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Loopy Belief Propagation and Linear =
Programming can be made aware of
computational symmetries

This can result in great speed-ups
Computational symmetries can be detected
using the Weisfeiler-Lehman (WL) algorithm

Paulis | Cathredaljillondon UK

WL computes fractional automorphisms in
quasi-linear time; essentially no overhead!
Few lines of Matlab code realize WL (with
flooding) using sparse-matrix operations

Strong connections to community detection,
role discovery, graph kernels, clustering, ...




General Take-Away Message

= Sparseness and Tree-width
are not enough

= We need to be aware of
Symmetries
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A Simple AI Problem

Thanks to Guy Van den Broeck

A
%
o

There are 52 cards (2-10, J, Q, K, A per color) and we would like to
compute some basic probabilities
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A Simple AI Problem

What is the probability-that the firEt c€rd. will be a Queen if we
reveal the first card, plUP@ BAEDIRIUFEY the deck, reveal the first
card . 4/52=1/13
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A Simple AI Problem

SO

Probability 13/52=1/4
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A Simple AI Problem

What if we knew already that its
color is red?

Probability 13/26=1/2

2014
Kristian Kersting

technische universitat
Lifted Approximate Inference dortmund

©

WROCLAW

A Simple AI Problem

Probability13/51
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How does AI do this?

Graphical Model + Inference Algorithm

exact
Node= Variable Elimination
. Junction Tree
Random Variable (RV)

Edge= Distribution
Dependency between
RVs P(X)= ngx¢j(x) P(X/|E=e)
E 5 8 Loopy Belief Prop.
MPLP
i di d Fact .
D;Zﬁﬁl‘i" UnM'c:g:Te GE:";;I: approximate
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When is this efficient?

The more similar to a tree, i.e.,
small tree-width!
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Why? Conditional Independency

Dependencies simplify computations

Tree Graph Graph

P(A|C,E) = P(A|C) P(A|C,E) # P(A|C) P(A|C,E) # P(A|C)
P(A|B,E,F) = P(A|B,E) P(A|B,EF) = P(A|B,E) P(A|B,E,F) # P(A|B,E)
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Back to the card problem

= Probabilistic propositional model is fully connected

FEEEEEEENER
+H
|

|
|

L
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= There are NO independencies
= Exact inference builds a table of >1352 Rows!

= Even approximate (for example, message passing)
methods need to pass = 13°2) messages
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EVERYONE HAS A PLAN
2 -)‘.

o A ‘
‘ ™ |
UNTIL THEY, GET rﬁ?ﬁnm IN THE
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What is the issue?

Probability 13/51
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What is the issue?

Probability 13/51
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What is the issue?

Probability 13/51
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Tractable Probabilistic Inference

= Traditional Belief: Independence
(Conditional/Contextual)

= Now: Symmetry (Exchangeability)
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Where do the symmetries come from?
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Traditional Machine Learning
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Standard Data Representation:
Single Tables

Id Age Gender Weight BP Sugar LDL Diabetes?

27 M 170 110/70 6.8 40 N
35 M 200 180/90 9.8 70 Y
21 F 150 120/80 4.8 50 N

But nowadays data become richer and richter
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Nat Rev Genet. 20

Heart diseaseszanid stiio keSE=IT e
cardiovascﬂmiease e, &
expensivelfoiFthefworld
d Heart Federation, cardiovasculal
hean Union EURO169 b“
nd

and the USA about EURO0310.23 billio

indirect annual cost: parison, the est
of all cancers i 46.19 billion and HIV
infections .24 billion

Electronlc He Ifth‘Records
A New Opporil"'nlty/for AI to
Sayve'our kifes

[INAarajan, Kersting, Joshi,'Saldan@flpidacobs) /Cali VAALN2/0 1 3]

Mining EHR is a non trivial problem!
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Endless Showcases !

Imaging Social Networks

Planning (medical) fospetty
y_ L & 1S e b § Yy

r+¢ f

ﬂi’ﬁu

Scene |nterpretat|on/”_,...m
segmentation

BioInformatics

Natural Language

Processing
Robotics

TV DET 4pn)
J). got a bolo/ml
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Big Data is not enough

= The data soup: most data is in logs, text,
blogs, images, the web, databases,

= The knowledge soup: next to the data,
we may have background knowledge, often
even competing theories

= The reasoning soup: pool of interacting
tasks and algorithms

Even though computers can search
the data for keywords, features,
and models, they do not really
understand most of it
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Statistical Relational Al is serious business

Get Siri-ous.

