines the experience that an agent should use for learning. In
some cases this experience can be explicitly chosen by the designer
of the system, but in most cases it will be limited by the environ-
ment, in which the program acts (e.g. a learning robot has only it’s



sensual data). One important distinction should be made between
the different ways the system is told what to learn:

— "supervised learning": a teacher provides the program directly
with the desired behavior for a special case (e.g. a program that
should learn to recognize hand-written letters, could be provided
with the picture of a letter and the information, which letter it
is). So in these settings the program is provided with a pair
(given value, desired value).

— "reinforcement learning": the program is only provided with the
utility of its behavior concerning the learning task. It has to find
out how to change its behavior to increase this utility by itself.

— "unsupervised learning": the program has even to find out what’s
useful on it’s own.

Another problem is the quality of the experience. This quality de-
pends on the learning task. Experience, which is of high quality for
one task, could be of bad quality for another task. While quality
generally means how suitable the experience is, to learn the learning
task, there are two points of special interest: errors in data and noise.
"Error" means that according to a given theory about the domain,
this data could not appear. For example a damaged thermometer
could return temperatures that could not appear in reality. In this
case the data returned by this thermometer contains errors. Noise is
data contained in the experience, that is random with respect to a
given domain theory (without a theory it does not make any sense
to talk about randomness). In learning, this data can be misleading,
and if the ratio between information and noise contained in the data
is too bad, learning may even not be possible at all.

2.2 Machine Learning paradigms and algorithms

After the learning problem has been defined, an algorithm is needed to
solve it. The choice depends mainly on the learning task and the available
experience. Some algorithms can deal with errors and noise in the data,
while others get confused by such data. So the quality of data is an
important point. But also the quantity of data can be problem. Some
algorithms can learn from few data, others need a huge amount of data to
learn probably. Besides of this, there can be some other requirements to
the learning method:

e Should the concept, learned by the agent, be understandable for a
human user?

This could be desirable in settings in which a human expert wants
to check, what a program learned, before allowing the system to act
on it’s own.

e Should background knowledge be used in the learning process?
e How efficient has the learning algorithm to be?

e Should the learning take place while the system is operating (on-
line)?



The number of learning methods is principally unbounded and so it is
impossible to give an overview over all of these algorithms. But there are
some common paradigms, which are described in the remainder of this
section:

e Artificial Neural Networks (ANN)

ANN consist of a number of entities called neurons, which are con-
nected to each other. There are special neurons for input and output
to this network. By adjusting weights associated to the connections
in the network, the ANN can be trained to show a particular behav-
ior on the output neurons depending on the stimulation of the input
neurons. By this ANN are suitable for learning concepts from exam-
ples. They are robust against errors in the training data. A major
drawback of ANN is, that the concept learned by the net consists of
weights and is hardly readable for a human user.

o Learning sets of rules

The approaches that can be summarized as learning sets of rules,
learn logical rules from the given training data. These rules can be
simple IF-THEN rules, without variables, or more complicated rules
expressed in first-order logic. Approaches that learn expressions in
first-order-logic are often referred to as Inductive Logic Programming
(ILP). Some benefits of these approaches are that they can make use
of background knowledge in a natural way, that the concepts learned
by the system are readable for a human user and that (at least first-
order-logic) offers a rich language for forming concepts. The major
drawbacks are that some of these methods tend to be quite inefficient
and may not be able to deal with errors in the training data or in
the background knowledge.

e Instance Based Learning(IBL)

While most learning algorithms form an explicit hypothesis describ-
ing the observed data, methods belonging to IBL just store the ob-
served data. When they have to apply their "knowledge" to a new
problem they simply search for the instance that is most similar to
this problem and return the answer stored together with this in-
stance. Some approaches use a simple representation of the data, as
an Euclidean space. More sophisticated approaches represent the in-
stances using a symbolic language. The latter approach is called Case
Based Reasoning. The benefits of IBL are that it is quite simple and
new experience can simply be added to the database, allowing effi-
cient on-line learning. While "learning" is very fast in these systems,
answering a query can be quite inefficient, because all the training
data has to be compared to the new instance. Another drawback is,
that there is no explicit hypothesis computed and the system does
not generalize from the training data. Furthermore the similarity of
two instances can be quite misleading in some domains.

e Probabilistic Baysian methods
The basic assumption made by these approaches is, that the quanti-
ties, that should be learned are governed by a probabilistic distribu-
tion. In the learning process these distributions are adjusted accord-
ing to the observed data. A special approach of this kind are Baysian
Belief Networks that represent a network of statistically dependent



quantities together with the aposteriory distributions depending on
their direct predecessors.

o Genetic Algorithms

These approaches interpret the learning problem as an optimization
problem. The task is to find the hypothesis that explains the ob-
served data best. In analogy to evolution every hypothesis explaining
the data can be seen as the genetical code of an individual. These
genetical codes are then mutated and recombined over a number of
generations. In every generation, only the hypotheses survive, that
explain the data best. These approaches are often very efficient. A
problem is that they can get stuck on a local maximum and so only
providing a sub-optimal hypothesis.

e Analytical Learning

The approaches, that are referred to as Analytical Learning, assume,
that there exists a correct (and complete) domain theory for the do-
main in which the learning problem is defined. It could seem that it
makes no sense to learn in such a setting, because everything that
could be learned could also be deducted using the domain theory. But
as these deductions can be quite complicated, it can make sense to
learn from observed data. One approach, called Explanation Based
Learning (EBL), explains the observed data using the domain the-
ory. These explanations are used to find the proper generalizations
that lead form the data to a general hypothesis describing the data.
An illustrative example (taken from [1]): A program should learn to
recognize situations in the chess game, in which a player will loose
it’s queen within two moves, assuming the opponent plays an opti-
mal strategy. The domain theory in this case is the set of chess rules.
The problem could be solved, by simply applying the domain the-
ory to a given position. But this can lead to a costly computation.
Another possibility would be to use an inductive learning method
without any domain theory, just providing it with situations and the
information, whether a given situation is in the set of situations to
be recognized or not. But as the chess game is very complicated, a
huge number of examples would be needed, because there are many
different generalizations. EBL will on the contrary only need few
examples to learn the proper concept, because the proper general-
izations are provided by the explanations. So Analytical Learning
can be used in many domains, where deduction is too expensive and
purely inductive methods require too many training data.

2.3 Knowledge Discovery

Strongly related to the area of Machine Learning is the research in the
area of Knowledge Discovery. The basic idea of Knowledge Discovery is
the following: there is some data (scientific observations, economical data,
etc), which itself is not understandable for a human user. The task of
Knowledge Discovery is to find regularities in this data, which are un-
derstandable and useful for the user. These regularities can been seen as
knowledge. In[16] Knowledge Discovery is defined as:

"The non-trivial process of identifying valid, novel, potentially
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useful, and ultimately understandable patterns in data"([16]
p-5)

To find regularities or patterns in data, the same algorithms can be used
as for Machine Learning. In this case the "experience" of the learner is the
data, which should be analyzed. The learning task is to find some kind
of regularities (see below). The Performance Measure is usually obtained
by applying the regularities to new data (see below). An example: A
bank has a data base containing the personal data of people, which have
borrowed money from this bank, together with the information, whether
they paid the money back in time or not. A Knowledge Discovery system
can now learn to divide the people, who are applying for a credit into two
classes: good and bad debtors. The "knowledge", who are those people
paying their credits back, and which don’t can be used to optimize credit
assignment in this company.

In addition to the Machine Learning methods, which are applied in Knowl-
edge Discovery, there are several additional methods, which were developed
only for Knowledge Discovery. The problems, which are addressed by these
methods, are roughly the following;:

e the data contains noise and errors

e the data is too complicated (e.g. the data sets have too many at-
tributes)

e the output of the Machine Learning Method is not understandable
for a human user

These problems led to the conclusion that we should not look at Knowledge
Discovery as single method, but as iterative process.

In the description of the Knowledge Discovery process, which can be found
in[16], the following steps are described :

1. Select the data, which should be analyzed and create the target data.

2. Clean the data: remove noise, apply methods to handle missing data
fields or data fields, which contain errors. Usually this can be done
only, if there is some background knowledge, which defines what
should be considered as noise/error in a given domain.

3. Find an optimal representation of the data, which includes methods
as dimensionality reduction and aggregation of quantities. Again,
this can mostly be done only by applying knowledge about a given
domain.

4. Choose a Knowledge Discovery task, the kind of regularity or pattern,
which should be found.

Choose an algorithm for this task.
Apply the algorithm.

Interpret the results.

® N o o

Evaluate the result and possibly return to one of the previous steps
(e.g. to use another algorithm or transformation method).
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2.4 General Machine Learning /Knowledge Discovery
tasks

Although learning problems depend on the setting and on the goal, which
should be achieved, there are some standard learning tasks and many spe-
cial learning problems can be reduced to one of them. Three of these tasks
are of special importance: classification and numerical prediction and as-
sociation rules. There are several different algorithms for each of these
problems, usually corresponding to the different paradigms for Machine
Learning stated above (e.g. classification can be done with ILP, Neural
Networks, Baysian methods, etc.)

2.4.1 Classification

In the example above, customers of a bank were classified into two classes
(good and bad debtors), according to their personal data. This kind of
learning task is called classification. Mathematically, the task is to find a
function f, which maps a set of parameters to a finit set of classes:

f : A1 X A2 X oo = {Kl,Kz, 7Kn}

A representation of such a function can be looked at as knowledge (e.g. for
scientific purposes) or this function itself can be directly applied to new
data (e.g. the personal data of new applicants for a credit).

2.4.2 Numerical prediction

The intention of numerical prediction is to map a set of attributes to a
numerical quantity. For example: The management of a power plant could
have data, how much energy is needed, depending on the time of day, etc.
Then numerical prediction can be used to predict the amount of energy,
which will be needed the next day, and can use this knowledge to provide
the optimal amount of energy. So mathematically the task is the following;:

f:A1XA2X...—>R

2.4.3 Association rules

Association rules have the following structure:
IFa; =vi Nag =v2... A @y =V THEN @1 = V41 A ...Gp, = Uy

The task is to find out all the rules, which hold in a given collection
of data (in this case the data consists of data sets, which contain the
attributes al..an). These rules are used for example in supermarkets to
find out, which products are often bough together. The management of a
supermarket can find out, that if someone buys eggs and milk, then this
customer usually buys flour too. This knowledge can be used to arrange the
products in the supermarket respectively (e.g. place the flour in between
eggs and milk)
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3 Multi-Agent Systems and Machine Learn-
ing

The relationship between Multi-Agent Systems and Machine Learning can
be seen at least from two perspectives. First a system that should per-
form learning can be designed as a Multi-Agent System such that multiple
agents try to achieve a common learning goal. Secondly Machine Learn-
ing can be used to adapt and optimize a Multi-Agent System. These two
perspectives overlap and have many topics in common, but as this work is
concerned with the application of Machine Learning in Multi-Agent Sys-
tems, only the second aspect will be discussed.

3.1 Why should Machine Learning be used in Multi-
Agent Systems at all?

The first reason is, that it is mostly not possible to forecast the behavior
of a Multi-Agent System in every detail, when developing it. Even if the
developer knows how every agent acts, it is mostly not possible to predict
the behavior of the system as a whole, as the mathematical methods that
exist at the moment are not sufficient for such a complex calculation.
This gets even more complicated, if the Multi-Agent System is confronted
with an environment that is unpredictable and changes over time. Agents,
that for example trade on a digital marketplace do not know the strategy
of the opponent in advance. By "learning" the opponent’s strategy, the
agent can optimize its behavior and can more successfully negotiate with
the opponent. Another example could be an agent that is sent to a foreign
planet to explore it. The scientists may not know, which environment
the agents will have to face, in advance. In all these cases, in which the
developers can’t even foresee all possible situation the Multi-Agent System
has to deal with, learning agents can modify their behavior on their own
to act optimal even under new or unknown circumstances.

