
UNIVERSIT

�

AT DORTMUND

Fachbereich Informatik

Lehrstuhl VIII

K

�

unstliche Intelligenz

Optimizing Chain Datalog Programs and their

Inference Procedures

LS{8 Report 20

Anke Rieger

Dortmund, February 27, 1996

Universit�at Dortmund

Fachbereich Informatik

University of Dortmund

Computer Science Department

Forschungsberichte des Lehrstuhls VIII (KI) Research Reports of the unit no.VIII (AI)

Fachbereich Informatik Computer Science Department

der Universit�at Dortmund of the University of Dortmund

ISSN 0943-4135

Anforderungen an:

Universit�at Dortmund

Fachbereich Informatik

Lehrstuhl VIII

D-44221 Dortmund

ISSN 0943-4135

Requests to:

University of Dortmund

Fachbereich Informatik

Lehrstuhl VIII

D-44221 Dortmund

e-mail: reports@ls8.informatik.uni-dortmund.de

ftp: ftp-ai.informatik.uni-dortmund.de:pub/Reports

www: http://www-ai.informatik.uni-dortmund.de/ls8-reports.html

Optimizing Chain Datalog Programs and their

Inference Procedures

LS{8 Report 20

Anke Rieger

Dortmund, February 27, 1996

Universit�at Dortmund

Fachbereich Informatik

Abstract

We present methods for optimizing chain Datalog programs by restructuring and post-

processing. The rules of the programs de�ne intensionally a set of target concepts, which

are to be derived via forward chaining. The restructuring methods transform the rules,

such that redundancies and ambiguities, which prevent e�cient evaluations, are removed

without changing the coverage of the target concepts. The post-processing method in-

creases the coverage by introducing recursive rules in the chain Datalog program. Based

on the correspondence between chain Datalog programs and context-free languages, which

in our case reduce to regular ones, we present a method to map restructured and/or post-

processed programs to pre�x acceptors, which are deterministic �nite state automata,

whose input/output alphabets consist of predicates. We present an e�cient marker pass-

ing method which is applied to a pre�x acceptor, and which optimizes inferences. We proof

that this method is sound and complete, i.e., it calculates the minimum Herbrand model

of the chain Datalog program which has been mapped to the respective pre�x acceptor.

As the developments, presented in this paper, have been motivated by an ILP application

to robotics, we have applied the methods to this real-world domain. The experimental

results at the end of the paper re
ect the improvements, we have gained.

CONTENTS 1

Contents

1 Introduction 3

2 The Robotics Domain 4

3 Logic Programming Concepts 6

3.1 De�nitions : 6

3.2 Semantics of logic programs : 8

3.3 Correspondence between chain Datalog programs and CFG's : : : : : : : : 9

3.4 Non-elementary chain Datalog rules : 10

3.5 Constraints : 11

4 Structuring Chain Datalog Rules in Pre�x Acceptors 12

4.1 Sorting the premise literals of chain Datalog rules : : : : : : : : : : : : : : : 13

4.1.1 The sort-method : 14

4.1.2 The sort dc-method : 16

4.1.3 Related work : 18

4.2 The prefix tree-method : 18

4.3 Restructuring chain Datalog programs : 22

4.3.1 The restruct-method : 22

4.3.2 The restruct dc-method : 25

4.3.3 Equivalence of the restructured program : : : : : : : : : : : : : : : : 28

4.3.4 Mapping the restructured program to a pre�x acceptor : : : : : : : 29

4.3.5 Related work : 30

5 MP: An E�cient Forward Inference Method 31

5.1 The marker passing method : 31

5.2 Soundness and completeness : 35

6 Post-Processing Chain Datalog Programs 41

6.1 Disadvantages of the rules learned for the robotics domain : : : : : : : : : : 42

6.2 Post-processing the pre�x acceptor: Step 1 : : : : : : : : : : : : : : : : : : 43

6.3 The post-processed chain Datalog program : : : : : : : : : : : : : : : : : : 46

6.4 Experiments : 48

7 Restructuring, Marker Passing and Decompositions 50

8 Conclusions 58

8.1 Summary : 58

8.2 Current and future work : 59

A Appendix 61

A.1 Algorithm prefix tree : 61

A.2 Algorithm restruct dc : 62

A.3 Auxiliary functions : 63

A.4 Marker Passing: Example run on PA

0

: 64

2 CONTENTS

A.5 Post-Processing: Experimental Results : 66

A.5.1 Complexity Results : 66

A.5.2 Testing Results : 67

3

1 Introduction

In this paper, we present methods for optimizing chain Datalog programs by restructuring

and post-processing. The rules of these programs de�ne intensionally a set of (learned)

target concepts. They contain many redundancies, which are not super
uous in the sense

that they can simply removed, but which cause (forward) inference procedures to become

rather ine�cient. Improvements of both, the programs and the inference procedures, are

extremely important as the rules are used in a robot application to derive higher-level

concepts from sensor observations in real-time.

Our restructuring methods transform a program without changing the coverage of

the original target concepts. They use inverse resolution (see, e.g., [14], [21], [27]), i.e.,

they implement the W-operator (see [14]) as inter-construction for chain Datalog rules.

Thus, our approach is closely related to the one proposed by Sommer [23]. However, his

method FENDER does not yield the result we need. During the restructuring process new

predicates are invented. We combine pairs of existing terms into a new combined term.

As our main goal for introducing new concepts is to speed up inferences, our approach to

concept formation di�ers from the demand-driven one proposed by Wrobel [28].

During the post-processing phase, some new concepts are merged according to cri-

teria, which have to be speci�ed by the user. The post-processing method performs a

generalization step, which increases the coverage of the original target concepts.

In order to optimize the inference procedure, we use pre�x acceptors, which are de-

terministic �nite state automata whose input/output alphabets consist of predicates, and

to which we apply a marker passing method. Given a chain Datalog program (original,

restructured, or post-processed), we present two methods, which map it to a pre�x ac-

ceptor. The �rst one structures the rules of the original, non-recursive program in a tree,

which is then mapped to an acceptor. The second one maps any linear chain Datalog pro-

gram to a pre�x acceptor. The marker passing method is an e�cient inference procedure,

which derives all possible instances of the target concepts via forward inferences. We have

proven, that this method is sound and complete, i.e., it calculates (part of) the minimum

Herbrand model of the program, which has been mapped to the pre�x acceptor. We show

the relation between mapping chain Datalog rules in a pre�x acceptor and marker pass-

ing, on one hand, and decompositions of chain Datalog programs for query optimization,

on the other hand [7]. In principle, our approach to optimizing chain Datalog programs

and their inference procedures can also be considered as an e�cient implementation of

the theoretical concepts introduced by Dong and Ginsburg [7]. The practical relevance of

the methods is shown by their successful application to the robotics domain, which was

developed in the BLearn-project.

In Section 2, we give a short overview of the robotics domain, which motivated most of

the developments presented in this paper. We use examples from this domain throughout

the paper in order to illustrate the methods. In Section 3, we de�ne the logic program-

ming concepts, which we need to characterize the syntax and semantics of chain Datalog

programs. We also show the correspondence between chain Datalog programs and CFGs

([24]), as we make extensive use of CFGs, in order to illustrate the basic ideas of our

methods. In Section 4, we present the restructuring methods as well as the methods,

which map a chain Datalog program to a pre�x acceptor. The marker passing method is

explained in Section 5. Section 6 describes the post-processing method and results of the

4 2 THE ROBOTICS DOMAIN

application of the methods to the robotics domain. In Section 7, we elaborate the relation

between our methods and program decompositions. We conclude with a summary and

comments on ongoing and future work in Section 8.

2 The Robotics Domain

Starting point for the work presented in this paper are operational concepts, which have

been introduced in [10]. On one hand, operational concepts can be used to specify high-

level plans for robot navigation. On the other hand, they are symbolically grounded in

robot perceptions and actions, i.e., they can be derived from sensor measurements and

elementary actions. This derivation is accomplished in several inference steps, which are

re
ected by the abstraction hierarchy in Figure 1. Operational concepts can be used to

specify the domain knowledge about a speci�c type of environment (e.g., o�ce buildings),

in which the robot is to navigate. Given this domain knowledge, plan recognition systems

[18] can be used to reason about what kinds of actions might be supported by an observa-

tion, and about what kinds of actions might be performed in order to achieve a goal. This

process involves chaining forward from the observations and backwards from the goal, and

terminating when the two chains intersect. We �rst consider the forward chaining part,

concepts
operational

perception-integrating
actions

action-oriented perceptual
features

sensor group features

sensor features

basic features basic actions

measurements

Figure 1: Abstraction hierarchy

i.e., the left side of the abstraction hierarchy, which accounts for the bottom-up derivation

of perceptual features. The (forward) inference steps are indicated by the non-dashed

arcs. Each arc connects two levels of the abstraction hierarchy. For each inference step,

rules have been learned, such that concepts represented at the level, from which an arc

emanates, appear in the premise of a rule, and concepts, which are represented at the level

at the end of the arc, appear in the conclusion of a rule. An example of a rule

1

, which

derives action-oriented perceptual features from sensor group features is the following:

1

We use a Prolog-like notation, i.e., variables begin with capital letters, constants with small letters.

5

through_door(Trace,Start,End,parallel) <-

sg_jump(Trace,left,T1,T2,parallel) & sg_jump(Trace,right,T1,T2,parallel)

& Start < T1 & T2 < End.

It states, that the robot moved parallely through a doorway in a Trace during the

interval from time point Start to End, if, during a subinterval, the sensors on the robot's

right and left side perceived the edge grouping jump. Sensor group features are derived,

if su�ciently many sensors, which are adjacent and belong to the same class, have perceived

the same edge grouping:

sg_jump(Trace,right,TS,TE,parallel) <-

s_jump(Trace,Sensor1,TS,TE,parallel) &

s_jump(Trace,Sensor2,TS,TE,parallel) & adjacent(Sensor1,Sensor2) &

sclass(Trace,Sensor1,T1,T2,right) & sclass(Trace,Sensor2,T1,T2,right) &

T1 < TS & End < TE.

This rule states, that the sensors at the robot's right side perceive a jump during the

time interval form TS to TE during which the robot moves parallely along it, if at least

two sensors, which belong to the class right perceived this grouping. An example of a

rule, which derives sensor features from basic features is

s_jump(Trace,Sensor,X,Y,parallel) <-

stable(Trace,Or,Sensor,X,X1) & incr_peak(Trace,Or,Sensor,X1,X2) &

stable(Trace,Or,Sensor,X2,Y).

It states, that a sensor Sensor has perceived a jump in trace Trace, if it �rst perceived

stable measurements during the time interval X to X1, an incr peak between the succes-

sive time points X1 and X2, and �nally stable measurements during the interval from X2

to Y, while moving parallely along it. We rewrite these rules, in such a way, that we get

rules, which are free of constants. For our example, we get

s_jump_parallel(Trace,Sensor,X,Y) <-

stable(Trace,Or,Sensor,X,X1) & incr_peak(Trace,Or,Sensor,X1,X2) &

stable(Trace,Or,Sensor,X2,Y).

The predicates, which appear in the head of these rules, are sensor feature predicates,

which can be characterized as

sf(tr; s; from; to);

where sf denotes a predicate symbol, which describes an object, which has been perceived

during a trace, represented by the �rst argument of sort tr, by a sensor, represented by

the second argument of sort s, during the time interval, whose start point is represented

by the third argument of sort from, and whose end point is represented by the fourth

argument of sort to. The predicates, which appear in the premise literals of the rules, are

basic feature predicates, which can be characterized as

bf(tr; o; s; from; to);

where bf denotes a predicate symbol, which describes the tendency of change of the

measurements, which have been perceived during a trace, represented by the �rst argument

6 3 LOGIC PROGRAMMING CONCEPTS

of sort tr, by a sensor, represented by the third argument of sort s, which has a certain

orientation, represented by the second argument of sort o, during the time interval, whose

start point is represented by the fourth argument of sort from, and whose end point is

represented by the �fth argument of sort to. We use SF, to denote the �nite set containing

the sensor feature predicates (here: 16 predicates), i.e.,

SF = f s jump parallel(Tr

tr

; S

s

; X

from

; Y

to

); s jump diagonal(Tr

tr

; S

s

; X

from

; Y

to

);

s convex straight to(Tr

tr

; S

s

; X

from

; Y

to

); : : :g:

BF denotes the �nite set of 13 basic feature predicates, i.e.,

BF = f stable(Tr

tr

; O

o

; S

s

; X

from

; Y

to

); decreasing(Tr

tr

; O

o

; S

s

; X

from

; Y

to

);

incr peak(Tr

tr

; O

o

; S

s

; X

from

; Y

to

); no movement(Tr

tr

; O

o

; S

s

; X

from

; Y

to

);

something happened(Tr

tr

; O

o

; S

s

; X

from

; Y

to

); : : :g:

The rules are chain Datalog rules, which are the topic of this paper. In the next

Section, we will introduce the logic programming concepts, which we need to characterize

their syntax and semantics.

3 Logic Programming Concepts

3.1 De�nitions

We use the notation and de�nitions given in [11] and [3]. We assume the existence of

four �nite, pairwise disjoint sets, SO, CS, PS, V S, containing sort, constant, predicate,

and variable symbols. Sort symbols start with small letters and are underlined (e.g.,

tr; o; s; from; to; : : :). Constant symbols start with small letters (e.g., x; y; z; : : :), predicate

symbols with small letters (e.g., a; b; c; : : : ; p; q; r; : : :), and variable symbols with capital

letters (e.g., Tr;O; S;X; Y;Z; : : :)

2

. V

s

denotes, that variable V refers to sort s. A signature

is de�ned by the tuple (SO;CS; PS; �), where � is a function, which maps a predicate

symbol to a sequence of n sort symbols, which denote the sorts of the respective arguments.

We restrict a term to be either a constant or a variable. An atom is a formula of the form

p(t

1

; : : : ; t

n

), where p is a predicate symbol and t

1

; : : : ; t

n

are terms. A literal is either an

atom or its negation. A clause is a closed formula

3

of the form 8X

1

: : :8X

v

(L

1

_ : : :_L

s

),

where X

1

; : : : ; X

v

are variables and L

1

; : : : ; L

s

are literals. Let B

1

; : : : ; B

n

and A

1

; : : : ; A

m

be atoms. Then, the clause 8X

1

: : :8X

r

(B

1

_ : : : _ B

n

_ :A

1

_ : : :_ :A

m

) is denoted by

B

1

; : : : ; B

n

 A

1

; : : :A

m

. A program clause or de�nite clause is a clause with n = 1. A

unit clause or fact is a clause with n = 1 and m = 0. A program rule or simply a rule

is a clause with n = 1 and m > 0, i.e., B A

1

; : : : ; A

m

. B is called the head of the

rule, the conjunction A

1

; : : : ; A

m

is called the body of the rule. A rule is safe (generative),

if all variables, which occur in the head of the rule, also occur in the body of the rule.

A logic program is a �nite set of de�nite clauses. A Datalog program is a function-free

logic program, such that each rule of the program is safe. The safety condition together

with the requirement that each fact belonging to a Datalog program be a ground fact

2

Subscripts and superscripts can be applied to the symbols used for constants, variables, and predicates.

3

A formula is closed if every variable occurring in it is bound by a quanti�er.

3.1 De�nitions 7

ensures, that only a �nite number of facts can be deduced from a Datalog program (see

[3]). Ullman et. al. (see [24]) distinguish between basic and extended logic programs. A

basic logic program, which is denoted by P

I

, is a �nite set of rules containing two types of

predicates:

� IDB (Intentional Database) predicates, which appear in rule heads and, possibly, in

rule bodies; p; q; : : : denote IDB predicates.

� EDB (Extensional Database) predicates, which appear in rule bodies only; a; b; c; d; : : :

denote EDB predicates.

� r

1

; r

2

; : : : denote predicates, which may either be IDB or EDB predicates.

IDB(P

I

) and EDB(P

I

) denote the intensional and extensional database predicates, re-

spectively, of the basic logic program P

I

. An EDB fact is a ground fact over an EDB

predicate, i.e., a fact with constants as arguments. If A

i

; i = 1; 2; : : : and B denote atoms,

then

�

A

i

; i = 1; 2; : : : and

�

B denote ground facts over the respective predicates. An EDB

instance, denoted by P

E

, is a �nite set of EDB facts. An extended logic program, denoted

by P, is the union of a basic logic program and an EDB instance, i.e., P = P

I

[P

E

. In

the following, we assume that the rules of a basic program are Datalog rules.

Furthermore, we assume in certain contexts that the programs are linear.

De�nition 1 ([24]) A program is linear, if it contains rules, each of which has at most

one recursive subgoal and at most one IDB subgoal.

We consider basic logic programs with rules of a special form. We use the de�nitions given

in [24] for elementary chain rules, elementary chains, left and right blocks. An elementary

chain rule is a rule containing only binary predicates of the form

p(X; Y) r

1

(X;X

1

); r

2

(X

1

; X

2

); : : : ; r

k+1

(X

k

; Y); (1)

where k > 0, p and r

i

; i = 1; : : : ; k + 1 denote predicates, and X; Y;X

j

; j = 1; : : : ; k

are variables. Let C be an (elementary) chain rule and A an atom occurring in C

body

,

e.g., r(X; Y). Then, we say that A starts from variable X and leads to variable Y . Let

from(A) denote the function, which maps an arbitrary predicate to its starting variable,

and to(A) the function, which maps a predicate to its ending variable. Let X

i

; i = 1; : : : ; k

be the variables occurring in C

body

and not in C

head

. X

i

is called a chaining variable, if

C

body

contains two atoms, A

1

and A

2

, such that to(A

1

) is equal to from(A

2

), e.g., given

A

1

= r

i�1

(X

i�1

; X

i

) and A

2

= r

i

(X

i

; X

i+1

), X

i

is a chaining variable. In principle, clauses

can be considered as sets of literals, whose order of appearance does not matter. In the

special case of chain rules, the atoms in the body of the rule can be sorted according to

the relation � , which we de�ne with the help of chaining variables as follows: Let A

1

; A

2

be two atoms occurring in C

body

. Then, A

1

precedes A

2

, A

1

� A

2

, if to(A

1

) is equal to

from(A

2

). Given chain rule r1, we have r

1

(X;X

1

)� r

2

(X

1

; X

2

)� : : :� r

k+1

(X

k

; Y).

Although this relation has not been stated explicitly in [24], it leads to their de�nition

of an elementary chain, which is an ordered list of binary atoms, e.g., the ordered sequence

of premise atoms of Rule 1, i.e.,

r

1

(X;X

1

); r

2

(X

1

; X

2

); : : : ; r

k+1

(X

k

; Y): (2)

8 3 LOGIC PROGRAMMING CONCEPTS

The variables X and Y are called the left block and right block of the chain.

Correspondingly, we can de�ne a relation on the chaining variables. Let X

i

and X

j

be

two variables of the set of variables occurring in the chain of Rule 1, i.e., fX; Y;X

1

; : : : ; X

k

g.

We say that X

i

leads to X

j

, X

i

; X

j

, if there exists an atom A 2 C

body

, such that

from(A) = X

i

and to(A) = X

j

. Given the elementary Chain 2, we have X ; X

1

;

X

2

; : : :; X

k

; Y . Note, that both relations, � and ;, are intransitive, irre
exive,

and asymmetric for (elementary) chain rules. Thus, they are neither a weak nor a strict

order. A further restriction is, that the chaining variables have to be unique in the sense,

that in a chain, there do not exist two atoms with the same starting and ending vari-

able. The chain a(X;X

1

); b(X

1

; X

2

); c(X

1

; X

2

); d(X

2

; X

3

), for example, does not satisfy

this requirement.

3.2 Semantics of logic programs

Given a function-free extended logic program P , the Herbrand universe of P , U

H

(P), is

the set of all constants appearing in P

4

. The Herbrand base of a program P , B

H

(P), is

the set of all ground atoms, which can be formed from the predicates in P and the terms

in U

H

(P) and which obey the sort conditions. An interpretation is a subset of U

H

(P).

Given a function-free logic program P , there is a mapping T

P

from interpretations to

interpretations. Let I be an interpretation. Then, T

P

is de�ned as follows:

T

P

(I) = f

�

B 2 B

H

(P) j C� = (

�

B

�

A

1

; : : : ;

�

A

m

); m � 0; (3)

is a ground instance of a clause C 2 P and

�

A

1

; : : : ;

�

A

m

2 Ig

Van Emden and Kowalski have shown in [25], that the least �xpoint of T

P

is the minimum

Herbrand model of P

5

(see also [2]). In the context of computing the minimum model,

we mean the IDB-portion of the minimum Herbrand model. T

i

P

(;) denotes the i-th

application of the T

P

-mapping, with T

0

P

(;) = ; and T

i+1

P

(I) = T

P

(T

i

P

(I)). The �xpoint

of the T

P

-mapping is denoted by

S

1

i=0

T

i

P

(;). In the function-free case, there exists a

natural number !, such that T

!

P

(;) =

S

1

i=0

T

i

P

(;), i.e., the �xpoint, and thus the minimum

Herbrand model, is determined after ! applications of the T

P

-mapping. As we deal with

basic logic programs P

I

, we use T

!

P

I

(P

E

) to denote the �xpoint of T

P

I

(and, thus, the

minimum Herbrand model) of the program P = P

I

[P

E

with T

0

P

I

(P

E

) = P

E

.

De�nition 2 ([24]) Two basic logic programs are equivalent with respect to a set of IDB-

predicates I, if the minimum models of both programs, extended with the same EDB,

restricted to the predicates in I, are the same.

De�nition 3 Given an extended logic program P = P

I

[P

E

and a set of target predicates

I � IDB(P

I

), the coverage for I is the subset of the minimum Herbrand model

Cov

P

(I) = fp

i

(t

1

; : : : ; t

s

) j p

i

2 I and p

i

(t

1

; : : : ; t

s

) 2 T

!

P

I

(P

E

)g:

4

Note, that in the context of general logic programs, a term can be a complex structure built from

function symbols, variables, and constants. In that case, the Herbrand universe does not coincide with the

set of constants (see, e.g., [25]).

5

The Herbrand universe has to contain at least one constant to guarantee the existence of a minimal

model.

3.3 Correspondence between chain Datalog programs and CFG's 9

So, two basic logic programs, extended with the same EDB instance P

E

, have the same

coverage for I, if they are equivalent with respect to I.

Given a function-free extended logic programP, a derivation tree for a ground fact/atom

�

B

0

is a tree with atoms as nodes and edges between parents and children, such that:

1.

�

B

0

is the root.

2. For every internal node

�

B

l

, whose children are

�

A

l

1

; : : : ;

�

A

l

k

, there is some ground rule

instance C� of C 2 P, such that C� is

�

B

l

�

A

l

1

; : : : ;

�

A

l

k

.

3. Every node is in the minimum model of P ; leaves are not necessarily in the EDB.

A complete derivation tree is one in which all leaves are EDB facts. A path in the

derivation tree is a directed path away from the root. The fringe of the tree is the set of

its leaves.

3.3 Correspondence between chain Datalog programs and CFG's

In order to illustrate the correspondence between chain Datalog rules and CFG's, we use

the examples and the lemma given in [24]. Elementary chain rules can be represented by

nodes, which represent their arguments, and by directed arcs between the nodes, labeled

by predicate symbols. Given the elementary chain

q

0

(U; V); p(V;W); q

1

(W;X); q

0

(X; Y); q2(Y; Z);

we get the graph

U

q

0

; V

p

; W

q

1

; X

q

0

; Y

q2

; Z;

which re
ects the relation ; between variables. The elementary chain rule

p(X; Y) q

1

(X;X

1

); p(X

1

; X

2

); q

2

(X

2

; Y)

can be represented as

X

p

; Y X

q

1

; X

1

p

; X

2

q

2

; Y:

By ignoring the variables, by treating IDB predicates as grammar non-terminals, EDB-

predicates as grammar terminals, and by inverting the implication arrow, we can rewrite

the above mentioned elementary chain rule as grammar production p! q

1

pq

2

.

Context-free grammars A context-free grammar (CFG) (see, e.g., [9]) is a 4-tuple G =

(V;�; P; s), where V and � are disjoint, �nite sets of variables and terminals, respectively.

The special variable s 2 V is called the start symbol. P is a �nite set of productions; each

production is of the form p! �, where p is a variable and � is a string from (V [�). Given

a production p ! �, p is called its head and � its body. Let)

G

be the relation de�ned

on strings in (V [�)

�

as follows: Let p be a variable and �; �;
 be strings in (V [�)

�

. If

p! � is a production in P , then �p
) ��
. Let)

�

G

be the re
exive, transitive closure

of)

G

. The set

^

L(G) = fw 2 �

�

jp

1

)

�

wg is called the language generated by G. A set

^

L

is a context-free language (CFL) if

^

L =

^

L(G) for some context-free grammar G. We de�ne

10 3 LOGIC PROGRAMMING CONCEPTS

grammars, G

1

and G

2

, to be equivalent, if

^

L(G

1

) =

^

L(G

2

). We restrict ourselves to �-free

grammars

6

and languages (� denotes the empty word).