Howeve efficient complex probabilistic
reasoning becomes central!
Can we make it faster?

= Probabilistic relational models are used by several
million users.

= Many other applications such as entity resolution,

information extraction, unsupervised semantic
parsing, NELL, information broadcasting, ...
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So, what is lifted inference?

1. An inference algorithm that deals with “groups”
of random variables at a first-order level
= Takes a general first-order model as input
= Automatically answers queries without computational
waste
2. Reason over a large domains in time
independent of the number of objects

3. Ability to carry out probabilistic inference in a
relational probabilistic model without needing to
reason about each individual separately

4. Try and perform inference at the first-order logic
level and to ground out only when necessary
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More views

5. Algorithm that exploits interchangeability in the
domain

6. Queries are answered without instantiating all
the objects in the domain

7. Exploit shared correlations — Same uncertainties
and correlations repeatedly occur in data

8. Exploit symmetries in the data and the model
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Different definitions but similar goals

Least Common Denominator

- Exploit symmetry = Identify
similar groups of random
variables
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. Knowled
Lifted Inference CS.‘,’,";ifat?fn,

{ Lifted Inference ];;Zz?:::suc

roving, ...
{ Graph-based ] [ Search ]

[Gogate 10,11, Jha 10,
Van-den-Broeck
FOVE, .. 11,13,14]

{ Exact ] (Approximate} [ Preprocessing ]

[Poole 03, de Salvo Braz 06,07,
Milch 07, Kisyinski 09a,09b,
Choi 10,11, Sen 08,
Taghipou 12 ]

[Shavlik 09, Mihalkova 09]

[Deterministic] [ Sampling ] { Interval }

[Singla 08, Kersting 09,10, [Milch 06, Poon 08,
Sen 09, Nath 10, Hadiji 10, Zettlemoyer 07, Gogate
11, Ahmadi 10,12, 13, 12,14 Niepert

Riedel 08, Mladenov 12,14 12,13,14]

Bui 13,14 Noessner 13, Van- .
den-Broeck 12, 13] MC'SAT, Lifted MCMC,

Lifted BP, MAP(I)LP, Lifted Importance Sampling, ...
Bisimulated VE, ...

[de Salvo Braz 09]
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[Zhang, Poole 1994]

Variable Elimination

Example: Inviting n people to a workshop

Sum out non-query
variables one by one

Time is linear in
number of invitees n

E( )¢1(pop, att(p,)) ¢,(att(p,), ser)
\att p;

Can’t we do better?}

Y
¢'(pop, ser)
201 @
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Machines Reading the Data dortmund

[Poole 2003; de Salvo Braz et al. 2005]

First-Order Variable Elimination

Based on logically parameterized factors

vX. ¢,(popular, attends(X))
VX. ¢,(attends(X), series)

vX. ¢'(popular, series)

¢’'(popular, series)”
Idea: Exploit symmetries

across factors, i.e., sum - N -
out all attends(X) variables | Time is constant in n

at once
And there is often additional
structure for optimization

16



[Milch,Zettlemoyer, Haims, Kersting, Kaelbling AAAIO8]

Exploiting Symmetries within Factors

vw V)J

Can’t sui
joining

50 100 150 200
Number of Invitees

D

)

W),
Ilevel

Actually, it turns out that lifted probabilistic
inference is closely related to theorem proving

J
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[Gogate, Domingos AAAI 2011, Van den Broeck et al. IJCAI 2011]

Probabilistic Theorem Proving (PTP)

TP(KB, Query)
KB, — KB U {- Query}
return =SAT(CNF(KB,))

PTP(PKB, Query)
PKB, — PKB U {(Query,0)}

return WMC(WCNF(PKB,))
/ WMC(WCNF(PKB))

Kristian Ke[
Lifted Probabl

All we need is lifted weighted
model counting

CaY)

17



First, however, we have to convert the
PKB into (Lifted) CNF + Weights

WCNF(PKB) Clauses/Formula -Potential
for all (F, ®Y€PKB s.t. ®,> 0 do
PKB — PKB U {(F; © A;, 0)} \ {(F, @)}
CNF < CNF(PKB) Hard formula as weight is|0
for all —A, literals do W_,; := @;
for all other literals L do W, := 1
return (CNF, weights)