A second reason is that it can be sometimes easier to develop the sys-
tem to optimize itself, than to implement this optimization. Especially if
the structure of the system is often modified, e.g. to scale it up, the ad-
ministrators of this system would have to optimize it by hand, each time
something is changed.

Lastly, the image we have of autonomous agents suggests that they also
should be able to modify their knowledge and behavior over time. To apply
Machine Learning in Multi-Agent Systems is by this a natural implication
of the Multi-Agent System paradigm itself.

3.2 Basic dimensions of Machine Learning in Multi-
Agent Systems

There are many different possibilities, how Machine Learning can be ap-
plied in Multi-Agent Systems. The following list of basic distinctions struc-

tures this space of possibilities in different dimensions:

e How many learning agents are in the system? Having a single agent
that learns is similar to classical learning, applied in the Multi-Agent
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System environment. The obvious drawback of such a system is
that’s it’s hardly scaleable, because the learning agent becomes a
bottleneck. Having more than one agent that learns can result in
problems too. They will be discussed in detail in the next section.

o If there are several learning agents, can they learn on their own or
have they to cooperate with others in order to learn? It’s also possi-
ble, that they can learn on their own, but learning is optimized if they
cooperate with others. There are several ways, how this co-operation
can look like. One possibility is simple observation of other agents.
More sophisticated approaches may allow the agents to give feedback
to each other or to exchange knowledge in a specific language.

e Is the learning goal to optimize the behavior of every single agent or
the system as a whole? If the goal is to optimize the behavior of the
individual agents, are the individual learning goals conflicting?

o How much extra interaction is required for learning?

3.3 Overview on earlier research on this subject

Many interesting papers on the subject of Multi-Agent Systems and Ma-
chine Learning can be found in the proceedings from two conferences ([4]
and [3]) and in the refering chapter of the book “Multi-Agent Systems”
([2]). The following summary should only give a very brief overview of
what has been done in this area.

A number of approaches has been developed on the subject of single agents
learning the strategies and skills of their opponents and co-operators.
There have been several approaches to enable agents to learn the strategy
of their opponents in negotiations (see [5],[6]). This knowledge can be used
to negotiate with them more successfully. Another important problem is
to learn the opponent’s skills.[9] investigates this question in the robot
soccer domain. In many settings it can be important even to learn the
skills of the co-operating agents in order to work together with them more
efficiently (see [7]).

Much work has been spent on investigating the possibilities to share knowl-
edge between agents. This knowledge sharing can be seen as learning from
others. An important problem is, to find a common language to exchange
knowledge. KQML is a speech-act based language to provide a common
language for co-operation. KIF is a language to express knowledge in
a general way, making it understandable even for heterogeneous agents.
Together they make it possible to share knowledge among heterogeneous
agents (for more detailed information on KQML and KIF see [15]). A prob-
lem arising from this approach is that the knowledge of different agents can
be inconsistent. How to deal with this problem when sharing knowledge
is described in [10].

A general issue that has been addressed is the problem of learning how
to co-operate efficiently. [8] describes the questions arising from a setting
in which a group of agents learns from group-feedback and describes a
possibility to learn "real team-solution" instead of having a number of
agents that only optimize their own behavior. Furthermore there are some
approaches in which the agents should learn to co-operate without explicit
communication (see [12]).
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Lastly there has been some work on agents that learn to communicate with
each other. These agents have to develop a common language and learn
the meaning of new terms appearing in the communication (see [11]).

Not mentioned here are all approaches in which single agents learn to do
something.

4 Multi-Agent Systems and Knowledge Dis-
covery

4.1 The basic idea of applying Knowledge Discovery
to Multi-Agent Systems

Following the definition of Knowledge Discovery (see above), the basic idea
is, to find usefull patterns in the behavior of the agents in a Multi-Agent
System. Agents show their behavior through their actions and commu-
nication with others. As in the given Multi-Agent System (ProPlanT)
every action is a message, the task of applying Knowledge Discovery to a
Multi-Agent System can be stated more precisely as the task to discover
useful pattern in the communication of a group of agents, that is in the
messages that are exchanged in this group of agents. So the setting for
this application of Machine Learning is the following. There is one central
unit (possibly an agent too), that has the following properties:

it has access to all messages, which are exchanged in the community
e it has knowledge about the current community of agents

e it employes Machine Learning methods to extract patterns from the
messages, possibly by additionally using its knowledge about the
community

e it interacts with the user (the administrator or developer of the Multi-
Agent System) to provide useful information to him/her

From the point of view of the possible aspects of learning in Multi-Agent
Systems, it could be said that there is a single learning agent in the sys-
tem, that helps to optimize the performance of the whole system, and the
only extra communication is to provide this learning agent with a copy
of every message. But for two reasons the term “Knowledge Discovery in
Multi-Agent Systems” fits better than the term “Learning in Multi-Agent
Systems”. Firstly the emphasis should be more on the passive analysis
of the system than on autonomous adaption by the agents itself. And
secondly much of the work on the area of Knowledge Discovery can be
used for the given approach. Mainly the Knowledge Discovery process
(see above) contains many points that are important for the given setting,
as filtering and transformation of the data, interpretation of the results
and interaction with the user.

To analyze the benefits and limitations of the applying Knowledge Dis-
covery in Multi-Agent Systems, this approach will be compared with two
other approaches: 1.Distributed learning and 2.Mathmatical analysis of
Multi-Agent Systems.
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4.2 Knowledge Discovery in Multi-Agent Systems vs.
Distributed Learning and Adaption in Multi-Agent Sys-
tems

There are several advantages that Knowledge Discovery has, compared to
distributed learning.

One problem of having several agents that learn is that they usually have
only a limited view of the system as a whole. In these cases the agents
can optimize their own behavior but this may not result in an optimiza-
tion of the system. This problem can be addressed by giving these learning
agents information about the whole system. But this would not only result
in a huge amount of extra communication, but also make the computa-
tion within the individual agents much more complicated. This problem
does not occure with centralized learning, because the central learner has
automatically knowledge about the performance of the whole system. A
second problem of distributed learning is, that some of the actions, which
result from learning, are not in the scope of the learning agent. For ex-
ample an agent, that learns to predict the lack of a needed resource, then
he is normally not able to do something about this problem on its own,
in case that this resource is something in real world. The only possibil-
ity is to contanct a human user. But the problem with this is, that the
user would get requests from several agents for the same resource and that
these requests could be conflicting, which would make it hard for the user
to decide what to do. One possible solution would be to let the agents
negotiate, what to request from the user. But this would again cost extra
computation within the system. Using Knowledge Discovery this problem
can be solved much easier. As there is only one learning agent, it can
inform the user directly and suggest actions to him. Furthermore it is able
to justify this suggestion, because all the reasoning is centralized. This is
desirable, because often the action by the human user can be quite costly,
e.g. providing a new resource and if the system justifies its suggestion it is
much easier for the user to decide whether to follow it or not. If learning
and reasoning is not centralized, it will be often impossible to give such
justification (e.g. if reasoning is done by negotiation).

But there are also some limitations and drawbacks of Knowledge Discovery
compared with distributed learning. Mostly these drawbacks result from
the centralized character of Knowledge Discovery (as it is suggested here).
One problem is, that the amount of data which is processed by one unit
can be very high. This makes it hard to scale the system, because the
central learner acts as a bottleneck. Furthermore the computation in the
central learning unit can be very complicated, as it has to deal with data
and knowledge of the whole system. In contrast to this, using distributed
learning preserves all benefits of the Multi-Agent System paradigm. The
individual agents have only to deal with a limited amount of data and
knowledge, which make the computation they have to perform much easier.
The learning system is modular and easily scalable.

As a conclusion it can be said, that both approaches have some benefits
and drawbacks. It depends mostly on the application, which one to use,
because none of both approaches can completely replace the other.
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4.3 Knowledge Discovery in Multi-Agent Systems vs.
mathematical analysis of Multi-Agent Systems

If a centralized unit is used to analyze the system in order to increase its
performance, the second question is why to use Machine Learning and not
classical mathematical analysis or pure logical reasoning.

Let’s consider a simple example. Assume that there is one agent ’x’, that
sends requests for tasks to agents ’y’ and ’z’.

Agent x

RN

Agenty Agent z

Every task costs the same time in execution and agent ’x’, waits until

it’s finished until it sends a new request. Now it is assumed further, that
the algorithm agent 'x’ uses to decide whom to send a request is very
complicated and takes into account input data, like sensor data. The
problem is, that the agents 'y’ and ’z’ have to be replaced once in a while,
which takes the same time as the execution of one request. Unfortunately
it is impossible to tell agent 'x’ not to send any requests, while an agent
is being replaced, so the only possibility is to predict, when an agent
won’t get a request and to exchange it exactly then. Now this can be
done (at least) in two ways. The first possibility would be to analyze the
algorithm, agent ’x’ uses to distribute the tasks. This could lead to a
complicated computation and may be it could be necessary to predict the
sensor data as well. The second possibility is to take a look at the sequence
of requests. This sequence could be for example this one: ’yzzzyzzz’. A
close look shows, that there is always a request to agent 'y’ followed by
three requests to agent 'z’. This knowledge can be used to decide, when
to replace which agent, if we assume, that this pattern will continue in
the same way in the future: agent 'z’ should be replaced at every (4*n)th
request, agent 'y’ any time else. The difference between the first and the
second approach is, that in the first case the question is, why a certain
behavior occurs, whereas in the second case only the fact, which behavior
occurs is important. Knowledge discovery does not discover the reason,
why the system behaves in a certain way, but only searches for regularities
in this behavior.

Now it’s possible to compare the mathematical analysis with the Knowl-
edge Discovery approach.

Firstly a drawback of mathematical analysis is, that because of the com-
plexity of most systems it is often not applicable. Especially the non-linear,
discrete nature of the domain makes it hard to apply classical mathemat-
ical methods. This gets even more complicated if the agents interact with
some environment. Then there is the need to analyze this environment
mathematically too, which presumes that there is a sufficient theory about
this environment, which is often not the case. The Knowledge Discovery
approach has none of these problems. Firstly there are already very ef-
ficient and well-studied algorithms to find patterns in data, such that it
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is not necessary to develop new analysis methods. Secondly there is no
need to have a theory about the environment, because if a certain pattern
occurs, it is only important that it occurs and not why.

However there are some problems with this approach too. Firstly it is not
suitable to proof anything. In some cases it could be important to proof,
that a given system behaves, as it is expected. Because the Knowledge Dis-
covery approach only observes the behavior and does not ask for the cause
of this behavior, it is not possible to proof anything about the system’s
behavior in principle. A second problem is, that there is no garantue, that
there are any regularities in the behavior at all, or that these regularities
can be found by the applyed learning methods. In other words, there is
no garantue that this approach works at all.

Summarizing it can be said, that as long as mathematical analysis is rea-
sonably applicable, it is superior to Knowledge Discovery, because it can
prove a certain behavior and is more precise. However there are many
cases, in which mathematical analysis is not applicable, because of the
complexity of the system, or because there is no sufficient theory about
the Multi-Agent System or its environment. In these cases Knowledge
Discovery is still applicable in principle, but the output of this procedure
should only be seen as heuristic and there is no garantue that it works at
all.

Additionally it should be said that both methods can be combined. On
possibility is to use mathematical analysis as far as it is possible and then
complete it by Knowledge Discovery Methods. An very simple example
for such an approach can be found in the third part of this documen-
tation. Another possibility is, to use Knowledge Discovery to "guide"
mathematical analysis. Often it is much easier to prove something (e.g.
some property of a system), if it is known what should be proved.