Analogous to Ullman and van Gelder [24], we de�ne for each basic program P

I

a

context-free grammar.

De�nition 4 Let P

I

be a basic chain Datalog program. The grammar, which corresponds

to P

I

is G

P

I

= (V;�; P; s), where V = IDB(P

I

) [fsg, where s is the starting symbol not

occurring in IDB(P

I

) and EDB(P

I

). � is de�ned as � = EDB(P

I

) and

P = fp! r

1

; r

2

; : : : ; r

n

j P

I

contains a rule of the form

p(X; Y) r

1

(X;X

1

); r

2

(X

1

; X

2

); : : : ; r

n

(X

n�1

; Y)g

[fs! p j p 2 IDB(P

I

)g:

Ullman and Van Gelder have proven in [24] the following Lemma, which allows us to

characterize chain programs with the help of their associated context-free grammars:

Lemma 1 Let P

I

be an elementary chain program, and let G be the associated CFG in

which each production corresponds to an elementary chain rule of P

I

as described above

(or is of the form s ! p; p 2 IDB(P

I

)). Let predicate p in P

I

correspond to nonterminal

p in G, and let s ! p be a production of G. Let P

E

be an EDB instance for P

I

and let

P = P

I

[P

E

. Let

�

F be a ground elementary chain all of whose atoms are in P, and

whose left and right blocks are constants, say x and y, respectively. Let

^

F be the string

of terminal symbols of G that corresponds to

�

F , i.e., the string of EDB predicate symbols

that occur in

�

F . Then,

�

F is the fringe of the complete derivation tree of p

,

^

F is in the language generated by G.

In the following sections, we shall extensively make use of the correspondence between

chain Datalog programs and context-free grammars, in order to characterize the programs

in terms of properties of the associated context-free languages.

3.4 Non-elementary chain Datalog rules

We now consider the rules, which have been learned, in order to derive sensor features

from basic features. Given a basic logic program consisting of these rules, the basic feature

predicates in the set BF are EDB predicates, the sensor feature predicates in the set SF

IDB predicates. An example rule from Section 1 is

s jump parallel(Tr; S;X;Y) stable(Tr;O; S;X;X

1

); incr peak(Tr;O; S;X

1

;X

2

);

stable(Tr;O; S;X

2

;Y): (4)

6

An �-free grammar is a grammar with no productions of the form p! �. An �-free grammar corresponds

to the requirement, that a basic logic program does not contain facts/unit clauses.

3.5 Constraints 11

Rules like this one are non-elementary chain rules

7

. The boldly printed variables are

the variables of the corresponding elementary chain rule. Each basic feature predicate

starts from the variable at its fourth argument position and leads to the variable at

its �fth position. In this domain, these variables denote the starting and end point

of the time interval during which the basic feature is perceived. Thus, we have, e.g.,

from(stable(Tr;O; S;X;X

1

)) = X and to(stable(Tr;O; S;X;X

1

)) = X

1

. The sequence

of premise atoms

stable(Tr;O; S;X;X

1

); incr peak(Tr;O; S;X

1

; X

2

); stable(Tr;O; S;X

2

; Y): (5)

is a non-elementary chain, where the X

i

; i = 1; 2 are chaining variables, and X and Y are

the left and right block, respectively. Here, the relation� coincides with the chronological

order, in which the basic features are observed. The other variables guarantee, that the

sequence of basic feature atoms refers to the same trace, Tr, and to the same sensor, S,

which does not change its orientation, O, during the time interval from X to Y .

In the following, whenever we talk about chain Datalog programs for deriving sensor

features from basic features, we assume to be given the signature (SO;CS; PS; �), where

SO = ftr; o; s; from; to; : : :g, and PS = fa; b; c; : : : ; q; : : : ; p; r; : : :g. We divide PS into

two disjoint sets PS

BF

= fa; b; c; : : : ; qg and PS

SF

= fp

1

; p

2

; p

3

; : : : ; p

n

g, i.e., a; b; c; : : :

denote some of the predicate symbols of the predicates in BF and the p

i

denote some

predicate symbols occurring in SF. Then � is de�ned as follows

8a 2 PS

BF

�(a) = tr o s from to

8p

i

2 PS

SF

�(p

i

) = tr s from to:

If we introduce the sort bool, we can rewrite these statements as

8a 2 PS

BF

a : tr; o; s; from; to! bool

8p

i

2 PS

SF

p

i

: tr; s; from; to! bool:

Note, that for a non-elementary chain rule, e.g., Rule 4, we get the corresponding elemen-

tary chain rule, by omitting the variables Tr; S, and O

s jump parallel(X;Y) stable(X;X

1

); incr peak(X

1

;X

2

); stable(X

2

;Y):

Vice versa, we can extend an elementary chain rule by introducing the variables Tr

tr

; O

o

,

and S

s

at the appropriate positions (according to � of the signature) of the sensor and

basic feature predicates in PS

BF

and PS

SF

. Given that, we can use CFGs to characterize

also these non-elementary chain rules.

3.5 Constraints

Given our domain of application, EDB predicates are basic feature predicates and IDB

predicates are sensor feature predicates. From an "object-oriented" point of view, a sensor

features represent a class of objects with 5 properties: its type (predicate name), the trace,

7

Note, that the rules are also safe, as every variable in the head of the rule also appears in the body of

the rule.

12 4 STRUCTURING CHAIN DATALOG RULES IN PREFIX ACCEPTORS

tr

SF

, during which it has been perceived, the sensor, s

SF

, which has perceived the object,

the start point of a time interval, from

SF

, and its end point, to

SF

. Correspondingly, a

basic feature has as properties its type, a trace, tr

BF

, a sensor, s

BF

, and its orientation,

o

BF

, a start point, from

BF

, and an end point, to

BF

, of the time interval during which

it was perceived. In the following, we de�ne the functions, which determine for a given

predicate/object its respective property. The functions tr

SF

, s

SF

, from

SF

, and to

SF

, on

one hand, and tr

BF

, o

BF

, s

BF

, from

BF

, and to

BF

, on the other hand, map an atom over a

sensor (basic feature) predicate to the arguments, representing their property values. For

example, tr(a(t1; 90; s5; 1; 8)) = t1 and to(p

1

(t1; s5; 1; 15)) = 15.

We de�ne a constraint to be an equation of the form P

OC

= V , where P

OC

denotes

a property of an instance of (predicate) class OC, and V denotes its value(s). A set of

constraints is denoted by �

OC

= fP

OC;1

= V

1

; : : : ; P

OC;n

= V

n

g: If we apply a set of

constraints to a predicate A of a speci�c class, the result, denoted A�

OC

, is an atom,

ground or non-ground, over the respective predicate, whose arguments representing the

properties are set to the respective property values. For example, if we apply the con-

straints �

BF

= ftr

BF

= t1; o

BF

= 90; s

BF

= s5; from

BF

= 8g to the basic feature predicate

A = b(Tr

tr

; O

o

; S

s

; X

from

; Y

to

), the result A�

BF

is b(t1; 90; s5; 8;

to

), where

to

denotes

an arbitrary variable of sort to. If we apply the constraints �

SF

= ftr

SF

= t1; s

SF

=

s5; from

SF

= 8; to

SF

= 15g to the sensor feature predicate B = p1(Tr

tr

; O

o

; S

s

; X

from

; Y

to

),

we get B�

SF

= p

1

(t1; s5; 1; 1; 15). We use constraints in the marker passing method pre-

sented in Section 5.

4 Structuring Chain Datalog Rules in Pre�x Acceptors

There are several characteristics of basic logic programs consisting of non-elementary chain

Datalog rules, e.g., those, which derive sensor features from basic features. Consider the

non-recursive example program P

I

p

1

(Tr; S;X; Y) a(Tr;O; S;X;X

1

); b(Tr;O;S;X

1

; X

2

); c(Tr;O; S;X

2

; Y): (6)

p

2

(Tr; S;X; Y) a(Tr;O; S;X;X

1

); b(Tr;O;S;X

1

; X

2

); c(Tr;O; S;X

2

; Y): (7)

p

3

(Tr; S;X; Y) a(Tr;O; S;X;X

1

); b(Tr;O;S;X

1

; X

2

); c(Tr;O; S;X

2

; X

3

); (8)

d(Tr;O; S;X

3

; Y):

p

4

(Tr; S;X; Y) b(Tr;O; S;X;X

1

); c(Tr;O; S;X

1

; X

2

); d(Tr;O; S;X

2

; Y): (9)

p

5

(Tr; S;X; Y) b(Tr;O; S;X;X

1

); c(Tr;O; S;X

1

; X

2

); d(Tr;O; S;X

2

; X

3

); (10)

a(Tr;O; S;X

3

; X

4

); b(Tr;O; S;X

4

; Y):

where p

1

; p

2

; p

3

; p

4

; p

5

denote sensor feature predicate symbols in PS

SF

and a; b; c; ddenote

basic features predicate symbols in PS

BF

. We have EDB(P

I

)= fa; b; c; dg and IDB(P

I

)=

fp

1

; p

2

; p

3

; p

4

; p

5

g.

The �rst characteristic is, that the IDB predicates, i.e., the sensor feature predicates

occur only in rule heads. Thus, the program has inference depth 1. In the example

program, the premise literals are sorted according to the relation �. In our domain, this

re
ects the chronological order of the perceived observations. Given that, there exist a lot

of rules, whose premise chains are pre�xes of premise chains of other rules.

4.1 Sorting the premise literals of chain Datalog rules 13

De�nition 5 A chain Ch

1

is a pre�x (chain) of chain Ch

2

, if there exists a substitution

� and a chain Ch

3

, such that Ch

2

= Ch

1

�Ch

3

.

The chain Ch

1

= a(U; U

1

); b(U

1

; U

2

), for example, is a pre�x of chain

Ch

3

= a(X;X

1

); b(X

1

; X

2

); c(X

2

; Y) with � = fU=X;U

1

=X

1

; U

2

=X

2

g and Ch

3

= c(X

2

; Y).

Furthermore, there exist ambiguous rules, i.e., rules with the same premise but di�erent

conclusions. Program P

I

is used to derive via forward inferences higher-level concepts

from a sequence of observations.

Both characteristics, pre�x chains and ambiguous rules, cause during evaluations via

forward inferences, that the same input fact may have to be matched redundantly against

premise literals of several rules. Assume, for example, that the robot perceives the ground

chain of basic feature predicates, i.e., that the basic logic program P

I

gets as "input" the

EDB instance (ground chain), which is an example of a sequence of basic features, which

the robot perceives, while it is moving around

P

E

= fa(t1; 90; s5; 1; 8); b(t1; 90; s5; 8; 10); c(t1; 90; s5; 10; 15); d(t1; 90; s5; 15; 17)g:

Then, the �rst EDB fact, a(t1; 90; s5; 1; 8), matches the �rst premise atom of rules r6,

r7, and r8. Although it cannot possibly lead to a successful derivation, the fact can, in

principle, also be matched to the fourth literal of rule r10. For the second EDB fact,

b(t1; 90; s5; 8; 10), there exists a matching premise atom for every rule of the program P

I

.

In this case, it also makes no sense to match the fact with the �fth premise literal of rule

r10. The minimum Herbrand model of the extended logic program P = P

I

[P

E

is equal

to the �xpoint of the T

P

I

-mapping

T

!

P

I

(P

E

) = fp

1

(t1; s5; 1; 15); p

2

(t1; s5; 1; 15); p3(t1; s5; 1; 17); p

4

(t1; s5; 8; 17)g:

Our goal is, to structure the rules in such a way, that the multiple and super
uous matches,

mentioned above, are avoided during the calculation of the minimum Herbrand model.

In this section, we present methods, which map a chain Datalog program to a pre�x

acceptor. We apply a marker passing method (see Section 5) to this acceptor, in order to

calculate via forward inferences the minimum Herbrand model of the original program P

I

.

The prefix tree method generates from a set of chain Datalog rules a pre�x tree, which

is then mapped to a pre�x acceptor. We can achieve the same result, by restructuring

the original program P

I

, such that the resulting program P

0

I

can be mapped directly to

a pre�x acceptor. Both methods take as input a chain Datalog program, which satis�es

the following requirements: The program is non-recursive, the IDB predicates occur only

in rule heads, and the premise atoms of each rule are sorted according to the relation

�. Each non-recursive program, in which IDB predicates occur also in rule bodies, can

be transformed to one with no IDB predicates in rule bodies by unfolding each rule with

IDB subgoals in all possible ways. In general, clauses can be considered as sets of literals,

whose order does not matter. In the next subsections, we present methods, which sort

the premise literals of a chain Datalog rule according the relation �. In the sequel, we

present the pre�x tree and restructuring methods.

4.1 Sorting the premise literals of chain Datalog rules

We present two methods for sorting the premise literals of a chain Datalog rule, which

exploit its syntactical features. The �rst one, sort, assumes, that for the given rule two

14 4 STRUCTURING CHAIN DATALOG RULES IN PREFIX ACCEPTORS

requirements are satis�ed

1. The relations ; and � have to be intransitive, irre
exive, and asymmetric.

2. There are no premise literals, which have the same starting and ending variable.

The second method, sort dc, does not require assumption 1 at the price of background

knowledge about the data classes, to which the predicates of the rule belong. To be more

speci�c, the user has to specify the functions from and to for each data class. In our

domain of application, the starting variable is the one, which denotes the start point of

the time interval, during which a sensor (basic) feature is perceived. The ending variable

is the one, which represents the end point of the time interval. In this case, we can use the

functions from(A) and to(A), which �rst determine the data class of literal A and then call

the function for the respective property of the data class, e.g., from

BF

(A) (from

SF

(A))

and to

BF

(A) (to

SF

(A)).

4.1.1 The sort-method

If assumptions 1 and 2 are satis�ed, each chaining variable X

i

occurs in exactly one

literal as starting variable and in one other literal as ending variable. Let vars(L

i

) and

vars(fL

1

; : : : ; L

n

g) denote the variables occurring in literal L

i

and in the set of literals

fL

1

; : : : ; L

n

g, respectively. Given a rule C = C

head

 L

1

; : : : ; L

n

, we determine for each

pair of literals, L

i

; L

j

; i 6= j; i; j 2 f1; : : : ; ng the shared variables vars(L

i

)\ vars(L

j

). For

the example rule

p

3

(Tr; S;X; Y) d(Tr;O; S;X

3

; Y); a(Tr;O;S;X;X

1

); c(Tr;O; S;X

2

; X

3

);

b(Tr;O; S;X

1

; X

2

)

we get

(d(Tr;O; S;X

3

; Y); a(Tr;O; S;X;X

1

)) : fTr;O; Sg

(d(Tr;O; S;X

3

; Y); c(Tr;O; S;X

2

; X

3

)) : fTr;O; S;X

3

g

(d(Tr;O; S;X

3

; Y); b(Tr;O; S;X

1

; X

2

)) : fTr;O; Sg

(a(Tr;O; S;X;X

1

); c(Tr;O; S;X

2

; X

3

)) : fTr;O; Sg

(a(Tr;O; S;X;X

1

); b(Tr;O; S;X

1

; X

2

)) : fTr;O; S;X

1

g

(c(Tr;O; S;X

2

; X

3

); b(Tr;O; S;X

1

; X

2

)) : fTr;O; S;X

2

g

If we remove from each set the head variables, vars(C

head

), we get

(d(Tr;O; S;X

3

; Y); a(Tr;O; S;X;X

1

)) : fOg

(d(Tr;O; S;X

3

; Y); c(Tr;O; S;X

2

; X

3

)) : fO;X

3

g

(d(Tr;O; S;X

3

; Y); b(Tr;O;S;X

1

; X

2

)) : fOg

(a(Tr;O;S;X;X

1

); c(Tr;O; S;X

2

; X

3

)) : fOg

(a(Tr;O;S;X;X

1

); b(Tr;O;S;X

1

; X

2

)) : fO;X

1

g

(c(Tr;O; S;X

2

; X

3

); b(Tr;O;S;X

1

; X

2

)) : fO;X

2

g:

4.1 Sorting the premise literals of chain Datalog rules 15

Furthermore, we remove from each set the variables occurring in any other set:

(d(Tr;O;S;X

3

; Y); a(Tr;O; S;X;X

1

)) : ;

(d(Tr;O;S;X

3

; Y); c(Tr;O; S;X

2

; X

3

)) : fX

3

g

(d(Tr;O;S;X

3

; Y); b(Tr;O; S;X

1

; X

2

)) : ;

(a(Tr;O; S;X;X

1

); c(Tr;O; S;X

2

; X

3

)) : ;

(a(Tr;O; S;X;X

1

); b(Tr;O; S;X

1

; X

2

)) : fX

1

g

(c(Tr;O;S;X

2

; X

3

); b(Tr;O; S;X

1

; X

2

)) : fX

2

g:

We consider only those pairs, which are associated with non empty variable sets. Given

these partial chains of length 2, we try to extend them by merging, until we are left with

a chain of length n. For our example, we get in the �rst iteration the extended chains

a(Tr;O; S;X;X

1

); b(Tr;O; S;X

1

; X

2

); c(Tr;O;S;X

2

; X

3

)

and

b(Tr;O; S;X

1

; X

2

); c(Tr;O; S;X

2

; X

3

); d(Tr;O; S;X

3

; Y):

In the second iteration, we get

a(Tr;O; S;X;X

1

); b(Tr;O;S;X

1

; X

2

); c(Tr;O;S;X

2

; X

3

); d(Tr;O; S;X

3

; Y):

We still have to check the left and right block. The �rst premise L

s

1

of the sorted chain

L

s

1

; : : : ; L

s

n

has to share at least one variable (left block) with C

head

, which does not occur

in any other literal of the chain. Analogously, the last premise L

s

n

has to share at least one

variable (right block) with C

head

, which does not occur in any other literal of the sorted

chain. This test succeeds for our example and the sorted chain rule C

head

 L

s

1

; : : : ; L

s

n

is returned. The pseudo-code of the method is given as Algorithm 1 below.

As we do not know, whether X (Y) is the left or right block, two sorted premise chains

are possible. If X is the left block, we have

p

3

(Tr; S;X; Y) a(Tr;O; S;X;X

1

); b(Tr;O; S;X

1

; X

2

); c(Tr;O;S;X

2

; X

3

);

d(Tr;O; S;X

3

; Y)

with

X

p

3

; Y X

a

; X

1

b

; X

2

c

; X

3

d

; Y:

If Y is the left block, we have

p

3

(Tr; S;X; Y) d(Tr;O; S;X

3

; Y); c(Tr;O;S;X

2

; X

3

); b(Tr;O;S;X

1

; X

2

);

a(Tr;O; S;X;X

1

)

with

Y

p

3

; X Y

d

; X

3

c

; X

2

b

; X

1

a

; X:

If assumptions 1 and 2 are not satis�ed, the method will not �nd a sorted premise.

Take for example the rule

p(X; Y) a(X;X

1

); b(X

1

; X

2

); c(X

2

; X

1

); d(X

1

; X

1

); e(X

1

; Y)

16 4 STRUCTURING CHAIN DATALOG RULES IN PREFIX ACCEPTORS

sort(C

head

 C

body

)

begin

1. Pairs := f(L

i

; L

j

)jL

i

; L

j

2 C

body

; i 6= jg;

2. for each pair (L

i

; L

j

) 2 Pairs

begin

(a) L

i

L

j

V ars := vars(L

i

) \ vars(L

j

);

(b) L

i

L

j

V ars := L

i

L

j

V ars � vars(C

head

);

(c) L

i

L

j

V ars := L

i

L

j

V ars �

S

k;l6=i;j

vars(L

k

; L

l

);

end

3. Pairs := Pairs� f(L

i

; L

j

)jL

i

L

j

V ars = ;g;

4. if for each (L

i

; L

j

), L

i

L

j

V ars contains at least one variable, which does not occur

in any L

l

L

k

V ars, with i; j 6= k; l,

then

(a) SortedChain := extend chains(Pairs; jC

body

j);

% let SortedChain = L

1

: : :L

n

;

(b) Left := (vars(L

1

) \ vars(C

head

)) � vars(fL

2

; : : : ; L

n

g);

(c) Right := (vars(L

n

) \ vars(C

head

)) � vars(fL

1

; : : : ; L

n�1

g);

(d) if Left 6= Right, then return SortedChain;

else return failure;

end

Algorithm 1: sort

with

X

p

; Y X

a

; X

1

b

; X

2

c

; X

1

d

; X

1

e

; Y

and

R

;

= f(X;X

1

); (X

1

; X

2

); (X

2

; X

1

); (X

1

; X

1

); (X

1

; Y)g;

which is not asymmetric and not irre
exive. If we apply the method for sorting the literals,

we will be left without any possible pairings after step 3 of Algorithm 1.

4.1.2 The sort dc-method

If we know for each predicate, which argument/property represents its starting and which

one its ending variable, a much more e�cient algorithm can be used. Given a rule C

head

L

1

; : : : ; L

n

, we determine the starting and ending variable of C

head

, from(C

head

) and

to(C

head

), which are the LeftBlock and RightBlock. Given the LeftBlock, we search for

a literal L 2 C

body

, whose starting variable equals the LeftBlock. This literal becomes

the �rst member of the sorted premise. We update LeftBlock with to(L) and repeat the

search for the next literal until we have a chain of length jC

body

j. The pseudo-code for the

method is given as Algorithm 2 below.

If we use Algorithm 2, assumption 1 does not have to be satis�ed. Assume, that for the

binary predicates p; a; b; c; d; e, the starting variable is represented by the �rst argument

4.1 Sorting the premise literals of chain Datalog rules 17

sort dc(C

head

 C

body

)

begin

1. LeftBlock := from(C

head

);

2. RightBlock := to(C

head

);

3. Premise := C

body

;

4. i:=1;

5. while Premise 6= ;

begin

(a) select L 2 Premise, such that from(L) = LeftBlock;

(b) LeftBlock := to(L);

(c) Premise := Premise � fLg;

(d) L

i

= L;

(e) i := i + 1;

end

6. if to(L

i�1

) = RightBlock

then return C

head

 L

1

; : : : ; L

i�1

;

else backtrack through step 5a;

end

Algorithm 2: sort dc

and the ending variable by its second argument. Then, given the rule

p(X; Y) e(X

1

; Y); c(X

2

; X

1

); a(X;X

1

); d(X

1

; X

1

); b(X

1

; X

2

)

the method sort dc will �nd the ordering

p(X; Y) a(X;X

1

); b(X

1

; X

2

); c(X

2

; X

1

); d(X

1

; X

1

); e(X

1

; Y);

which the method sort is not able to �nd. It is even possible, that the starting and ending

variable of a predicate is represented by the same argument. In our application domain,

it means, that the premise literals of rules including events happening at a time point

instead of during a time interval can be sorted. An example of such a rule (see [22]) is

standing(Tr;X; Y;PerPDir;PSide;LPerc) tp perception(Tr;X; Perc; PDir; PSide);

stand(Tr;X; Y):

where the tp perception-predicate represents an observation at time point X , for which

we de�ne from and to, such that both return the second argument.

If assumption 2 is satis�ed, sort dc will �nd one solution

8

. The method does not work

if assumption 2 is not satis�ed. Take for example the rule

p(X; Y) d(X

2

; Y); a(X;X

1

); b(X

1

; X

2

); c(X

2

; Y):

8

In order to make the algorithm sort output only one solution, we have integrated the heuristic that

the starting variable has to occur before the ending variable in C

head

.

18 4 STRUCTURING CHAIN DATALOG RULES IN PREFIX ACCEPTORS

We have b(X

1

; X

2

) 6� c(X

1

; X

2

) and c(X

1

; X

2

) 6� b(X

1

; X

2

). A unique ordering is not pos-

sible. Algorithm 2 �nds the chain a(X;X

1

); b(X

1

; X

2

); d(X

2

; Y) without being able to in-

clude c(X

1

; X

2

). In our application domain, rules of this type represent events/observations

which happen in parallel, i.e., during the same time interval. Therefore, the sorting method

cannot deal, for example, with rules for sensor group features, such as the one for sg jump

given in Section 2.

4.1.3 Related work

The methods, presented above, sort the premise literals according to the relation�, which

is de�ned via the relation ; on the chaining variables (see Section 3). This precedence

relation excludes equality (i.e., in terms of the application, parallel events), if the ;-

relation satis�es assumptions 1 and 2. Motivated by the application, the goal of sorting

is to make the sequence of premise literals re
ect the chronological order of the events, in

order to support e�cient evaluation methods (see Section 5).

Ordered clauses are used in logic programming as well as in inductive logic program-

ming. In logic programming, ordered clauses (no matter how the ordering itself has been

achieved) are used to support e�cient inference procedures, e.g., linear resolution (see [4]).

In inductive logic programming ordered clauses are used to de�ne certain characteristics in

order to restrict the hypothesis language or to guide the search for hypotheses. Assuming

ordered clauses to be given (no matter how the ordering has been achieved), Muggleton

and Feng [16] de�ne the depth and degree of their premise literals. By specifying maximal

values on both, depth and degree, the hypothesis language is restricted. Morik et.al. [12]

sort the premise literals of a rule in order to prune the search in the hypothesis space.