2014 @
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Lifted Weighted Model Counting

LWMC(CNF, substs, weights)
if all clauses in WCNF are satisfied | =25€
return HAEA(CNF) (W, +w_ )" () |

if CNF has empty unsatisfied clause return
0

18



Lifted Weighted Model Counting

LWMC(CNF, substs, weights)
if all clauses in WCNF are satisfied
return HAEA(CNF) (w, + WﬁA)"A(s”bm)
if CNF has empty unsatisfied clause return
0

if there exists a lifted decomposition of CNF
sharing no unifiable literals

return [ [LWMC(CNF, ,, substs, weights)]"
Decomp. Step

Lifted Weighted Model Counting

LW M C ( CNF, SUbStS, wel : Competing Workshops
H

10F
}A E 1
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~

What about approximate inference?

choose an atom A Splitting Step

Main computational step. I am skipping the details. Nice
connection to knoweldge compilation e.g. using first-
order d-DNNF for efficient model counting. Is closely
related to recursive conditioning

19



Introduction of lifted loopy belief propagation

Understanding its main ingredient: color-passing

Connections to AI, ML, and DM

Lifted / SYMMETRY-AWARE
'LOOPY BELIEF PROPAGATION

[Pearl, Koller, Friedman, Lauritzen, Spiegelhalter, ...]

Reminder Factor Graphs

Distributions can naturally be represented as
Factor Graphs

Z1 Z2

Random variable

p(x) = fa(x1,22) fo(w1, 22) fe(2, 23) fa(23)

Factor resp. potential unnormalized !

= There is an edge between a circle and a box if
the variable is in the domain/scope of the factor

20 ©
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Approximate Inference using 3 ‘\5
Loopy Belief Propagation .

Random variables exchange

Messages: "l (A) believe that l
you (X,) should be in state x, Yy
with probability ... .” o

px—gp() = H fn—x ()
henb(X)\{f}

prox(@) =Y (f(X) II u_.,_fw))

factor graph ~{=} yEnb(f)\{X}

2014 5 0
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Loopy Belief Propagation
for Social Network Analysis

Inference often slow
even for approximate
inference

per node
marginal

—{x} yEnb(FH\{X}

px—f(x) = 1T mx@
henb(X)\{f} =
py—x@) =" (f(x) 11 “”*f(y)>

factor graph + loopy belief propagation 42
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computational symmetries

How can we exploite them within loopy
Belief Propagation?

AN 17 7 4 SO wmll am
HOWEVER, MANY GRAPHICAL MODELS HAVE

SYMMETRIES

ww— N

[Singla, Domingos AAAI 2008; Kersting, Ahmadi, Natarajan UAI 2009; Ahmadi, Kersting, Mladenov, Natarajan MLJ 2013]

Step 1: Coloring the graph

= Color nodes according to the
evidence you have
= No evidence, say red
= State ,one", say brown
= State ,two", say orange

= Color factors distinctively
according to their equivalence
classes. For instance, assuming f;
and f, to be identical and B appears
at the second position within both,
say blue

A

2014 @
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[Singla, Domingos AAAI 2008; Kersting, Ahmadi, Natarajan UAI 2009; Ahmadi, Kersting, Mladenov, Natarajan MLJ] 2013]

Step 2: Pass the colors around

1. Each factor collects the colors of its neighboring nodes

2014 @
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[Singla, Domingos AAAI 2008; Kersting, Ahmadi, Natarajan UAI 2009; Ahmadi, Kersting, Mladenov, Natarajan MLJ 2013]

Step 2: Pass the colors around

1. Each factor collects the colors of its neighboring nodes
2. Each factor ,signs" ist color signature with its own color

2014 @
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[Singla, Domingos AAAI 2008; Kersting, Ahmadi, Natarajan UAI 2009; Ahmadi, Kersting, Mladenov, Natarajan MLJ] 2013]

Step 2: Pass the colors around

1. Each factor collects the colors of its neighboring nodes
2. Each factor ,signs" ist color signature with its own color
3. Each node collects the signatures of its neighboring factors

2014 @
Kristian Kersting technische universitat WROCLAW
Lifted Approximate Inference dortmund 47