5 ProPlanT

ProPlanT is a Multi-Agent System for distributed planning. It differs
from other systems for distributed planning in two major points. Firstly
it uses a special knowledge representation and maintenance mechanism to
provide the individual agents with information needed for efficient planning
and secondly ProPlanT includes a special meta-agent that observes the
community from a global viewpoint and can have influence on some aspects
of the behavior of the system. (For more information on ProPlanT see [13])

5.1 Types and structure of agents

ProPlanT can contain several Production-Agents (PA), Production Man-
agement Agents (PMA) and Production Planning Agents (PPA). Further-
more it contains one Meta Agent (MA) and a Facilitator. The following
figure shows, how these agents are structured.
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The PPA agents are encapsulated programs, which determine the tasks
to be planned, together with some constrains concerning these tasks. The
PMA agents decompose the task to be planned and distribute the resulting
sub-tasks further to other agents. The PA agents represent an entity in
real world, for example a production unit. These agents consist mostly of
encapsulated programs for scheduling, databases, etc. The MA observes
the community (for more information see below). The Facilitator keeps an
index of all agents in the community.

5.2 Planning in ProPlanT

If a PPA requests planning a task, it first sends this request, together
with constrains concerning the execution cost and the execution time to a
PMA, which is able to deal with this task. The PMA uses its knowledge
to decompose this task and to distribute the resulting subtasks to PA or to
other PMA. If he gets a positive reply from all contacted agents he returns
itself a positive reply. If the planning of one of the subtasks fails, he tries
to find other co-operators, or another decomposition of the task. Only
if none of these attemps leads to a success, he himself returns a negative
reply. This task decomposition can go through several levels. If a PA
agent gets the request for a task, it does not delegate it further to other
agents. It checks whether it is able to perform this task within the given
constrains or not. According to this, it sends a positive or negative reply.
In the first case, it also fixes the plan for the task, e.g. writes the task to
the schedule of tasks to be performed on a production unit.

5.3 Knowledge representation and maintenance

The PMA contain a special structure for representing knowledge needed
in planning. This structure is called tri-base. It consists of three different
knowledge bases:

o (o-operator base: stores static information about other agents, as
their IP-addresses.

o Task-base: stores information how to decompose tasks and keeps a
list of prepared plans. A task is decomposed to one or more sub-
tasks. Additionally there can be constrains, stating, that one of the
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subtasks can be executed only after the execution of another sub-task
has been finished (precedence rules).

The prepared plans indicate to which agents the subtasks should be
delegated optimally.

o State-base: This knowledge-base stores information about the cur-
rent load, operation-cost, etc. of other agents. This knowledge base
is changed very often.

To keep the state-base up-to-date, ProPlanT uses a simple subscribe/ ad-
vertise mechanism. If an agent is interested in the information about an-
other agent, it subscribes at this agent. It will then get in regular intervals,
up-to-date information about this agent. The idea of using state-bases lies
in the following problem. If an agent wants to decompose a task to dele-
gate it further it has to find co-operators, which perform these subtasks.
One common mechanism for this is the contract-net protocol. The agent
sends a request to all agents that are able to perform a given task, then
gets a number of bids (e.g. containing the cost of this task) and then
chooses the optimal co-operator. The problem with this approach is that
it can be too slow in some settings. For example in military settings the
plan has to be fixed as quickly as possible. The knowledge representation
in ProPlanT addresses this problem. The PMA do not have to contact the
other agents to get bids for a task to be planned, but can simply use the
information in their knowledge-base to find the best co-operator possible.
This leads to a substantial saving of time while planning.

5.4 The Meta-Agent

One common problem in Multi-Agent Systems is that the individual agents
are not aware of the whole system they are working in. In some cases the
limited view of these agents can lead to problems, e.g. sub-optimal plans.
The idea to deal with this problem is to create a global unit, which observes
the whole community and can have an influence on it on a global level.
The Meta-Agent in ProPlanT is such a unit. Its function can be divided in
a passive and an active role. In the passive role the Meta-Agent works as a
visualization and analyses tool, which provides the user with information
on some aspects of the behavior of the system. In its active role the
Meta-Agent can have influence on the community, e.g. by up-dating the
knowledge bases of individual agents (not implemented yet).

5.5 Messages in ProPlanT

As learning in ProPlanT will mainly depend on the messages exchanged
among agents, the remainder of this section contains an index of messages
that appear in ProPlanT.

In general a ProPlanT KQML message contains the following entries:

1. perform: the action that should be performed
2. sender: the agent that has sent this message

3. receiver: the agent that receives this message
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4. content: the content of the message, which depends on the perfor-
mative

5. reply-with: an identifier, which the receiver should use in its reply
to this message

6. in-reply-to: an identifier that states, to which message, this is the

reply

7. language: the language in which the content is encoded

5.5.1 Administrative Messages

Register
Kill

Sent by agents to the Facilitator to register themselves
Sent to the agents by the Facilitator to terminate them

5.5.2 Knowledge-base Messages

Subscribe

Advertise

With this message an agents subscribes himself at another
agent for a number of tasks. The content specifies these tasks.

This kind of message is used to send up-dates of the knowledge
base to all subscribed agents. The content consists of a list
of tasks together with the relevant information for each task,
which is the execution start time, end time and cost for this
tasks.

5.5.3 Planning Messages

Achieve

FEvaluate

Reply

Sorry

Unachieve

Requests the planning of a task. The content entry contains
the name of the task to be planned, an intervall of time units
to indicate in which period of time the the task has to be
executed, a constraint stating the maximal cost of the plan
and an option to choose whether to otimize for execution time
or cost.

The same as Achieve but requests only information, whether
it is possible to plan a given task and what the operation time
and cost would be.

Respond to an Achieve or Evaluate message, containing the
actual operation cost and time (start-time, end-time) for the
requested task.

Respond to an Achieve or Evaluate message in case that it was
not possible to plan the requested task.

Request to delete the plan for a given task, which was re-
quested and successfully planned. The content entry contains
the name of this task.

6 Measuring the performance of a Multi-Agent
System for planning

Following the definition of Machine Learning given in section 2.1, a mea-
sure for the performance of a Multi-Agent System has to be found, in order
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to decide whether its performance improved by learning. Although this
measure strongly depends on the special learning problem, it is possible to
give some general measures, describing the performance of the system as
a whole. As ProPlanT is a distributed planning system, there are at least
two different classes of performance measures: one concerning the quality
of the resulting plan, another concerning the process of planning itself.

6.1 quality of the plan

The two main measures, which describe the quality of a plan, are the total
cost of the suggested solution and the time needed to achieve the desired
goal. Beside from these two essential quantities, there could be other
interesting aspects. As the plans generated by the system are mainly
used in real world, it is desirable to have robust plans, which generally
means that a small error in the real system does not make the whole
plan worthless. This could for example happen, if the plan assigns the
whole work only to one machine, and this machine breaks. One way to
achieve this is to explicitly model the reliability of resources and use this
information while planning. A general way to make a plan more robust
is to assign the work well balanced to the available resources. If one
machine breaks down it could be easier to replace it by another one without
changing the plan because it only is only in charge of a small portion of
the whole plan. So robustness and well-balances utilization of resources
are important points in the quality of the resulting plan, too. Another
important quantity, which is strongly connected to the time needed to
achieve the goal, is the total idle-time of a resource. The idle time is the
time an entity is waiting for another entity in order to perform a task.
Obviously this time should be reduced as much as possible. The criteria
to measure the quality mentioned in this section are not independent in
general. For example a reduction of the idle-time of agents will mostly
lead to plans, which require less time in execution. On the other hand, a
plan, which reduces the cost, could take longer in execution as a plan that
is more expensive.

6.2 the planning process

As the user usually wants to get his plan as soon as possible, the most
natural measure for the planning process is the respond time. The respond
time is defined as the period of time between the user’s request to the
system and the respond from the system, either containing the plan, or
a notice that the desired goal can not be achieved. Another aspect in
measuring the planning process is the number of messages exchanged while
planning. Mostly if communication is not reliable or expensive, this could
be a point, which is equally important as the respond time. For example
if mobile computers are used we would wish to reduce the time we have to
be online as much as possible, even if the respond time increases by this.

While we would wish to optimize both, the planning process and the re-
sulting plan, their goals will be mostly conflicting. If a simple algorithm is
used in planning, the respond time will be shorter, but the resulting plan
may not be optimal. On the other hand, using an elaborate algorithm
for planning could lead to an optimal plan, but time needed to find this
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plan could be significantly higher. Similarly, a reduction of the number
of messages exchanged, could have the result, that the information in the
knowledge bases of the agents is not up-to-date, which could lead to worse
plans. This section showed that there are many different aspects of per-
formance in ProPlanT, which is not only important for the evaluation of
the Machine Learning methods, which are applied, but should be already
considered, while investigating the different possibilities Machine Learning
in ProPlanT.

7 Possible applications of Knowledge Discov-
ery in ProPlanT

As the approach of applying Knowledge Discovery in ProPlanT is still very
abstract, it isn’t possible to give a complete list of possible applications.
But still there is an important difference between these applications: they
can either be domain specific or independent. This distinction arises from
the question, where the regularities are situated, which have to be pre-
sumed when applying Knowledge Discovery. This means which part of
the system has to show a certain kind of regularity in its behavior in order
that a certain application of Knowledge Discovery will work.

To discover this distinction it is important to keep in mind, that there is
on the one hand a computational system, the Multi-Agent Systems, which
consists of a number of agents (PA, PPA, PMA). On the other hand, at
least PA normally represent some unit in the real world, as a machine for
example. To represent this real world unit, the PA models some important
aspects of it, in the case of a machine for example how long the execution
of a certain tasks takes on this machine. If for some reason, one of the
relevant quantities of the real world unit changes, then this change has
to be reflected in the computational system as well. If a machine has
an error, which causes that it is no longer able to perform a certain task,
then the PA, which represents this machine, has to be changed respectively.
Otherwise all future plans may be worthless (because they contain tasks
for this machine, which it can not achieve).

This means, that there are two general possibilities, how a ProPlanT sys-
tem can be influenced:

1. internally, which means that agents have influence on other agents.
If an agent requests a task from a PA, then it will influence the
schedule of this agent.

2. externally, this is the effect, which has been described above. Addi-
tional to changes in real world unit, which are represented by PA,
the system is clearly influenced by the requests, which are sent to
the system by the user. This sequence of requests can be governed
by a probability distribution or by other regularities (as: after a is
requested, always b is requested).

This distinction is important because the possible ways how ProPlanT is

influenced show also the two possible areas in which regularities can occur:
the computational system itself and real world. To learn to predict the
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next requests to the system, in order to optimize pre-planning, it would be
important to know something about regularities in the sequence of requests
sent to the system. As this sequence arises in real world, the regularities
have to be presumed in real world as well. The important consequence of
this is, that there is no possibility to presume these regularities for every
possible ProPlanT community, but only for a given ProPlanT community,
that is specialized to a certain domain. Regularities, which arise from
internal behavior in the computational system of agents only, are domain
independent, because they do not presume any regularities in real world.

Domain specific and independent regularities can overlap too, but it is
important to think of which regularities a given application of Knowledge
Discovery presumes, and whether these regularities can be presumed. If
the regularities arise from the internal behavior, then this question can
be answered, by only looking on the general ProPlanT system, without
special domain. If the regularities are (partly) presumed in real world,
then a domain has to be given, and the question can only be answered by
looking at the domain.

The second part of this documentation introduces a framework of tools,
which supports generally all kinds of application of Knowledge Discovery
in ProPlanT, independently from the kind of regularities presumed. The
third part presents an application of Knowledge Discovery in ProPlanT,
which is domain independent.