They de�ne the relation �

P

between premise literals via the minimum distance of the

variables occurring in the literals. But, given the rule C

body

 L

1

; L

2

; L

3

; L

4

p

3

(Tr; S;X; Y) a(Tr;O; S;X;X

1

); b(Tr;O;S;X

1

; X

2

); c(Tr;O; S;X

2

; X

3

);

d(Tr;O; S;X

3

; Y):

the minimal distance of a variable occurring in L

i

; i = 1; 2; 3; 4 is the same, namely 1, for

each literal. This is due to the fact, that each literal shares a variable with the rule head,

i.e., vars(C

head

) \ vars(L

i

) 6= 0. So, for the purpose of hypothesis testing, each permu-

tation of L

1

; L

2

; L

3

; L

4

would do equally well. Obviously, we do not get deterministically

the result, which we need for our purpose.

4.2 The prefix tree-method

In this section, we present the prefix treemethod, which maps a chain Datalog program,

which satis�es the following conditions

C1: the rules are not recursive,

C2: IDB predicates occur only in rule heads, and

C3: the premise literals of each rule are sorted according to the relation �,

4.2 The prefix tree-method 19

to a pre�x acceptor, which is a deterministic �nite state automaton, whose input and

output alphabet consists of predicates, not of propositional constants. This method has

already been presented in [19] and [20]. It takes as input a set of cases, which associate

a target predicate, i.e., an IDB predicate, with a sequence of sorted de�ning predicates,

i.e., a premise chain of EDB predicates. The cases can be ground or non ground. In

the latter case, they represent the set of chain Datalog rules, which are to be mapped

to the pre�x acceptor. In [19] and [20], we used ground cases as a training set, such

that each case associated an example with its relevant background knowledge. So, the

prefix tree method can be used to infer the pre�x acceptor directly from the training

data without generating the rules explicitly, or it can be applied to the chain Datalog rules,

which may have been learned by some other learning algorithm (see Figure 2). The cases

Set of
chain Datalog rules

represented as
cases

Training set
consisting of
ground cases

Learning
algorithm prefix_tree Prefix Acceptor

Figure 2: The prefix tree method

are organized in a tree, such that for each case [C

head

; L

1

; : : : ; L

n

], there exists one path

beginning at the root node, such that the labels of the edges on the path are uni�able with

the respective literal L

i

; i 2 f1; : : : ; ng. As in [19], [20], the emphasis was on inferring the

probabilistic automata, the algorithm (see Appendix A.1) contains some details, which

are not so relevant for the application to rules. Here, we present the method from the logic

programming point of view. In order to illustrate the basic ideas, we make extensive use

of the regular grammars, which correspond to the chain Datalog programs. Furthermore,

our presentation takes into account, that pre�x acceptors for the propositional case have

already been introduced by Angluin in [1].

We illustrate the method with our example program P

I

p

1

(Tr; S;X; Y) a(Tr;O; S;X;X

1

); b(Tr;O; S;X

1

; X

2

); c(Tr;O;S;X

2

; Y):

p

2

(Tr; S;X; Y) a(Tr;O; S;X;X

1

); b(Tr;O; S;X

1

; X

2

); c(Tr;O;S;X

2

; Y):

p

3

(Tr; S;X; Y) a(Tr;O; S;X;X

1

); b(Tr;O; S;X

1

; X

2

); c(Tr;O;S;X

2

; X

3

);

d(Tr;O; S;X

3

; Y):

p

4

(Tr; S;X; Y) b(Tr;O; S;X;X

1

); c(Tr;O;S;X

1

; X

2

); d(Tr;O;S;X

2

; Y):

p

5

(Tr; S;X; Y) b(Tr;O; S;X;X

1

); c(Tr;O;S;X

1

; X

2

); d(Tr;O;S;X

2

; X

3

);

a(Tr;O; S;X

3

; X

4

); b(Tr;O;S;X

4

; Y):

According to De�nition 4 (see Section 3), the CFG corresponding to P

I

is G = (V;�; P; s)

with V = fs; p

1

; p

2

; p

3

; p

4

; p

5

g and � = fa; b; c; dg. P is the set containing the productions

s ! p

1

jp

2

jp

3

jp

4

jp

5

20 4 STRUCTURING CHAIN DATALOG RULES IN PREFIX ACCEPTORS

p

1

! abc

p

2

! abc

p

3

! abcd

p

4

! bcd

p

5

! bcdab:

The language, generated by G, is

^

L(G) = fabc; abcd; bcd; bcdabg, which is a regular one. It

is accepted by the DFA illustrated in Figure 3. Note, that we can rewrite G according to

qa qab qabc qabcd

qb qbc qbcd qbcda qbcdab

q0

b

b c d

c d a b

a

Figure 3: DFA, which accepts the language

^

L(G) =

^

L(G

0

)

the transitions of the DFA, such that we get the equivalent, left-linear, regular grammar

G

0

= (V

0

;�

0

; P

0

; s) with V

0

= fs; p

1

; p

2

; p

3

; p

4

; p

5

; q

a

; q

ab

; q

abc

; q

abcd

; q

b

; q

bc

; q

bcd

; q

bcda

; q

bcdab

g

and �

0

= fa; b; c; dg. P

0

is the set of productions

s ! p

1

jp

2

jp

3

jp

4

jp

5

p

1

! q

abc

p

2

! q

abc

p

3

! q

abcd

p

4

! q

bcd

p

5

! q

bcdab

q

bcdab

! q

bcda

b

q

abcd

! q

abc

d

q

bcda

! q

bcd

a

q

abc

! q

ab

c

q

bcd

! q

bc

d

q

ab

! q

a

b

q

bc

! q

b

c

q

a

! a

q

b

! b

We use the strings in

^

L(G) to generate the pre�x acceptor. A string u is a pre�x of a

string v, if and only if there exists a string w, such that uw = v. Let

^

L be a set of strings.

Then the set of pre�xes of the elements in

^

L is de�ned as

Prefix(

^

L) = fu : u is either the empty string � or a non-empty string and

there exists a string v, such that uv 2

^

Lg:

Now, we structure the rules of the original basic chain Datalog program with inference

depth 1 in a pre�x (tree) acceptor, which is a deterministic �nite state automaton, de�ned

by the tuple (Q;�; Z;�; q

0

; F; �). Q denotes a �nite set of states, � = BF is the set of

input predicates, Z = SF is the set of output predicates, � is the set of transitions, q

0

is

the starting state, F is the set of �nal states, and � is the output function.

Let

^

L be the language generated by the grammar, associated with the program. Then,

the pre�x tree acceptor is constructed as follows: For each string u 2 Prefix(

^

L) a state

4.2 The prefix tree-method 21

q

u

2 Q is established. The initial state becomes the state, which is associated with the

empty string �, i.e., q

0

= q

�

. The �nal states are those, which have been established for the

strings in

^

L. For a string y 2

^

L, there are rules C

1

; : : : ; C

n

; n � 1, whose premise chains

correspond to y. The �nal state q

y

is associated with the set of sensor feature predicates in

SF, which correspond to C

1;head

; : : : ; C

n;head

. The output function � maps each state to a

subset of Z. Of course, � maps each non-�nal state to the empty set. Let u be a string in

Prefix(

^

L) and a be a terminal symbol. Whenever there are two states q

u

and q

ua

, which

have been established for the strings u and ua, then we establish a transition from the state

q

u

to state q

ua

, which is labeled by the EDB predicate a(Tr

tr

; O

o

; S

s

; X

from

; Y

to

) 2 BF, i.e.,

(q

u

; a(Tr

tr

; O

o

; S

s

; X

from

; Y

to

); q

ua

). Given the original program, P

I

, the pre�x acceptor

PA, which is constructed, is illustrated in Figure 4. Note the correspondence between PA

and the DFA in Figure 3. It accepts as input a ground chain of basic feature predicates, e.g.,

tr froms to }{p5(Tr , S , X , Y)

qab

qabc

qabcdqbcda

qbcd

qbc

qb

q0

tr o s from tob(Tr , O , S , X , Y)

tr o s from toc(Tr , O , S , X , Y)

tr o s from tod(Tr , O , S , X , Y)

tr o s from toa(Tr , O , S , X , Y)

tr o s from tob(Tr , O , S , X , Y)

tr o s from toa(Tr , O , S , X , Y)

tr o s from tob(Tr , O , S , X , Y)

tr o s from toc(Tr , O , S , X , Y)

tr o s from tod(Tr , O , S , X , Y)

tr froms top1(Tr , S , X , Y), tr froms top2(Tr , S , X , Y){ }

tr froms top3(Tr , S , X , Y)}{

tr froms to }{p4(Tr , S , X , Y)

qbcdab

qa

Figure 4: Pre�x tree acceptor PA

P

E

, and outputs one or several ground instances of sensor feature predicates, whenever

one of its �nal states is reached. These are exactly those, which are derivable from the

original program P

I

, i.e., which are in the minimum Herbrand model of P = P

I

[P

E

equal to T

!

P

I

(P

E

). This is shown in Section 5.

Related Work The construction of a pre�x (tree) acceptor has been �rst proposed by

Angluin for the propositional case in [1]. Here, we have extended the construction to an

acceptor, which works on chain Datalog rules. Structuring chain Datalog rules in a pre�x

acceptor allows for a fast forward inference method, which avoids the redundant evaluation

of the same EDB fact with respect to similar rules. This inference method is the topic of

Section 5.

22 4 STRUCTURING CHAIN DATALOG RULES IN PREFIX ACCEPTORS

4.3 Restructuring chain Datalog programs

In this section, we show how a program P

I

, which satis�es conditions C1, C2, and C3,

can be restructured yielding a program P

0

I

, such that P

0

I

is equivalent to P

I

with respect

to I � IDB(P

I

) (see De�nition 2 in 3.2). The rules of P

0

I

have a special syntactical form,

which allows to map them directly to a pre�x acceptor.

The restructured program P

0

I

has an inference depth which is greater than one. During

the restructuring process new IDB predicates are introduced. So, from a machine learning

point of view, we introduce new, possibly meaningful concepts, without changing the

coverage of the original target concepts.

Again, we present two methods. The �rst one, restruct (4.3.1), exploits the syntac-

tical characteristics of chain Datalog rules. The second one, restruct dc (4.3.2), is more

e�cient, but requires, like sort dc, the background knowledge about the data classes, to

which the rules belong.

We proof the equivalence of the original program P

I

and the restructured program

P

0

I

(4.3.3). Then, we show, how the rules of P

0

I

can be mapped to the pre�x acceptor,

yielding the same result as the application of the method prefix tree to the original

program P

I

(4.3.4).

4.3.1 The restruct-method

The procedure restruct takes as input a non-recursive basic chain Datalog program

P

I

with rules, whose premises are sorted according to the relation � and whose IDB

predicates occur only in rule heads, i.e., its inference depth is one. For each rule, the

relation ;, which is de�ned by its chaining variables and its left and right block has

to be intransitive, irre
exive and asymmetric. Furthermore, it is not allowed, that two

premise literals have the same starting and ending variable. The procedure generates

a modi�ed basic chain Datalog program P

0

I

, which is equivalent to P

I

with respect to

I � IDB(P

I

). The resulting program P

0

I

has inference depth greater one. Furthermore,

EDB(P

I

) = EDB(P

0

I

) and IDB(P

I

) � IDB(P

0

I

). One one hand, this program supports

more e�cient evaluations (see decompositions in Section 7), on the other hand it can be

directly mapped to a deterministic �nite pre�x acceptor, which supports an even more

e�cient inference procedure.

We illustrate the method with the example program P

I

p

1

(Tr; S;X; Y) a(Tr;O; S;X;X

1

); b(Tr;O;S;X

1

; X

2

); c(Tr;O; S;X

2

; Y):

p

2

(Tr; S;X; Y) a(Tr;O; S;X;X

1

); b(Tr;O;S;X

1

; X

2

); c(Tr;O; S;X

2

; Y):

p

3

(Tr; S;X; Y) a(Tr;O; S;X;X

1

); b(Tr;O;S;X

1

; X

2

); c(Tr;O; S;X

2

; X

3

);

d(Tr;O; S;X

3

; Y):

p

4

(Tr; S;X; Y) b(Tr;O; S;X;X

1

); c(Tr;O; S;X

1

; X

2

); d(Tr;O; S;X

2

; Y):

p

5

(Tr; S;X; Y) b(Tr;O; S;X;X

1

); c(Tr;O; S;X

1

; X

2

); d(Tr;O; S;X

2

; X

3

);

a(Tr;O; S;X

3

; X

4

); b(Tr;O; S;X

4

; Y):

For each EDB predicate A = a(X

1

; : : : ; X

m

), which occurs as �rst element in some premise

chain of a rule in P

I

, we introduce a new IDB predicate symbol q, generate a predicate,

4.3 Restructuring chain Datalog programs 23

which has the same arguments as A and introduce the rule

q(X

1

; : : : ; X

m

) a(X

1

; : : : ; X

m

):

For our example program, we get

q

a

(Tr;O; S;X;X1) a(Tr;O; S;X;X

1

): (11)

q

b

(Tr;O; S;X;X1) b(Tr;O; S;X;X

1

): (12)

We fold the rules of the program with the newly introduced rules, yielding the �rst inter-

mediate result:

p

1

(Tr; S;X; Y) q

a

(Tr;O; S;X;X

1

); b(Tr;O; S;X

1

; X

2

); c(Tr;O; S;X

2

; Y):

p

2

(Tr; S;X; Y) q

a

(Tr;O; S;X;X

1

); b(Tr;O; S;X

1

; X

2

); c(Tr;O; S;X

2

; Y):

p

3

(Tr; S;X; Y) q

a

(Tr;O; S;X;X

1

); b(Tr;O; S;X

1

; X

2

); c(Tr;O; S;X

2

; X

3

);

d(Tr;O;S;X

3

; Y):

p

4

(Tr; S;X; Y) q

b

(Tr;O; S;X;X

1

); c(Tr;O;S;X

1

; X

2

); d(Tr;O;S;X

2

; Y):

p

5

(Tr; S;X; Y) q

b

(Tr;O; S;X;X

1

); c(Tr;O;S;X

1

; X

2

); d(Tr;O;S;X

2

; X

3

);

a(Tr;O; S;X

3

; X

4

); b(Tr;O; S;X

4

; Y):

Note, that here and in the following steps, if we fold the rules of the program with a new

rule Q A

1

; : : : ; A

n

; n � 2, we replace A

1

; : : : ; A

n

by Q only if the chainA

1

; : : : ; A

n

is a

pre�x of a premise chain. As long as the program has rules with more than two premise

literals, we perform the second step: We select a rule B A

1

A

2

A

3

: : :A

n

, e.g.,

p

1

(Tr; S;X; Y) q

a

(Tr;O; S;X;X

1

); b(Tr;O; S;X

1

; X

2

); c(Tr;O;S;X

2

; Y):

Then, we generate a new rule B

new

 A

1

A

2

. We generate a new predicate symbol forB

new

and determine its head variables. Goal of the restructuring process is to eliminate with

the new rules those variables, which occur only in A

1

and A

2

, and not in B;A

i

; i > 2. We

determine the variables shared by A

1

and A

2

, vars(A

1

)\vars(A

n

) (for our example, these

are the variables fTr;O; S;X

1

g), remove the variables occurring in the head (fO;X

1

g) and

the variables occurring in A

i

; i > 2 (fX

1

g). This gives us the variables occurring only in

A

1

and A

2

, and thus should not occur in the head of the new rule. If we remove these

variables from vars(A

1

)\ vars(A

2

), we get the variables, which we keep in the head B

new

(fTr;O; Sg). As the new rule has to be a chain Datalog rule, we have to determine the

new left and right block. The potential variables for the left block are among the variables

shared by B and A

1

, vars(B) \ vars(A

1

) (fTr; S;Xg). We subtract from this set the

variables occurring in A

2

: : :A

n

. This yields the potential candidates for the left block.

The potential variables for the right block are determined from the variables shared by A

2

and A

3

, vars(A

2

)\ vars(A

3

) (fTr;O; S;X

2

g). We remove those variables, which occur in

A

1

; A

3

; : : : ; A

n

(fX

2

g). This set contains the potential right blocks. It has to be di�erent

from the set for the left block (left and right block should not coincide). The variables for

the head of the new rule are the variables to keep and the candidates for the left and right

block. For our example program, we get the rules

q

ab

(Tr;O; S;X;X

2

) q

a

(Tr;O; S;X;X

1

); b(Tr;O;S;X

1

; X

2

) (13)

24 4 STRUCTURING CHAIN DATALOG RULES IN PREFIX ACCEPTORS

and

q

bc

(Tr;O; S;X;X

2

) q

b

(Tr;O; S;X;X

1

); c(Tr;O;S;X

1

; X

2

) (14)

We fold the rules of the intermediate program with rules r13 and r14 and get

p

1

(Tr; S;X; Y) q

ab

(Tr;O; S;X;X

2

); c(Tr;O; S;X

2

; Y):

p

2

(Tr; S;X; Y) q

ab

(Tr;O; S;X;X

2

); c(Tr;O; S;X

2

; Y):

p

3

(Tr; S;X; Y) q

ab

(Tr;O; S;X;X

2

); c(Tr;O; S;X

2

; X

3

); d(Tr;O; S;X

3

; Y):

p

4

(Tr; S;X; Y) q

bc

(Tr;O; S;X;X

2

); d(Tr;O;S;X

2

; Y):

p

5

(Tr; S;X; Y) q

bc

(Tr;O; S;X;X

2

); d(Tr;O;S;X

2

; X

3

); a(Tr;O; S;X

3

; X

4

);

b(Tr;O; S;X

4

; Y):

If we repeat the process until there are no more rules with more than two premises, we

get

q

abc

(Tr;O; S;X; Y) q

ab

(Tr;O; S;X;X

2

); c(Tr;O;S;X

2

; Y): (15)

q

bcd

(Tr;O; S;X; Y) q

bc

(Tr;O; S;X;X

2

); c(Tr;O;S;X

2

; Y): (16)

By folding the intermediate rules with r15 and r16, we get

p

1

(Tr; S;X; Y) q

abc

(Tr;O; S;X; Y): (17)

p

2

(Tr; S;X; Y) q

abc

(Tr;O; S;X; Y): (18)

p

3

(Tr; S;X; Y) q

abc

(Tr;O; S;X; Y); d(Tr;O;S;X

3

; Y):

p

4

(Tr; S;X; Y) q

bcd

(Tr;O; S;X; Y): (19)

p

5

(Tr; S;X; Y) q

bcd

(Tr;O; S;X;X

3

); a(Tr;O;S;X

3

; X

4

); b(Tr;O; S;X

4

; Y):

Rules r17, r18, and r19 do not need any further consideration. With

q

bcda

(Tr;O; S;X;X

4

) q

bcd

(Tr;O; S;X;X

3

); a(Tr;O;S;X

3

; X

4

): (20)

we get the folded rules

p

3

(Tr; S;X; Y) q

abc

(Tr;O; S;X;X

3

); d(Tr;O; S;X

3

; Y):

p

5

(Tr; S;X; Y) q

bcda

(Tr;O; S;X;X

4

); b(Tr;O; S;X

4

; Y):

Now, we are left with rules of the form B A

1

; A

2

. Note that in this case we do not

have other premise atoms, in order to determine the variables to keep. If we determine

vars(A

1

)\ vars(A

2

) (for the rule with the head predicate p

3

, we get (fTr;O; S;X

3

g) and

remove the head variables (fO;X

3

g), we have the variables, which should not occur in

the head of the new rule. So, for our example, in contrast to the case with three or more

premise literals, the variable O does not appear in the head of the new rule. We get as

new rules

q

abcd

(Tr; S;X; Y) q

abc

(Tr;O; S;X;X

3

); d(Tr;O; S;X

3

; Y): (21)

q

bcdab

(Tr; S;X; Y) q

bcda

(Tr;O; S;X;X

4

); b(Tr;O; S;X

4

; Y): (22)

and end up with the folded rules

p

3

(Tr; S;X; Y) q

abcd

(Tr; S;X; Y): (23)

p

5

(Tr; S;X; Y) q

bcdab

(Tr; S;X; Y): (24)

The restructured program consists of the rules r11,: : : ,r24.

4.3 Restructuring chain Datalog programs 25

restruct(P

I

)

begin

1. restruct init(P

I

; T oDo;Done);

2. restruct3(ToDo; ToDo1; Done1);

3. restruct2(ToDo1; Done2);

4. return P

0

I

:= Done [Done1 [Done2;

end

Algorithm 3: restruct

restruct init(Rules; T oDo;Done)

begin

1. Done := ;;

2. ToDo := Rules;

3. EDBS := set of all EDB predicates of Rules;

4. while there exists C 2 ToDo with C = B A

1

; : : : ; A

n

, and A

1

is a literal over a predicate

in EDB

(a) q :=new predicate symbol;

(b) Head:= new atom(q; vars(A

1

));

(c) Done := Done [fHead A

1

g;

(d) ToDo := fold(ToDo;Head A

1

);

end

Algorithm 4: restruct init

4.3.2 The restruct dc-method

In the same way, as we have implemented a more e�cient sorting method, we have im-

plemented a more e�cient restructuring method, restruct dc, which requires the back-

ground knowledge about the data classes, to which the predicates of the rules belong.

In the �rst step, it introduces, just like the method restruct, for each EDB predicate

A = a(X

1

; : : : ; X

m

), which occurs as �rst element in some premise chain of P

I

, a new rule

with a new head predicate, which belongs to the same data class as A and has the same

property values as A. In the second step, we try to introduce for each rule with at least two

premise literals C A

1

; : : : ; A

n

; n � 2, a new rule Q A

1

; A

2

in the following way. The

method is provided with the background knowledge, to which data class Q is to belong,

if A

1

and A

2

belong to speci�c data classes. In our case, if A

1

and A

2

are basic feature

predicates, Q will also be a basic feature predicate. Furthermore, the method is provided

with the background knowledge, which property values the new predicate Q "inherits"

from the predicates A

1

and A

2

. In our case, these are the trace, orientation, sensor and

starting point from A

1

and the end point from A

2

. Given the rule

p

1

(Tr; S;X; Y) q

a

(Tr;O; S;X;X

1

); b(Tr;O; S;X

1

; X

2

); c(Tr;O;S;X

2

; Y);

26 4 STRUCTURING CHAIN DATALOG RULES IN PREFIX ACCEPTORS

restruct3(Rules; T oDo;Done)

begin

1. Done := ;;

2. ToDo := Rules;

3. while there exists C 2 ToDo such that C = B A or C = B A

1

A

2

A

3

: : :A

n

if C = B A then

(a) Done := Done [fCg;

(b) ToDo := ToDo � fCg;

else

(a) EliminateV ars := (vars(A

1

) \ vars(A

2

))� vars(B) � vars(A

3

; : : : ; A

n

);

(b) KeepV ars := (vars(A

1

) \ vars(A

2

)) �EliminateV ars;

(c) LeftV ars := (vars(B) \ vars(A

1

)) � vars(A2; : : : ; A

n

);

(d) RightV ars := (vars(A

1

) \ vars(A

2

))� vars(A

1

; A

3

; : : : ; A

n

);

(e) q :=new predicate symbol;

(f) HeadV ars := KeepV ars [LeftV ars [RightV ars;

(g) Head := new atom(q;HeadV ars);

(h) Done := Done [fHead A

1

; A

2

g;

(i) ToDo := fold(ToDo;Head A

1

; A

2

);

end

Algorithm 5: restruct3

with A

1

= q

a

(Tr;O; S;X;X

1

) and A

2

= b(Tr;O; S;X

1

; X

2

), we get

Q = q

ab

(Tr

tr

; S

s

; X

from

; Y

to

)�

SF

= q

ab

(Tr;O; S;X;X

2

)

with �

SF

= ftr

BF

= tr

BF

(A

1

); o

BF

= o

BF

(A

1

); s

BF

= s

BF

(A

1

); from

BF

= from

BF

(A

1

); to

BF

=

to

BF

(A

2

)g; i.e., we get the new rule

q

ab

(Tr;O; S;X;X

2

) q

a

(Tr;O; S;X;X

1

); b(Tr;O;S;X

1

; X

2

):

If we fold the program rules with a new rule Q A

1

; A

2

, we replace A

1

and A

2

only

by Q, if they occur as �rst premise literals of a premise chain. The pseudo-code for the

restruct dc-method is given in Algorithm 13 in Appendix A.2.

