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Abstract

When learning from very large databases, the reduction of complexity
is of highest importance. Two extremes of making knowledge discovery in
databases (KDD) feasible have been put forward. One extreme is to choose
a most simple hypothesis language and so to be capable of very fast learning
on real-world databases. The opposite extreme is to select a small data set
and be capable of learning very expressive (�rst-order logic) hypotheses. We
have combined inductive logic programming (ILP) directly with a relational
database. The tool exploits a declarative speci�cation of the syntactic form of
hypotheses. We indicate the impact of di�erent mappings from the learner's
representation to the one of the database on the complexity of learning. We
demonstrate, how background knowledge can be structured and integrated
into our learning framework. We conclude with discussing results from �rst
tests.

1 Introduction

Knowledge discovery in databases (KDD) is an application challenging machine
learning because it has high e�ciency requirements with yet high understandability
and reliability requirements. First, the learning task is to �nd all valid and non{
redundant rules (rule learning). This learning task is more complex than the concept
learning task as was shown by Uwe Kietz [11]. To make it even worse, second, the
data sets for learning are very large.

Two extremes of making KDD feasible have been put forward. One extreme is to
choose a most simple hypothesis language and to be capable of very fast learning on
real-world databases. Fast algorithms have been developed that generalize attribute
values and �nd dependencies between attributes. These algorithms are capable of
directly accessing a database, i.e. the representation language LE is the language of
the database. The Apriori and AprioriTid algorithms �nd association rules that
determine subsets of correlated attribute values. Attribute values are represented
such that each attribute value becomes a Boolean attribute, indicating whether the
value is true or false for a certain entity [1]. Rules are formed that state: If a set of
attributes is true, then also another set of attributes is true.

As all combinations of Boolean attributes have to be considered, the time com-
plexity of the algorithm is exponential in the number of attributes. However, in
practice the algorithm takes only 20 seconds for 100 000 tuples1.

1In [1] the authors present a series of experiments with the algorithms and give a lower bound
for �nding an association rule.
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Other fast learning algorithms exploit given hierarchies and generalize attribute
values by climbing the hierarchy [15], merging tuples that become identical, and
drop attributes with too many distinct values that cannot be generalized. The result
are rules that characterize all tuples that have a certain value of attribute A in terms
of generalized values of other attributes [5]. Similarly, the Kid3 algorithm discovers
dependencies between values of two attributes using hierarchies from background
knowledge [19]. The result is a set of rules of the form

A = a0 ! cond(B)

where a0 is a generalized attribute value (i.e,. it covers a set of attribute values) of
attribute A.

It is easy to see that more complex dependencies between several attributes can-
not be expressed (and, hence, cannot be learned) by these fast algorithms. In par-
ticular, relations between attribute values of di�erent attributes cannot be learned.
For instance, learning a rule stating that: If the value of A � the value of B then
the value of C = c requires the capability of handling relations. Hence, these fast
learning algorithms trade in expressiveness for the capability of dealing with very
large data sets.

The other extreme of how to make KDD feasible is to select a small subset from
the data set and learn complex rules. This option is chosen by most algorithms of
inductive logic programming (ILP), which are applied to the KDD problem. The
rule learning task has been stated within the ILP paradigm by Nicolas Helft [8]
using the logic notion of minimal models of a theory M+(Th) �M(Th):

Given observations E in a representation language LE and background knowledge
B in a representation language LB,

�nd the set of hypotheses H in LH, which is a (restricted) �rst-order logic, such
that

(1) M+(B [ E) �M(H)

(2) for each h 2 H there exists e 2 E such that B; E�feg 6j= e and B; E�feg; h j= e
(necessity of h)

(3) for each h 2 LH satisfying (1) and (2), it is true that H j= h (completeness of
H)

(4) H is minimal.

This learning task is solved by some inductive logic programming (ILP) systems
(e.g., Rdt [12],Claudien [6]), Linus [13] and Index [7]). The learning task itself is
not restricted to learning from databases. However, for the application to databases
the selected tuples have to be re{represented as (Prolog) ground facts. This time
consuming work has to be redone, whenever the chosen representation turns out
to be inadequate. One advantage of our chosen approach is, that we only have to
re{represent the mapping of predicates to database relations, and the data stays
unchanged in the database. In general, ILP algorithms trade in the capability to
handle large data sets for increased expressiveness of the learning result. We aim
at learning from existing databases directly.

