
1

Lifted Approximate Inference

Kristian Kersting

Figure
1:Lifted

Structures:Exam
ple

ofa
factorgraph

and
its

partitions
and

quotients.(a)A
factorgraph

G
(variables

in
circles,factors

in
squares)

and
its

coarsestEP
P

repre-
sented

by
the

colors.(b)
The

degree
D
M

m
atrix

of
G

ac-
cording

to
P

.(c)The
corresponding

quotientgraph
G
/
P

.
(d)The

factorquotientG
o
P

.

w
here

the
set

M
(G

)
is

know
n

as
the

m
arginal

poly-
tope

[25].Even
though

Eq.1
is

an
LP,the

polytope
M

(G
)

generally
requires

an
exponential

num
ber

of
inequalities

to
describe

[25],
and

is
N

P-com
plete

to
m

axim
ize

over.
H

ence
one

typically
considers

tractable
relaxations

(outer
bounds)

of
M

(G
).

The
outer

bounds
w

e
consider

are
equivalent

to
the

standard
local

consistency
bounds

typi-
cally

considered
in

the
literature

(e.g.,see
[25]

Eq.8.32).
H

ow
ever,w

e
presentthem

in
a

slightly
differentm

anner,
w

hich
sim

plifies
ourpresentation.D

efine
the

follow
ing

set
in

[
0,
1
]

|
V
|+

|
E
|:

L
(G

)
=

8<:

µ
�

0
,
8
�
i
j

2
G

:

↵
(ij

)
⌘

µ
i
j


µ
j

,
�
(ij

)
⌘

µ
i
j


µ
i

;

�
(ij

)
⌘

µ
i

+
µ
j

�
µ
i
j


1

9=;
.(2)

The
polytope

L
(G

)
is

som
etim

es
referred

to
as

the
local

m
arginal

polytope
[21].

The
vectors

w
ith

{
0,
1
}

coordi-
natesin

L
(G

)are
the

verticesofthe
M

(G
).In

otherw
ords

M
(G

)
is

the
convex

hullof
L
(G

)
\
{
0,
1
}

|
V
|+

|
E
|.W

e
call

the
relaxed

inference
problem

over
L
(G

)
M

A
P-LP.N

ote
that

w
henever

M
(G

)
and

L
(G

)
do

not
coincide,

L
(G

)

(w
hich

isan
outerbound

on
M

(G
))hasfractionalvertices

and
the

resulting
LP

m
ay

have
optim

a
w

hich
are

notvalid
assignm

ents.H
ow

ever,all
integral

points
in

L
(G

)
corre-

spond
to

valid
assignm

ents,thusifthe
solution

µ
⇤

happens
to

be
integral,then

this
µ

⇤

solves
the

M
A

P
problem

.

E
quitable

Partitions
(E

Ps)
of

G
raphs

and
M

atrices.
Lifted

inference
approaches

essentially
w

ork
w

ith
reduced

m
odels

by
grouping

together
indistinguishable

variables
and

factors.In
other

w
ords,they

exploitsym
m

etries.For
linearprogram

s,M
ladenov

e
t

a
l
.[13,14]have

show
n

that
such

sym
m

etriescan
be

form
ally

captured
by

equitable
par-

titions
ofw

eighted
graphs

and
m

atrices.Since
these

parti-
tions

also
play

an
im

portantpartin
our

argum
entw

e
w

ill
nextreview

the
m

ostrelevantconcepts
and

results. 3
Foran

illustration,w
e

referto
Fig.1.

3N
ote,how

ever,that
the

definitions
w

e
present

here
are

tai-
lored

tow
ardsbipartite

structures(e.g.factorgraphsw
ith

variables
and

factors,m
atricesw

ith
row

sand
colum

ns)forthe
sake

ofclar-
ity.They

are
notthe

m
ostgeneralones

found
in

literature.

Let
U

=
V

[
F

be
a

set
consisting

of
tw

o
kinds

of
ob-

jects,
e.g.

the
variables

and
factors

of
a

factor
graph

as
in

Fig.
1(a),

or
the

row
and

colum
n

indices
of

a
m

atrix.
A

partition
P

=
{P

1 ,...,P
p

}
[
{Q

1 ,...Q
q

}
is

a
fam

-
ily

of
disjoint

subsets
of

U
,such

that S
pi=

1
P
i

=
V

and
S

qi=
1
Q

i

=
F

.In
Fig.1

the
partition

isindicated
by

the
col-

orsofthe
nodes.A

convenientdata
structure

forperform
ing

algebraic
operationsusing

partitionsisthe
incidence

m
atrix

B
2
{
0,
1
}

|
U
|
⇥
|
P
|.The

incidence
m

atrix
show

sthe
assign-

m
entofthe

elem
ents

of
U

to
the

classes
of

P
–

ithas
one

row
for

every
objectand

one
colum

n
for

every
class.The

entry
in

the
row

ofobjectu
and

the
colum

n
ofclass

P
p

is

B
u
p

=
1

if
u
2
P
p

and
0

if
u
/2
P
p

.

W
e

shallalso
m

ake
use

ofthe
norm

alized
transpose

of
B

,
w

hich
w

e
denote

by
bB
2
Q

|
P
|
⇥
|
U
|and

define
as

bB
p
u

=
1/
|P

p

|if
u
2
P
p

and
0

if
u
/2
P
p

.

A
lgebraically,

B
and

bB
are

related
as

bB
=

(B
T

B
)

�
1B

T,
i.e.,

bB
is

the
leftpseudoinverse

of
B

:
bB
B

=
I
|
P
| .

The
partitions

w
e

considerw
illnevergroup

elem
ents

of
V

w
ith

elem
ents

in
F

.Thus,the
m

atrix
B

w
illalw

ays
be

of
the

form
B

=

�
B

P
0

0
B

Q

�,w
here

B
P

and
B

Q

correspond
to

the
partitions

of
V

and
F

respectively.W
e

shallalso
use

the
notation

B
=

(B
P

,B
Q

)
to

referto
this

block
diagonal

m
atrix,and

sim
ilarly

bB
=

(bB
P

, bB
Q

).

Letu
2
R

|
U
|be

a
realvectorcom

posed
as

u
=

[
c,
b
]

T

,
c
2

R
|
V
|,
b

2
R

|
F
|.The

values
of

u
can

be
thoughtof

as
la-

bels
for

the
elem

ents
of

U
.W

e
say

thata
partition

P
re-

spects
u

if
for

every
x
,y

2
U

thatare
in

the
sam

e
class

of
P

,w
e

have
u
x

=
u
y .N

ote
thatif

P
respects

u
,then

(
c

T

B
P

)

i

=
|P

i

|c
x

w
here

x
is

any
m

em
berof

P
i (and

sim
-

ilarly
for

B
Q

,
b

).M
oreover,

(bB
P

c
)

i

=
c
x

w
here

x
is

any
m

em
berof

P
i (and

sim
ilarly

for
ˆ

B
Q

,
b

).

W
e

nextdefine
a

specialclass
of

partitions
of

graphs
and

m
atrices,w

hich
play

a
centralrole

in
ourargum

ent.Letus
firstconsider

a
bipartite

graph
G

=
(V

[
F
,E

).H
ere

V
and

F
are

the
tw

o
sides

ofthe
graph,and

E
are

the
edges

connecting
them

.The
neighbors

of
a

node
v

in
this

graph
are

denoted
by

n
b
(v
).

D
efinition

1
(E

quitable
partition

of
a

bipartite
graph).

A
n

e
q

u
i
t
a

b
l
e

p
a

r
t
i
t
i
o

n
o

f
a

b
i
p

a
r
t
i
t
e

g
r
a

p
h
G

=
(V

[

F
,E

)
g

i
v
e
n

a
v
e
c
t
o

r
u

2
R

|
V
|+

|
F
|

i
s

a
p

a
r
t
i
t
i
o

n
P

=

{P
1 ,...,P

p ,Q
1 ,...Q

q

}
o

f
t
h

e
v
e
r
t
e
x

s
e
t
V

a
n

d
F

s
u

c
h

t
h

a
t(a)

f
o

r
e
v
e
r
y

p
a

i
r
v,v

0

2
V

i
n

s
o

m
e
P
m

,
a

n
d

f
o

r
e
v
-

e
r
y

c
l
a

s
s
Q

n

,
|
n
b
(v
)
\
Q

n

|
=

|
n
b
(v

0

)
\
Q

n

|
;(b)

f
o

r
e
v
-

e
r
y

p
a

i
r
f
,f

0

2
F

i
n

s
o

m
e
Q

m

,
a

n
d

f
o

r
e
v
e
r
y

c
l
a

s
s
P
n

,

|
n
b
(f
)
\
P
n

|
=

|
n
b
(f

0

)
\
P
n

|
.

F
u

r
t
h

e
r
m

o
r
e
,
P

m
u

s
t

r
e
-

s
p

e
c
t

t
h

e
v
e
c
t
o

r
u

.

If
w

e
are

dealing
w

ith
m

atrices,the
above

definition
can

be
extended.

Essentially,
w

e
view

a
m

atrix
A

2
R

m
⇥
n

as
a

w
eighted

graph
over

the
set

{
r
o
w
[
1
],...,

r
o
w
[m

]
}
[

Figure 1: Lifted Structures: Example of a factor graph and
its partitions and quotients. (a) A factor graph G (variables
in circles, factors in squares) and its coarsest EP P repre-
sented by the colors. (b) The degree DM matrix of G ac-
cording to P . (c) The corresponding quotient graph G/P .
(d) The factor quotient G o P .

where the set M(G) is known as the marginal poly-
tope [25]. Even though Eq. 1 is an LP, the polytope M(G)

generally requires an exponential number of inequalities
to describe [25], and is NP-complete to maximize over.
Hence one typically considers tractable relaxations (outer
bounds) of M(G). The outer bounds we consider are
equivalent to the standard local consistency bounds typi-
cally considered in the literature (e.g., see [25] Eq. 8.32).
However, we present them in a slightly different manner,
which simplifies our presentation. Define the following set
in [0, 1]|V |+|E|:

L(G) =

8
<

:

µ � 0 , 8�
ij

2 G :

↵(ij) ⌘ µ
ij

 µ
j

, �(ij) ⌘ µ
ij

 µ
i

;

�(ij) ⌘ µ
i

+ µ
j

� µ
ij

 1

9
=

; .(2)

The polytope L(G) is sometimes referred to as the local
marginal polytope [21]. The vectors with {0, 1} coordi-
nates in L(G) are the vertices of the M(G). In other words
M(G) is the convex hull of L(G) \ {0, 1}|V |+|E|. We call
the relaxed inference problem over L(G) MAP-LP. Note
that whenever M(G) and L(G) do not coincide, L(G)

(which is an outer bound on M(G)) has fractional vertices
and the resulting LP may have optima which are not valid
assignments. However, all integral points in L(G) corre-
spond to valid assignments, thus if the solution µ⇤ happens
to be integral, then this µ⇤ solves the MAP problem.

Equitable Partitions (EPs) of Graphs and Matrices.
Lifted inference approaches essentially work with reduced
models by grouping together indistinguishable variables
and factors. In other words, they exploit symmetries. For
linear programs, Mladenov et al. [13, 14] have shown that
such symmetries can be formally captured by equitable par-
titions of weighted graphs and matrices. Since these parti-
tions also play an important part in our argument we will
next review the most relevant concepts and results.3 For an
illustration, we refer to Fig. 1.

3Note, however, that the definitions we present here are tai-
lored towards bipartite structures (e.g. factor graphs with variables
and factors, matrices with rows and columns) for the sake of clar-
ity. They are not the most general ones found in literature.