If we apply restruct dc to the example program P

I

, we get rules r11, : : : , r20. The

di�erence between restruct dc and restruct lies in the treatment of rules with exactly

two premise literals. For the folded rules

p

3

(Tr; S;X; Y) q

abc

(Tr;O; S;X;X

3

); d(Tr;O; S;X

3

; Y):

p

5

(Tr; S;X; Y) q

bcda

(Tr;O; S;X;X

4

); b(Tr;O; S;X

4

; Y):

the rules

q

abcd

(Tr;O; S;X; Y) q

abc

(Tr;O; S;X;X

3

); d(Tr;O;S;X

3

; Y):

q

bcdab

(Tr;O; S;X; Y) q

bcda

(Tr;O; S;X;X

4

); b(Tr;O;S;X

4

; Y):

4.3 Restructuring chain Datalog programs 27

restruct2(Rules;Done)

begin

1. Done := ;;

2. ToDo := Rules;

3. while ToDo 6= ;

select a rule C 2 ToDo

if C = B A then

(a) Done := Done [fCg;

(b) ToDo := ToDo � fCg;

else

(a) EliminateV ars := (vars(A

1

) \ vars(A

2

)) � vars(B);

(b) KeepV ars := vars(A

1

) \ vars(A

2

) �EliminateV ars;

(c) LeftV ars := (vars(B) \ vars(A

1

))� vars(A2);

(d) RightV ars := (vars(B) \ vars(A

2

))� vars(A

1

);

(e) q := new predicate symbol;

(f) HeadV ars := KeepV ars [LeftV ars [RightV ars;

(g) Head := new atom(q;HeadV ars);

(h) Done := Done [fHead A

1

; A

2

g;

(i) ToDo := fold(ToDo;Head A

1

; A

2

);

end

Algorithm 6: restruct2

are introduced (instead of rules r21 and r22), yielding the folded rules

p

3

(Tr; S;X; Y) q

abcd

(Tr;O; S;X; Y):

p

5

(Tr; S;X; Y) q

bcdab

(Tr;O; S;X; Y):

(instead of rules r23 and r24). So, to summarize, we get as result the restructured program

P

0

I

q

a

(Tr;O; S;X; Y) a(Tr;O; S;X; Y):

q

b

(Tr;O; S;X; Y) b(Tr;O; S;X; Y):

q

ab

(Tr;O; S;X; Y) q

a

(Tr;O; S;X

1

; X

2

); b(Tr;O;S;X

2

; Y):

q

bc

(Tr;O; S;X; Y) q

b

(Tr;O; S;X

1

; X

2

); c(Tr;O; S;X

2

; Y):

q

abc

(Tr;O; S;X; Y) q

ab

(Tr;O; S;X

1

; X

2

); c(Tr;O;S;X

2

; Y):

q

bcd

(Tr;O; S;X; Y) q

bc

(Tr;O; S;X

1

; X

2

); d(Tr;O; S;X

2

; Y):

p

1

(Tr; S;X; Y) q

abc

(Tr;O; S;X; Y):

p

2

(Tr; S;X; Y) q

abc

(Tr;O; S;X; Y):

p

3

(Tr; S;X; Y) q

abcd

(Tr;O; S;X; Y):

q

abcd

(Tr;O; S;X; Y) q

abc

(Tr;O; S;X

1

; X

2

); d(Tr;O; S;X

2

; Y):

q

bcda

(Tr;O; S;X; Y) q

bcd

(Tr;O; S;X

1

; X

2

); a(Tr;O;S;X

2

; Y):

28 4 STRUCTURING CHAIN DATALOG RULES IN PREFIX ACCEPTORS

p

4

(Tr; S;X; Y) q

bcd

(Tr;O; S;X; Y):

q

bcdab

(Tr;O; S;X; Y) q

bcda

(Tr;O; S;X

1

; X

2

); b(Tr;O;S;X

2

; Y):

p

5

(Tr; S;X; Y) q

bcdab

(Tr;O; S; Y; Y):

The grammar which corresponds to P

0

I

is G

0

= (V

0

;�

0

; P

0

; s) with V

0

= fs; p

1

; p

2

; p

3

; p

4

; p

5

;

q

a

; q

ab

; q

abc

; q

abcd

; q

b

; q

bc

; q

bcd

; q

bcda

; q

bcdab

g and �

0

= fa; b; c; dg. P

0

is the set of productions

s ! p

1

jp

2

jp

3

jp

4

jp

5

p

1

! q

abc

p

2

! q

abc

p

3

! q

abcd

p

4

! q

bcd

p

5

! q

bcdab

q

bcdab

! q

bcda

b

q

abcd

! q

abc

d

q

bcda

! q

bcd

a

q

abc

! q

ab

c

q

bcd

! q

bc

d

q

ab

! q

a

b

q

bc

! q

b

c

q

a

! a

q

b

! b

Remember, that G

0

has already been derived from the DFA accepting the language

^

L(G)

(see 4.2). G is the grammar corresponding to the original program P

I

.

4.3.3 Equivalence of the restructured program

Lemma 2 Let P

I

be a non-recursive basic chain Datalog program with rules, where the

IDB predicates occur only in rule heads. Let P

0

I

be the program which results from re-

structuring P

I

with either restruct or restruct dc. Then, for a given EDB instance

P

E

fp

i

(t

1

; : : : ; t

s

) j p

i

2 I and p

i

(t

1

; : : : ; t

s

) 2 T

!

P

I

(P

E

)g

=

fp

i

(t

1

; : : : ; t

s

) j p

i

2 I and p

i

(t

1

; : : : ; t

s

) 2 T

!

P

0

I

(P

E

)g

with I �IDB(P

I

), i.e., the coverage for the target predicates p

i

2 I is the same for P

I

and P

0

I

.

Proof As IDB(P

I

) � IDB(P

0

I

), it su�ces for the �-part to show that T

!

P

I

(P

E

) �

T

!

P

0

I

(P

E

). We know, that the inference depth of P

I

is 1, i.e., T

!

P

I

(P

E

) = T

1

P

I

(P

E

).

Let

�

B 2 T

1

P

I

(P

E

). Then, there exists a C 2 P

I

such that C� = (

�

B

�

A

1

; : : : ;

�

A

n

)

and

�

A

1

; : : : ;

�

A

n

2 P

E

. We have to show, that

�

B 2 T

!

P

0

I

(P

E

). For the rule C = (B

A

1

; : : : ; A

n

), the restructuring method has produced n + 1 rules,

C

1

= (Q

1

 A

1

)

C

2

= (Q

2

 Q

1

A

2

)

C

3

= (Q

3

 Q

2

A

3

)

4.3 Restructuring chain Datalog programs 29

: : :

C

n

= (Q

n

 Q

n�1

A

n

)

C

n+1

= (B Q

n

):

As

�

A

1

2 P

E

,

�

Q

1

2 T

1

P

0

I

(P

E

), as

�

A

2

2 P

E

,

�

Q

2

2 T

2

P

0

I

(P

E

), : : : , as

�

A

n

2 P

E

,

�

Q

n

2

T

n

P

0

I

(P

E

), and

�

B 2 T

n+1

P

0

I

(P

E

).

The �-part Let

�

B = p

r

(t

1

; : : : ; t

s

) 2 fp

x

(t

1

; : : : ; t

s

)jp

x

2 I and p

x

(t

1

; : : : ; t

s

) 2 T

i+1

P

0

I

(P

E

)g.

Then, there is a rule C 2 P

0

I

, such that C� = (

�

B

�

Q

l

) with

�

Q

l

2 T

i

P

0

I

(P

E

). We have a

sequence of rules

C

l

2 P

0

I

; such that C

l

�

l

= (

�

Q

l

�

Q

l�1

�

A

l

) with

�

A

l

2 P

E

C

l�1

2 P

0

I

; such that C

l�1

�

l�1

= (

�

Q

l�1

�

Q

l�2

�

A

l�1

) with

�

A

l�1

2 P

E

: : :

C

1

2 P

0

I

; such that C

1

�

1

= (

�

Q

1

�

A

1

) with

�

A

1

2 P

E

If we unfold C, we get the rule C

unfolded

= (B A

1

; : : : ; A

l

) with C

unfolded

2 P

I

. As

�

A

1

; : : : ;

�

A

l

2 P

E

, it follows that

�

B 2 T

!

P

0

I

(P

E

).2

4.3.4 Mapping the restructured program to a pre�x acceptor

The rules of a program P

0

I

, which is the result of the restructuring methods presented

above, have one of following syntactical forms:

q

a

(Tr;O; S;X; Y) a(Tr;O; S;X; Y) (25)

q

j

(Tr;O; S;X; Y) q

i

(Tr;O; S;X;X

1

); a(Tr;O;S;X

1

; Y) (26)

p

r

(Tr; S;X; Y) q

s

(Tr;O; S;X; Y) (27)

with a 2 EDB(P

I

)=EDB(P

0

I

), q

i

2 IDB(P

0

I

)� I, and p

r

2 I � IDB(P

0

I

). The pre�x ac-

ceptor is de�ned by the tuple (Q;�; Z;�; q

0

; F; �). Given P

0

I

, we map the EDB predicates

to the set of input predicates �, i.e.,

� = fa(Tr

tr

; O

o

; S

s

; X

from

; Y

to

)ja 2 EDB(P

0

I

)g:

The IDB predicates in I are mapped to the set of output predicates, i.e.,

Z = fp

i

(Tr

tr

; S

s

; X

from

; Y

to

)jp

i

2 Ig:

For each q

i

2 IDB(P

0

I

)� I we establish a state for the pre�x acceptor, i.e.,

Q = fq

i

jq

i

2 IDB(P

0

I

)� Ig [fq

0

g;

where q

0

is a newly introduced symbol for the starting state. Each q

i

, which appears as

IDB subgoal in a rule of form (27) is a �nal state, i.e.,

F = fq

i

j q

i

2 IDB(P

0

I

)� I and p

r

(Tr; S;X; Y) q

i

(Tr;O; S;X; Y) 2 P

0

I

g:

30 4 STRUCTURING CHAIN DATALOG RULES IN PREFIX ACCEPTORS

For each rule of form (25) we establish a transition from the starting state to q

i

, i.e.,

(q

0

; a(Tr

tr

; O

o

; S

s

; X

from

; Y

to

); q

i

) 2 �:

For each rule of form (26), we establish a transition from state q

i

to state q

j

(q

i

; a(Tr

tr

; O

o

; S

s

; X

from

; Y

to

); q

j

) 2 �:

For each rule of form (27), we add p

r

(Tr

tr

; S

s

; X

from

; Y

to

) to the set, to which the function

� maps state q

s

�(q

s

) = fp

r

(Tr

tr

; S

s

; X

from

; Y

to

)jp

r

2 I and p

r

(Tr; S;X; Y) q

s

(Tr;O; S;X; Y) 2 P

0

I

g:

If we map the restructured example program P

0

I

to a pre�x acceptor, we get the PA

illustrated in Figure 4. Note, that this mapping procedure can be applied to any linear

program (see De�nition 1 in Section 3) with rules with at most one EDB subgoal, i.e., it

is not restricted to non-recursive programs (see Section 6.3 for an example).

Furthermore, each pre�x acceptor can be (re-) transformed to a basic chain Datalog

program by introducing the respective chain rules for the transition and output function.

4.3.5 Related work

Sommer has presented in [23] a method for theory restructuring, called FENDER. It restruc-

tures the rules for one concept, whereas we restructure the rules for several concepts, which

share a lot of common features. FENDER searches for common partial premises (CPPs),

each of which is collected around one variable, which appears only in a rule body. Given

a chain Datalog program with rules, such as

p(Tr; S;X; Y) r

1

(Tr;O; S;X;X

1

); : : : ; r

k+1

(Tr;O; S;X

k

; Y);

FENDER would consider the whole premise chain, collected around the variable O, and

the set of k overlapping CPPs of the form r

i

(Tr;O; S;X

i�1

; X

i

); r

i+1

(Tr;O; S;X

i

; X

i+1

),

collected around the chaining variables X

i

; i = 1; : : : ; k, as candidates for intermediate

concepts. Neither of these is what we are aiming at.

The restructuring method restruct implements, in principle, the W-operator, which

was introduced by Muggleton, as inter-construction operator ([14], [15]), which in [13] is

called an inductive inference rule

Inter-construction:

p G;H q G;K

p r;H r G q r;K

;

where p and q represent propositional constants and G;H and K conjunctions of proposi-

tional constants. The method restruct implements three speci�c inter-construction steps

for chain Datalog rules

Step 1:

B A

1

; A

2

; : : : ; A

n

B Q

1

; A

2

; : : : ; A

n

Q

1

 A

1

Step 2:

B A

1

; A

2

; : : : ; A

n

C A

1

; L

2

; : : : ; L

m

B Q

1

; A

2

; : : : ; A

n

Q

1

 A

1

C Q

1

; L

2

; : : : ; L

m

Step 3:

B A

1

; A

2

B Q Q A

1

; A

2

;

where A

i

; Q

j

; L

k

, and B represent atoms.

31

5 MP: An E�cient Forward Inference Method

The marker passing method, which we present in this section, has already been introduced

in [19] and [20]. As the main focus in these papers was on a related topic, we omitted some

details of the method, which we want to elaborate here from a logic programming point

of view. Marker passing methods have been developed, e.g., by Charniak [5] and Hendler

[8]. We present a marker passing method, which is applied to a pre�x acceptor, and which

calculates (part of) the minimum Herbrand model of the chain Datalog program which

has been mapped to the pre�x acceptor.

5.1 The marker passing method

Assume, that a basic chain Datalog program P

I

has been mapped to a pre�x (tree)

acceptor PA. Given an EDB instance, P

E

, which is a ground chain, the goal is, from

the logic programming point of view, to calculate the minimum Herbrand model of the

extended logic program P = P

I

[P

E

. In this section, we present a marker passing

method, called MP, which is applied to the pre�x acceptor PA, in order to calculate

the minimum Herbrand model via forward inferences. The EDB instance P

E

is required

to be a ground chain of atoms over the EDB predicates (here, the predicates in PS

BF

),

and is denoted

�

A

1

: : :

�

A

k

. Remember, that in our robotics domain

�

A

1

: : :

�

A

k

represents a

sequence of chronologically ordered observations, i.e., basic features, from which sensor

features are to be derived. The important point to note, is, that the EDB instance P

E

is generated incrementally, while the robot moves through the environment, i.e., for each

time point 1 � t � k, we have P

t

E

= P

t�1

E

[f

�

A

t

g, where P

0

E

= ;. However, at each time

point t = 1; 2; : : :, P

t

E

is �nite and so is the Herbrand base B

H

(P

t

) of P

t

= P

I

[P

t

E

.

Now, let MP(

�

A

1

: : :

�

A

k

) denote the output of the marker passing method for the last

element of the chain

�

A

k

. MP calculates at each time point t; 1 � t � k, the IDB-portion

of the minimum Herbrand model for the p

i

2 I, such that MP(

�

A

1

) [MP(

�

A

1

�

A

2

) [

: : : [MP(

�

A

1

�

A

2

: : :

�

A

k

) is a subset of the �xpoint of the mapping T

P

I

, applied to P

t

E

,

i.e., T

P

I

(P

t

E

). Remember, that the PA can be mapped back to a program P

0

I

and that

according to Lemma 2, we have fp

i

(t

1

; : : : ; t

s

)jp

i

2 I and p

i

(t

1

; : : : ; t

s

) 2 T

!

P

I

(P

E

)g =

fp

i

(t

1

; : : : ; t

s

)jp

i

2 I and p

i

(t

1

; : : : ; t

s

) 2 T

!

P

0

I

(P

E

)g.

The method exploits the special syntax of the chain Datalog rules and uses the con-

straints introduced in 3.5, in order to set the arguments/property values of the predicates

associated with the transitions and �nal states of the PA.

In the following, we use A to denote an atom over a basic feature predicate in PS

BF

,

and B;B

i

; i = 1; 2; : : : to denote an atom over a sensor feature predicate in PS

SF

. Given

a ground chain

�

A

1

: : :

�

A

k

, we know the following:

Initialization of basic feature constraints: Given the �rst atom,

�

A

1

, the following

equations have to be satis�ed:

tr

BF

(

�

A

1

) = tr

BF

(

�

A

2

) = tr

BF

(

�

A

3

) = : : :

o

BF

(

�

A

1

) = o

BF

(

�

A

2

) = o

BF

(

�

A

3

) = : : :

s

BF

(

�

A

1

) = s

BF

(

�

A

2

) = s

BF

(

�

A

3

) = : : : ;

32 5 MP: AN EFFICIENT FORWARD INFERENCE METHOD

i.e., the trace, orientation and sensor of each member of the sequence of basic feature

predicates

�

A

1

: : :

�

A

k

, beginning with

�

A

1

, have to be the same. Given these equations and

an atom

�

A

i

over a basic feature predicate, we can set the constraints, which all following

basic feature atoms

�

A

i

; i > 1 have to satisfy, to

�

BF;init

= ftr

BF

= tr

BF

(

�

A

i

); o

BF

= o

BF

(

�

A

i

); s

BF

= s

BF

(

�

A

i

)g:

The function init bf constraints (see Algorithm 7) returns these initial basic feature

constraints for a given

�

A

i

. Given the atom

�

A = a(t1; 90; s5; 1; 8), we get

�

BF;init

= ftr

BF

= t1; o

BF

= 90; s

BF

= s5g:

Initialization of sensor feature constraints: For any atom B, which is derivable

from the chain beginning with

�

A

1

, the following equations have to be satis�ed:

tr

BF

(

�

A

1

) = tr

SF

(B)

s

BF

(

�

A

1

) = s

SF

(B)

from

BF

(

�

A

1

) = from

SF

(B);

i.e., the trace, sensor and starting point of an atom over a sensor feature predicate, deriv-

able from the sequence

�

A

1

: : :

�

A

k

has to be the same as for

�

A

1

. Given these equations

and an atom

�

A

i

, we can set the constraints, which an atom B derivable from the chain

beginning with

�

A

1

has to satisfy, to

�

SF;init

= ftr

SF

= tr

BF

(

�

A

i

); s

SF

= s

BF

(

�

A

i

); from

SF

= from

BF

(

�

A

i

)g:

The function init sf constraints returns these initial sensor feature constraints for

�

A

i

.

Given the atom

�

A = a(t1; 90; s5; 1; 8), we get

�

SF;init

= ftr

SF

= t1; s

SF

= s5; from

SF

= 1g:

Update of basic feature constraints: Given an atom

�

A

i

of the chain, for the next

atom

�

A

i+1

, the equation

to

BF

(A

i

) = from

BF

(A

i+1

)

has to be satis�ed, i.e., the end point of the previous basic feature has to be the starting

point of the next one. Given this equation and an atom

�

A

i

, we can set the constraints for

�

A

i+1

to

�

BF;update

= ffrom

BF

= to

BF

(

�

A

i

)g:

The function update bf constraints returns these constraint for a

�

A

i

. Given the atom

�

A = a(t1; 90; s5; 1; 8), we get

�

BF;update

= ffrom

BF

= 8g:

5.1 The marker passing method 33

Update of sensor feature constraints: Given a chain

�

A

1

: : :

�

A

i

, for any atom B,

which is derivable from the current sequence starting with

�

A

1

, the equation

to

BF

(A

i

) = to

SF

(B)

has to be satis�ed, i.e., the end point of the last basic feature has to coincide with the end

point of the derived sensor feature B. Given this equation and an atom

�

A

i

, we can set

the update constraints, which the sensor feature has to satisfy, to

�

SF;update

= fto

SF

= to

BF

(

�

A

i

)g:

The function update sf constraints returns these sensor feature constraints for

�

A

i

.

Given the atom

�

A = a(t1; 90; s5; 1; 8), it returns

�

SF;update

= fto

SF

= 8g:

Now assume, that the robot perceives a sequence of ground atoms over basic fea-

ture predicates,

�

A

1

�

A

2

: : : ;

�

A

n

; n 2 N . At each time point 1 � t � n, the ground chain

�

A

1

�

A

2

: : :

�

A

t

denotes the EDB instance P

t

E

for the chain Datalog program P

I

, which is

compiled in the pre�x acceptor PA. The marker passing method, MP, works as follows:

At each time point 1 � t � n, we check, whether there exists a transition from the starting

state q

0

, labeled A 2 BF, leading to state q

j

2 Q

PA

, such that A is uni�able with

�

A

t

. If

that is the case, we generate a marker, which is associated with state q

j

. It is represented

by the tuple

(t; q

i

; �

BF;init

; �

BF;update

; �

SF;init

; �

SF;update

):

The constraints �

BF

= �

BF;init

[�

BF;update

are those, which the next basic feature

�

A

t+1

has to satisfy. The constraints �

SF

= �

SF;init

[�

SF;update

are those, which a sensor feature

has to satisfy, if it is derivable from the sequence

�

A

1

�

A

2

: : :

�

A

t

.

Each of the markers m

r

; 1 � r < t, which has been generated at previous time points,

is checked, whether it can be passed along a transition to a successor state. Let the

information associated with marker m

r

at the previous time point t � 1, be

m

t�1

r

= (r; q

t�1

; �

BF;init

; �

t�1

BF;update

; �

SF;init

; �

t�1

SF;update

):

Let q

t�1

(m

r

) = q

i

denote the state, with which a marker m

r

is associated at time point

t � 1. Then, we check, whether there exists a transition (q

i

; A; q

j

), such that A�

t�1

BF

is

uni�able with

�

A

t

. If that is the case, we update �

t�1

BF;update

and �

t�1

SF;update

with respect to

�

A

t

, yielding �

t

BF;update

and �

t

SF;update

. So the marker info for m

r

at time point t is

m

t

r

= (r; q

t

= q

j

; �

BF;init

; �

t

BF;update

; �

SF;init

; �

t

SF;update

):

Finally, we have to check for each marker m

s

; 1 � s � t, whether it is now associated with

a �nal state q 2 F

PA

. If that is the case, we apply to each element in �(q) = fB

1

; : : : ; B

l

g

the constraints �

t

SF

= �

SF;init

[�

t

SF;update

, yielding the ground atoms

�

B

1

�

t

SF

; : : : ;

�

B

l

�

t

SF

,

which are output and are part of the minimum Herbrand model of P = P

I

[P

t

E

. The

pseudo-code of the procedure MP is given in Algorithm 7. It takes as input a pre�x

acceptor PA (representing a basic chain Datalog program P

I

) and an EDB instance P

E

,

34 5 MP: AN EFFICIENT FORWARD INFERENCE METHOD

represented by the ground chain

�

A

1

�

A

2

: : : ;

�

A

k

. The pre�x acceptor PA is represented

by the tuple (Q

PA

;�

PA

; Z

PA

;�

PA

; q

0;PA

; F; �

PA

). The procedure outputs incrementally

the IDB portion of the target predicates in I of the minimum Herbrand model for each

subsequence

�

A

1

,

�

A

1

�

A

2

,

�

A

1

�

A

2

�

A

3

, etc.

The important point to note is, that the marker passing method is much more e�cient

than a naive forward chaining procedure, which tries to match each

�

A

i

to each premise

literal of each rule. In the case of marker passing,

�

A

i

has to be matched, depending

on the transitions emanating from a given state, to at most l predicates, where l =

jEDB(P

I

)|= j�j. A naive forward chaining inference procedure would try y � l matches,

where y =

P

C2P

I

jC

body

j. For a given fact

�

A

t

, the markers 1; : : : ; t can be processed in

parallel as they are independent of each other. The method terminates after k steps, where

k is the length of the input chain P

E

. The time and space requirements depend linearly

on the length of the input chain P

E

.

MP(PA;P

E

=

�

A

1

�

A

2

: : : ;

�

A

k

)

for t = 1; 2; : : :

begin

1. if there exists a (q

0

; A; q

k

) 2 �

PA

, such that

�

A

t

is uni�able with A, then

begin

�

BF;init

:= init bf constraints(

�

A

t

);

�

SF;init

:= init sf constraints(

�

A

t

);

�

t

BF;update

:= update bf constraints(

�

A

t

);

�

t

SF;update

:= update sf constraints(

�

A

t

);

m

t

t

:= (t; q

k

; �

BF;init

; �

t

BF;update

; �

SF;init

; �

t

SF;update

);

end

2. for r = 1; : : : ; t� 1

% Let m

t�1

r

= (r; q

t�1

= q

i

; �

BF;init

; �

t�1

BF;update

; �

SF;init

; �

t�1

SF;update

)

begin

�

t�1

BF

:= �

BF;init

[�

t�1

BF;update

;

if there exists a (q

i

; A; q

j

) 2 �

PA

, such that

�

A

t

is uni�able with A�

t�1

BF

, then

begin

�

t

BF;update

:= update bf constraints(

�

A

t

);

�

t

SF;update

:= update sf constraints(

�

A

t

);

m

t

r

:= (r; q

j

; �

BF;init

; �

t

BF;update

; �

SF;init

; �

t

SF;update

);

end

end

3. for s = 1; : : : ; t

if q

t

(m

s

) = q

k

2 F

PA

, then

begin

�

t

SF

:= �

SF;init

[�

t

SF;update

;

for each B

i

2 �(q

k

) = fB

1

; : : : ; B

n

g: output B

i

�

t

BF

;

end

end

Algorithm 7: MP

5.2 Soundness and completeness 35

Example run of MP on PA: If we apply the procedure MP to the pre�x acceptor

PA in Figure 4 and the chain P

E

=

�

A

1

�

A

2

�

A

3

�

A

4

P

E

= fa(t1; 90; s5; 1; 8); b(t1; 90; s5; 8; 10); c(t1; 90; s5; 10; 15); d(t1; 90; s5; 15; 17)g

the markers are passed through the graph of the pre�x acceptor as illustrated in Figure

5. Note, that the initial constraints for a sequence beginning with

�

A

i

are determined

once, whereas the update constraints have to be updated once for each new member of

the respective sequence. For each atom

�

A

i

, the property values, which are updated via

the constraints, are printed boldly.