[Singla, Domingos AAAI 2008; Kersting, Ahmadi, Natarajan UAI 2009; Ahmadi, Kersting, Mladenov, Natarajan MLJ 2013]

Step 2: Pass the colors around

Each factor collects the colors of its neighboring nodes
Each factor ,signs" ist color signature with its own color
Each node collects the signatures of its neighboring factors
Nodes are recolored according to the collected signatures

2014 @
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[Singla, Domingos AAAI 2008; Kersting, Ahmadi, Natarajan UAI 2009; Ahmadi, Kersting, Mladenov, Natarajan MLJ] 2013]

Step 2: Pass the colors around

Each factor collects the colors of its neighboring nodes
Each factor ,signs" ist color signature with its own color
Each node collects the signatures of its neighboring factors
Nodes are recolored according to the collected signatures
If no new color is created stop, otherwise go back to 1

u b~ WN =

49

[Singla, Domingos AAAI 2008; Kersting, Ahmadi, Natarajan UAI 2009; Ahmadi, Kersting, Mladenov, Natarajan MLJ 2013]

Step 3: Compress the factor

Essentially we just compute the
so-called quotient factor graph

2014 @
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[Singla, Domingos AAAI 2008; Kersting, Ahmadi, Natarajan UAI 2009; Ahmadi, Kersting, Mladenov, Natarajan MLJ] 2013]

Step 4:
Run a modified Loopy Belief Propagation

K "
@ (}-N bi(x;) = H llf—.’al(l‘;

\ fenb(X;)
B pfx—f(r) = ufal-(.l‘~ H ;lhﬁy(.r

henb(X)\{f}

= Nodes are now groups of random variables

= The counts ensure that we send the same number of
message as standard loopy belief propagation
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[Singla, Domingos AAAI 2008; Kersting, Ahmadi, Natarajan UAI 2009; Ahmadi, Kersting, Mladenov, Natarajan MLJ 2013]

Mind the counts! They also depend on the
position of the variable within the factors

pxoip(®) = pipox(@ TP T T s gosx(@) %0
henb(X) qeP(h,X)
(b,9)#(f,p)

Hrpo(®) = D (f(x) II 1I uanaf,q(y)c(f’@’q)_‘sm‘51"1)

-{x} Yenb(f) ¢€P(f,D)

bi(zi) = H H Msp—2x; (xi)c(f’x"p)

fenb(X;) peP(,%:)

= Here, P(h, X) denotes the position variables appear in factors

= The main difference is in the factor to variable messages. We
now send only one message per ,supernode" and position as
expressed by the indicator functions

= For the lifting, we can turn the graph into a position- pairwise

factor graph and then run color-passing -

26



[Singla, Domingos AAAI 2008%*; Kersting, Ahmadi, Natarajan UAI 2009; Ahmadi, Kersting, Mladenov, Natarajan MLJ 2013]
(*)Singla and Domingos actually proposed a relational variant that corresponds to color-passing on the ground network

Lifted Loopy Belief Propagation

Step 2: Color-Passing

x|

H “i—.’c,(:v,»m

fenb(X;) -%E -
le—f(fl’)=uy~x(l" I m—xEl

henb(X)\{f}

Step 4: Run modified Loopy Belief Propagation 53

[Taken from Mladenov, Globerson, Kersting UAI 2014]

And these kinds of lifted
message-passing approaches
can be orders of magnitudes
faster

—LP-lifted ——MPLP-reparam. —MPLP-reparam.

102 mmm L P-reparam. —MPLP-ground = TRW-reparam.
= mmm L P-ground.
010}
F10°

10

107 ' 3

515255051020304050515255051020304050 5 10 20 30 40 50
7 106 Domain Size
2014
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Weisfeiler-Lehman (WL) Algorithmus

aka “"naive vertex clas5|f|cat|on ——

Basic subroutine for graph
isomorphism testing
= Computes so called
fractional automorphisms:

Doubly stochastic matrices instead of
permutation matrices

= Quasi-linear running time O((n+m)log(n)) when
using asynchronous updates [Berkholz, Bonsma, Grohe ESA 2013]

= Part of graph tool SAUCY (scccq varas, soalian, Markow bac 2008]
= Can be extended to weighted graphs

[Grohe, Kersting, Mladenov, Selman ESA 2014]
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Examples for WL with flooding

® @ ©
@ @
o ®
grid graph McKay graph

@ o
o9 e_©O ®
o *7 | gl
a @® a ® ® | ‘. ~
o® [ J— &
social rules ~walk"™ graph Whalter graph

The resulting partitions are called ,,coarsest equitable partitions™ (CEPs)

But how do we get from factor graphs to graphs?