Let U = V [F be a set consisting of two kinds of ob-
jects, e.g. the variables and factors of a factor graph as
in Fig. 1(a), or the row and column indices of a matrix.
A partition P = {P1, . . . , Pp

} [{Q1, . . . Qq

} is a fam-
ily of disjoint subsets of U , such that

S
p

i=1 Pi

= V andS
q

i=1 Qi

= F . In Fig. 1 the partition is indicated by the col-
ors of the nodes. A convenient data structure for performing
algebraic operations using partitions is the incidence matrix
B 2 {0, 1}|U |⇥|P|. The incidence matrix shows the assign-
ment of the elements of U to the classes of P – it has one
row for every object and one column for every class. The
entry in the row of object u and the column of class P

p

is

B
up

= 1 if u 2 P
p

and 0 if u /2 P
p

.

We shall also make use of the normalized transpose of B,
which we denote by bB 2 Q|P|⇥|U | and define as

bB
pu

= 1/|P
p

| if u 2 P
p

and 0 if u /2 P
p

.

Algebraically, B and bB are related as bB = (BTB)

�1BT ,
i.e., bB is the left pseudoinverse of B: bBB = I

|P|

.

The partitions we consider will never group elements of V
with elements in F . Thus, the matrix B will always be of
the form B =

�
BP 0
0 BQ

�
, where B

P

and B
Q

correspond to
the partitions of V and F respectively. We shall also use
the notation B = (B

P

, B
Q

) to refer to this block diagonal
matrix, and similarly bB = (

bB
P

, bB
Q

).

Let u 2 R|U | be a real vector composed as u = [c,b]T , c 2

R|V |,b 2 R|F |. The values of u can be thought of as la-
bels for the elements of U . We say that a partition P re-
spects u if for every x, y 2 U that are in the same class
of P , we have u

x

= u
y

. Note that if P respects u, then
(c

TB
P

)

i

= |P
i

|c
x

where x is any member of P
i

(and sim-
ilarly for B

Q

,b). Moreover, (bB
P

c)

i

= c
x

where x is any
member of P

i

(and similarly for ˆB
Q

,b).

We next define a special class of partitions of graphs and
matrices, which play a central role in our argument. Let us
first consider a bipartite graph G = (V [F,E). Here V
and F are the two sides of the graph, and E are the edges
connecting them. The neighbors of a node v in this graph
are denoted by nb(v).
Definition 1 (Equitable partition of a bipartite graph).
An equitable partition of a bipartite graph G = (V [

F,E) given a vector u 2 R|V |+|F |

is a partition P =

{P1, . . . , Pp

, Q1, . . . Qq

} of the vertex set V and F such

that (a) for every pair v, v0 2 V in some P
m

, and for ev-

ery class Q
n

, | nb(v) \ Q
n

| = | nb(v0) \ Q
n

|; (b) for ev-

ery pair f, f 0

2 F in some Q
m

, and for every class P
n

,

| nb(f) \ P
n

| = | nb(f 0

) \ P
n

|. Furthermore, P must re-

spect the vector u.

If we are dealing with matrices, the above definition can
be extended. Essentially, we view a matrix A 2 Rm⇥n

as a weighted graph over the set {row[1], . . . , row[m]} [

instead of

1

Goals
§  Loopy Belief Propagation and Linear

Programming can be made aware of
computational symmetries

§  This can result in great speed-ups

§  Computational symmetries can be detected
using the Weisfeiler-Lehman (WL) algorithm

§  WL computes fractional automorphisms in
quasi-linear time; essentially no overhead!

§  Few lines of Matlab code realize WL (with
flooding) using sparse-matrix operations

§  Strong connections to community detection,
role discovery, graph kernels, clustering, …

2

General Take-Away Message

§  Sparseness and Tree-width
are not enough

§  We need to be aware of
Symmetries

3 Kristian Kersting
Lifted Approximate Inference

4

A Simple AI Problem

There are 52 cards (2-10, J, Q, K, A per color) and we would like to
compute some basic probabilities

...

Thanks to Guy Van den Broeck

Kristian Kersting
Lifted Approximate Inference

3

5

A Simple AI Problem

..
.

?
What is the probability that the first card will be a Queen if we
reveal the first card, put it back, shuffle the deck, reveal the first
card

The probability is
4/52=1/13

Kristian Kersting
Lifted Approximate Inference

6

A Simple AI Problem

...

?
Probability 13/52=1/4

Kristian Kersting
Lifted Approximate Inference

4

7

A Simple AI Problem

...

? What if we knew already that its
color is red?

Probability 13/26=1/2

Kristian Kersting
Lifted Approximate Inference

8

A Simple AI Problem

...

?
Probability13/51

Kristian Kersting
Lifted Approximate Inference

5

9

How does AI do this?

Directed
Model

Undirected
Model

Factor
Graph

Node=
Random Variable (RV)
Edge=
Dependency between
RVs

Graphical Model + Inference Algorithm

Distribution

P X() =
jφ x()

x⊆X∏

exact

approximate

P(Xi|E=e)

Variable Elimination
Junction Tree

Loopy Belief Prop.
MPLP

Kristian Kersting
Lifted Approximate Inference

10

A

B

D

C

E

F

A

B

D

C

E

F

A

B

D

C

E

F

Tree Graph Graph

When is this efficient?

The more similar to a tree, i.e.,
small tree-width!

Kristian Kersting
Lifted Approximate Inference

6

11

A

B

D

C

E

F

A

B

D

C

E

F

A

B

D

C

E

F

Tree Graph Graph

Why? Conditional Independency

P(A|C,E) = P(A|C)

P(A|B,E,F) = P(A|B,E) P(A|B,E,F) = P(A|B,E)

P(A|C,E) ≠ P(A|C) P(A|C,E) ≠ P(A|C)

P(A|B,E,F) ≠ P(A|B,E)

Dependencies simplify computations

Kristian Kersting
Lifted Approximate Inference

Back to the card problem

§  Probabilistic propositional model is fully connected

§  There are NO independencies
§  Exact inference builds a table of ≥1352 Rows!
§  Even approximate (for example, message passing)

methods need to pass ≥ 1352) messages

12
Kristian Kersting
Lifted Approximate Inference

7

13
Kristian Kersting
Lifted Approximate Inference

What is the issue?

14

...

Probability 13/51
Kristian Kersting
Lifted Approximate Inference

8

15

...

Probability 13/51

What is the issue?

Kristian Kersting
Lifted Approximate Inference

16

...

Probability 13/51

What is the issue?

Kristian Kersting
Lifted Approximate Inference

9

Tractable Probabilistic Inference

§  Traditional Belief: Independence
(Conditional/Contextual)

§  Now: Symmetry (Exchangeability)

17
Kristian Kersting
Lifted Approximate Inference

Where do the symmetries come from?

18
Kristian Kersting
Lifted Approximate Inference

10

Traditional Machine Learning

19	

Height:	
 	
 	
 	
 62	

Weight:	
 160	

Height:	
 	
 	
 	
 72	

Weight:	
 175	

Height:	
 	
 	
 	
 	
 	
 75	

Weight:	
 	
 	
 200	

Height:	
 	
 	
 	
 	
 	
 55	

Weight:	
 	
 	
 185	

Height:	
 	
 	
 	
 	
 	
 62	

Weight:	
 	
 	
 190	

Height:	
 	
 	
 	
 	
 	
 65	

Weight:	
 	
 	
 250	

Weight	
 (lb)	

He
ig
ht
	
 (i
n)
	

Kristian Kersting
Lifted Approximate Inference

Standard Data Representation:
Single Tables

Id Age Gender Weight BP Sugar LDL Diabetes?

1 27 M 170 110/70 6.8 40 N

2 35 M 200 180/90 9.8 70 Y

3 21 F 150 120/80 4.8 50 N

…

20

But nowadays data become richer and richter

Kristian Kersting
Lifted Approximate Inference

11

According to the World Heart Federation, cardiovascular
disease cost the European Union EURO169 billion in 2003
and the USA about EURO310.23 billion in direct and
indirect annual costs. By comparison, the estimated cost
of all cancers is EURO146.19 billion and HIV
infections, EURO22.24 billion

Nat Rev Genet. 2012 May 2;13(6):395-405

Mining EHR is a non trivial problem!

PatientID Date Prescribed Date Filled Physician Medication Dose Duration

 P1 5/17/98 5/18/98 Jones prilosec 10mg 3 months

PatientID SNP1 SNP2 … SNP500K

 P1 AA AB BB
 P2 AB BB AA

PatientID Gender Birthdate

 P1 M 3/22/63

PatientID Date Physician Symptoms Diagnosis

 P1 1/1/01 Smith palpitations hypoglycemic
 P1 2/1/03 Jones fever, aches influenza

PatientID Date Lab Test Result

 P1 1/1/01 blood glucose 42

 P1 1/9/01 blood glucose ??

Pa
ti

en
t

Ta
bl

e

Vi
si

t
Ta

bl
e

La
b

Te
st

s

SN
P

Ta
bl

e

Pr
es

cr
ip

ti
on

s

Kristian Kersting
Lifted Probabilistic Inference

Scaling

Uncertain
Reasoning

Trees,
Graphs,

and
Logic

Mining
and

Learning

12

Endless Showcases !

BioInformatics

Scene interpretation/
segmentation

Social Networks

Robotics

Natural Language
Processing

Imaging
(medical) Planning

a b
d c
e

e a b
d c

a b
d c
e

a b
d
e
c

Games

23
Kristian Kersting
Lifted Approximate Inference

Big Data is not enough

§  The data soup: most data is in logs, text,
blogs, images, the web, databases, …

§  The knowledge soup: next to the data,
we may have background knowledge, often
even competing theories

§  The reasoning soup: pool of interacting
tasks and algorithms

Even though computers can search
the data for keywords, features,
and models, they do not really
understand most of it

Kristian Kersting
Lifted Probabilistic Inference

13

Statistical Relational AI is serious business

§  Probabilistic relational models are used by several
million users.

§  Many other applications such as entity resolution,
information extraction, unsupervised semantic
parsing, NELL, information broadcasting, …

However, efficient complex probabilistic
reasoning becomes central!

 Can we make it faster?

Kristian Kersting
Lifted Probabilistic Inference

Kristian Kersting
Lifted Approximate Inference

14

So, what is lifted inference?

1.  An inference algorithm that deals with “groups”
of random variables at a first-order level
§  Takes a general first-order model as input
§  Automatically answers queries without computational

waste
2.  Reason over a large domains in time

independent of the number of objects
3.  Ability to carry out probabilistic inference in a

relational probabilistic model without needing to
reason about each individual separately

4.  Try and perform inference at the first-order logic
level and to ground out only when necessary

27

Kristian Kersting
Lifted Approximate Inference

More views

5.  Algorithm that exploits interchangeability in the
domain

6.  Queries are answered without instantiating all
the objects in the domain

7.  Exploit shared correlations – Same uncertainties
and correlations repeatedly occur in data

8.  Exploit symmetries in the data and the model

28
Kristian Kersting
Lifted Approximate Inference

15

Different definitions but similar goals

29

 Least Common Denominator

•  Exploit symmetry = Identify

similar groups of random
variables

Kristian Kersting
Lifted Approximate Inference

30

Lifted Inference

Search Graph-based
[Gogate 10,11, Jha 10,

Van-den-Broeck
11,13,14]

Exact Approximate Preprocessing
[Poole 03, de Salvo Braz 06,07,
Milch 07, Kisyinski 09a,09b,
Choi 10,11, Sen 08,
Taghipou 12]

[Shavlik 09, Mihalkova 09]

Deterministic Sampling Interval
[Singla 08, Kersting 09,10,
Sen 09, Nath 10, Hadiji 10,
11, Ahmadi 10,12, 13,
Riedel 08, Mladenov 12,14
Bui 13,14 Noessner 13, Van-
den-Broeck 12, 13]

[Milch 06, Poon 08,
Zettlemoyer 07, Gogate
12,14 Niepert
12,13,14]

[de Salvo Braz 09]

FOVE, ...

Knowledge
Compilation,
Probabilistic
Theorem
Proving, ...

Lifted BP, MAP(I)LP,
Bisimulated VE, ...

MC-SAT, Lifted MCMC,
Lifted Importance Sampling, ...