Part 11

A Framework of tools to support
Knowledge Discovery and
Machine Learning in ProPlanT

8 Overview of the tools

8.1 Which tools are needed?

Although every Knowledge Discovery problem has special requirements,
it is possible to develop a set of general-purpose tools, which support all
of these applications in ProPlanT. In general these tools should be eas-
ily modifiable and extendable, to allow the developer to perform differ-
ent kinds of experiments with the system, as different learning methods,
transformations rules, use of background knowledge, etc. Which tools are
needed can be determined using the concept of the Knowledge Discovery
process, which was presented in 2.3. Generally the following tasks have to
be supported:

o Generating data
To perform Knowledge Discovery there has to be data. For the appli-
cation of Knowledge Discovery in Multi-Agent Systems this means,
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that there has to be some communication or action of agents. In Pro-
PlanT, as a distributed planning system, communication between the
agents is initiated by a planning request from a PPA. So to gener-
ate data automatically there has to be a tool that generates these
requests and sends them to the community of ProPlanT agents.

e Transformation and Filtering
Before the Machine Learning methods are applied to the data, the
data has to be transformed and generally additionally filtered. How
this transformation and filtering looks like depends on the given
Knowledge Discovery problem.

o The machine learning methods
After the data has been filtered and transformed the Machine Learn-
ing methods themselves have to be applied. Often the learning task
can be reduced to one of the standart learning tasks described in
241

o Interpretation of the results and user interaction
How the interaction with the user and interpretation of the learning
results look like, again depends strongly on the given Knowledge
Discovery problem and it is not possible to give a general structure
of this part of the Knowledge Discovery process.

e Performance Measure
Lastly, to be able to evaluate the results there has to be some kind of
performance measure. This performance measure can either measure
general the performance of ProPlanT as suggested in 6. Or it can be
specific for the given Knowledge Discovery problem.

8.2 Tools, which were developed or used to support
Knowledge Discovery in ProPlanT

8.2.1 Overview of the actual developed or applied tools

Based on this analyses a number of tools have been developed. The ma-
jor problem of developing general purpose tools, that support all kinds of
Knowledge Discovery, is that some parts of the Knowledge Discovery pro-
cess are completely problem specific (as the transformation). The basic
idea to deal with this problem is, to give the user the possibility to state,
e.g. the rules for transformation, in a programming language. As pro-
gramming language, Prolog was chosen. Roughly this framework makes
it possible to save all messages (the data for Knowledge Discovery) in a
format, that can be read by a Prolog system. The filtering and trans-
formation is then performed in Prolog and after this, Prolog calls the
Machine Learning methods from a library. After learning a second Prolog
program helps the user to interpret the results of learning. The bene-
fits of this solution are that the rules for transformation and filtering can
be stated and modified intuitively (as Horn-clauses), that it is very easy
to use background-knowledge and that an intelligent user-interface can
be developed (e.g. an Expert System). Following the analysis arising
from the Knowledge Discovery process and the idea to use Prolog for pre-
and post-processing of the data, the following tools are needed to support
Knowledge Discovery in ProPlanT:
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o The Generator Agent
The Generator Agent is designed to automatically perform test runs
on a given ProPlanT community, such that it "simulates" the behav-
ior of a user or costumer requesting tasks from the system. Roughly it
is able to generate a sequence of tasks, send them as achieve messages
to the concerned PMA and to write the results, contained within the
reply or sorry message, to a file (together with the original task and
some statistical data).

o Sequence Definition
If the sequence of tasks, which is send to the community, should
have some special structure, then this tool can be used to define
this structure and to generate a sequence, which contains it. The
generated sequence is written to a file, which can be read by the
Generator Agent.

e The LogWriter Agent
This agent gets a copy of every message, which is exchanged in a
given ProPlanT community. It then converts these messages and
writes them to a file, as Prolog facts. There are several options,
which influence the exact format of these facts.

o A Knowledge Discovery/Machine Learning library

For Machine Learning and Knowledge Discovery itself, a library
called Weka is used, which is freely available and implements al-
gorithms for classification and association rules, as well as filtering
algorithms and meta-learning schemas, as attribute selection. To
make it possible to call these Java methods directly from Prolog,
a simple bridge from Prolog to Weka has been developed, making
it possible to use these methods, without knowing anything about
Java.

e Performance Measure
For the performance measure a simple statistical tool is used, as for
example the data analysis package in Excel.

8.2.2 How do these tools work together?

Sequence of

requests Performance

Measure

Generator Agent

Interpretation
>~.__ Modification __----



First the data, which is used in Knowledge Discovery has to be generated.
So first the user has to apply the tool for sequence definition and generation
to generate a sequence of requests. Then the Generator Agent is used to
send these requests to the community. The LogWriter Agents writes all
messages, which are exchanged to a file (in the Prolog output format). A
Prolog program reads this file, filters the messages and transforms them
according to the transformation rules stated by the user. Then Prolog
invokes Machine Learning and presents the results to the user. With this
knowledge the user can make modifications to the systems and perform a
number of test-runs with this modified system as well as with the original
system and write statistical data for both to a file. The performance
measure can now be used to compare the performance of the original and
the modified system. This can be used as feedback on the learning methods
or transformation rules, or as evaluation for the final system.

9 The Generator Agent

9.1 Introduction

For a number of tasks, including Machine Learning, it is necessary to
perform a huge number of test-runs with the ProPlanT system. Doing
this by hand would cost a lot of effort, not only by starting the tasks
and keeping track of the results, but often also by generating the desired
sequence of achieve messages. The Generator Agent has been developed to
perform this task automatically. Roughly it is able to generate a sequence
of tasks, send them as achieve messages to the concerned PMA and to
write the results, contained within the reply or sorry message, to a file
(together with the original task and some statistical data). This file can
be used for statistical analyses or if exactly the same sequence should
be used once again (see below). The sequence of requested tasks can be
defined in many different ways. Easiest is to tell the Generator Agent to
read it simply from file. Another possibility is to use randomly generated
sequences with specified distributions. The Generator Agent is based on
the empty agent (see [14] ) and is developed in Power++, a C++-dialect
(see [25]).

9.2 The user interface

When the agent is started, the main window of the Generator Agent ap-
pears:

The main part of the interface is the list in which all requests are stored,
together with the result for this query and some statistical data. One line
has the following format:

<task>;<maxcost>;<starttime>;<maxtime>;<optimize>; <success|non-
success>; <actual cost>; <actual starttime>;<actual endtime>;<answertime
in ms>

<task> denotes the name of the task. <starttime> and <maxtime>
are time units (natural numbers), denoting the time constraints, which
were used in the request. <maxcost> denotes the maximal cost of the
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plan in cost units (natural numbers) <optimize> denotes, whether in the
requested plan should be optimized considering execution time or cost. A
value of 0 means optimize for time, a value 1 means optimize for cost.
<actual _cost>, <actual starttime> and <actual endtime> denote the
actual parameters of the plan, as contained in the reply message, sent by
the PMA. Again these values are stated in time units or cost units. In
case of a non success, the fields with the actual values are left blank.

The buttons below have the following functionality:

Start The Agent starts sending queries to the community, until the
Stop button is pressed or the agent itself is stopped

Stop The Agent stops sending queries to the community

Step The Agent sends exactly one query to the community (and

then stops)

Options Opens the option dialog. At the moment the only option, that
can be set, is the PMA to which the queries are sent.

WriteLog Writes the content of the log list to a specified file.

9.3 The sequence of requests

As already stated in the introduction, there are two possibilities to state,
how the sequence of requests (achieve messages), which is sent to the
community by the Generator Agent, should look like: 1.Read this sequence
from a file or 2.Generate it randomly. In the remainder of this section,
these possibilities are presented in more detail.

9.3.1 Reading the sequence of requests from a file

This is the easier possibility of both, because it simply reads the sequence
of requests from a file, which has to be provided by the user. Every line
in this file has to contain one request.These lines must have the following
format, where the domains of the individual parameters are the same as
in the interface:

<task>;<maxcost>;<starttime>;<maxtime>;<optimize>

Any token that follows the last entry is ignored. If the Generator Agent
reaches the end of the file, he uses the first entry of the file as request again
and so on. Principally there are at least three possibilities to construct
this file of requests:

1. write it by hand

2. use the file, which can be written with “WriteLog”, as the first five
entries of each line have the same structure and the remaining tokens
are ignored (see above)

3. generate this file using an external utility. This can be useful in cases,
in which the sequence should have a more complex structure, than
only random values at given distributions. An example for such a
utility can be found in the next section.
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9.3.2 Generating the sequence of requests randomly

The second possibility to construct the sequence of requests, which is sent
to the community, is to generate it randomly. The basic idea is, that every
quantity that is contained in a request (task, start time, maximal time,
maximal cost and optimize), is governed by a distribution. By stating
these distributions, the user can define the behavior of the Generator.

The first quantity contained in a request is the task to be planned. For
this task the following probability distribution is available:

e read from file: the distribution is read from a file. Every line in this
file represents one possible value, that is one possible task, that can
be requested, together with the probability of this task, which should
be used in generation. The lines in this file have the following format:

name_of task;probability

In case that the sum of the probabilities is smaller than one, then
the last entry has a probability, which fills up this ’gap’ and differs
from the stated one. If the sum of probabilities is higher than one,
then the last entry or even the last entries have a smaller probability
than the one, which has been stated. (E.g. if there are the following
entries: (’a’,0.6),(’b’, 0.3), (’c’, 0.4), (’d’,0.8) then ’c’ will have the
probabilities 0.1 and ’d’ will have the probability 0.0).

The remaining quantities range all over the set of natural numbers. For
them, the following probability distributions are available:

e constant: this quantity has always the same defined value

e uniform: this quantity is governed by a uniform distribution. The
range has to be defined by the user

e read from file: reads the probability distribution from a file. Every
line contains a value (a natural number) together with the probabil-
ity that this value appears. The lines have the following format:

value;probability
If the probabilties don’t sum up to one, the effect is the same as for
the distribution of the tasks.

9.4 Practical Usage of the Generator Agent

As the Generator Agent is re-implemented at the moment, beacuse it is
written in an out-dated C++-dialect, the documentation, which describes
how to use the Generator Agent can be found together with the most
up-to-data version of the implementation, rather than in this documen-
tation. However the basic concepts, which were presented in this section
will remain the same even in future version.

10 Generation of more complex sequences

"sequences.lisp" is a small utility, written in the LISP language, which
supports the generation of sequences, which are random, but contain reg-
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ularities. These sequences can be written to a file, which can be read by
the Generator Agent (see above). In general a sequence looks like this:

a1,a2, ...,0n
Now the user can state rules of the form:
IF a; = ‘a’> AND i1 = v’ THEN A2 = ¢’

In each step, the program checks, whether the condition of such a rule
holds. If this is the case, then the next element in the sequence has simply
the value defined in the right part of the rule. If no rule holds, then the
next element in the sequence is generated randomly. If the conditions of
more than one rule hold, then only the first of these is applied.

The program was developed under the Allegro Common Lisp environment
(for more information on Allegro see [21]). For detailed information how
to use this utility refer to file “sequences.lisp”.

11 The LogWriter Agent

11.1 Introduction

In order to perform Knowledge Discovery on a collection of data, it is often
necessary to transform this data, before applying Machine Learning meth-
ods to it. One reason for this is, that the original data is often too complex
to be handled by the learning algorithm (for example contains too many
attributes) or contains too much noise or errors. Another reason is, that
most Machine Learning algorithms aren’t able to use knowledge about the
domain from which the data is obtained. So the process of transforma-
tion gives the user the opportunity to combine the facts, contained in the
collection of data, with his background-knowledge concerning the domain,
which can make the data to be analyzed more meaningful, even before
the actual Machine Learning starts. How this transformation is actually
performed depends strongly on what should be learned from the data, how
the data does look like and which Machine Learning method is used. To
reflect this problem, it is supposed, that the transformation is performed
in the Prolog Language. Firstly this makes it possible to state the rules for
transformation quite intuitively and makes them easy to modify, secondly
this makes it possible to use knowledge about the current community in
the transformation and thirdly Prolog makes it easy to develop a system
which can co-operate with a human user in an intelligent way (for example
an Expert System).