The paper is organized as follows. First, the Rdt algorithm is summarized and
it is shown how we enhanced it to become Rdt/db which directly accesses relational
databases via Sql. The time complexity of Rdt/db is presented in terms of the
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size of its hypothesis space. The analysis of the hypothesis space indicates, where
to further structure the hypothesis space in order to make learning from very large
data sets feasible. Second, we present the integration of background knowledge
into the learning process and its explicit representation in the database. Third, we
discuss our approach with respect to related work and applications. We argue that
relational learning with a direct database access is important and feasible for KDD
applications.

2 Applying ILP to Databases

ILP rule learning algorithms are of particular interest in the framework of KDD
because they allow the detection of more complex rules than the ones presented
above. Until now, however, they have not been applied to commonly used relational
database systems. Since the demand of KDD is to analyze the databases that are
in use, we have now enhanced Rdt to become Rdt/db, the �rst ILP rule learner
that directly interacts with a database management system.

The Interaction Model

For Rdt/db we have developed an interaction model between the learning tool and
the Oracle V7 database management system.

The data dictionary of the database system informs about the relations, attrib-
utes and their data types, and the keys of the database relations. This information is
used in order to map database relations and attributes to predicates ofRdt/db's hy-
pothesis language. Note, that only predicate names and arity are stored in Rdt/db
as predicate declarations, not a transformed version of the database entries! Hypo-
thesis generation is then performed by the learning tool, instantiating rule schemata
top-down breadth-�rst.

For hypothesis testing, Sql queries are generated by the learning tool and sent
to the database system. The coupling is realised by a TCP/IP connection between
Oracle and the learning tool. An interface between Prolog, the programming
language in which Rdt/db is implemented, and Oracle has been written in C.
This approach of loosely coupling both systems has several advantages. It allows
us to use two machines, one dedicated database server and one machine for the
learning tool. Since we only transmit Sql queries, whose answer set consists of
only one number, the network connection will not tend to be a bottleneck. The use
of Sql as a query language gives us the opportunity to access almost any commercial
database systems, without changing the learning tool.

RDT/DB

Rdt/db uses the same declarative speci�cation of the hypothesis language as Rdt
does in order to restrict the hypothesis space, see for details [12]. The speci�cation
is given by the user in terms of rule schemata. A rule schema is a rule with predicate
variables (instead of predicate symbols). In addition, arguments of the literals can
be designated for learning constant values. A simple example of a rule schema is:

mp two c(P1; P2; P3; C) : P1(X1; C)&P2(Y;X1)&P3(Y;X2)! P1(X2; C)

Here, the second argument of the conclusion and the second argument of the �rst
premise literal is a particular constant value that is to be learned.
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Rdt/db(Q)
set RS and LEAVES to ;
for all known rule models R do

if the conclusion C is uni�able with Q then push R�; � = fC/Qg, on RS
endfor

while RS 6= ; do
pop a most general (wrt. �RS) rule model R from RS
instantiate-and-test(R, TOO-GENERAL)
for all X 2 RS, X �� R do

pop X from RS
for all Y 2 TOO-GENERAL do

for all really di�erent � : Y� �RS X � do
push X� on RS

endfor

endfor

endfor

endwhile

Figure 1: Rdt/db top{level loop

For hypothesis generation, Rdt/db instantiates the predicate variables and the
arguments that are marked for constant learning. A fully instantiated rule schema
is a rule. An instantiation is, for instance,

region(X1; europe)&licensed(Y;X1)&produced(Y;X2) ! region(X2; europe)

In the example, it was found that the cars which are licensed within Europe have
also been produced within Europe.

The rule schemata are ordered by generality: for every instantiation of a more
general rule schema there exist more special rules as instantiations of a more special
rule schema, if the more special rule schema can be instantiated at all. Hence,
the ordering re
ects the generality ordering of sets of rules. This structure of the
hypothesis space is used when doing breadth-�rst search for learning. Breadth-�rst
search allows to safely prune branches of sets of hypotheses that already have too
few support in order to be accepted.