Lifted Inference

16

Variable Elimination

Kristian Kersting
Machines Reading the Data

Sum out non-query
variables one by one

Example: Inviting n people to a workshop

…

popular

start series

attends(p1) attends(p2) attends(pn)

φ1(pop, att(pi)) φ2(att(pi), ser) ∑
att(pi)

φʹ′(pop, ser)

Time is linear in
number of invitees n

[Zhang, Poole 1994]

Can’t we do better?

First-Order Variable Elimination

Idea: Exploit symmetries
across factors, i.e., sum
out all attends(X) variables
at once

∀X. φ2(attends(X), series)

∀X. φʹ′(popular, series)

φʹ′(popular, series)n

…

popular

start series

attends(p1) attends(p2) attends(pn)

Time is constant in n

∀X. φ1(popular, attends(X))

[Poole 2003; de Salvo Braz et al. 2005]

Based on logically parameterized factors

And there is often additional
structure for optimization

17

Exploiting Symmetries within Factors

33

… att(p1) att(p2) att(pn)

hot(w1)

start series

hot(w2) hot(wm) …

Can’t sum out attends(X) without
joining all the hot(W) variables

Create counting formula on hot(W),
then sum out attends(X) at lifted level

… att(p1) att(p2) att(pn)

hot(w1)

start series

hot(w2) hot(wm) …
#W[hot(W)]

∀W ∀X. φ(hot(W), att(X))

Kristian Kersting
Lifted Probabilistic Inference

[Milch,Zettlemoyer, Haims, Kersting, Kaelbling AAAI08]

0	

50	

100	

150	

200	

0	
 50	
 100	
 150	
 200	

Ti
m
e	

(m

s)
	

Number	
 of	
 Invitees	

Actually, it turns out that lifted probabilistic
inference is closely related to theorem proving

Probabilistic Theorem Proving (PTP)

PTP(PKB, Query)
 PKBQ ← PKB U {(Query,0)}
 return WMC(WCNF(PKBQ))
 / WMC(WCNF(PKB))

TP(KB, Query)
 KBQ ← KB U {¬ Query}
 return ¬SAT(CNF(KBQ))

[Gogate, Domingos AAAI 2011, Van den Broeck et al. IJCAI 2011]

Kristian Kersting
Lifted Probabilistic Inference

All we need is lifted weighted
model counting

18

First, however, we have to convert the
PKB into (Lifted) CNF + Weights

WCNF(PKB)
 for all (Fi, Φi) є PKB s.t. Φi > 0 do
 PKB ← PKB U {(Fi ! Ai, 0)} \ {(Fi, Φi)}
 CNF ← CNF(PKB)

 for all ¬Ai literals do W¬Ai := Φi
 for all other literals L do WL := 1
 return (CNF, weights)

Kristian Kersting
Lifted Probabilistic Inference

Clauses/Formula Potential

Hard formula as weight is 0

Lifted Weighted Model Counting

LWMC(CNF, substs, weights)
 if all clauses in WCNF are satisfied
 return
 if CNF has empty unsatisfied clause return
0

)(
)A()(substsn

AACNFA
Aww ¬∈ +∏

Base
Case

19

Lifted Weighted Model Counting

LWMC(CNF, substs, weights)
 if all clauses in WCNF are satisfied
 return
 if CNF has empty unsatisfied clause return
0
 if there exists a lifted decomposition of CNF
sharing no unifiable literals
 return

)(
)A()(substsn

AACNFA
Aww ¬∈ +∏

im
i

k
i weightssubstsCNFLWMC)],,([1,1=∏

Decomp. Step

Lifted Weighted Model Counting

LWMC(CNF, substs, weights)
 if all clauses in CNF are satisfied
 return
 if CNF has empty unsatisfied clause return
0
 if there exists a lifted decomposition of CNF
 return
 choose an atom A
 return

)(
)A()(substsn

AACNFA
Aww ¬∈ +∏

im
i

k
i weightssubstsCNFLWMC)],,([1,1=∏

),,|(1 weightssubstsCNFLWMCwwn jj
f
A

t
Ai

l
i

ii σ¬=∑
Main computational step. I am skipping the details. Nice
connection to knoweldge compilation e.g. using first-
order d-DNNF for efficient model counting. Is closely
related to recursive conditioning

What about approximate inference?

Splitting Step

20

Kristian Kersting
Lifted Approximate Inference

§  There is an edge between a circle and a box if
the variable is in the domain/scope of the factor

Reminder Factor Graphs

40

unnormalized !

Random variable

Factor resp. potential

Distributions can naturally be represented as
Factor Graphs

[Pearl, Koller, Friedman, Lauritzen, Spiegelhalter, …]

Kristian Kersting
Lifted Approximate Inference

21

Random variables exchange
Messages: “I (A) believe that
you (X1) should be in state x1
with probability … .”

factor graph

Approximate Inference using
Loopy Belief Propagation

41
Kristian Kersting
Lifted Approximate Inference

Loopy Belief Propagation
for Social Network Analysis

factor graph + loopy belief propagation

Inference often slow
even for approximate

inference

42

0
0,05

0,1
0,15
0,2

0,25
0,3

0,35
0,4

X1 X2 X3 X4

p
er

 n
od

e
m

ar
g

in
al

22

HOWEVER, MANY GRAPHICAL MODELS HAVE

SYMMETRIES

How can we exploite them within loopy
Belief Propagation?

Let‘s discover its
computational symmetries

44

Step 1: Coloring the graph

§  Color nodes according to the
evidence you have
§  No evidence, say red
§  State „one“, say brown
§  State „two“, say orange
§  ...

§  Color factors distinctively
according to their equivalence
classes. For instance, assuming f1
and f2 to be identical and B appears
at the second position within both,
say blue

[Singla, Domingos AAAI 2008; Kersting, Ahmadi, Natarajan UAI 2009; Ahmadi, Kersting, Mladenov, Natarajan MLJ 2013]

Kristian Kersting
Lifted Approximate Inference

23

45

Step 2: Pass the colors around

1.  Each factor collects the colors of its neighboring nodes

[Singla, Domingos AAAI 2008; Kersting, Ahmadi, Natarajan UAI 2009; Ahmadi, Kersting, Mladenov, Natarajan MLJ 2013]

Kristian Kersting
Lifted Approximate Inference

46

Step 2: Pass the colors around

1.  Each factor collects the colors of its neighboring nodes
2.  Each factor „signs“ ist color signature with its own color

[Singla, Domingos AAAI 2008; Kersting, Ahmadi, Natarajan UAI 2009; Ahmadi, Kersting, Mladenov, Natarajan MLJ 2013]

Kristian Kersting
Lifted Approximate Inference

24

47

Step 2: Pass the colors around

1.  Each factor collects the colors of its neighboring nodes
2.  Each factor „signs“ ist color signature with its own color
3.  Each node collects the signatures of its neighboring factors

[Singla, Domingos AAAI 2008; Kersting, Ahmadi, Natarajan UAI 2009; Ahmadi, Kersting, Mladenov, Natarajan MLJ 2013]

Kristian Kersting
Lifted Approximate Inference

48

Step 2: Pass the colors around

1.  Each factor collects the colors of its neighboring nodes
2.  Each factor „signs“ ist color signature with its own color
3.  Each node collects the signatures of its neighboring factors
4.  Nodes are recolored according to the collected signatures

[Singla, Domingos AAAI 2008; Kersting, Ahmadi, Natarajan UAI 2009; Ahmadi, Kersting, Mladenov, Natarajan MLJ 2013]

Kristian Kersting
Lifted Approximate Inference

25

49

Step 2: Pass the colors around

1.  Each factor collects the colors of its neighboring nodes
2.  Each factor „signs“ ist color signature with its own color
3.  Each node collects the signatures of its neighboring factors
4.  Nodes are recolored according to the collected signatures
5.  If no new color is created stop, otherwise go back to 1

[Singla, Domingos AAAI 2008; Kersting, Ahmadi, Natarajan UAI 2009; Ahmadi, Kersting, Mladenov, Natarajan MLJ 2013]

A,C

B

f1

Essentially we just compute the
so-called quotient factor graph

Step 3: Compress the factor

50

[Singla, Domingos AAAI 2008; Kersting, Ahmadi, Natarajan UAI 2009; Ahmadi, Kersting, Mladenov, Natarajan MLJ 2013]

Kristian Kersting
Lifted Approximate Inference

26

A,C

B

f1

Step 4:
Run a modified Loopy Belief Propagation

§  Nodes are now groups of random variables
§  The counts ensure that we send the same number of

message as standard loopy belief propagation

C(
f 1

,n
(a

,c
))

=
2

51

[Singla, Domingos AAAI 2008; Kersting, Ahmadi, Natarajan UAI 2009; Ahmadi, Kersting, Mladenov, Natarajan MLJ 2013]

Kristian Kersting
Lifted Approximate Inference

Mind the counts! They also depend on the
position of the variable within the factors

§  Here, denotes the position variables appear in factors
§  The main difference is in the factor to variable messages. We

now send only one message per „supernode“ and position as
expressed by the indicator functions

§  For the lifting, we can turn the graph into a position- pairwise
factor graph and then run color-passing

52

[Singla, Domingos AAAI 2008; Kersting, Ahmadi, Natarajan UAI 2009; Ahmadi, Kersting, Mladenov, Natarajan MLJ 2013]

Exploiting Symmetries for Scaling Loopy Belief Propagation and Relational Training 13

Fig. 3 (a): Original factor graph with colored nodes (b): Colored computation trees for nodes X1 to X4.
As one can see, nodes X1 and X2, respectively X3 and X4, have the same colored computation tree, thus
are grouped together during color-passing.

of the (loopy) graph structure where each level i corresponds to the i-th iteration of
message passing. Similarly we can view color-passing, i.e., the lifting procedure as a
colored computation tree (CCT). More precisely, one considers for every node X the
computation tree rooted in X but now each node in the tree is colored according to the
nodes’ initial colors, cf. Fig. 3(a). For simplicity edge colors are omitted and we as-
sume that the potentials are the same on all edges. Each CCT encodes the root nodes’
local communication patterns that show all the colored paths along which node X
communicates in the network. Consequently, color-passing groups nodes with respect
to their CCTs: nodes having the same set of rooted paths of colors (node and factor
names neglected) are clustered together. For instance, Fig. 3(b) shows the CCTs for
the nodes X

1

to X

4

. Because their set of paths are the same, X
1

and X

2

are grouped
into one clusternode, X

3

and X

4

into another.1

Now we can run BP with minor modifications on the compressed factor graph G.
Step 2 – BP on the Compressed Factor Graph: Recall that the basic idea is to

simulate BP carried out on G on G. An edge from a clusterfactor f to a cluster node
X in G essentially represents multiple edges in G. Let c(f,X, p) be the number of
identical messages that would be sent from the factors in the clusterfactor f to each
node in the clusternode X that appears at position p in f if BP was carried out on G.
The message from a clustervariable X to a clusterfactor f at position p is

µX!f,p(x) = µf,p!X(x)
c(f,X,p)�1

Y

h2nb(X)

Y

q2P (h,X)

(h,q) 6=(f,p)

µh,q!X(x)
c(h,X,q)

, (7)

where nb(X) now denotes the neighbor relation in the compressed factor graph
G and P (h,X) denotes the positions nodes from X appear in f. The c(f,X, p) � 1

exponent reflects the fact that a clustervariable’s message to a clusterfactor excludes
the corresponding factor’s message to the variable if BP was carried out on G. The
message from the factors to neighboring variables essentially remains unchanged.

1 The partitioning of the nodes obtained by color-passing corresponds to the so-called coarsest equitable
partition of the graph [56]. However, a formal characterization of the symmetries is beyond the scope of
the current paper.