The ProPlanT System already offers the possibility to send a copy of
every message to the LogWriter Agent. The task of the LogWriter Agent
is simply to convert these messages to something, which can be read by a
Prolog System and can be processed by a user defined program written in
the Prolog language.

The LogWriter Agent uses the empty agent as basis (see [14]) and is im-
plemented in Power++ (see [25])

The remainder of this section describes the conversion in detail.
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11.2 The conversion of KQML Messages to Prolog
facts

The basic idea of this conversion is, that every message is coverted to one
or more facts in the Prolog language. The following is an example for such
a fact (for a detailed description see below):

message(12,val(’achieve’), val(’PMA’), val(’PA1’),
query(val(’a’), undef, val(10), val(30), undef),
120, undef).

This means that at time 12 (the concept of time is discussed later), there
was an achieve request from agent “PMA” to agent “PA1”, requesting the
planning of task “a” with an undefined start-time and end-time of 10 and a
maximal cost of 30. The optimize parameter is left undefined. In-Reply-to
is undefined too, Reply-with has the values 120.

In general the structure of the message fact is the same as the structure of
a KQML message in ProPlanT (see 5.5) with the additional time-stamp.
The conversion of the individual messages differs mainly in the structure
of the content-entry and is described below.

11.2.1 Options for the conversion

There are three different options which influence, how the conversion from
KQML messages to Prolog facts is performed:

e time
the user can choose from three different concepts of time:

— real time
this is the time at which the message reached the LogWriter
agent. This time is measured in msec since the start of the
agent. Note that this is neither the time, at which this message
was sent nor the time at which it arrived at its receiver. There
is no guarantee that the logical order is preserved (e.g. that
a reply message has a higher time stamp than the matching
achieve message)

— enumeration
the messages are simply enumerated in the order in which they
arrive at the LogWriter Agent. Again, there is no guarantee
that the logical order is preserved.

— runs or requests
this kind of handling time works only in a specific setting. It is
assumed that there is only one PPA in a given community and
that this PPA always waits for the reply concerning a request,
before he sends a new one. Every message can then be associated
with the request, in which it appears. The LogWriter simply
increases a counter by one, every time he gets a reply or sorry
message.
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o simple or complex handling of missing data

As it’s possible that a KQML-Message does not contain an entry for
every field (because it’s left out, undefined in a special case or due
to an error) it’s necessary to handle missing data. The LogWriter
offers two ways to deal with this problem. The first one is, just to
assign a special value to these quantities (as e.g. -1 for Integers and
" " for Strings). This makes the resulting messages simpler, but
can lead to ambiguous entries. The more complicated variant treats
these undefined values explicitly. If a value is undefined in the KQML
message then the entry in the message fact is “undef”. If it is defined
then the value is encapsulated in special structure: “val(value)”. This
make it possible to distinguish clearly between defined and undefined
value, but leads to a more complex processing.

e ISO-Prolog or Visual Prolog

Visual Prolog is a very efficient and popular Prolog compiler. How-
ever it differs from the ISO-Prolog standart in some points. To sup-
port both Prolog implementations, this option gives the user the
possibility to choose among them.

(In fact the only two relevant differences for the conversion are, that
Visual Prolog uses double-quotes instead of single-quoutes and that
there is no dot at the end of a fact, because it is treated as an internal
fact-base-file)

11.2.2 Handling of messages that contain multiple entries

Some messages contain multiple entries in the content field. For example
an advertise message contains usually information on more than one task.
Having a varying lenght and structure of messages would make the fur-
ther processing in Prolog more complex and confusing. For this reason,
the LogWriter splits these messages up into several message facts, each
containing exactly one entry.

11.2.3 Conversion of the individual messages

Achieve

message(TIME, achieve, SENDER,RECEIVER,query (TASK,START-TIME,END-
TIME,OPERATION-COST,OPTIMISE),REPLY-WITH,IN-REPLY-TO)

Reply
message(TIME,"reply" SENDER,RECEIVER, answer(TASK,START-TIME,END-
TIME,OPERATION-COST,OPTIMISE),REPLY-WITH,IN-REPLY-TO)

Sorry
message(TIME,"sorry" SENDER,RECEIVER, query(TASK,START-TIME END-
TIME,OPERATION-COST,OPTIMISE), REPLY-WITH, IN-REPLY-TO)

Subscribe
message(TIME,"subscribe",SENDER,RECEIVER,task(TASK),REPLY-WITH,IN-
REPLY-TO)

Advertise
message(TIME,"advertise", SENDER,RECEIVER,info(TASK,START-TIME,END-
TIME,OPERATION-COST), REPLY-WITH,IN-REPLY-TO)
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Unachieve
message(TIME,"unachieve",SENDER,RECEIVER,query(TASK,START-TIME,END-
TIME,OPERATION-COST,OPTIMISE),REPLY-WITH,IN-REPLY-TO)

Evaluate
message(TIME,"evaluate" SENDER,RECEIVER,query(TASK,START-TIME,END-
TIME,OPERATION-COST,OPTIMISE),REPLY-WITH,IN-REPLY-TO)

Register
message(TIME, "register", SENDER,RECEIVER,agent(AGENTNAME), REPLY-
WITH,IN-REPLY-TO)

Others
Message(TIME,PERFORM,SENDER,RECEIVER ,empty, REPLY-WITH,IN-
REPLY-TO)

11.3 Practical Usage of LogWriter

As in the case of the Generator Agent, the LogWriter Agent is re-implemented
at the moment, such that a final documentation on its usuage can not be
given here. For this information refer to the most up-to-date version of
the LogWriter.

11.4 Some examples

Although the transformation rules depend on the actual Knowledge Dis-
covery problem, some example should show the possibilities of using the
Prolog language to transform ProPlanT messages. Here it is assumed that
Visual Prolog is used, but the code could be ported to any other Prolog
very easily (part III contains an example in ISO-prolog)

11.4.1 Example 1: Filtering

The predicate filter deletes all messaged that have no sender and all mes-
sages with the KQML-perfomative "subscribe":

filter :-
retractall (message(_,val("subscribe"),_,_,_,_,_)),
retractall (message(_,_,undef,_,_,_,_)).

11.4.2 Example 2: Simple transformation

The simple predicate advertise/3 just extracts some information from the
original message:

advertise(T,X,C) :-
message (T,val("advertise"),_,_,info(val(X),_,_,C),_,_).
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The predicate no_ answer/2 combines the information from several mes-
sage facts to find achieve messages which have not been answered. To
"match" two messages together, the entries for "reply-with" and "in-reply-
to" are used, which are assumed to be unambiguous.

no_answer (T,A) :-

message (T,val("achieve"),A,B,query(X,_,_,_,_),RW,_),
not (message(_,val("reply"),B,A,answer(X,_,_,_),_,RW)),
not (message(_,val("sorry") ,B,A,query(X,_,_,_,_),_,RW)).

12 Performance Measure

The Performance Measure is used to compare a system, after it has been
modified as a result of Knowledge Discovery, with the original system. This
is important in order to evaluate learning goals and learning algorithms.
How this performance measure looks like, depends on the Knowledge Dis-
covery goal, that should be achieved. But since the general purpose of
applying Machine Learning in the ProPlanT System is to improve per-
formance, it is possible to give a general performance measure. Easiest
is, just to compare by the means of some quantities describing aspects
of the performance of the system. These quantities could be for example
actual cost of a plan, actual time needed for a plan or respond time of
the system. All of these quantities can be obtained using the Generator
Agent with some random sequences. The only problem is, that as the
sequences are random, the outcome is also random to some extend. So to
be precise, the means of the quality of interest have to be compared with
some method from statistical decision theory instead of comparing them
directly. One very common method to compare the means of two sets of
random samples, assuming they are distributed with a normal distribution
is the unpaired t-test (Students’ test). It is described for example in [17]
(p- 1125). As this test is already implemented in nearly every statistical
package, it has not been implemented again for this system.

13 The Knowledge Discovery Library

For the Knowledge Discovery tasks themselves a library called Weka is
used (see [19]or [20]), which is written in the Java language (see [24]) and
available under the GNU public-licence. Weka does not only implement
a number of algorithms for classification, numerical prediction and asso-
ciation rules, but does also support filtering, meta schemes, and testing.
Another benefit of using Weka is, that it can be used as library, as well
as application, which makes it simple to experiment with the given data,
before embedding the algorithms, which worked best into the final appli-
cation.

As the transformation and the post-processing of the results should be
performed in Prolog, the only problem to use Weka, is to find a possibility
to call Java-methods from a Prolog program. The solution for this problem
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is B-Prolog (see [18]), a prolog implementation, which includes such a bi-
directional interface with Java.

To make the learning methods available even to user, who do not know any-
thing about Java and Weka, a small library of Prolog predicates (Weka.pl)
was developed that provides basic learning facilities:

e Create a classifier from a data file. The data file has to be in the
ARFF format, a file format, which does not only store the data but
also information about the individual attributes. For more informa-
tion about ARFF see [20].

e Create an empty classifier without any data, just setting the ranges
of the attributes and the learning method.

e Add a data set to the existing data. This data set has to contain the
class attribute for supervised learning.

e Classify a data set. This data set does not contain the class attribute.
It is the task of the learning algorithm to find it.

e Save the whole classifier to a file.

e Load a classifier, which has been previously saved with the predicate
save.

For a detailed description of these predicates as well as information how
to set up B-Prolog and Weka, see “Weka.pl”.

Part II1

A practical example

14 Detection and prediction of bottlenecks

14.1 Introduction

To present the basic idea of detecting bottlenecks, a small example. Fig-
ure 1 shows a very simple community of ProPlanT agents. There are two
super-tasks ’x’ and ’y’. ’x’ is decomposed to ’a’, b’ and ’c’. ’y’ is decom-
posed only to ’c’. The decomposition and assignment of sub-taks is done
by the agent 'PMA’. Tasks ’a’, 'b’ and ’¢’ have the same execution time 5
and the same cost. Every PA is in charge of exactly one task (as shown in
the figure).

Inr? Ixp? V5p? V5p?

Now the agent 'PMA’ gets the following sequence of requests: 'x’,’y’,’y’,’y’.
The figure shows, how the plans in the PA look like, after these tasks were
requested. It is obvious, that if now task ’x’ would be requested again,
the sub-plans for 'a’ and ’b’ could be executed till execution time unit 10,
while the sub-plan for task ’c’ could be executed till 25. So the whole plan
for task ’x’ could be executed till time unit 25, which means that the whole
plan for task 'x’ is delayed only because of sub-task ’c’. So sub-task ’c’ is
a bottleneck for super-task ’x’ at this moment.
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X y PMA{x,y}
/l\« l PA1{al | PA%q| | PAZ(D)
a b c c
Sequence: xyyy
PAL1 | X | |
PA2 [ x [y [y [y | |
PA3 | X | |

Figure 1: bottleneck example

These kinds of bottlenecks can be only temporal, which means that they
vanish after a while, or they can be permanent, which means, that they
will not vanish. This is an important question, because if a bottleneck is
permanent then it could be a good idea to remove it, while a bottleneck,
which is only temporal may not have to be removed. In the given example
it is obvious, that the bottleneck will not vanish (because sub-task ’c’ is
required by both super-tasks).