Figures 1 and 2 show the pseudocode skeleton of the Rdt/db algorithm, which
remained the same as in Rdt (cf. [17][Chap. 6]). RS and LEAVES represent the
search status. At the beginning, RS contains all rule models, which conclusions
are uni�able with Q. These rule models will be instantiated and tested breadth
�rst according to �RS (�-subsumption de�ned on rule models). The data structure
LEAVES stores all hypotheses, which are either accepted or too special. Predicate
variables P in rule models will be instantiated according to �P , an ordering which
re
ects the linkage of the variables of that model. Predicates which are uni�able
with the predicate variable P have to be compatible with the de�ned topology (if any
is de�ned), and more important they have to be sort compatible with instantiated
predicates of that hypothesis.

In our database setting sort compatible is equivalent with type compatible,
if we do not have any other information. Types are e.g. NUMBER, DATE, or
VARCHAR2. But if we have a more �ne grained sort or type hierarchy as addi-
tional background knowledge, it will be used instead.
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instantiate-and-test(HYPO, TOO-GENERAL)
while HYPO 6= ; do

pop a hypothesis H from HYPO;
if there are premises with uninstantiated predicates in H
then let PREM be the smallest (wrt. �P ) premise and P its predicate;

for all predicates p which are arity compatible with P and topology
compatible with the conclusion of H and sort compatible with H do

set H to H�; � =fP/pg;
test(H);

endfor

else select a constant T to learn with smallest �(T);
for all terms t suitable for T do

set H to H�; � =fT/tg;
test(H)

endfor

endif

endwhile

test(H)
if the instantiated part of H is not a specialization (��) of an element of LEAVES
then test the instantiated part of H on the database

if H is not too special (i.e. is acceptable)
then if all premises of H are instantiated

then if H is acceptable wrt. all criteria
then push H onto LEAVES;

assert H in the KB
else push H onto TOO-GENERAL

else push H onto HYPO
else push H onto LEAVES

endif

Figure 2: Rdt/db instantiate-and-test subroutine

In the next step, the (partly) instantiated rule model will be tested on the
database, i.e. we compute the acceptance criterion. If the hypothesis is too special,
it will be inserted into LEAVES. Otherwise not fully instantiated hypotheses will
be inserted into HYPO for further instantiations later on. Fully instantiated and
accepted hypotheses will be inserted into LEAVES, rejected hypotheses wrt. the
acceptance criterion are too general and will be inserted into TOO-GENERAL.

A rule is tested by Sql SELECT{statements. For instance, the number of sup-
porting tuples, pos(H), for the rule above is determined by the following statement:

SELECT COUNT (*)

FROM vehicles veh1, vehicles veh2,

regions reg1, regions reg2

WHERE reg1.place = veh1.produced_at

and veh1.ID = veh2.ID

and veh2.licensed = reg2.place

and reg1.region = 'europe'

and reg2.region = 'europe';
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The number of contradicting tuples, neg(H), is determined by the negation of the
condition which correspond to the rule's conclusion:

SELECT COUNT (*)

FROM vehicles veh1, vehicles veh2,

regions reg1, regions reg2

WHERE reg1.place = veh1.produced_at

and veh1.ID = veh2.ID

and veh2.licensed = reg2.place

and reg2.region = 'europe'

and not reg1.region = 'europe';

The database with two relations being:

vehicles:

ID produced at licensed

�n 123 stuttgart ulm
�n 456 kyoto stuttgart
: : : : : : : : :

regions:

place region

stuttgart europe
ulm europe
kyoto asia

The counts for pos(H), the number of supporting tuples, neg(H), the number of
contradicting tuples, and concl(H), the number of all tuples for which the conclusion
predicate of the hypothesis holds, are used for calculating the acceptance criterion
for fully instantiated rule schemata.

As this example implies, Rdt/db is able to handle negative examples. These
are either explicitly stored in the database or implicitly, computed by the Sql view
statement. In our vehicle application, \negative" facts are for instance those cars,
which do not have a fault. They will be constructed by a view, which computes
the di�erence from the table with information about all cars, and the table with
information about cars, which have a fault. Since the result of every view is a
\virtual table", they underlie the same mapping procedure as every table, see below.
Using mapping 1, we have for example faulty(ID) and notfaulty(ID). Then it is
up to the user to state that notfaulty(ID) = not(faulty(ID)). Obviously, negative
facts are not restricted to appear only in the conclusion, but they can also appear
in the premise of rules.