!
-

= Encode the factor colors into the node colors

'
7

= Then run Weisfeiler-Lehman / Color-Passing just

on the graph with these initial colors
58
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[Berkholz, Bonsma, Grohe ESA 2013]
Quasi-linear running time

= Send color message asynchronously and keep a
stack of active color classes

= Initially only color 1 is active

= Pop an active color C from the stack and send
message to the neigbors of the corresponding
color class members (refine)

= Push all new colors on the stack in increasing
order except we used C already before. If so,
then push all new colors but the largest one
-Hopcroft's trick resulting in a halfing argument-

= Stop if the stack if empty

= Due to the halfing argument this can be shown
to be of O((n+m)log(n))
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[Kersting, Mladenov, Garnett, Grohe AAAI 2014]
Problem: Find automorphism (*) of an
undirected graph with adjancency matrix A

Find a permutation matrix P such

that AP=PA

* .
P* = argminpep S(P)
S(P) = ||[A - Allp =|A— PAP"|%
= |I(A = PAP")P||5 = || AP — PA|%

||A| |%7 = tr(AFA) = Zi,j |Aij I2
(*) Automorphisms have recently received a lot of attention for lifted inference, see e.g.
[Nieper UAL 2012; Bui, Huynh, Riedel UAI 2013; Niepert AAAL 2013; Apsel, Kersting, Mladenov AAAI
2014; Bui, Huynh, Sontag UAI 2014 ] and later in this tutorial. For many graphs they can be computed
in polynomial time. For general graphs, however, the complexity is unknown; it might be NP-complete.

60
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[Kersting, Mladenov, Garnett, Grohe AAAI 2014]

Problem: Find automorphism (*) of an
undirected graph with adjancency matrix A

Find a permutation matrix P such

that AP=PA

P* = argminpep S(P)
— arg maxpcp F(P)

Complexity is
unknown. Let's [ tI‘(APAPT)

[AllE = tr(ATA) = 33, ; |4yl

relax the probelm

(*) Automorphisms have recently received a lot of attention for lifted inference, see e.g.

[Nieper UAI 2012; Bui, Huynh, Riedel UAI 2013; Niepert AAAI 2013; Apsel, Kersting, Mladenov AAAI

2014; Bui, Huynh, Sontag UAI 2014 ] and later in this tutorial. For many graphs they can be computed

in polynomial time. For general graphs, however, the complexity is unknown; it might be NP-complete. 61

[Kersting, Mladenov, Garnett, Grohe AAAI 2014]
Problem: Fractional Automorphism

Find a doubly stochastic matrix D

s.t. AD=DA

D" = argmaxpep) F(D)

Birkhoff Polytope

D1 1 consists of all doubly

17 — 17T stochastic matrices.
It is convex

2014 @
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[Kersting, Mladenov, Garnett, Grohe AAAI 2014]

Optimization over a convex set:
Conditional Gradients aka Frank-wolfe

- 0 This lower bound
Start with D(®) € D D

Lower bound F(D) with its FO Taylor series expansion
T®(H) := F(D™) + (VF(D™), H — D®)
Maximize T'*)(H) st.H € D
H™ = maxpep(VF(D®), H)

Since the polytope is convex, run a line search

between D& and H®) to find next Dk+1), Since the
lower bound is concave, HK will be selected

Mission completed? 63

[Kersting, Mladenov, Garnett, Grohe AAAI 2014]

NO!!I

= This does not mimic WL at all!!!!

= It will just find the trivial solution (identity
matrix). We do not employ the more-
general-than relation among solutions!

= Replacing a quasi-linear approach by
a sequence of cubic LAPs is stupid!

2014 @
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[Kersting, Mladenov, Garnett, Grohe AAAI 2014]

Exploit symmetries in the
induced linear problems!