So generally there are two problems: 1.Detecting bottlenecks and 2.De-
cide whether the bottleneck is permanent or not. The first problem can
be reduced mainly to the problem of simulating the planning of a super-
task, as then it is obvious how the execution times of the several subtasks
are related to another and a simple function can dicide, whether there is
a bottleneck or not (according to a precise definition). So the problem
is how to simulate the planning of a super-task efficiently. In this sec-
tion an approach will be presented, that combines reasoning about back-
ground knowledge with Knowledge Discovery methods to solve exactly
this problem. The second problem is to predict the future development
of bottlenecks. For this problem a simple approach will be represented,
that observes which influence the individual super-tasks have on a given
bottleneck, and combines this observation with the relative frequency of
occurrence of the individual super-tasks to calculate an expected value for
the future development.

14.2 Exact definition of the problem

The following list contains all issues, which define the scope of the problem
as well as additional restriction and simplifications. These restrictions and
simplifications are introduced in order to start with a simple system, which
then can be generalized by removing the restrictions one by one.
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14.2.1 Scope of the problem and some simplifications

e The term "bottleneck" reflects, that there is an imbalance in the use
of the underlying resources, in opposite to the term "overload of the
system", which stands for an insufficiency of the whole system to deal
with incoming requests. Overloads of the whole system depend on
the period of real time between two requests to the system. This time
is a continuous quantity. So the task to predict and find overloads of
the whole system is more a task for statistical queuing theory than for
Machine Learning. For this reason, we assume for our experiment,
that the period of real time between two requests to the system is
always zero. In other words this means, that the system is used in
batch-mode; there is a queue of requests, which is never empty.

e What is considered as resources are in fact pseudo-resources. The
reason that it is not possible to use the real resources is that they are
encapsulated in the PA and not visible for the Meta Agent. There-
fore, for this experiment, a resource is a task, which can be achieved
by a PA, because they are visible for the Meta Agent. To go further,
and even to consider tasks which can only be achieved by PMA as
resources would be possible as well. But since the aim of Knowledge
Discovery in this case is to support the decision, whether to provide
the system with new resource or not, it would not be clear in these
cases, which resources to provide, because the PMA itself, does not
represent a resource. (In the remainder of the document, Resources
will denote this set of pseudo-resources).

e Principally it would be possible to consider both, bottlenecks con-
cerning execution time and execution cost. However, as it is normally
not possible to lower the cost in a system, there is usually no pos-
sibility to remove such a bottleneck. Therefore, it is not reasonable
to find or to predict them, because this information would have no
effect.

e As stated above we focus on imbalances in the use of resources, so
it would be possible not only to find bottlenecks, but also inverse
bottlenecks. This could be used to support the decision whether
to remove a given resource from the system. As we want to keep
things simple, the focus will be on bottlenecks rather than on inverse
bottlenecks.

e Finally, we have to introduce a real limitation of the first version of
the analysis system. In the second part of this documentation were
presented the different possibilities the LogWriter offers to attach
time-stamps to messages: real-time, enumeration of messages and
runs. For this experiment, the third possibility is used. This means
that all messages, which belong to one request to the system, have
the same time-stamp. This concept only works under the condition,
that the community contains only one PPA and that this PPA waits
until the system responds to its request before sending a new request
to the community (every time the PPA gets a reply or sorry message,
the time counter within the LogWriter is incremented by one).

¢ Additionally some other simplifications are made. Firstly the cost of
resources will not be considered. In this experiment every resource
costs the same. Secondly, there will not be any time or cost limits in
the requests. (This is not really a restriction, because the analysis
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system could filter out runs, which are not successful). Thirdly there
are no alternative task decompositions, every task is decomposed to
exactly one set of subtasks, which all have to be achieved, in order
to achieve the super-task.

14.2.2 Remarks on terminology used in this section

To make the following a little bit less confusing, here are some remarks on
the terminology, which will be used in this part:

o Time

We distinguish between real time, this is time in real world, execu-
tion time, this is the time contained in the plans and planning time
(or simply time), which is for this experiment the number of the con-
sidered request. So if we say, that at time 5 there is a bottleneck,
this means, that after the first five requests have been sent to the
community and before the sixth request is send to the system, there
is a bottleneck

o Tasks, super-tasks and resources
We distinguish super-tasks (or simply tasks) from resources. In Pro-
PlanT both are considered as tasks. We use the term task only for
requests, which are send by the PPA. Requests, which are sent to
PA, are resources. The remaining requests are not interesting for
this experiment.

o Appearance and formation of bottlenecks
As we will see, a bottleneck can exist at a given time, but can be
invisible. So we say a bottleneck appears, if it is visible. On the
other hand we use the term formation of a bottleneck if it comes into
existence (but is not necessarily visible).

o Variables and Values
Specific values are enclosed in single quotes, to distinguish them from
variables. So ’a’ stands for the specific task named ’a’, while e.g. t
stands for the variable time, g for the variable super-task and r for
the variable resource and so on.

e Bottlenecks
At some points bottlenecks will be denoted as <super-task><resource>>,
e.g. t1rb. This means that ’r5’ is a bottleneck for ’t1°.

14.2.3 The definition of a bottleneck

Now it is possible to formulate the idea of a bottleneck: To achieve a task
g at top-level at time t, normally several resources are needed. The plan is
completely executed, at the moment, when the sub-plans for all resources
are executed. If the execution of a single resource r takes much longer,
compared to the execution of the other resources, then the execution of
the whole plan is delayed because of this single resource. In such cases, it
is said that the resource r is a bottleneck for task g at time t. So in gen-
eral a bottleneck is a relation with arity three, among a top-level task g, a
resource r and a point in planning time t, we call bottleneck(t,g,r). In case
that r is not needed to achieve g, bottleneck(t,g,r) is false. The obvious
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problem with this predicate is, that it can not be observed directly, because
at a given time there is only one request g. So bottleneck(t,g,r) would only
be defined for values t and g, such that g is really requested at time t. In
order to expand the definition of bottlenecks to be applicable to any pa-
rameters, we have to distinguish between the existence and the appearance
of a bottleneck. A bottleneck(t,g,r) appears, if there is a request for task
g at time t and r behaves as defined above. To find bottlenecks, which
do not appear, we have to estimate, what would have happened, if task
g would have been requested at time t. So, as already stated above, the
problem of detecting bottlenecks is reduced to the problem of simulating
the planning of a super-task.

To obtain a mathematical definition of bottleneck two other predicates are
needed: endtime and subtask.

endtime(t,g,r,et) is true, if the execution of all sub-plans for resource r
within a plan for task g would be finished at execution time et, if g
would be requested at planning time t.

subtask(st,t) is true, if st is a subtask of t. This relation is transitive.

Now the predicate bottleneck can be defined:
bottleneck(t, g,r) =

|[{l € Resources || subtask(l, g) A endtime(t, g,r, f1) A endtime(t, g,l, f2) A
a(fif2)}| > B = |{l € Resources || subtask(l,r)}|

In words it could be said, that a resource r is a bottleneck for a task g at
time t, if the execution of the sub-plans for resource r is finished later than
the plans for 3%¥100% of the other resources needed to achieve g at time t.
The parameter § makes it possible to have more than one bottleneck. For
example with g = 0.7 if 10 different resources are needed for a task g and
two of them take much longer than the rest, then there are two bottlenecks.
«a is a predicate, which makes it possible to compare the endtimes in
different ways. For the remainder of this document, a(z,y) =z >y +cis
assumed.

Applied to the small example from the introduction, the following values
can be calculated:

endtime(4,’x’,’a’,10)
endtime(4,’x’,’b’,10)
endtime(4,’x’,’¢’,25)

with a(z,y) =z > y+ 10 and 8 = 0.6 for bottleneck(4,’x’,’c’) this means,
that

bottleneck(4,’x’,’c’) = |{’a’,’b’}| > 0.6 % |{’a’,’b’,’c’}| = true

So bottleneck(4,’x’,’c’) holds, which means that at planning time 4, re-
source ’¢’ is a bottleneck for task 'x’.

14.3 The test community
In order to obtain empirical results it is important to have a test commu-

nity of ProPlanT agents. The following are the requirements of such a test
community:
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e it should be simple enough to be clear and easy to handle

e it should be complex enough, such that it would be hard for a human
user to analyze it directly

o it should be representative, which means it should contain everything
a real system could contain

it should contain some bottlenecks

The following community contains only eight agents and for this reason it
is not complex enough to get reliable results. But it already contains some
features of more complicated communities as precedence rules, several lev-
els of task decompositions and parallel as well as sequential execution
within PAs.

The super tasks are 't1’,’t2’,’t3’. The resources are ’rl’, 'r2’, 'r3’, r4’,
'r5’. The complete decomposition looks like this (an arrow means, that the
second task is part of the decomposition of the first one. As already stated,
this is an AND-tree, as alternative decompositions are not considered)

t3 12 t1
y X
a<c
a b ¢
ri<r4
rl r2 rl r3 rl r4

There are 4 PMA and 4 PA. The following diagram shows, how they work
together (an arrow between two agents states, that the first agent can co-
operate with the second; the tasks enclosed in brackets are the tasks the
agent can deal with)
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PPA

PMA1
{t1,t2,t3}
PMA2
{xy}
PMA3
{ca
PA1 PA2 PA3
{r1,r3} {r1,r2} {r5}

\

PMA4
{ b}

Finally the following table contains the execution times of the individual
resources:

PA1 |

PA2 |

PA3 | PA4 |

PMAL1 |

PMA2 | PMA3 |

PMA{ |

rl

10

r2

r3

10

20

r4

11

"PA1’ contains two machines, one for ’r1’ and one for

r3’. 'PA2’ and 'PA4’

contain only one machine and execute their tasks sequentially.

14.4 Background Knowledge

In order to detect and to predict bottlenecks, it is necessary to have some
knowledge about the given group of agents. We will refer to this kind of
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knowledge as background knowledge. The following is a list of all predi-
cates, which express this background knowledge:

ppa(A) is true, if A is a product-planning agent.
pma(A) is true, if A is a product management agent.
pa(A) is true, if A is a production agent.

resource(T) is true, if task T can be performed by a production agent
(see above)

capable of(A,T,D) is true, if agent A is a PA and is able to perform
task T in time D (we assume here, that D is constant, see above)

subtask(ST,T) is true, if ST is a subtask of T.

The program generate bgk.pl is able to generate parts of these facts au-
tomatically from the messages. However, especially the predicate subtask
causes some problems:

1. If there is no request for a given super-task T in the message-file,
then there is no possibility to generate the facts subtask(_,T).

2. If a PMA has to handle several requests in one run, it is not clear,
how to relate the different super-tasks to the sub-tasks, so generally
the tool will return wrong results in these cases.

This means, that the generated file 'bgk.pl’ has to be checked for errors,
before it is used. Its purpose is mainly to save the user some work. The
second problem could be avoided by using a much more intelligent algo-
rithm, but this would be out of the scope of this experiment.