No matter how we build negative examples, we have to generate two Sql queries,
one for counting pos(H) and one for neg(H). As is the case in Rdt, the user can
either specify a pruning criterion and an acceptance criterion or only one of them. In
the latter case the other criterion will be computed automatically. However, as long
as only partially instantiated rule schemata will be tested and if a separate pruning
criterion is de�ned, which is advisable, we can save one Sql query, namely com-
puting neg(H). A typical pruning criterion would be pos(H) � 100, saying do not
accept hypotheses which do not cover at least 100 examples. Only if we test a fully
instantiated rule schema which is not to special, according to the pruning criterion,
we have to compute the acceptance criterion, i.e. compute neg(H). Here, a typical
example for an acceptance criterion is (pos(H)=concl(H)�neg(H)=concl(H)) � 0:8.
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The acceptance criterion enables the user to enforce di�erent degrees of reliab-
ility of the learning result, or, to put it the other way around, tolerate di�erent
degrees of noise.

Furthermore and like in Rdt the user can use the �gures predicted and total
in his acceptance and pruning criteria. Predicted counts the number of conclusion
instances, which are neither true nor false, and total equals pos + neg + predicted.
But he must be aware of one very important consequence of doing this. The �g-
ure which will be counted on the database is always total, and predicted will be
computed as in the formula above. This means, that only tables, which correspond
to the premise literals will be joined for computing total. However this is not al-
ways possible, and then the Cartesian product has to be used, which is a very bad
idea. Thus computing these �gures is disabled by default. Let us consider the rule
p(A;C) & q(B;D) ! r(A;B). For counting total, we cannot use a join, because
table r is not part of the query and therefore the join condition r:A = p:A and
r:B = q:B is missing. If these two measures predicted and total are needed, then
the user has to ensure that the variables in the conclusion predicates are still linked.

On the other hand, this is not a serious limitation, because we consider the rule
learning task, and not the classi�cation and prediction learning problem.

Analysis of the Hypothesis Space

The size of the hypothesis space of Rdt/db does not depend on the number of
tuples, but on the number of rule schemata, r, the number of predicates that are
available for instantiations, p, the maximal number of literals of a rule schema, k.
For each literal, all predicates have to be tried. Without constant learning, the
number of hypotheses is r � pk in the worst case. As k is usually a small number in
order to obtain understandable results, this polynomial is acceptable. Constants to
be learned are very similar to predicates. For each argument marked for constant
learning, all possible values of the argument (the respective database attribute)
must be tried. Let i be the maximal number of possible values of an argument
marked for constant learning, and let c be the number of di�erent constants to be
learned. Then the hypothesis space is limited by r � (p � ic)k.

The size of the hypothesis space determines the cost of hypothesis generation.
For each hypothesis, (at most) two Sql statements have to be executed by the
database system, see above. These determine the cost of hypothesis testing.

Here, the size of the hypothesis space is described in terms of the representation
Rdt/db uses for hypothesis generation. The particular �gures for given databases
depend on the mapping from Rdt/db's representation to relations and attributes
of the database.

An immediate mapping would be to let each database relation become a predic-
ate, the attributes of the relation becoming the predicate's arguments.

Mapping 1: For each relation R with attributes A1; : : : ; An; a predicate
r(A1; : : : ; An) is formed, r being the string of R's name.

Learning would then be constant learning, because it is very unlikely that a
complete database relation determines another one. Hence, p would be the number
of relations in the database. This is often a quite small number. However, c would
be the maximal number of attributes of a relation! All constants in all combinations
would have to be tried. Hence, this �rst mapping is in general not a good idea.

If we map each attribute of each relation to a predicate, we enlarge the number
of predicates, but we reduce constant learning.
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Mapping 2: For each relation R with attributes A1; : : : ; An; where the attributes
Aj; : : : ; Al are the primary key, for each x 2 [1; : : : ; n]n[j; : : : ; l] a predicate
r AX(Aj ; : : : ; Al; Ax) is formed, where AX is the string of the attribute name.

If the primary key of the relation is a single attribute, we get two{place pre-
dicates. The number of predicates is bounded by the number of relations times
the maximal number of attributes of a relation (subtracting the number of key at-
tributes). Since the number of constants to be learned cannot exceed the arity of
predicates, and because we never mark a key attribute for constant learning, c will
be at most 1. This second mapping reduces the learning task to learning k{place
combinations of constant values.

A third mapping achieves the same e�ect. Attribute values of the database are
mapped to predicates of Rdt/db.

Mapping 3: For each attribute Ai which is not a primary key and has the values
a1; : : : ; an a set of predicates r AI ai(Aj ; : : : ; Al) are formed, Aj ; : : : ; Al being
the primary key.