Input:

�

A

1

= a(t1; 90; s5; 1; 8):

m

1

1

= (1; q

a

; ftr

BF

= t1; o

BF

= 90; s

BF

= s5g; ffrom

BF

= 8g;

ftr

SF

= t1; s

SF

= s5; from

SF

= 1g; fto

SF

= 8g)

Input:

�

A

2

= b(t1; 90; s5; 8; 10):

m

2

1

= (1; q

ab

; ftr

BF

= t1; o

BF

= 90; s

BF

= s5g; ffrom

BF

= 10g;

ftr

SF

= t1; s

SF

= s5; from

SF

= 1g; fto

SF

= 10g)

m

2

2

= (2; q

b

; ftr

BF

= t1; o

BF

= 90; s

BF

= s5g; ffrom

BF

= 10g;

ftr

SF

= t1; s

SF

= s5; from

SF

= 8g; fto

SF

= 10g)

Input:

�

A

3

= c(t1; 90; s5; 10; 15):

m

3

1

= (1; q

abc

; ftr

BF

= t1; o

BF

= 90; s

BF

= s5g; ffrom

BF

= 15g;

ftr

SF

= t1; s

SF

= s5; from

SF

= 1g; fto

SF

= 15g)

m

3

2

= (2; q

bc

; ftr

BF

= t1; o

BF

= 90; s

BF

= s5g; ffrom

BF

= 15g;

ftr

SF

= t1; s

SF

= s5; from

SF

= 8g; fto

SF

= 15g)

Output: MP(

�

A

1

�

A

2

�

A

3

) = fp

1

(t1; s5; 1; 15); p

2

(t1; s5; 1; 15)g

Input:

�

A

4

= d(t1; 90; s5; 15; 17):

m

4

1

= (1; q

abcd

; ftr

BF

= t1; o

BF

= 90; s

BF

= s5g; ffrom

BF

= 17g;

ftr

SF

= t1; s

SF

= s5; from

SF

= 1g; fto

SF

= 17g)

m

4

2

= (2; q

bcd

; ftr

BF

= t1; o

BF

= 90; s

BF

= s5g; ffrom

BF

= 17g;

ftr

SF

= t1; s

SF

= s5; from

SF

= 8g; fto

SF

= 17g)

Output: MP(

�

A

1

�

A

2

�

A

3

�

A

4

) = fp

3

(t1; s5; 1; 17); p

4

(t1; s5; 8; 17)g

5.2 Soundness and completeness

Let PA be a pre�x acceptor, which corresponds to a linear chain Datalog program P

I

. Let

MP

PA

(P

E

) denote the success set of the marker passing method, i.e., the set of ground

instances of the target predicates p

i

2 I � IDB(P

I

), which are calculated by the marker

passing algorithm. In this section, we want to show, that the marker passing method is

sound and complete, i.e., for a given EDB instance P

E

, the success set MP

PA

(P

E

) is the

minimum Herbrand model of the extended program P = P

I

[P

E

.

36 5 MP: AN EFFICIENT FORWARD INFERENCE METHOD

p2(t1,s5,1,15)
p1(t1,s5,1,15)

a(t1,90,s5,1,8)

Output:

d(t1,90,s5,15,17)c(t1,90,s5,10,15)b(t1,90,s5,8,10)

Input:

b/5

c/5

d/5

a/5

b/5

a/5

b/5

c/5

d/5

b/5

c/5

d/5

a/5

b/5

a/5

b/5

c/5

d/5

b/5

c/5

d/5

a/5

b/5

a/5

b/5

c/5

d/5

b/5

c/5

d/5

a/5

b/5

a/5

b/5

c/5

d/5

1

1

1

1

2

2

2

p3(t1,s5,1,17)
p4(t1,s5,8,17)

Figure 5: Example 1

In Lemma 2, we have shown, that for a given P

I

our restructuring methods generate a

program P

0

I

, such that

fp

i

(t

1

; : : : ; t

s

) j p

i

2 I and p

i

(t

1

; : : : ; t

s

) 2 T

!

P

I

(P

E

)g

=

fp

i

(t

1

; : : : ; t

s

) j p

i

2 I and p

i

(t

1

; : : : ; t

s

) 2 T

!

P

0

I

(P

E

)g

where I �IDB(P

I

). Each rule of the program P

0

I

has one of the forms

q

a

(Tr;O; S;X; Y) a(Tr;O; S;X; Y) (28)

q

j

(Tr;O; S;X; Y) q

i

(Tr;O; S;X;X

1

); a(Tr;O; S;X

1

; Y) (29)

p

r

(Tr; S;X; Y) q

s

(Tr;O; S;X; Y) (30)

with a 2 EDB(P

I

), q

i

2 IDB(P

0

I

)�I, and p

r

2 I � IDB(P

I

). This program can be directly

mapped to a pre�x acceptor PA, such that for each rule of the form (28), there is a tran-

sition (q

0

; a(Tr

tr

; O

o

; S

s

; X

from

; Y

to

); q

a

) 2 �

PA

emanating from the starting state q

0

. For

each rule of the form (29), there is a transition (q

i

; a(Tr

tr

; O

o

; S

s

; X

from

; Y

to

); q

j

) 2 �

PA

.

For a rule of the form (30), there exists a �nal state q

s

, such that p

r

(Tr

tr

; S

s

; X

from

; Y

to

) 2

�

PA

(q

s

).

In principal, our marker passing method works incrementally, i.e., it receives sequentially

the components of the ground chain P

E

=

�

A

1

�

A

2

: : :

�

A

k

. However, in order to proof the

5.2 Soundness and completeness 37

soundness and completeness of the method, we show it for each �nite subsequence, which

provides us with a �nite Herbrand base.

We de�ne the con�guration C

PA

of a pre�x acceptor PA at a given time point t, to be

the set of markers associated with the states of the PA at t, with C

0

PA

= ;.

Given an EDB instance P

E

, which is required to be a ground chain, the function

Succ

P

E

maps a con�guration C

PA

at time point t to the successor con�guration at time

point t + 1. We have C

t+1

PA

= Succ

P

E

(C

t

PA

). We de�ne

Succ

P

E

(C

0

PA

) = f (t; q; �

BF;init

; �

BF;update

; �

SF;init

; �

SF;update

) j t 2 f1; : : : ; kg and

for

�

A

t

2 P

E

there exists (q

0

; A; q) 2 �

PA

; such that

A is uni�able with

�

A

t

and

�

BF;init

= ftr

BF

= tr

BF

(

�

A

t

); o

BF

= o

BF

(

�

A

t

); s

BF

= s

BF

(

�

A

t

)g

�

SF;init

= ftr

SF

= tr

BF

(

�

A

t

); s

SF

= s

BF

(

�

A

t

); from

SF

= from

BF

(

�

A

t

)g

�

BF;update

= ffrom

BF

= to

BF

(

�

A

t

)g

�

SF;update

= fto

SF

= to

BF

(

�

A

t

)g

g

and for i > 0

Succ

P

E

(C

i

PA

) = f (t; q

k

; �

BF;init

; �

i+1

BF;update

; �

SF;init

; �

i+1

SF;update

) j t � k � i+ 1 and

(t; q

j

; �

BF;init

; �

i

BF;update

; �

SF;init

; �

i

SF;update

) 2 C

i

PA

and there

exists (q

j

; A; q

k

) 2 �

PA

such that A�

BF

is uni�able with

�

A

t+i�1

2 P

E

and �

BF

= �

BF;init

[�

i

BF;update

�

i+1

BF;update

= ffrom

BF

= to

BF

(

�

A

t+i�1

)g

�

i+1

SF;update

= fto

SF

= to

BF

(

�

A

t+i�1

)g

g

Each member

�

A

t

; t 2 f1; : : : ; kg of the ground chain P

E

=

�

A

1

: : :

�

A

k

is the beginning of a

subsequence from which an atom over p

i

2 I may be derivable. Succ

P

E

(C

0

PA

) extracts,

if possible, for each

�

A

t

the sensor and basic feature constraints (initial and update), and

passes a marker to a direct successor of the starting state q

0

. Thus, each marker t represents

the current processing status of the sequence beginning with

�

A

t

. For every con�guration

Succ

P

E

(C

i

PA

), the successor function tries to pass forward marker t by considering the

(t + i� 1)-th element of P

E

.

We de�ne the mapping �, which is applied to a con�guration of a pre�x acceptor, and

which generates the ground facts over the target predicates p

r

2 I �IDB(P

I

), which are

associated with the �nal states of the acceptor, and which in the current con�guration are

occupied by a marker.

�(C

PA

) = f

�

B j (t; q; ; ; �

SF;init

; �

SF;update

) 2 C

PA

and

�

B = B

r

�

SF

with

B

r

2 �(q) and �

SF

= �

SF;init

[�

SF;update

g:

Note, that the application of rules of the form (28) and (29) is simulated by the Succ

P

E

mapping. The application of rules of the form (30) is simulated by the � mapping. We

38 5 MP: AN EFFICIENT FORWARD INFERENCE METHOD

consider the sequence

�

1

(C

1

PA

) = �

1

(Succ

P

E

(C

0

PA

))

�

2

(C

2

PA

) = �

2

(Succ

P

E

(Succ

P

E

(C

0

PA

)))

: : :

�

i

(C

i

PA

) = �

i

(Succ

P

E

(: : :Succ

P

E

| {z }

i times

(C

0

PA

) : : :))

As the length of the input chain P

E

is k, the � (and Succ

P

E

) mapping can be applied

exactly k times. We de�ne the success set to be

MP

PA

(P

E

) = �

1

(C

1

PA

) [�

2

(C

2

PA

) [: : :[�

k

(C

k

PA

)

�

1

(Succ

P

E

(C

0

PA

))[: : :[�

k

(Succ

P

E

(: : :Succ

P

E

| {z }

k times

(C

0

PA

) : : :))

Given a ground chain P

E

=

�

A

1

�

A

2

: : :

�

A

k

, assume, that there exists a subsequence of

length i,

�

A

t

: : :

�

A

t+i�1

; 1 � t � k; t + i � 1 � k, from which

�

B = p

i

(tr; s; x; y); p

i

2 I can

be derived. Then, there exists a unique sequence of rules C

1

; C

2

; : : : ; C

i

; C

i+1

2 P

0

I

C

1

= (Q

1

 A

1

), such that C

1

�

1

= (

�

Q

1

�

A

1

) with

�

A

1

=

�

A

t

and

�

Q

1

2 T

1

P

0

I

(P

E

)

(C

2

= Q

2

 Q

1

A

2

), such that C

2

�

2

= (

�

Q

2

�

Q

1

�

A

2

) with

�

A

2

=

�

A

t+1

and

�

Q

2

2 T

2

P

0

I

(P

E

)

C

3

= (Q

3

 Q

2

A

3

), such that C

3

�

3

= (

�

Q

3

�

Q

2

�

A

3

) with

�

A

3

=

�

A

t+2

and

�

Q

3

2 T

3

P

0

I

(P

E

)

: : :

C

i

= (Q

i

 Q

i�1

A

i

), such that C

i

�

i

= (

�

Q

i

�

Q

i�1

�

A

i

) with

�

A

i

=

�

A

t+i�1

and

�

Q

i

2 T

i

P

0

I

(P

E

)

C

i+1

= (B Q

i

), such that C

i+1

�

i+1

= (

�

B

�

Q

i

), and

�

B 2 T

i+1

P

0

I

(P

E

)

where Q

j

; j 2 f1; : : : ; ig are atoms over the predicates q

j

2IDB(P

0

I

)�I. Let PA be the

pre�x acceptor, which corresponds to P

0

I

. The sequence of transitions, which corresponds

to the rules C

1

; C

2

; : : : ; C

i

; C

i+1

2 P

0

I

is

(q

0

; A

1

; q

1

) such that A

1

is uni�able with

�

A

t

and m 2 C

1

PA

with

m = ft; q

1

; �

BF;init

; �

1

BF;update

; �

SF;init

; �

1

SF;update

g

(q

1

; A

2

; q

2

) such that A

2

�

1

BF

is uni�able with

�

A

t+1

and m 2 C

2

PA

with

m = ft; q

2

; �

BF;init

; �

2

BF;update

; �

SF;init

; �

2

SF;update

g

5.2 Soundness and completeness 39

(q

2

; A

3

; q

3

) such that A

3

�

2

BF

is uni�able with

�

A

t+2

and m 2 C

3

PA

with

m = ft; q

3

; �

BF;init

; �

3

BF;update

; �

SF;init

; �

3

SF;update

g

: : :

(q

i�1

; A

i

; q

i

) such that A

i

�

i�1

BF

is uni�able with

�

A

t+i�1

and m 2 C

i

PA

with

m = ft; q

i

; �

BF;init

; �

i

BF;update

; �

SF;init

; �

i

SF;update

g

B 2 �(q

i

) such that

�

B = B�

i

SF

and

�

B 2 �

i

(C

i

PA

).

with �

BF;init

= init bf constraints(

�

A

t

) and �

SF;init

= init sf constraints(

�

A

t

). For

j 2 f1; : : : ; ig, we have �

j

BF;update

= update bf constraints(

�

A

t+j�1

),

�

j

SF;update

= update sf constraints(

�

A

t+j�1

), �

j

BF

= �

BF;init

[�

j

BF;update

, and �

j

SF

=

�

SF;init

[�

j

SF;update

.

We establish this correspondence with the following lemma

Lemma 3 Let P

0

I

be a linear chain Datalog program with rules, which have at most

one EDB subgoal. Let PA be the pre�x acceptor which corresponds to P

0

I

. Let I =

fp

1

; : : : ; p

n

g �IDB(P

0

I

). Consider the set of predicate symbols fq

s

jq

s

2IDB(P

0

I

)�Ig. This

set corresponds to the set of predicate symbols for the predicates, which have been intro-

duced when the original program P

I

was restructured, such that each rule of P

0

I

has the

form (28), (29), or (30). Let P

E

=

�

A

1

: : : ;

�

A

k

be a ground chain of length k, which is

input to P

0

I

and PA, respectively. If

q

r

(x

1

; x

2

; x

3

; x

4

; x

5

) 2 f

�

Qj

�

Q is a ground atom over a predicate q 2 IDB(P

0

I

)� I

and

�

Q 2 T

i

P

0

I

(P

E

)g; 1 � i � !

then con�guration C

i

PA

of the pre�x acceptor, contains a marker m, which is associated

with state q

r

, i.e.,

m = (t; q

r

; �

BF;init

; �

i

BF;update

; �

SF;init

; �

i

SF;update

)

such that

�

BF;init

= ftr

BF

= x

1

; o

BF

= x

2

; s

BF

= x

3

g

�

SF;init

= ftr

SF

= x

1

; s

SF

= x

3

; from

SF

= x

4

g

�

i

BF;update

= ffrom

BF

= x

5

g

�

i

SF;update

= fto

SF

= x

5

g

The converse statement also holds, i.e., if there is a con�guration C

i

PA

with m 2 C

i

PA

and m = (t; q

r

; �

BF;init

; �

i

BF;update

; �

SF;init

; �

i

SF;update

), where the constraints are the same

as speci�ed above, then q

r

(x

1

; x

2

; x

3

; x

4

; x

5

) 2 T

i

P

0

I

(P

E

); 1 � i � !.

40 5 MP: AN EFFICIENT FORWARD INFERENCE METHOD

Proof We show the �rst part by induction on the number i of applications of the T

P

0

I

mapping.

Induction basis for i = 1: Let

�

Q

1

= q

r

(x

1

; x

2

; x

3

; x

4

; x

5

) 2 T

1

P

0

I

(P

E

). Then, there

exists a clause C

1

2 P

0

I

with C

1

�

1

=

�

Q

1

!

�

A, such that

�

A =

�

A

t

2 P

E

; 1 � t � k. For

rule C

1

, we have the transition (q

0

; A; q

1

) 2 �

PA

. As

�

A = a(x

1

; x

2

; x

3

; x

4

; x

5

) =

�

A

t

2

P

E

; a 2EDB(P

I

), the application of the Succ

P

E

mapping to C

0

PA

will produce the marker

m 2 C

1

PA

with m = (t; q

1

; �

BF;init

; �

1

BF;update

; �

SF;init

; �

1

SF;update

) with

�

BF;init

= init bf constraints(

�

A

t

) = ftr

BF

= x

1

; o

BF

= x

2

; s

BF

= x

3

g

�

SF;init

= init sf constraints(

�

A

t

) = ftr

SF

= x

1

; s

SF

= x

3

; from

SF

= x

4

g

�

1

BF;update

= update bf constraints(

�

A

t

) = ffrom

BF

= x

5

g

�

1

SF;update

= update sf constraints(

�

A

t

) = fto

SF

= x

5

g:

Suppose, as the induction assumption, that for each

�

Q = q

r

(x

1

; x

2

; x

3

; x

4

; x

5

) 2 T

i

P

0

I

(P

E

),

there exists a marker (t; q

r

; �

BF;init

; �

i

BF;update

; �

SF;init

; �

i

SF;update

) 2 C

i

PA

; t 2 f1; : : : ; kg.

Then, we have to show the induction hypothesis, that for each

�

Q 2 T

i+1

P

0

I

(P

E

), there exists

a marker m 2 C

i+1

PA

. Let

�

Q

i+1

= q

r

(x

1

; x

2

; x

3

; x

4

; x

5

) 2 T

i+1

P

0

I

(P

E

). Then, there exists a

rule C

i+1

2 P

0

I

, such that C

i+1

� = (

�

Q

i+1

�

Q

i

�

A

i+1

) with

�

Q

i

2 T

i

P

0

I

(P

E

) and

�

A

i+1

=

�

A

t+i

2 P

E

. For rule C

i+1

, we have the transition (q

i

; A

i+1

; q

i+1

) 2 �

PA

. According to the

induction assumption, C

i

PA

contains a marker (t; q

i

; �

BF;init

; �

i

BF;update

; �

SF;init

; �

i

SF;update

),

such that

�

BF;init

= ftr

BF

= tr

BF

(

�

Q

i

); o

BF

= o

BF

(

�

Q

i

); s

BF

= s

BF

(

�

Q

i

)g

�

SF;init

= ftr

SF

= tr

BF

(

�

Q

i

); s

SF

= s

BF

(

�

Q

i

); from

SF

= from

BF

(

�

Q

i

)g

�

i

BF;update

= ffrom

BF

= to

BF

(

�

Q

i

)g

�

i

SF;update

= fto

SF

= to

BF

(

�

Q

i

)g:

As A

i+1

�

i

SF

is uni�able with

�

A

i+1

=

�

A

t+i

2 P

E

, the application of the Succ

P

E

mapping

results in a marker (t; q

i+1

; �

BF;init

; �

i+1

BF;update

; �

SF;init

; �

i+1

SF;update

) 2 C

i+1

PA

, with

�

i+1

BF;update

= ffrom

BF

= to

BF

(

�

A

i+1

)g

�

i+1

SF;update

= fto

SF

= to

BF

(

�

A

i+1

)g:2

The proof of the converse statement follows the same line of arguments.

Theorem 1 (Soundness) Given an EDB instance P

E

and a pre�x acceptor PA, which

corresponds to a basic chain Datalog program P

0

I

, its success set MP

PA

(P

E

) is contained

in the minimum Herbrand model of P = P

0

I

[P

E

, i.e.,

MP

PA

(P

E

) � fp

i

(t

1

; : : : ; t

s

) j p

i

2 I and p

i

(t

1

; : : : ; t

s

) 2 T

!

P

0

I

(P

E

)g

41

Proof We have P

E

=

�

A

1

�

A

2

: : :

�

A

k

andMP

PA

(P

E

) = �

1

(C

1

PA

)[�

2

(C

2

PA

)[: : :[�

k

(C

k

PA

).

Let

�

B 2 �

i

(C

i

PA

); 1 � i � k. Then m = (t; q

r

; �

BF;init

; �

i

BF;update

; �

SF;init

; �

i

SF;update

) 2 C

i

PA

with B 2 �(q

r

) and

�

B = B�

i

SF

; �

i

SF

= �

SF;init

[�

i

SF;update

. Let

�

BF;init

= ftr

BF

= x

1

; o

BF

= x

2

; s

BF

= x

3

g

�

SF;init

= ftr

SF

= x

1

; s

SF

= x

3

; from

SF

= x

4

g

�

i

BF;update

= ffrom

BF

= x

5

g

�

i

SF;update

= fto

SF

= x

5

g:

According to Lemma 3,

�

Q = q

r

(X

1

; x

2

; x

3

; x

4

; x

5

) 2 T

i

P

0

I

(P

E

). There exists a rule C 2 P

0

I

,

such that C� = (

�

B

�

Q). From this follows, that

�

B 2 T

i+1

P

0

I

(P

E

). 2

Given an EDB instance P

E

, a pre�x acceptor PA, which corresponds to a basic chain

Datalog program P

0

I

, and a set of IDB predicates I �IDB(P

I

), we say that the marker

passing method is complete with respect to I, if every ground atom

�

B over a p

i

2 I, which

is in the minimum Herbrand model of P = P

0

I

[P

E

, is also in the success setMP

PA

(P

E

).

Theorem 2 (Completeness)

MP

PA

(P

E

) � fp

i

(t

1

; : : : ; t

s

) j p

i

2 I and p

i

(t

1

; : : : ; t

s

) 2 T

!

P

0

I

(P

E

)g

Proof Let

�

B 2 fp

i

(t

1

; : : : ; t

s

) j p

i

2 I and p

i

(t

1

; : : : ; t

s

) 2 T

i+1

P

0

I

(P

E

)g; 1 < i � ! � 1.

Then there exists a rule C

i+1

2 P

0

I

, such that C

i+1

� = (

�

B

�

Q

i

) with

�

Q

i

2 T

i

P

0

I

(P

E

). Ac-

cording to Lemma 3 there exists m 2 C

i

PA

, such thatm = (t; q

i

; �

BF;init

; �

i

BF;update

; �

SF;init

;

�

i

SF;update

), t � k�i+1. We also have B 2 �(q

i

). The application of the � mapping to C

i

PA

yields

�

B = B�

i

SF

with �

i

SF

= �

SF;init

[�

i

SF;update

. Therefore,

�

B 2 �

i

(C

i

PA

) �MP

PA

(P

E

).

2

6 Post-Processing Chain Datalog Programs

Given the rules for the robotics domain, we have mapped them to a pre�x acceptor to

which we have applied the e�cient marker passing method, in order to derive higher level

concepts from sensor observations. The analysis of performance tests motivated the post-

processing phase during which the acceptor and the chain Datalog program, respectively,

are modi�ed. In contrast to restructuring, which does not change the coverage for the

target concepts, post-processing increases it. In 6.1, we motivate the post-processing

phase from the point of view of the application. In 6.2, we present the post-processing

method. The post-processed acceptor can be mapped back to a linear chain Datalog

program. In 6.3 we proof that its coverage for the target predicates is really increased.

The experimental results in 6.4 show the improvements, which were gained by the post-

processing step.

42 6 POST-PROCESSING CHAIN DATALOG PROGRAMS

6.1 Disadvantages of the rules learned for the robotics domain

The set of basic feature predicates, BF, contains some predicates, which do not contribute

perceptual information: In general, a basic feature describes a time interval during which

the robot keeps moving without changing its direction, and during which the tendency

of change of successive measurements is approximately the same. The basic features

are calculated in such a way, that they cover a time interval, [Start; End], of a given

trace completely, i.e., given a basic feature a(Tr;O; S; T1; T2), Start � T1, T2 < End,

there will be a basic feature b(Tr;O; S; T2; T3), a; b 2 PS

BF

. In order to guarantee this,

basic feature predicates had to be introduced to account for the situations, in which the

�rst assumption is not satis�ed, e.g., for the situation in which the robot does not move

(no movement/5).

Now, two types of situations can occur during the training and testing/performance

phase, respectively: During the training phase a pre�x (tree) acceptor is inferred, whose

transitions are labeled with an "irrelevant" perception such as no movement/5, because it

occurred su�ciently often in the training data, that the robot stood still. This situation

is exempli�ed with the automaton in the upper part of Figure 6. Given this automaton,

whenever state q

i

is reached during the performance phase, the robot expects the totally

irrelevant perception no movement/5, instead of ignoring it. On the other hand, assume,

q
i-1

...... decreasing/5 stable/5

Post-processing: Step 1

no_movement/5,

i,j
q decreasing/5 stable/5

something_happened/5
no_movement/5, no_movement/5,

something_happened/5

q
i-1

Post-processing: Step 2

i,j
q

q
i-1

...... q
i

decreasing/5 no_movement/5 stable/5

Before post-processing:

j
q

Figure 6: Post-processing of irrelevant basic features

that during the performance phase the robot has perceived an observation sequence which

leads to state q

i�1

and then has to stop for some reason. This causes the generation

of a no movement predicate instance, which prevents the marker passing method from

continuing to process the subsequence which may lead to state q

i

. Obviously, an unexpected

irrelevant basic feature, which does not contribute any perceptual information, should be

ignored during the performance phase. The same arguments apply to the basic feature

predicate something happened. It indicates some outlayer, which cannot be classi�ed as

incr peak, decr peak, or single peak.