Exploiting Symmetries for Scaling Loopy Belief Propagation and Relational Training 13

Fig. 3 (a): Original factor graph with colored nodes (b): Colored computation trees for nodes X1 to X4.
As one can see, nodes X1 and X2, respectively X3 and X4, have the same colored computation tree, thus
are grouped together during color-passing.

of the (loopy) graph structure where each level i corresponds to the i-th iteration of
message passing. Similarly we can view color-passing, i.e., the lifting procedure as a
colored computation tree (CCT). More precisely, one considers for every node X the
computation tree rooted in X but now each node in the tree is colored according to the
nodes’ initial colors, cf. Fig. 3(a). For simplicity edge colors are omitted and we as-
sume that the potentials are the same on all edges. Each CCT encodes the root nodes’
local communication patterns that show all the colored paths along which node X
communicates in the network. Consequently, color-passing groups nodes with respect
to their CCTs: nodes having the same set of rooted paths of colors (node and factor
names neglected) are clustered together. For instance, Fig. 3(b) shows the CCTs for
the nodes X

1

to X

4

. Because their set of paths are the same, X
1

and X

2

are grouped
into one clusternode, X

3

and X

4

into another.1

Now we can run BP with minor modifications on the compressed factor graph G.
Step 2 – BP on the Compressed Factor Graph: Recall that the basic idea is to

simulate BP carried out on G on G. An edge from a clusterfactor f to a cluster node
X in G essentially represents multiple edges in G. Let c(f,X, p) be the number of
identical messages that would be sent from the factors in the clusterfactor f to each
node in the clusternode X that appears at position p in f if BP was carried out on G.
The message from a clustervariable X to a clusterfactor f at position p is

µX!f,p(x) = µf,p!X(x)
c(f,X,p)�1

Y

h2nb(X)

Y

q2P (h,X)

(h,q) 6=(f,p)

µh,q!X(x)
c(h,X,q)

, (7)

where nb(X) now denotes the neighbor relation in the compressed factor graph
G and P (h,X) denotes the positions nodes from X appear in f. The c(f,X, p) � 1

exponent reflects the fact that a clustervariable’s message to a clusterfactor excludes
the corresponding factor’s message to the variable if BP was carried out on G. The
message from the factors to neighboring variables essentially remains unchanged.

1 The partitioning of the nodes obtained by color-passing corresponds to the so-called coarsest equitable
partition of the graph [56]. However, a formal characterization of the symmetries is beyond the scope of
the current paper.

14 Babak Ahmadi et al.

The difference is that we now only send one message per clusternode and position,
given by

µf,p!X(x) =

X

¬{X}

0

@f(x)
Y

Y2nb(f)

Y

q2P (f,Y)

µY!f,q(y)
c(f,Y,q)��XY�pq

1

A
, (8)

where �XY and �pq are one iff X = Y and p = q respectively. The unnormalized
belief of X

i

, i.e., of any node X in X
i

can be computed from the equation

b

i

(x

i

) =

Y

f2nb(Xi)

Y

p2P (f,Xi)

µf,p!Xi(xi

)

c(f,Xi,p)
. (9)

Evidence is incorporated either on the ground level by setting f(x) = 0 or on
the lifted level by setting f(x) = 0 for states x that are incompatible with it. 2 Again,
different schedules may be used for message-passing. If there is no compression pos-
sible in the factor graph, i.e. there are no symmetries to exploit, there will be only a
single position for a variable X in factor f and the counts c(f,X, 1) will be 1. In this
case the equations simplify to Eq.3-5.

To conclude the section, the following theorem states the correctness of lifted BP.

Theorem 1 Given a factor graph G, there exists a unique minimal compressed G
factor graph, and algorithm CFG(G) returns it. Running BP on G using Eqs. (7)
and (9) produces the same results as BP applied to G.

The theorem generalizes the theorem of Singla and Domingos [78] but can es-
sentially be proven along the same ways. Although very similar in spirit, lifted BP
has one important advantage: not only can it be applied to first-order and relational
probabilistic models, but also directly to traditional, i.e., propositional models such
as Markov networks.

Proof We prove the uniqueness of G by contradiction. Suppose there are two mini-
mal lifted networks G

1

and G
2

. Then there exists a variable node X that is in clus-
ternode X

1

in G
1

and in clusternode X
2

in G
2

, X
1

6= X
2

; or similarly for some
clusterfactor f. Since all nodes in X

1

, and X
2

respectively, send and receive the same
messages X

1

= X
2

. Following the definition of clusternodes, any pair of nodes X and
Y in G send and receive different messages, therefore no further grouping is possible.
Hence, G is a unique minimal compressed network.

Now we show that algorithm CFG(G) returns this minimal compressed network.
The following arguments are made for the variable nodes in the graph, but can analog-
ously be applied to factor nodes. Reconsider the colored computation trees (CCT)
which resemble the paths along which each node communicates in the network. Vari-
ables nodes are being grouped if they send and receive the same messages. Thus
nodes X

1

and X

2

are in they same clusternode iff they have the same colored com-
putation tree. Unfolding the computation tree to depth k gives the exact messages that

2 Note that, the variables have been grouped according to evidence and their local structure. Thus all
factors within a clusterfactor are indistinguishable and we can set the states of the whole clusterfactor f at
once.

14 Babak Ahmadi et al.

The difference is that we now only send one message per clusternode and position,
given by

µf,p!X(x) =

X

¬{X}

0

@f(x)
Y

Y2nb(f)

Y

q2P (f,Y)

µY!f,q(y)
c(f,Y,q)��XY�pq

1

A
, (8)

where �XY and �pq are one iff X = Y and p = q respectively. The unnormalized
belief of X

i

, i.e., of any node X in X
i

can be computed from the equation

b

i

(x

i

) =

Y

f2nb(Xi)

Y

p2P (f,Xi)

µf,p!Xi(xi

)

c(f,Xi,p)
. (9)

Evidence is incorporated either on the ground level by setting f(x) = 0 or on
the lifted level by setting f(x) = 0 for states x that are incompatible with it. 2 Again,
different schedules may be used for message-passing. If there is no compression pos-
sible in the factor graph, i.e. there are no symmetries to exploit, there will be only a
single position for a variable X in factor f and the counts c(f,X, 1) will be 1. In this
case the equations simplify to Eq.3-5.

To conclude the section, the following theorem states the correctness of lifted BP.

Theorem 1 Given a factor graph G, there exists a unique minimal compressed G
factor graph, and algorithm CFG(G) returns it. Running BP on G using Eqs. (7)
and (9) produces the same results as BP applied to G.

The theorem generalizes the theorem of Singla and Domingos [78] but can es-
sentially be proven along the same ways. Although very similar in spirit, lifted BP
has one important advantage: not only can it be applied to first-order and relational
probabilistic models, but also directly to traditional, i.e., propositional models such
as Markov networks.

Proof We prove the uniqueness of G by contradiction. Suppose there are two mini-
mal lifted networks G

1

and G
2

. Then there exists a variable node X that is in clus-
ternode X

1

in G
1

and in clusternode X
2

in G
2

, X
1

6= X
2

; or similarly for some
clusterfactor f. Since all nodes in X

1

, and X
2

respectively, send and receive the same
messages X

1

= X
2

. Following the definition of clusternodes, any pair of nodes X and
Y in G send and receive different messages, therefore no further grouping is possible.
Hence, G is a unique minimal compressed network.

Now we show that algorithm CFG(G) returns this minimal compressed network.
The following arguments are made for the variable nodes in the graph, but can analog-
ously be applied to factor nodes. Reconsider the colored computation trees (CCT)
which resemble the paths along which each node communicates in the network. Vari-
ables nodes are being grouped if they send and receive the same messages. Thus
nodes X

1

and X

2

are in they same clusternode iff they have the same colored com-
putation tree. Unfolding the computation tree to depth k gives the exact messages that

2 Note that, the variables have been grouped according to evidence and their local structure. Thus all
factors within a clusterfactor are indistinguishable and we can set the states of the whole clusterfactor f at
once.

27

53

Lifted Loopy Belief Propagation

Step 1: Color the factor graph

Step 2: Color-Passing

Step 3: Compress the factor graph

Step 4: Run modified Loopy Belief Propagation

[Singla, Domingos AAAI 2008*; Kersting, Ahmadi, Natarajan UAI 2009; Ahmadi, Kersting, Mladenov, Natarajan MLJ 2013]
(*)Singla and Domingos actually proposed a relational variant that corresponds to color-passing on the ground network

And these kinds of lifted
message-passing approaches
can be orders of magnitudes
faster

5 15 25 50 5 10 20 3040 50
Domain Size

Ti
m

e
[s]

LP-lifted
LP-reparam.
LP-ground.

MPLP-reparam.
MPLP-ground

MPLP-reparam.
TRW-reparam.

5 15 25 50 5 10 20 30 40 50 5 10 20 30 40 50

103

102

101

100

10-1

10-2

7 106
120

Figure 5: Experimental illustration (for ease of compari-
son the first three plots have the same scales). From top
to bottom, from left to right: (a) Comparison (domain
size vs. end-to-end running time) of solving LPs using
GLPK (ground, fully lifted, and reparametrization). The
first block of domain sizes (5, 15, 25, 50) are from the
friends-smoker MLN; the second block (5, 10, . . . , 50) is
on the CORA MLN. (b) Performance of MPLP (ground vs.
reparametrization) on the same MLNs (same block struc-
ture). (c) Comparison (domain size vs. end-to-end running
time) of TRW and MPLP by reparametrization on CORA.
(d,e) Model sizes for exact evidence (“f”) and approxima-
tions of ranks 100 to 20 and running times.

To this aim we implemented the reparametrization ap-
proach on a single Linux machine (4 ⇥ 3.4 GHz cores, 32
GB main memory) using Python and C/C++. For evalu-
ation we considered three sets of MRFs. One was gener-
ated from grounding a modified version of a Markov Logic
Network (MLN) used for entity resolution on the CORA
dataset. Five different MRFs were generated by ground-
ing the model for 5, 10, 20, 30, 40 and 50 entities, hav-
ing 960, 4081, 13933, 27850, 4699 and 76274 factors re-
spectively. The second set was generated from a pairwise
version of the friends-smokers MLN [4] for 5, 15, 25 and
50 people, having 190, 1620, 4450 and 17650 factors. The
third set considers a simple fr(X, Y)) (sm(X) , sm(Y))

rule (converted to a pairwise MLN) where we used the
link common observations from the “Cornell” dataset as
evidence for fr. Then we computed different low-rank ap-
proximations of the evidence using [23] .

In all cases, there were only few additional factors due
to treating double edges. What is more interesting are the
running times and overall performances. Fig. 5(a) shows
the end-to-end running time for solving the corresponding
ground, (fully) lifted, and reparametrized LPs using GLPK.
As one can see, reparametrization is competitive to lifted
linear programming (LLP) in time. Actually, it can even
save time since it runs directly on the factor graph and

not on the LP matrix — which is larger than the factor
graph — for discovering symmetries. Moreover, in all cases
the same objective was achieved, that is, reparametriza-
tion does not sacrifice quality. In turn, question (Q1) can
clearly be answered affirmatively. Fig. 5(b) summarizes the
performance of MPLP on the reparametrized models. As
one can see, MPLP can be significantly faster than LLP
for solving MAP-LPs without sacrificing the objective; it
was always identical to the LP solutions. To illustrate than
one may also run other LP-based message-passing solvers,
Figs. 5(c) summarizes the performance of TRW on CORA.
As one can see, lifting TRW by reparametrization is pos-
sible and differences in time are likely due to initializa-
tion, stopping criterion, etc. In any case, question (Q2) can
clearly be answered affirmatively. All results so far show
that lifted LP-based MP solvers can be significantly faster
than generic LP solvers. Figs. 5(d,e) summarize the results
for low-rank evidence approximation. As one can see in
(d), significant reduction in model size can be achieved
even at rank 100, which in turn can lead to faster MPLP
running times (e). For each low-rank model, the ground
and the reparametrized MPLP achieved the same objective.
Plot (e), however, omits the time for performing BMF. It
can be too costly to first run BMF canceling the benefits
of lifted LP-based inference (in contrast to exact inference
as in [23]). Nevertheless, w.r.t. (Q3) these results illustrate
that evidence approximation can result in major speed-ups.