Using the results of Num Int2, a fourth mapping can be applied, which has
turned out to be quite powerful. In fact, mapping 3 can be seen as the special case,
where all intervals consist of only one value.

Mapping 4: For each attribute Ai which is not a primary key and for which in-
tervals of values have been computed, < a1p; a1q >; : : : ; < anp; anq >, a set
of predicates r AI < a ip; a iq > (Aj ; : : : ; Al) is formed, Aj; : : : ; Al being the
primary key.

A predicate table costs < 10; 100 > (ID) would be mapped on the table Table,
having the attributes ID and Costs. It is true, if the values for the attribute Costs
are in the range of 10 to 100. This predicate corresponds to a disjunction of values.
And even if we have this type of predicates in the premise of a rule | a conjunction
of predicates, one or more incorporating disjunctions of values | we only increase
the computational complexity slightly. The reason why this is the case is quite
simple. In principal, every predicate in a rule will be mapped on one table, and
all tables will be joined using an equi{join. Having this kind of a predicate, we
use instead of an equijoin a �{join with � being the expression Costs � 10 and
Costs � 100.

Instead of using one comparison, e.g. a = b, we, i.e. the database system, uses
two comparisons for predicates of the fourth mapping type. This is only a small
increase in computational time, because the most time consuming part is the join
operation itself. Furthermore, we are able to use every valid Sql{expression for
�-joins in a mapping. And instead of Num Int we can use any other algorithm,
whose clusters can be described with these expressions.

Moreover, the user is not obliged to use only these four mappings. If he wants
to, he can augment the second to fourth mapping with additional attributes in the
predicate, e.g. r AX(Aj ; : : : ; Al; Ax; Ay) or r AI ai(Aj ; : : : ; Al; Ay).

One further mappingwhich can be applied, consists of leaving out a part of or the
whole key in any of the above mappings. Having a table with three attributes A;B;
and C, A is the key, the user might be only interested in the di�erent combinations of

2The learning algorithm Num Int discovers intervals of numerical values, based on a gap ap-
proach, for details cf. [18].
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B and C. Then he can specify a predicate combinations(B;C). Using this predicate
in a hypothesis, the Sql generator takes care of three di�erent things. First, a group
by B, C statement will be inserted into the query. Second, a projection onto B and
C will be build, and third, only distinct tuples will be counted, otherwise the pos(H)
and neg(H) �gures would be incorrect, i.e. tuples would be counted twice.

Having presented these di�erent mappings, it is quite possible, that the premise
of a rule to be tested on the database will contain two predicates, which will be
mapped on the same table, key, and attribute with identical variable bindings con-
cerning the key, e.g. r A < 1; 10 > (Key;B) and r A < 11; 100> (Key;C) are two
predicates, which will be mapped on table r with attributes KEY; A; B; and C.
Let r A < 1; 10 > (Key;B) & r A < 11; 100 > (Key;C) & p(C) ! q(Key;B;C)
be the rule to be tested.

It is obvious, that it is impossible that both predicates can be true at the same
time, i.e. in the premise of a rule. Since the attribute Key is a key, and the
intervals < 1; 10 > and < 11; 100 >, de�ned on attribute A, do not overlap, all
tuples of relation r will be divided into two disjoint sets, regardless of the additional
attributes B and C in the predicates. All these cases will be detected by Rdt/db,
and the hypothesis will be discarded as too special, because pos(H) will be zero.

The general principle, which lays behind this observation, are functional de-
pendencies between attributes. There are some more cases, where the exploitation
of data dependencies from database theory will yield the result, without actually
sending the query to the database. One fast and simple, but nevertheless e�ective
approach, is to plug a semantic query optimizer into our interaction model, e.g.
the one described by Bell [2]. Its task would be to take the generated query from
Rdt/db, optimize it, and then send it to the database or to return immediately
the result, if it can already be deduced, without consulting the database.3

One last aspect of these di�erent mappings we should mention is that we make
always use of the sorts, or in database terminology types, of the attributes. That
means that the predicate de�nitions encompass argument sort declarations, which
will be exploited by Rdt/db as does Rdt with sorts. If we have no further back-
ground knowledge about these types, we use the information from the data dic-
tionary, for instance Costs is of type NUMBER or ID is of type VARCHAR2. But
without any change, type hierarchies can be exploited4.