VF(DW®) =24D" A
= Intuitively, if two vertices of a graph have
identical subgradients (rows in the gradient
matrix) they are interchangeable
~_J1 th vertex is in jth cluster of VE(D®),
710 otherwise

65

[Kersting, Mladenov, Garnett, Grohe AAAI 2014]

Do not solve the induced LPs at all

= B induces actually ascent directions.
They are all what we need

H = BS 'BT

where S (the sizes of the clusters) takes
care of normalization

2014 @
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[Kersting, Mladenov, Garnett, Grohe AAAI 2014]

Conditional Gradients for
Color Refinement/Weissfeiler Lehman

Algorithm 1: CGCR(A): CG for Color Refinement

1 Set D\ = 11 € 9, i.e., the flat partition matrix;

2 Setk:=1;

3 repeat

4 | B:=CHARACTMAT(VF(D®));
S := diag(BT1) /* diagonal mat. of class sizes */;
Update D*+1) .= BS—1BT;

Set k =k 4 1;

Materializing D(?°) breaks memory

already for medium size graphs

Provably convergent to a local maximum of F in

a linear number of iterations producing the
same sequence of intermediate solutions as WL

with flooding

[Kersting, Mladenov, Garnett, Grohe AAAI 2014]

Matrix Multiplications for Color
Refinement/Weissfeiler Lehman
Algorithm 4: CGCR(A): CG for Color Refinement

1t B =1, ie., the all 1 column vector;
2 m(© := 1 (the current maximal color) and k := 1 ;

.éut cubic running time 11!
Just a few lines of matlab code!

Memory consumption scales well
for sparse matrices

Provably convergent to a local maximum of F in
a linear number of iterations producing the
same sequence of intermediate solutions as WL

with flooding
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[Kersting, Mladenov, Garnett, Grohe AAAI 2014]
Matlab code available at http://www-ai.cs.uni-dortmund.de/weblab/code.html

Perfectly Hashed Color Refinement/
Weissfeiler Lehman

Algorithm 5: HCGCR(A): Hashed CGCR
Let 7 an array where (i) equals to the ith prime;

1
2 ¢ =1, e, the all 1 column vector;

3 m(9 := 1 (the maximal color) and k := 1 ;

4 repeat

5 c* 1) .= CoLoRrS (¢!®) + Alog(m(c¥)))) ;

This is quadratic and can actually be

turned into quasi-linear time using
asynchronous updates

The fundamental theorem of artihmetic
tells us that this is proveably correct

) dortmund (& \UBL, Wpoctaw 69

But this is not akin to anythlng I know!!!

Really not'? 2
BT i :
WL can efficiently be |mplemented usmg
basic MATLAB sparse matrix operations and

|s readily parallellzable

— — e

WLis a condltlonal gradient using symmetry
regularized solvers for the induced linear
subproblems

J T N
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[Kersting, Mladenov, Garnett, Grohe AAAI 2014]

Sparse Matrix CP/WL

Iterations

clustering

| AB!

[Boldi et al. Theoretical Informatics and Applications 2006]

) Theorem: Vertices in the
, same color class of CR

clustering

have the same dot-
product x, ,=AX,

l A@Tn‘, assuming x,(i)=x,(j)

clustering ThiS iS akin tO
Power Iteration
 —

Lifted graph / fractional Automorphism
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[Kersting, Mladenov, Garnett, Grohe AAAI 2014]

Power Iterated CP/WL

T

I>1

clustering clustering

| AB®| | atBW]

clustering clustering

B A5

Iterations

clustering clustering

. 1 . 1

Lifted graph / fractional Automorphism
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[R. Kannan, S. Vempala, A. Vetta: On clusterings: Good, bad and spectral. J. ACM 51(3): 497-515 (2004)]

Power Iterated CP/WL

e

. I>1 .
clustering ] clustering ]
ol | AB®] | 4t
c
9
-E clustering clustering
|
Q
d
=l

clustering

l PPR%‘]E?(W) ]

clustering

lA@Tl)', lAl'ﬁﬁL_l)' ” ppr(A B+ ,

WL is a spectral clustering approach

with restarts !