5 CONCLUSIONS

In this paper, we proved that lifted MAP-LP inference in
MRFs with symmetries can be reduced to MAP-LP infer-
ence in standard models of reduced size. In turn, we can use
any off-the-shelf MAP-LP inference algorithm — in partic-
ular approaches based on message-passing — for lifted in-
ference. This incurs no major overhead: for given evidence,
the reduced MRF is at most twice as large than the corre-
sponding fully lifted MRF. By plugging in different exist-
ing MAP-LP inference algorithms, our approach yields a
family of lifted MAP-LP inference algorithms. We illus-
trated this empirically for MPLP and tree-reweighted BP.
In fact, running MPLP yields the first provably convergent
lifted MP approach for MAP-LP relaxations. More impor-
tantly, our result suggests a novel view on lifted inference:
lifted inference can be viewed as standard inference in a

reparametrized model. Exploring this view for marginal in-
ference as well as for branch-and-bound MAP inference
approaches are the most attractive avenue for future work.

Acknowledgments: The authors would like to thank the
anonymous reviewers and Udi Apsel for their feedback and
Guy Van den Broeck for providing the evidence approx-
imation code. This research was partly supported by the
German-Israeli Foundation (GIF) for Scientific Research
and Development, 1180-218.6/2011, and by the German
Science Foundation (DFG), KE 1686/2-1.

[Taken from Mladenov, Globerson, Kersting UAI 2014]

54
Kristian Kersting
Lifted Approximate Inference

28

It turns out that we have just developed
what is well known in graph theory:

The Weisfeiler Lehman
Algorithm

But what is color passing computing?

Weisfeiler-Lehman (WL) Algorithmus
aka “naive vertex classification”

§  Basic subroutine for graph
 isomorphism testing
§  Computes so called
 fractional automorphisms:

Doubly stochastic matrices instead of
permutation matrices

§  Quasi-linear running time O((n+m)log(n)) when
using asynchronous updates [Berkholz, Bonsma, Grohe ESA 2013]

§  Part of graph tool SAUCY [See e.g. Darga, Sakallah, Markov DAC 2008]

§  Can be extended to weighted graphs
[Grohe, Kersting, Mladenov, Selman ESA 2014]

56

Kristian Kersting
Lifted Approximate Inference

29

Examples for WL with flooding

57

chain graph grid graph McKay graph

The resulting partitions are called „coarsest equitable partitions“ (CEPs)
Whalter graph social rules „walk“ graph

But how do we get from factor graphs to graphs?

§  Encode the factor colors into the node colors

§  Then run Weisfeiler-Lehman / Color-Passing just
on the graph with these initial colors

58

30

Quasi-linear running time
§  Send color message asynchronously and keep a

stack of active color classes
§  Initially only color 1 is active
§  Pop an active color C from the stack and send

message to the neigbors of the corresponding
color class members (refine)

§  Push all new colors on the stack in increasing
order except we used C already before. If so,
then push all new colors but the largest one
-Hopcroft‘s trick resulting in a halfing argument-

§  Stop if the stack if empty
§  Due to the halfing argument this can be shown

to be of O((n+m)log(n))

59

[Berkholz, Bonsma, Grohe ESA 2013]

Kristian Kersting
Lifted Approximate Inference

Problem: Find automorphism (*) of an
undirected graph with adjancency matrix A

60

Find a permutation matrix P such
that AP=PA

S(P) := ||A�A0||2F = ||A� PAPT ||2F
= ||(A� PAPT)P ||2F = ||AP � PA||2F

P ⇤ = argminP2P S(P)

[Kersting, Mladenov, Garnett, Grohe AAAI 2014]

(*) Automorphisms have recently received a lot of attention for lifted inference, see e.g.
[Nieper UAI 2012; Bui, Huynh, Riedel UAI 2013; Niepert AAAI 2013; Apsel, Kersting, Mladenov AAAI
2014; Bui, Huynh, Sontag UAI 2014] and later in this tutorial. For many graphs they can be computed
in polynomial time. For general graphs, however, the complexity is unknown; it might be NP-complete.

31

61

Find a permutation matrix P such
that AP=PA

P ⇤ = argminP2P S(P)
= argmaxP2P F (P)

:= tr(APAPT
)

Complexity is
unknown. Let‘s

relax the probelm

[Kersting, Mladenov, Garnett, Grohe AAAI 2014]

Problem: Find automorphism (*) of an
undirected graph with adjancency matrix A

(*) Automorphisms have recently received a lot of attention for lifted inference, see e.g.
[Nieper UAI 2012; Bui, Huynh, Riedel UAI 2013; Niepert AAAI 2013; Apsel, Kersting, Mladenov AAAI
2014; Bui, Huynh, Sontag UAI 2014] and later in this tutorial. For many graphs they can be computed
in polynomial time. For general graphs, however, the complexity is unknown; it might be NP-complete.

Problem: Fractional Automorphism

62

Birkhoff Polytope
consists of all doubly
stochastic matrices.
It is convex

Find a doubly stochastic matrix D
s.t. AD=DA

D⇤
= argmaxD2D F (D)

[Kersting, Mladenov, Garnett, Grohe AAAI 2014]

Kristian Kersting
Lifted Approximate Inference

32

§  Start with
§  Lower bound F(D) with its FO Taylor series expansion

§  Maximize s.t.

§  Since the polytope is convex, run a line search
between D(k) and H(k) to find next D(k+1).

§  Iterate until convergence
63

H(k)
= maxH2DhrF (D(k)

), Hi

T (k)(H) := F (D(k)) + hrF (D(k)), H �D(k)i

 Since the
lower bound is concave, H(k) will be selected

Optimization over a convex set:
Conditional Gradients aka Frank-Wolfe

This lower bound
is concave

This is a Linear
Assignement Problem

Mission completed?

[Kersting, Mladenov, Garnett, Grohe AAAI 2014]

NO!!
§  This does not mimic WL at all!!!!

§  It will just find the trivial solution (identity
matrix). We do not employ the more-
general-than relation among solutions!

§  Replacing a quasi-linear approach by
a sequence of cubic LAPs is stupid!

64

[Kersting, Mladenov, Garnett, Grohe AAAI 2014]

Kristian Kersting
Lifted Approximate Inference

33

Exploit symmetries in the
induced linear problems!

§  Intuitively, if two vertices of a graph have
identical subgradients (rows in the gradient
matrix) they are interchangeable

rF (D(k)) = 2AD(k)A

1 0 0 0
0 1 0 1
0 0 1 0
0 1 0 1

!

"

#
#
#
#

$

%

&
&
&
&

Bij =

(
1 ith vertex is in jth cluster of rF (D(k)

),

0 otherwise

65

[Kersting, Mladenov, Garnett, Grohe AAAI 2014]

Do not solve the induced LPs at all

§  B induces actually ascent directions.
They are all what we need

 where S (the sizes of the clusters) takes
 care of normalization

H = BS�1BT

66

[Kersting, Mladenov, Garnett, Grohe AAAI 2014]

Kristian Kersting
Lifted Approximate Inference

34

Conditional Gradients for
Color Refinement/Weissfeiler Lehman

67

Algorithm 1: CGCR(A): CG for Color Refinement

1 Set D(0)

=

1

n1 2 D, i.e., the flat partition matrix;
2 Set k := 1 ;
3 repeat
4 B := CHARACTMAT

�
rF (D(k)

)

�
;

5 S := diag(BT1) /* diagonal mat. of class sizes */;
6 Update D(k+1)

:= BS�1BT ;
7 Set k := k + 1;

until F (D(k)
)  F (D(k�1)

);
8 return D(k)

• It does not scale to large graphs due to the cubic running
time of LAP solvers.

• It computes integral solutions to the FAG problem only
and typically misses the CEP.

The reason for the latter drawback is that CG computes it-
eratively permutation and not doubly stochastic matrices. In
turn, it cannot employ the ”more general than” relation that
actually exists among all (even doubly stochastic) solutions:
a solution D is more general than — a condensation of —
another solution D0 if D0

ij = 0 implies Dij = 0 for all
nodes i and j. Consequently, CG will miss the CEP — the
most general solution — found by CR.

In the following, we will show how to adapt CG so that it
is guaranteed to converge to the CEP. The approach is based
on a novel symmetry-regularized solver for the induced lin-
ear subproblems of the CG approach. Actually, we show that
the resulting CG approach coincides with CR.

Conditional Gradients for Color Refinement
Reconsider the linear approximation of F (D) and the cor-
responding linear program for selecting the hindsight direc-
tion (3). The main idea underlying our approach is to exploit
symmetries already here and, in turn, to favor flat doubly
stochastic matrices as solutions.

Intuitively, if two vertices of the graph G have identical
subgradients, i.e., the ith and jth rows of rF (D(k)

) are
identical riF (D(k)

) = rjF (D(k)
) both vertices are in-

terchangeable. So, whenever we can ‘match’ vertex i with
vertex j, we could also have ‘matched’ vertex j with vertex
i. Consequently, instead of solving the original LAP, we can
also cluster together the vertices with identical subgradients
and solve a LAP of reduced dimension. Let B 2 {0, 1}n⇥c

encode the partition induced by rF (D(k)
) over the vertices

Bij =

⇢
1 ith vertex is in jth cluster of rF (D(k)

),

0 otherwise
(4)

and S 2 Nc⇥c the diagonal matrix with Sii being the num-
ber of vertices in color class i, where in analogy to CR
we call the clusters of vertices with identical subgradients
color classes. Now one solves the LP of reduced dimension-
ality, namely h(k)

= argmaxh2dhBTrF (D(k)
)S�1B, hi

where d is the Birkhoff polytope of reduced dimension. The
solution h(k) of reduced dimensionality can be expanded to
a full solution by considering H(k)

= S�1Bh(k)BT .

Algorithm 2: COLORS(M)

1 Let U 2 Rc⇥n be the system of representatives of the
rows of M ;

2 return the index vector v s.t. Mi• = Uv(i)• for the rows

Algorithm 3: CHARACTMAT(M)

1 v := COLORS(M);
2 Initialize the characteristic matrix B = 0 2 Rn⇥max(c);
3 for i := 1, 2, . . . , n do
4 Biv(i) := 1;
5 return B

Indeed, this is akin to lifted linear programming (Mlade-
nov, Ahmadi, and Kersting 2012), however, it turns out that
we do not have to evoke an LP solver at all for solving the
reduced LAP if we are willing to follow ascent instead of
steepest direction. CGCR in Alg. 1 is doing this. We start
with the flat partition matrix, line 1, use the doubly stochas-
tic matrix induced by the row clustering of the gradient as
update, line 4, and iterate. This computes the CEP in a lin-
ear number of iterations as we will prove now.

We first prove convergence.
Theorem 1. CGCR converges to a local maximum of F .