To summerize this section, it becomes clear that the restriction of the hypothesis
space as it is given by Rdt/db's hypothesis generation can lead to very di�erent
hypothesis spaces depending on the mapping from database attributes to predicates.
Only when reducing the learning task from�nding all valid combinations of attribute
values to �nding k{place combinations, learning becomes feasible on large databases.

3 The Necessity of Background Knowledge

In the course of an on{going project at Daimler{Benz AG on the analysis of their
data about vehicles, we have applied our learning tool. The database with all
vehicles of a certain type of Mercedes | among them some cases of warranty | is
about 2.6 Gigabytes large. It consists of 40 relations with about 40 attributes each.
The main topic of interest for the users is to �nd rules that characterize warranty
cases and structure them into meaningful classes.

3This integration work still has to be done.
4The implementation of Rdt/db always works with sort taxonomies, but Oracle delivers only

\
at" hierarchies.
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In a �rst approach, two systems, Claudien and Rdt/db, have been applied,
which both could well �nd rules. The �rst results of both were better than guessing
on the basis of frequencies. For car variants with a certain probability of being
claimed to be faulty by the customer, properties could be found which select a set
of cars with a higher probability of being claimed as a case of warranty. That is,
some factors that indicate warranty cases to a certain degree could be found. An
example of an uninteresting (although almost 100% correct) set of rules found by
Rdt/db looks like the following one:

engine variant(V IN; 123)! engine type(V IN; 456)

A rule learned by Claudien looked like the following5

warranty ( VIN) IF
Car variant = 987 [accuracy 0.159]
Engine type = 654 [accuracy 0.161]

However, both types of rules were not interesting, since they expressed what is
known to all mechanics, because certain combinations have been sold more often
than others. Moreover, these factors were far away from hints to causal relation-
ships. Whereas the former rules present a kind of knowledge, which is too general
to be interesting, the latter ones are not interesting too, because the hypothesis
language is too special. The reason is that the hypothesis language does not o�er
sets of attribute values, but only the single values.

The problem is how to �nd the appropriate level of detail that allows to learn
interesting rules. We have to introduce descriptors into the hypothesis language that
are more general than constant values. The classical approaches to overcome this
problem are hardly applicable when learning from real databases. First, taxonomies
of descriptors have served this purpose, for instance, in conceptual clustering [14]
or the versions space approach [16]. There, however, the taxonomies were given by
the user of the learning system. Here, we do not know of such hierarchies of sets of
attribute values but have to �nd them. Second, methods for constructive induction
exist that introduce more abstract descriptors into the hypothesis language, but
they presuppose classi�ed examples | which is also not given in our application.
Third, unsupervised clustering of attribute values is not feasible. Marcel Holsheimer
and Arno Siebes have shown that the complexity of �nding what they call set{
descriptions (i.e. disjunctions of constants) is exponential in the number of all
attribute values of all relations as well as in the number of tuples of the database
[9]. Hence, there are only a few options left.

One alternative, which we only mention here brie
y, consists of extending Rdt/-
db into a multistrategy learning system. It then uses two algorithms, which we
have developed, that structure attributes and attribute values, respectively: Fdd
(Functional Dependency Detection) [3] �nds a generality order of attributes by
detecting functional dependencies in the database. Num Int �nds a hierarchy of
intervals in numerical (linear) attributes without reference to a classi�cation. This
approach is discussed in detail in [18].

In the following we concentrate on another alternative, namely the use of back-
ground knowledge. We will demonstrate both, that we can use it in an appropriate
way, and that we need it to learn more interesting rules.

5Note that neither the rule nor the percentages involved are the true ones so that no conclusions
on Mercedes cars can be made.
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Figure 3: Part of the sort lattice computed by Stt.

As pointed out above and to stress the importance of the second D in KDD, it is
essential to enable algorithms to deal with great amounts of data which are stored
in databases. This leads to taking complexity issues seriously. Given the declarat-
ive syntactic bias in terms of rule schemata, the hypothesis space in a real-world
application can still be very high, because the number of attributes (determining p)
and attribute values i is usually high. This leads to the demand of restricting the
number of attributes and attribute values used for learning. Reducing the number
of attribute values of an attribute can be done by climbing a hierarchy of more and
more abstract attribute values. If this background knowledge is not available, it
has to be learned.