14.5 Detecting bottlenecks

As stated above the problem of finding bottlenecks has been reduced to
the problem of finding the values for the predicate endtime(t,g,r,et). This
can be done in several ways. Firstly it would be possible simply to sim-
ulate the planning of super-task g at time t and to obtain the value et
from the reply message. The problem with this approach is, that it would
be quite costly to do this for every super-task. Another possibility would
be, to use Numerical Prediction, as defined in 2.4.1 to obtain these values.
The idea is to learn to predict the values for the predicate endtime. But
it showed, that this approach does not lead to results, which are precise
enough to be used to detect bottlenecks (see Evaluation). A third ap-
proach, which is presented here, combines the first two approaches. It first
calculates a rough estimate for endtime using a simple planning algorithm
(e.g not considering precedence rules) and then uses Numerical Prediction
to predict a correction factor, which is added to the rough estimate. So in
fact estimating the predicate endtime is split into two steps: 1. A simple
algorithm to calculate a first, rough estimate and 2.A learning algorithm,
which learns to adjust this first estimate to get a more precise one. These
both steps are described in the following sub-sections.
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14.5.1 Step 1:A simple algorithm to simulate planning

The algorithm which is presented in this section makes use of the fact, that
the PA inform other agents about how long the execution of a task would
take if it would be planned (see section 5). So it can be presumed that there
is a predicate called aendtime(time,agent,resource,advertised endtime),
which can be obtained directly from the advertise messages. The algorithm
uses some predicates from the background knowledge together with the
predicate aendtime to calculate a rough estimate for endtime:

e construct a set, consisting of pairs (a,et), where a is the name of a
PA, which is able to perform r and which advertised et as end-time
for the execution of r at t. The resulting set is called L. e.g. L =
{(PA1°,120), ('PA2’,140)}

e for i = 0 to number of occurrences of resource r in the plan for g - 1

e — find the minimal element (second component minimal) in L:
(a,et)
— find x, such that capable of(a,r,x) holds (look up x)
— remove this element (a,et) and add (a, et + x) to L

e return the minimal element of L (second component)

Example:

aendtime(3,’PA1’,’r1’,10), aendtime(3,’PA2’’r1’,14)
capable of(’PA1’,’r1’,10), capable of(’PA2’,’r1’5)
endtime(4,’t3’,’r1’,X): X should be calculated:

1. Construct L: L= {("PA1’,10),(’PA2’,14)}

2. As 'r1’ is needed 4 times in every plan of 't3’ the loop is executed
three times:
(a) L = {(’PA1’,10),(’PA2’,14)} remove ("PA1’,10) add ("PA1’,20)
(b) L = {("PA1’,20),(’PA2’,14)} remove ('PA2’,14) add ("PA2’,19)
(¢) L = {("’PA1’,20),('PA2’,19)} remove ('PA2’,19) add ("PA2’,24)
3. L = {("PA1’,10),(’PA2’,15)} the minimal element is ("PA1’,20) .

—_ —

The result is endtime(4,’t3’,’r1’,20).

14.5.2 Step 2:A Knowledge Discovery system to predict a
correction factor for step 1

As already stated, the correction factor should be obtained by learning. So
first, the learning problem has to be defined more precisely. As described
in the first part of this documentation, a common standard learning prob-
lem is numerical prediction. This is exactly the learning task needed for
purpose of this experiment. A numerical value (correction factor) should
be found from a set of attribute values. The underlying experience is the
following. If task g is requested at time t, then we get the correct values
for endtime at time t. So in these cases, we can additionally calculate the

43



estimated endtime using the algorithm presented in step one (14.5) and
the difference between this estimated value and the real value. This differ-
ence is exactly the correction factor and can be used to train the learner.
After this training, the learner can be applied to new instances.

In the terminology of the Knowledge Discovery process, the following is
done:

o filtering:
every run is checked, according to some basic rules (e.g. the number
of achieve messages is the same as the number of reply and sorry
messages). If a run does not meet theses basic constraints it contains
errors and has to be filtered out completly.

o transformation and data reduction:

First the data, which is not needed is filtered out too (e.g. subscribe
messages), then specific predicates are generated, as aendtime (see
above). After this the data for learning can be generated, which
means that aendtimes and the background knowledge are combined
to calculate the estimated value for the last entry in the predicate
endtime. After this the difference between this estimated and the
real value, contained in the reply message is calculated and written
to an ARFF file, together with some attributes (see below).

® post-processing:
In this case the learned concept is applied directly to new data, which
means that it is used for the estimation of the predicate endtime, if
the correct value is not available (if the super-task wasn’t requested
at the given time).

o cvaluation:
In the same way as for creating the ARFF file for learning a second
ARFF file can be created. Now the learner can be applied to data
which is new to him. Now the mean difference between the estimation
of the learner and the exact values contained in the training set can
be calculated, which is measure for the quality of the learned concept
(see Evaluation).

There are two choices for learning:

1. the learning algorithm

2. the set of attributes, which is used

While it is easy to compare the performance of different algorithms, the
choice of the attributes is much more complicated. To find a suitable set
of attributes, we take a look at the algorithm in step one and try to find
out, why it does not return the correct results:

1. Unknown internal structure of the PA
An example: two PA can both achieve task ’a’ and ’b’, but 'PA1’
represents two different machines, one for resource ’a’ and one for
resource 'b’. "PA2’ represents only one machine for both. The algo-
rithm implicitly assumes, that a PA represents a separated machine
for every resource (otherwise it would not be possible to calculate the
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predicate endtime independently for several resources). The problem
is, that if a super-task consists of both resource ’a’ and resource 'b’,
then the algorithm will make a mistake with 'PA2’. If 'PA2’ adver-
tises, that it can achieve resource ’a’ till execution end-time 5 and 'b’
till 5, and resource 'a’ and resource 'b’ take 5 time-units each, then
only one of the resources can really be achieved till the advertised
execution time. Which one this is, depends on which request arrives
at 'PA2’ first. If the request for ’a’ arrives first, then the execution
endtime for ’a’ will be 5, the execution endtime for ’b’ 10, if the re-
quest for b’ arrives first, it’s the other way round. If we assume that
this order (which request arrives usually first) does not change sig-
nificantly, then the error, which occurs due to this problem will only
depend on the super-task and the resource. This means that these
quantities are sufficient as attributes for compensating this problem.

Precedence rules

As the algorithm does not at all consider precedence rules, this is
clearly a source for errors. The following diagram shows this clearly:

PA2 | 11 r2 r2 ri |

PA4 | [ 4]

Although ’r4’ could be executed at execution time 0, because of the
precedence rule it has to be executed after 'r1’. The algorithm in step
one would calculate 3 as estimated execution endtime for resource
'r4’. The real execution endtime is much higher and depends on the
time at which 'r1’ is executed. An extreme case would be, that 'PA4’
advertises execution end-time 3 all the time, but actually ’r4’ is never
executed at this time. Depending how often this problem occurs,
either we can hope that learning can compensate it (the attributes
then are again super-task and resource) or we have to use another
basis for learning, in this case for example the estimated execution
endtime of 'r1’.

. Fragmentation of the plan of tasks
The following example shows the problem:

pA2 | 1| [ r2

'PA2’ advertises execution endtime 10 for resource r1’. If we need
resource 'rl’ two times in a plan, then the algorithm assumes, that
"PA2’ can execute 'r1’ two times till 15. But this is not true, because
the time between 10 and 15 is already occupied. The correct execu-
tion endtime for two executions of ’r1’ is 20. The problem is, that
the algorithm has only the values, which are advertised and does not
know, how the plan of tasks of a PA exactly looks like. The only pos-
sibility to deal with this problem is to consider past events, because
they have led to the fragmentation in the plan of tasks. As past
events, for example requests to a given PA or to the whole system
can be used.

. Sub-task assignment

Because of several factors, e.g. network speed, it is not possible
to predict exactly, how sub-task assignment is performed. It could
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be possible, that an agent decides sub-optimally in some cases, or
that the whole system optimizes for cost and not for time, etc. The
learner should be able to deal with such problems. As choices for
attributes, we use the differences of the advertised endtimes for the
same resources form different agents. This is exactly the information,
which the PMA use to perform sub-task assignment. For the given
community this results in the following two attributes:

endtime(T,PA1’’r1’ X), endtime(T,’PA2’’r1’)Y): ATT1 =X +Y
endtime(T,;PA1’’r3’ A), endtime(T,’PA4’’r3’ B): ATT2 = A + B

Summarizing the following set of attributes is used for learning in the given
community:

super-task

® resource

last super-task

difference for r1

difference for r4

For learning algorithms, which can not deal with continuous attributes,
the last two arguments are discretized. For 'r4’ an extra learner is used
(with the same attributes). As basis for the calculation of the execution
endtime of ’r4’ we do not use the algorithm in step one, but the estimated
execution endtime of 'r1’ (as there is a precedence rule between 'r1’ and
rd’).

14.5.3 Ewvaluation
There are two major requirements, which this system should fulfill:

1. it should be efficient.

2. it should produce results, which do not differ too much from the
exact results.

Whether the system is efficient can be decided by analyzing the computa-
tional complexity of the algorithms, which are applied. To find out, how
good the results are, which the system produces they have to be com-
pared empirically to the results which are produced by a simulation (using
evaluate).

Computational complexity

For the algorithm used in step 1 the following formula can be found:

O(g(r) + (f(g,7) — 1) * log(g(r))))

where
f(g,r) is the number of times r is used in a plan for g and
g(r) is the number of agents, which are capable of r.
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(Proof: The list L can be organized as heap. This heap can be build in
linear time with the number of elements, which is here g(r). The inner
part of the loop consistes of one ’downheap’ operation: change the top
element and let it sink down. Downheap can be performed in logarithmic
time with the number of elements in the heap, so here in log(g(r))). The
loop is passed f(g,r) times, according to the definition of the algorithm.)

As g(r) will be in any realistic case very small (because the agents are
mostly specified to a small range of tasks), it can be considered as constant.
Then the algorithm is in O(f(g,r)). For the detection of a bottleneck this
means, that a given bottleneck(t,g,r) can be detected in a number of steps
which increases linear with the number of resources needed for planning
the task g. Such an algorithm is by far efficient enough for our needs.

The second step is even more efficient. An upper bound for the number of
attributes is the number of PA times the number of resources plus 4 (if we
use the above schema for attribute selection). If a Decision Tree is used
for learning, this means that an instance can be classified in

log(number of resources*number of agents) =

log(number of resources) + log(number of PA)

Normally the tree will be pruned, such that this value is only an unrealistic
upper bound.

(Proof: A Decision Tree is a tree of highth smaller or equal than the
number of attributes used for learning. See [1])

This shows that the system fulfills the first requirement of being efficient,
the second question is, whether it produces results, which do not differ too
much from the simulated ones.

Empirical Results

In general, two values are of special interest:

1. The absolute mean error, which is the mean difference between the
results of simulation and the results of the short-cut algorithm. It is
denoted in execution time units. If this value is much too high, it
will not be possible to detect bottlenecks with the system, that has
been presented.

2. The relative improvement, which results from learning, that is from
the second step. A relative improvement of 50% means for example,
that the error could be reduced to a half of its value without learn-
ing. This makes it possible to compare the performance of different
learning algorithms and shows, whether learning makes sense in this
setting or not. (resource r4 is not considered for this evaluation,
because the algorithm in step one does not work for r4 (see above)).

To obtain empirical results, different learning methods were used:

1. Linear Regression, a well known algorithm for numerical prediction

2. Decision Tables
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3. Decision Trees, which are normally used for classification rather than
for numerical prediction. To use them for this purpose, the correc-
tion factor is split into several intervals. Each of these intervals is
represented by a class. Now classification can be applied and the
predicted value is the mean of all values in the interval, which is rep-
resented by the predicted class. This method is called Regression by
Discretation. The algorithm used to build the Decision Tree is C4.5

4. Naive Bayes. This is a Baysian Method for classification. The same
transformation is used as for Decision Trees to apply it to numerical
prediction.

Firstly a training set (135 instances) and a test set (44 instances) were
generated with the same community of agents using the Generator agent.
This led to the following results:

Stepl only | Step 1+ 2 | Rel. impr. | Step 1+2
(incl. R4)
C4.5 3.37 1.28 263.2 % 1.275
Naive Bayes 3.37 3.08 109.4 % 3.05
Lin. Regression || 3.37 3.31 101.7 % 3.45
Decision Table | 3.37 1.34 251.2 % 1.625

This tabular shows that the absolute error is very low. So the estimation
of the short cut differs not substantially from the simulated values, which
shows that the system can be used to detect bottlenecks without any
problems. The next interesting observation is, that learning had quite an
influence on these results. C4.5 and Decision Table could reduce the error
to more than a half. Although it shows too, that Linear Regression and
Naive Bayes are not suitable in this setting.