Proof. Reconsider the Taylor series approximation (2) used
in the kth iteration of CG at the point

H = BS�1BT (5)

where B denotes the partition induced by rF (D(k)
) as

computed in (4). By construction, H is a doubly stochas-
tic matrix. To see this note that BT1 is the columns vec-
tor of the sizes of color classes. So, S�1BT1 = 1 and
hence BS�1BT1 = 1. Now, 1TBS�1BT

= 1T follows
from the symmetry of H , i.e., H = HT . We are now go-
ing to prove that hrF (D(k)

), Hi = hrF (D(k)
), Ii. Due

to the Birkhoff theorem , the matrix H is a convex com-
bination H =

P
i wiPi of permutation matrices Pi. Thus

hrF (D(k)
), Hi =

P
i wihrF (D(k)

), Pii . For each Pi

its inverse PT
i is among the Pis, since if we can exchange

row i by row j, then we could also have exchanged row j
by row i within the LAP. Thus,

P
i wihrF (D(k)

), Pii =P
i wihrF (D(k)

), PT
i i . It holds hrF (D(k)

), PT
i i =

tr(rTF (D(k)
)PT

i) = tr((PirF (D(k)
))

T
) . (6)

By construction of B we know PirF (D(k)
) = rF (D(k)

),
and (6) simplifies to tr((PirF (D(k)

))

T
) =

tr(rTF (D(k)
)) = hrF (D(k)

), Ii . Here, we have
employed the invariance of the trace operator un-
der cyclic permutations and transposition. Conse-
quently, hrF (D(k)

), Hi =

P
i wihrF (D(k)

), Ii
= hrF (D(k)

), Ii
P

i wi = hrF (D(k)
), Ii . In other

words, plagging this result into (2) at point H ,we get

Tk(H) = Tk(I) . (7)

Materializing D(0) breaks memory
already for medium size graphs

[Kersting, Mladenov, Garnett, Grohe AAAI 2014]

Kristian Kersting
Lifted Approximate Inference

Provably convergent to a local maximum of F in
a linear number of iterations producing the
same sequence of intermediate solutions as WL
with flooding

Algorithm 4: CGCR(A): CG for Color Refinement

1 B(0)

:= 1, i.e., the all 1 column vector;
2 m(0)

:= 1 (the current maximal color) and k := 1 ;
3 repeat
4 B(k+1)

:= CHARACTMAT(AB(k)
) ;

5 Set m(k+1) to the number of columns of B(k+1);
6 k := k + 1;

until m(k)
= m(k�1);

7 return Bk

Intuitively, although H is not identical to I , it behaves like I
w.r.t. the lower bound.

Using (7), we now show that H � D(k) is an ascent di-
rection. The convexity of F implies that a necessary con-
dition for a local maximum is the inequality tk(D) :=

hrF (D(k)
), D � D(k)i � 0 for all D 2 D. Since D is

convex, the line joining H and D(k) is contained in D and
so the vector H�D(k) is a feasible direction. Moreover, due
to (7), tk(H) = tk(I) � hrF (D(k)

), D(k) � D(k)i = 0 .
Now, either tk(H) > 0 or tk(H) = 0. In the former case,
H � D(k) is an ascent direction, and we can improve the
objective value in this direction. So assume tk(H) = 0.
Then tk(I) = 0 since tk(H) = tk(I), and we get the same
directions at point D(k) as at the trivial solution I . Thus
tk(H) � tk(D) = hrF (D(k)

), D �D(k)i 8D 2 D , and
so D(k) is a local maximum and CGCR terminates.

Intuitively, H restricts the length of a line search between
D(k) and I . We can go at most to H and not all the way
‘down’ to I . Thus, clustering the gradient matrix accord-
ing to its row-symmetries acts as a regularizer. We will now
show that this symmetry-regularized CG converges to the
coarsest equitable partitions (CEP).

Theorem 2. CGCR converges in a linear number of itera-
tions to the coarsest equitable partition (CEP). It is sufficient
to cluster AB(k) instead of AD(k)A in each iteration k.

Proof. Reconsider line 4 of CGCR in Alg. 1 where we clus-
ter vertices together that have identical rows in the gradi-
ent matrix. Two nodes i and j are in the same color class
iff �TijAD

(k)A = 01⇥n where �ij = (ei � ej), ei de-
notes the ith unit column vector, and 01⇥n is a row vector
of n zeros. Since AD(k)A is symmetric, right multiplica-
tion with �ji yields �TijAD(k)A�ji = 0 . Now, recall that
D(k)

= BS�1BT
= XXT with X = BS�1/2. Plugging

this into the last equation yields �TijAX(XA)

T �ji = 0 .

Noting that �ji = ��ij this simplifies to �Y Y T
= 0 with

Y = �TijAX . Hence Y = 01⇥c since AX is nonnegative.
Unfolding Y this means �TijABS�1/2

= 01⇥c . Right mul-
tiplication by S1/2 yields �TijAB = 01⇥c . This leads us
to modify our original algorithm as summarized in Alg. 4:
instead of AD(k)A we use AB(k) for clustering in each it-
eration, saving us from having to construct and store the
doubly stochastic matrix D(k) in each iteration, while pro-

viding us with the same exact results3. Moreover, instead
of using F (D(k)

) to check for optimality, we can simply
check whether new colors have been created. If not, we have
converged. That is, we do not have to compute D(k). This
converges in at most a linear number of iterations since in
each step we either create a new color or we stop; overall,
however, there can only be at most n colors. Finally, CGCR
fulfills conditions (1.1) and (1.2) of (Grohe et al. 2013) and
hence converges to the coarsest equitable partition.

Theorem 2 establishes a fundamental link between com-
binatorial and nonlinear optimization views on CR. It shows
that CR actually maximizes a lower bound on F using a con-
ditional gradient (CG) approach. However, whereas a stan-
dard CG fails to find the CEP, a symmetry regularization
of its induced linear subproblems forces it to find the CEP.
And, CG directly applies to weighted graphs where other
approaches such as Saucy, see e.g. (Katebi, Sakallah, and
Markov 2012) and references in there, do not apply.

Although conceptually simple and akin to power itera-
tion methods well known from web mining, naively carrying
CGCR out will not scale (already for unweighted graphs).
Although sparse matrix operations allow one to compute
AB(k) in O(m) flops (where m is the number of edges), a
naive computation of the characteristic matrix B is quadratic
in the number of nodes n. We scan e.g. each column to com-
pute the index vectors of identical elements in O(m(k)n).
Since now the entries are integers, we can apply radix sort
to compute the index vectors of identical rows in O(m(k)n).
In the worst case this is O(n2

) since m(k) might be equal
to n. Overall, this yields a running time that is cubic: we
have n refinement rounds in the worst-case, and each round
takes time O(m + n2

). This is far too expensive for scal-
ing to unweighted graphs with millions of nodes and edges.
In contrast, the naive implementation of CR is known to be
O((n + m)n), i.e., quadratic. So, can we close the gap for
unweighted graphs? The answer is yes when using hashing,
which can also realize the best known running time for CR,
O((n+m) log n), using asynchronous color updates.

Hashed Color Refinement
Hashing is known to help to solve continuous optimiza-
tion problems more efficiently, see e.g. (Shi et al. 2009).
It turns out by using a perfect hash we can directly work
with the current color vector c(k) instead of B(k) using
h := c(k) + A log

�
⇡(c(k))

�
instead of AB(k). Here c(k) is

the vector with B
ic

(k)
i

= 1, and ⇡(j) denotes the j-th prime.
Let us prove this.
Theorem 3. For two nodes i and j in a graph G, hi = hj

if and only if c(k)i = c
(k)
j and �

�
[AB(k)

]i•, [AB(k)
]j•

�
= 1

where � is the Kronecker delta function and [·]i• the ith row.

Proof. We have A log

�
⇡(c(k))

�
i
=

Pn
l=1

Ail log
�
⇡(c

(k)
l)

�

=

Pm(k)

c=1

log

�
⇡(c)

�Pn
l=1

Ail · �(cl, c) where m(k) is

3In particular in early iterations D(k) is very densly populated
with millions of entries when n is large.

Matrix Multiplications for Color
Refinement/Weissfeiler Lehman

68

Memory consumption scales well
for sparse matrices

Just a few lines of matlab code !
But cubic running time !!!!

[Kersting, Mladenov, Garnett, Grohe AAAI 2014]

Kristian Kersting
Lifted Approximate Inference

Provably convergent to a local maximum of F in
a linear number of iterations producing the
same sequence of intermediate solutions as WL
with flooding

35

Perfectly Hashed Color Refinement/
Weissfeiler Lehman

69

Algorithm 5: HCGCR(A): Hashed CGCR
1 Let ⇡ an array where ⇡(i) equals to the ith prime;
2 c(0) := 1, i.e., the all 1 column vector;
3 m(0)

:= 1 (the maximal color) and k := 1 ;
4 repeat
5 c(k+1)

:= COLORS
�
c(k) +A log(⇡(c(k)))

�
;

6 m(k+1)

= max(c(k+1)

);
7 k := k + 1;

until m(k)
= m(k�1);

8 return c(k)

the currently maximal color. The inner sum simplifies to
[AB(k)

]ic . Now assume hi = hj . Exponentiating both
sides (which turns the sums into products) and setting Ni :=Qm(k)

c=1

⇡(c)(AB(k)
)ic yields

ec
(k)
i Ni = ec

(k)
j Nj (8)

where both Ni and Nj are integers. Rearranging (8) gives
ec

(k)
i �c

(k)
i

= Nj/Ni . Note that the right-hand side is ratio-
nal although all nonzero integral powers of e are irrational.
Therefore we conclude that c(k)i = c

(k)
j and (8) simplifies

to Ni = Nj . From the fundamental theorem of arithmetic,
we have that their prime factorizations coincide. Therefore
AB(k)

)ic = AB(k)
)jc for all 1  c  m(k), which is equiv-

alent to �
�
[AB(k)

]i•, [AB
(k)

]j•
�
= 1. Since the argument

goes in both directions, we have proven the theorem.

Thus, for unweighted graphs CGCR reduces to iteratively
computing the perfect hash values of the colors of all nodes.
This is realized in HCGCR in Alg. 5. Next to the O(n+m)

flops when using sparse matrices per iteration, the main ad-
ditional costs is to store a precomputed table of size O(n) of
the logs of the first n primes. Since there are more than a bil-
lion primes known, see e.g. http://www.bigprimes.
net, this scales well to graphs with billions of nodes. We
also note that one could realizes asynchronous color up-
dates. This would lead to stochastic CG approaches akin to
stochastic gradients and the quasi-linear CR developed by
Berkholz et al. (2013). We are not going into details.

We have just closed the gap between the combinatorial
and continuous optimization views on CR for unweighted
graphs. Now, we will illustrate the benefit of this by develop-
ing power iterated CR connecting fractional automorphisms
to web mining.

Power Iterated Color Refinement
HCGCR is already akin to the well-known power iteration
(PI) method for computing eigenvalues. We now show the
connection of CR to eigenvalue problems is deeper.
Theorem 4. The CEP can be computed iteratively by clus-
tering PI vectors personalized by the current condensation,
see Alg. 6. This converges in a linear number of iterations.

Proof. Reconsider CGCR in Alg. 4. Starting from the all

Algorithm 6: PICGCR(A): Power Iterated CGCR

1 B(0)

= 1;
2 m(0)

:= 1 (the current maximal color) and k := 1 ;
3 repeat
4 B(k+1)

:= CHARACTMAT
�
⇧(A,↵, B(k)

)

�
;

5 Set m(k+1) to the number of columns of B(k+1);
6 k := k + 1;

until m(k)
= m(k�1);

7 return B(k)

flat partition4 B(0)

= 1, it computes B(1) by cluster-
ing AB(0). That is, we group together nodes i and j if
�TijAB(0)

= 0 with �ij = (ei�ej), ei begin the ith unit col-
umn vector. Then it computes B(2) by clustering AB(1) and
so on. The value [AB(k)

]ij is the number of 1-step walks that
start in a node of class j and end in node i. Thus, it groups
together nodes that have the same number of 1-step walks
coming from each current color classes j = 1, 2, Hence
once nodes i and j get assigned to different color classes,
they will stay in different color classes. That is, B(k) is a
condensation5 of B⇤. So, CGCR iteratively computes con-
densations B(k) of and converges to the CEP B⇤.