Forming a hierarchy of nominal attribute values { STT

Background knowledge is most often used in a KDD framework in order to structure
sets of attribute values, that is, the background knowledge o�ers a hierarchy of more
and more abstract attribute values. However, background material is often unstruc-
tured. In this case, it needs some structuring before it can be used for learning from
the database. For this task, we use Stt, a tool for acquiring taxonomies from facts
[10]6. For all predicates it forms sets for each argument position consisting of the
constant values which occur at that position. The subset relations between the sets
is computed. It may turn out, for instance, that all values that occur as second
argument of a predicate p1 also occur as �rst argument of predicate p2, but not the
other way around. In this case, the �rst set of values is a subset of the second one.
We omit the presentation of other features of Stt. Here, we apply it as a fast tool
for �nding sets of entities that are described by several predicates in background
knowledge.

6A detailed description can be found in [17].
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We have represented textual background material as one{ary ground facts. The
predicates express independent aspects of attribute values of an attribute of the
database. These attribute values are at argument position. Di�erent predicates
hold for the same attribute value. For 738 predicates and 14 828 facts, Stt delivered
a graph with 273 nodes7. The graph combines the di�erent aspects. Since the sets
of attribute values are meaningful for the user, he can select a level of the graph.
Selecting a layer with 4 nodes, we introduced 4 new Boolean predicates into the
database. The new attributes replace the original database attribute A in LHi

.
This increases p by 3, but decreases i by almost 10 000, since we disregard the
original database attribute in LH.

Also the introduction of the new attributes on the basis of Stt's output led
to learning more interesting rules. The background material is the mechanic's
workbook of vehicle parts, classi�ed by functional (causal) groups of parts, spa-
tial groupings (a part is close to another part, though possibly belonging to another
functional group), and possible faults or damages of a part. The vehicle parts are
numbered. t54486, for instance, is a certain electric switch within the automatic
locking device. The functional groups of parts are also numerically encoded. f8257,
for instance, refers to the locking device of the vehicle. The fact f8257(t54486) tells
that the switch t54486 belongs to the locking device. The spatial grouping is given
by pictures that show closely related parts. The pictures are, again, numerically
encoded. p8257201, for instance, refers to a picture with parts of the electronic
locking device that are closely related to the injection complex. p8257201(t54486)
tells that the switch belongs to the spatial group of the injection. Possible damages
or faults depend, of course, rather on the material of the part than its functional
group. All di�erent types of damages are denoted by di�erent predicates (e.g., s04
indicates that the part might leak). These three aspects are each represented by
several classes and subclasses. Each part belongs at least to three groups (to a
functional one, to a spatial one, and a type of possible error), frequently to sev-
eral subclasses of the same group. The combination of these three aspects has led
to surprising classes found by Stt. Looking at Figure 3, class 61 comprises two
switches, t54486 and t54585. They are the intersection of three meaningful classes:

class 169 : here, several parts of the injection device are clustered. These are parts
such as tubes or gasoline tank. Up in the hierarchy, parts of the functional
group of injection and then (class 13) parts of gasoline supply in general are
clustered.

class 12 : here, parts of the dashboard are clustered, among them the display of
the locking device8 (protection from theft).

class 8 : here, operating parts of the engine are clustered that serve the injection
function.

The illustration shows that mechanics can easily interpret the clusters of parts,
and the hierarchy learned by Stt is meaningful. The intersection classes are very
selective where classes such as, e.g., class 13 cover all parts of a functional group
(here: gasoline supply).

7Since Stt took about 8 hours, it cannot be subsumed under the fast algorithms. However,
its result is computed only once from the background material which otherwise would have been
ignored.

8The locking device interrupts the injection function.
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4 Discussion

Complexity reduction is of highest importance when learning from databases. As
the costs of hypothesis testing are beyond our control, but up to the database
system,9 the costs of hypothesis generation must be reduced.

The rule learning algorithm Rdt is particularly well suited for KDD tasks,
because its complexity is not bound with reference to the number of tuples but
with reference to the representation of hypotheses.

On the one hand side this claim is also true, if we consider e.g. Foil in its present
state, as a stand alone program which handles all data itself, and interestingly,
which uses database join operations internally. But on the other hand there are
many reasons, why a hypothetical Foil/db seems not feasible. First, Foil needs
negative examples in order to learn. Since nobody will try to generate negative
examples by means of the CWA in this database setting, they have to be given.
Second, in the inner loop of Foil, the training set grows, if the literal introduces
new variables. In a database setting, where we have many examples just in the
beginning, this e�ect can be quite dramatic. And third, how do we realize the
covering?