Spectral Partition such as via PageRank

| | u L
Lifted graph / fractional Automorphism 73
[Kersting, Mladenov, Garnett, Grohe AAAI 2014]
Avg. (5 reruns) time in sec. / median # CG iteration
Name / Description # nodes # edges Hashing PlIfix Plflex S C
chain100001: Chain graph 100001 100,000 699.62 50002 420.18 1252 136.59 2892 < 0.01 49%
2rid1000: Grid graph 1,000,000 1,998,000  96.26 501  77.44 21 2387 41 043 13%
email-EuAll: Email comm. netw., EU res. 265,214 365,030 ©0.32 8 6.09 o5 0.51 o5 0.05 81%
soc-Epinions1: Who-trusts-whom netw. 75,888 405,740 «0.08 5 1.60 5 0.14 LY 0.02  30%
web-Google: Web graph from Google 875,713 4,322,051  e5.61 17 163.49  ell 14.67 11  1.03 40%
flickr: 2005 crawl of flickr.com by D. Gleich 820,878 9,837,214 1.32 o5 59.70 6 3.47 o5 0.61  40%
lung2: Transp. in lung, Uni. Aukland 109,460 492,564 4.84 227 3.39 10 e1.48 26 0.06 59%
Xenon2: Complex zeolite, sodalite crystals 157,464 1,933, 344 096 35 3.81 o5 e0.78 10 0.16 59%
Total 4 1 0 6 4 4
Name / # graphs / avg. # nodes Hashing WL CGCR S
MUTAG /188 /17.93 ¢0.23 0.53 0.6 —
ENZYMES /600 / 29.87 0.64 3.46 2.08 —
NCI1/111/29.87 5.25 16.07 93.81 —
Weighted MUTAG — — 0.40 —
Weighted ENZYMES — — 0]1.82 —
Weighted NCI1 — — ol111.53 —
2014 @
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Why should I care?

= Well, this suggests to view lifting as an
approach for clustering, community
detection, and role discovery

2014 @
Kristian Kersting technische universitat WROCLAW
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Power Iteration Clustering with Restarts

= One iteration of Power Iterated WL using k-Means
instead of exact clustering essentially mimics
Power Iterated Clustering

Algorithm 6: PICGCR(A): Power Iterated CGCR

1 BO =1;
2 m(© := 1 (the current maximal color) and k := 1 ;
3 repeat

s | B*+) .= pIC(I+k,A,B())
5 | Set m**D to the number of columns of B*+1);
6 k:i=k+1;
until Clusters are not changing significantly anymore
7 return B(%)

kMeans with | clusters over all colored early state distribution

2014 @
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Empirical Illustration

PIC PICWR

Dataset k Purity NMI RI |Purity NMI RI

Iris 3 0.9800 0.9306 0.9741|0.9800 0.9306 0.9741
PenDigitsO1 3 1.0000 1.0000 1.0000 | 1.0000 1.0000 1.0000
PenDigits17 3 0.7550 0.2066 0.6300 | 0.7550 0.2066 0.6300
PolBooks 3 0.8000 0.4641 0.7702|0.8667 0.6205 0.8405
UBMCBIlog 2 0.9480 0.7193 0.9014 |0.9530 0.7488 0.9104
AGBlog 2 0.9566 0.7426 0.9170|0.9574 0.7492 0.9185
20ngA 2 0.9600 0.7594 0.9232|0.9600 0.7594 0.9232
20ngB 2 0.8800 0.5563 0.7888 |0.9450 0.7042 0.8961
20ngC 3 0.6433 0.4955 0.6923 |0.6417 0.4932 0.6902
20ngD 4 0.5425 0.2979 0.6538 |0.5637 0.3283 0.6845

Clusters are nothing but fix budget

fractional automorphisms of datasets

201 @
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[Mladenov, Ahmadi, Kersting AISTATS 2012]

If you still do not care, what about lifting
linear programs, working horse of AI, OR, ...

max, , regs 02 + 0y + 12 -
c

[T ;
111 .
1.0 0 0 = Vv
0 -1 0 <lo
11 -1 -1 ?
A b

Run WL on the ,,LP"-graph to reduce the dimension of the LP

y z G
s.t.

N w5

10%

— original

—  automorphisms

10'}L—_ colour refinement

10"

1ime (s)

107!

Kristian Kersting 0-2

1
Lifted Approximate Inference 10 20 30 40 50 78
Problem instance

39



Lopy Belief Propagatlon and Llnear
Programming can be made aware of
computational symmetries
This can result in great speed-ups

Computational symmetries can be detected
using the Weisfeiler-Lehman (WL) algorithm

WL computes fractional automorphisms in
quasi-linear time; essentially no overhead!

Few lines of Matlab code realize WL (with
flooding) using sparse-matrix operations

Strong connections to community detection,
role discovery, graph kernels, clustering, ...
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