We now combine this sandwiching behavior with a sem-
inal result due to Boldi et al. (2006). They have proven that
the steady state distribution of any Markov chain with restart
induced by G also induces a condensation of D⇤. More
precisely, let P = C�1A be the transition matrix induced
by G where C is the degree matrix of G. Now, consider
the steady states distribution ⇡(↵, v) of the Markov chain
with restart induced by ↵P + (1 � ↵)1T v where v is the
preference vector for the restart. Then �ij⇡(↵) = 0 for
0  ↵ < 1 if nodes i and j are in the same color class
in B⇤. In general, the partition induced by ⇡(↵, v), however,
will not be B⇤ but this can be fixed using CGCR. Specif-
ically, let’s compute ⇡(↵, v) using power iteration, that is
x(i+1)

:= ↵Px(i)
+ (1 � ↵)1T v with x(0)

= v. Induction
over the power iterations shows the equality holds for any
iteration i, i.e., �ijx(i)

= 0 for any i = 1, 2, 3, pro-
vided that the preference vector v is color class-wise uni-
form. This, however is the case for the columns of B(k)

modulo normalization. So, let ⇧(A,↵, B(k)
) be the matrix

whose uth column is the power iteration vector. We have
just proven that �Tij⇧(A,↵, B(k)

) = 0 for all iterations k.
In other words, we can cluster in each iteration the matrix
⇧(A,↵, B(k)

). Doing so can result in fewer CG iterations
as we might skip condensations but still converges to B⇤

since we are always sandwiched between one condensation
Bl (l � k) computed by HCGCR and B⇤.

Thus, CEPs of unweighted graphs can be found by re-
peatedly clustering globally the steady-state distributions

4We use B(k), D(k) and the corresponding partition of the
graph in an interchangeable way.

5B(k) is a condensation of B⇤ if D(k) is a condensation of D⇤ .
That is each color class in B(k) is a union of classes in B⇤.

This is quadratic and can actually be
turned into quasi-linear time using

asynchronous updates

The fundamental theorem of artihmetic
tells us that this is proveably correct

[Kersting, Mladenov, Garnett, Grohe AAAI 2014]
Matlab code available at http://www-ai.cs.uni-dortmund.de/weblab/code.html

WL is a conditional gradient using symmetry
regularized solvers for the induced linear

subproblems

WL can efficiently be implemented using
basic MATLAB sparse matrix operations and

is readily parallelizable

But this is not akin to anything I know!!!
Really not?

36

[Boldi et al. Theoretical Informatics and Applications 2006]

Sparse Matrix CP/WL

71

It
er

at
io

n
s

clustering

clustering

clustering

...
...

Lifted graph / fractional Automorphism

Theorem: Vertices in the
same color class of CR

have the same dot-
product xt+1=Axt

assuming x0(i)=x0(j)

This is akin to
Power Iteration

[Kersting, Mladenov, Garnett, Grohe AAAI 2014]

Power Iterated CP/WL

72

It
er

at
io

n
s

clustering

clustering

clustering

...
...

clustering

clustering

clustering

...

l>1

...

Lifted graph / fractional Automorphism

[Kersting, Mladenov, Garnett, Grohe AAAI 2014]

37

Power Iterated CP/WL

73

clustering

It
er

at
io

n
s

clustering

clustering

...
...

S
p

ec
tr

al
 P

ar
ti

ti
on

 s
u

ch
 a

s
vi

a
P

ag
eR

an
k

clustering

clustering

clustering

...
...

clustering

clustering

clustering

...

l>1

...

PPR(,)

PPR(,)

[R. Kannan, S. Vempala, A. Vetta: On clusterings: Good, bad and spectral. J. ACM 51(3): 497-515 (2004)]

WL is a spectral clustering approach
with restarts !

Lifted graph / fractional Automorphism

Empirical Illustration using Matlab

Avg. (5 reruns) time in sec. / median # CG iteration
Name / Description # nodes # edges Hashing PIfix PIflex S C
chain100001: Chain graph 100001 100, 000 699.62 50002 420.18 •1252 •136.59 2892 < 0.01 49%
grid1000: Grid graph 1, 000, 000 1, 998, 000 96.26 501 77.44 •21 •23.87 41 0.43 13%
email-EuAll: Email comm. netw., EU res. 265, 214 365, 030 •0.32 8 6.09 •5 0.51 •5 0.05 81%
soc-Epinions1: Who-trusts-whom netw. 75, 888 405, 740 •0.08 5 1.60 5 0.14 •4 0.02 30%
web-Google: Web graph from Google 875, 713 4, 322, 051 •5.61 17 163.49 •11 14.67 •11 1.03 40%
flickr: 2005 crawl of flickr.com by D. Gleich 820, 878 9, 837, 214 •1.32 •5 59.70 6 3.47 •5 0.61 40%
lung2: Transp. in lung, Uni. Aukland 109, 460 492, 564 4.84 227 3.39 •10 •1.48 26 0.06 59%
xenon2: Complex zeolite, sodalite crystals 157, 464 1, 933, 344 0.96 35 3.81 •5 •0.78 10 0.16 59%

Total • 4 1 0 6 4 4

Table 1: Scaling results on graphs generated from http://www.cise.ufl.edu/research/sparse/matrices/index.html (matrices were
turned into graphs using A := A + AT and thresholding |A| > 0). C is the compression ratio (ratio of # of color classes and
n). • denotes best value in a row (among proposed approaches) and < 0.01 smaller than 0.01. CGCR ran out of memory.

of “color preferred’ random walks. This extends Boldi et
al.’s (2006) results from computing condensations of B⇤ to
computing B⇤ itself and connects fractional automorphisms
to recursive and local spectral clustering approaches, see e.g.
(Kannan, Vempala, and Vetta 2004; Dasgupta et al. 2006;
Mahoney, Orecchia, and Vishnoi 2012). Since Theorem 4
holds for any ↵, we can trade off the length l of the random
walks with the number of CG iterations k. It is known that
PI’s rate of convergence is the rate at which ↵l goes to zero.
A rough estimate of the number of PI iterations l needed to
reach a tolerance level ✏ is ⌧ = log(✏)/ log(↵). However,
color classes also change a lot in early CG iterations. To bal-
ance both, we propose to set l to min(2k, ⌧) in the k-th CG
iteration since 2k is our current best estimate of the diameter
of the graph (length of longest shortest path).

Empirical Illustration
To investigate whether CR based on matrix operations
is practical, we implemented naive versions of CGCR,
HCGCR (denoted as Hashing) and PICGCR in Matlab on a
single Linux machine(4⇥3.4 GHz cores, 32 GB main mem-
ory). The convergence threshold ✏ for PI was set to 10

�8

and the damping factor ↵ to 0.95. The maximum number
of PI iterations was set to 500 (denoted as PIfix) resp. to
min(2k, ⌧) (PIflex). To reduce running time, we randomly
selected half of the color class and the currently largest color
class, and computed their union as preference vector6; the
clustering was done with the resulting PI vector and the
color vector resulting from one HCGCR iteration to ensures
convergence. We measured the running time and the num-
ber of iterations. The results in Tab. 1 show that CEPs (they
were always found) are readily computable using sparse ma-
trix operations.The CG approaches can scale to graphs with
millions of nodes. Hashing seems to be best on real world
graphs with small diameters such as social networks; it is
fastest per CG iteration and there is not much we can gain
from PI. For graphs with large diameters such a chains and
grids (as they often appear in AI tasks) the PI methods are
faster since hashing may take many CG iterations. PIfix
takes the fewest CG iterations but each iteration may take

6That is we solve the subproblem exactly only with probability
p resulting in 1/p more CG iterations (Jaggi 2013). To avoid this,
we coupled this approximate solution with the hashing solution.

Name / # graphs / avg. # nodes Hashing WL CGCR S
MUTAG / 188 / 17.93 •0.23 0.53 0.6 �
ENZYMES / 600 / 29.87 •0.64 3.46 2.08 �
NCI1 / 111 / 29.87 •5.25 16.07 93.81 �
Weighted MUTAG � � •0.40 �
Weighted ENZYMES � � •1.82 �
Weighted NCI1 � � •111.53 �

Table 2: Running times (sec.) for computing CEPs of graph
sets taking from (Shervashidze et al. 2011) for Weisfeiler-
Lehman graph kernels. � denotes not applicable. Weighted
X denotes row normalized (X + 0.0001).

quite some time. PIflex balances both the best. Finally, to
get references for the running times, we compared to Saucy
S7, see also Tab. 1, and to the combinatorial CR implemen-
tation WL in Matlab of (Shervashidze and Borgwardt 2009;
Shervashidze et al. 2011) used for fast Weisfeiler-Lehman
graph kernels, see Tab. 2. The results show that S is faster for
unweighted graphs but it is also highly sophisticated, cannot
be used for Shervashidze et al.’s graph kernels due to its
asynchronous color updates, and cannot deal with weighted
graphs. Compared to WL, (sparse) matrix approaches can
be faster and some of them can deal with weighted graphs.

Conclusions
We described novel and simple methods for color refine-
ment (CR), a basic algorithmic routine for graph isomor-
phism, fast graph kernels as well as lifted belief propaga-
tion reps. linear programming. The methods are easy to un-
derstand and implement using (sparse) matrix-matrix/vector
multiplications, readily parallelizable, and efficient and scal-
able in terms of time and space. Moreover, they open up
many interesting doors. Using disk-based systems such as
GraphChi (Kyrola, Blelloch, and Guestrin 2012) the frac-
tional automorphisms of massive graphs with billion of
edges are readily computable on just a single PC or laptop.
The results also suggest novel graph clustering and kernel
approaches based on iterative PI vectors where additionally
the lower number of CG iterations is promising. They may
also lead to novel notions of fractional automorphisms im-
posing e.g. norm instead of rank constraints.

7
http://vlsicad.eecs.umich.edu/BK/SAUCY/.

We modified the C/C++ code s.t. it stops after computing the CEP.

Avg. (5 reruns) time in sec. / median # CG iteration
Name / Description # nodes # edges Hashing PIfix PIflex S C
chain100001: Chain graph 100001 100, 000 699.62 50002 420.18 •1252 •136.59 2892 < 0.01 49%
grid1000: Grid graph 1, 000, 000 1, 998, 000 96.26 501 77.44 •21 •23.87 41 0.43 13%
email-EuAll: Email comm. netw., EU res. 265, 214 365, 030 •0.32 8 6.09 •5 0.51 •5 0.05 81%
soc-Epinions1: Who-trusts-whom netw. 75, 888 405, 740 •0.08 5 1.60 5 0.14 •4 0.02 30%
web-Google: Web graph from Google 875, 713 4, 322, 051 •5.61 17 163.49 •11 14.67 •11 1.03 40%
flickr: 2005 crawl of flickr.com by D. Gleich 820, 878 9, 837, 214 •1.32 •5 59.70 6 3.47 •5 0.61 40%
lung2: Transp. in lung, Uni. Aukland 109, 460 492, 564 4.84 227 3.39 •10 •1.48 26 0.06 59%
xenon2: Complex zeolite, sodalite crystals 157, 464 1, 933, 344 0.96 35 3.81 •5 •0.78 10 0.16 59%

Total • 4 1 0 6 4 4

Table 1: Scaling results on graphs generated from http://www.cise.ufl.edu/research/sparse/matrices/index.html (matrices were
turned into graphs using A := A + AT and thresholding |A| > 0). C is the compression ratio (ratio of # of color classes and
n). • denotes best value in a row (among proposed approaches) and < 0.01 smaller than 0.01. CGCR ran out of memory.

of “color preferred’ random walks. This extends Boldi et
al.’s (2006) results from computing condensations of B⇤ to
computing B⇤ itself and connects fractional automorphisms
to recursive and local spectral clustering approaches, see e.g.
(Kannan, Vempala, and Vetta 2004; Dasgupta et al. 2006;
Mahoney, Orecchia, and Vishnoi 2012). Since Theorem 4
holds for any ↵, we can trade off the length l of the random
walks with the number of CG iterations k. It is known that
PI’s rate of convergence is the rate at which ↵l goes to zero.
A rough estimate of the number of PI iterations l needed to
reach a tolerance level ✏ is ⌧ = log(✏)/ log(↵). However,
color classes also change a lot in early CG iterations. To bal-
ance both, we propose to set l to min(2k, ⌧) in the k-th CG
iteration since 2k is our current best estimate of the diameter
of the graph (length of longest shortest path).