In order to account for irrelevant basic features, we can modify the automaton in two

steps. Firstly, we remove the non-cyclic transitions, which are labeled by irrelevant basic

features. Assume, that there is a transition (q

i

; no movement(Tr

tr

; O

o

; S

s

; X

from

; Y

to

); q

j

)

(see Figure 6). Then, we remove this transition, merge the states q

i

and q

j

, and add

the cyclic transition (q

i;j

; no movement(Tr

tr

; O

o

; S

s

; X

from

; Y

to

); q

i;j

) (see Figure 6, bottom

6.2 Post-processing the pre�x acceptor: Step 1 43

left). In the second step, we add cyclic transitions to each of the states of the acceptor

(see Figure 6, bottom right).

The ultimate goal of post-processing a pre�x acceptor is to generalize the rules, com-

piled in it, in such a way, that their predictive power is increased. If we perform the

�rst post-processing step, we get the positive side e�ect, that the complexity of the pre�x

acceptor is reduced in terms of the number of states, the number of transitions and the

maximal depth of the pre�x acceptor. We de�ne the maximal depth of the pre�x acceptor

to be the number of transitions on the longest path from the starting state to a �nal state,

which does not contain any cycles.

6.2 Post-processing the pre�x acceptor: Step 1

We explain the method informally with the pre�x acceptor in Figure 4 in Section 4, i.e., we

continue with our example programs, P

I

and P

0

I

, and the associated grammars G and G

0

.

Assume that b 2 PS

BF

denotes an irrelevant basic feature. Then, we have to delete the

transition (q

0

; b(Tr

tr

; O

o

; S

s

; X

from

; Y

to

); q

b

), to merge the states q

0

and q

b

of PA, yielding

state q

b

�

, and to add the cyclic transition (q

b

�

; b(Tr

tr

; O

o

; S

s

; X

from

; Y

to

); q

b

�

). We also

have to delete the transition (q

a

; b(Tr

tr

; O

o

; S

s

; X

from

; Y

to

); q

ab

), to merge states q

a

and

q

ab

, yielding state q

b

�

ab

�

, and to add the transition (q

b

�

ab

�

; b(Tr

tr

; S

s

; X

from

; Y

to

); q

b

�

ab

�

).

Finally, we have to delete (q

bcda

; b(Tr

tr

; O

o

; S

s

; X

from

; Y

to

); q

bcdab

), to merge the states q

bcda

and q

bcdab

, yielding state q

b

�

cdab

�

with the cyclic transition (q

b

�

cdab

�

; b(Tr

tr

; O

o

; S

s

; X

from

; Y

to

);

q

b

�

cdab

�

). Thus, we get the pre�x acceptor PA

0

in Figure 7, where the original states q

bc

,

qb*c qb*ab*

qb*cd

qb*cdab*

qb*ab*c

qb*ab*cd

qb*

tr o s from tob(Tr , O , S , X , Y)

tr o s from toc(Tr , O , S , X , Y)

tr o s from tob(Tr , O , S , X , Y)

tr o s from toa(Tr , O , S , X , Y)

tr o s from tod(Tr , O , S , X , Y)tr o s from toa(Tr , O , S , X , Y)

tr o s from tob(Tr , O , S , X , Y)

tr froms top1(Tr , S , X , Y), tr froms top2(Tr , S , X , Y){ }tr froms top4(Tr , S , X , Y)}{

tr froms to }{p5(Tr , S , X , Y) tr froms top3(Tr , S , X , Y)}{

tr o s from tod(Tr , O , S , X , Y)

tr o s from toc(Tr , O , S , X , Y)

Figure 7: Pre�x acceptor PA

0

q

bcd

, q

abc

, and q

abcd

have been renamed by q

b

�

c

, q

b

�

cd

, q

b

�

ab

�

c

, and q

b

�

ab

�

cd

, respectively.

In terms of the language, generated by the equivalent grammars, G and G

0

, which are

associated with P

I

and P

0

I

, post-processing amounts to generalizing the language

^

L(G) =

^

L(G

0

) = fabc; abcd; bcd; bcdabg to

^

L(G

00

) = fb

�

ab

�

c; b

�

ab

�

cd; b

�

cd; b

�

cdab

�

g �

^

L(G). Again,

the states of PA

0

represent the pre�xes in Prefix(

^

L(G

00

)) (when we treat b

�

as one sym-

bol). In other words, post-processing amounts to generalizing the rules, which are struc-

44 6 POST-PROCESSING CHAIN DATALOG PROGRAMS

tured in the pre�x acceptor. The program P

00

I

, which corresponds to PA

0

, contains newly

introduced recursive rules. Our claim is, that this causes the predictive power of the rules

to be increased. Given an EDB instance P

E

, the coverage for the target predicates in I

is increased, i.e., Cov

P

0

(I) � Cov

P

00

(I), where P

0

= P

0

I

[P

E

and P

00

= P

00

I

[P

E

.

Furthermore, the complexity of the pre�x acceptor, in terms of the number of states,

the number of transitions, and the maximal depth is reduced. Note, that merging any

state with a �nal state (e.g., q

bcda

and q

bcdab

) yields a �nal state, whereas merging non-�nal

states (e.g., q

ab

and q

abc

) yields a non-�nal state.

post proc(PA

old

; x; PA

new

)

begin

PA := PA

old

;

while there exists q

i

2 Q

PA

; such that (q

i

; x; q

j

) 2 �

PA

with q

i

6= q

j

1. �

PA

:= �

PA

� f(q

i

; x; q

j

)g;

2. merge states(PA; q

i

; q

j

; PA

1

) ;

3. �

1

PA

:= �

1

PA

[f(q

i;j

; x; q

i;j

)g ;

4. PA := PA

1

;

PA

new

:= PA

1

;

end

Algorithm 8: post proc

The procedure post proc (Algorithm 8) takes as input the pre�x acceptor PA

old

=

(Q

old

;�; Z;�

old

; q

old

0

; F

old

; �

old

) and a label x 2 �. The procedure generates as output the

new pre�x acceptor PA

new

= (Q

new

;�; Z;�

new

; q

new

0

; F

new

; �

new

), in which there do not

exist any non-cyclic transitions, labeled x. The procedure does for each state q

i

, for which

there exists a transition (q

i

; x; q

j

) with q

i

6= q

j

the following: The transition (q

i

; x; q

j

) is

deleted (Step 1), the states q

i

and q

j

are merged, yielding state q

i;j

(Step 2, which requires

to recursively merge other states and transitions), and the cyclic transition (q

i;j

; x; q

i;j

) is

added (Step 3).

The procedure merge states (Algorithm 9) takes as input the pre�x acceptor PA

old

=

(Q

old

;�; Z;�

old

; q

old

0

; F

old

; �

old

) and two states, q

i

and q

j

. It generates as output the new

pre�x acceptor PA

new

. The procedure works as follows: State q

j

is removed from the set

of states (Step 2), whereas state q

i

is replaced by the merged state q

i:j

(Step 3). Now, we

consider all transitions, which start from the original states, q

i

and q

j

, respectively. For

each transition, which starts from q

i

and which is labeled by some x 2 �, we check, whether

there is a transition, starting from q

j

, labeled x. If that is not the case, the transition

(q

i

; x; q

j

) is replaced by (q

i;j

; x; q

j

) (Step 4). The corresponding step is performed for

transitions, which start from state q

j

(Step 5). If there exist transitions, labeled by some

z 2 �, starting from both states, q

i

and q

j

, they have to be merged (Step 6). If one of

the states, q

i

or q

j

, is a �nal state, then the merged state q

i;j

becomes a �nal state and

it is associated with the �nal tags of both original states (Step 7). If the original state q

i

was the starting state, the merged state q

i;j

becomes the starting state of the new pre�x

acceptor PA

new

(Step 8).

The procedure merge transitions (Algorithm 10) takes as input a pre�x acceptor

PA

old

, and the two transitions, which have to be merged. It produces as output the new

6.2 Post-processing the pre�x acceptor: Step 1 45

merge states(PA

old

; q

i

; q

j

; PA

new

)

begin

1. PA := PA

old

; F

PA

= ;;

2. Q

PA

:= Q

PA

� fq

i

g

3. Q

PA

:= (Q

PA

� fq

i

g) [fq

i;j

g

4. for each x 2 �, such that (q

i

; x; q

r

) 2 �

PA

, but (q

j

; x;) 62 �

PA

:

�

PA

:= (�

PA

� f(q

i

; x; q

r

)g) [f(q

i;j

; x; q

r

)g

5. for each y 2 �, such that (q

j

; y; q

s

) 2 �

PA

, but (q

i

; y;) 62 �

PA

:

�

PA

:= (�

PA

� f(q

j

; y; q

s

)g) [f(q

i;j

; y; q

s

)g

6. for each z 2 �, such that (q

i

; z; q

k

) 2 �

PA

and (q

j

; z; q

l

) 2 �

PA

:

merge transitions(PA; (q

i

; z; q

k

); (q

j

; z; q

l

); PA

new

);

7. if q

i

2 F

PA

old or q

j

2 F

PA

old , then

begin

F

PA

new

:= F

PA

new

[fq

i;j

g; �

PA

new

(q

i;j

) := �

PA

old (q

i

) [�

PA

old (q

j

);

end

8. if q

0;old

= q

i

then q

0;new

:= q

i;j

;

end

Algorithm 9: merge states

pre�x acceptor PA

new

. It works as follows: The two transitions, (q

i

; z; q

k

) and (q

j

; z; q

l

),

are deleted (Step 2). Then, the two states, q

k

and q

j

, have to be merged (Step 3). Finally,

the new transition (q

i;j

; z; q

k;l

) is added.

merge transitions(PA

old

; (q

i

; z; q

k

); (q

j

; z; q

l

); PA

new

)

begin

1. PA := PA

old

;

2. �

PA

:= �

PA

� f(q

i

; z; q

k

); (q

j

; z; q

j

)g

3. merge states(PA; q

k

; q

l

; PA

new

)

4. �

PA

new

:= �

PA

new

[f(q

i;j

; z; q

k;l

)g

end

Algorithm 10: merge transitions

Example The e�ect of reducing the complexity of the graph by merging states and

transitions, respectively, is illustrated with the acceptor PA

1

in Figure 8, which after

post-processing for b, is transformed to the acceptor PA

2

in Figure 9. PA

1

accepts the lan-

guage generated by the grammar G

1

= (V

1

;�

1

; P

1

; s) with PA

1

= fs! p

1

jp

2

jp

3

jp

4

; p

1

!

abc; p

2

! aca; p

3

! abca; p

4

! abcdg for the language

^

L(G

1

) = fabc; aca; abca; abcdg.

Again let b denote an irrelevant basic feature. Post-processing is to generalize

^

L(G

1

)

to the language

^

L(G

2

) = fab

�

c; ab

�

ca; ab

�

cdg. Applying the algorithm post proc to P

1

causes the states q

1

and q

2

to be merged. Given that, the transitions, which lead from q

2

to p

1

, and from q

1

to q

3

, respectively, and which are both labeled by c, have to be merged.

46 6 POST-PROCESSING CHAIN DATALOG PROGRAMS

p2

p1

q

q

q3

10q a
b

c

c

a

a

d

p

p

3

4

2

Figure 8: PA

1

p q1, 3

p4

p2,3

1,2q0q a
a

d

c

b

Figure 9: PA

2

This, in turn, requires to merge states p

1

and q

3

. The recursive call to merge transitions,

then causes the edges from p

1

to p

3

, and from q

3

to p

2

to be merged. The recursion ends,

when the states p

3

and p

2

have been merged. So, in this example, post-processing reduces

the number of states from 8 to 5, the number of edges from 7 to 5, and the max. depth of

a non-cyclic path from 4 to 3.

6.3 The post-processed chain Datalog program

The grammarG

00

, which is associated with acceptor PA

0

(see Figure 7) is G

00

= (V

00

;�

00

; P

00

; s),

with V

00

= fs; p

1

; p

2

; p

3

; p

4

; p

5

; q

b

�

; q

b

�

ab

�

; q

b

�

c

; q

b

�

cd

; q

b

�

ab

�

c

; q

b

�

cdab

�

; q

b

�

ab

�

cd

g, �

00

= fa; b; c; dg,

and the set P

00

of productions

s ! p

1

jp

2

jp

3

jp

4

jp

5

q

b

�

! b

q

b

�

ab

�

! a

q

b

�

c

! c

q

b

�

! q

b

�

b

q

b

�

ab

�

! q

b

�

a

q

b

�

c

! q

b

�

c

q

b

�

ab

�

! q

b

�

ab

�

b

q

b

�

ab

�

c

! q

b

�

ab

�

c

q

b

�

cd

! q

b

�

c

d

p

1

! q

b

�

ab

�

c

p

2

! q

b

�

ab

�

c

p

4

! q

b

�

cd

q

b

�

ab

�

cd

! q

b

�

ab

�

c

d

q

b

�

cdab

�

! q

b

�

cd

a

p

3

! q

b

�

ab

�

cd

p

5

! q

b

�

cdab

�

q

b

�

cdab

�

! q

b

�

cdab

�

b:

The program P

00

I

, which can be derived from these productions by transforming them

to elementary chain rules, and by introducing the variables Tr, O, and S at the appropriate

positions (see 4.3.4), is

q

b

�

(Tr;O; S;X; Y) ! b(Tr;O; S;X; Y): (31)

q

b

�

ab

�

(Tr;O; S;X; Y) ! a(Tr;O; S;X; Y): (32)

q

b

�

c

(Tr;O; S;X; Y) ! c(Tr;O; S;X; Y): (33)

q

b

�

(Tr;O; S;X; Y) ! q

b

�

(Tr;O; S;X;X

1

); b(Tr;O;S;X

1

; Y): (34)

q

b

�

ab

�

(Tr;O;S;X;Y)

! q

b

�

(Tr;O; S;X;X

1

); a(Tr;O; S;X

1

; Y): (35)

q

b

�

c

(Tr;O; S;X; Y) ! q

b

�

(Tr;O; S;X;X

1

); c(Tr;O;S;X

1

; Y): (36)

q

b

�

ab

�

(Tr;O; S;X; Y) ! q

b

�

ab

�

(Tr;O; S;X;X

1

); b(Tr;O; S;X

1

; Y): (37)

q

b

�

ab

�

c

(Tr;O; S;X; Y) ! q

b

�

ab

�

(Tr;O; S;X;X

1

); c(Tr;O;S;X

1

; Y): (38)

6.3 The post-processed chain Datalog program 47

q

b

�

cd

(Tr;O; S;X; Y) ! q

b

�

c

(Tr;O; S;X;X

1

); d(Tr;O; S;X

1

; Y): (39)

p

1

(Tr; S;X; Y) ! q

b

�

ab

�

c

(Tr;O; S;X; Y): (40)

p

2

(Tr; S;X; Y) ! q

b

�

ab

�

c

(Tr;O; S;X; Y): (41)

p

4

(Tr; S;X; Y) ! q

b

�

cd

(Tr;O; S;X; Y): (42)

q

b

�

ab

�

cd

(Tr;O; S;X; Y) ! q

b

�

ab

�

c

(Tr;O; S;X;X

1

); d(Tr;O; S;X

1

; Y): (43)

q

b

�

cdab

�

(Tr;O; S;X; Y) ! q

b

�

cd

(Tr;O; S;X;X

1

); a(Tr;O;S;X

1

; Y): (44)

p

3

(Tr; S;X; Y) ! q

b

�

ab

�

cd

(Tr;O; S;X; Y); (45)

p

5

(Tr; S;X; Y) ! q

b

�

cdab

�

(Tr;O; S;X; Y); (46)

q

b

�

cdab

�

(Tr;O; S;X; Y) ! q

b

�

cdab

�

(Tr;O; S;X;X

1

); b(Tr;O; S;X

1

; Y): (47)

Our claim is that post-processing increases the coverage (see De�nition 3 in Section 3)

of the set of target predicates in I. This claim is supported by the following lemma:

Lemma 4 Let P

0

I

be a program, which has been mapped to a pre�x acceptor PA. Let

PA

00

be the acceptor, which results from post-processing PA for some EDB predicates of

P

0

I

. Let P

00

I

be the chain Datalog program, which corresponds to PA

0

and I a set of target

predicates p

i

2 I � IDB(P

0

I

); IDB(P

00

I

). Then,

fp

i

(t

1

; : : : ; t

s

) j p

i

2 I and p

i

(t

1

; : : : ; t

s

) 2 T

!

P

0

I

(P

E

)g

�

fp

i

(t

1

; : : : ; t

s

) j p

i

2 I and p

i

(t

1

; : : : ; t

s

) 2 T

!

P

00

I

(P

E

)g;

i.e., the coverage of P

0

I

for the target predicates in I is a subset of the coverage of P

00

I

for

I: Cov

P

0

(I) � Cov

P

00

(I) with P

0

= P

0

I

[P

E

and P

00

= P

00

I

[P

E

.

Proof We have EDB(P

0

I

)=EDB(P

00

I

). Furthermore, consider the sets of predicate sym-

bols IDB(P

0

I

)�I and IDB(P

00

I

)�I. They correspond to the states of the pre�x acceptors

PA and PA

0

, respectively. Each state of PA

0

is either a state of the original PA or

a state which resulted from merging several states of PA. The post-processing method

guarantees, that each state of PA is merged into at most one state of PA

0

. Therefore,

there exists a mapping f from the predicate symbols IDB(P

0

I

)[EDB(P

0

I

) to the predicate

symbols IDB(P

00

I

)[EDB(P

00

I

) which is de�ned as follows

f(r) =

(

r if r 2 EDB(P

0

I

)=EDB(P

00

I

) or r 2 I

r

i

2 IDB(P

00

I

)�I if r 2 IDB(P

0

I

)�I:

For our example programs, P

0

I

and P

00

I

, this mapping is

f = f(p

i

; p

i

)jp

i

2 Ig [f(a; a)ja 2 EDB(P

0

I

)=EDB(P

00

I

)g [

f(q

a

; q

b

�

ab

�

); (q

b

; q

b

�

); (q

ab

; q

b

�

ab

�

); (q

bc

; q

b

�

c

); (q

abc

; q

b

�

ab

�

c

); (q

bcd

; q

b

�

cd

);

(q

abcd

; q

b

�

ab

�

cd

); (q

bcda

; q

b

�

cdab

�

); (q

bcdab

; q

b

�

cdab

�

)g:

If we apply this predicate renaming function to a rule C, we exchange each predicate

symbol according to the function f . We denote the result by f(C). Given that, for each

48 6 POST-PROCESSING CHAIN DATALOG PROGRAMS

rule C

0

2 P

0

I

, there exists a rule C

00

2 P

00

I

, such that f(C

0

) is a variant

9

of C

00

. As f is

the identity function for p

i

2 I and a 2 EDB(P

0

I

)=EDB(P

00

I

), it follows, that for each

�

B = p

i

(p

1

; : : : ; p

s

), if

�

B 2 T

!

P

0

I

(P

E

), then

�

B 2 T

!

P

00

I

(P

E

).2

6.4 Experiments

We have applied the method for structuring chain Datalog programs in pre�x (tree) accep-

tors and the method for post-processing the acceptors to the data of the robot navigation

domain developed within the BLearn-project. We worked with four data sets for four

environments, denoted P;Q;R, and S (see Figure 10, 11, 12, and 13).

Figure 10: Traces for

data set P

Figure 11: Traces for

data set Q

Figure 12: Traces for

data set R

Figure 13: Traces for

data set S

Each data set contains the measurements of 24 sonar sensors, which have been per-

ceived during seven traces

10

. In Figure 14, the sequence of sonar sensor measurements is

Figure 14: Sequence of sensor measurements

shown, which has been perceived by a sensor on the robot's left side during the trace in P ,

in which the robot moves diagonally along the doorway. Given the sonar sensor data, we

generated the examples E for the concepts to be learned, i.e., the sensor features. We ap-

plied the method, developed by Wessel [26], in order to calculate the basic features, which

constitute the background knowledge B for learning. The calculation of basic features is

guided by a parameter, which represents the tolerance within which successive gradients

of sensor measurements are considered to be approximately equal. This gradient is used

9

Clauses C

1

and C

2

are variants, if there exist substitutions � and � such that C

1

= C

2

� and C

2

= C

1

�

(see [11]).

10

The data has been provided by the University of Karlsruhe.

6.4 Experiments 49

to decide during the calculation, whether the measurement at a given time point is added

to the time interval for the previous measurements or to a new interval for the next ba-

sic feature. By considering the tendency of change of successive measurements, i.e., the

ratio between the values and not the absolute values themselves, we try to smooth out

the inaccuracies of the sensor measurements. The e�ect of calculating basic features with

Tolerance=6:

increasing(t7,75,s6,3,32).

no_measurement(t7,75,s6,32,53).

decreasing(t7,75,s6,53,59).

stable(t7,75,s6,59,65).

increasing(t7,75,s6,65,69).

something_happened(t7,75,s6,69,70).

increasing(t7,75,s6,70,85).

Tolerance=15:

increasing(t7,75,s6,3,32).

no_measurement(t7,75,s6,32,53).

stable(t7,75,s6,53,69).

increasing(t7,75,s6,69,85).

Figure 15: Di�erent ways of calculating basic features

di�erent parameters is shown in Figure 15 for the measurements in Figure 14. For each of

the four data sets, P;Q;R, and S, we have calculated the basic features with four di�erent

tolerance values, i.e., 6, 8, 10, and 15.

Given the examples E and the background knowledge B, i.e., the basic features calcu-

lated with one speci�c parameter value, we used for training the prefix tree method to

learn rules for deriving sensor features from basic features (see 4). In [10], we have already

shown, that due to the sensor noise, the coverage of these rules is not very high. For this

reason, we accepted rules, which covered at least one positive example. Then, we struc-

tured the rules in a pre�x tree acceptor. During the post-processing phase we applied the

procedure post proc for the two basic features no movement and something happened.

Given the examples E and the background knowledge B, i.e., the basic features cal-

culated with one speci�c parameter value, we performed the training, post-processing,

and testing phase four times with the training/test sets QRS=P , PRS=Q, PQS=R, and

PQR=S. So we used the data of three environments for learning and tested the results

with the data of the fourth environment. Thus, each row of Table 1 (and of Table 2),

PA before post-processing PA

0

after PP: Step 1 Step 2

BF-Param jTrainj jQj j�j Depth jQj Q

Red

j�j �

Red

Depth j�j

Tol=6 1215 438 437 9 149 65.9% 211 51.9% 6 447

Tol=8 1196 323 322 7 129 59.9% 170 47.1% 5 387

Tol=10 1176 287 286 7 120 58.3% 159 44.5% 5 358

Tol=15 1121 225 224 7 100 55.8% 133 40.5% 5 298

8 60.0% 46.0% 5

Table 1: Complexity of the pre�x acceptors before and after post-processing

which is indexed by a tolerance value contains the average results of four training/post-

processing/test runs. The tables with the detailed results can be found in Appendix A.5.

In Table 1, we present the results, which re
ect the improvements with respect to the

complexity of the acceptors, which we achieved by post-processing. BF-Param is the

value for the tolerance parameter, which was used to calculate the basic features. jTrainj

denotes the number of training examples. jQj is the number of states, j�j is the num-

ber of transitions, and Depth is the maximal depth of the pre�x acceptors before and

50 7 RESTRUCTURING, MARKER PASSING AND DECOMPOSITIONS

after post-processing. Q

Red

denotes the percentage, by which the number of states was

reduced, �

Red

the percentage by which the number of transitions was reduced via post-

processing. If we consider the columns for the PA before post-processing, we see that the

number of states and transitions decreases with increasing tolerance values. This re
ects

the fact, that the more sensitive the method for calculating basic features is, the longer

the sequence of basic features become, yielding rules with long premise chains and large

acceptors. After having performed the �rst post-processing step, we see, that also the re-

duction of the number of states and transitions decreases with increasing tolerance values.