Another interesting question is, whether only learning would also produce
similar results. To obtain empirical values in this case, the setting has to
be changed. Now not the algorithm from step one is used as first rough
estimation of endtime, but the endtime for this resource from the last run
(or the overall endtime of the last run, if the first is not defined). Then
a learner is used in exactly the same way as above to learn a correction
factor. The results are the following:

| | Step 1 + 2 [ Step 2 only |

C4.5 1.28 24.1
Naive Bayes 3.08 20.0
Linear Regression || 3.31 27.85
Decision Table 1.34 28.75

This clearly shows that learning alone does not lead to acceptable results.
(Maybe these results could be improved to some extend by using better
sets of attributes and a better basis, but it does not seem that this would
change these results substantially).

One benefit of learning is, that the learner can assimilate even to new
situations, which were not considered in advance. For the next experiment
the setting is changed, such that the system contains an error. ’PA2’
always replies to requests for ’r1’ such that the execution endtime is three
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time-units higher than it should be (according to the advertise messages
he sends). The question is, whether the system can cope with such an
error. The following are the results:

| | Stepl only | Step 1+ 2 | Rel. improvement |

C4.5 4.14 1.29 357.1 %
Naive Bayes 4.14 2.8 147 %

Linear Regression || 4.14 3.1 133.3 %
Decision Table 4.14 1.37 302.1 %

Obviously the total results were affected only little by the error in the
system, although the results of the algorithm in step one are worse. This
shows that learning can compensate minor errors in the system, which
confuse the deterministic algorithm in step one.

Another interesting question is, what happens, if the concepts learned from
one community are applied to a modification of this community. This is
important, because there are often minor changes in a community and
it would be unpleasant, if learning would have to be repeated after every
small change. So some of the values in the original community are changed
and the Generator Agent is used to create a second test set. The results
are the following;:

Stepl only | Step 1+ 2 | Rel. impr. | Step 142
(incl. R4)
C4.5 4.72 2.76 171.5 % 2.82
Naive Bayes 4.72 4.47 105.6 % 4.9
Lin. Regression || 4.72 4.73 99.0 % 4.8
Decision Table || 4.72 3.13 151.0 % 34

Again the absolute error is quite low. C4.5 and Decision Table worked
both well, but C4.5 work significantly better in this case, which can be
seen as a clue, that C4.5 generalizes better over the details of a given
community.

Summarizing it can be said, that at least for the given community the
difference between estimated and simulated (real) results is surprisingly
low. Furthermore it showed that only learning does not produce acceptable
results. On the other hand the deterministic algorithm from step one can
be improved by learning, especially if there are minor errors in the system,
with which this algorithm alone can not deal. Important for the practical
usage was, that it was possible to use a learned concept even in a modified
community without having to repeat learning.

The comparison of different learning algorithms showed, that Linear Re-
gression and Naive Bayes were mostly not suitable for this learning task.
C4.5 and Decision Tables both worked well, but C4.5 seems to work mostly
better than Decision Tables. Especially in the last experiment, in which
the learned concept was applied to a modified version of the original com-
munity, this was obvious.
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14.6 Predicting the future development of bottlenecks

A detailed analyzes of the future development of bottlenecks would be
rather complicated and is beyond the scope of this experiment. So our
aim is only to find a simple heuristic that gives the user a hint, whether
a given bottleneck is to going to vanish or not, whether it pays to do
something about this bottleneck or not. For this reason, we want to find a
method, which decides for a given bottleneck, whether it is likely to vanish
or not. The general idea, how to achieve this is the following: We do not
only consider, whether there is a bottleneck or not, but also calculate a
quantity, which represents the strength of this bottleneck. Now we observe,
how this value changes from request to request. We can then associate this
change factor with the task, which was requested at this time. We now
assume that every request appears with a fixed probability. Using this
probabilities we can calculate the expected value for the total changes of
this bottleneck. Is this expected value positive, then the bottleneck is not
likely to vanish, is it negative it will probably vanish.

The following example should make this clearer (we use the simple com-
munity from above). The formula, which is used to calculate a value for
the strength of a bottleneck is the following:

strength(t,g,r) =
avg{fr — fz|lendtime(t, g,r, f1) A endtime(t, g,1, f2)A
subtask(l,g) A f1 > fo + a}

Now the strenght of the bottleneck ’xc’ can be calculated for every moment
in planning time. The column ’request’ denotes the task, which has been
requested at the refering time. This diagram can be used to find out,
which influence the individual requests at top-level have on the strength
of the given bottleneck.

| Time || Request | Strength of bottleneck(’x’,’c’) |

1 x’ -
2 'y’ -
3 y’ 5
4 y’ 10
5 y’ 15
6 x’ 20
7 - 20

We find the following result: A request for task ’x’ leaves the strength of
the bottleneck unchanged a request for task 'y’ increases it. Without even
looking at the probabilities we see, that this bottleneck is not very likely
to vanish (in this case it will certainly not vanish).

The remainder of this section describes how this method works in general.

The prediction of future development of a bottleneck consists of three
steps:

1. Measure the strength of the bottleneck at different times
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2. Calculate a change factor for every bottleneck and every request to
the system

3. Use the probabilities of the different requests to the system to calcu-
late a mean change for a bottleneck.

14.6.1 Step 1: Measure the strength of a bottleneck

In general there are several possible measures for this problem. We will
only consider two of them:

(note that the sets used here are multi-sets, which means that they can
contain the same value several times)

1. Average

strength(t,g,r) =
avg{fl - f2|endtime(t, 9,7, fl) A endtime(ta 9, la f2)/\
subtask(l,g) A f1 > fo +a}

This value has the benefit, that it represents every resource in the
set. On the other hand, it has the disadvantage, that this value can
change, only because the values in the set among themselves change
somehow, which has no effect on the bottleneck.

2. Maximal

strength(t,g,r) =
max { fi — fz|endtime(t, g,7, f1) A endtime(t, g,1, f2)A
subtask(l,g) A fr > fo + a}

This problem does not occur by using the maximal value, but the
problem is, that this maximal value does not reflect all values in the
set, but only one value from the set.

So both measures have advantages and disadvantages. We will compare
them in the evaluation.

14.6.2 Step 2: Calculating the average change

For every bottleneck and every request to the system the following values
is calculated:

avg _change(g,r,req_task) =

avgq{strength(g,r,t1) — strength(g,r,t2)|request(t; — 1,req_task)}
where request(t,x) denotes that at planning time t, task x has been re-
quested by the PPA.

In words: calculate for every bottleneck, how its strength on average
changes by different requests to the system.
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14.6.3 Step 3: Calculate the expected total change

We assume that every request to the system has a fixed probability. We
know calculate the expected total change as follows:

total change(gyr) = > p(z) * avg_change(g,r,z)
z€T asks

As this value will be normally very imprecise (at least with the measures
above), it can be taken only as a hint, how the bottleneck probably will
develop.

14.6.4 Evaluation and an Example

The test community presented in this section behaves as follows: the bot-
tleneck in ’r5’ for ’t1’ increases with t1’ and decreases with ’t2’ and ’t3’.
The bottlenecks in ’r3’ for ’t1’ and ’t2’ increase with ’t1’ and ’t2’ and
increase only little or not at all with 't3’.

We now send some tasks to the community and calculate the average
change factors with both measures, to observe whether they find these
regularities.

Average

| || t1r5 | t2r3 | t3r3 |
tl || 24 19 19
t2 || -26 15 15
t3 || -22 16 6

Mazimum

| [ t1r5 | t2r3 [ t3r3 |
t1]J12 [19 [19
12 -35 [ 14 |15
t3 [ -30 [7 10

We see that both show the desired values. A problem is that the mean
standard deviation in both cases is very high, for maximum 17.3 and for
average 14.3. This shows that these values are not very reliable.

Using these values, we know can calculate the expected total change factors
for the three bottlenecks (we assume that p(’t1’) = p(’t2’) = p(’t3’) = 1/3)

Average

t1r5: 1/3 % 24 - 1/3%26- 1/3 * 22 = -8
t2r3: 1/3 * 19 + 1/3*15 + 1/3*16 = 16.7
t3r3 : 1/3* 19 + 1/3*15 + 1/3*%6 = 13.3
Mazimum

tlr5: 1/3*12-1/3*35-1/3 * 30 = -17.7
t2r3: 1/3 * 19 + 1/3*14 + 1/3*7 = 13.3
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t3r3 : 1/3% 19 + 1/3%15 + 1/3%10 = 14.7

Although some of the values differ, both calculations come to the same re-
sults: bottleneck ’t1r5’ will be removed, bottlenecks 't2r3’ and ’'t3r3’ won’t.
We can check this prediction empirically. We first artificially produce these
bottlenecks by sending ten times requests for t1’ to the system. After this
we send random requests to the system, with probabilities p("t1’) = p(’t2’)
= p(’t3”) = 1/3. In a first try, the bottleneck ’t1r5’ vanished after 55 re-
quests, after 100 requests it still wasn’t there. Bottlenecks 't2r3’ , 't3r3’
did not vanish at all. After repeating this experiment several times 't2r3’
and ’t3r3’ never vanished, and ’t1r5’ vanish on average after 53.7 requests.

14.7 Open problems and future work

Although the system already works fine within the defined scope, there
are several open problems and future challenges:

o Better Decision Support

At the moment the system doesn’t directly support the decision,
whether to add resources to the community, or not for the following
reasons. Firstly, not every pair of task and resource, for which the
predicate bottleneck is true at some time, is really a bottleneck in
the more general sense. A bottleneck for 'r1’; always leads to a
bottleneck of 'r4’, because 'r4’ is bound with a precedence rule to
'r1’. Providing new resources for 'r4’ would not solve this problem,
but new resources for ’r1” would. Another problem is that resources,
which can be executed on the same machine, are interdependent.
This means for example that a bottleneck for ’r1’ always leads to a
bottleneck for ’r2’, because 'r2’ is executed on the same machine as
'rl’. In these cases, it’s not clear, whether to provide a new resource
for ’r1’ or for 'r2’. A decision support system should also cover these
problems.

e Imprecise Prediction
Although the proposed method showed to be successful in giving
the user a hint, whether a given bottleneck is likely to vanish or
not, this prediction was not very precise. Mostly it would be very
important for the user to know, when this bottleneck will vanish
(after how many requests). To achieve such a precision requires far
more elaborate methods, than the ones, which were proposed.

o Meta Schema
At the moment, it’s the task of the user to perform attribute selection
for learning and to fix the parameters. This is not very contenting,
because these tasks require some amount of knowledge about the sys-
tem and about Knowledge Discovery in general. Rather the system
itself should find the optimal values for these parameters. This could
be done by a meta schema, which controls learning from a meta level.

e Restrictions
To make the system applicable not only in communities, which fit
into the stated restriction, but in general, these restrictions have
to be removed. Mostly the problem that the community must not
contain more than one PPA is a problem, because the concept of
time would have to be changed.
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o User Interaction
In addition to use background knowledge concerning the technical
details of a community, it would be desirable to involve the user
directly in the analysis process in order to give him /her the possibility
to bring in some knowledge, which concerns the environment in which
the system is used (for example which resource can’t be added for
some reason, etc.). This could be done for example with an expert
system.

o FEuvaluation
To get more reliable and precise information about the performance
of the system, a much more complicated community of agents would
be necessary.
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