Empirical Illustration
To investigate whether CR based on matrix operations
is practical, we implemented naive versions of CGCR,
HCGCR (denoted as Hashing) and PICGCR in Matlab on a
single Linux machine(4⇥3.4 GHz cores, 32 GB main mem-
ory). The convergence threshold ✏ for PI was set to 10

�8

and the damping factor ↵ to 0.95. The maximum number
of PI iterations was set to 500 (denoted as PIfix) resp. to
min(2k, ⌧) (PIflex). To reduce running time, we randomly
selected half of the color class and the currently largest color
class, and computed their union as preference vector6; the
clustering was done with the resulting PI vector and the
color vector resulting from one HCGCR iteration to ensures
convergence. We measured the running time and the num-
ber of iterations. The results in Tab. 1 show that CEPs (they
were always found) are readily computable using sparse ma-
trix operations.The CG approaches can scale to graphs with
millions of nodes. Hashing seems to be best on real world
graphs with small diameters such as social networks; it is
fastest per CG iteration and there is not much we can gain
from PI. For graphs with large diameters such a chains and
grids (as they often appear in AI tasks) the PI methods are
faster since hashing may take many CG iterations. PIfix
takes the fewest CG iterations but each iteration may take

6That is we solve the subproblem exactly only with probability
p resulting in 1/p more CG iterations (Jaggi 2013). To avoid this,
we coupled this approximate solution with the hashing solution.

Name / # graphs / avg. # nodes Hashing WL CGCR S
MUTAG / 188 / 17.93 •0.23 0.53 0.6 �
ENZYMES / 600 / 29.87 •0.64 3.46 2.08 �
NCI1 / 111 / 29.87 •5.25 16.07 93.81 �
Weighted MUTAG � � •0.40 �
Weighted ENZYMES � � •1.82 �
Weighted NCI1 � � •111.53 �

Table 2: Running times (sec.) for computing CEPs of graph
sets taking from (Shervashidze et al. 2011) for Weisfeiler-
Lehman graph kernels. � denotes not applicable. Weighted
X denotes row normalized (X + 0.0001).

quite some time. PIflex balances both the best. Finally, to
get references for the running times, we compared to Saucy
S7, see also Tab. 1, and to the combinatorial CR implemen-
tation WL in Matlab of (Shervashidze and Borgwardt 2009;
Shervashidze et al. 2011) used for fast Weisfeiler-Lehman
graph kernels, see Tab. 2. The results show that S is faster for
unweighted graphs but it is also highly sophisticated, cannot
be used for Shervashidze et al.’s graph kernels due to its
asynchronous color updates, and cannot deal with weighted
graphs. Compared to WL, (sparse) matrix approaches can
be faster and some of them can deal with weighted graphs.

Conclusions
We described novel and simple methods for color refine-
ment (CR), a basic algorithmic routine for graph isomor-
phism, fast graph kernels as well as lifted belief propaga-
tion reps. linear programming. The methods are easy to un-
derstand and implement using (sparse) matrix-matrix/vector
multiplications, readily parallelizable, and efficient and scal-
able in terms of time and space. Moreover, they open up
many interesting doors. Using disk-based systems such as
GraphChi (Kyrola, Blelloch, and Guestrin 2012) the frac-
tional automorphisms of massive graphs with billion of
edges are readily computable on just a single PC or laptop.
The results also suggest novel graph clustering and kernel
approaches based on iterative PI vectors where additionally
the lower number of CG iterations is promising. They may
also lead to novel notions of fractional automorphisms im-
posing e.g. norm instead of rank constraints.

7
http://vlsicad.eecs.umich.edu/BK/SAUCY/.

We modified the C/C++ code s.t. it stops after computing the CEP.

74

[Kersting, Mladenov, Garnett, Grohe AAAI 2014]

Kristian Kersting
Lifted Approximate Inference

38

Why should I care?

§  Well, this suggests to view lifting as an
approach for clustering, community
detection, and role discovery

75
Kristian Kersting
Lifted Approximate Inference

Power Iteration Clustering with Restarts

§  One iteration of Power Iterated WL using k-Means
instead of exact clustering essentially mimics
Power Iterated Clustering [Lin, Cohen ICML 2010]

76

Algorithm 5: HCGCR(A): Hashed CGCR
1 Let ⇡ an array where ⇡(i) equals to the ith prime;
2 c(0) := 1, i.e., the all 1 column vector;
3 m(0)

:= 1 (the maximal color) and k := 1 ;
4 repeat
5 c(k+1)

:= COLORS
�
c(k) +A log(⇡(c(k)))

�
;

6 m(k+1)

= max(c(k+1)

);
7 k := k + 1;

until m(k)
= m(k�1);

8 return c(k)

the currently maximal color. The inner sum simplifies to
[AB(k)

]ic . Now assume hi = hj . Exponentiating both
sides (which turns the sums into products) and setting Ni :=Qm(k)

c=1

⇡(c)(AB(k)
)ic yields

ec
(k)
i Ni = ec

(k)
j Nj (8)

where both Ni and Nj are integers. Rearranging (8) gives
ec

(k)
i �c

(k)
i

= Nj/Ni . Note that the right-hand side is ratio-
nal although all nonzero integral powers of e are irrational.
Therefore we conclude that c(k)i = c

(k)
j and (8) simplifies

to Ni = Nj . From the fundamental theorem of arithmetic,
we have that their prime factorizations coincide. Therefore
AB(k)

)ic = AB(k)
)jc for all 1  c  m(k), which is equiv-

alent to �
�
[AB(k)

]i•, [AB(k)
]j•

�
= 1. Since the argument

goes in both directions, we have proven the theorem.

Thus, for unweighted graphs CGCR reduces to iteratively
computing the perfect hash values of the colors of all nodes.
This is realized in HCGCR in Alg. 5. Next to the O(n+m)

flops when using sparse matrices per iteration, the main ad-
ditional costs is to store a precomputed table of size O(n) of
the logs of the first n primes. Since there are more than a bil-
lion primes known, see e.g. http://www.bigprimes.
net, this scales well to graphs with billions of nodes. We
also note that one could realizes asynchronous color up-
dates. This would lead to stochastic CG approaches akin to
stochastic gradients and the quasi-linear CR developed by
Berkholz et al. (2013). We are not going into details.

We have just closed the gap between the combinatorial
and continuous optimization views on CR for unweighted
graphs. Now, we will illustrate the benefit of this by develop-
ing power iterated CR connecting fractional automorphisms
to web mining.

Power Iterated Color Refinement
HCGCR is already akin to the well-known power iteration
(PI) method for computing eigenvalues. We now show the
connection of CR to eigenvalue problems is deeper.
Theorem 4. The CEP can be computed iteratively by clus-
tering PI vectors personalized by the current condensation,
see Alg. 6. This converges in a linear number of iterations.

Proof. Reconsider CGCR in Alg. 4. Starting from the all

Algorithm 6: PICGCR(A): Power Iterated CGCR

1 B(0)

= 1;
2 m(0)

:= 1 (the current maximal color) and k := 1 ;
3 repeat
4 B(k+1)

:= CHARACTMAT
�
⇧(A,↵, B(k)

)

�
;

5 Set m(k+1) to the number of columns of B(k+1);
6 k := k + 1;

until m(k)
= m(k�1);

7 return B(k)

flat partition4 B(0)

= 1, it computes B(1) by cluster-
ing AB(0). That is, we group together nodes i and j if
�TijAB(0)

= 0 with �ij = (ei�ej), ei begin the ith unit col-
umn vector. Then it computes B(2) by clustering AB(1) and
so on. The value [AB(k)

]ij is the number of 1-step walks that
start in a node of class j and end in node i. Thus, it groups
together nodes that have the same number of 1-step walks
coming from each current color classes j = 1, 2, Hence
once nodes i and j get assigned to different color classes,
they will stay in different color classes. That is, B(k) is a
condensation5 of B⇤. So, CGCR iteratively computes con-
densations B(k) of and converges to the CEP B⇤.

We now combine this sandwiching behavior with a sem-
inal result due to Boldi et al. (2006). They have proven that
the steady state distribution of any Markov chain with restart
induced by G also induces a condensation of D⇤. More
precisely, let P = C�1A be the transition matrix induced
by G where C is the degree matrix of G. Now, consider
the steady states distribution ⇡(↵, v) of the Markov chain
with restart induced by ↵P + (1 � ↵)1T v where v is the
preference vector for the restart. Then �ij⇡(↵) = 0 for
0  ↵ < 1 if nodes i and j are in the same color class
in B⇤. In general, the partition induced by ⇡(↵, v), however,
will not be B⇤ but this can be fixed using CGCR. Specif-
ically, let’s compute ⇡(↵, v) using power iteration, that is
x(i+1)

:= ↵Px(i)
+ (1 � ↵)1T v with x(0)

= v. Induction
over the power iterations shows the equality holds for any
iteration i, i.e., �ijx(i)

= 0 for any i = 1, 2, 3, pro-
vided that the preference vector v is color class-wise uni-
form. This, however is the case for the columns of B(k)

modulo normalization. So, let ⇧(A,↵, B(k)
) be the matrix

whose uth column is the power iteration vector. We have
just proven that �Tij⇧(A,↵, B(k)

) = 0 for all iterations k.
In other words, we can cluster in each iteration the matrix
⇧(A,↵, B(k)

). Doing so can result in fewer CG iterations
as we might skip condensations but still converges to B⇤

since we are always sandwiched between one condensation
Bl (l � k) computed by HCGCR and B⇤.

Thus, CEPs of unweighted graphs can be found by re-
peatedly clustering globally the steady-state distributions

4We use B(k), D(k) and the corresponding partition of the
graph in an interchangeable way.

5B(k) is a condensation of B⇤ if D(k) is a condensation of D⇤ .
That is each color class in B(k) is a union of classes in B⇤.

PIC(l+k,A,B(k))

kMeans with l clusters over all colored early state distribution

Clusters are not changing significantly anymore

Kristian Kersting
Lifted Approximate Inference

39

Empirical Illustration

PIC PICWR
Dataset k Purity NMI RI Purity NMI RI
Iris 3 0.9800 0.9306 0.9741 0.9800 0.9306 0.9741
PenDigits01 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
PenDigits17 3 0.7550 0.2066 0.6300 0.7550 0.2066 0.6300
PolBooks 3 0.8000 0.4641 0.7702 0.8667 0.6205 0.8405
UBMCBlog 2 0.9480 0.7193 0.9014 0.9530 0.7488 0.9104
AGBlog 2 0.9566 0.7426 0.9170 0.9574 0.7492 0.9185
20ngA 2 0.9600 0.7594 0.9232 0.9600 0.7594 0.9232
20ngB 2 0.8800 0.5563 0.7888 0.9450 0.7042 0.8961
20ngC 3 0.6433 0.4955 0.6923 0.6417 0.4932 0.6902
20ngD 4 0.5425 0.2979 0.6538 0.5637 0.3283 0.6845

Table 3: Clustering performance of PICWR and PIC on several real datasets. For all measures a higher number means better
clustering. Bold numbers are the highest in its row.

Clusters are nothing but fix budget
fractional automorphisms of datasets

77
Kristian Kersting
Lifted Approximate Inference

If you still do not care, what about lifting
linear programs, working horse of AI, OR, ...

[Mladenov, Ahmadi, Kersting AISTATS 2012]

Run WL on the „LP“-graph to reduce the dimension of the LP

78
Kristian Kersting
Lifted Approximate Inference

40

Lessons learnt
§  Loopy Belief Propagation and Linear

Programming can be made aware of
computational symmetries

§  This can result in great speed-ups

§  Computational symmetries can be detected
using the Weisfeiler-Lehman (WL) algorithm

§  WL computes fractional automorphisms in
quasi-linear time; essentially no overhead!

§  Few lines of Matlab code realize WL (with
flooding) using sparse-matrix operations

§  Strong connections to community detection,
role discovery, graph kernels, clustering, …