The average reduction of 60% of the states and 46% percent of the transitions is notable

and justi�es the e�ort to perform the �rst post- processing step. Obviously, the second

one increases the complexity enormously. In Table 2, we present the results of testing the

No PP PP: Step 1 PP: Step 2

BF-Param jTrainj jTestj C

0

C

1

I

0;1

C

2

I

0;2

I

1;2

Tol=6 1215 405 59.9% 67.8% 7.9% 68.7% 8.8% 0.9%

Tol=8 1196 399 61.4% 67.6% 6.2% 68.4% 7.1% 0.9%

Tol=10 1176 392 61.3% 66.2% 4.9% 66.9% 5.6% 0.7%

Tol=15 1121 374 62.4% 66.2% 3.8% 68.2% 4.3% 0.5%

61.3% 67.0% 5.7% 68.1% 6.5% 0.8%

Table 2: Testing results before and after post-processing

learning results before and after post-processing. During the testing phase we used the

marker passing method, presented in Section 5, in order to derive sensor features from

the basic features in the test sets, and compared them with the testing examples. jTestj

denotes the number of testing examples, C

0

the percentage of correctly derived examples

before post-processing, C

1

the percentage after the �rst, and C

2

the percentage after the

second post-processing step. I

0;1

denotes the improvement, which we achieved by the �rst,

I

0;2

the one achieved by the second post-processing step, when compared to the testing

results before post-processing. I

1;2

denotes the improvement achieved by the second step

compared to the results of the �rst post-processing step. The percentage of correctly de-

rived test examples before post-processing increases with increasing tolerance values (see

column C

0

). After post-processing step 1, we have the opposite e�ect (see column C

1

).

We get the highest improvements for the case, that the basic features have been calculated

with tolerance 6. The average improvement, we get, is 5.7%. We get only slightly better

results for step 2. However, our claim, that the predictive power of the post-processed

program/acceptors is increased, is con�rmed. Obviously, the second post-processing step,

which increases the complexity of the acceptor enormously, does not pay o�, in terms of

the improvements of the predictive power. So, in order to summarize, we can say, that the

�rst post-processing step achieves good results in terms of the complexity and predictive

power.

7 Restructuring, Marker Passing and Decompositions

By mapping a set of chain Datalog rules to a pre�x acceptor, we have gained a compilation

of rules, which allows to optimize forward chaining inferences. In Appendix A.4, we have

51

added another example of a run of MP on the (post-processed) pre�x acceptor PA

0

in

Figure 7. In this section, we show that this way of proceeding is similar to decomposing

chain Datalog rules for query optimization (see the work by Dong and Ginsburg in [7]).

Consider the example program P

0

I

, which is the result of restructuring (see 4.3.2).

q

a

(Tr;O; S;X; Y) a(Tr;O; S;X; Y): (48)

q

b

(Tr;O; S;X; Y) b(Tr;O; S;X; Y): (49)

q

ab

(Tr;O; S;X; Y) q

a

(Tr;O; S;X

1

; X

2

); b(Tr;O;S;X

2

; Y): (50)

q

bc

(Tr;O; S;X; Y) q

b

(Tr;O; S;X

1

; X

2

); c(Tr;O; S;X

2

; Y): (51)

q

abc

(Tr;O; S;X; Y) q

ab

(Tr;O; S;X

1

; X

2

); c(Tr;O;S;X

2

; Y): (52)

q

bcd

(Tr;O; S;X; Y) q

bc

(Tr;O; S;X

1

; X

2

); d(Tr;O; S;X

2

; Y): (53)

p

1

(Tr; S;X; Y) q

abc

(Tr;O; S;X; Y): (54)

p

2

(Tr; S;X; Y) q

abc

(Tr;O; S;X; Y): (55)

p

4

(Tr; S;X; Y) q

bcd

(Tr;O; S;X; Y): (56)

q

abcd

(Tr;O; S;X; Y) q

abc

(Tr;O; S;X

1

; X

2

); d(Tr;O; S;X

2

; Y): (57)

q

bcda

(Tr;O; S;X; Y) q

bcd

(Tr;O; S;X

1

; X

2

); a(Tr;O;S;X

2

; Y): (58)

p

3

(Tr; S;X; Y) q

abcd

(Tr;O; S;X; Y): (59)

q

bcdab

(Tr;O; S;X; Y) q

bcda

(Tr;O; S;X

1

; X

2

); b(Tr;O; S;X

2

; Y): (60)

p

5

(Tr; S;X; Y) q

bcdab

(Tr;O; S; Y; Y): (61)

Based on the notion of dependent rules, we can decompose the rules of program P

0

I

into disjoint sets of rules.

De�nition 6 ([7]) Given a basic logic program P

I

and two rules C

1

; C

2

2 P

I

, C

1

is said

to depend on C

2

(in P

I

), denoted by C

1

�

P

I

C

2

, if either the predicate occurring in the

head of C

2

occurs in the body of C

1

, or there is a rule C 2 P

I

, such that C

1

�

P

I

C and

C �

P

I

C

2

.

The direct dependencies among the rules of P

0

I

are r61 �

P

I

0

r60 �

P

I

0

r58 �

P

I

0

r53 �

P

I

0

r51 �

P

I

0

r49, r59 �

P

I

0

r57 �

P

I

0

r52 �

P

I

0

r50 �

P

I

0

r48, r56 �

P

I

0

r53, r55 �

P

I

0

r52, and

r54 �

P

I

0

r52.

Similar to Dong and Ginsburg [7], we de�ne a program decomposition as follows:

De�nition 7 For a given set of IDB predicates I = fp

1

; : : : ; p

n

g �IDB(P

I

) of a basic

logic program P

I

a sequence P

I,1

: : :P

I,n

(n � 1) of programs is called a fp

1

; : : : ; p

n

g-

decomposition of P

I

if

fp

i

(t

1

; : : : ; t

n

) j p

i

2 I and p

i

(t

1

; : : : ; t

n

) 2 T

!

P

I,n

� : : : � T

!

P

I,1

(I)g

=

fp

i

(t

1

; : : : ; t

n

) j p

i

2 I and p

i

(t

1

; : : : ; t

n

) 2 T

!

P

I

(I)g

for interpretations I, which are restricted to be EDB instances of P

I

.

52 7 RESTRUCTURING, MARKER PASSING AND DECOMPOSITIONS

Here, � denotes a composition of mappings, where the component mappings are applied

from right to left. Each P

I,i

is called a component program or simply component of the

decomposition. Note, that P

I,1

[: : : [P

I,n

does not have to coincide with P

I

, i.e., new

predicates are introduced. In our case it is the program P

0

I

= P

I,1

[: : :[P

I,n

, which is the

result of applying the procedure restruct or restruct dc to the original program P

I

.

The method decompose (see Algorithm 11) �nds one possible decomposition of a

(restructured) program. The rules with no IDB predicates in their bodies are put into

the �rst component. Then, we repeat the following step until each rule has been assigned

to a component: Add to component i all rules, which depend direcly on some rule in

component i� 1.

decompose(P

I

)

begin

1. P

I,1

:= fCjC 2 P

I

and C

body

consists of EDB predicates only g;

2. ToDo := P

I

� P

I,1

;

3. i = 2;

4. while ToDo 6= ;

begin

P

I,i

:= fCjC 2 ToDo and C �

P

I

C

j

with C

j

2 P

I,i-1

g;

ToDo := ToDo �P

I,i

;

i := i + 1;

end

5. return P

I,1

: : :P

I,i-1

;

end

Algorithm 11: decompose

If we apply this method to P

0

I

, we get the components

P

I,1

= f r48; r49g

P

I,2

= f r50; r51g

P

I,3

= f r52; r53g

P

I,4

= f r54; r55; r56; r57; r58g

P

I,5

= f r59; r60g

P

I,6

= f r61g

P

I,1

contains the rules, which do not depend on any other rule of P

0

I

, P

I,2

contains the

rules, which depend directly on those in P

I,1

, P

I,3

contains the rules, which depend di-

rectly on those in P

I,2

, etc. For each interpretation I , which is an EDB instance for P

0

I

, the

minimum Herbrand model can be determined by �rst computing the �xpoint F1 of T

P

I,1

on I , followed by the �xpoint F2 of T

P

I,2

on F1, followed by the �xpoint F3 of T

P

I,3

on

F2, etc. There is no need to consider computations, where the rules in P

I,6

are applied

�rst, followed by the application of other rules. So the sequence P

I,1

; : : : ;P

I,6

is a de-

composition of program P

0

I

for the target predicates p

1

; : : : ; p

5

. Note, that decompositions

53

are not unique. The decompose-method �nds the one with maximal components. For the

post-processed programP

00

I

(see 6.2), decompose �nds the fp

1

; p

2

; p

3

; p

4

; p

5

g-decomposition

P

00

I,1

P

00

I,2

P

00

I,3

P

00

I,4

P

00

I,1

= f r31; r32; r33g

P

00

I,2

= f r34; r35; r36; r37; r38; r39g

P

00

I,3

= f r40; r41; r42; r43; r44g

P

00

I,4

= f r45; r46; r47g

The purpose of decompositions is to divide programs into smaller clusters, in order to

achieve more e�cient evaluations of programs. As a side-e�ect, some interactions among

rules may be removed. Here, it is the redundant evaluation of premise chains, which are

pre�xes of other premise chains. Separation of these interactions may also help a user to

better understand the programs. From a sequential processing point of view, each rule C

in a decomposition is evaluated after those, on which C depends. For example, rule r60 is

evaluated after rule r58, which is evaluated after rule r53, etc. From a parallel processing

point of view, if each rule in a component program is independent of any other rule in the

same component, they can be processed in parallel.

Now, assume that the robot perceives the sequence of ground basic feature predicates,

i.e., that the basic logic program P

0

I

= P

I,1

[: : : [P

I,n

gets as input the EDB instance

P

E

= fa(t1; 90; s5; 1; 8); b(t1; 90; s5; 8; 10); c(t1; 90; s5; 10; 15); d(t1; 90; s5; 15; 17)g:

Now, if we calculate T

!

P

I,6

�T

!

P

I,5

�T

!

P

I,4

�T

!

P

I,3

�T

!

P

I,2

�T

!

P

I,1

(P

E

) according to De�nition

7, we get

F1 = T

!

P

I,1

(P

E

) = P

E

[fq

a

(t1; 90; s5; 1; 8); q

b

(t1; 90; s5; 8; 10)g

F2 = T

!

P

I,2

(F1) = F1 [fq

ab

(t1; 90; s5; 1; 10); q

bc

(t1; 90; s5; 8; 15)g

F3 = T

!

P

I,3

(F2) = F2 [fq

abc

(t1; 90; s5; 1; 15); q

bcd

(t1; 90; s5; 8; 17)g

F4 = T

!

P

I,4

(F3) = F3 [fp

1

(t1; s5; 1; 15); p

2

(t1; s5; 1; 15); p

4

(t1; s5; 8; 17);

q

abcd

(t1; 90; s5; 1; 17)g

F5 = T

!

P

I,4

(F4) = F4 [fp

3

(t1; s5; 1; 17)g

F6 = T

!

P

I,5

(F5) = F5:

For this example, it is obvious, that

F5 = T

!

P

I,6

� T

!

P

I,5

� T

!

P

I,4

� T

!

P

I,3

� T

!

P

I,2

� T

!

P

I,1

(P

E

) = T

!

P

0

I

(P

E

) � T

!

P

I

(P

E

)

and that

fp

i

(tr; s; x; y) j p

i

2 I = fp

1

; p

2

; : : : ; p

5

g and

p

i

(tr; s; x; y) 2 T

!

P

I,6

� T

!

P

I,5

� T

!

P

I,4

� T

!

P

I,3

� T

!

P

I,2

� T

!

P

I,1

(P

E

)g

=

fp

i

(tr; s; x; y) j p

i

2 I = fp

1

; p

2

; : : : ; p

5

g and p

i

(tr; s; x; y) 2 T

!

P

I

(P

E

)g

= fp

1

(t1; s5; 1; 15); p

2

(t1; s5; 1; 15); p

3

(t1; s5; 1; 17); p

4

(t1; s5; 8; 17)g:

54 7 RESTRUCTURING, MARKER PASSING AND DECOMPOSITIONS

i.e., the IDB-portion of the minimum Herbrand model of the predicates p

1

; : : : ; p

5

in I is

the same, no matter whether we apply the T mapping for the whole program or sequentially

for its components. We show the validity of this relation in the following lemma:

Lemma 5 Let P

I

be a

� a non-recursive basic program with rules, in which the IDB-predicates occur only in

rule heads, to which we apply one of the restructuring methods, presented in 4.3, or

� a linear basic logic program with rules which have at most one EDB-subgoal,

then the method decompose generates a decomposition P

I,1

: : :P

I,n

such that

fp

i

(t

1

; : : : ; t

s

)jp

i

2 I and p

i

(t

1

; : : : ; t

s

) 2 T

!

P

I

(P

E

)g

=

fp

i

(t

1

; : : : ; t

s

)jp

i

2 I and p

i

(t

1

; : : : ; t

s

) 2 T

!

P

I,n

� : : : � T

!

P

I,1

(P

E

)g;

where I �IDB(P

I

).

Proof Remember, that the �xpoint T

!

P

I

(P

E

) can be determined in a �nite number of

steps. In Section 3, we de�ned T

0

P

I

for a given EDB instance P

E

to be T

0

P

I

(P

E

) = P

E

.

Note, that I �IDB(P

I

)�IDB(P

I,1

[: : :[P

I,n

). So, in order to show the �-part, it su�ces

to show T

!

P

I

(P

E

) � T

!

P

I,n

� : : : � T

!

P

I,1

(P

E

).

�: We show this part by induction on the number i of applications of the T

P

I

mapping,

necessary to calculate the �xpoint T

!

P

I

(P

E

).

If i = 1 and

�

B 2 T

1

P

I

(P

E

) with

�

B = p

r

(x

1

; : : : ; x

s

) where p

r

2 I � IDB(P

I

). Then,

there are two possibilities. The �rst is, that there exists a rule C 2 P

I

with one premise

and C� = (

�

B

�

A), such that

�

A 2 P

E

. The restructuring method does not change any

rules with one premise. So C 2 P

I,1

and

�

B 2 T

!

P

I,1

(P

E

). The other possibility is, that C

is a rule with more than one premise with C� = (

�

B

�

A

1

; : : : ;

�

A

n

) and

�

A

1

; : : : ;

�

A

n

2 P

E

.

During the restructuring phase C has been transformed to the rules (Q

1

 A

1

); (Q

2

Q

1

; A

2

); : : : ; (Q

l

 Q

l�1

; A

l

); (B Q

l

). Therefore,

�

B 2 T

!

P

I,l+1

� : : : � T

!

P

I,1

(P

E

). This

takes care of the induction basis.

Suppose, as the induction assumption, that T

i

P

I

(P

E

) � T

!

P

I,n

� : : :�T

!

P

I,1

(P

E

). Then,

we have to show the hypothesis T

i+1

P

I

(P

E

) � T

!

P

I,n

�: : :�T

!

P

I,1

(P

E

). Let

�

B = p

r

(x

1

; : : : ; x

s

)

and

�

B 2 T

i+1

P

I

(P

E

). Then, there exists a clause C 2 P

I

with C� = (

�

B

�

A

1

; : : : ;

�

A

l

) and

�

A

1

; : : : ;

�

A

l

2 T

i

P

I

(P

E

). According to the assumption,

�

A

1

; : : : ;

�

A

l

2 T

!

P

I,n

� : : :�T

!

P

I,1

(P

E

).

Consider the component T

P

I,t

; 1 � t < n, with C 2 T

P

I,t

. In order to be able to

apply C, we have to show, that the

�

A

1

: : :

�

A

l

are already in the set to which the T

P

I,t

mapping is applied or that they are added to the interpretation during the calculation of

the �xpoint T

!

P

I,t

. Assume the contrary, i.e.,

�

A

1

: : :

�

A

l

62 T

!

P

I,t

� : : : � T

!

P

I,1

(P

E

). Then,

55

either

�

A

1

: : :

�

A

l

62 T

!

P

I,n

� : : : � T

!

P

I,1

(P

E

), which is a contradiction to the assumption. Or

�

A

1

: : :

�

A

l

2 T

!

P

I,n

� : : : � T

!

P

I,1

(P

E

), but

�

A

1

: : :

�

A

l

are calculated only after the �xpoint

T

!

P

I,t

has been determined. From this follows, that for at least one

�

A

v

; v 2 f1; : : : ; lg,

there is a component P

I,v

with v > t, which contains a rule C

v

= (A

v

 C

body

). Clearly,

we have C � C

v

. This again leads to a contradiction, because according to our method

for determining the components, we have C 6� C

w

for each rule C in a given component

P

I,t

; 1 � t < n and any rule C

w

2 P

I,x

; t < x � n.

�: Again, it su�ces to show, that fp

i

(t

1

; : : : ; t

s

)jp

i

2 I � IDB(P

E

) and p

i

(t

1

; : : : ; t

s

) 2

T

!

P

I,n

� : : : �T

!

P

I,1

(P

E

)g � T

!

P

I

(P

E

). We show this part by induction on the number n of

components of the decomposition.

Case n = 1. Each rule C 2 P

I,1

for a predicate p

i

(X

1

; : : : ; X

s

) with p

i

2 I �IDB(P

I

) is

either a member of P

I

or it can be unfolded, yielding C

unfolded

with C

unfolded

2 P

I

. From

this follows, that fp

i

(t

1

; : : : ; t

s

)jp

i

2 I � IDB(P

E

) and p

i

(t

1

; : : : ; t

s

) 2 T

!

P

I,1

(P

E

)g �

T

!

P

I

(P

E

).

Case n > 1. For the induction basis, we have to show, that fp

i

(t

1

; : : : ; t

s

)jp

i

2 I �

IDB(P

E

) and p

i

(t

1

; : : : ; t

s

) 2 T

!

P

I,1

(P

E

)g � T

!

P

I

(P

E

). The component T

!

P

I,1

contains all

rules, which are independent of any other rule in P

I,1

[: : :[P

I,n

. All rules C 2 T

!

P

I,1

have

the form B A. Therefore, A has to be an atom over a predicate in EDB(P

I

). If B is an

atom over a predicate p

i

2 I �IDB(P

I

), then, according to the restructuring method, the

rule B A is also in P

I

. So if

�

B = p

r

(x

1

; : : : ; x

s

) with p

r

2 I � IDB(P

I

) and

�

B 2 T

!

P

I,1

,

then there exists a C 2 T

!

P

I,1

, with C� = (

�

B

�

A) and

�

A 2 P

E

. As C 2 P

I

, we also have

�

B 2 T

1

P

I

(P

E

), and therefore

�

B 2 T

!

P

I

(P

E

).

Let I

1;:::;j

; 1 < j � n denote the set fp

i

(t

1

; : : : ; t

s

)jp

i

2 I � IDB(P

E

) and p

i

(t

1

; : : : ; t

s

) 2

T

!

P

I,j

� : : :�T

!

P

I,1

(P

E

)g. Suppose, as the induction assumption, that I

1;:::;j

� T

!

P

I

(P

E

); 1 <

j < n. Then, we have to show the induction hypothesis I

1;:::;j+1

� T

!

P

I

(P

E

) with

I

1;:::;j+1

= fp

i

(t

1

; : : : ; t

s

)jp

i

2 I � IDB(P

E

) and p

i

(t

1

; : : : ; t

s

) 2 T

!

P

I,j+1

� : : :�T

!

P

I,1

(P

E

)g.

Let

�

B = p

r

(t

1

; : : : ; t

s

) with p

r

2 I � IDB(P

I

) and

�

B 2 I

1;:::;j+1

. Then, there are two pos-

sibilities. The �rst is, that

�

B 2 I

1;:::;j

and thus

�

B 2 T

!

P

I

(P

E

) according to the assumption.

If that is not the case, then there exists a C 2 T

P

I,j+1

, such that C� = (

�

B

�

A

1

; : : : ;

�

A

l

)

and

�

A

1

; : : : ;

�

A

l

2 T

r

P

I,j+1

� : : :�T

!

P

I,1

(P

E

); r < !. This rule C is either a member of P

I

or

it can be unfolded, such that C

unfolded

is a member of P

I

. From this follows, that

�

B will

also be in T

!

P

I

(P

E

). 2

With Lemma 2 (see 4.3.3), Theorem 1 and 2 (see 5.2), and Lemma 5, we have

MP

PA

(P

E

)

Theorems 1; 2

= fp

i

(t

1

; : : : ; t

s

)jp

i

2 I and p

i

(t

1

; : : : ; t

s

) 2 T

!

P

0

I

(P

E

)g

Lemma 2

= fp

i

(t

1

; : : : ; t

s

)jp

i

2 I and p

i

(t

1

; : : : ; t

s

) 2 T

!

P

I

(P

E

)g

Lemma 5

= fp

i

(t

1

; : : : ; t

s

)jp

i

2 I and p

i

(t

1

; : : : ; t

s

) 2 T

!

P

I,n

� : : : �T

!

P

I,1

(P

E

)g

56 7 RESTRUCTURING, MARKER PASSING AND DECOMPOSITIONS

Furthermore, we have

fp

i

(t

1

; : : : ; t

s

)jp

i

2 I and p

i

(t

1

; : : : ; t

s

) 2 T

!

P

I,1

(P

E

) = �

1

(C

1

PA

)

fp

i

(t

1

; : : : ; t

s

)jp

i

2 I and p

i

(t

1

; : : : ; t

s

) 2 T

!

P

I,2

� T

!

P

I,1

(P

E

)g = �

i

2

(C

i

2

PA

) [: : :[�

1

(C

1

PA

)

fp

i

(t

1

; : : : ; t

s

)jp

i

2 I and p

i

(t

1

; : : : ; t

s

) 2 T

!

P

I,3

� T

!

P

I,2

� T

!

P

I,1

(P

E

)g

= �

i

3

(C

i

3

PA

) [: : :[�

i

2

(C

i

2

PA

) [: : :[�

1

(C

1

PA

)

: : :

fp

i

(t

1

; : : : ; t

s

)jp

i

2 I and p

i

(t

1

; : : : ; t

s

) 2 T

!

P

I,n

� : : : � T

!

P

I,1

(P

E

)g

= �

k

(C

k

PA

) [: : :[�

1

(C

1

PA

) =MP

PA

(P

E

)

with 1 < i

2

< i

3

< : : : < k, where k is the length of the input chain P

E

.

The process of incrementally calculating the �xpoint of the T mapping, i.e., of calculat-

ing incrementally the minimum Herbrand model, can also be illustrated by the complete

derivation trees for p

1

(t1; s5; 1; 15), p

3

(t1; s5; 1; 17), and p

4

(t1; s5; 8; 17), which are pre-

sented in Figure 16, 17, and 18, respectively. The sequential application of the T

q (t1,90,s5,1,8)a

abq (t1,90,s5,1,10)

abcq (t1,90,s5,1,10)

1p (t1,s5,1,15),

a(t1,90,s5,1,8) b(t1,90,s5,8,10) c(t1,90,s5,10,15)

p (t1,s5,1,15)2

Figure 16: Derivation tree for p

1

(t1; s5; 1; 15)

mapping for the component programs and the passing forward of the marker in the pre�x

acceptor is equivalent to constructing the derivation trees incrementally from left to right

and bottom-up. This incremental construction is exactly simulated by the marker passing

method, which we have presented in Section 5. The di�erence is, that the marker passing

method does not calculate the IDB-portion of the minimum Herbrand model for the aux-

iliary IDB predicates q

i

2 IDB(P

0

I

) � I. Remember, that the order of the EDB facts in

P

E

corresponds to the relation �. Due to the syntactical characteristics of chain Datalog

programs, it can never happen, that, given the chain P

E

=

�

A

1

: : :

�

A

k

, some permuted sub-

sequence of it appears as the fringe of a complete derivation tree. So, the point we want to

make, is, that the compilation of a chain Datalog program into a pre�x acceptor and the

application of the marker passing method for e�cient forward inferences corresponds to

the decomposition of chain Datalog programs and to calculating the minimum Herbrand

model by calculating sequentially the �xpoint of the T mapping to the components of the

decomposition starting with a given an EDB-instance.