The straight forward ideas of deleting covered tuples or copying uncovered tuples
are not feasible. In our database, to copy or to recreate one big table with an index
on the key takes three hours, one join of this table with itself 2 minutes. So you
will neither recreate your database for each learning run nor wait hours before the
learning of the next clause starts during one learning run. The covered examples
of one learned clause of this Foil/db can be represented by a view, let us say
VIEW A. The reduced training set (in the outer loop of Foil) would be VIEW B
= TRAINING EXAMPLES { VIEW A. But by doing this, Foil/db would always
work on the original table, loosing the main advantage which is responsible for the
well known e�ciency of Foil!

To summerize these remarks, the main advantage of Foil, its explicit manipu-
lation of tuples, would become its disadvantage, if ported on databases. Even one
can say that Foil on databases would become very close to Rdt/db concerning
the testing of hypotheses, i.e. joining tables and counting. But Rdt/db has the
advantages, that it can learn without negative examples and that the example set
does not grow.

Furthermore, by its top-down, breadth-�rst search Rdt/db allows to safely
prune large parts of the hypothesis space. The declarative syntactic bias is extremely
useful in order to restrict the hypothesis space in case of learning from very large
data sets. In order to directly access database management systems, Rdt was
enhanced such that hypothesis testing is executed via Sql queries. However, the
syntactic language bias alone is not enough for applyingRdt to real-world databases
without reducing it to the expressiveness of an algorithm such as Kid3, for instance.
If we want to keep the capability of relational learning but also want to learn from
all tuples of a large database, we need more restrictions. They should lead to
a reduction of the number p of predicates or the maximal number i of attribute
values for an attribute. The restriction should be domain{dependent, for which our
di�erent mappings deliver the needed means.

We have applied several methods (di�erent mappings and background know-
ledge) for reducing the number of hypotheses in concert. Because we have chosen
an algorithm with a user given declarative bias, we could investigate how to restrict
and structure the hypothesis space.

9This is not the complete truth, as one could imagine to prefer hypotheses that do not require
a JOIN in the test to those that do.
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� A syntactic restriction of the form of hypotheses is e�ective because it cuts
what is in the exponent of the formula de�ning its worst{case size: the max-
imal number of literals. Also the number of constant values to learn about is
indicated by the user | another �gure in the exponent of the formula.

� The learning task is also restricted by the chosen mapping from predicates of
the learning tool to database attributes. Instead of learning all combinations
of all attribute values, only a k{place combination is learned.

Using these restrictions, we successfully learned 76 rules about 6 di�erent con-
clusion predicates from an excerpt of the vehicles database.

It is an issue for discussion, whether the user should select appropriate levels
from the learned hierarchies of the \service algorithms", here Stt, or not. We have
adopted the position of [4] that the user should be involved in the KDD process.
On the one hand, the selection of one layer as opposed to trying all combinations
of all hierarchies makes learning feasible also on very large databases. On the other
hand, the user is interested in preliminary results and wants to have control of the
data mining process. The user is interested in some classes of hypotheses and does
not want to specify this interest precisely as yet another declarative bias.

There are two main di�erences between our framework for KDD and theKepler
KDD workbench, which o�ers a variety of ILP algorithms together with a set{
oriented layer for data management [20]. Kepler allows the user to call various
learning tools and use the results of one as input to another one. In our learning
environment, the user is involved as an oracle for selecting a part of the background
knowledge, see above. And more importantly, we have moved to directly accessing
databases via Sql.

Experiments on the data are an ongoing e�ort 10. We are planning systematic
tests that compare quality and time spent on learning for the various possibilities of
applying di�erent mappings of predicates on di�erent tables and selecting di�erent
numbers of classes from the background knowledge and convert them into binary
attributes in the database. Since the tables in the vehicle database heavily vary
in their numbers of tuples, it is still possible although unlikely, that under certain
conditions even mapping 1 has some advantages.

Right now, we can state that without using various methods in concert, we
achieved valid but not interesting results. Some types of relations could not at all
be learned without background knowledge. Hence, the advantage of our approach
is not an enhancement of a method that works already, but is that of making
relational learning work on real-world databases at all. Since this break-through
has been achieved, we can now enhance the algorithms.
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