57

q (t1,90,s5,1,8)a

abq (t1,90,s5,1,10)

q (t1,90,s5,1,15)abc

abcdq (t1,90,s5,1,17)

3p (t1,s5,1,17)

a(t1,90,s5,1,8) b(t1,90,s5,8,10) c(t1,90,s5,10,15) d(t1,90,s5,15,17)

Figure 17: Derivation tree for p

3

(t1; s5; 1; 17)

q (t1,90,s5,8,10)b

q (t1,90,s5,8,15)bc

bcdq (t1,90,s5,8,17)

4p (t1,s5,8,17)

b(t1,90,s5,8,10) c(t1,90,s5,10,15) d(t1,90,s5,15,17)

Figure 18: Derivation tree for p

4

(t1; s5; 8; 17)

Related work Dong and Ginsburg have introduced uniform decompositions (see [6])

and p-decompositions (see [7]). A sequence P

I,1

: : :P

I,n

(n � 1) of programs is called a

uniform decomposition of program P

I

, if T

P

I,n

� : : : � T

P

I,1

(I) = T

P

I

(I) for every in-

terpretation I of P

I

. For a predicate p, a sequence P

I,1

: : :P

I,n

(n � 1) of programs is

called a p-decomposition of program P

I

, if fp(t

1

; t

2

)jp(t

1

; t

2

) 2 T

P

I,n

� : : : � T

P

I,1

(I)g =

fp(t

1

; t

2

)jp(t

1

; t

2

) 2 T

P

I

(I)g. Common to all types of decompositions is the ordered,

compositional manner of computation of the component programs. The di�erences be-

tween fp

1

; : : : ; p

n

g-decompositions, on one hand, and p-decompositions and uniform de-

compositions, on the other hand, are the following: Like p-decompositions, fp

1

; : : : ; p

n

g-

decompositions take as input only EDB instances of P

I

, whereas uniform decompositions

take as input interpretations of both, IDB and EDB predicates. The decompositions di�er

in the predicates, for which they "simulate" the original program P

I

: A uniform decompo-

sition "simulates" P

I

for every IDB predicate in IDB(P

I

), a p-decomposition "simulates"

P

I

only for one predicate p. Finally, fp

1

; : : : ; p

n

g-decompositions "simulate" P

I

for a sub-

set of IDB predicates fp

1

; : : : ; p

n

g � IDB(P

I

). Like p-decompositions, but in contrast

to uniform decompositions, fp

1

; : : : ; p

n

g-decompositions may use newly introduced pred-

icates, i.e., predicates not in EDB(P

I

) [IDB(P

I

). For example, the fp

1

; p

2

; p

3

; p

4

; p

5

g-

decomposition P

I,1

P

I,2

P

I,3

P

I,4

P

I,5

P

I,6

uses nine newly introduced predicates q

j

; j 2

58 8 CONCLUSIONS

PI

PCov I() ’PCov I() ’’PCov I()

()P
EMPPA’MPPA

()P
E

PI
’’

G

G’

G’’

PA

PA’

restruct
(fold)(unfold)

post_proc

prefix_tree

AcceptorsGrammars Programs

IP

PI
0

’

sort(unfold)

map

map

L(G)=L(G’) L(G’’)

=
|| ||

Figure 19: Summary

Prefix(

^

L(G)) = Prefix(

^

L(G

0

))� f�g.

8 Conclusions

8.1 Summary

Figure 19 gives an overview of the work presented in this paper. We started with a

non-recursive chain Datalog program P

0

I

, whose rules de�ne intensionally several target

concepts represented by the predicates with the symbols p

i

2 I � IDB(P

0

I

), which occur

only in rule heads. We have used the syntactical features of chain Datalog programs to

develop methods, which sort automatically the premise literals of a chain Datalog rule

according to the relations, � and ;, respectively. By sorting the premise literals and

by unfolding the rules for the IDB predicates in all possible ways, we can transform an

arbitrary non-recursive program P

0

I

to a non-recursive chain Datalog program P

I

with

sorted premise chains and with all its IDB predicates p

i

2 I � (P

I

) occurring in rule

8.2 Current and future work 59

heads only. We have used the correspondence between chain Datalog programs and CFGs

to characterize P

I

by the regular grammar G. The method prefix tree takes as input

a chain Datalog program of the above mentioned type, structures the rules in a pre�x

tree and maps the tree to a pre�x tree acceptor PA. We can obtain the same result,

if we restructure the program P

I

with one of the methods presented in 4.3. The rules

of the resulting program P

0

I

have a special form, which allowed us to de�ne a procedure

to map the rules directly to the pre�x acceptor and vice versa. Again, the restructured

program P

0

I

can be characterized by a regular left-linear grammar G

0

, which can also be

obtained from the transitions of the DFA accepting the language

^

L(G). The restructuring

methods do not change the coverage of the target concepts represented by the p

i

2 I,

i.e., Cov

P

(I) = Cov

P

0

(I). The goal of post-processing is to increase the coverage of

these target predicates. The method post proc transforms the PA by deleting non-cyclic

transitions for some EDB predicates, by merging the a�ected states and transitions, and

by introducing cyclic transitions. This is a generalization step. In terms of the grammar,

the language

^

L(G) =

^

L(G

0

) is generalized to

^

L(G

00

), such that

^

L(G) =

^

L(G

0

) �

^

L(G

00

),

where G

00

is the grammar corresponding to PA

0

. The post-processed acceptor PA

0

can

be mapped to a linear chain Datalog program P

00

I

(see De�nition 1), whose coverage is

a superset of the one of P

0

I

and P

I

, respectively, i.e., Cov

P

(I) = Cov

P

0

(I) � Cov

P

00

(I)

with P = P

I

[P

E

;P

0

= P

0

I

[P

E

and P

00

= P

00

I

[P

E

.

The original rules in P

I

are used to infer for a given ground chain P

E

via forward

inferences the higher-level concepts represented by p

i

2 I. The reasons for optimizing the

program and the inference procedure, respectively, are the pre�x e�ect and the ambiguities,

which require to match EDB facts redundantly with premise literals of several rules. We

have presented an e�cient marker passing method, which is sound and complete, i.e., its

success setMP

PA

(P

E

) for a given EDB instance P

E

is equal to the subset of the minimum

Herbrand model for the predicates in I of the extended program P = P

I

[P

E

, where P

I

is the program compiled in the respective pre�x acceptor.

With the restructuring methods we have contributed to the �eld of theory restruc-

turing, whose goal it is to transform a program without changing the coverage of the

learned concepts. We map pairs of existing terms to a new combined term, in order to

support more e�cient evaluations. These evaluations are realized by the marker passing

method MP. The post-processing phase is a generalization step in which the coverage of

the learned concepts is increased and the complexity of the pre�x acceptors is reduced.

Furthermore, we have shown the relation of rule structuring and marker passing, on one

hand, and program decompositions for query optimization of chain Datalog programs, on

the other hand. So our methods can be considered as e�cient implementations of the

theoretical concepts introduced by Dong, Ginsburg and others. Finally, we have applied

all the methods successfully to a robotics domain, thus contributing to applications of

machine learning methods to real-world domains.

8.2 Current and future work

The relation of the restructuring method to inverse resolution and inter-construction has

to be elaborated more formally, i.e., we have to show, that the selection of the variables

for the invented predicates preserves soundness and correctness.

The idea of rule structuring and marker passing can also be applied to the chain

60 8 CONCLUSIONS

Datalog programs for operational concepts (see, e.g., [22],[10]). Operational concepts are

de�ned in terms of perception-integrating action features (see Figure 1 in Section 2), which

de�ne the pre-condition for executing the concept, the action itself, and the post-condition,

which has to be satis�ed after executing the concept (see [22] for details and examples

of the chain Datalog rules, which have been learned with ILP algorithms). Plans can

be speci�ed as sequences of operational concepts, whose pre- and post-conditions may

overlap. Based on the idea, that chain Datalog programs correspond to CFGs (in our

case, regular languages), we have succeeded in specifying an automaton, which accepts

sequences of perception-integrating action features, which represent plans. Its �nal states

are associated with operational concepts. The graph structure of this automaton can

be used for a depth-bounded breadth-�rst search, as proposed by Klingspor. The depth

bound can be realized by specifying the maximal number of �nal states, which can be

visited during a plan. The point, we want to make here, is that this search can be

implemented by a modi�ed marker passing method, where the init and update functions

for the constraints have to be speci�ed for the respective data classes, i.e., operational

concepts and perception-integrating features.

Future work will also address the integration of the probabilities, estimated with the

method described in [20], in the logic programming framework. The goal is to modify

the marker passing method for the probabilistic case, such that it constitutes an inference

procedure for a probabilistic logic based on the semantics given by Ng and Subrahmanian

(see, e.g., [17]).

Acknowledgements The author would like to thank A. Hallmann and St. Weber for

discussions and constructive comments, which helped to clarify the ideas and to improve

this paper. Thanks to St. Wessel for providing the algorithm for calculating basic features.

St. Sklorz developed the perception-integrating action features and applied RDT to learn

the (chain Datalog) rules for operational concepts. K. Morik helped with comments for

comparing related approaches.

61

A Appendix

A.1 Algorithm prefix tree

prefix tree(Cases)

begin

Edges := ;;

V ertices := fRootNodeg ;

while Cases 6= ;

1. select [C

head

; L

1

; : : : ; L

n

] 2 Cases;

2. Cases := Cases � f[C

head

; L

1

; : : : ; L

n

]g;

3. CurrentNode := RootNode;

4. for i = 1; : : : ; n

if (CurrentNode; L;Next) 2 Edges such that L is uni�able with L

i

then

begin

(a) CurrentNode := update(CurrentNode; i; [C

head

; L

1

; : : : ; L

n

]);

(b) CurrentNode := Next;

(c) i:= i+1;

end

else begin

(a) NewNode :=new node;

(b) NewNode :=update node(NewNode; i; [C

head

; L

1

; : : : ; L

n

]);

(c) V ertices := V ertices [fNewNodeg;

(d) Edges := Edges [f(CurrentNode; L

i

; NewNode)g;

(e) CurrentNode := NewNode;

(f) i := i+ 1;

end

5. Q := V ertices;

6. � := fLj(q

i

; L; q

j

) 2 Edgesg;

7. Z := fCj9[C

head

; L

1

; : : : ; L

n

] 2 Cases and C is a variant of C

head

g;

8. � := Edges;

9. q

0

:= RootNode;

10. F = fqjq 2 V ertices and #CC(q) > 0g;

11. for all q 2 Q:

�(q) = fCjC is a variant of some C

head

with [C

head

; L

1

; : : : ; L

n

] 2 CC(q)g;

return (Q;�; Z;�; q

0

; F; �);

end

Algorithm 12: prefix tree

62 A APPENDIX

A.2 Algorithm restruct dc

restruct dc(P

I

)

begin

1. restruct init(P

I

; T oDo;Done);

2. restruct2 dc(ToDo;Done1);

3. return P

0

I

:= Done [Done1;

end

Algorithm 13: restruct dc

restruct2 dc(Rules;Done)

begin

1. Done := ;;

2. ToDo := Rules;

3. while there exists C 2 ToDo such that C = B A or C = B A

1

A

2

A

3

: : :A

n

if C = B A then

(a) Done := Done [fCg;

(b) ToDo := ToDo � fCg;

else

(a) det data class((A

1

; A

2

); ALevel);

(b) Constraints :=det constraints((A

1

; A

2

); ALevel);

(c) q :=new predicate symbol;

(d) Head := new atom(q; ALevel; Constraints);

(e) Done := Done [fHead A

1

; A

2

g;

(f) ToDo := fold(ToDo;Head A

1

; A

2

);

end

Algorithm 14: restruct2 dc

A.3 Auxiliary functions 63

A.3 Auxiliary functions

update node(Node; i; [C

head

; L

1

; : : : ; L

n

])

begin

if i < n then

#SC(Node) := #SC(Node) + 1; SC(Node) := SC(Node) [f[C

head

; L

1

; : : : ; L

n

]g;

else #CC(Node) := #CC(Node) + 1; CC(Node) := CC(Node) [f[C

head

; L

1

; : : : ; L

n

]g;

return Node;

end

Algorithm 15: Auxiliary functions for prefix tree

det constraints((A

1

; : : : ; A

n

); ALevel)

begin

switch ALevel =BF then

case BF:

return ftr

BF

= tr

BF

(A

1

); o

BF

= o

BF

(A

1

); s

BF

= s

BF

(A

1

); to

BF

= to

BF

(A

n

)g

case SF:

return f: : :g;

case : : :

end

new atom(ALevel; q; �

ALevel

)

begin

1. A:= generate an atom of data class ALevel with predicate symbol q;

2. add q to data class ALevel;

3. return A�

ALevel

;

end

Algorithm 16: Auxiliary functions for restruct dc

64 A APPENDIX

A.4 Marker Passing: Example run on PA

0

The pre�x acceptor PA

0

is illustrated in Figure 7, the EDB instance is the chain P

E

=

�

A

1

�

A

2

�

A

3

�

A

4

P

E

= fa(t1; 90; s5; 1; 8); b(t1; 90; s5; 8; 10); c(t1; 90; s5; 10; 15); d(t1; 90; s5; 15; 17)g:

Input:

�

A

1

= a(t1; 90; s5; 1; 8):

m

1

1

= (1; q

b

�

ab

�

; ftr

BF

= t1; o

BF

= 90; s

BF

= s5g; ffrom

BF

= 8g;

ftr

SF

= t1; s

SF

= s5; from

SF

= 1g; fto

SF

= 8g)

Input:

�

A

2

= b(t1; 90; s5; 8; 10):

m

2

1

= (1; q

b

�

ab

�

; ftr

BF

= t1; o

BF

= 90; s

BF

= s5g; ffrom

BF

= 10g;

ftr

SF

= t1; s

SF

= s5; from

SF

= 1g; fto

SF

= 10g)

m

2

2

= (2; q

b

�

; ftr

BF

= t1; o

BF

= 90; s

BF

= s5g; ffrom

BF

= 10g;

ftr

SF

= t1; s

SF

= s5; from

SF

= 8g; fto

SF

= 10g)

Input:

�

A

3

= c(t1; 90; s5; 10; 15):

m

3

1

= (1; q

b

�

ab

�

c

; ftr

BF

= t1; o

BF

= 90; s

BF

= s5g; ffrom

BF

= 15g;

ftr

SF

= t1; s

SF

= s5; from

SF

= 1g; fto

SF

= 15g)

m

3

2

= (2; q

b

�

c

; ftr

BF

= t1; o

BF

= 90; s

BF

= s5g; ffrom

BF

= 15g;

ftr

SF

= t1; s

SF

= s5; from

SF

= 8g; fto

SF

= 15g)

Output: MP(

�

A

1

�

A

2

�

A

3

) = fp

1

(t1; s5; 1; 15); p

2

(t1; s5; 1; 15)g

Input:

�

A

4

= d(t1; 90; s5; 15; 17):

m

4

1

= (1; q

b

�

ab

�

cd

; ftr

BF

= t1; o

BF

= 90; s

BF

= s5g; ffrom

BF

= 17g;

ftr

SF

= t1; s

SF

= s5; from

SF

= 1g; fto

SF

= 17g)

m

4

2

= (2; q

b

�

cd

; ftr

BF

= t1; o

BF

= 90; s

BF

= s5g; ffrom

BF

= 17g;

ftr

SF

= t1; s

SF

= s5; from

SF

= 8g; fto

SF

= 17g)

Output: MP(

�

A

1

�

A

2

�

A

3

�

A

4

) = fp

3

(t1; s5; 1; 17); p

4

(t1; s5; 8; 17)g

A.4 Marker Passing: Example run on PA

0

65

1 1

p2(t1,s5,1,15)
p1(t1,s5,1,15)

a(t1,90,s5,1,8)

Input:

d(t1,90,s5,15,17)c(t1,90,s5,10,15)b(t1,90,s5,8,10)

p3(t1,s5,1,17)

c/5

d/5

a/5

b/5

a/5

b/5

c/5

d/5

b/5

c/5

d/5

a/5

b/5

a/5

b/5

c/5

d/5

b/5

c/5

d/5

a/5

b/5

a/5

b/5

d/5

b/5

c/5

d/5

a/5

b/5

a/5

b/5

c/5

d/5

b/5

c/5

1

2

2

2

1

Output: p4(t1,s5,8,17)

Figure 20: Example 2

66 A APPENDIX

A.5 Post-Processing: Experimental Results

A.5.1 Complexity Results

No Post-processing Post-processing: Step 1 Step 2

Train jTrainj jQj jF j j�j Depth jQj Q

Red

jF j j�j �

Red

Depth j�j

QRS 1185 408 268 407 9 141 65.4% 116 193 52.6% 6 422

PRS 1183 457 298 456 9 157 65.6% 130 219 52.0% 6 470

PQS 1220 428 279 427 8 145 66.1% 119 208 51.3% 6 434

PQR 1272 459 305 458 9 154 66.4% 128 222 51.5% 6 461

1215 438 288 437 9 149 65.9% 123 211 51.9% 6 447

Table 3: Pre�x acceptors for basic features calculated with Tolerance = 6

No Post-processing Post-processing: Step 1 Step 2

Train jTrainj jQj jF j j�j Depth jQj Q

Red

jF j j�j �

Red

Depth j�j

QRS 1163 307 228 306 7 123 59.9% 106 161 47.4% 5 368

PRS 1167 343 245 342 7 135 60.6% 110 175 48.8% 5 404

PQS 1201 312 230 311 7 125 59.9% 102 166 46.6% 5 374

PQR 1254 328 245 327 7 134 59.1% 110 178 45.6% 5 401

1196 323 237 322 7 129 59.9% 107 170 47.1% 5 387

Table 4: Pre�x acceptors for basic features calculated with Tolerance = 8

No Post-processing Post-processing: Step 1 Step 2

Train jTrainj jQj jF j j�j Depth jQj Q

Red

jF j j�j �

Red

Depth j�j

QRS 1143 274 195 273 7 110 59.9% 92 146 46.5% 5 329

PRS 1146 304 211 303 7 125 58.9% 101 162 46.5% 5 374

PQS 1183 285 205 284 7 122 57.2% 98 163 42.6% 5 365

PQR 1232 283 206 282 7 121 57.2% 98 163 42.2% 5 362

1176 287 204 286 7 120 58.3% 97 159 44.5% 5 358

Table 5: Pre�x acceptors for basic features calculated with Tolerance = 10

No Post-processing Post-processing: Step 1 Step 2

Train jTrainj jQj jF j j�j Depth jQj Q

Red

jF j j�j �

Red

Depth j�j

QRS 1093 213 158 212 7 93 56.3% 80 125 41.0% 5 278

PRS 1091 239 171 238 7 101 57.7% 83 135 43.3% 5 302

PQS 1121 232 172 231 7 103 55.6% 83 137 40.7% 5 308

PQR 1177 217 165 216 6 101 53.5% 83 136 37.0% 5 302

1121 225 167 224 7 100 55.8% 82 133 40.5% 5 298

Table 6: Pre�x acceptors for basic features calculated with Tolerance = 15

A.5 Post-Processing: Experimental Results 67

A.5.2 Testing Results

No PP PP: Step 1 PP: Step 2

Train Test jTrainj jTestj C

0

C

1

I

0;1

C

2

I

0;2

I

1;2

QRS P 1185 435 63.2% 69.9% 6.7% 72.6% 9.4% 2.7%

PRS Q 1183 437 67.5% 74.8% 7.3% 75.3% 7.8% 0.5%

PQS R 1220 400 52.3% 60.5% 8.2% 61.0% 8.7% 0.5%

PQR S 1272 348 56.6% 65.8% 9.2% 65.8% 9.2% 0.0%

1215 405 59.9% 67.8% 7.9% 68.7% 8.8% 0.9%

Table 7: Testing results for basic features calculated with Tolerance = 6

No PP PP: Step 1 PP: Step 2

Train Test jTrainj jTestj C

0

C

1

I

0;1

C

2

I

0;2

I

1;2

QRS P 1163 432 66.2% 72.7% 6.5% 75.5% 9.3% 2.8%

PRS Q 1167 428 70.1% 74.8% 4.7% 75.2% 5.1% 0.4%

PQS R 1201 394 52.8% 59.4% 6.6% 59.6% 6.8% 0.2%

PQR S 1254 341 56.3% 63.3% 7.0% 63.3% 7.0% 0.0%

1196 399 61.4% 67.6% 6.2% 68.4% 7.1% 0.9%

Table 8: Testing results for basic features calculated with Tolerance = 8

No PP PP: Step 1 PP: Step 2

Train Test jTrainj jTestj C

0

C

1

I

0;1

C

2

I

0;2

I

1;2

QRS P 1143 425 65.7% 70.6% 4.9% 72.9% 7.2% 2.3%

PRS Q 1146 422 69.2% 73.0% 3.8% 73.5% 4.3% 0.5%

PQS R 1183 385 55.6% 60.8% 5.2% 60.8% 5.2% 0.0%

PQR S 1232 336 54.8% 60.4% 5.6% 60.4% 5.6% 0.0%

1176 392 61.3% 66.2% 4.9% 66.9% 5.6% 0.7%

Table 9: Testing results for basic features calculated with Tolerance = 10

No PP PP: Step 1 PP: Step 2

Train Test jTrainj jTestj C

0

C

1

I

0;1

C

2

I

0;2

I

1;2

QRS P 1093 401 67.1% 71.6% 4.5% 73.6% 6.5% 2.0%

PRS Q 1091 403 70.2% 73.0% 2.8% 73.0% 2.8% 0.0%

PQS R 1121 373 57.4% 60.9% 3.5% 60.9% 3.5% 0.0%

PQR S 1177 317 54.9% 59.3% 4.4% 59.3% 4.4% 0.0%

1121 374 62.4% 66.2% 3.8% 68.2% 4.3% 0.5%

Table 10: Testing results for basic features calculated with Tolerance = 15

68 REFERENCES

References

[1] D. Angluin. Inference of reversible languages. Journal of the Association for Com-

puting Machinery, 29:741{765, 1982.

[2] K. R. Apt and M. H. van Emden. Contributions to the theory of logic programming.

Journal of the Association for Computing Machinery, 29:841{862, 1982.

[3] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases. Springer-

Verlag, 1990.

[4] Ch.-L. Chang and R. Ch. Lee. Symbolic Logic and Mechanical Theorem Proving.

Academic Press, 1973.

[5] E. Charniak. Passing markers: A theory of contextual in
uence in language compre-

hension. Cognitive Science, 7, 1983.

[6] G. Dong and S. Ginsburg. On the decomposition of datalog program mappings.

Theoretical Computer Science, 75:143{177, 1990.

[7] G. Dong and S. Ginsburg. On decompositions of chain Datalog programs into p

(left-)linear 1-rule components. Journal of Logic Programming, 23:203{236, 1995.

[8] J. A. Hendler. Integrating marker-passing and problem solving. In A. Tate J. Allen,

J. Hendler, editor, Readings in Planning, pages 275{287. Morgan Kaufmann, 1990.

[9] J. D. Ullman J. E. Hopcroft. Introduction to Automata Theory, Languages, an Com-

putation. Addison-Wesley, 1979.

[10] V. Klingspor, K. Morik, and A. Rieger. Learning concepts from sensor data of a

mobile robot. Machine Learning, 1996. to appear.

[11] J. W. Lloyd. Foundations of Logic Programming. Springer Verlag, 2nd edition, 1987.

[12] K. Morik, St. Wrobel, J. U. Kietz, and W. Emde. Knowledge Acquisition and Machine

Learning: Theory, Methods, and Applications. Addison Wesley, 1993.

[13] S. Muggleton. Inverse entailment and Progol. New Generation Computing Journal,

13:245{286, 1995.

[14] S. Muggleton and W. Buntine. Machine invention of �rst-order predicates by inverting

resolution. In S. Muggleton, editor, Inductive Logic Programming, 1992.

[15] S. H. Muggleton. Duce, an oracle based approach to constructive induction. In

Proc. of the 10th Int. Joint Conf. on Arti�cial Intelligence, Los Altos, 1987. Morgan

Kaufmann.

[16] St. Muggleton and C. Feng. E�cient induction of logic programs. In St. Muggleton,

editor, Inductive Logic Programming, chapter 13, pages 281{298. Academic Press,

1992.

REFERENCES 69

[17] V.S. Subrahmanian R. Ng. A semantical framework for supporting subjective and

conditional probabilities in deductive databases. Journal of Automated Reasoning,

10:191{235, 1993.

[18] A. S. Rao. Means-end plan recognition - towards a theory of reactive recognition. In

J. Doyle, E. Sandewall, and P. Torasso, editors, Proc. 4th Int. Conf. on Principles of

Knowledge Representation and Reasoning, pages 497{508, 1994.

[19] A. Rieger. Inferring probabilistic automata from sensor data for robot navigation.

In M. Kaiser, editor, Proc. of the 3rd European Workhop on Learning Robots, 1995.

also available as Research Report 18, FB Informatik LS 8, Universit�at Dortmund,

Dortmund, Germany.

[20] A. Rieger. Learning to guide a robot via perceptions. In M. Ghallab, editor, Procs.

of the 3rd European Workshop on Planning. IOS Press, 1996.

[21] C. Rouveirol. Extensions of inversion of resolution applied to theory completion. In

Inductive Logic Programming, pages 63{92. Academic Press, 1992.

[22] St. Sklorz. Representing and learning operational concepts. Master's thesis, Univer-

sit�at Dortmund, 1995. in German.

[23] E. Sommer. FENDER : An approach to theory restructuring. In N. Lavra�c and St.

Wrobel, editors, Proc. of the European Conference on Machine Learning (ECML-95),

pages 356{359. Springer Verlag, 1995.

[24] J. D. Ullman and A. van Gelder. Parallel complexity of logical query programs.

Algorithmica, 3:5{42, 1988.

[25] M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as program-

ming language. Journal of the Association for Computing Machinery, 23:733{742,

1976.

[26] St. Wessel. Learning qualitative features from numerical robot sensor data. Master's

thesis, Universit�at Dortmund, 1995. in German.

[27] R. Wirth. Completing logic programs by inverse resolution. In K. Morik, editor, Proc.

Fourth European Workong Session on Learning (EWSL), pages 239{250. Morgan

Kaufmann, 1989.

[28] S. Wrobel. Concept Formation and Knowledge Revision. Kluwer Academic Publishers,

1994.

